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Abstract

The LoRa wireless connectivity has become a de facto technology for intelligent critical infrastructures such as trans-
port systems. Achieving high Quality of Service (QoS) in cooperative systems remains a challenging task in LoRa.
However, high QoS can be achieved via optimizing the transmission policy parameters such as spreading factor, band-
width, code rate and carrier frequency. Yet existing approaches have not optimized the complete LoRa parameters.
Furthermore, the star of stars topology used by LoRa causes more energy consumption and a low packet reception
ratio. Motivated by this, this paper presents transmission policy enforcement and multi-hop routing for QoS-aware
LoRa networks (MQ-LoRa). A hybrid cluster root rotated tree topology is constructed in which gateways follow a tree
topology and Internet of Things (IoT) nodes follow a cluster topology. A ‘membrane’ inspired form the cell tissues
which form clusters to sharing the correct information. The membrane inspired clustering algorithm is developed to
form clusters and an optimal header node is selected using the influence score. Data QoS ranking is implemented for
IoT nodes where priority and non-priority information is identified by the new field of LoRa frame structure (QRank).
The optimal transmission policy enforcement uses fast deep reinforcement learning called Soft Actor Critic (SAC)
that utilizes the environmental parameters including QRank, signal quality and signal-to-interference-plus-noise-ratio.
The transmission policy is optimized with respect to the spreading factor, code rate, bandwidth and carrier frequency.
Then, a concurrent optimization multi-hop routing algorithm that uses mayfly and shu✏ed shepherd optimization to
rank routes based on the fitness criteria. Finally, a weighted duty cycle is implemented using a multi-weighted sum
model to reduce resource wastage and information loss in LoRa IoT networks. Performance evaluation is implemented
using a NS3.26 LoRaWAN module. The performance is examined for various metrics such as packet reception ra-
tio, packet rejection ratio, energy consumption, delay and throughput. Experimental results prove that the proposed
MQ-LoRa outperforms the well-known LoRa methods.

Keywords: Long Range (LoRa) CommunicationInternet of Things (IoT)Transmission Policy Parameters Opti-
mizationDeep Reinforcement LearningQuality of Service (QoS) ProvisioningMulti-Hop Routing.

1. Introduction

Long Range (LoRa) communication is widely adapted in intelligent transportation systems for monitoring tra�c
flow, predicting operational issues and car park occupancy, improving passenger experience, etc. [1]. LoRa has many
desirable features such as low-power wide-range communication and adaptive parameter support. However, achieving
high Quality of Service (QoS) in LoRa communication is still challenging. This is particularly important as LoRa
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technology is frequently used in real-time applications such as intelligent transportation [2], soil monitoring systems
[3], fish monitoring systems [4] and disaster response systems [5]. LoRa can be deployed to meet specific applica-
tion requirements. For instance, cooperative intelligent transportation systems are often characterized by multi-hop
communication between roadside units and mobile vehicles that are they are loosely organized with multi-source het-
erogeneity. In underwater monitoring systems, it is noticed that delay and jitter bounds are necessary to deploy LoRa
for real-time systems. In disaster management, increasing in the number of gateways increases the packet delivery
ratio. When deployed in high density networks, LoRa su↵ers slight performance degradations [6]. The analysis shows
that optimal transmission policies can assist in achieving better QoS even in large-scale dense networks. For improv-
ing coverage and connectivity, multiple gateway deployment is performed [7]. When it comes to QoS improvement,
optimal Spreading Factor (SF) allocation is adopted in many research papers. For instance, the Artificial Bee Colony
(ABC) algorithm uses Packet Loss Rate (PLR) as the objective function to tune SF and other transmission parame-
ters [8]. The convergence limitations of the ABC algorithm prevent the required QoS provisioning. Furthermore, a
Medium Access Control (MAC) protocol is designed by assigning odd/even SFs to the end nodes for enabling concur-
rent transfer [9]. Poor scalability and large waiting time are the major issues in this work. A game-theoretical approach
is presented for assigning SF for end nodes for a particular time period that works upon service requirement [10]. As
the work only considers interference, the transmission delay is high for all nodes. Reinforcement Learning (RL) is pro-
posed as the solution for allocating SFs for end devices [11]. Although RL is capable of learning multiple parameters,
this work only considers the throughput level, which is ine�cient. While the majority of the research focuses on QoS
of LoRa, energy e�ciency is still a major issue. In general, LoRa uses star topology and single-hop communication,
which are the major causes of energy consumption. Thus, SF allocation is performed under the constraint of average
energy consumption in LoRa [12]. For optimization, a distributed genetic algorithm, which consumes large time, is
utilized. Even with the deployment of edge/fog computing as in [13], the energy e�ciency is still an issue. To combat
this issue, multi-hop data transmission and optimal topology deployment provide a better solution [14, 15]. Here, it is
necessary to select an optimal path to minimize loss rate and energy consumption. Table 1 describes the abbreviations
that we have used throughout the paper.

Table 1: List of abbreviations.

Abbreviation Expansion

DRL Deep Reinforcement Learning
SF Spreading Factor
BW bandwidth
CFP Contention Free Period
MIC Membrane Inspired Clustering

CR2T2 Cluster Root Rotated Tree Topology
CoMiR Concurrent Optimization Multi-hop Routing
SSOA Shu✏ed Shepherd Optimization Algorithm

MQ-LoRa Multi-Hop QoS-aware LoRa
MWSM Multi-Weighted Sum Model

PRR Packet Reception Ratio

1.1. Motivation
The majority of LoRa communication mechanisms try to optimize QoS in LoRa Internet of Things (IoT) networks.

Still, the following restrict the performance of LoRa communication [16, 17].

• Topology – Most of the current research has tested in star or tree topology by considering the gateway as a
hub and root, respectively. Both topologies are expensive to construct and have single node failure problems.
Maintenance of the topologies also becomes di�cult as the network grows in size.

• Routing – Generally, LoRa follows single-hop transmission between an end node and its gateway. In single-hop
transmission, energy consumption is high and the coverage is limited to some amount of range, which places
restrictions on LoRa’s key feature, i.e. long range communication. Current research e↵orts consider multi-hop
routing, but they study limited QoS metrics and solely concentrate on route selection. Routing can o↵er required
QoS when it utilizes full advantage of LoRa including adaptive SF, bandwidth (BW) and Contention Free Period
(CFP) factors, since static parameter setting is ine↵ective in dynamic data transmission cases.
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• Data Di↵erentiation – Each data packet generated by end nodes demand a di↵erent level of QoS. In such cases,
assigning the same priority level leads to improper QoS achievement in the network. For instance, emergency
data require low latency and high reliability which must be satisfied by the routing and parameter setting mech-
anisms. Thus, the absence of priority knowledge is also a cause for QoS degradation.

• Resource Constraint Nodes – IoTnodes are resource constraint in nature. Many LoRa communication techniques
fail to minimize the energy consumption of IoTnodes when nodes need to communicate in a single-hop manner.
An increase in energy consumption directly degrades the performance of the overall network by decreasing the
lifetime of IoTnodes. It is necessary to consider the energy consumption factor of each node in order to achieve
an overall QoS level [18, 19, 20, 21].

In this paper, we mainly focus on improving QoS and energy e�ciency in LoRa based IoTnetworks. A combined
approach that covers topology, parameter and routing optimization is proposed to achieve high QoS in LoRa networks,
In Multi-Hop QoS Routing Header Nodes (HNs) collect data from IoT nodes and select optimal multi-hop route
with Gateway. Multi-hop transmission is optimized by a multi-Mayfly optimization algorithm and Shu✏ed Shepherd
optimization, both algorithms evaluate the available routes in parallel and rank the routes according to the fitness value.
Furthermore to address the energy restriction issue in IoT, in this paper we proposed a scheduling that determines the
optimum timeslots for nodes to put in a sleep state. Each node makes decision on sleep time slot by using Multi-
Weighted Sum Model (MWSM) that considers multiple criteria such as timeslots selection, bu↵er status, energy status
and event status. Each mechanism introduced in this paper considers both QoS (packet reception ratio, loss rate,
latency etc.) and energy e�ciency for normal and priority data. The prime objective of this work is to enhance QoS
while maintaining energy e�ciency in LoRa networks. The sub-objectives are:

1. To optimize the network topology in such a way to support scalability, reliability and energy e�ciency.
2. To di↵erentiate the QoS level required by individual messages for providing high network-level QoS.
3. To enable multi-hop routing by considering multiple metrics as per the data type.
4. To assign optimal communication parameters based on the current network status.

