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Switching costs in stochastic 
environments drive the emergence 
of matching behaviour 
in animal decision‑making 
through the promotion of reward 
learning strategies
Nan Lyu1,2*, Yunbiao Hu2, Jiahua Zhang2, Huw Lloyd3, Yue‑Hua Sun2* & Yi Tao2*

A principle of choice in animal decision‑making named probability matching (PM) has long been 
detected in animals, and can arise from different decision‑making strategies. Little is known about 
how environmental stochasticity may influence the switching time of these different decision‑
making strategies. Here we address this problem using a combination of behavioral and theoretical 
approaches, and show, that although a simple Win‑Stay‑Loss‑Shift (WSLS) strategy can generate 
PM in binary‑choice tasks theoretically, budgerigars (Melopsittacus undulates) actually apply a range 
of sub‑tactics more often when they are expected to make more accurate decisions. Surprisingly, 
budgerigars did not get more rewards than would be predicted when adopting a WSLS strategy, 
and their decisions also exhibited PM. Instead, budgerigars followed a learning strategy based on 
reward history, which potentially benefits individuals indirectly from paying lower switching costs. 
Furthermore, our data suggest that more stochastic environments may promote reward learning 
through significantly less switching. We suggest that switching costs driven by the stochasticity of 
an environmental niche can potentially represent an important selection pressure associated with 
decision‑making that may play a key role in driving the evolution of complex cognition in animals.

In response to the uncertainty of natural environments, animals seem to be quite ‘smart’ in making decisions 
among various options by which they can accrue their fitness  efficiently1,2. Although the fitness consequences of 
different decision-making strategies have been the focus of numerous studies, few have examined the animals’ 
responses to uncertainty and the conditions under which the adoption of or switch to a particular strategy 
become  advantageous3.

A general principle of choice in decision-making called probability matching (PM)4 has long been identified 
in animals, including  humans5. PM occurs when decision-makers match their choice probabilities to a corre-
sponding outcome probability (matching) rather than always choosing the outcome with the highest probability 
(maximizing)6,7. As a result, PM behavior is viewed by many as a ‘suboptimal’ or even an ‘irrational’  strategy8,9 
because of the comparatively lower expected success rate than that of maximizing (see Supplementary Infor-
mation 1). Some argue however, that adopting PM can be ‘ecologically rational’ if animals’ regularly encounter 
a situation in stochastic environments where PM is sufficient for reaching an immediate or short-term  goal13. 
Helping to resolve this debate requires a combined theoretical and empirical assessment of why animals adopt 
non-maximizing behavior, but also identifying the conditions under which PM becomes beneficial in highly 
stochastic environments.
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Psychologists and economists have developed a range of theoretical models for modeling decision-making 
 processes6,10,11. Win-Stay-Lose-Shift (WSLS) models have been extensively used to model behavior in decision-
making tasks, especially from binary choice  experiments12,13. In the most basic WSLS model, individuals repeat 
selections if they succeeded in getting rewards in the last trial (representing a ‘win’), but switch if they failed (a 
‘loss’)13,14. PM can arise from a WSLS strategy when individuals initially search for patterns by repeat predictions 
but then change following  failures9 (see Supplementary Information 1). Consequently, some view PM as simply a 
byproduct of a local decision-making  process15 i.e. the outcome of a more complex search for patterns, rather than 
a strategy per  se9. PM may also arise from reward (reinforcement) learning, when individuals respond according 
to an assessment of relatively long historical outcome  information7. However, reward learning is cognitively more 
demanding than adopting a simple WSLS strategy, which has been labelled by some as a lazy cognitive  shortcut16.

Neither are these strategies mutually exclusive as animals may switch between alternative choices, or from 
one strategy to another. Switching may entail costs for decision-makers, arising primarily from economic 
 considerations17. In nature, various switching costs also exist during animal decision making, including not only 
the energetic and temporal costs during  switching18, but also costs such as increased predation  risk19 or that of 
searching and assessing a new site to improve local  familiarity20. Although a number of studies have considered 
such costs in decision-making, little is known about how environmental stochasticity may influence the switch-
ing time of different strategies, and then potentially drive the evolution of different decision-making strategies.

Here we bridge those knowledge gaps, using a combination of behavioral experiments and simulation models 
to examine the use of PM behavior in animal decision-making from an adaptive viewpoint. We firstly use a series 
of binary choice experiments and theoretical models to investigate the decision-making behavior in budgerigars 
(Melopsittacus undulates), and to determine the role of environmental variability (‘uncertainty’) in driving the 
use of two different decision-making strategies: WSLS and reward learning. Budgerigars are native to the arid 
interior habitats of  Australia21, and are subject to significant spatial and temporal variation in food  availability22, 
and consequently they face significant decision-making tasks while searching for rare and patchily distributed 
food and water sources. Thus, budgerigars are an appropriate species with which to conduct the experiments in 
this study. Additionally, in order to identify the conditions under which PM behavior can happen and to explore 
how the more complexed learning strategy would become profitable and adaptive, we construct simulation 
models based on the budgerigar experimental results.

