The White-naped Xenopsaris *Xenopsaris albinucha* is an uncommon suboscine passerine with a disjunct distribution extending from Venezuela to the Southern Cone of South America. Considered to be sedentary over much of its range, the ornithological literature concerning this poorly-known species contains contradictory claims about potential migratory movements. Here we use citizen science and museum specimen data to investigate spatiotemporal variation in the distribution of the species. We found evidence for three disjunct breeding populations, of which one is resident, one is apparently partially migratory and one is fully migratory, with birds from the two latter populations coming into contact during the non-breeding season. Examining photographs from citizen science and museum specimens, we also found evidence for hitherto unsuspected seasonal variation in the species’ plumage colouration. Our results suggest that the White-naped Xenopsaris has both resident and migratory populations and exhibits an eclipse plumage, a seemingly uncommon trait in passerines.

**Keywords:** allochrony, citizen science, eclipse plumage, partial migration, Tityridae
Research interest in austral and intra-tropical bird migration in South America has received increased attention in recent decades, which has in turn helped to curtail the pervasive assumption of residency in tropical birds (Chesser 1994, Alves 2007, Somenzari et al. 2018, Jahn et al. 2020). Citizen science has proven to be an effective approach to understanding bird migration at continental scales (Schubert et al. 2019, Lees et al. 2020) and has helped ornithologists to discover migratory behaviour in species historically assumed to be resident such as the Ash-throated Casiornis Casiornis fuscus (Lees 2016) and assess previously suspected, but poorly understood migratory patterns such as those found in the Common Potoo Nyctibius griseus (DeGroote et al. 2021). In addition, the use of citizen science data offers some advantages over other forms of migration study, allowing the harvesting of potentially vast amounts of data in space and time, which may unveil migratory patterns that might otherwise remain hidden in smaller datasets. This is particularly the case in species which have both sedentary and migratory individuals or populations, which may mask such movements (Lees 2016, Jahn et al. 2020).

A trait usually associated with birds’ migratory behaviour is feather moult. For instance, the presence of a prealternate moult—a second moult within the annual cycle—is more common among migrants than residents, since migrants expose their feathers more during migration and thus their feathers are more likely to wear and need to be replaced more frequently (Howell 2010, Terrill et al. 2020). Birds that have an obligate prealternate moult exhibit seasonal colour changes (‘eclipse plumage’), while birds exhibiting a facultative prealternate moult produce no appreciable change in appearance (Howell 2010). Because it was formerly believed that most tropical birds were non-migratory, seasonal colour changes through obligate prealternate molts were expected to be rare in these birds (Howell 2010). Now, given that many Neotropical bird species have proven to be migratory (Chesser 1994, Jahn et al. 2020), we might expect that seasonal colour changes may be not so rare among them. Indeed,
very few Neotropical birds are known to exhibit eclipse plumage, including the Red-legged Honeycreeper *Cyanerpes cyaneus*, the Blue-black Grassquit *Volatinia jacarina*, and some Sporophila seedeaters and *Heliomaster* hummingbirds (Sick 1997, Howell 2010, Wolfe et al. 2021). However, because the presence of this trait is positively correlated with the number of papers published per species (McQueen et al. 2019) and we lack basic natural history knowledge for most Neotropical bird species (Lees et al. 2020), the prevalence of seasonal plumage colours may be considerably underestimated in Neotropical birds.