1.2. Contribution
In this paper, we provide a holistic solution for cooperative network topology design, resource restriction and trans-

mission policy establishment for LoRa communication through the MQ-LoRa model which consists of the following
contributions:

• We present a hybrid network topology namely Cluster Root Rotated Tree Topology (CR2T2). This is constructed
using a combination of cluster and tree topologies. This topology avoids the LoRa network single point of failure
present in star topologies. All LoRa based end devices use cluster topology and the LoRa gateway devices use
tree topology. The root from the end device to its gateway is updated when the congestion level and root score
exceed some threshold. Membrane Inspired Clustering (MIC) is performed for cluster formation in IoT. Initially,
Signal to Noise Ratio (SNR), distance to gateways, expected emergency data and signal strength are computed
for all nodes concurrently. In this way, all gateways in the network use optimal Header Nodes (HNs).

• We propose QRank Extended Frame Structure (QE-Frame) that consists of QoS rank as a new field to identify
data into either emergency or non-emergency, where the former requires high level of QoS. For this di↵erenti-
ation, Renyi entropy is used to make the global decision for dynamically adjusting threshold values based on
entropy measure. The QRank is further utilized for optimum transmission policy creation and route selection.

• We enforce the optimum transmission policy finding step for both emergency and non-emergency data packets.
In LoRa communication, SF, Code Rate (CR), BW and Carrier Frequency (CF) can be optimized. For that, fast
Deep Reinforcement Learning (Fast-DRL) is proposed to learn from the environment and accordingly update
the QRank, signal quality and SINR. Fast-DRL ensures the required level of QoS with respect to delay and
packet reception ratio.

• We design a multi-hop route for satisfying the QoS level of IoTnodes. Two lightweight optimization algorithms
are employed for multiple route selection, namely, the Concurrent Optimization Multi-hop Routing (CoMiR)
algorithm that runs by Mayfly optimization and the Shu✏ed Shepherd Optimization Algorithm (SSOA). Both
algorithms find the route concurrently and rank the routes through fitness criteria.
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• To address the energy restriction issue in IoT, we propose a weighted duty cycle that determines the optimum
timeslots for nodes to be put in a sleep state. For accurate timeslots selection, bu↵er status, energy status and
event status were used.

1.3. Layout of this paper
The rest of this paper is structured as follows: Section 2 details the LoRa communication technology and the

unique set of parameters. Section 3 briefly discusses the literature in various aspects as LoRa for real-time applica-
tions (IoT), transmission policy execution and data transmission. Section 4 gives the problem statement and lists the
various research solutions. Section 5 describes the proposed MQ-LoRa in detail that presents the algorithmic steps and
working procedure. Section 6 covers the experiment discussion about the proposed and the previous methods using
network simulation. Section 7 concludes the paper and outlines future work avenues.

2. PRILIMINARIES OF LoRa

This section summarizes LoRa model operations and communication in detail. A LoRa model consists of a set of
end devices, gateways / edge routers, network server and application systems as illustrated in Fig. 1. Devices sense
information and forward it to the nearby gateway. The gateway collects all sensed information from devices and sends
them to the network servers and they redirect all messages to the application system. A conventional LoRa model
consists of two kinds of Open Systems Interconnection (OSI) layers as: (1) Physical Layer, and (2) LoRaWAN MAC
layer.

Figure 1: Edge devices in a typical IIoTplatform

One of the major benefits of LoRa is its coverage, where the gateway can cover a long range of end devices. The
unique set of LoRa parameters are discussed in table 2.
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Table 2: LoRa TECHNICAL PARAMETERS

Parameters Standards

Spectrum Unlicensed
Network Topology Star

Communication Range 15 – 16 km
Type of modulation CSS

Peak Data Rate 290 bps – 50 kbps
Bandwidth 500 – 125 kHz
Mobility Better than NB-IoT

Power e�ciency Ultra large
Connection density Utilized with NB-IoT
Energy e�ciency Greater than 10 years

Immunity for interference Ultra large
Peak Current 32 mA
Sleep Current 1 µA

Standardization De-factor standard
Spreading Factor Bit /s Size (bytes)

12 250(0) 51
11 440(1) 51
10 980(2) 51
9 1760(3) 115
8 3125(4) 222
7 5470(5) 222

The most unified set of features in LoRa technology can be: (i) High coverage with long distance; (ii) low com-
plexity and cost; (iii) long network lifetime; (iv) simultaneous packet receiving option in gateways; and (v) robustness
against the Doppler e↵ect. In high coverage, SF12 can be supported to obtain the high packet reception ratio which
is greater than 70% over 9 Km. At 5 Km, the value of the packet reception ratio is greater than 70% when the SF is
7. Due to the distance, LoRa parameters such as BW, transmission power, CR and SF must be optimized. For every
packet transmission, LoRa consumes 120-150mW and the duty cycle operation consumes less than 0.1% - 10% of
power consumption. Thus, the overall network lifetime is sustained from two to five years. LoRa gateways are able to
simultaneously transmit packets through 8 channels using di↵erent spreading factors such as SF7 to SF12.

3. RELATED WORK

This section is split into three subsections: 3.1. LoRa for real-time IoT applications. 3.2. Transmission policy
execution and 3.3. Data transmission.

3.1. LoRa for Real-Time IoT Applications
LoRa communication is widely used in long-range communication. In[22], Dynamic Line Rating (DLR) for

overhead transmission line (OTL) is proposed to monitor the temperature, this application depends on predisposition
measurements, weather, and temperature. This method uses the vision system that transmitted by LoRa and communi-
cation is conducted between Supervisory Control, Vision system, And Data Acquisition (SCADA) system. This study
highlights that QoS plays a major role in the reliability of received data. Besides the IoT and industrial IoT applications
[23], LoRa is also useful in disaster management and emergency response systems. This paper designs LoRa based
communication for such systems. The proposed LOCATE system, which is a phone-based emergency communication
service is utilized to enable long-range communication in the absence of 4G/5G cellular links. To cope with emergency
communications, LoRa uses a multi-hop dissemination mechanism in Emergency Communication Systems (ECS) s.
The primary objective of this dissemination is to maximize the probability of delivering emergency data. In other re-
search [24], LoRa communication is applied in soil monitoring applications. This paper proposes a Radio Frequency
Identifier (RFID) sensor based LoRa communication. Multiple RFID sensors with energy harvesting capability are
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deployed in the environment. The LoRa block is responsible for collecting data from the RFID sensors. Then, the col-
lected data is processed to find the quality of soil in the farmlands. LoRa communication is employed for underwater
monitoring [25], namely Internet of Fish (IoF). The LoRa addon module is integrated with the acoustic transceivers to
enable LoRa radio support for underwater systems. The system is tested in real-time and the delay is highlighted as
a main limitation of LoRa since it does not provide any delay or jitter bounds. Often, real-time monitoring systems
always demand data transmission without any delay because they need to detect events in a timely manner. A disaster
response system is presented in [26] based on LoRa communication. Mainly, LoRa is used for citizens to report their
emergency data to the central authorities in case of broken cellular links. This paper allows multiple gateways in the
network in order to meet the required level of data delivery rate and successful packet delivery ratio. With an increase
in the number of gateways the packet delivery ratio is increased up to 95% which is relatively greater than that of the
network with a single gateway.

