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ABSTRACT 

Vegetation in heathland ecosystems are adapted to a low level of nitrogen (N) availability. 

Increased N deposition thus reduces the competitiveness of characteristic heathland plants, 

such as Calluna vulgaris and induces soil acidification resulting in the limitation of other 

nutrients, including phosphorus (P), making heathlands vulnerable ecosystems to increased 

N deposition. In this study, the main question addressed was: how would nutrient 

availability, particularly P and soil-plant nutrient stoichiometry (N: P ratio), influence the 

resilience of heathlands to the adverse effects of prolonged N deposition? This led to the 

assessment and selection of a suitable P extraction method to determine plant-available P 

across heathland communities. Effects of P availability to protect lower plants against the 

adverse effects of N deposition was examined in nutrient addition experiments and across 

heathland communities. Findings from method assessment suggest that Mehlich-I 

extracted-P most represented plant tissue P making Mehlich-I extraction method the 'best' 

determinant of plant-available P across the studied heathlands. However, water-extracted 

P also proved to be a good determinant of plant-available P showing a more sensitive 

measure of the readily available source of P. Observations from nutrient addition 

experiments indicated direct relationships between tissue and soil nutrient concentrations 

and stoichiometric ratios, but this was absent across heathland communities. Survey results 

support earlier works with negative relationships between nitrogen deposition and 

decreasing overall species richness. The response was stronger in lowland heaths (r2 = 0.26, 

p<0.05) than upland heaths (r2 = 0.15, p = 0.08). Sampling sites were characterised by high 

spatial variability in soil available P, but there were indications of increased lower plant 

richness on high P containing bedrocks relative to low P containing ones, although species 

resilience to N deposition effects was lacking. Further studies need to clarify the protective 

role of P for species (particularly lower plants) against the adverse effects of N deposition 

across heathland communities. 
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1  CHAPTER ONE 

1.0 General Introduction 

 

1.1 The nitrogen cycle 

Nitrogen (N), the fourth most abundant element in plant tissue after carbon, hydrogen and 

oxygen, is the key element that controls species composition and functioning in terrestrial 

ecosystems. It is an essential element needed for any form of life on earth, as it is required 

for the synthesis of nucleic acids and proteins. N together with other nutrient elements such 

as carbon, iron, phosphorus and silica regulates ecosystem productivity, and it is by far the 

commonest element (~5 billion metric tons) on earth. However, only a small fraction (about 

2 %) is accessible to living organisms due to the strength of the nitrogen-nitrogen triple 

bond, which makes N gas unreactive (Galloway and Cowling, 2002 ; Galloway et al., 2003). 

For N to be available to living-organisms, it has to be fixed in bioavailable form as 

ammonium or nitrate ions. Weathering of rocks releases these bioavailable N species, but 

the slow rate of the process makes the released ions have negligible effects on the 

availability of fixed N (Holloway and Dahlgren, 2002). Transformation of N into the 

biologically active form also requires a lot of energy or a highly specialised enzymatic 

process which can only be achieved by a limited number of specific organisms (Galloway 

and Cowling, 2002 ; Galloway et al., 2003). N is therefore in short supply in a form that can 

be assimilated by plants, which makes it the limiting factor to productivity in many 

ecosystems (Vitousek and Howarth, 1991; Vitousek et al., 2010) including heathlands (Aerts 

and Heil, 1993). The conversion of N to biologically active forms is described by the N cycle 

(Fig. 1.1), a biogeochemical process by which N is transformed by micro-organisms into a 

multiplicity of species ranging from amino acids to oxidised compounds as N circulates 

among the atmosphere, terrestrial and marine ecosystems (Vitousek et al., 1997 ; Galloway 

et al., 2003 ;  Fowler et al., 2013 ; Bednarek et al., 2014). 
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Figure 1.1: The nitrogen cycle. Adapted from Bednarek et al., (2014) to show the processes 
of nitrogen transformation through ecosystems and bioavailable forms of nitrogen: (1) 
uptake of nitrogen by plants from the atmosphere, (2) uptake of ammonium and nitrate by 
plants from soil and water, (3) ammonification, (4) nitrification, (5) denitrification, (6) nitrate 
immobilisation by soil sorption, (7) nitrate leaching from the soil, (8) release of ammonia 
(NH3), gaseous nitrogen and nitrous oxide to the atmosphere. 
 

Sources of N input into the N cycle include lighting, biological fixation, industrial fixation, 

and fossil fuel combustion (Fowler et al., 2013). Among these sources, the anthropogenic 

input (i.e. industrial fixation and fossil fuel combustion) exceeds the natural sources (i.e. 

lighting, biological fixation) having altered the N cycle substantially over the past decades  

(Galloway and Cowling, 2002 ; Vitousek et al., 1997; Fowler et al., 2013; Kanakidou et al., 

2016). 

 

 

 



1.1.1 Natural sources  

 

1.1.1.1 Lighting 

 

Through lighting, N is fixed naturally as NOx mainly in the tropospheric region of the earth 

atmosphere. By comparing measured values with observations from model simulations, 

estimates suggest a global production of NOx by lighting to be within the range of 3 to 5 Tg 

N yr−1 (Levy et al., 1996). However, a more recent estimate indicates production between 

3.5 and 7 Tg N yr−1, which is uniformly distributed in clouds and upper regions of the 

troposphere (Tie et al., 2002). This pathway of NOx production represents a significant 

source of tropospheric reactive N species NOx (NO + NO2) into the N cycle with production 

likely to increase as global temperature increases (Brasseur et al., 2006).  The presence of 

NOx in the atmosphere plays a crucial role in the formation of photochemical smog (Erisman 

et al., 2013) and radioactive species (Fowler et al., 2013) which have the potential to impact 

negatively on human health and ecosystems alike. 

 

1.1.1.2 Biological fixation 

 

Biological N fixation (BNF) describes the process by which molecular nitrogen (N2) from the 

atmosphere is converted to biologically available forms by micro-organisms, many of which 

form a  mutualistic relationship with roots of plants (e.g. legumes) (Vitousek et al., 1997). 

The blue-green algae having the nitrogenase enzyme very similar to that occurring in N-

fixing bacteria also can break the triple bonds of N molecules to produce ammonium ions 

under conditions of relatively low energy (Galloway and Cowling, 2002). This pathway of N 

input and to a very limited extent, the production of NOx by lighting has been the major 

source of N fixation on earth before the industrial evolution (Fowler et al., 2013). In the 

marine ecosystems, both BNF and denitrification occur producing different N species into 

the N cycle with estimates suggesting either a close balance between the two or estimates 

of denitrification in excess over BNF (Gruber and Galloway, 2008). Other studies indicate 

variable and uncertain estimates of BNF from the marine ecosystem.  Gruber and Galloway, 

(2008) estimated global marine BNF to be 125 Tg N annually, within the range of 60-100 Tg 



N yr-1. A higher recent estimate, 145 Tg N yr-1 from Galloway et al., (2004) indicates a 

significant contribution of N from the marine ecosystem into the global N cycle. Estimates 

of pre-industrial N fixation in terrestrial ecosystems also suggests a microbial N fixation of 

~195 Tg N yr-1, within a range of 100-290 Tg N yr-1 (Cleveland et al., 1999). Although a more 

recent review by Vitousek et al., (2013) indicates a lower value (58 Tg N yr-1 within the range 

of  40-100 Tg N), it is certain that through the provision of food and energy, human activities 

have significantly increased the rate of N fixation in terrestrial ecosystems (Galloway et al., 

2003 ; Galloway et al., 2008 ; Fowler et al., 2013) by several pathways including cultivation 

of N-fixing crops, fertiliser use and N mobilisation (Vitousek et al., 1997). 

 

1.1.1.3 Cultivation of N-fixing crops 

 

Certain plant species such as legumes, forages and N-fixing trees (e.g. alder) form a 

symbiotic relationship with N-fixing micro-organisms (some free-living and other symbiotic 

N-fixers) to fix bioavailable N directly from the atmosphere (Galloway and Cowling, 2002 ; 

Galloway et al., 2003). A substantial amount of reactive Nr is also created through the 

cultivation of rice resulting from the anaerobic rice paddies. These sources of bioavailable 

N represent a new form of fixed N into the N cycle (Galloway and Cowling, 2002 ; Vitousek 

et al., 1997). In 1990, estimate suggested that, cultivation-induced fixed N contributed 

about 33 Tg N per year into the global N cycle (Galloway and Cowling, 2002) and the amount 

increased to more than double (65 Tg N per year in 2012)  in a decade after (Peñuelas et 

al., 2012). 

 

1.1.1.4 N mobilisation 

 

Biomass burning, land clearance and conversion and drainage of wetlands enhance the 

release of N from N pools increasing N availability (Vitousek et al., 1997). These human-

induced processes accelerate the mobilisation of N through terrestrial systems, which on 

average, contributes about 140 Tg of new N annually (Vitousek et al., 1997). 

 



1.1.2 Anthropogenic sources  

 

1.1.2.1   Fertiliser use 

 

A large quantity (about 85 %) of reactive N produced by the Haber-Bosch process is used 

for the production of chemical fertilisers necessary to meet the growing demand for food 

by increasing human populations (Galloway and Cowling, 2002 ; Galloway et al., 2003).  

Erisman et al., (2013) report that only one-tenth of the reactive Nr used in producing 

chemical fertilisers is consumed; the remainder gets lost to the environment through agro-

processing activities. Relative to chemical fertilisers, N fixation by organic manure 

application represents recycling of already fixed N within the ecosystem although organic 

manure may fix more N than chemical fertilisers (Vitousek et al., 1997). 

 

1.1.2.2  Industrial fixation and Fossil fuel use 

 

Certain industrial processes, including the combustion of fossil fuels, accidentally lead to 

the production of NOx (Erisman et al., 2013), which is emitted directly into the atmosphere. 

Emission of NOx from fossil fuel burning contributes over 20 Tg yr-1 of fixed N into the global 

N cycle (Vitousek et al., 1997). 

 

1.1.3 Nitrogen emission and deposition 

 

1.1.3.1 Reduced N 

 

Reduced N emissions principally arise from agriculture sources. In the United Kingdom (UK), 

ammonia as a form of reduced N volatilises mainly from livestock farming and decomposing 

animal waste (NEGTAP, 2001). This is reflected in the ammonia emission pattern throughout 

the UK with greater emissions in areas of intensive livestock farming (Fig. 1.2) (Sutton et al., 

2001). 



 

 

Figure 1.2: Ammonia emission sources in the UK.  Adopted from Sutton et al., (2001)  
 

Losses from croplands, where cultivation is extensively supported with synthetic N 

fertilisers are the second-largest source of ammonia emission to the atmosphere (NEGTAP, 

2001). Estimates suggest that ammonia losses from agriculture contribute about 85 % of 

the UK total ammonia emissions (Sutton et al., 2000). The remaining 15 % is thought to be 

emitted from non-agricultural sources (Reis et al., 2009; Sutton et al., 2000). Earlier reviews 

on NH3 emissions inventory also suggest that losses from agriculture have long been the 

major sources of UK NH3 emissions (Sutton et al., 1995; ApSimon et al., 1987; Pain et al., 

1998) which has doubled over the past decades (ApSimon et al., 1987). 

 

Ammonia is highly reactive. Thus upon emission, it readily forms aerosols with atmospheric 

particles which then falls as dry or wet deposited NH3 (NEGTAP, 2001). Coupled with its 

short residence time, much of the ammonia emitted within the UK is re-deposited within 

the borders of the UK. However, a report by RoTAP (2012) indicates that there has been a 

reduction in reduced N emissions in the UK (-24 %; 1990 - 2007) although changes in 



atmospheric chemistry show that the reduced emissions have not translated into an 

equivalent decline in deposition. 