Among the most poorly-known South American birds are the tityrids (Tityridae), whose members have historically been scattered among the families Tyrannidae, Cotingidae and Pipridae (Prum & Lanyon 1989, Ericson et al. 2006, Barber & Rice 2007). They are thought to be mostly sedentary (Mobley 2004) and those few that show any signs of migration, such as Crested Becard *Pachyramphus validus*, have poorly known movements (Chesser 1994, 1997, Somenzari et al. 2018). One of its most enigmatic members is the White-naped Xenopsaris *Xenopsaris albinucha* (hereafter Xenopsaris), a seemingly uncommon species believed to have two disjunct populations—one in northern South America, extending from Venezuela to Guyana (Fig. 1a), and a larger one from north-eastern Brazil to Argentina (Fig. 1b–d, Mobley 2004, Ridgely & Tudor 2009). Its migratory status is apparently unclear, illustrated by contradictory information in the ornithological literature. The northern population is usually considered to be resident (e.g., Hilty 2003, Restall 2007), but Ascanio et al. (2017) suggested it may be migratory. On the other hand, the southern population is usually considered to be migratory (Chesser 1997, 2005, Mobley 2004, Peña 2004), although some have also suggested otherwise (e.g., Hayes 1994). A recent review of migratory birds in Brazil, which accounts for most of its global range, did not classify the species as migratory (Somenzari et al. 2018). In addition, it is reported that the species is resident in the Caatinga of north-eastern Brazil (Araujo & Silva 2017), but although it is recorded year-round in this region, it appears to be more
common during the region’s rainy season, and becomes rarer during the dry season (R.D.L. pers. obs.), suggesting that there may be some seasonal movement. Adding to the migration puzzle, Xenopsaris seems to exhibit some seasonal variation in plumage colours. Individuals that remain in the Caatinga during the dry season and migrant individuals recorded in the Pantanal of south-western Brazil often exhibit a mix of black and brown feathers on the crown (V.Q. Piacentini pers. comm., R.D.L. pers. obs.), unlike breeding individuals that exhibit a black crown. Although its moult strategy is undescribed, its closest relatives—the becards (genus *Pachyramphus*; Barber & Rice 2007)—exhibit a complex alternate moult strategy (Johnson & Wolfe 2018), which reinforces the hypothesis of seasonal plumage colours in the species. Birds exhibiting this strategy go through three moults in their first cycle and two moults in all subsequent cycles (Johnson & Wolfe 2018), which means that adults can alternate between a more conspicuous, breeding plumage and a non-breeding plumage. Here, we use vouchered records from citizen science databases and museum specimen data to investigate the spatiotemporal distribution of Xenopsaris and its putative seasonal colour changes.

**METHODS**

**Data collection**

We obtained photographic, video and audio records from WikiAves (www.wikiaves.com.br), eBird (www.ebird.org) and xeno-canto (www.xeno-canto.org) and museum specimen data archived online (only records with locality and date retrieved from www.gbif.org, www.vertnet.org and www.sibbr.gov.br) up to 31 December 2020. Geographical coordinates were taken from the original sources or, if not listed, from ornithological gazetteers (Paynter 1982, 1989, 1992, 1995, Paynter & Traylor 1991). We checked all records and discarded those misidentified and duplicate records of the same bird (e.g., the same photograph in different databases or several photographs of the same bird taken by different observers). Finally, all
evidence of breeding (occupied nests and first cycle juveniles), when present, and plumage colours (see below) were coded for each record in our dataset.

**Analyses of spatiotemporal distribution**

To visualize seasonal variation in Xenopsaris distribution, we generated distribution maps for discrete periods throughout the year and plotted ordinal dates (day number: 1–366) of each record against its corresponding latitude and longitude. We also categorised the records in equal-length ‘peak seasons’ (following the rationale of Lees & Martin 2015, Lees 2016; see also Areta & Juhant 2019) to test whether there is a significant shift of the centre of the species’ range between such seasons. The peak breeding season was determined as the middle four months within the duration of all records with evidence of breeding, the peak non-breeding season was determined as the opposite four months on the calendar, and the remaining 4 months were coded as the migration period. We expected to find a significant shift of the centre of the species’ range between the peak breeding and peak non-breeding seasons if it is migratory (Chesser 1994), then we compared mean latitudes and longitudes of Xenopsaris during the peak breeding and peak non-breeding seasons using Welch’s $t$-tests. This categorisation into ‘peak seasons’ was used only for the abovementioned statistical analysis and all conclusions were made based on the entire dataset without predefined life-cycle periods (see Areta & Juhant 2019).

