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Abstract

Species distribution models are widely used in conservation planning, but obtaining the
necessary occurrence data can be challenging, particularly for rare species. In these cases,
citizen science may provide insight into species distributions. To understand the distribu-
tion of the newly described and Critically Endangered Amazona lilacina, we collated spe-
cies observations and reliable eBird records from 2010-2020. We combined these with
environmental predictors and either randomly generated background points or absence
points generated from eBird checklists, to build distribution models using MaxEnt. We
also conducted interviews with people local to the species’ range to gather community-
sourced occurrence data. We grouped these data according to perceived expertise of the
observer, based on the ability to identify A. lilacina and its distinguishing features, knowl-
edge of its ecology, overall awareness of parrot biodiversity, and the observation type. We
evaluated all models using AUC and Tjur R?. Field data models built using background
points performed better than those using eBird absence points (AUC=0.80+0.02, Tjur
R%?=0.46+0.01 compared to AUC=0.78 +0.03, Tjur R*=0.43+0.21). The best perform-
ing community data model used presence records from people who were able recognise a
photograph of A. lilacina and correctly describe its distinguishing physical or behavioural
characteristics (AUC=0.84+0.05, Tjur R?=0.51+0.01). There was up to 92% over-
lap between the field data and community data models, which when combined, predicted
17,772 km? of suitable habitat. Use of community knowledge offers a cost-efficient method
to obtain data for species distribution modelling; we offer recommendations on how to
assess its performance and present a final map of potential distribution for A. lilacina.
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Ecuador
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Introduction

Understanding species distributions is essential for conservation planning (Wilson et al.
2005) but for species that are rare, sparsely distributed, or inconspicuous, this informa-
tion is often lacking. In such cases, species distribution models (SDMs) and their outputs,
can be particularly useful, as long as they are based on ecological theory and built using
accurate data (Guisan and Thuiller 2005). SDMs allow the probability of occurrence to
be predicted in un-surveyed areas, which can inform future field investigations and have
many important conservation applications (e.g. Pearce and Lindenmayer 1998; Aratjo
et al. 2004). For all SDMs, species presence data are needed. Traditionally this comes from
direct species observations or museum records, but more recently scientists have looked
to integrate different sources of data, such as citizen science, to make better inferences of
the true distribution of species (Amano et al. 2016; Coxen et al. 2017; Fletcher et al. 2019;
Steen et al. 2019; Isaac et al. 2020).

The quality of outputs gained from SDMs is affected by factors such as data type,
sampling bias and imperfect detection (Lahoz-Monfort et al. 2014; Guillera-Arroita et al.
2015). MaxEnt is one of the most commonly used methods for deriving SDMs and has
been shown to produce useful models even when dealing with small sample sizes (Wisz
et al. 2008; Elia et al. 2015). Whilst other methods require absence data to be collected,
MaxEnt uses presence data combined with a background sample drawn randomly from the
study area (Phillips et al. 2006, Phillips and Dudik 2008; Elith et al. 2011). Both presence-
absence and presence-background data methods have limitations; namely that presence
data often do not represent an unbiased sample of locations at which the species is present,
and that absence data can lead to the inclusion of false absences (Guillera-Arroita et al.
2015). These limitations must be considered against the proposed use of model outputs; for
instance, presence-background data may be sufficient when outputs are to be used to direct
further field investigations, but insufficient if outputs are to directly inform land manage-
ment for conservation (Lahoz-Monfort et al. 2014). The predictive ability of models may
also be reduced if imperfect detection is not accounted for, and may result in outputs being
more likely to predict areas in which the species is easier to observe, rather than where it
is more likely to occur. It is therefore essential that the effects of imperfect detection are
minimised by ensuring a sufficiently large sampling effort at surveyed locations (Lahoz-
Monfort et al. 2014).

For species where field observations are lacking, citizen science data is a valuable and
widely used resource (Brook and McLachlan 2008) which can help determine species pres-
ence, absence or abundance (Melovski et al. 2018; Diaz-Ruiz et al. 2019; Ghoshal et al.
2019; Skroblin et al. 2021). Some methods allow large volumes of data to be collected
more cost effectively than traditional field survey methods, for example postal surveys
(FitzGibbon & Jones 2006), telephone interviews (Mallory et al. 2003) and social media
(Pace et al. 2019). Often this information is used to supplement ‘expert’ data by guiding
further field surveys (Hart & Upoki 1997; O’Brien et al 1998; Chaiyes et al. 2017) but in
some cases it is shown to be just as accurate as the equivalent ‘expert’ data, providing that
some form of filter for reliability is incorporated (Polfus et al. 2014). Recently, a number
of studies have even shown that georeferenced occurrence data collected through citizen
science platforms and online biodiversity databases such as eBird, can be used to build
accurate SDMs (Bradsworth et al. 2017; Coxen et al. 2017; Fournier et al. 2017; Saunders
et al. 2020). However, it is important to note that all opportunistically collected citizen sci-
ence data present additional challenges such as spatial biases and variation in observer skill
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(Isaac and Pocock 2015; Johnston et al. 2020) and online recording schemes such as eBird
create barriers by requiring observations to be collected and submitted in a particular way.