Materials and methods
Binary choice experiments. To test whether animals would really adopt a simple WSLS strategy and 
exhibit PM behavior, we conducted binary-choice experiments using budgerigars, which have been widely used 
in studies of different cognitive abilities, such as vocalization  learning23,24, and problem  solving25,26. In this study, 
eighteen unrelated budgerigars were used for the binary-choice experiments and their age ranged from under 
1-year-old to 3 years old.

Budgerigars were housed separately in different cages at a size of 20 × 20 × 20 cm prior to each experiment. 
Binary-choice experiments were conducted in a wire-meshed cage measuring 2 × 1 × 2 m (Supplementary Fig. S1). 
A single perch was positioned in the center of the cage at a height of 0.8 m from the ground. Two food cups 
were set on the front wall at a height of 1.6 m from the ground, separated by 1.6 m but only one cup contained 
the food reward in each trial. For illustration, we denote the side with a higher probability of having rewards as 
the H-side, and the other side as the L-side in the following. We assume the food rewards would occur on the 
H-side with a probability q, and on the L-side with a probability 1 − q.

We first generated sequences of food reward locations for 100 trials under three different random levels 
(q = 0.5, 0.6 and 0.75) using MATLAB (version 7.5, R2007b, The MathWorks Inc.). Each bird was placed in the 
experimental cage for two days to adapt to the environment, and foraged on food provisioned in the cups in 
prior (both cups contain foods during this period). Before the experiments, each bird was food deprived for 24 h. 
Following this, for each experimental trial, we placed approximately 20 grains of millet in the food cup. Once a 
bird had made a decision and had eaten some millet (after ~ 8–10 s), we removed both food cups, after which the 
bird would fly back to the perch and wait for the next trial, which was conducted after a period of one minute. If 
the bird chose a wrong side (i.e., without food rewarding), we would allow it to fly to the other side, after which 
we immediately removed both food cups from the cage. Since the study subject would become satiated follow-
ing approximately 30 trails, the total of 100 trials were subsequently conducted over three consecutive days. On 
each day after conducting the experiments, the bird would be food deprived until the experiments resumed on 
the following day. To avoid memory interference between random levels, we assigned each bird to only one set 
of 100 trials. We used three different birds for the experiments under each of the random levels of q = 0.6 and 
0.75, and five birds under the random level of q = 0.5 . To avoid possible effects of side preference, we also used 
another three different birds for the experiments under each of the random levels of q = 0.6 and 0.75, and one 
bird under the random level of q = 0.5 with the same sequences of food locations, but changing the position of 
food reward to the opposite side in each trial.

This study complies with all applicable governmental regulations concerning the ethical treatment of animals. 
All animal use and care was done in compliance with the guidelines of Institute of Zoology, Chinese Academy 
of Sciences (CAS). This work was permitted by the Animal Care and Use Committee of the Institute of Zoology, 
CAS.

Assessing the outcome information for decision‑making. To assess how our budgerigars made their 
decisions through reward learning, we firstly used a one-parameter (time constants τ ) leaky integration model 
to quantify the outcome information in each  trial27. This model uses a function similar to an exponential filter, 
which has been derived from a signal processing  method28. Since food reward was the only income earned by 
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budgerigars during the binary choice experiments, we integrated the reward history of each side as the outcome 
information. Due to memory capacity  limitation29 only a finite number of past trials might be informative to 
decision-makers. Specifically, the outcome information of each side ( yi = yH for the H-side or yL for the L-side) 
in trial t  was calculated as:

yi(t) = (1− a)yi(t − 1)+ axi(t − 1) or rewritten as

where xi(t − 1) is the income earned in the last one trial (1 or 0), and a = 1− exp(−1/τ) is a constant between 
0 and 1, where τ is the time constant. We can see that the more recent reward is more informative for making the 
current decision (Supplementary Fig. S2). Moreover, the reward information from the past τ trial(s) can explain 
63.2% of the output yi(t) , and the past 3τ and 4τ trials can explain 95% and 98.2% of the output value, respectively.