3.2. Transmission Policy Execution
In [27], the authors demonstrate that the focus on optimal transmission policies can improve the performance of

data transmission systems including SF allocation, many factors are a↵ected by SF allocation including the distance
to the gateway. It is impossible to ensure better data transmission e�ciency with single gateway in large network
size. In this study, a smart city application of an IoTsetting is deployed with a high node density network to address
the scalability challenge of the LoRa technology. Data transmission capability of the system was negatively a↵ected
when the network scale is increased. To overcome transmission policy related limitations, the LoRa technology uses
a Received Signal Strength Indicator (RSSI) [28]. Multiple gateways are deployed in this method because the system
is designed for coastal applications, [26] gets the satisfactory level of connectivity and coverage in the network with
multiple gateways. RSSI is considered for SF allocation and the data is encrypted for security reasons. Optimal SF
allocation is studied in [29] to achieve better communication performance. The target of this work is to minimize the
interference introduced due to the allocation of same SF for multiple nodes to transmit to a single gateway. Thus,
each node is assigned with a particular SF for a fixed time. This time is estimated in an optimal manner based on
the service requirement of the node. A game theoretical approach is proposed to manage interactions among the
IoTnodes. The SF allocation considers the interference factor only which is insu�cient for IoTnetworks. Although
LoRa communication is more energy e�cient that IoTradio technologies, energy consumption is still one of its major
limitations due to the single-hop transmission between a node and its gateway. To address this issue, the authors of
[30] propose an energy-e�cient SF allocation policy. The problem of SF allocation is formulated as an optimization
problem and it is resolved under constraint of average energy consumption while maximizing packet reception ratio.
For optimization, a distributed genetic algorithm is proposed to assign optimal communication parameters for each
node in the network.

3.3. LoRa based Data Transmission
In [31], a MAC protocol for the LoRa technology is proposed. The proposed protocol relies on the capture e↵ect

among the signals with same SF and performs an odd/even based SF allocation for demodulation. In order to transmit
data simultaneously, the SF first checks whether it is odd or even. If odd, then the odd slot is assigned in the case
that slot is free. Otherwise, the odd SF signal must wait until the next odd slot for transmission. This work introduces
high waiting time which further increases the transmission delay. In [32], the authors present a LoRa-REP access
method for minimizing the average transmission time and maximizing success probability through a message replica-
tion mechanism. Mainly, this work focuses on emergency data transmission. For that, two operational infrastructures,
namely, LoRa with cloud backend and LoRa with local (edge/fog) backend are constructed. The success probability
is set up in the completion of the confirmed data exchanges in emergency management. Although the waiting time is
minimized, the energy consumption is still relatively high. A multi-hop communication scheme is presented in [33]
for LoRa based sensor network. In this work, it is shown that the traditional star topology is not suitable for large-scale
implementation of LoRa communication. Thus, a linear sensor network topology is proposed with multi-hop data
transmission strategy. The linear sensor network topology resembles a hierarchical point of view. The hierarchical
nodes are arranged as basic sensor nodes, data relay nodes and data dissemination nodes. The multi-hop routing is per-
formed through relay and dissemination nodes. Although multi-hop data transmission minimizes energy consumption,
involvement of non-optimal wake-up scheduling increases energy consumption. Parameter tuning is a significant task
in LoRa which is discussed in [34] and [35]. In [34], an optimization approach is presented for LoRa parameter op-
timization. The paper aims to achieve minimum Packet Loss Rate (PLR). The proposed optimization works upon the
ABC algorithm. The gateway LoRa network monitor (GLNM) is able to monitor real-time tra�c in order to configure
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the required parameters. Here, the ABC algorithm is implemented to tune the LoRa parameters such as SF, CR and BW
in an optimal manner. The ABC algorithm has some convergence issues which a↵ects the optimal parameter tuning
process. Similarly, in [35] a machine learning approach is presented for updating parameters in LoRa networks. The
objective function is formulated as the function of throughput maximization. At first, an average throughput attained
by a node is mathematically formulated. Then, the network level configuration is derived optimally. For parameter
updating, a reinforcement learning approach is proposed that works upon the throughput factor. Data transmission is
performed on the basis of policies derived by reinforcement learning. A Real-Time LoRa (RT-LoRa) communication
protocol is presented in [36] for industrial IoT applications. The RT-LoRa uses a medium access strategy to process
the real-time flow. The overall network is constructed with mobile nodes and static nodes. For all static nodes, the QoS
level is considered to be the same. For flows generated by mobile nodes, the QoS level is divided into three classes
such as normal, reliable and most reliable. In accordance with the QoS level, the strategy allocates SF and CF. The
static and mobile nodes are arranged and communicated with the gateway in a star topology. The significant issues
presented in this paper are follows: The overall procedure is presented for a single gateway network through single-
hop communication. This causes large transmission delay, up to 28s, for most reliable flows even within 180 meters.
In real-time, industrial data requires more coverage and lower time delay which has not been addressed in this work.
The QoS level is assigned for mobile nodes only and all static node flows are assigned with the same priority level
which introduces restrictions in QoS provisioning. The star topology of nodes is not suitable for large-scale networks
and introduces a single point of failure. Energy consumption is also high for all nodes to communicate with the central
gateway and it is even higher for nodes that are further away from the gateway. A LoRa+ protocol is presented in [37]
to improve QoS in terms of rejected packet rate reduction and packet error rate reduction. The problem addressed by
this paper is the current assignment of SF and operational frequency which is used for next uplink transmission too. In
LoRa+, the two parameters are updated for class “A” end devices in order to minimize the waiting time for next slots
and to minimize the rejected packet rate. To achieve this aim, a new frame structure called “Configuration Frame” has
been designed with Expected Time of Arrival (ETA) information. SF allocation is performed based on a RSSI. This
paper has the following shortcomings: A single metric RSSI is considered for SF allocation which is insu�cient since
some packets need low latency which is not satisfied by considering the RSSI metric alone. This is because, the RSSI
based allocation only focuses on the reliability and the latency requirements are not considered. LoRa+ also follows
the same SF and CF in case of high RSSI of received data. This leads to higher energy consumption and data loss.
Scalability of the work is poor since it is only suitable for medium scale networks such as in rural areas. To improve
QoS in LoRa, researchers in [38] first derive the mathematical model of an IoT node. The closed form formula is
derived to formulating the node performance. For articulating node’s performance, a Markov chain model is utilized,
and performance is increased by optimizing the performance of IoT nodes. Then, the optimal transmission policy is
derived on the basis of the mathematical model. The transmission policy is defined in terms of SF and CF factors. This
work considers normal and emergency data, performance is optimized by assigning optimal SD and CF factors using
a Simulated Annealing (SA) and Genetic Algorithm (GA). Data require di↵erent levels of QoS that is not attained in
this work, the fitness function is formulated for normal and emergency data and parameters are updated by GA and
SA. Optimal parameter assignment for packets by GA and SA is comparatively di�cult, because to handle scalable
problems with GA is not easy and SA is slow and sensitive to changes in the input values. Furthermore, it has the
following limitations: This work aims to improve energy e�ciency by taking it as constraint in fitness evaluation. In
LoRa, reliable communication can be achieved only in the cost of energy consumption since it uses single hop trans-
mission. Involvement of single-hop communication increases energy consumption and is ine↵ective for large-scale
networks. A QoS provisioning approach is proposed in [39] through fine tuning of radio parameters such as SF and CF.
The problem of QoS provisioning is formulated as Mixed Integer Linear Programming (MILP). Then, optimal setting
of SF and CF is determined under the constraint of data extraction rate (DER) to reduce the packet collision rate. The
SF is decreased based on SNR of the received frames as the function of SNR needed for demodulation. Furthermore,
the problem is resolved by adopting a CPLEX optimizer and approximation algorithm. This work su↵ers from the
following issues: It is only suitable for short range communication in small-scale network in which a single gateway is
used. But the main motive of LoRa is long rage communication. This work a↵ects the long range communication for
achieving QoS. The approximation algorithms are di�cult to run and the high complexity implies it is unsuitable for
large-scale inputs. As the approximation algorithm is complex and all transmission is carried by single-hop, energy
consumption is relatively high in this work. A real-time monitoring application based on LoRa communication is
presented in [40]. The proposed approach is built upon a multi-sensor fusion model with multi-hop data transmission.
In this work, the sensors are deployed in the wetland and the collected data is transmitted to a remote server through
a Base Station (BS). Further analysis takes place via a fuzzy decision-making based data fusion approach. For data
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collection, a queue-based data upload scheme is introduced. A threshold based sleep scheduling is enabled for sensors
to minimize energy consumption. This work has the following limitations: Sleep scheduling is performed based on
the threshold value, i.e., if a node collects the same data which is lower than threshold level for 10 times, then that
node enters the sleep state for 60 mins. In monitoring applications, it is unsure that there will be no events taken place
for 60 mins which a↵ects the reliability. As the sleep decision is taken by each node without knowledge on other
nodes, it is possible for all nodes to be in sleep state. For timely analysis on the state of the application, the emergency
data must be transmitted without any waiting time or delay. Here, the BS decides which data is collected at this time
instance in queue model which is unaware of the emergency level of data the device hold. To mitigate the issues in
single-hop routing in LoRa, in [41], the authors propose a multi-hop routing algorithm. In this simplified version of
destination-sequenced distance vector routing protocol, the QoS is measured as the function of Packet Reception Ratio
(PRR) and throughput. Here, the network comprises sensor nodes, relay nodes and a gateway. The gateway rooted
tree topology is constructed in which sensors act as leaf nodes. The leaf node transmits the data to nearby relay node
which is responsible for executing a routing protocol and to select a route with gateway. When the packet arrival rate
is high, then PRR is relatively low in this work since the relay nodes have to find route for each packet. This is because
the distance vector routing generally consumes more time which prevents the relay nodes from meeting a deadline
of such packets which a↵ects reception ratio. This work requires relay nodes to assist data routing. For large-scale
networks, a larger number of RNs is required which increases deployment cost. The route selection only considers
number of hops which is insu�cient for achieving better performance since the data transmission is a↵ected by other
factors such as noise level, channel quality and so on. Single gateway is set as root and all other nodes are considered
to be leaf node. Maintaining this large tree structure is di�cult and complex. In addition to this, if the root node is
a↵ected then the overall data transmission will be a↵ected. As LoRa generates a huge data demand, a di↵erent level of
QoS. In such cases, assigning the same priority level leads to improper QoS achievement in the network. For instance,
emergency data require low latency, high capability and reliability, which could not accurate enough be satisfied by
the previous works as shown in table 3. Furthermore, LoRa technology frequently depends on a star topology. Most of
the current research has tested in star or tree topology. Both topologies are expensive to construct and have single node
failure problems. Maintenance of the topology also becomes di�cult in such a way to support scalability, reliability,
and energy e�ciency of LoRa.