Within all types of citizen science data, there is variation in accuracy. For example stud-
ies have shown that ‘freelisting’ (Bernard 2006), a quick survey method where participants
are asked to list the species they see in their local area, can result in people reporting spe-
cies that do not occur and omitting ones that do (Can and Togan 2009; Diaz-Ruiz et al.
2019). However, the cost efficiency of citizen science may compensate for reduced accu-
racy depending the data collected and extent of errors (Gardiner et al. 2012). If citizen
science data are to be used to infer information about distribution, and as input data for
the creation of SDMs, some method of boosting data accuracy or accounting for level of
expertise is essential (Kosmala et al. 2016; Johnston et al. 2019). Previous studies have
used prior selection of participants i.e. only interviewing key informants selected by com-
munity leaders due to their perceived expertise (Mallory et al. 2003; Lopes et al. 2018).
Others have developed some kind of scoring system, to determine data accuracy (Frey
et al. 2013) by only regarding contributions from participants who are able to recognise
photographs of the study species and provide accurate location information (Ghoshal et al.
2019), or by using photographs of non-native species to assess participants identification
skills (O’Brien et al. 1998).

To further our understanding of the distribution of a newly described and Critically
Endangered parrot species Amazona lilacina (Biddle et al. 2020; BirdLife International.
2020), we:

1. Built distribution models using all known locality records of A. lilacina from our own
observations, those from expert ornithologists, and reliable eBird records (2010-2020);

2. Collected data on local peoples’ experiences and observations of wild A. lilacina through
structured face-to-face interviews;

3. Grouped community interview data based on different quality filters and used these data
to build distribution models;

4. Determined the best performing distribution models built from species records and com-
munity reports, and compared their outputs in order to direct future field investigation.

Methods
Study area

Amazona lilacina, a species recently split from the A. autumnalis group, is found in the
coastal region of Ecuador where its small population is sparsely distributed around dry for-
ests and mangrove ecosystems (Biddle et al 2020). These habitats are described as amongst
the most imperilled ecosystems on earth (Dodson and Gentry 1991). During the day-time
A. lilacina is highly inconspicuous, feeding silently in the forest canopy in small groups
which presents difficulty in using traditional field survey methods to collect presence data
(Ridgely and Greenfield 2001a). However, in the evenings birds will form conspicuous
groups and fly to communal roost sites (Berg and Angel 2006) which means that communi-
ties living anywhere on this flight path, are often aware of the species presence.

The rural coastal communities are considered to be in the most deprived areas of Ecua-
dor, with almost one quarter of all people living in multidimensional poverty (Mideros
2012). The deprivation gap regarding food and water, education, communication, and

@ Springer



1806 Biodiversity and Conservation (2021) 30:1803-1823

housing, is greater here than in any other part of the country (Mideros 2012). Within our
sampled communities (Fig. 1a), people mainly make a living as farmers, fishers or crab
fishers, and 60% have either none, or only primary level schooling. Many communities in
this region are highly inaccessible, especially in the rainy season and 57% of people we
surveyed had lived in their village their entire lives. The flow of information into and out of
these communities is reported to be infrequent, with only 40% of households having access
to one form of telecommunication (radio, television, phone, computer) (Mideros 2012).