To test the assumption of migration of Xenopsaris in the Caatinga—where it is recorded year-round, but where partial migration is suspected in the dry season—we plotted the number of records per month to visualize whether there is seasonality in the monthly number of records. To control for any possible bias in seasonal variation in observer effort, we compared these totals with those of another bird from a family with no regular migrants, the Stripe-backed Antbird *Myrmorchilus strigilatus* (Zimmer & Isler 2003). It has two disjunct populations that
are sympatric with both migratory populations of Xenopsaris in their breeding grounds—one in the Caatinga of northeastern Brazil (*Myrmorchilus strigilatus strigilatus*), which is sympatric with the north-eastern population of Xenopsaris, and another from Bolivia to Argentina (*M. s. suspicax*), which is sympatric with the southern population of Xenopsaris. We used its two disjunct populations to control separately for seasonal variation in observer effort in these two regions. For this, we constructed contingency tables with the monthly number of records of the two species and performed Pearson’s chi-square tests to test the null hypothesis that there is no difference in the seasonality of these records.

Finally, given that Xenopsaris occurs mainly in habitats with pronounced seasonality, we overlaid the distribution maps onto maps with data on precipitation and temperature (means from 1970–2000) extracted from WorldClim (Fick & Hijmans 2017) with 2.5 arc-minutes resolution to explore the possible influences of environmental variables on the observed seasonal variation.

**Analysis of seasonality in plumage colouration**

To test the assumption of seasonal colour changes in Xenopsaris, we classified the colouration of its most variable parts (underparts and crown) in all photographic records in our dataset that had enough quality. In addition, we examined nine specimens at the Museu de Zoologia da Universidade de São Paulo (MZUSP) and others through high quality photographs. Crown colouration was assigned to one of four categories (entirely black, black with brown feathers, mostly brown or scalloped) and underparts to one of two categories (white or yellow). Finally, we used the data on plumage colouration to visualize whether there are any spatiotemporal patterns related to sex and age. Juveniles, which have a have a scalloped appearance (Teixeira *et al.* 1989, Ridgely & Tudor 2009), were expected not to migrate and their records would therefore be restricted to the breeding grounds, while adult males and females, which are
distinguished mainly by crown colouration (Mobley 2004, Ridgely & Tudor 2009), were expected to be found across the entire range of the species.

RESULTS

Our search recovered 924 records of Xenopsaris from WikiAves (879 photographs and 45 sound recordings), 533 lists with media from eBird, 37 sound recordings from xeno-canto and 69 museum specimens archived online. Once duplicate and misidentified records were removed, the final database contained 943 independent records (Supporting Online Information Table S1). These range from 1897 to 2020, but the overwhelming majority are between 2009–2020 (Fig. S1).

Our analysis uncovered both resident and migratory populations of Xenopsaris (Figs. 1–3). The disjunct population in northern South America was present in the same 717,629 km² region year-round, while south of the Equator, ‘populations’ that extend patchily from north-eastern Brazil to Argentina showed marked seasonal variation in extent (Fig. 2). From December to March, most records of these populations were clustered in two disjunct areas—one in north-eastern Brazil and another in the Southern Cone of South America, from Paraguay to northern Argentina (Fig. S3). From April to November, the area occupied by these populations expanded towards central Brazil until it formed a single continuous distribution (Figs. 2 and S3). During this period, some individuals remain within the Caatinga of north-eastern Brazil (Figs. 1b and S3), while the southern part of the range is almost totally abandoned (largely between May and August, see Fig. 2a). However, although the Caatinga region was occupied year-round, the monthly number of records in this region showed a decrease between April and November, suggesting that a portion of this population undertakes migratory movements away from the region during the dry season (Fig. 1b). The control species, Stripe-backed Antbird, showed no seasonal variation in the monthly number of records in both areas.
of its disjunct distribution (Fig. S5), and the null hypothesis that there is no difference between
the seasonality observed in the records of Xenopsaris and those of the control species was
rejected both for the north-eastern ($X^2 = 55.4, df = 11, P < 0.0001$) and southern ($X^2 = 262.6, df$
$= 11, P < 0.0001$) population, thus suggesting that the observed pattern of seasonality in records
of Xenopsaris is probably not due to differences in observer effort.

All breeding records within our dataset clustered in three disjunct areas: (1) one in
northern South America, from northern Venezuela to Guyana; (2) one in the Caatinga of north-
eastern Brazil; and (3) one in the Southern Cone of South America, from Argentina to southern
Brazil (Fig. S2). The breeding records from northern South America fall between 1 August–8
September, while the breeding records from north-eastern Brazil and southern South America
fall between 26 December–30 May and 19 November–2 March, respectively (Fig. S2).