 

1.1.3.2 Oxidised N 

 

The oxidised form (e.g. NOx) is primarily emitted from the combustion of fossil fuels and 

biomass burning (Pitcairn et al., 1995; Fowler et al., 2013). However, there is a natural 

component due to the emission of NO from the process of nitrification mostly in croplands, 

although emissions from this source are highly uncertain as they depend on substrate 

availabilities and soil physical properties such as temperature. Greater NOx emissions, 

therefore, occur in well-aerated N fertilised soils with higher temperatures (NEGTAP, 2001). 

Soil sources of NOx emission are thus characterised by much seasonal and regional 

variabilities (NEGTAP, 2001). In the UK, oxidised N emissions increased sharply from the 

1940s with the greatest increase recorded in 1960. Subsequent increases were marginal 

until emission reached a peak around 1980 (Fowler et al., 2004). NOx emission in the UK 

has declined significantly in recent years (-46 %; 1990 - 2007) owing to the significant 

reduction of power stations and the use of vehicles fitted with catalytic converters 

(NEGTAP, 2001; RoTAP, 2012). 

 

1.1.3.3 Dry and wet deposition 

 

Reactive N compounds emitted into the atmosphere impact on atmospheric chemistry. 

Their reactions with atmospheric substances produce fine particles in both the tropospheric 

and stratospheric layers (Fowler et al., 2004; Erisman et al., 2013). For instance, oxidised N 

mainly originating from nitric oxide (NO) and nitrogen dioxide (NO2) is important for the 

formation of tropospheric ozone (Isaksen et al., 2009) and also increases the concentrations 

of smog and particulate matter (Erisman et al., 2013).  The ammonia, as an alkaline gas, 

neutralises acids formed through the oxidation of sulphur dioxide (SO2) and nitrogen oxides 

(NOx) to produce atmospheric aerosols such as ammonium (NH4
+) salts of sulphuric and 

nitric acid (Monks et al., 2009; Kanakidou et al., 2016) as illustrated in equations 1 and 2. 



Ammonia also influences the formation of secondary aerosols in photochemical smog 

(Erisman et al., 2013). 

 

𝑁𝐻3 + 𝐻2𝑆𝑂4 →  𝑁𝐻4𝐻𝑆𝑂4 + 𝑁𝐻3 → (NH4)2SO4                                       Equation (1)  

𝑁𝐻3 + 𝐻𝑁𝑂3 → NH4NO3                                                                                        Equation (2) 

 

Although reactions of ammonia with sulphuric acid are favoured over reactions with nitric 

acid, the decline in SO2 emissions in the UK (NEGTAP, 2001; RoTAP, 2012) may lead to the 

formation of a significant amount of ammonium nitrate especially in areas where ammonia 

and nitrogen oxides emissions are high. Upon deposition, this may have negative ecological 

impacts on natural and semi-natural vegetation (Leith et al., 1999; Fowler et al., 2004; 

Erisman et al., 2013). 

 

Once released into the atmosphere, compounds of Nr return to the terrestrial biosphere as 

deposition (Pitcairn et al., 1995; Harvey and McArthur, 1989). The major inputs occur as 

wet deposition of nitrate (NO3
-) and ammonium (NH4

+) and dry deposition of gaseous nitric 

acid (HNO3), NH3 and NO2 (Pitcairn et al., 1995; NEGTAP, 2001). Small concentrations of 

other pollutants such as peroxyacetyl nitrate (PAN), nitrous (HONO) and particulate HO3
- 

and NH4
+ also occur as dry deposition. At high elevations, cloud-water droplets scavenge by 

falling rain described as occult deposition (Harvey and McArthur, 1989; Fowler et al., 1988) 

is also an important pathway of pollutant transfer in upland regions. Studies on pollutants 

in precipitation at afforested sites and other upland regions in the UK indicate higher 

pollutant (i.e. NO3
-) concentration in cloud-water droplets than in rainwater (Fowler et al., 

1988) suggesting that occult deposition may have high ecological impacts on vegetation and 

the orographic enhancement of this wet deposition is of considerable importance. 

 

1.2 Ecological implications of human alteration of the N cycle 

 

Human activities have significantly altered the cycle of N in both terrestrial and aquatic 

ecosystems (Vitousek et al., 1997 ; Galloway and Cowling, 2002), which have dramatically 

increased bioavailable form of N across habitats. This increased N availability can have 



multiple implications on the environment. For instance, the extensive use of nitrogen-based 

fertilisers for food production can lead to acidification of soils (Roelofs, 1986). A significant 

proportion can also be emitted to the atmosphere (as NH3, NO, or N2O) or leach out of the 

soils, enter streams and rivers and ultimately pollute groundwaters with nitrate (Galloway 

and Cowling, 2002). This can potentially affect the structure and functioning of both 

terrestrial and aquatic ecosystems. 

 

In terrestrial ecosystems, the addition of N can lead to nutrient imbalances (Kleijn et al., 

2008) and a decline of biodiversity (Southon et al., 2013). Such changes may permanently 

alter the nature of plant communities, with N eutrophication having the most significant 

impacts on N-limited habitats, which are highly sensitive to high N availability (Southon et 

al., 2013). 

 

1.3 The phosphorus cycle 

 

Phosphorus (P), the next macronutrient to N is often the limiting nutrient to plant growth. 

In plants, P is required to store and transfer energy produced by photosynthesis for use in 

growth and reproductive processes. P availability to plant results from many processes 

including complex soil chemical and biological processes involving sorption-desorption or 

precipitation-dissolution and mineralization or immobilization reactions (Holtan et al., 

1988; Pierzynski et al., 2005) (Fig. 1.3). 

 

 

Figure 1.3: Phosphorus cycling in terrestrial ecosystems. Adopted from (Pierzynski et al., 
2005). 



Through these processes, P becomes available in soil solution, and this fraction of soil P is 

often referred to as the labile P (Chang and Jackson, 1957) estimated to be within the range 

of <0.01 mg P L-1 in infertile soils to 1 mg P L-1 (i.e. 1 ppm or 1 mg P kg-1 equivalent) in well-

fertilised soils (Holtan et al., 1988; Pierzynski et al., 2005). Pierzynski et al., (2005) also 

report that, in recently fertilised soils, the labile P concentration can be as high as 7 - 8 mg 

P L-1. However, out of this estimate, only 0.003 - 0.3 mg P L-1 is considered optimum for 

plant growth, although it may depend on the species involved (Pierzynski et al., 2005). 

 

1.3.1 Sources of soil phosphorus in natural and semi-natural ecosystems 

 

The labile form of P in soil solution is influenced by various P sources (Fig. 1.3) which include 

but not limited to; the input from animal wastes, biomass and fossil fuel burning, organic 

matter degradation, application of organic and inorganic fertilisers especially in the case of 

managed grasslands (Culleton et al., 2002; Scotland’s Rural College, 2013; Kidd et al., 2017), 

soil enzyme activity, P circulation among ecosystems which tends to vary greatly among 

sites, atmospheric P deposition (mainly through mineral aerosols from dusts) and 

weathered P from the underlying bedrocks (Peñuelas et al., 2013; Tipping et al., 2014; 

Newman, 1995). P concentration in precipitation is also a significant pathway of P input into 

natural and semi-natural vegetation but regional and seasonal variations greatly alter this 

amount (Holtan et al., 1988). Of all these sources, weathered P from the underlying parent 

materials seems to be the major pathway for P input into natural and semi-natural 

vegetation such as heathlands since atmospheric P deposition is small (Tipping et al., 2014). 

Newman, (1995) provides a global range of 0.01-1.0 kg ha yr-1 for P weathering and 

estimates atmospheric P deposition in the range of 0.07 to 1.7 kg ha-1year-1 but mentioned 

that local pollution could profoundly influence these estimates. Additionally, natural and 

semi-natural vegetation are also not particularly managed by fertilisation. However, they 

may benefit from animal manure as they are usually used as grazing grounds for domestic 

animals (Gimingham, 1972). Organic matter, on the other hand, serves as a sink for 

weathered P in soils (Newman, 1995); thus, release of P after its mineralisation is unlikely 

to represent a different or new source of P into ecosystems. Despite being the primary 

source of P input in terrestrial ecosystems,  weathered P from the underlying parent 



materials differ in magnitude due to the differences in rock types, mineralogical 

composition and the differences in weathering rate (Newman, 1995; Robertson, 1999).  

Thus, soil types derived from different parent materials are likely to vary in biogeochemical 

properties, including P content. Moreover, the soluble fraction of the soil P may also vary 

among ecosystems due to losses through leaching (Newman, 1995). 

 

There is also evidence of P circulation within terrestrial ecosystems through a symbiotic 

association between roots of most vascular plants and mycorrhizal fungi (Roy-Bolduc and 

Hijri, 2010). This mutualistic association helps plants not only to enhance P uptake but also 

increase uptake of water and other nutrients, hence increase plant growth (Roy-Bolduc and 

Hijri, 2010). Nevertheless, in open heathlands, mycorrhizal infection is not likely to increase 

the levels of available P in soils especially when soil N availability increases through N 

deposition (Caporn et al, 1995; Johansson, 2000; Hofland-Zijlstra and Berendse, 2008). Soil 

phosphomonoesterase (PME) activity is another microbial mediated source of P to plants 

(Phoenix et al., 2003). PME is an enzyme in root exudes that plays a key role in P acquisition 

by plants, but its activity varies depending on the level of P content in soils. In P-rich soils, 

where there is an adequate supply of P, the activity of this enzyme is suppressed whereas 

under P-limited condition PME activity is likely to be stimulated. It has been found that N 

deposition increases rates of PME activity. As a result, increases demand for P (Johnson et 

al., 1999; Pilkington et al., 2005; Phoenix et al., 2003). 

 

1.3.2 Variation in P content among bedrocks 

 

Terrestrial ecosystems are underlain by different parent materials formed from either 

igneous, metamorphic or sedimentary rocks. However, geological rocks may be either acidic 

or basic, varying in chemical composition (White, 2006). This characteristic feature is likely 

to be transferred to the parent materials and the soil types that later derived from them. 

For instance, acidic igneous rocks are largely composed of a mixture of minerals such as 

quartz, feldspar, muscovite mica with high concentrations of Na and  K. Basic igneous rocks 

intend, have high proportions of amphiboles, olivines and biotite mica rich in Fe, Mg and Ca 

(White, 2006). The chemical structure of minerals influences the weathering processes of 



the geologies leading to the formation of different parent materials (Robertson, 1999; 

White, 2006). Sandstone and mudstone are both siliciclastic rocks (Robertson, 1999) and 

usually give rise to similar soil types (e.g. sandy loam) while psammite, semipelite, pelite are 

composed largely of quartz and feldspar which form the basis of their classification 

(Robertson, 1999).  

 

UK heathlands are reported to occur over a wide range of bedrocks (Gimingham 

(Gimingham, 1972), which give rise to different bedrocks and soil types. Thus, both 

bedrocks and soil types from which the soils were derived are likely to differ in mineralogical 

and elemental compositions. Taking soil P for example, Ure et al., (1979) report different 

concentrations of P in surface soils derived from different bedrocks, i.e. serpentine 700 

ppm, Olivine gabbro 5300 ppm, Andesite 1800 ppm, Trachyte 250 ppm, Granite 920 ppm, 

Granitic gneiss 2500 ppm, Quartz mica-schist 1500 ppm, shale-1200 ppm, sandstone 380 

ppm and quartize 700 ppm.  In heathlands, such variation in P content across bedrocks is 

likely to influence P availability to plants with vegetation established on P-rich sites 

potentially having access to high P availability. Plants located on P-poor parent materials 

may be P-limited.  