Field observations and eBird records

Observational data were collected during ten field trips led by RB, lasting two to three
weeks each (November 2012, January and August 2014, November 2015, August 2016,
January and March 2017, February 2018, January and August 2019). Data collection was
informed by: (1) existing information on known distribution and habitat use (Juniper and
Parr 1998; Ridgely and Greenfield 2001a, b; Berg and Angel 2006; Forshaw and Knight
2010; Athanas and Greenfield 2016); (2) information on habitat distribution from Google
Earth and the Ministerio del Ambiente ecosystem map; (3) direct communication with
local NGOs, ornithologists, local guides and bird tour companies. All sightings of perched
A. lilacina made by RB, ISP, MP, Fundacién Pro-Bosque staff, Fundacién Jambeli staff,
and Juan Freile between 2010 and 2020 were georeferenced (sightings of birds in flight
were omitted).
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Fig.1 a Locations of all households taking part in interviews, all records of Amazona lilacina collated
between 2010 — 2020 and, b eBird absence points, representing all complete checklists that did not report
A. lilacina, and random background points matching the number of eBird absence points available, within a
30 km buffer of all A. lilacina presence records
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All eBird data for Ecuador, including observations and sampling data were downloaded
in December 2020. To ensure that no records were missed due to changing taxonomic
nomenclature, data were filtered to include all birds recorded as A. autumnalis (which
included A. a. lilacina and A. a. salvini) between 01/01/2010 and 31/12/2020. Records
that were not deemed as A. lilacina based on either photographic evidence or location (i.e.
within the Esmeraldas province) were removed, as were records that were already repre-
sented by our own observations (within 1 km). To avoid misrepresentation of location, all
records that were reported as “general area” which implies the record does not correspond
to that exact location were removed, as were records with survey effort>5 h and>5 km in
length (Johnston et al 2019). Finally, locations of parrots within urban locations in the big
city of Guayaquil (visualised on Google Earth) were removed to avoid escaped pets or cap-
tive birds being included in models.

Distribution models from field observations and eBird records

The MaxEnt function of the package ‘dismo’ (Hijmans et al. 2020) in R (version 3.6.0, R
Core Team 2019) was used to create species distribution models from field observations
and eBird records, referred to from now on as the field models. These were first built using
eBird absence points generated by filtering for all complete checklists within our study area
that did not report the presence of A. autumnalis (A. a. salvini or A. a. lilacina) (Fig. 1b).
Absence points were also limited to checklists that were <5 km in length, <5 h in duration
and with fewer than ten observers (Johnston et al. 2019), and to a buffer of 30 km from all
field observations and eBird records. Our second and third field models were built using
random background points generated in ArcGIS (Version 10.8.1) from within the same
buffer: the second model had 4597 and the third had the same number as eBird absences
available (458). Spatial autocorrelation was controlled for by limiting points to one per
1 km using the R package ‘spThin’ (Aiello-Lammens et al. 2015). A set of interpolated
bioclimatic predictor variables available from WorldClim (https://www.worldclim.com/
bioclim) representing different measures of temperature and rainfall, plus additional pre-
dictors thought to have some biological significance for the species were used: Normalised
Difference Vegetation Index (NDVI) from the monthly MODIS product over the period
2010-2015 as a proxy of vegetation cover; distance to mangrove (Hamilton and Casey
2016) and distance to the nearest river (Military Geographic Institute, IGM). Predictors
were checked for pairwise correlation across random points within the study area, using
pair plots (Zuur et al. 2010); where correlation coefficients between pairs of predictors
were > (.70, the less biologically meaningful predictor was removed. The final variables
were; distance to the mangrove, distance to a river, annual mean NDVI and NDVI season-
ality, mean diurnal temperature range, annual mean temperature and temperature season-
ality, precipitation of wettest month, precipitation of coldest quarter and precipitation of
driest month. To allow comparison between the field and community models, we averaged
predictor values across 9 km? at all points used in all models to reflect respondents’ refer-
ence to their ‘local area’, which could encompass areas of community owned land > 1 km
away from their house. To ensure this did not affect model outputs or accuracy we trialled
models built using predictor values at the exact location, compared to those averaged over
9 km?, and found no difference.

Models were evaluated with AUC and Tjur R? (Tjur 2009) over five-fold cross valida-
tion; the mean evaluation metrics and their standard deviation are presented. AUC meas-
ures how well model predictions discriminate between presence and absence (Wisz et al.

@ Springer


https://www.worldclim.com/bioclim
https://www.worldclim.com/bioclim

1808 Biodiversity and Conservation (2021) 30:1803-1823

2008). Tjur R? represents the difference between the mean model value at the presence
locations and the mean value at the absence / background locations. All the data were
included in the final models. Finally, we present variable importance scores, with permuta-
tion values > 10%, with a high value indicating that the model depends heavily on that vari-
able (Phillips et al. 2006) and response plots for the most accurate field model.