Removing the records of first cycle juveniles and considering only those of occupied nests, the
periods narrow to 8 September (only one record in Guyana), 26 December–4 April (nine records
from north-eastern Brazil) and 19 November (only one record in Rio Grande do Sul, Brazil).

To delimit the life-cycle periods for the following analysis, we used these breeding periods
retrieved from our dataset combined with periods previously reported in the literature for
Venezuela (June–September; Cruz & Andrews 1989), north-eastern Brazil (one record in May;
Teixeira et al. 1989) and Argentina (October–January; Di Giacomo & Leiberman 2000, Peña
2004). Because the population in northern South America showed no sign of migration and its
breeding season is asynchronous in relation to that of the populations south of the Equator (Fig.
S2), the peak breeding season was determined based only on the migratory populations to fall
between December and March (i.e., the middle four months within the duration of all breeding
records). Accordingly, the peak non-breeding season was determined to fall between June and
September, and the remaining four months (April, May, October and November) were coded
as the migration period (Fig. 3).
We found a significant shift in the centre of the species’ range during the peak non-breeding season compared to the peak breeding season. The mean latitudes of Xenopsarisis records during the breeding (15.32°S, \( n = 359 \)) and non-breeding (9.20°S, \( n = 245 \)) periods were significantly different (\( t = -7.8, \text{df} = 607.2, P < 0.0001 \)). On the other hand, mean longitudes during the peak breeding (48.12°W) and peak non-breeding (48.32°W) seasons were not significantly different (\( t = -0.43, \text{df} = 604.2, P = 0.66 \)). Removing the northern resident population from this analysis did not change the results. Mean latitudes during the peak breeding (16.54°S, \( n = 338 \)) and peak non-breeding (10.43°S, \( n = 239 \)) periods remained significantly different (\( t = -8.58, \text{df} = 549.5, P < 0.0001 \)) while mean longitudes (peak breeding = 47.13°W, peak non-breeding = 47.12°W) remained not significantly different (\( t = -0.10, \text{df} = 571.6, P = 0.99 \)).

Overlaying the distribution maps onto maps with data on precipitation and temperature, we found that the species abandons the southern part of its range during the region’s coldest, driest period (Figs. 3, S3 and S4). Between May and August, when the average monthly temperature and precipitation reach their lowest values (mean 13 °C and 40 mm), the southern population largely vacates its breeding grounds (Figs. 2, S3 and S4). The north-eastern population seems to undertake migratory movements during the region’s driest period (June–October), when the average monthly precipitation reaches 9 mm (Figs. 1b and S4). Temperature does not seem to affect this population because unlike the Southern Cone of South America, where there is a great annual variation in temperature (range of average monthly temperature = 13–26 °C; Fig. 1c), north-eastern Brazil experiences little seasonal variation in temperature (23–26 °C; Fig. 1b).

Finally, examining museum specimens (\( n = 10 \)) and photographic records with enough quality to classify plumage colours (\( n = 804 \)), we found that there is variation in the plumage colouration of Xenopsarisis over the annual cycle, suggesting that the species may have an eclipse
plumage. From October to April, most birds exhibited an entirely black crown, whereas from May to September most birds exhibited either a black crown with brown feathers or a predominantly brown crown (Fig. 4). This seasonal change in crown colouration makes both sexes look alike and thus precluded sexes from being distinguished in our dataset. Records of scalloped-crowned birds (i.e., juveniles) were concentrated between December and May (Fig. 4) and restricted to the three disjunct breeding areas (Fig. S2), thus confirming the assumption that first cycle juveniles do not migrate. Underpart colouration showed less pronounced seasonal variation, with yellow-bellied birds being more common between April and September (Fig. S6). In addition, most birds with an entirely black crown exhibited white underparts (98.5%) while birds with brown crown usually exhibited yellow underparts (68.4%). Based on our photographic dataset and following the terminology of Johnson & Wolfe (2018), first cycle juveniles have scalloped appearance and usually white underparts (Fig. 4b); first cycle formative birds seem to lose the scalloped appearance, acquire yellowish underparts and replace pointed rectrices with more rounded ones (Fig. 4c); and first cycle alternate birds seem to acquire black feathers on the crown and become whiter on their underparts (Fig. 4d). Over the successive cycles, birds seem to replace their browner remiges and rectrices with darker ones until they acquire their definitive cycle basic/alternate plumage (Fig. 4e–g).