 

1.4 Nitrogen critical loads  

 

Nitrogen critical load was introduced to protect ecosystem communities by defining 

maximum limits for N deposition that do not cause long-term ‘harmful effects’ to sensitive 

ecological systems (Nilsson and Grennfelt , 1988). However, different limits are set for 

different habitats according to their sensitivity, and the limits are given in ranges, which 

reflect the variation in ecosystem response to N deposition through empirical studies 

and/or in combination with modelling. Critical loads, therefore, are subject to constant 

updates based on findings of current investigations. An amount of deposited N above the 

assigned limit is called ‘exceedance’, which indicates a potential increased risk of damage 

to ecosystems (Hall et al., 2015). Thus, N critical load is an indicator of N reduction as long 

as there is exceedance.  Table 1.1 gives mapped N critical loads for various habitat types in 

the UK (Hall et al., 2015). 



Table 1.1: Critical loads of nutrient nitrogen for significant ecosystem types mapped 
nationally in the UK (adopted from (Hall et al., 2015) 

Ecosystem Critical load range (kg N ha-1 yr-1) 

Marine habitat  
Mid-upper saltmarshes  20 - 30 
Pioneer & low saltmarshes 20 - 30 

Coastal habitats  

Coastal stable dune grasslands 8 - 15 
Mire, bog & fen habitats   
Raised & blanket bogs 5 - 10 

Forests  

Beech woodland 10 - 20 
Acidophilous oak-dominated woodland  10 - 15 

Scots Pine woodland 5 - 15 
Broadleaved woodland 10 - 20 
Coniferous woodland 5 - 15 

Grasslands & tall forb habitats  

Semi-dry calcareous grassland  15 - 25 
Dry acid and neutral closed grassland  10 - 15 
Juncus meadows & Nardus stricta swards  10 - 20 
Moss & lichen dominated mountain 
summits 

5 - 20 

Heathland / moorland  

Northern wet heaths:  

• Lowland heaths 10 - 20 

• Upland Calluna heaths 10 - 20 

Dry heaths 10 - 20 

 

 

1.5 Nutrient limitation and stoichiometry  

 

Following Liebig’s Law of the Minimum, nutrient limitation occurs when reasonable input 

of an essential nutrient leads to an increased primary productivity and/or production of 

biomass by an organism (Liebig, 1840; Vitousek et al., 2010) making nutrient limitation an 

important driver for ecosystem development (Koerselman and Meuleman, 1996). Nutrient 

limitation strongly affects plant species composition with higher plant density usually 

associated with moderate nutrient concentration and low biomass production (Berendse, 

1998). At high fertile sites, taller species usually outcompete short ones through 

competition exclusion for light resulting in species-poor vegetation (Tilman, 1985). 



 

Nutrient limitation is controlled by ecological stoichiometry defined as the elemental ratios 

of organisms in relation to ecosystem structure and function (Sistla and Schimel, 2012). 

Ecological stoichiometry helps species to adapt and modify their responses to 

environmental changes, although species differ in their stoichiometric abilities to adjust to 

a particular environmental change (Gusewell and Koerselman, 2002). Increased N 

deposition can influence ecological stoichiometry by directly affecting plant nutrient 

stoichiometry (Sabine Güsewell, 2004) and/or by interacting with soil chemistry. This may 

potentially alter the soil-plant stoichiometric relationship with a possible change in species 

composition.  

 

In heathlands, increased rate of N deposition has been observed to shift most N-limited 

heaths to P-limited ones (Kirkham, 2001) giving grasses a competitive ability over Calluna 

vulgaris (Aerts and Heil, 1993). An evaluation of endangered plant species in N vs. P sites 

across a transect in temperate Eurasia also indicates that many species occur at sites where 

tissue nutrient concentration suggests P limitation, not N (Wassen et al., 2005). In addition, 

a nutrient addition experiment shows that, in the absence of N, P addition promotes the 

growth of legumes that actively fix N. However, in the absence of P, N essentially increases 

the growth of grasses (DiTommaso and Aarssen, 1989).   

 

In plants, nutrient stoichiometry (particularly N: P ratios) gives indications of limiting 

nutrients in tissues, thus, it has been used widely as an indicator of nutrient limitation in 

different habitats (Tessier and Raynal, 2003; Kirkham, 2001; Schreeg et al., 2014). As tissue 

N: P ratio reflects the relative availabilities of soil N and P to plants, a change in tissue N: P 

ratios due to high N deposition will affect plant growth.  Responses of plants to nutrient 

availability are most reliably determined using a field fertiliser experiment (Aerts and 

Berendse, 1988). Although, this approach gives the desired results (Vitousek and Howarth, 

1991), it is without cost and disturbance to the site, and sometimes results are not clear for 

interpretation. Thus, threshold levels for nutrient limitation using plant tissue N: P ratios 

have been suggested (Gusewell, 2004), which provide quick and liable indications of 

nutrient limitation or saturation in an ecosystem. These threshold levels suggest that 

vegetation is limited by N if tissue N: P ratio is < 10 and by P if the N: P ratio is high (> 20) 



with intermediate values indicating a range of co-limitations. Tissue N: P ratio is also a 

sensitive indicator of soil nutrient availability (Schreeg et al., 2014), making it an important 

determinant of plant distribution in any terrestrial ecosystem. The stoichiometric 

relationship between N and P is, therefore, a useful tool to study ecological responses to N 

and P nutrient enrichment and help identify which of these two nutrients is more limiting 

in an ecosystem.   

 

1.6 Heathland ecosystems 

 

The term ‘heathlands’ refers to different types of plant communities characterised by 

dwarf-shrubs usually developed over nutrient-poor soils (Chapman et al., 1989 ; Fagundez, 

3013). They are for the most part semi-natural vegetation dominated by species of the 

ericaceous family, e.g. Calluna, Daboecia and Erica genera (Fagundez, 2013 ; Bobbink and 

Hettelingh, 2010) that are typically not found in other habitats. They are typical habitats 

throughout Europe (Fagundez, 2013 ; Thompson et al., 1995; Webb, 1998; Taboada et al., 

2018) because the oceanic type of climate lacking temperature extremes with well-

distributed rainfall and high humidity favoured their development against forests 

(Gimingham, 1972; Aerts and Heil, 1993). At least there are two types of heathlands - an 

upland heath (or moorland) and a lowland heath. This distinction is primarily based on 

differences in altitude with upland heaths occurring below the montane zone (600 - 700 m 

in altitude) but above the upper limit of an agricultural enclosure (250 – 300 m in altitude) 

(Thompson et al., 1995). However, they could be quite variable geographically. Lowland 

heath occurs at an altitude of about 300 m (limit of an agricultural enclosure) (Price, 2003).  

The difference between the two heathland communities has also been related to soil type, 

organic accumulation and completely different rainfall regimes between upland and 

lowland areas (Chapman and Clarke, 1980 ; Chapman et al., 1989). 

 

Heathlands typically thrive on podsolic soils (Gimingham, 1972; Thompson et al., 1995), 

most likely as a result of the acidifying flora of heathland vegetation (particularly Calluna 

vulgaris) that promotes podsolisation (Gimingham, 1972). Thus, heathlands are mostly 

located on nutrient-limited often-acidic soils with pH ranging from 3.8-4.8 (Aerts and Heil, 



1993; de Graaf et al., 2009) and low availability of N and P as opposed to high pH soils 

(Gimingham, 1972). However, British heaths are likely to have a varied amount of soil 

nutrient availability as they cover a wide geologic and climatic range (Gimingham, 1972). 

The nutrient-poor acidic soils coupled with the oceanic climate creates a suitable condition 

for slow-growing perennial plant species such as Calluna vulgaris that is adapted to stressful 

environments (e.g. low level of N availability) (Coley et al., 1985; Price, 2003) . Thus, such 

inherent characteristic might confer a greater ability to Calluna vulgaris to conserve mineral 

nutrients enabling it to outcompete fast-growing ones adapted to nutrient-rich 

environment (Chapin III, 1980).  

 

Heathland ecosystem is dominated by several plant species including vascular and non-

vascular plants. The understorey vegetation of the vascular species in heathlands is 

composed of a thick layer of bryophytes with several species of lichens. Bryophytes and 

lichens, as lower plant species of the heath vegetation play a vital role in nutrient cycling 

and functioning (Chapin et al., 1987) of the ecosystems by forming a substrate in which the 

higher plants (vascular plants) root. With the characteristic feature of obtaining most of 

their nutrient supply from the atmosphere, lower plants most especially the bryophytes, 

can immobilise deposited atmospheric N and P not intercepted by the higher plants. These 

captured nutrients are later made available for uptake by the higher plants through 

decomposition of dead moss tissues (Chapin et al., 1987; Malmer et al., 2003). However, 

the slow rate of the decomposition process as a result of low temperatures and pH beneath 

the bryophyte layer (Chapin et al., 1987; Pilkington et al., 2007) makes the nutrient filtering 

very efficient, likely to prevent a dramatic change in species composition when N deposition 

increases. 

 

1.6.1 Upland heath  

 

There are two communities of upland heaths in the UK as a result of different hydrological 

regimes - the dry and wet upland heaths also referred to as the Calluna-dominated 

moorland and heather-dominated blanket bogs respectively (Usher and Thompson, 1993). 

In both types, peaty top soils are common as decomposition and mineralisation processes 



are usually hampered by acidity and anaerobic conditions (de Graaf et al., 1998).  The dry 

upland heaths are typically dominated by ericoid dwarf-shrubs, Calluna vulgaris. Other 

woody shrubs including bilberry (Vaccinium myrtillus), crowberry (Empetrum nigrum) and 

gorse (Ulex gallii) also occur throughout the habitat. These species thrive best on drier 

mineral soils and thinner peat (<0. 5 m deep) (Thompson et al., 1995). Wet upland heaths 

occur on soil/peat with impeded drainage (Usher and Thompson, 1993). They are 

characterised by species such as Erica tetralix, Empetrum nigrum, bog-myrtle (Myrica gale), 

deer grass (Trichophorum cespitosum) and purple moor-grass (Molinia caerulea). The 

dominant species of the bryophyte layer in both types of upland heaths tend to differ with 

bog moss (Sphagnum spp.) dominating the wet upland heathlands while Hypnum spp. 

usually dominate the dry upland heathlands. 

 

1.1.6.2  Lowland heath 

 

Lowland heathlands are often characterised by dwarf shrubs such as Calluna, bell and cross-

leaved heaths and gorses. They are generally found on acidic sandy soils in relatively wet 

areas with mild temperatures (Aerts and Heil, 1993; Price, 2003). Depending on 

environmental and/or management practices, patches of trees and scrubs, areas of bare 

ground and grasslands usually occur on lowland heaths with mosses and lichens forming an 

integral part of the lowland heaths vegetation. Development of lowland heaths was as a 

result of centuries of human influence as traditional management practices such as burning, 

grazing, and cutting have been used to inhibit succession from heathlands towards 

woodlands (Aerts and Heil, 1993; Price, 2003). In the UK, most lowland heathlands were 

created at the prehistoric time by intensive woodland clearance. In many places where the 

underlying deposits were sands and graves, this management practice resulted in leaching 

of nutrients and acidification of already acidified forest soils. This prevented the build-up of 

soil nutrients and fast-growing competitive species from achieving dominance (Marrs et al., 

1998; Price, 2003). Therefore, if left unmanaged, many lowland heaths could potentially be 

replaced by forest vegetation. As with upland heaths, lowland heaths may either occur as 

wet or dry depending on soil moisture regime with extensive dominance of Ericaceous spp. 

especially Calluna vulgaris in dry heaths and Erica Tetralix in wet lowland heaths (Price, 

2003). 