Table 3: Summarize the contribution of state the approach and result achieved by other research in the literature.

Existing

Work

Problems Addressed Proposed Solutions

[36] - The overall procedure is presented for a sin-
gle gateway network through single-hop com-
munication. This consumes large transmission
delay up to 28s for most reliable flows even
within 180 meters.
- The QoS level is assigned for mobile nodes
only and all static node flows are assigned with
same priority level which introduces restric-
tions in QoS provisioning.

- The proposed network model is constructed
with multiple-gateway based cluster architec-
ture along with multi-hop communication to
minimize energy consumption.
- Rotated-tree topology is proposed for gate-
ways and cluster topology is proposed for IoT
nodes which improves the performance of the
network.

[37] - LoRa+ follows the same SF and CF in case
of high RSSI of received data. This leads to
higher energy consumption and data loss.
- Scalability of the work is poor since it is only
suitable for medium scale networks such as in
rural areas.

- Consideration of QRank allows providing re-
quired level of QoS for all packets.
- Proposed CR2T2 topology supports large-
scale networks by forming multiple clusters
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[38] - The parameters are updated by GA and SA.
GA is complex in nature and di�cult to handle
scalable problems.
- This work aims to improve energy e�ciency
by taking it as constraint in fitness evaluation.
Involvement of single-hop communication in-
creases energy consumption and ine↵ective for
large-scale networks.

- Proposed CoMiR algorithm (uses Mayfly and
Shu✏ed Shepherd optimization algorithm)
computes di↵erent fitness values for routes
upon QRank.
- Parameters are updated by Fast DRL which
is fast and e�cient since it learns the environ-
ment continuously.

[39] - This work is only suitable for short range
communication with small-scale network in
which probably single gateway is used.
- The approximation algorithms are di�cult to
run and high complexity mainly it does not
suitable for large-scale inputs.

- Multi-gateway architecture is proposed with
novel CR2T2 topology that enhances coverage
and scalability.
- Proposed Fast DRL is capable of processing
multiple inputs at a time.

[40] - Here, sleep scheduling is performed based
on the threshold value (i.e.) if a node collects
same data which is lower than threshold level
for 10 times, then that node enters the sleep
state for 60 mins. In monitoring applications,
it is not sure that there will be no events taken
place for 60mins which a↵ects the reliability.

- MWSM based dynamic sleep scheduling is
proposed for IoT nodes under the constraints
of Bu↵er Status, Energy Status and Event Sta-
tus.
- The data transmission is performed based
on QRank which is determined by emergency
level of data

[41] - This work requires relay nodes to assist data
routing. For large-scale networks, more num-
ber of RNs are required which increases de-
ployment cost.

- HN finds optimal route by CoMiR optimizer
which can handle large number of packets.
- Root-rotated multi-gateway architecture is
proposed for handl in large-scale network

4. Solutions Outline

This section describes the research solutions for addressing the problems illustrated in the literature work. In
this paper, a network model with multiple-gateway based cluster architecture along with multi-hop communication
is assumed. All nodes rank the packets according to QoS level in the QoS-extended frame structure which is further
utilized in routing and parameter update stages. We propose a CR2T2, a rotated-tree topology, for gateways and a
cluster topology for IoT nodes to improve the performance of the network and to minimize energy consumption. Fast
DRL considers multiple important metrics (QRank, SINR, and SQ) for SF and CF allocation. Consideration of QRank
provides a required level of QoS for all packets. In this paper, CR2T2 topology supports large-scale networks by
forming multiple clusters. HN finds optimal route by CoMiR optimizer which can handle large number of packets.
Route selection considers multiple parameters based on QRank. The proposed CoMiR algorithm, which uses Mayfly
and SSOA, computes di↵erent fitness values for routes upon QRank. Parameters are updated by Fast DRL which is
fast and e�cient since it learns the environment continuously. Multi-hop transmission is optimized by a multi-Mayfly
optimization algorithm. The Multi-Weighted Sum Model (MWSM)-based dynamic sleep scheduling is proposed
which considers the bu↵er status, energy status and event status parameters. The data transmission is performed based
on QRank which is determined by the emergency level of data. Based on the research solutions described above, we
address each problem in turn. In subsequent sections, the detailed procedure of every research solution is given.

5. MQ-LoRa Model

The proposed MQ-LoRa is segregated into five related steps: (1) hybrid topology construction; (2) data QoS
ranking; (3) optimal transmission policy enforcement; (4) multi-hop QoS ranking; and (5) weighted sleep scheduling.

5.1. Network Architecture
In this research, a novel Multi-Hop QoS-aware LoRa (MQ-LoRa) is proposed for achieving better QoS and energy

e�ciency for IoT networks. MQ-LoRa comprises IoT nodes (end devices), multiple gateways, network server and
a cloud server. The objective of MQ-LoRa is to optimize the transmission policy parameters of the LoRa network
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to maximize the network reliability K, say. In general, a LoRa network is configured by four sets of parameters
(defined as SF= � f , CR= C�, BW= bw and CF= C f r) that influence the packet delivery ratio and network reliability.
Hence, these factors are used to define the constraints of the problem. Fig.2 represents the system model when
� f = {7, 8, 9, 10, 11, 12} , bw = {125, 250, 500} and C� =

n
4
5 ,

4
6 ,

4
7 ,

4
8

o
. The optimization function is utilized to achieve

maximum reliability in both emergency and non-emergency packet transmissions, which is formulated as,

OFN(i) = MaxK;
h
� f (i) , C� (i) , bw (i)

i
(1)

The received power of each LoRa gateway can be represented by follows:

PRX(i) = PT X(i) � li (2)

where PT X(i) represents the transmission power of i the device and li is the path loss between the gateway and i.
Similarly, S INRi, j is computed for the desired LoRa signal to decode which is computed by,

S INRi j =
Pi

Pj + �2 > Qi j (3)

where pi and p j, i and j values are di↵erent from 7, 8, 9, 10, 11, and 12 are the power of the desired and interfered
symbol, correspondingly, �2 is the channel noise power, and Qi j is the threshold value which is often from 6 dB to
7 dB. A novel topology is introduced to replace the conventional topology. The major methodologies involved in
MQ-LoRa are discussed below.