**DISCUSSION**

Our results suggest that Xenopsaris has both resident and migratory populations. The disjunct population of northern South America is apparently resident, while the populations ranging from Argentina to north-eastern Brazil undertake different kinds of migratory movements. More specifically, the southern population is an austral migrant that breeds in southern South America and seems to winter mainly in central Brazil, while the north-eastern population seems to be a partial intra-tropical migrant that breeds in the Caatinga of north-eastern Brazil and migrates south-westward during the dry season (although their destination remains unknown).
However, there remains a possibility that it is only the southern population that is migratory and moves north until it overlaps with the distribution of a resident population in north-eastern Brazil. We consider this unlikely because the decrease in the number of records within the Caatinga is congruent with both the region’s rainfall and food resources seasonality (Fig. 1b; see below), which suggests that a portion of the north-eastern population does undertake migratory movements during the dry season. In addition, a control species did not show such a variation in the monthly number of records (Fig. S5), suggesting that this pattern is probably not biased by a seasonal variation in observer effort, and based on the field experience of one of us (R.D.L.), Xenopsaris indeed appears to become rarer in some specific locations in the Caatinga during the dry season. Therefore, our analyses suggest that both the southern and north-eastern populations migrate, in opposite directions, and then overlap during the non-breeding season (Fig. 3). Further study with tracking technologies, such as geolocators, is needed to determine the destination of these populations and where they come into contact during the non-breeding season.

The actual drivers of Xenopsaris migration remains to be further explored, but as is often the case for other South American migrant passerines (Chesser 2005, Jahn et al. 2010, 2020), fluctuations in temperature and precipitation, linked to food availability, seem most likely. Both temperature and precipitation rate vary widely in the Southern Cone of South America and both may affect the movements of the migratory southern population (Fig. 3). On the other hand, only precipitation rate varies widely in the Caatinga of north-eastern Brazil. In this region, the largest extent of the seasonally dry tropical forest biome (Fig. 1, Pennington et al. 2009), pronounced rainfall seasonality (Nimer 1972, Andrade 2017) strongly influences arthropod abundance (Vasconcellos et al. 2010, França et al. 2020) and acts as a cue to set the timing and intensity of bird breeding and moulting (Cavalcanti et al. 2016, Araujo et al. 2017). The observed decrease in the number of records of Xenopsaris in the Caatinga between April and...
November is congruent with both the rainfall seasonality (Fig. 1b) and the seasonality in the abundance of arthropods in the region (Vasconcellos et al. 2010, França et al. 2020), suggesting that part of the Caatinga population undertakes migratory movements during the dry season, after breeding (December–May), when food becomes scarce; yet some individuals remain year-round there (Figs. 1 and S3). Both the southern and north-eastern population seem to migrate to central Brazil, a region also characterized by pronounced rainfall seasonality and which is in the dry season when the birds arrive there (Fig. 1d). However, most phytophysiognomies of this region do not shed their mature leaves during the dry season and harbour some arthropod abundance throughout the year (Pinheiro et al. 2002, Silva et al. 2010), unlike the vegetation of the Caatinga, that loses almost completely its leaves during the dry season, thus affecting more dramatically arthropod abundance (Vasconcellos et al. 2010).

Several bird species are known to migrate to the Caatinga from breeding grounds in southern South America (e.g., Ruiz-Esparza et al. 2011, Pereira & Azevedo-Júnior 2013, Bravo et al. 2017), but there are few proven cases of species that do the contrary—breed in the Caatinga and migrate out of it (e.g., Lees 2016). Xenopsaris adds another example to this poorly studied pattern, which likely includes several other species whose migratory patterns remain to be properly studied, such as the Dark-billed Cuckoo Coccyzus melacoryphus, White-winged Becard Pachyrhamphus polychopterus and Variegated Flycatcher Empidonomus varius (R.D.L. pers. obs.).