1.7 Importance of heathland habitats 

 

Heathlands, like any other habitats, support a wide variety of animal species of high 

conservation value. Several species of rare plants are also common to heathlands (Kleijn et 

al., 2008). Heathlands are important habitat types as they support a host of highly 

specialised birds, reptiles, invertebrates, vascular plants, bryophytes and lichens (English 

Nature, 2002). These specialised birds use the mosaics of scrub and open heaths to forage, 

breed and perch. Species like silver-studded butterfly require young heather plants for 

shelter and roost while animals such as the ladybird and sand lizards rely on the presence 

of bare sand to hunt and lay their eggs especially in lowland heaths (English Nature, 2002). 

Thus, the entire structural variety of heathlands is beneficial to heathland inhabitants. 

Upland heaths most especially are important grazing grounds for domestic sheep (Ovis 

aries), but they are also managed by rotational cutting and burning purposefully to provide 

breeding grounds for red grouse (Lagopus lagopus scoticus) (Usher and Thompson, 1993). 

In the highlands of Scotland, upland heath management is geared towards the conservation 

of red deer (Cervus elaphus) (Thompson et al., 1995). 

 

1.8  Threats to heathland communities 

 

Over the last 200 years, several threats have contributed to the decline of heathland 

communities across Europe (English Nature, 2002; Aerts and Heil, 1993; Webb, 1998; de 

Graaf et al., 2009). Aerts and Heil (1993) noted the production of artificial fertilisers and the 

lack of management practices act as the main threats for the decline of heathlands. The use 

of fertilisers in farming activities made it easier for heathlands conversion to arable lands, 

as the otherwise nutrient-poor soils suitable for heathlands could be easily reclaimed for 

agricultural purposes. Abandonment of heathlands with the believe that heathlands are 

inherently unproductive in economic terms led to the invasion of undesirable species. Other 

threats include urbanisation and mining, both of which have contributed immensely to the 

decline of heathlands over the years. In the early 1980s, increased atmospheric deposition 

of N and sulphur (S) became an additional threat to heathlands (Brunsting and Heil, 1985; 

Heil and Diemont, 1983)  and this has caused major changes to the structure and functions 



of heathlands leading to a loss of biodiversity (Webb, 1998). Acid deposition has resulted in 

species impoverishment while nutrient enrichment from N deposition has caused a drastic 

change in vegetation with fast-growing species out-competing the typical heath species. 

With the current reduced level of S emissions and depositions in the UK following 

abatement legislation (NEGTAP, 2001), N deposition represents the only atmospheric 

pollutant that poses a direct threat to heathlands with diverse ecological impacts on species 

composition and diversity. 

 

1.9 Potential N deposition effects on tissue nutrient, species composition and soil 

chemistry 

 

1.9.1 Effects on growth and shoot nutrient content 

 

Atmospheric N deposition stimulates productivity in heathlands (Aerts and Heil, 1993; 

Taboada et al., 2018) which has been observed even at a treatment application as low as 

7.7 kg N ha-1 yr-1 (Power et al., 1995), a deposition rate far below the lower end of the N 

critical load (10-20 kg Nha-1yr-1) recommended for the protection of heathland communities 

(Bobbink et al., 1996 ; Bobbink et al., 2003 ; Hall et al., 2015) (Table 1.1). This suggests that 

many heathland communities are N-limited. However, this increased shoot growth is not 

likely to correspond with root growth (de Graaf et al., 1998). Van der Eerden (1991) 

observed a decreased root: shoot ratio after 13 months following treatment of artificial rain 

containing 20-400 µmol-1 of ammonium sulphate. Increased litter production associated 

with high N deposition may lead to significant nutrient cycling within the system, increasing 

soil N availability after net N mineralisation (Power et al., 1998a). 

 

Atmospheric N deposition also increases shoot N concentration (Power et al., 1995 ; Carroll 

et al., 1999) especially at a point when the productivity of plants is no longer limited by N. 

An absence of growth response to N deposition leads to luxuriant nutrient consumption, 

which intends increases accumulation of N in shoots (Carroll et al., 1999). A gradient study 

at a range of sites across the UK indicated an increased tissue N concentration of Calluna 

vulgaris in response to high N deposition (Pitcairn et al., 1995). Additions of 7.7 and 15.4 kg 



N ha-1yr-1 in the form of ammonium sulphate significantly increased Calluna shoot N 

concentration in a dry lowland heath in southern England with the highest increase in the 

first year of the 4-year treatment regime (Uren et al., 1997). Similarly, Johansson (2000) 

observed a significant increase in shoot N concentration within two years of the start of 

experimental N additions in the form of ammonium nitrate. These studies demonstrate a 

direct relationship between shoot N concentration and the fertilising effects of atmospheric 

N deposition in heathlands, which is evident in the early (between 4-5 years) development 

stages of Calluna vulgaris.  

 

Bryophytes and lichens alike benefit from atmospheric N deposition due to their unique 

pathway of nutrient acquisition (Malmer et al., 2003). Thus, their tissue chemistry strongly 

reflects nutrient concentration in the environment, although they tend to be very sensitive 

to high N deposition (Søchting and Johnsen, 1987; Cunha et al., 2002). Limpens (2008) 

found a significant positive response of tissue N concentration of Sphagnum spp. to N 

addition leading to an increased percentage cover of the species studied. Because of the 

uniqueness of bryophytes and lichens in terms of their nutrient acquisition, retention and 

sensitivity to N deposition, they tend to be used as potential indicators of N deposition 

(Bobbink et al., 1998; Britton and Fisher, 2007). However, by absorbing nutrient across their 

entire body surface, increased tissue N concentration of bryophytes and lichens due to high 

N deposition may limit their growth.  It has been demonstrated that additions of 7.7 and 

15.4 kg N ha-1 yr-1 significantly declined the cover of lichens and lichen diversity after 7 years 

of treatments (Barker, 2001, as cited in Bobbink and Hetteling, (2010)). 

 

1.9.2 Effects on species composition 

 

As different species respond differently to nutrient input, increased N deposition could 

change species composition and community structure by promoting vegetation growth in 

heathlands, especially enhancing the growth of grasses over shrubs (Angold, 1997). The 

conversion of heathlands to the grass-dominated system comes as a result of high N 

deposition accelerating the natural growth cycles of Calluna vulgaris, with early ageing and 

opening of the canopy structure (Carroll et al., 1999) allowing grasses to take advantage of 



the increased nutrients. The competition with grasses against Calluna is also evident at the 

seedling stage when total vegetation cover is still low (Heil and Diemont, 1983) and grasses 

have sufficient use of N supply for growth than Calluna (Britton et al., 2003; Barker et al., 

2004). The shift from heather dominance to an abundance of grass species is further 

enhanced by environmental stresses (Power et al., 2001 ; Barker et al., 2004 ; Power et al., 

1998b) resulting from high N deposition. For instances, by promoting early spring growth in 

heather (Power et al., 1998b), high N deposition potentially increases the sensitivity of 

heather to late winter injury , drought  and the frequency of heather beetle (Lochmaea 

suturalis) attack  (Heil and Diemont, 1983; Brunsting and Heil, 1985; Power et al., 1998b) 

which together destroy the canopy cover of Calluna and promote the germination of grass 

seeds  (Alonso et al., 2001; Price, 2003; Terry et al., 2004; Barker et al., 2004). However, 

other studies suggest that, if canopy remains close especially at the mature stage of Calluna 

development, Calluna is a better competitor than grasses even at high N deposition loads 

(Aerts et al., 1993; Alonso et al., 2001).  

 

Increased tissue N content of Calluna resulting from high N deposition may also lead to 

imbalances in tissue nutrient concentrations and potentially alter the nutritional quality of 

plants to herbivores (Alonso et al., 2001). This palatability differences among plants can 

cause certain species to be grazed more than others and indirectly bring about plant species 

competition in heathlands. Increased dominance of shrubs and litter production due to high 

N deposition may also reduce light availability to understorey vegetation (Lee and Caporn, 

1998; Carroll et al., 1999). This, coupled with the direct toxic effects of N deposition, may 

decline the cover of the ground flora (Carroll et al., 1999). Thus, in instances of high N 

deposition, species with standing biomass architecture are likely to have a competitive 

ability over mosses and lichens, causing changes in species composition. 

 

1.9.3   Changes in soil chemistry with a shift towards phosphorus limitation 

 

Biogeochemical properties of soils are closely related to pH, which in heathlands is mostly 

acidic (Aerts and Heil, 1993) and controls the mineral nutrition in soils for plant uptake. 

Nitrogen induced acidification of already acidic heathland soils (Gimingham, 1972) may lead 



to a decline in the availability of other nutrients following leaching of base cations. Toxic 

levels of H+ and Al3+ may increase at the absorption complexes of such nutrient leached soils 

(de Graaf et al., 1998), which will further contribute to the reduction of soil pH.  At lower 

pH, organic matter degradation reduces and nitrification is impeded, resulting in higher 

accumulation of ammonium ions (NH4
+) (de Graaf et al., 1998). The resultant effects include 

higher concentrations of Al3+ and NH4
+ compounds, as well as a higher aluminium-calcium 

ratio (Al3+/Ca2+ ratio) (Kleijn et al., 2008), the main drivers of community composition 

change and reduction of species richness in highly eutrophic plant communities (Kleijn et 

al., 2008). Changes in soil chemistry of this sort may favour species with relatively higher 

demand for N and disfavour species that have lesser demand, with the former having a 

competitive ability. Hence, in a eutrophic system, N-tolerant species usually outcompete N-

sensitive ones altering species composition. In Sweden, a simulated acid forest soil-solution 

experiment conducted to study the differential responses of herbaceous and graminoid 

species to different levels of N concentrations revealed that graminoids are more favoured 

in such conditions than herbs (Falkengren-Grerup et al., 1998). Applicability of the findings 

of this study in UK heathlands has been found in many studies where high N input resulted 

in luxuriant growth of grasses than other species (Alonso et al., 2001; Britton et al., 2003). 

Alteration of nutrient concentrations by high N deposition (e.g. N: P ratios) in both soils and 

plants may potentially cause a shift from N-limited heathlands to N and P co-limited or even 

P-limited ones (Crowley et al., 2012; Armitage et al., 2012; Peñuelas et al., 2013). 

Unfortunately, the current rate of atmospheric N deposition is predicted to increase in the 

next decades (Stevens et al., 2016) suggesting that, this N-driven impact on heathlands is 

likely to persist making heathlands in the UK vulnerable ecosystems in the face of chronically 

high atmospheric N deposition. 