Figure 2: The system model

5.2. Hybrid Topology Construction
The initial network construction implements a novel hybrid topology CR2T2 which is constructed by combining

cluster and tree topologies. The gateways form a tree topology while the underlying IoT nodes form a cluster topology.
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In the tree topology, regular root rotation is performed based on the congestion level and root score. The root score
represents the number of times that particular gateway serves as the root node.

Cluster formation among IoT nodes is carried by the MIC algorithm [42, 43, 44]. MIC is parallel computing
algorithm, which derive from inspiration of the procedures that take place in the biological cell. These systems subsist
of various regions in the shape of certain architectures. MIC is a biological process that is often known as p systems.
The proposed MIC is a new algorithm that e↵ectively addresses the clustering problems. The procedure of MIC is the
inheritance of a biological cell, i.e., MQ-LoRa uses a cell like structure for clustering similar sets of devices. The main
objective of MIC is to group the devices into k numbers of clusters according to the similarity criteria, e.g., residual
energy. For that reason, MIC uses two kinds of rules as evolutionary and communication rules. The evolutionary rule
is computed by configuration change and its principle of evolutionary algorithm (particle swarm optimization) and
the traditional MIC uses genetic programming (GP), but GP does not address time complexity and space complexity
issues. Hence, Particle Swarm Optimization (PSO) is taken into account for evolutionary communication [45]. Here,
object / data point is denoted as the IoT device. Assume that each device i in every cell J can be evolved in the
following way:

Ei
j = Ei

j + wEi
j + c1r1(Pi

j � Ei
j) + c2r2(lij � Ei

j) + c3r3(qi
j � Ei

j) + c4r4(qi
j � Ei

j) (4)

where c1 , c2, c3 and c4 are the input parameters which are distance with gateway, capacity, centrality and expected
emergency data, respectively. The parameters r1, r2, r3 and r4 are the random real numbers which range from 0 and
1. The value of w is computed in terms of the min and max for each input parameter for cluster formation and the
number of steps is defined in tmax. The value can be computed for t step is illustrated below:

W = Wmax �
t(wmax � wmin)

tmax
(5)

Finally, Pi
j, l

i, qi and ui indicate the best position of device Ei
j, local best device in cell i, external best device, and

global best device, respectively. Each best device can be randomly computed and selected from all over the cells
by communication rules. To update the best position of each device, we use the behavior of PSO. Each IoTnode
Ni(i=1. . . n) in network computes the distance between two nodes by Euclidean Distance, i.e., dz is computed by
follows,

dz =

r
⇣
x j � xi

⌘2
+

⇣
y j � yi

⌘2
(6)

where (x j � xi) and (y j � yi) represents the coordinates of node i and j. The distance between i and j for all other
devices in network is expressed by a matrix and the representation is follows:

dz =

2
666666664

0 dz1,2 dz1,n
... ... ...

dzn,1 dzn,2 0

3
777777775 (7)

Among all devices in the network, the centroid value c� is computed between network pairs and the formulation is
follows

c�
⇣⇣

xi � xJ
⌘ ⇣

xi � y j
⌘⌘
=

✓ xi + x j

2
,

yi + y j

2

◆
(8)

The first device coordination is referred to as the centroid point. According to the dz and c�, a new centroid value is
computed. When c� falls within the dz, then that node is chosen for the same cluster. Otherwise, it is connected with
another cluster that have a similar dz value. The cluster type prediction is given below:

S C(i) =
nS ame C(i),i f (C�±dz)

Distinct C(i),Otherwise

o
(9)

Therefore, the sum of clusters generated by the MIC is calculated as follows,

& =
Xn

k=1
count(c�) (10)

For & the standard deviation is computed which is denoted as D& that computed by

D& =

r
1
n

Xn

i=1
dz2(xi, x j) (11)
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where n is the number of nodes in the network. The smaller the value of D& indicates the best outcome in the network.
The procedure for cluster formation is represented in Fig. 3.

After the cluster formation, the corresponding gateway selects optimal HNs based on Influence Score f s and this
value is determined using SNR and distance with neighbor nodes DN , Energy Status "� , Expected Emergency Data
"ed , and Received Signal Strength (RSS).
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Figure 3: Flowchart for cluster formation
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RSS is computed for the node which is based on the power occupied in the radio signal obtained from gateway
GT. It is expressed as follows,

RS S I = P0

 
dis (Ni,GT )

dis0

!�
(12)

where P0 is the reference power received at the position of distance dis0 and � represents the path loss component.
All these parameters are essential in HN selection. For instance, the IoT device energy is split into three processes

as sense, transmit and receive. The HN must perform one more action, i.e., collection and aggregation. When a node
energy is depleted, packet transmission is lost and also frequent HN election is introduced. Therefore, we consider all
significant metrics of a device to prefer the stable HN.

Objective Function for HN Selection: This function helps to determine the optimum HN among the multiple nodes
in the cluster. This objective function OF computation can be formulated as follows:

OFi = w1 ⇥ S NR(i) + w2 ⇥ DN (i) + w3 ⇥ "� (i) + w4 ⇥ "ed (i) + w5 ⇥ DN (i) (13)

where w1 , w2 , w3 , w4 and w5 are the weight parameters for each input parameter taken for HN election. The
proposed MQ-LoRa can elect the best HNs when the weight values are 0.25 for all weight variables. On the basis of
cumulative parameters, HN selection and cluster formation is performed. The proposed CR2T2 topology is scalable
and also energy e�cient for handling any number of nodes in network. In MQ-LoRa, MIC based cluster formation
and HN election produces the O(C÷D÷n) where C, D and n represents the number of clusters, dimensions of each
node to be clustered and the number of nodes in the cluster.

5.3. Data QoS Ranking
Once clusters are formed, the data transmission is carried between IoT nodes and gateways through elected HNs.

Each IoT node is responsible to determine the QoS Rank (QRank) of the data. In general, the IoT nodes have normal
data and emergency data upon varying time constraints. A data transmission scheme must satisfy the QoS level
required by normal and emergency data. Table 4 shows the three levels of QRank for QoS provisioning.

Table 4: QRANK ANALYSIS

QRank Description

RANK 0 Emergency Data
Requires High Level QoS

RANK 1 Normal Data
Requires Medium Level QoS

RANK 2 Periodic Data
Requires Base Level QoS

The data collected by an IoT node is di↵erentiated into emergency and normal based on the Renyi Entropy that
determines the threshold value. The decision threshold is dynamically changed based on the entropy measure. The
QRank is appended in the QoS-Extended Frame Structure (QE-Frame) of LoRa. The QRank is further utilized in route
selection and parameter allocation. Fig. 4 represents the LoRa frame structure in which QRank is modified and newly
added in the frame structure. A QRank analysis is illustrated in Table 4.
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Figure 4: LoRa frame structure

5.4. Optimal Transmission Policy Enforcement
For all data, it is necessary to allocate optimal parameters (SF, C�, BW, CF) to achieve the desired QoS. Each

parameter is described as follows: SF is the most significant parameter for LoRa communication. When SF decreases,
then energy consumption and time of air values also decreases gradually, then the network throughput is maximized,
but this is a hindering task if coverage is longer. The mathematical formulation of the SF is expressed by follows:

S F = log2
Cp

��
(14)

where Cp represents the chip rate and �� represents the symbol rate. LoRa communication parameters are identified
by data rate Rb which is calculated by,

Rb = S F ⇥ bw
2S F ⇥C� (15)

Where c� is the Coding Rate, bw range from 125, 250, or 500 kHZ, SF is the spreading factor that range from 7 to
12, c� is range in between 4/5 to 4/8. These values are shared between the transmitter and receiver for modulation and
demodulation. Other significant metric is defined by the following:

S = �174 + 10 ⇥ log10 (bw) + n f + S NR [dBm] (16)

where S the receiver sensitivity, n f represents the receiver noise figure, SNR denotes the SNR, and -174 is the
thermal noise that range is by 1 Hz. The c� ranges from 1 to 4 and to maximize the resilience for corrupted bits, LoRa
support forward error correction technique with variable number of c� of redundant bits that range from 1 to 4. The
code for LoRa is computed by

C� =
4

4 + n
with n 2 { 1, 2, 3, 4} (17)

LoRa radios consist of 4/5 to 4/8 of c� used in payload. If the c� is higher, then packet reception rate is higher. The
bw is computed for the di↵erent range of frequencies over LoRa chirp spread allows for trading radio airtime against
radio sensitivity.