Maps depicting the total geographic distribution of Xenopsaris usually infer that there are two disjunct populations; one in the northern corner of South America, from Venezuela to Guyana, and a larger one from north-eastern Brazil to Argentina (Mobley 2004, Ridgely & Tudor 2009). Our analyses, however, revealed that there are three disjunct breeding populations, of which one is certainly fully migratory, one is probably partially migratory and one is likely resident. Birds from the two migratory populations come into contact during the
non-breeding season whereas the third population is resident and breeds asynchronously in relation to the others (Fig. S2). Two subspecies of Xenopsaris are currently recognized—the nominate form was described from Argentina while X. a. minor was described from Venezuela based only on its smaller size (Hellmayr 1927, Traylor 1979)—corresponding to the southern and northern populations, respectively. Although their diagnosis is quite superficial, the fact that they show distinct migratory behaviours, asynchronous breeding seasons and are isolated by geographic distance suggests that there may be no gene flow between them. As demonstrated for other Neotropical passerines, changes in migratory behaviour within a lineage can drive allochronic speciation (Turbek et al. 2018, Uy et al. 2018, Gómez-Bahamón et al. 2020), and with the resolution of the migratory status of this species, it now becomes an attractive model to further explore the differentiation between migratory and sedentary populations in a partially migratory species, as well as to study determinants of partial bird migration (e.g., Jahn et al. 2010).

Finally, our results suggest that Xenopsaris has distinct breeding and non-breeding plumage. There is a period of the annual cycle when most birds exhibit an entirely black crown (October–April) whereas for the remainder of the year most birds exhibit either a brown crown or a black crown with brown feathers (May–September; Fig. 4a). Birds can undergo seasonal colour changes through various ways, including feather moult, feather abrasion, colour fading, and application of cosmetics (Butcher & Rohwer 1989, Delhey et al. 2007, Tökölyi et al. 2008, McQueen et al. 2019). We assume that Xenopsaris exhibits a complex alternate strategy like its closest relatives (Barber & Rice 2007, Johnson & Wolfe 2018) and thus undergoes seasonal colour changes by moulting, but further investigation both on its moult strategy and on the cause of its seasonal colour changes are warranted.

Eclipse plumage is a very uncommon trait in passerines, even less common in South American ones, and it is predicted that, across passerines, this trait is more common in
migratory species and in species living in highly seasonal environments (Howell 2010, McQueen et al. 2019), which is particularly the case with Xenopsaris. Because conspicuous colours may be simultaneously advantageous for mate attraction and disadvantageous if they increase detectability to predators, birds that undergo postbreeding colour change can have the best of both worlds—being conspicuous when they need to be, during the breeding season, and less conspicuous during the non-breeding season, then decreasing predation risk (McQueen et al. 2019). Xenopsaris undergoes seasonal colour changes in its shiniest part, the crown, which may offer some survival advantage during its migration. It remains to be further explored whether seasonal colour changes in Xenopsaris occur in both sexes or only in males. Males and females are often easy to tell apart in museum specimens (Fig. S7), but the species’ sexual dimorphism may not be as evident in photos of the birds in the wild, especially considering that the seasonal change in crown colouration makes both sexes look alike.

CONCLUSION

The assumption of residency of the White-naped Xenopsaris, as well as the inference that the species had a continuous, though patchily distributed, population south of the Equator (Mobley 2004), are likely due to the paucity of records of the species in the traditional sources such as museum collections and the literature. Citizen science data helped us to mitigate these sampling gaps associated with small sample sizes and allowed to unveil the species’ migratory patterns and to reveal that the species has actually three instead of two disjunct populations. In addition to their importance for the study of bird migration (Lees 2016, Schubert et al. 2019, DeGroote et al. 2021), our results also highlight the potential value of citizen science data to study patterns of seasonal variation in plumage colouration. Because the presence of eclipse plumage in passerines is positively correlated with the number of papers published per species, the prevalence of this trait may be underestimated in less-studied birds (McQueen et al. 2019),
and thus citizen science databases can offer a valuable, easy-to-access source of data to help reducing such knowledge gaps.
We thank Reinaldo Guedes for providing the data from Wikiaves database, Mauro Pichorim for sharing information about some unpublished records, and Fernanda Bocaini and Vítor Piacentini for providing photos of some museum specimens. We also thank Hector Bottai, Eugênio Oliveira, Chico Rasta, Alexandre Guahanone and Henrique Coelho for supplying us with their photographs. Alex Jahn, Inès Catry and an anonymous reviewer provided valuable comments on the manuscript.