 

1.10 Soil-plant responses to N: P stoichiometric changes in relation to N deposition  

 

Natural and semi-natural ecosystems have been enriched with N and P through the use of 

excessive doses of fertilisers and fossil fuel burning (Galloway and Cowling, 2002 ; Fowler et 

al., 2013). This increase has altered the stoichiometric relationship between N and P in plant 

tissues and their availability (Sardans et al., 2016a), thus influencing the structure of 



ecosystems. Increased atmospheric N deposition, in particular, can change the contents and 

the stoichiometry of N and P in plants and can have an indirect impact on soil nutrient 

availability (Sardans et al., 2016a). This atmospheric N-induced changes in plants can 

increase tissue N  (Carroll et al., 1999) relative to P  (Sardans et al., 2016a) leading to a 

higher tissue N:P ratios (Fujita et al., 2010; Sardans et al., 2016a). A similar effect can occur 

in soils altering the balance between N and P stoichiometry in terrestrial ecosystems. 

Changes in N: P ratio affects plant growth rate. Studies have shown that N:P ratios increased 

at low relative growth rates and decreased at high relative growth rates (Ågren, 2004; Fujita 

et al., 2010)  suggesting that high P concentration and low N:P ratio are directly linked with 

plant growth making P one of the most limiting nutrients in terrestrial ecosystems 

(Pierzynski et al., 2005). However, such a negative correlation between N: P ratio and 

growth rate can be reversed as N deposition increases by inducing P limitation (Kirkham, 

2001; Sardans et al., 2016a). As heathland ecosystems have historically evolved from 

nutrient limitation (Aerts and Heil, 1993; Gimingham, 1972), availabilities of N and P can 

increase plant growth and productivity in the short-term (Power et al., 1995 ; Power et al., 

1998a ; Carroll et al., 1999). In a long-term, increased nutrient (particularly N), altering the 

stoichiometric relationship between N and P can shape species composition (Falkengren-

Grerup et al., 1998), changing plant growth and the overall success of resident plants. 

 

1.11 Resilience of species to N pollution 

 

Ecological resilience is referred to as the capacity of an ecosystem to resist regime shifts 

and maintain functions (Oliver et al., 2015). Inherent in this definition are the two 

complementary aspects of resilience; resistance and recovery both of which are 

components of determining ecosystem stability although they could be underpinned by 

different mechanisms (Oliver et al., 2015). Even though resilience can be difficult to 

determine in a current ongoing disturbance (Lake, 2013), some factors can promote both 

resistance and recovery (Oliver et al., 2015) making a system stable in the face of an ongoing 

perturbation. Vallejo and Alloza, (2015) indicate that greater biodiversity can confer more 

resilience to an ecosystem than less biodiversity. Thus, a species-poor ecosystem such as 

heathland is likely to be less resilient to increased N deposition. 



The importance of heathlands in the UK makes its conservation a necessity. However, their 

sustainability is highly threatened by high deposition of atmospheric N. The continuous 

provision of heathland services in the UK, therefore, depends on the ability of these systems 

to absorb additional N pollution or recover from high N deposition effects, which is largely 

referred to as ecosystem resilience (Yan et al., 2014; Oliver et al., 2015; Baho et al., 2017).  

This will enable heathlands to resist a regime shift and continue to provide it ecological, 

cultural and recreational services (Gimingham, 1972) required but it will depend on the 

responses of ecological factors such as species diversity within functional groups and 

species composition (Oliver et al., 2015) as influenced by soil nutrient availability 

(particularly soil available P) to N pollution. These factors tend to influence ecological 

resilience (Yan et al., 2014), and therefore it is possible to measure heathland resilience in 

terms of these factors.  In-depth knowledge on how accurately resilience of heathland 

ecosystems to high N deposition is assessed, considering factors that influence resilience 

and how these factors are themselves influenced by soil-plant nutrient stoichiometry (e.g. 

N:P ratio) is therefore needed.   

 

1.12 Methods of assessing the effects of nitrogen deposition on vegetation 

 

1.12.1 Field nutrient addition experiments 

 

Field nutrient manipulative experiments usually involve additions of nitrogen-based 

fertilisers to natural or semi-natural ecosystems purposely to observe responses of plants 

to N deposition. They typically vary from the laboratory-based experiments where factors 

are highly controlled to the levels that cannot be easily achieved under field conditions.  For 

instance, control of climatic factors such as light, rainfall and N deposition. Additionally, the 

absence of complex biological activities and human influences affecting N cycling in a 

laboratory experiment makes accurate prediction of ecosystem responses to N deposition 

very difficult (Cunha et al., 2002).   As a result, observations vary greatly between laboratory 

and field-based N-addition experiments. A meta-analysis (Xu et al., 2019) shows a threefold 

difference in N effect on plant biomass between laboratory (+63.1%) and field (+22.2%) - 

based N-addition experiments with magnitude varying among plant categories and tissues. 



Since conditions in laboratory-based N-addition experiments do not reflect the actual field 

conditions, validation of results may be limited when relating results from laboratory 

experiments to that of real-world condition. 

 

In heathlands, field nutrient manipulative experiments have been used extensively to 

investigate N deposition impacts on species composition and plant growth where N is 

usually added as ammonium nitrate or ammonium sulphate at different rates typically 

ranging from 7.7 kg N ha-1 yr-1 to 120 kg N ha-1 yr-1 (Caporn et al., 1995; Power et al., 1995; 

Uren et al., 1997; Pilkington et al., 2007). However, realistic responses my occur at a rate 

lower than 80 kg N ha-1 yr-1 (Cunha et al., 2002). Nevertheless, being nutrient-poor 

ecosystems, heathlands may show different levels of N availability influenced by application 

methods such as dose, frequency and duration of treatment, which may intend impacts 

plant growth. Infrequent N addition at higher doses may be detrimental to both vegetation 

and soil microbial community while higher quantities applied during rainfall periods may be 

lost through leaching (Cunha et al., 2002). 

 

1.12.2 Surveys 

 

Field surveys of plant responses to N deposition enable assessment of background N 

deposition impacts on vegetation, which might have occurred over more extended periods, 

thus likely to be stable and representative. However, responses may be altered by different 

factors such as parent materials, soil types, pollution gradient, differences in climatic 

conductions and human activities (Cunha et al., 2002). Validation of results can be done by 

comparing survey data to that from a nutrient addition field experiment to assess if 

experimental responses are apparent under natural field conditions.  

 

1.13 Research gap  

 

Research indicates that both N and P enrichment drive significant loss of biodiversity in 

heathlands (Lee and Caporn, 1998; van der Eerden et al., 1991; van den Berg et al., 2005; 

Ceulemans et al., 2011; Stiles et al., 2017) with the effects of P likely to last for longer years 



(Ceulemans et al., 2011 ;Fujita et al., 2010).  However, P also promotes the growth of lower 

plants such as mosses and lichens (Armitage et al., 2012; Gordon et al., 2001) in instances 

of high N deposition probably because P stimulates the utilisation of excess N for growth 

(Vitousek et al., 2010). P, therefore, may offer a protectionary role to these life forms 

against the adverse effects of N suggesting that the outcome of competitive interactions 

among plant groups may be governed by their different typical stoichiometry (e.g. N:P 

ratios)(Gusewell, 2004). Although both N and P have been implicated for biodiversity loss, 

their relative contribution to species loss is not well understood because plant N: P ratios 

are not consistent indicators of ecosystem responses to N deposition (Ceulemans et al., 

2011 ; Di Palo and Fornara, 2017). Moreover, plant functional types as higher or lower plant 

species differ in sensitivity to the relative availability of N and P and soil-plant N: P ratios. It 

is currently unknown how such differences within plant groups impact their resilience to N 

deposition.  There is, therefore, a knowledge gap regarding how relative availability of N 

and P and soil-plant N: P stoichiometry influence resilience of higher and lower plant species 

to N deposition in heathlands. N pollution having been predicted to double in the coming 

decades (Stevens et al., 2016) its adverse effects on plants are likely to persist. It was, 

therefore, hypothesised that, if plant growth is related to the stoichiometric relationships 

between N and P with soil available P promoting the growth of lower plants in eutrophic 

heathlands, lower plants may become resilient to high N deposition effects. This 

necessitated the need to investigate the extent to which soil-plant N:P ratio could affect the 

resilience of lower and higher plants to increased N deposition, with the aim to improve 

understanding on how soil-plant N: P stoichiometry would impact species composition and 

functioning in N polluted heathlands against the effects of background P availability. 

Responses of lower and higher plant species to N deposition were investigated from long-

term nutrient addition field experiments (30 and 23 years for upland and lowland heaths, 

respectively) and along a natural gradient of P availability in a field survey to evaluate if 

experimentally observed responses of plants to N deposition are also apparent naturally in 

open heathlands. Relative concentrations of N and P and N: P ratios in soils and tissues of 

higher (e.g. Calluna vulgaris) and lower (Hypnum jutlandicum and Cladonia portentosa) 

plant species were assessed to determine whether variation exists regarding the impacts of 

N: P stoichiometry on the resilience of plant functional types to N deposition. Results were 



discussed in relation to the N critical loads recommended for the protection of UK heathland 

communities (Bobbink et al., 1996 ; Bobbink et al., 2003). 

 

1.14 Aims and Objectives 

 

Overall, the study aimed to gain scientific insights into how changes in soil-plant available P 

and nutrient stoichiometry (N: P ratio) would alter responses of different plant functional 

groups to airborne N deposition across heathland communities. This was intended to 

increase understanding on how N: P stoichiometric relationship in soils and plants affect the 

recovery of lower plant species typical of heathland ecosystems from N deposition. 

Ultimately, the study hoped to make a set of simple recommendations or guidelines that 

could inform a possible revision of N critical load for the protection of UK heathland 

communities. 

 

The individual objectives were to investigate: 

•    An appropriate measure of plant-available soil P in heathlands through testing of 

alternative P extraction and soil fractionation methods (Chapts. 2 and 3) 

•    How N: P nutrient stoichiometry might modify plant responses to experimentally 

enhanced N deposition (Chapt. 4). 

•    How high P availability would influence the resilience of lower plants to N deposition 

(Chapts. 4 and 5).  

•    If experimental responses to N deposition could be observed in a broader field survey in 

areas of naturally elevated P along N pollution gradient (Chapt. 5) 

 

 

 

 

 

 

 



2 CHAPTER TWO 

Assessment of an effective indicator of plant-available 

phosphorus for application in heathland ecosystems 
 

 

2.0 Introduction 

 

2.1 Phosphorus limitation in heathlands 

 

Phosphorus (P), the second-most essential macronutrient after N, is required for proper 

functioning and primary productivity of terrestrial ecosystems (Wild, 1993; Elser et al., 

2007).  Thus, if in short supply, P limits plant growth.  As with all terrestrial ecosystems, N 

and P availabilities are important for heathland plant communities. It has been found that 

N and P availabilities promote the growth of key heathland species, with N increasing the 

growth of Calluna vulgaris mainly at early stages (4-5 years) of development (Pilkington et 

al., 2007; Carroll et al., 1999; Power et al., 1998a; Caporn et al., 1995; Lee and Caporn, 

1998).  P in most cases especially when applied in combination with N stimulates the 

productivity of mosses and lichens (Gordon et al., 2001; Pilkington et al., 2007; Phoenix et 

al., 2003) resulting in large increases in the cover of both life forms. However, high N 

deposition can substantially increase N availability in heathlands, reaching toxic 

concentrations (e.g. increased levels of soil NH4
+) (Roelofs, 1986; Van den Berg et al., 2005) 

intolerable by many plant species. This may cause nutrient imbalances (Sardans et al., 

2016a) resulting in limitation of other major soil nutrients (Fujita et al., 2010) including  soil 

P indicating that high N deposition can shift N-limited heaths to P-limited ones (Kirkham, 

2001) and lead to a change in heathland plant communities (Roelofs, 1986). P limitation in 

heathlands is common (Gimingham, 1972; Chapman et al., 1989 ; de Graaf et al., 2009) as 

heathlands are restricted to sites of high acidification with low fertility. Such high soil acidity 

hampers plant P uptake through stronger formation of Al- and Fe- bound P (Vogels et al., 

2017). Thus, P is commonly present in heathlands at low levels, making P the important 



limiting nutrient to plant growth in heathland ecosystems (Chapman et al., 1989 ; Fagundez, 

2012). High N deposition increasing P limitation in heathlands will further reduce P 

availability to plants. Although N eutrophication effects (including P limitation) have not 

fully occurred across UK heathland communities, there is strong evidence of increased 

atmospheric N deposition inducing P limitation in many of the UK’s Calluna-dominated 

heathlands (Pilkington et al., 2005; Kirkham, 2001; Carroll et al., 1999), suggesting that high 

N inputs may potentially limit the supply of soil P across UK’s heathland communities. 