Community questionnaires and response filtering

Researcher—led questionnaires were carried out to identify areas that were reported by
local people to be occupied by A. lilacina. Communities were chosen to be included in this
study due to their close proximity to dry lowland forests (within approximately 10 km),
identified using the Ministerio del Ambiente ecosystem map. Furthermore, all communi-
ties surveyed were inside or within 70 km of the species Extent of Occurrence (Biddle et al
2020). A pilot study was conducted after which interviews were carried out in January-July
2017. Questionnaires were conducted in Spanish by a local Ecuadorian researcher (ISP),
with only the interviewer and respondent present (Tourangeau and Yan 2007). We aimed
to survey a minimum of three households per community representing a cross section of
demographic groups, but often this depended on the availability of participants and the size
of the community. In all cases, prior verbal consent was obtained, and although less than
fifteen people did not complete interviews, interviewees could decline from contributing
once the purpose of the research was explained (Online Resource 1).

The location of each questionnaire, normally by the participant’s house, was recorded
and participants were asked to respond with reference to their immediate local area which
included their house, garden, and local community land. Demographic information regard-
ing age, gender, level of schooling, and how long they had lived in the village, was col-
lected, but interviews were anonymous, and data were coded to ensure that no individuals
could be identified. Interviewees were not made aware of the species in concern before
starting the interview, during which they were asked to name and describe which parrot
species (if any) they see in their local area, then confirm from a selection of ten parrot
photographs (the order of which was rotated at random between surveys) (Table 1). If a

Table 1 Photographs of ten parrot species were presented to questionnaire participants

Parrot species Chance of observation Species status
1. Southern Mealy Amazon Amazona farinosa Unlikely Rare

2. Blue-headed Parrot Pionus menstruus Possible Common

3. Bronze-winged Parrot Pionus chalcopterus Possible Uncommon
4. Red-masked Parakeet Psittacara erythrogenys Likely Common

5. Great Green Macaw Ara ambiguus Unlikely Very rare
6. Pacific Parrotlet Forpus coelestis Likely Common
7. Grey-cheeked Parakeet Brotogeris pyrrhoptera Possible Uncommon
8. Lilacine or Ecuadorian Amazon Amazona lilacina Possible Rare

9. Brown-headed Parrot Poicephalus cryptoxanthus Not present Not present
10. Yellow-crowned Amazon Amazona ochrocephala Not present Not present

The chance of observation is rated as likely (if the species range covers the entire study area), possible (if
the species range covers more than half of the study area) or unlikely (if the species range covers less than
half of the study area) (Freile and Restall 2018)
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participant confirmed they currently (within the last year) see A. lilacina at their location,
they were then asked a number of questions designed to help assess the accuracy of this
information. Each interview (Online Resource 2) took approximately 20 min to complete.

To examine the influence of accuracy of community data, we filtered responses accord-
ing to the ability to recognise the species, knowledge of its distinguishing features, overall
awareness of parrot biodiversity, and observation type (i.e., if the bird was seen flying,
nesting, perched or feeding). We created six groups of responses to represent realistic sce-
narios that may be used to select which observations to include in distribution investiga-
tions (Table 2). We created a further 11 groups which represented all possible combina-
tions of groups three-six, for example group seven represented a group of participants who
had answered correctly for all of groups three, four, five and six (Online Resource 3).

Distribution models from community data

We created distribution models based on groups of community data with varying levels of
accuracy as listed in Table 2; the community models. Each participant’s response was asso-
ciated with a location representing a 1 km? pixel on our distribution maps. These presence
locations were combined with environmental variables and background points following
the same methods as for the field model. All background points were restricted to buffers
of 30 km from community survey presence points. We averaged predictor values across the
9 km?, as for the field model, to reflect respondents’ reference to their ‘local area’, which
could encompass additional areas of community owned land. In order to evaluate the accu-
racy of the community data models, we use the same methods as for the field models; AUC
and Tjur R? (Tjur 2009) over five-fold cross validation. We present these, alongside permu-
tation values where their contribution to the model is > 10% for all models, and the habitat
suitability output and response plots for the best performing model.

Model comparison

Once we had identified the best performing field observation model and community data
model, we compared the overlap between their habitat suitability outputs. These outputs
are interpreted as maps of potential distribution with values indicating the level of habi-
tat suitability for each pixel, on a scale of zero to one. There are several methods used to
compare model outputs (Galante et al. 2018). We chose Moran’s I which represents the dif-
ference between suitability values at each cell, and the relative rank coefficient which esti-
mates the probability that the relative suitability ranking for a patch of habitat cells is the
same for the two models (Warren and Seifert 2011). We calculated these using the niche
overlap function in ENMTools (Warren et al. 2010). Both methods produce metrics which
range from zero (no overlap) to one (complete overlap).