Reward learning strategy assessment. To explore how budgerigars made decisions according to the 
outcome information integrated using different time constants τ , we constructed several generalized linear 
mixed-effect models (GLMMs) with binomial error (and logit link function) under different time constants τ . 
In each model, we set the selected side (1 for H-side, and 0 for L-side) in each trial as the dependent variable. 
The difference in outcome information between the two sides ( �y(t, τ) = yH (t, τ)− yL(t, τ) ) and the random 
level that individuals encountered (i.e., q = 0.5, 0.6 or 0.75) were used as the independent variables in each model. 
Individual ID was set as a random effect. Normally, as our budgerigars had no prior information to identify dif-
ferent random levels, we would expect random level to be an insignificant factor in the model. Hence, we subse-
quently assessed the significance of random level in different GLMMs using likelihood ratio tests (LRT) using R 
function anova. The two models used here are shown by the following,

Model 1: Selected side ~ �y(t, τ)  + random level + (1|ID),
Model 2: Selected side ~ �y(t, τ)  + (1|ID).
All models were compared using Akaike’s information criterion,  AIC30, to identify the best-fit time constant 

in modeling budgerigars’ decisions. Note that we had conducted exploratory analyses by including the side effect 
(set as 1 or 2 to indicate the experiments conducted under the same sequences with opposite food locations) as 
another independent variable, which showed that our budgerigars did not have certain side preference during 
decision-making (see Supplementary Table S1). Hence, the side effect was not considered for further analysis. 
We had also constructed another three outcome information processing models to assess the decision making of 
our budgerigars; 1: memory without decay; 2: memory without decay and losing represents a negative income; 
3: memory with decay and losing represents a negative income. All of these models showed much higher AIC 
values than the model described above (see Supplementary Tables S2 and S3). All GLMMs were implemented 
using function glmer in the lme4  package31 in R v.3.5.032.

Simulations of the best‑fit statistical model. To determine the robustness of our experimental results 
and explore how environmental stochasticity influences switching time between decision-making strategies, we 
conducted computer simulations under different random levels ( q ranged from 0.50 to 0.85, stepped by 0.05) to 
assess the behavior of the deduced reward learning strategy (i.e., the best-fit regression model, see Supplemen-
tary Fig. S3); specifically, the choosing probability of the H-side would be predicted using the statistical model 
in each trial.

For each simulation, we first deduced a reward learning strategy from the best-fit regression model (Sup-
plementary Fig. S3). To capture the uncertainty, we assumed a multivariate normal distribution for regression 
coefficients. We generated the coefficients of a model of reward learning strategy using the mvrnorm function 
of MASS package in  R33, with the estimated coefficients of the regression model acting as means and the vari-
ance–covariance matrix of different coefficients acting as the variance–covariance matrix for the multivariate 
normal distribution. In each trial, we calculated the outcome information following the leaky integration model 
(see Eq. 1), and then passed the difference in outcome information between the two sides to the deduced reward-
ing learning model to generate the selection probability of the H-side. We ran each simulation for 100 trials 
and 1000 times under different random levels ( q ranged from 0.50 to 0.85, stepped by 0.05). We compared the 
efficiencies (i.e., success rates) of the model behavior (best-fit regression model) and WSLS strategy, and verified 
whether the model behavior could reduce the number of switching events efficiently.

Results
Modelling and testing the adoption of WSLS strategy in budgerigars. Our results identified PM 
by budgerigars (Fig. 1A); however, they did not adopt a WSLS strategy as expected. Specifically, when the food 
rewards probability increased, the relative frequency of using the win-stay (WST) sub-tactic would increase, 
while the relative frequency of using a lose-shift (LSH) sub-tactic would decrease (Fig. 1C). The relative frequen-
cies of using lose-stay (LST) and win-shift (WSH) sub-tactics were stable under different food rewards probabili-
ties (Fig. 1D). Interestingly, the corresponding expected accuracy of each sub-tactic (i.e., WST, LSH, LST, WSH) 
showed a similar pattern to the relative use frequency (Fig. 1B). Thus, our budgerigars were able to apply the 
more accurate sub-tactics more often for their decision-making. Nonetheless, neither the choosing probability of 
each side (Fig. 1A) nor the mean accuracies in getting rewards differed from adopting the simple WSLS strategy 
(Fig. 2A,B). How does this seemingly contradictory phenomenon arise?