 

2.2  Soil phosphorus dynamics and its availability to plants 

 

Soil P is inherently variable because it can significantly be modified by biochemical 

transformations, soil chemical characteristics and the nature of the underlying parent 

material (White, 2006). With chemical processes such as sorption, insolubilisation, etc. 

dominating the dynamics of P in acid soils, a greater proportion (above 90 %) of soil total P 

is present as insoluble or fixed forms  (Amaizah et al., 2012) limiting the availability of P to 

plants.  Although P could be added to heathlands through animal wastes during grazing 

periods (Gimingham, 1972), or through transfers of P from adjoining ecosystems, the 

primary source of P in heathlands is likely to be the weathered P from the underlying parent 

material since atmospheric inputs are also limited (Tipping et al., 2014). This weathered P 

input becomes available in soil solution where roots of plants absorb phosphate ions and 

cause desorption of mobile P from the solid phase to the solution phase. Thus, the 

continuous abstraction of P by plants from the solution phase can cause a gradual reduction 

of P concentrations to a level, which may be insufficient for plant uptake, making it 

necessary for the labile P concentration to be increased through other sources (e.g. 

chemical fertilisers). 

 

However, the addition of fertilisers to heathlands is not a recognised management practice 

as heathlands typically establish on nutrient-poor soils (Gimingham, 1972; Price, 2003; de 

Graaf et al., 2009). High nutrient inputs in heathlands can, therefore, lead to a significant 

change in plant species composition.  Nevertheless, as research indicates that increasing 

levels of soil available P can protect growth of certain plant species from the negative impact 



of N deposition (Gordon et al., 2001; Armitage et al., 2012), several studies have sought to 

test this hypothesis (Pilkington et al., 2007; Stiles et al., 2017). These studies used increased 

supply of available P through experimental additions of P fertilisers to study how heath 

vegetation would respond to N deposition against an increased background level of soil 

available P.  

 

Unfortunately, additions of P fertilisers to soils do not only increase the labile fractions but 

also the moderately and non-labile fractions. Several studies have found continuous P 

fertilisation increased P fractions in soils, particularly iron and aluminium phosphates 

(Amaizah et al., 2012; Chang and Chu, 1961). Thus, identification of different fractions of P 

in fertilised and unfertilised heathland soils in relation to plant-available P is crucial in 

providing new insight into P potentially releasable from the solid phase and thus may be 

available for plants use. 

 

2.2.1 Determination of soil available phosphorus  

 

Determination of soil available P requires the knowledge of available P status of which its 

estimation is based on soil test phosphorus (STP) methods adopted to give a quantitative 

meaning to plant-available P in soils.  STP methods are chemical extractions that extract 

amounts of P from soils considered to be P concentrations in soil solutions and thus, able 

to predict plant responses to P fertilisation (Tang et al., 2009). However, they do not 

determine the actual concentration of soil P available to plants but only provide an index 

measurement of soil P that can be absorbed by a plant throughout the growing season.  

Thus, a correlation between the P extracted by the STP methods and the amount of P taken 

up by a test plant is required. This quantity of P is referred to as the plant-available P, and 

the higher the correlation, the better the test. 

 

As chemical extractions are selected to show significant correlation with plant growth and 

productivity (Humphreys et al., 1998; Tandy et al., 2011; Haque et al., 2013), they mimic 

how roots of plants obtain the portion of soil P that can be absorbed by plants. Thus, an 

ideal extractant is expected to simulate the capacity of roots for nutrient uptake and give 



an accurate prediction of plant-available P in soils of varying properties (Azeez et al., 2013; 

Indiati et al., 2002). Additionally, extraction methods must be easy to use (Indiati et al., 

2002). However, the usefulness of chemical extractions is limited by the fact that a single 

method is unable to give an accurate prediction of plant-available P across a range of soils 

and that there is no universally accepted procedure for predicting available P across soils 

derived from different parent materials. Thus, there is no one best extractant for all 

conditions.  The official soil-test method employed in most European countries, including 

the UK is the bicarbonate Olsen P reagent (Olsen et al., 1954).  A modified version of this 

method is also widely used in Australia and New Zealand  (Bundy et al., 2005) while in the 

United States of America, different extraction methods such as Mehlich-I, Mehlich-III or 

Bray-I are widely adopted in combination with  Olsen test P (Bundy et al., 2005). Other 

extraction methods using acids, organic and inorganic complexing agents, or alkaline 

solutions have been developed (Fixen and Grove, 1990) but their extractability is highly 

influenced by soil physicochemical properties and different forms of P in soils. Extractants 

may, therefore, fail to extract plant-available P if they are used on soil types for which they 

are inappropriate (Indiati et al., 2002), as the availability of P to plants depends on the 

extensity of various chemical species (Chang and Jackson, 1957) of which chemical methods 

lack the selectivity of dissolution of such species useful for plant growth (Khanna, 1967). 

They, therefore, extract not only forms of P considered available for plant uptake but also 

some stable and non-labile forms (Khanna, 1967; Chang and Jackson, 1957). As P extraction 

methods do not extract a definite fraction of soil phosphates, different relationships 

between extractable and plant-available P can be expected. Therefore, unless soil test P-

value correlates with plant P uptake, it is difficult to judge the suitability of an extraction 

method to access available P status in soils or across soil types. This necessitates the study 

of P fractions extracted by various chemical extractants and the P-patterns of soils across 

soil types derived from different parent materials in order to find out the most suitable 

method for the determination of plant-available P. 

 

 

 



2.2.2  Extracted P as a reliable indicator of plant-available P in soils.    

 

Several soil test methods have been developed for the determination of plant-available P. 

The conventional techniques often include the use of deionised water and chemical 

extractants (involving solutions of acids, alkaline, salts and a mixture of reagents) to extract 

forms of P that can be absorbed by plants. Although extractants lack the selectivity of 

dissolving fractions of P in soils, they tend to remove greater proportions of available P from 

different but specific pools. For instance, water extracted-P was designed primarily to 

remove the labile or soluble P fraction of soil P for fertiliser recommendation for vegetables 

(Forsee, 1950), as such deionised water extractant is less effective in extracting adsorbed 

forms of P in soils (Castillo and Wright, 2008). Likewise, solutions of CaCl2 are only effective 

estimators of soluble P fraction and even remove lesser amounts of P than deionised water 

(Fuhrman et al., 2005).  As a solvent and a transport medium for nutrients from soils to 

plant roots, water is able to determine P immediately available for plant uptake (Fuhrman 

et al., 2005). An estimate of water extracted-P is therefore expected to correlate well with 

plant tissue P (Kuo, 1996).  

 

However, in assessing plant-available P in semi-natural vegetation such as heathlands 

characterised by evergreen dwarf shrub – Calluna vulgaris (Gimingham, 1972), other slowly 

released forms must be included in a soil test to accurately determine soil P that relates to 

plant tissue P. This necessitates testing of chemical extractants, which are relatively more 

aggressive than deionised water in removing adsorbed forms of soil P. Bray and Mehlich-I 

extractants (Bray and Kurtz, 1945; Mehlich, 1984) recommended for acid and neutral soils 

(pH ≤ 7.0) use mild solutions (of HCl and NH4F for Bray; HCl and H2SO4 for Mehlich-I) to 

determine plant-available-P. Bray extractants (Bray I and II) effectively remove acid-soluble 

fractions and fractions associated with Al and Fe oxyhydroxides (Elrashidi, 2010). Mehlich 

solutions extract Al and Fe phosphates. However, Mehlich-III extractant, which is a modified 

version of Mehlich-I and II, has an added advantage of determining other soil nutrient 

concentrations (e.g. Potassium) in acid and neutral soils. The Olsen P test often referred to 

as the bicarbonate test with an extraction solution made up of weak sodium carbonate, was 

designed for alkaline soils (Olsen et al., 1954). Olsen test enhances the dissolution of calcium 



phosphate, but it is also effective in removing adsorbed P from surfaces of Fe-oxides 

(Elrashidi, 2010).  Sorn-Srivichai et al., (1988) compared the extractability of five extractants 

(water, Olsen, Bray-I, Truog solution and isotopically exchangeable P) in removing plant-

available P from different soils varying widely in P status. They found water extracted-P 

equally a good predictor of plant-available P as Olsen test P with each showing a correlation 

coefficient of 90 per cent (r = 0.90). Other extractants showed a lower prediction of plant-

available in comparison to water and Olsen test P.  Vogels et al., (2017) found a significant 

negative relationship between Olsen-extracted P and Calluna N: P ratio after determining 

plant-available P in a Calluna-dominated heath using Olsen test P.   

 

Although extracted P can indicate plant-available P, it is not entirely clear which fraction is 

directly determined through the various methods of extractions since extractants lack the 

selectivity of dissolution of P fractions (Khanna, 1967). It is, therefore, possible that the 

extraction methods either may over or underestimate the amount of P available for plant 

uptake, as extraction methods were designed to determine available P for more productive 

crops in a monoculture system as compared to the mixture of plants in semi-natural 

ecosystems such as heathlands. Thus, their ability to provide an index measurement of P 

that can be available for typical heathland species across soils derived from different parent 

materials is unknown and must be assessed to enable an appropriate selection of a suitable 

method for the determination of plant-available P across heathland communities. 