DATA AVAILABILITY STATEMENT

All data used in this article are available in the Supplementary Online Material.

REFERENCES


Figure 1. Geographic distribution of Xenopsaris categorised into four regions: northern (a, black triangles), north-eastern (b, black circles), southern (c, black diamonds) and central (d, white squares). The map includes all records in our dataset, but the histograms include only photographic records, because sound recordings are skewed towards the breeding period and museum specimens are concentrated in months where several specimens were collected together. Histograms show the number of photographic records per month in each region against variation in average monthly rainfall and temperature (blue and red lines, respectively). Environmental data showed in histograms were taken from a central locality within each of the four regions (means from 1970–2000 extracted from WorldClim). The scale on the left side of each histogram shows the number of records while the scales on the right side show the average monthly rainfall (mm) and temperature (°C). Scales on different graphs are different. The main biomes where Xenopsaris occurs are in light yellow (seasonally dry forests), light green
(savannas and grasslands) and dark green (rainforests). The Caatinga, mentioned throughout the text, is the light-yellow area in north-eastern Brazil.
Figure 2. Spatiotemporal variation of Xenopsaris across the annual cycle illustrated by the day number of each record plotted against its latitude (a) and longitude (b). (a) Records north of 0°N involve the geographically isolated northern population, which was recorded year-round, while records south of 0°N depict the migratory populations, which undertake different kinds of migration (see the main text). Between April and September (~100–260th days) there are almost no records south of 30°S, indicating that southern birds migrate northward and then overlap spatially and temporally with birds from the Caatinga. (b) The migratory population that winter in central Brazil (~50°W) stays there mainly between May and November (~150–310th days). Symbols follow those in Figure 1.
Figure 3. Fluctuations in temperature and precipitation seem to be linked to the migration of Xenopsaris, as suggested by the overlap of these environmental variables and the species’ spatiotemporal variation. The northern population is recorded year-round, while the southern population migrates during the coldest, driest period of its breeding grounds and the northeastern population seems to migrate during the region’s driest period. The above maps show the species’ spatiotemporal variation against seasonal variation in average temperature (°C) while the bottom maps show the species’ spatiotemporal variation against seasonal variation in precipitation rate (mm). The layers of environmental variables are means from 1970–2000 extracted from WorldClim (Fick & Hijmans 2017) for the months of February (breeding), August (non-breeding), and October (migration). For monthly maps, see Figures S3 and S4.
Figure 4. (a) Variation (%) in Xenopsaris crown colouration over the annual cycle (only photographic records with enough quality and checked museum specimens were included, $n = 776$). Most birds exhibit an entirely black crown (black bars) between October and April, whereas for the remainder of the year most birds exhibit a black crown with brown feathers (grey bars) or a brown crown (brown bars). Juveniles, that have a scalloped crown (yellow bars), are almost restricted to the breeding period. Note that brown-crowned birds (brown bars) succeed scalloped-crowned birds (yellow bars), illustrating the moult period of first cycle juvenile to first cycle formative plumage. The few scalloped-crowned birds recorded in June and July had an intermediate appearance. The northern resident population is not included because it breeds asynchronously relative to the other populations and had too few photographic records ($n = 28$). Examples of Xenopsaris plumages: first cycle juvenile (b), first cycle formative (c), possibly first cycle alternate (d), adult male breeding plumage (e) and possibly the non-breeding plumage (f, g). Photos by Hector Bottai (b), Eugênio Oliveira (c, g), Chico Rasta (d), Alexandre Gualhanone (e) and Henrique Coelho (f).