(1)yi(t) = a

t∑

k=2

xi(k − 1)(1− a)t−k
,
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Modelling reward learning in budgerigar decision‑making. We now consider the reward learning 
strategy in modeling our budgerigars’ decisions. Likelihood analyses indicated that random level showed a rela-
tively significant effect until the time constant τ increased to two (Table 1). Furthermore, when τ = 1 , excluding 
the random level would result in a model with a much higher AIC value (with �AIC = 3.8 ), representing a 
poorly supported model, based on the conventional rule of thumb in model selection ( �AIC < 2 , see Ref.34). 
Therefore, our budgerigars should follow a memory integration model with a time constant τ of at least two 
when undertaking binary choice tasks. We also found that the model constructed under an even larger time 

Figure 1.  Decision-making by budgerigars under different binary choice experimental conditions. (A) 
Choosing probabilities of the side with different food occurrence probabilities. The black squares with bars 
show the mean (± SD) choosing probabilities of budgerigars in the binary choice experiments. The expected 
choosing probabilities using the maximizing, WSLS and random strategy are shown by the blue, green and red 
lines, respectively. (B) The expected accuracy rates of the four sub-tactics (i.e., WST, LSH, WSH and LST) under 
different food occurrence probabilities. (C) and (D) show the mean (± SD) relative use ratios of each sub-tactic 
(i.e., WST, LSH, WSH and LST) in decision-making by our budgerigars.

Figure 2.  Choosing probability of the H-side (A), success rate (B) and mean switching times (C) of budgerigars 
(black squares with SD bars) and the simulated results (red circles with SD bars) using the best-fit statistical 
model in 100 trials. The blue triangles represent the expected results when decision-makers adopt the WSLS 
strategy.
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constant τ ( > 2 ) would have a higher AIC value (with �AIC > 2 ; Table 1); thus the GLMM constructed under 
τ = 2 showed the best-fit for modeling decision-making in our budgerigars. These findings suggest that our 
budgerigars are more likely to make their decisions according to a relatively long history of outcome informa-
tion (rather than using only one previous trial in WSLS), raising new questions about why this comparatively 
more complex learning mechanism could potentially evolve without additional benefits as we detected in our 
budgerigars (Fig. 2B).

Lower switching costs of reward learning strategy. Through conducting simulations, we firstly con-
firmed that using a reward learning strategy would cause an increased use ratio of WST and a decreased use 
ratio of LSH when the food rewards occurring probability increased (Supplementary Fig. S4), as we had detected 
in our budgerigars (see Fig. 1C,D). Furthermore, compared to the simple WSLS strategy, reward learning did 
not cause decision-makers to select the H-side much more often (Fig. 2A) or to acquire a higher success rate 
(Fig. 2B). However, reward learning did result in much less switching especially when food rewards were more 
evenly distributed between the two sides (i.e., when q is getting closer to 0.5, Fig. 2C). Therefore, the reward 
learning strategy should be increasingly less costly for decision-makers than the WSLS strategy under more 
variable environments.

Discussion
Although PM can occur by adopting the simple WSLS strategy, we found that our budgerigars were more likely to 
adopt the comparatively more complex reward learning. Complex cognition has long been suggested as an adap-
tation to environmental  stochasticity35. However, evidence from studies that examined relatively larger-brained 
birds exposed to more variable environments (e.g. Ref.36) and which have examined how environmental enrich-
ment can promote the cognitive ability in fishes (e.g. Ref.37) did not provide any direct causation mechanisms.

Using a combination of behavioral, theoretical and computational approaches, we illustrate that the more 
complex reward learning actually cannot outperform a WSLS strategy through gaining more rewards, but can 
potentially benefit individuals indirectly from paying lower switching costs. Furthermore, environmental vari-
ability plays a fundamental role in determining the switching time of each strategy, and the more variable envi-
ronments may promote the evolution of reward learning through significantly less switching. In primates, PM 
represents an adaptive strategy for foraging in stochastic environments, driven by reward  learning38. Experimen-
tal studies have suggested that evolved reward learning is sufficient for PM in  bees39, particularly in situations that 
require simultaneous sampling of different individual flowers of the same or different species, while harvesting 
from the best estimated flower type in a  patch40–42. Additionally, foraging bees have evolved to use only a subset 
of decision-making strategies that are most adaptive to environmental stochasticity, as this allows bees to track 
variation in both the quality and availability of food  sources40. Thus, PM may represent an ecologically optimal 
foraging solution for animals such as budgerigars if reward learning probabilities are highly  variable43, whilst 
also evolving in less competitive environments for the birds as a direct result of near-optimal reward  learning39.