To predict areas of potential distribution, it was necessary to classify areas as either
‘suitable’ or ‘unsuitable’ depending on their model value. Many thresholding rules are jus-
tified for presence-only occurrence data (Peterson et al. 2011). We chose the 10% omission
rate threshold (Galante et al. 2018) where the model value which includes 90% of the val-
ues predicted at the presence locations used to create that model, is applied as a threshold
to the habitat suitability output to distinguish between presence and absence. We calcu-
lated and applied this independently to the two best performing models. We present a final
combined map of distribution that represents areas predicted as suitable or not by either
of the final models. We extracted the values for the top three predictor variables from the
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best performing models, in areas where both models predicted presence, compared to areas
where only the field model or only the community model did, and plotted these using the R
package ‘ggplot2’ (Wickham 2016).

Predictors of community data performance

Once the best performing community data model been determined, a generalized linear
mixed model (GLMM) was conducted in R (version 3.6.0, R Core Team, 2019) using the
package ‘lme4’ (Bates et al. 2020). The binomial response of whether or not a participant
was included in the response group used to build that model was analysed to determine any
effects of participants’ social demographics: gender, level of schooling, age and number of
years in the village. Only communities where at least one wild A. lilacina observation had
been reported were included, and the community location was included as a random effect.
We checked for correlation between the age and number of years spent in the village using
Pearson’s product-moment correlation, and between gender and level of schooling (some
or none) using a Chi-squared test of independence, and only included non-correlated vari-
ables in our GLMM.

Results
Field observations and distribution model

Our field observations generated a total of 132 occurrence points. A further 14 locations
from eBird were included, to create a final dataset of 146 A. lilacina presence locations.
These were reduced to 59 (47 field observations and 12 eBird records) during the spa-
tial rarefication process, combined with either: 458 eBird absence points (model 1); 4597
randomly generated background points (model 2) or; 458 randomly generated background
points (model 3) and entered into model building with the ten non-correlated predictor var-
iables. The resulting mean of five-fold cross validation AUCs were 0.78 +0.03, 0.80+0.02,
0.79+0.02 and the resulting mean of five-fold cross validation Tjur R%s were 0.43 +0.21,
0.46+0.01 and 0.41+0.01 for models 1 to 3, respectively. Therefore, field model 2 was
considered to be the best performing model (Table 3). The habitat suitability output from
model 2 shows that the suitable habitat follows the Chongdén Colonche mountain range,
from Guayaquil north-west towards the coast, with additional suitable areas in the far south
of the country bordering Peru, and the north of the study area in mid-Manabi (Fig. 2a).
Environmental variables that showed a permutation importance of >10% were annual
mean NDVI, distance to the mangrove, and temperature seasonality and response plots
(Fig. 2b) suggest that suitability of habitat is associated with close distance to mangrove
and a relatively high annual mean NDVI.

Community questionnaires and reliability scoring

A total of 404 people from 72 communities took part in questionnaires, including 183
women and 221 men, with an average of 5.6 households per community (min 2, max
23). There was a variety of schooling levels, from none (31), primary (214), second-
ary (128), to university (31) and in how long participants had lived in their commu-
nity (1-84 years) but the majority (88%) had lived there for ten or more years. Of the
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Fig.2 a The habitat suitability output from the best performing field model which is built using 59 species
records and 4597 background points b The variable response plots for this model

404 participants, 393 reported seeing parrots in general. Although it was posed in our
questionnaires that participants should answer with reference to birds seen in the wild,
when asked “where did you see this bird?” 15 respondents replied “as a pet” - these 15
responses were removed from the community models.

Distribution models from community data

After filtering community data based on the six groups in Table 1, and creating com-
bination groups where participants answered positively for multiple categories, each
group had a sample size of >27 (27-155). After spatial thinning all datasets con-
tained >18 (18-67) georeferenced occurrence points. Each group of points was com-
bined with 3,931 background points and the same ten non-correlated predictor vari-
ables as those included in the field models. Models were built based on groups one
to six of data, and then all 11 possible combinations of groups three to six. None of
the combination models improved the performance of the model (Online Resource 3).
The mean of five-fold cross validation AUC for the six main models was >0.74 +0.03
and Tjur R?>0.39 +0.02. Based on these values, model 3 is the best performing com-
munity model (Table 4). The habitat suitability map of community model 3 shows a
similar area of suitable habitat to the field data model, but with additional increased
suitability predicted along the coastline (Fig. 3a). Environmental variables with a per-
mutation importance of > 10% were distance to mangrove and temperature seasonality,
and response plots for this model suggest that suitability of habitat is associated with
areas closer to mangroves (Fig. 3b).
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