LoRa protocol consists of 125 to 500 kHz, but the higher BW utilization result packet transmission in higher
data rates. The CF is the number of LoRa transceivers use sub-GHz frequencies for data transmission. Some of the
CFs to communicate using LoRa are 433 MHz, 868 MHz, 915 MHz. We propose a novel Fast-DRL named Soft
Actor Critc (SAC) for optimal transmission policy enforcement. SAC, learns the environmental parameters such as
[QRank, Signal Quality, SINR] to allocate optimal transmission policy as State S ta, Action Act and Reward Rew. The
optimal transmission policy is determined by the Act/S ta, where determines the policy made by Act and S ta of the data
parameters. All data in the network are necessary to allocate the parameters which include C, bw and CF. The SAC
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in the gateway learns the environment that contains the data parameters and take action, reward according to it, the
equation for giving S ta, Act and Rew are given below,

Act ⇠ (Act/S ta) (18)

S ta+1 ⇠ Pr ob (S ta+1/Act, S ta) (19)

Rew  (Act, S ta,Rew(Act, S ta), S ta+1) (20)

Above equation represents the S ta, Act and Rew for the allocated data parameters in the LoRa environment. Initially
path of action and state of action is to find an optimum transmission policy that is given in eqn (18), then probability
is find for the unknown state based on the previous state and action which given in eqn (19) and reward is given based
on the action of the allocated parameters such as less S F, high C , high bw and CF. As QRank is considered in SAC,
required level of QoS is ensured in terms of PRR and delay.

5.5. Multi-Hop QoS Routing
HNs collect data from IoT nodes and select optimal multi-hop route with Gateway. Multi-hop route selection is

performed based on the QRank of packets. The problem multi-hop route selection is formulated as optimization prob-
lem, we propose novel Concurrent Optimization Multi-Hop Routing (CoMiR) algorithm that works on the procedure
of two new optimization algorithms such as Mayfly Optimization and Shu✏ed Shepherd Optimization. The mayfly
algorithm is a Bio-inspired algorithm from the mayflies which is fit to the insect order called ephemeropetra. The best
male and female selection for mating process was handled by the mayflies optimally based on the fitness values. The
proposed work chooses mayfly optimization algorithm for finding the best route based in the LoRa networks on the
fitness value. The shu✏ed shepherd algorithm is also a Bio-inspired algorithm form the shepherd behavior that how to
guide the herds to correct path. Both algorithms evaluate the available routes in parallel and rank the routes according
to the fitness value. As we consider three levels of QRank, three di↵erent fitness functions are formulated for each
rank. The fitness criteria are given in Table 5. The formulation explanation of the Mayfly and SSOA are given below,

Rou(1) = Rou(0)Lat,rel,LQ,T P + Rou(0) (21)

where Rou(0) is the first route that wishes to change its position to the second route Rou(1) with awareness of first route
Rou(0)Lat,rel,LQ,T P latency, reliability, link quality and throughput, similarly for third route that can be formulated as,

Rou(2) = Rou(1)Lat,rel,LQ,T P + Rou(1) (22)

The equation for finding the best route path can be formulated as,

N = N0 �
N0

max search
⇥ search (23)

< = N0 �
Nmax � N0

max search
⇥ search (24)

The above equation (23) represents the selection of the best first route path Rou(1) and equation (24) represents
the selection of worst route path Rou(n). The decrease in N and increase in< that gradually increase the e↵ectiveness
of the optimize route selection in the LoRa networks. Finally fitness value is calculated for finding the good forward
route path.
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Table 5: QRANK FITNESS ANALYSIS

QRank Fitness Criteria

0

Latency
Link Quality
Throughput
Reliability

1
Latency

Reliability
Energy Consumption

2
Distance

Reliability
Energy Consumption

On the selected multi-hop route the data is transmitted to gateway. Consideration of diverse criteria for di↵erent
data ensures the required level of QoS without an increase in energy consumption.

5.6. Weighted Sleep Scheduling
The weighted duty cycle procedure is established in order to reduce resource wastage and information loss in LoRa

IoT networks by the end nodes that are not always needed and cause an unnecessary energy consumption from which
results void holes by taking into consideration di↵erent nodes factors, the decision on the end nodes status can be
taken e↵ectively. For accurate timeslots selection, bu↵er status, energy status and event status were used. We focus
on minimizing the node level energy consumption without degradation of the QoS level. Thus, we present dynamic
sleep scheduling procedure for IoT nodes. Each node makes decision on sleep time slot by using Multi-Weighted Sum
Model (MWSM) that considers multiple criteria such as bu↵er status ��, energy status "� and event status "t� . Fig. 5
and 6 represents the sleeping time slot conditions prediction and MWSM model for determining the optimum set of
timeslots for nodes based on the historical status.

With the use of ��, "�, and "t� and sleep time slot '� determined and few conditions are follows,

Figure 5: Sleeping time slot conditions prediction
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Figure 6: MWSM model

However, energy consumption of IoT Ni is the tradeo↵ to the quality of sensing. When the sleep scheduling is
highly dependent on energy consumption reduction, then the risk of important (emergency) events missing increases
gradually.

Mainly each HN in the node aggregates the data and forward it to the HM through an optimal selected route, in
case the energy dissipation are detected during the process the HM then takes optimal decision on the void energy
dissipation. All IoT devices considered in this paper are assumed to be heterogeneous, i.e., pressure, temperature,
humidity and other environment or any other specific information is sensed by IoT devices. Therefore, both emergency
and non-emergency events are sensed by nodes as represented in Fig.7 as sleep scheduling. Lack of sleep scheduling is
the best possible way to introduce information loss and energy wastage. As a result, timeslots are assigned according
to the task sensing, transmission and reception. In HN, the overall sensed time of HM ⌧sensed sensed is defined and
also it is divided into the number of timeslots as ⌧# second / minutes). The total number of time slot is defined by

⌘� =
⌧sensed

⌧#
(25)
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Figure 7: Sleep scheduling

The mathematical expression for sleeping time slot prediction by MWSM is as follows: three criteria such as ��,
"�, and "t� must be lower to show the better '�. Then, relative weight value is computed for all criterion and it is
represented as  j. The score for MWSM is computed by follows

' �i
MWS M =

nX

j=1

 jai, j f or i = 1, 2. . .n (26)

where ai, j is the number of end nodes from 1 to n. The consideration of multiple criteria prevents the energy dissipation
and also prevents all nodes from entering into sleep state. The HN sets timeslot i for HMi by follows:

HM"i =
n1 i f "t�( j) >0
0 i f "t�( j) =0

o
(27)

In Eqns.(27), "t�( j) > 0, represents the emergency events as sensed by HM"i , and "t�( j) = 0, represents emergency
events are not sensed by the node.

Algorithm 1 Pseudocode for MWSM

1: Input:

2: ⌧sensed= ⌧ (⌧#1)...⌧ (⌧#n)
3: Output:

4: ⌘�
5: Start:

6: Initialize clusters,
7: Ci = C1,C2,C3, . . . ,Cn

8: For each Ci

9: For all Ni 2 Ci

10: Find '�
11: Sort all N
12: Find threshold
13: If('� < threshold)
14: Allocate Ni!2t Allocate Ni!t

6. EXPERIMENTAL EVALUATION

This section describes the experiments evaluation of the MQ-LoRa solution. The key objective of performed
experiments is to investigate the e↵ectiveness of MQ-LoRa. There are three sub-sections that are presented in this
study, include simulation setup, performance metrics and comparative study.
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6.1. Simulation Setup
In order to show the e�ciency of the proposed MQ-LoRa model over the previous methods, the NS3.26 simulator

is used. LoRa can support multiple gateways with wide-range of coverage. With the utilization of multiple gateways,
it is easy to obtain the higher packet delivery ratio and lesser energy consumption than the single gateway used. The
NS3 module can accurately perform simulation for LoRa. In particular, the LoRaWAN module is used in NS3 and the
specialized header files used in the LoRa simulation are given in Fig. 8.