Some argue that PM can evolve when environmental stochasticity is systematic across all individuals i.e., 
that natural selection is able to yield behaviours that may be individually sub-optimal but are optimal for the 
 population44. As a native species from Australia, budgerigar populations are known for their nomadic ecol-
ogy, which is tied to significant spatial and temporal variation in food and water availability over vast arid 
 landscapes21,22. This species tends to occur in small flocks but can form significantly larger flocks when environ-
mental conditions worsen, such as during periods of  drought45. Consequently, they face significant decision-mak-
ing tasks while searching for food and water sources. Since our data suggest that budgerigars would use reward 
learning strategy that may potentially permit the evolution of PM, this suggests that most foraging situations 
they encounter in the wild (e.g., depletion of food resources via intra-specific competition, drought-dependent 
variation in seed production) favour a more limited range of decision-making strategies, as has been suggested 

Table 1.  Generalized linear mixed models (GLMMs) constructed to analyze the effects of difference in 
outcome information (Δy) and random level (0.5, 0.6 or 0.75) under different time constants (τ). ΔAIC is 
calculated as the AIC value of the model excluding the variable of random level minus that of the model with 
the random level. χ2 and P values represent the likelihood analyses results (i.e., comparing models with versus 
without the variable of random level using R function anova).

Time constant (τ) AIC (with random level) AIC (without random level) ΔAIC χ2 P value

1 1872.6 1876.4 3.8 5.826 0.016*

2 1870.9 1872.2 1.3 3.304 0.069

3 1884.3 1884 − 0.3 1.723 0.189

4 1898.9 1897.7 − 1.2 0.808 0.369

5 1912.5 1910.8 − 1.7 0.335 0.563

6 1924.6 1922.7 − 1.9 0.119 0.730

7 1935.4 1933.4 − 2 0.035 0.853

8 1945 1943 − 2 0.007 0.932

9 1953.6 1951.6 − 2 0.001 0.975

10 1961.3 1959.4 − 1.9 < 0.001 0.989
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for  bees40. In these uncertain arid environments, frequent switching among foraging sites would not enable 
budgerigars to get more food, while flying during such hot and dry environmental conditions would consume a 
lot of energy and water. Thus, developing the capability of integrating outcome information from a longer history 
of rewards, though cognitively more complex, might be relatively more cost-efficient to budgerigars in the wild. 
We therefore draw attention to a potentially important selection pressure associated with decision-making (i.e., 
switching cost) that may play a key role in driving the evolution of complex cognition in animals.

In this study, we constructed leaky integration models with different time constants ( τ ) to assess the reward 
learning processes of captive budgerigars. Generally, a higher value of the constant τ would give rise to more 
sluggish responses to changes in the  outcome27, because decision-makers would integrate the outcome informa-
tion from a longer history of rewards. In binary-choice experiments, although the H-side is more likely to have 
rewards than the L-side in each trial, the reward can still occur on the L-side more often than on the H-side 
within n (> 1) trials, representing a mismatching situation. Theoretically, an increasing of the trial number n can 
effectively reduce the mismatching rate ρ (see Supplementary Fig. S5), and therefore, integrating the outcome 
from a longer history can potentially enable the decision-makers to identify the two sides more accurately. On 
the other hand, a lower mismatching rate also implies that the ratio of switching between the matching and 
mismatching situations should be lower, which may in turn reduce the intention of shifting between the two 
sides by decision-makers. Specifically, as shown with our budgerigars, a leaky integration model with the time 
constant τ = 2 showed the best-fit in modeling their decisions, by which they can have much less switching than 
the WSLS strategy when executing binary-choice tasks (Fig. 2C).

It is important to note that we make no claim that our deduced statistical model exactly captures our budg-
erigars’ decisions. The model is just for descriptive purpose. While conducting the binary choice tasks, the only 
information that could be used by the birds are memories regarding previous trials (e.g., the side they selected 
and whether they successfully obtained the rewards). For stochastic environments, animals should only consider 
a small number of recent experiences (the WSLS strategy considers the memory of one previous trial, while the 
reward learning strategy considers memories from more than one previous trial) since older experiences may 
not be as informative about the current  situation29,38—a factor specified in our leaky integration models. As it 
can be seen that comparing to the other three sets of GLMMs (see Supplementary Tables S2 and S3), those ones 
constructed using the outcome information assessed through a leaky model generally showed better-fitting 
(Table 1). Nonetheless, we found that even using the best-fit regression model to conduct simulations still did 
not perfectly describe budgerigar behaviour (see Fig. 2). It thus may imply that other sub-strategies might be 
employed. Future studies should consider this and whether budgerigars can adjust their learning rate and switch-
ing as environmental stochasticity changes on multiple timescales.

In nature, animals are faced with variation in environmental conditions, and there are also variations in the 
switching costs during decision-making. We suggest that these may in turn drive the evolution of species-specific 
memory processing and other cognitive capabilities. Specifically, those species that live in more variable environ-
ments and/or have higher switching costs should prefer less switching and thus might be more likely to evolve 
the more complex cognition in general.
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