 

2.2.3 Fractionation of soil phosphorus 

 

The multiple forms of P in soils vary in their solubility, but with time, transform from 

sparingly soluble to more recalcitrant forms, reducing their availabilities to plants. Thus, P 

is considered the most unavailable and inaccessible of all mineral nutrients in soils (Holford, 

1997). Soil P fractions determined by fractionation methods can provide useful information 

on the sources, availability and dynamics of plant-available P in soils (Chang and Jackson, 

1957; Indiati and Sharpley, 1998) and its responses to various environmental and 

anthropogenic factors in terrestrial ecosystems. For instance, the fractionation method 

designed by  Chang and Jackson, (1957) partitions P into four principal forms:  aluminium 



phosphate (Al-P), iron phosphate (Fe-P), calcium phosphate (Ca-P) and occluded 

phosphates (Chang and Jackson, 1957) in decreasing strength of solubility and availability 

to plants. However, there is a relatively small first fraction called the loosely soluble 

phosphate (soluble-P) usually combined with Al-P into the same fraction (Chang and 

Jackson, 1957). Other studies have sought to divide occluded phosphates into recalcitrant 

and residual phases (McDowell and Condron, 2000; Walker and Syers, 1976), representing 

phosphate ions tightly bound to Fe oxide compounds and incorporated into silicate minerals 

respectively. The method has thus been widely used to date in determining the readily 

soluble and insoluble fractions of P pool size in soils mainly to describe soil development 

(Cross and Schlesinger, 1995; Chen et al., 2015; Walker and Syers, 1976). It is also a useful 

tool to examine the availability of soil P to plants as loosely soluble-P, Al-P, Fe-P and Ca-P 

largely represent the labile forms of P potentially available for plant uptake (Indiati and 

Sharpley, 1998). However, of all the labile fractions of P in soils, soluble-P is the most readily 

available form of P to plants (McDowell and Condron, 2000) while Al-P, Fe-P and Ca-P largely 

represent the less labile fractions (Boyd, 2015; Costa et al., 2016). In contrast, the occluded 

fraction, mainly recalcitrant and residual (Walker and Syers, 1976) have limited availability 

to plants (McDowell and Condron, 2000; Saljnikov and Cakmak, 2011). Collectively, the 

labile fractions of soil P constitute the “active-phosphate” (“active-P”) representing the 

phosphate ions adsorbed onto surfaces of Al and Fe oxides and calcium carbonates (CaCO3)  

(Costa et al., 2016; Walker and Syers, 1976). This phase forms the primary source of plant-

available P in soils (Grigg, 1965; Indiati and Sharpley, 1998). The relative amounts of Al-P, 

Fe-P and Ca-P, are distributed in the “active-P” pool by pedogenic processes (Melese et al., 

2015; Grigg, 1965) while their solubility governs the replenishment of labile pool following 

continuous removal of P by plants (Abdu, 2006).  

 

Rao and Chakrabarty (1994) showed that the relative abundance of P was in the order of 

reductant soluble- P>Fe-P>Ca-P>Al-P> soluble-P in both surface and subsurface soils in 

Himachal Pradesh. In another related study, Adhikari and Si, (1994) demonstrated that the 

occluded form was 9.2-16.8 % of the total P while the active-P followed the order of Fe-

P>Ca-P>Al-P. They also found that P fractions in the acid soils of West Bengal increased in 

the order soluble-P<occluded-P<active-P. Indiati and Sharpley,  (1998) observed the release 

of P entirely from active-P after P addition to a wide range of Italian soils while Al-P was the 



main fraction of the active-P pool that controlled P bioavailability in soils of the coffee 

plantation (Reis et al., 2011). Therefore, it can be assumed that in situations where a greater 

portion of soil P remains as active phosphate (i.e. loosely soluble-P, Al-P, Fe-P and Ca-P), it 

is present as a source of plant-available P indicating the potential availability of P for plant 

uptake (Chang and Jackson, 1957). Soil P fractions can, therefore, provide useful 

information in accessing the status of P availability in soils and thus, help in selecting an 

appropriate soil test method. 

 

2.2.4 Effects of soil pH on the distribution of P fractions 

 

Contributions of P fractions to the labile P pool depend on their solubility as influenced by 

soil characteristics, particularly soil pH (Boyd, 2015). P is strongly adsorbed in acid soils 

where it is bound in iron and aluminium compounds (Buresh et al., 1997). In alkaline 

environments characterised by high Ca concentrations and high pH (soil pH > 7), P is 

precipitated as calcium phosphate (Boyd, 2015). Thus, applied soluble P as chemical 

fertilisers in either acid or alkaline soils could be precipitated out of soil solution making P 

unavailable for plants uptake. Chang and Chu, (1961) found that the addition of phosphate 

fertilisers in acid soils mainly changed to Fe and Al phosphates and into calcium phosphates 

in calcareous soils. 

 

2.2.5 Hypothesis 

 

The present study hypothesised that chemical extraction methods would have comparable 

extraction abilities in determining plant-available P, which would be reflected in their 

accurate prediction of plant-available P across the studied parent materials. In addition, the 

study hypothesised similar distributions of soil P forms across the parent materials in that 

soils derived from such parent materials would have similar distributions of P-Patterns.  

 

 

 



2.2.6 Experimental aims 

 

Soils derived from different parent materials were analysed with the objectives of (1) 

assessing the extractability of chemical extraction methods (deionised water, calcium 

chloride, Mehlich-I and III, Bray-I and II and Olsen bicarbonate test) in determining plant-

available P; (2) quantifying the forms of soil P across selected parent materials; and (3) 

relating extracted P using the seven extractants to P fractions, selected soil properties and 

tissue-P concentrations of Calluna vulgaris, (4) recommending suitable extractants for 

further testing ( in chapter three of this thesis work ) in N and P addition plots at Budworth 

Common, Cheshire. 

 

2.3 Materials and methods 

 

2.3.1 Site description and sampling 

 

Twenty-one soil cores were sampled from two geographical locations in the United 

Kingdom (UK), Ruabon at north Wales, Budworth Common, Cheshire and the Peak District 

(i.e. Great Longstone and Abney Moors) in England using the iGeology App (BGS, 2011:app) 

to identify parent materials at sampling sites. The geological information was verified from 

the website of the British Geological Society (2006).  In north Wales, samples were collected 

from soils developed from three different parent materials: shale, limestone and sandstone. 

Parent materials in the Peak District included limestone and sandstone. In both sampling 

locations, sixteen random soil cores at a depth of 0-20 cm, with one each from different 

locations on the toposequence at each site. However, on the shale parent material, a  soil 

core was taken from a long-term nutrient addition experimental site at Ruabon (Caporn et 

al., 1995) (Table 2.1), specifically from the plot that receives 20 kg N ha-1 yr-1 + 20 kg P ha-1 

yr-1  with additional two cores sampled from areas (one each from burnt and unburnt 

locations) close to the plots. At Budworth, two soil cores were sampled from plots that 

receive 0 kg N ha-1 yr-1 + 0 kg P ha-1 yr-1 and 60 kg N ha-1 yr-1 + 20 kg P ha-1 yr-1 (Table 1). Soil 

cores were collected with a spade, cleaned between sampling, kept in plastic bags and 

refrigerated until analysis. Vegetation samples (leaves) from C. vulgaris were also collected 



from plants growing close to locations where soil cores were taken. They were then 

transported to the laboratory. 

 

2.3.2 Sample preparation 

 

In the laboratory, soil cores were separated into organic (0-10 cm) and mineral (10-20 cm) 

layers after surface litter removal. Samples taken from Budworth experimental plots could 

not be separated because there was no clear distinction between layers. Hence, they were 

bulked separately and treated as composite samples. Both organic and mineral layers were 

subdivided into two subsamples. A subsample of each layer was air-dried and crushed to 

pass through a 2-mm sieve. The other subsample in its field moist state (used for soil pH 

and moisture content determinations) was kept in a fridge at 4 0C. Both organic and mineral 

layers were fractionated for P fractions. Vegetation samples harvested from Calluna vulgaris 

at each slope position were oven-dried at 60 0C for 48 hours. The dried samples were ball-

milled to produce a homogenous fine powder. 

 

2.3.3 Laboratory analysis - general laboratory procedures 

 

Reagents used for laboratory analysis were of analytical grade unless otherwise stated. 

Glass and plastic wares were scrubbed in detergent (Decon 90) for 24 hours, rinsed with 

deionised water, soaked overnight in 2 % acetic acid, rinsed again with deionised water and 

dried at 45 °C to reduce the risk of sample contamination. The same precautionary 

measures were taken prior to laboratory analytical works for the subsequent chapters 

where necessary. 



Table 2.1: Nitrogen and phosphorus addition experimental sites at Ruabon and Budworth and sampling sites in Peak District 

Location/ 

grid reference 

Altitude 

 

Sampling 

points 

Type of 

fertiliser 

Duration Experimental 

design 

Treatments/Management 

Ruabon 

 

SJ225490 

 

 

470 m 3 NH4NO3 

/ 

NaH2PO4 

Started in spring 1989. It is sited on an iron pan 

stagnopodzol in an upland heath.  In 2002, after 5 years 

of continuous N and P addition, each plot was divided 

into two subplots with treatment easing on one half to 

simulate recovery from pollution. The other half 

continues to be treated with additional N (applied as 

NH4NO3) and/or P (applied as NaH2PO4). Vegetation 

conforms to National Vegetation Classification (NVC, 

H12) with Hypnum jutlandicum and Cladionia portentosa 

as dominate moss and lichen species, respectively. In 

summer 2016, the experimental site was accidentally 

burnt while managing the adjoining heathlands to 

promote grazing grounds for sheep.  

Randomised 

complete block 

design with 4  

replications 

36 plots each measuring 2 x 2 m2 

Treatments are 0, 10, 20, 40 and  

120 kg N ha-1 yr-1 and  

0 kg N ha-1 yr-1  + 20 kg P ha-1 yr-1 ;  

20 kg N ha-1 yr-1 + 20 kg P ha-1 yr-1 ;  

120  kg N ha-1 yr-1  + 20 kg P ha-1 yr-1 

Budworth 

 

SJ 225489 

70 m 2 NH4NO3 

/ 

NaH2PO4 

Started in March 1996 after top soil removal the previous 

year as part of UK heathland restoration project. It is sited 

on sandstone parent material in a lowland Heath. Site 

vegetation is described as (NVC, H9) (Rodwell, 1991) with 

Hypnum jutlandicum and Cladionia portentosa as 

dominate moss and lichen species respectively. 

Randomised 
complete 
Block design 
with 3  
replications 

12 x 2 m2 N and P treatment plots 
Treatments include   
0N ha-1 yr-1, 20 kg P ha-1 yr-1;  
60 kg N ha-1 yr-1 and  
60 kg N ha-1 yr-1 + 20 kg P ha-1 yr-1 

Peak District 
(Great Longstone 
 and Abney moors) 

362 8 - Semi-natural heathland vegetation - Managed by cutting and grazing 



2.3.3.1  Soil pH 

 

Soil pH was measured in a slurry of 10 g fresh soils with 25 ml deionised water kept in a 50 

ml centrifuge tube. After 30-minutes of equilibration on a rotary shaker, the suspension was 

allowed to settle for 10 minutes, and the pH was measured using a pH meter after 

calibration from two solutions of known pH (pH 4 and 7) at room temperature (Rowell, 

1994). 

 

2.3.3.2 Soil moisture determination 

 

Moisture content was determined after drying approximately 10.0 g of fresh soils at 1050C 

until a constant weight was obtained. 

 

2.3.3.3 Soil and plant tissue total phosphorus 

 

Soil and plant tissue total P were determined  following aqua regia acid digestion (EPA, 

2007) followed by analysis of P content in extracts on an inductively coupled plasma (ICP) 

optical emission spectroscopy (iCAP 6300 Duo, manufactured by Thermo Fisher Scientific, 

United Kingdom). 

 

2.3.3.4 Total carbon, total nitrogen, foliar carbon (C) and nitrogen (N) 

 

Soil total carbon (TC) and total nitrogen (TN), foliar carbon (C) and nitrogen (N) percentages 

were analysed using LECO Truspec Carbon and Nitrogen Analyser (LECO Corporation, 

Michigan, USA).  Soil C: N ratio was calculated by dividing TC by TN (both as percentage 

nutrients in soil samples) while the foliar N: P ratios were determined as percentage 

nutrient in the plant tissue samples after converting foliar P concentration (mg P/kg) values 

into percentages. 

 

 

 



2.3.3.5 Soil P Extraction  

 

Extractions of soils to determine P concentrations were performed using seven different 

methods. Water-extracted P was determined with deionised water using a 2 g air-dried soils 

/20 ml extractant ratio (Kovar and Pierzynski, 2009). Soil samples were shaken for 1 hour, 

centrifuged at 4000 rpm for 20 minutes, filtered and acidified to pH 2.0 using 1 M HCl to 

prevent precipitation of phosphate compounds during storage (Kovar and Pierzynski, 2009). 