Figure 8: NS3 module and header files for LoRa

In this network simulation, the total number of LoRa end devices that taken into account is 50. The LoRa gateways
are 5, 1 network server and 1 cloud server is deployed in the network for processing applications. Total simulation
time is 300 seconds. The simulation network area is 1000 ⇤ 1000m2. Total simulation parameters and its values are
illustrated in Table 6 and Table 7.

Prototype Testing: The proposed MQ-LoRa routing protocol is implemented for smart city application, specif-
ically, air quality monitoring. For that, various IoT devices (sensors) are deployed such as gas sensors, humidity
sensors, noise level sensors, amongst others. The key objective of these sensor nodes is to senses the environment and
to transmit the sensed data to sink node. Further the sink node sends the aggregated data to the expert system via the
Internet as illustrated in Fig. 9. Finally the expert system analyzes the received data and transmits the decision to the
end user. In the application of smart city, it is necessary to deploy a large number of IoT devices since the sensing
area will be large, e.g., a city. Hence, LoRa communication technology is used to cover this smart city. Likewise, the
generated data is huge in volume and velocity. Transmitting this data from a huge number of IoT devices drains the
energy of all nodes and minimize the network lifetime. Interruption in communication due to the node dead is not
acceptable for smart city application as it reduces the quality of data. Thus, the smart city application is well suited for
testing the proposed energy conservation scheme. The sensing attributes used in the air quality application are listed
in Table 8 and 9.

All sensed air quality monitoring attributes and the nature of sensor event type is described in Table 8. When the
event status of any of sensor nodes exceeds the set threshold values, then it is considered to be emergency state [46, 47].
Then that type of sensed packets is forwarded to the gateway through the HNs. As per the international standard, sen-
sor readings are classified into two classes as emergency and non-emergency readings. For the sensed information,
spreading factors are computed for the number of sent bytes. The network simulation implemented by NS3 is illus-
trated in Fig. 9. In this figure, the LoRa node is denoted as a red circle, the LoRa gateway is denoted by yellow triangle
and the communication link is represented in a green line.
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Table 6: SIMULATION PARAMETERS

Parameters Value

Network Settings
Environment Size 1000÷1000m
# of IoTDevices 50
# of Gateways 5

Network Server 1
Cloud Server 1

Node Settings
Initial Energy of nodes 50J

Propagation Model LoRa Log Normal Shadowing Model
Number of Retransmissions 7 (Max)

[HTML]F00 Transmission Power 14 dBm
Packet Length 51 bytes

Maximum Distance to Gateway 1000m
Distance between Gateways 1000m

Data Rate 88Mbps (Max)
Number of Slots 16

Slot Duration 10 s
LoRa Settings

Range Sensitivity (dBm)
7 -130

LoRa Gateway 8 -132.5
Spreading Factor 9 -135

10 -137
11 -140
12 -142

Voltage 3.3v
Frequency band 868mhz

Duty cycle 1-5%
Code Rate 4/5

Payload Length 10 bytes
Bandwidth 125khz

# of channels 3
Time slot technique CSMA10
Number of Rounds 1000
Simulation Time 300s

Number of Clusters 8-10
Average Inter Packet Interval 120 per second

Interface Queue Type Priority Queue
Resync Period 30 minutes

Processing Delay Less than 20ms
Communication hops Min – 20, Max – 50, Average - 25
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Table 7: ALGORITHM PARAMETERS

Algorithm Parameters
SAC

No. of hidden layers 5
No. of samples 512

Updating of target interval 1
Learning rate 4 ⇥ 10�5

Activation function ReLU
Discount factor 99 ⇥ 10�1

Smoothing co-e↵ 0.008
Reply bu↵er size 108

Mayfly
Population size 100
Attraction co-e↵ 1.2
Visibility co-e↵ 1
Cross over rate 0.90
Random flight 0.7
Nuptial dance 0.5

Table 8: AIR QUALITY SENSING ATTRIBUTES

Sensing

Attributes

Injuriousness

Monitoring

Output

Unit
Description

Air Quality SO2, NO2,
Co, Pb, etc

0.0148
ppm-3.24 ppm

It sense toxicity
level of air

Temperature 0 C 0 C - 35 C
It sense high

temperature level
of smart city

Noise Occupational,
peak noise 75-140dp It sense noise

level of smart city

Table 9: AIR QUALITY SENSING ATTRIBUTES

Air

pollutant

Emergency

Readings

Non-Emergency

Readings
delta Sent Bytes

Sulphar
Dioxide S O2

0.00709 ppm 0.0177 ppm 12 50
0.0284 ppm 0.0284 ppm 12 50

Nitrogen
Dioxide NO2

0.0197 ppm 0.0148 ppm 9 115
0.0395 ppm 0.0395 ppm 7 212

Particulate
Matter PM10

60 (g/m3) 60 (g/m3) 12 49

100 (g/m3) 100 (g/m3) 12 46

Ozone O2
0.0473 ppm 0.0473 ppm 12 51
0.0852 ppm 0.0852 ppm 8 210

Lead Pb
0.5 g/m3 0.5 g/m3 12 50

1 g/m3 1 g/m3 9 88

Carbon
Monoxide CO

1.62 ppm 1.62 ppm 12 50
3.24 ppm 3.24 ppm 12 50

Ammonia
NH3

0.133 ppm 0.133 ppm 9 58
0.533 ppm 0.533 ppm 12 50
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Figure 9: Application scenario of smart city

6.2. Performance Metrics
This section describes the performance metrics taken into account for examining the simulation of MQ-LoRa.

a) Packet Reception Rate Packet reception rate describes that the proportion of packets being received successfully
p(su) over the time. However, p(su) is influenced by the SINR, RSS and channel relationship network elements.

p(su) = S INR,C,RS S (28)

b) Energy consumption. According to LoRa communication in NS3, we define the energy consumption metric as
follows,

EC =
T.exp(2(NT L)S F

PS
(29)

where T is energy consumption for first transmission attempt, 2NTLS F is the normalized tra�c load per S F and
PS is the payload size.

c) Delay
Delay is computed by the amount of time that requires to send a packet from source to the destination. It encompasses
processing, waiting and transmission delays. Delay is calculated as follows

Delay = (Ar)t � (Gr)t (30)

where (Ar)t is the packet arrival time and (Gr)t is the packet generation time.
(d) Packet Rejection Rate
Packet rejection rate is calculated as the number of failures in packet transmission over a time. A packet probability
failure rate is 1-p(su) and after the certain number of transmissions, i.e., l, the packet rejection rate Pr computed as
follows,

Pr = [1 � p(su)]l (31)

(e) Throughput
Throughput is computed for the number of devices Ni in which every ti seconds, packets are sensed and transmitted
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through a specified channel for tp
i . In this time, network tra�c is computed by,

G =
NX

i=1

tp
i

⌧i
(32)

For network tra�c G, throughput T is then calculated as,

T = G ⇥ ⇢success rate (33)

where ⇢success rate is the successful packet transmission ratio which is computed from the number of transmitted
packets to the number of received packets.

6.3. Comparative Study
In this section, we present the comparative study for the proposed MQ-LoRa to the existing methods such as RT-

LoRa, Multi-Hop and LoRa+. The simulation environment implemented by NS3 is illustrated in Fig. 10. We perform
this comparative study based on the e↵ectiveness of the existing methods in terms of packet reception rate, energy
consumption, delay, packet rejection ratio and throughput.

Figure 10: Simulation environment (a). Nodes deployment, (b). Control message transmission, (c). Node communication, (d). Cluster formation,
(e). HN Election and (f). Cluster-tree topology

6.3.1. E↵ectiveness of Packet Reception Rate
Fig. 11 indicates the packet reception rate for the proposed MQ-LoRa and the previous methods as RT-LoRa,

Multi-Hop and LoRa+. It is observed that the packet reception rate of RT-LoRa, Multi-Hop and LoRa+ are 30%,
40%, and 40% lesser than the proposed MQ-LoRa, respectively. This is due to the e�cient routing of packets between
HNs which reduces packet losses or retransmission. Further, routing is made by the optimum transmission policy
enforcement in which the number of packets transmitted increases and the availability of next hop for data transmission
also increases, and hence the packet reception rate increases as the number of nodes increases.
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Figure 11: Number of Nodes vs. Packet Reception Rate

Fig 12 represents the packet reception rate with respect to the number of gateways. It can be observed that the single
gateway does not ensure the high packet reception rate, which cannot support simultaneous packet reception. Based
on the number of IoT devices, optimum set of gateways must be deployed to reduce the losses in data transmission.
Due to the accurate HN selection, multi-hop routing and QRank prediction, in this paper MQ-LoRa has obtained the
better packet reception rate in terms of both number of devices and the number of gateways.

Figure 12: Number of Gateways vs. Packet Reception Rate

6.3.2. E↵ectiveness of Energy Consumption
Energy consumption is a significant metric in resource constrained environment. It is increasing when the number

of nodes increases due to network congestion tra�c.
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Figure 13: Number of Nodes vs. Energy Consumption

Fig. 13 shows the result of energy consumption with respect to the number of nodes. It is observed that the
evaluation of energy consumption for the proposed MQ-LoRa is better than the RT-LoRa, Multi-Hop and LoRa+.
For instance, the energy consumption for the number of nodes at 10 is 32%, 38%, and 52% for RT-LoRa, Multi-Hop
and LoRa+ respectively. In MQ-LoRa, the IoTdevices consume less energy as compared to RT-LoRa, Multi-Hop
and LoRa+. It is mainly due to the e↵ective HN selection and hybrid topology construction. Additionally, the MQ-
LoRa considers metrics such as residual energy, event status and spreading factor for route selection. It balances
the network tra�c through HN selection. Thus, the overall network lifetime is prolonged even when sending large
number of packets. It also solves the hotspot issue in a certain extent. Fig. 14 shows the performance analysis of the
energy consumption with respect to the number of gateways. In terms of gateways, the energy consumption rate is
reduced. The availability of gateways in distributed environment reduce the energy consumption rate of IoT devices
since communication delay is reduced.

Figure 14: Number of Gateways vs. Energy Consumption

6.3.3. E↵ectiveness of Delay
Fig. 15 represents the delay for varying number of nodes. It can be observed that the delay by MQ-LoRa is

acceptable due to the propagation, waiting and packet transmission states. In particular, the delay of RT-LoRa, Multi-
Hop and LoRa++ are 6.5s, 13s and 14s respectively. It is owing to the formation of clusters in IoTdevices and it applies
the membrane inspired clustering for e↵ective cluster formation and HN selection. In addition, optimum transmission
policy is enforced by the fast DRL which result in lesser delay.
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Figure 15: Number of Nodes vs. Delay

Figure 16: Number of Gateways vs. Delay

The performance of delay with respect to the number of gateways is plotted in Fig.16 As a result of multiple
gateways, MQ-LoRa has obtained significant reduction in packet routing delay.

6.3.4. E↵ectiveness of Packet Rejection Rate
Fig. 17 depicts the packet rejection rate with respect to the number of nodes. The packet rejection rate shows that

rejected packets rate in terms of percentage. It is computed by the total number of packets forwarded by the source
node.
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Figure 17: Number of Nodes vs. Packet Rejection Rate

Figure 18: Number of Gateways vs. Packet Rejection Rate

This metric measures the packets forwarding reliability and the e↵ectiveness of the hybrid network topology de-
ployed in MQ-LoRa model. The performance of packet rejection rate increases compared LoRA+, Multi-Hop and
RT-LoRa by 25%, 22%, and 17% respectively. However, the proposed MQ-LoRa has achieved 7% for the number of
devices of 1000. Similarly, Fig. 18 illustrates the performance of packet rejection ration with respect to the number
of gateways. The proposed MQ-LoRa results in no route breakages in data transmission. From the analysis, it reveals
that when number of nodes increases, then the probability of rejection also increases due to the lack of optimum route
establishment by e�cient fitness criteria. Further, LoRa communication parameters must be optimized. These reasons
impact the performance high packet rejection rate.

6.3.5. E↵ectiveness of Throughput
The e↵ectiveness of throughput with respect to the number of nodes and gateways are represented in Fig. 19 and

Fig. 20, respectively. The result obtained in network throughput exhibits an increase in MQ-LoRa’s throughput which
is owing to the lightweight use of algorithms and fewer computations are required in this modified LoRa protocol.
Currently, emergency packets are a↵ected due to the QoS issues in the disaster cases. For that, QoS QRank field is
additionally included in the LoRa packet header frame structure and hence the throughput is improved and the overall
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QoS is enhanced for emergency and non-emergency packets. When the network congestion level is high, then the
number of packet transmission is lesser, which leads to minimum throughput.

Figure 19: Number of Nodes vs. Throughput

Figure 20: Number of Gateways vs. Throughput

6.3.6. Discussion Section
From the above-mentioned simulation results, it is clear that the proposed MQ-LoRa has outperformed previous

research. Computational Complexity Analysis: Our literature review shows that existing research e↵orts that attempt
to solve LoRa’s energy consumption and QoS problems has been partially successful. They also su↵er from high com-
putational complexity compared to MQ-LoRa. In the following, we provide analysis of the computational complexity
of the MQ-LoRa,

(�t) + O(N) + O(N) + O(� + [NM] (34)

where O (�t) is the time duration for topology construction, cluster formation and selection, O(N) is the QoS rank-
ing, O(N) is the transmission policy enforcement, and O (�(N + M)) is the multi-hop routing and sleep scheduling.
Reliability Analysis: MQ-LoRa addresses network reliability issues through the selection of optimal set of trans-
mission policy parameters through the fast DRL. According to the optimum set of parameters selection, more than
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100000 packets are transmitted in 1 hour of network lifetime. The performance of reliability is depicted in Fig. 21. It
is relatively higher than the previous methods such as LoRa+, RT-LoRa, and Multi-Hop routing protocol.

Figure 21: Reliability analysis

7. CONCLUSION

7.1. Conclusion
In this paper, a multi-hop QoS aware LoRa routing protocol is presented in which optimum transmission policy

enforcement is advocated to improve the QoS in LoRa communication. To meet the QoS requirements for any IoT
application, this paper adopts various techniques. Energy consumption is reduced by forming clusters of end nodes.
Various node characteristics are considered to create stable and e�cient clusters and an HN is selected in each cluster.
Further, end-to-end communication delay is minimized by conducting data transmission via HNs to the gateway. Then,
data QoS ranking is predicted by the entropy function which predicts the packet rank to classify as emergency or non-
emergency. An optimal set of LoRa parameters are obtained in the transmission policy enforcement step. In this step,
a fast DRL algorithm is used for learning the environment and parameter values are fixed. Finally, multi-hop routing
is predicted by parallel optimization algorithms, i.e., Mayfly and shu✏ed shepherd optimization. These algorithms
find the available routes in a parallel mode and choose the fitness criteria met route for data transmission. Further,
energy consumption is reduced by implementing a sleep scheduling mechanism. In this paper, a weighted sum model
is presented to analyze the optimum set of timeslots for giving the node as sleep state. Finally, the performance is
analyzed for packet reception rate, energy consumption, delay, packet rejection rate and throughput. These metrics are
compared with the existing methods such as RT-LoRa, Multi-Hop and LoRa+.

7.2. Future Work
Further research needs to be taken to investigate various aspects of LoRa communication including: (1) LoRa based

end devices are vulnerable to jamming, replay, beacon synchronization and man-in-the-middle attack. (2) Dynamic
movable IoT devices are considered to investigate the mobility problem. (3) Furthermore, an optimal placement
concept is used for static gateways that always depend on the application and QoS constraints by the LoRa devices
whereas mobile gateways are utilized in network for improving the e↵ectiveness of data collection and aggregation.
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