Dilute salt extractant (0.01 M CaCl2) was used in a 1.0 g air-dried soil /25 ml extractant ratio. 

Soil samples were shaken for 1 hour, centrifuged at 4000 rpm for 10 minutes and filtered 

before P analysis. Mehlich-I and III extractable P were determined using a 1 .0 g air-dried 

soil /5 ml extractant Mehlich-I and Mehlich-III extractable P were determined using a 1 .0 g 

air-dried soil /5 mL extractant (0.0125 M H2SO4 + 0.025 M HCl for Mehlich-I and 0.2 M 

CH3COOH +0.015 M NH4F + 0.013 M HNO3 + 0.001M EDTA + 0.25 M HNO3  for Mehlich-III) 

ratio. Soil samples were equilibrated for 5 minutes and filtered before P analysis. Bray-I and 

II (NH4F and HCl) extractants (Bray and Kurtz, 1945) were used in a 2.0 g air-dried soil /20 

ml extractant (0.03 M NH4F + 0.025 M HCl for Bray-I) and 1 .0 g air-dried soil /5 ml extractant 

(0.03 M NH4F + 0.01 M HCl for Bray-II) ratios. For Bray-I, soil samples were shaken for 5 

minutes. Bray-II method required a shaken time of 40 seconds. Extracts were filtered 

through Whatman no. 42 filter paper before P analysis. Olsen extractable-P bicarbonate 

was determined with 0.5 M NaHCO3, pH adjusted with 50 % NaOH to 8.5 using a 1 .0 g air-

dried soil / 20ml extractant ratio. The P content of extracts was analysed by inductively 

coupled plasma (ICP) optical emission spectroscopy (iCAP 6300 Duo, manufactured by 

Thermo Fisher Scientific, United Kingdom). 

 

2.3.3.6 Fractionation of soil phosphorus 

 

Fractions of P were determined following the sequential extraction procedure developed 

by Chang and Jackson, (1957) as modified by McDowell and Condron, (2000) and adopted 

by Chen et al., (2015). The original extraction procedure and its modifications were 

combined, adapted and used in this study. In this study, the residual form was extracted 

using microwave-assisted digestion (aqua regia). This procedure was used because it is an 

efficient analytical means of determining total elemental concentrations (EPA, 2007).  The 



analytical procedure for the extraction of soil P fractions is briefly described below and 

further illustrated in figure 2.1. 

 

 

Step 1. Loosely soluble-P: One gram of air-dried soil was placed in a 50 ml 

polypropylene centrifuge tube. Thirty millimetres of 1.0 M NH4Cl was added and 

shaken for 30 minutes. The content was then centrifuged at 10000 rpm for 10 

minutes and filtered (<0.45 µm). 

 

Step 2. Al associated P [NH4F]: 30 ml of 0.1 M NH4F (pH 8.2) was added to the residue 

from step I, shaken for 4 hours, centrifuged at 10000 rpm for 10 minutes and filtered 

(<0.45 µm). 

 

Step 3. Fe-bound P: The residue from step 2 was washed twice with 30 ml deionised 

water, shaken for 30 minutes and centrifuged each time to recover the soil. The 

washings were discarded, and the soil was shaken for 16 hours with 30 ml of 0.1 M 

NaOH-I solution and then centrifuged at 10000 rpm for 10 minutes. The supernatant 

solution was then filtered through <0.45 µm filter paper. 

 

Step 4: Ca associated P [H2SO4-I]: The residue from step 3 was washed twice as 

described above and then the supernatant solution was discarded. The soil was then 

suspended in 30 ml of 0.5 M H2SO4 and shaken for 16 hours, centrifuged at 10000 

rpm for 10 minutes and filtered (< 0.45 µm).  

 

Step 5: Recalcitrant P, largely Fe associated P[NaOH-II]:  Washing of residue from 

step 4 followed the same procedure as described above and 30 ml of 0.1M NaOH-II 

was added, shaken for 16 hours, centrifuged at 10000 rpm for 10 minutes and 

filtered (<0.45 µm).  

 

Step 6: Residual P, non-extracted P [H2SO4-II]: After washing the residue from step 5 

twice each time with 30ml deionised water, it was oven-dried at 70 0C, extracted 



with 30 ml of 0.5M H2SO4 after being ashed at 550 0C for 1 hour (Chen et al., 2015). 

The extraction procedure followed the aqua regia acid digest. 

 

Figure 2.1. A flow chart illustrating soil phosphorus fractionation 

 

Phosphorus content in extracts was determined as described above in section (2.3.3.5). 

Active-P was determined as the sum of 0.1 M NH4Cl (loosely soluble), 0.1 M NH4F (Al-P), 0.1 

M NaOH-I (Fe-P), 0.5 M H2SO4-I (Ca-P) (Indiati and Sharpley, 1998; Melese et al., 2015). The 

sum of NaOH-II (Recalcitrant-P) and H2SO4-II (Residual-P) was classified as occluded P 

(Walker and Syers, 1976). Variable determinations were made in laboratory triplicates and 



results given as means (±SE) of three replicate samples while percentage extraction 

efficiency (% Recovery) of P fractions reported in Table 2.2 following the sequential 

extraction procedure was estimated as follows: 

 

% Efficiency = [(𝑠𝑡𝑒𝑝 1 +  𝑠𝑡𝑒𝑝 2 +  𝑠𝑡𝑒𝑝 3 +  𝑠𝑡𝑒𝑝 4 +  𝑠𝑡𝑒𝑝 5 + 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙) ⁄ total] x 100 

                      Equation (3) 

 

Table 2.2: Percentage efficiency of sequential extraction procedure 

 Sandstone 

at Ruabon 

Limestone 

at Ruabon 

Shale at 

Ruabon 

Sandstone at 

Peak District 

Limestone at 

Peak District 

Organic 124 118 94 112 89 

Mineral 109 104 101 132 115 

 

 

2.4 Statistical analysis 

 

Before comparing the performances of extractants used and correlations among 

parameters, analytical data for the surface and the subsurface layers were combined, as 

results were similar in both layers. Normality test using the Shapiro-Wilk normality test was 

assessed, and the results indicated that parameters within and across the studied parent 

materials were non-normally distributed. Thus, the significance of their correlations was 

analysed via the Spearman’s rho correlation matrix. However, assessing mean differences 

between P fractions across parent materials, data was subjected to one-way analysis of 

variance after log10 transformation using R statistical package version 3.6.3 (R 

Developmental Core Team, 2017).  

 

2.5 Results 

 

2.5.1 Physico-chemical properties of soils and plant tissue nutrients along slopes 

 

In general, soils were extremely acidic (pH < 5.0) with about 70% moisture contents in the 

organic layer, which decreased with depth (Table 2.3). Soil total carbon was above 6 %, and 



by extension, organic matter across parent materials was generally high. However, 

treatments plots at Budworth recorded relatively lower total carbon/organic matter 

contents (TC below 6 %) (Table 2.3). Soil TC, OM, TN and total phosphorus also decreased 

with depth across parent materials (Table 2.3).  Soil TN was comparatively higher in the 

organic layers than in the mineral layers. Soil C: N ratio was generally above 20 in both 

organic and mineral soil layers across the studied parent materials. Foliar mean N 

concentration across the studied parent materials was above 1 % with the exception of that 

in treatment plots (Tables 2.3). Higher mean foliar P concentrations were observed in 

treatment plots (Table 2.3) than from the native heathlands giving a lower (below 10) foliar 

N: P ratio in all plots receiving fertiliser treatments. 

 

2.5.2 Percentage efficiency of P across the studied parent materials 

 

Sequential extraction of soil P recovered 89.40 -124.03 % of total-P in the organic layer 

across the studied parent materials. Percentage efficiency in the organic layer was higher 

for sandstone (124.03 %) and limestone (118.31 %) at Ruabon and for sandstone at Peak 

District (111.71 %) than for shale at Ruabon (94.19 %) and limestone (89.40 %) at Peak 

District (Table 2.2). Percentage efficiency in the mineral layer ranged from 101.36 - 131.80 

% giving a general efficiency above 100 % across the studied parent materials. 

 



Table 2.3: Mean, standard error, tissue nutrient concentrations and a range of soil properties in organic and mineral soil layers across the 
studied parent materials 

Parent 
material 

Depth 
(cm) 

pH 
 

Moisture 
(%) 

Total 
Carbon 

(%) 

Organic 
matter 

(%) 

Total 
nitrogen 

(%) 

C:N 
ratio 

Total 
phosphorus 

(mgkg-1) 

Plant tissue nutrient concentration 

Tissue N 
(%) 

Tissue P 
(mgPkg-1) 

Tissue NP 
ratio 

north Wales            
 
Sandstone  
 

0 - 10 3.35 
±0.05 

77.4 
±1.08 

35.9 
±3.86 

61.9 
±6.65 

1.43 
±0.15 

25.1 
±0.15 

746 
±147 

 
1.19±0.06 

 
591±6.81 

 
20.3±1.07 

10 - 20 3.35 
±0.05 

69.9 
±3.27 

30.5 
±3.23 

52.5 
±5.56 

1.14 
±0.22 

27.9 
±1.97 

561.2 
±106.43 

            
 
Limestone  
 

0 - 10 3.99 
±0.23 

65.9 
±4.09 

23.4 
±2.48 

40.3 
±4.27 

1.09 
±0.08 

21.3 
±1.24 

639 
±38.9 

 
1.00±0.05 

 
491±5.11 

 
20.4±1.95 

10 - 20 4.14 
±0.25 

42.7 
±1.73 

8.21 
±0.45 

14.2 
±0.78 

0.49 
±0.02 

16.8 
±0.71 

547 
±33.06 

Peak District            
 
Sandstone  

0 - 10 3.74 
±0.05 

62.0 
±4.13 

19.0 
±3.41 

32.8 
±5.87 

0.75 
±0.16 

26.0 
±2.26 

366 
±68.8 

 
1.27±0.08 

 
674±4.77 

 
18.9±0.72 

10 - 20 3.88 

±0.04 

36.9 

±3.11 

5.70 

±0.36 

9.82 

±0.62 

0.25 

±0.00 

22.9 

±2.15 

237 

±45.95 

            
 

Limestone  

0 - 10 3.87 

±0.07 

74.4 

±1.51 

31.7 

±1.28 

54.6 

±2.20 

1.39 

±0.07 

23.0 

±2.17 

1247 

±675 

 

1.41±0.71 

 

733±6.97 

 

20.0±2.04 

10 - 20 3.87 

±0.06 

40.6 

±3.93 

8.52 

±1.51 

14.7 

±2.60 

0.39 

±0.06 

21.7 

±3.05 

319.5 

±24.2 

(Laboratory replicate, n = 40)



Table 2.3: (continued) 

Sampling location/ 

Parent material 

Soil  

Depth(cm) 

pH 

(H2O) 

Moisture 

(%) 

TC 

(%) 

OM 

(%) 

TN 

(%) 

C:N 

ratio 

Total P 

(mgkg-1) 

Plant tissue nutrient concentration 

Tissue P (%) 
Tissue N 
 (mgPkg-1) Tissue NP ratio 

Cheshire/sandstone            

Budworth 60N+P 0-20 3.75 25 3.01 5.24 0.13 23.2 85.2 0.36 1251.47 2.88 

Budworth 0N+P 0-20 3.63 24 2.40 4.18 0.11 21.8 49.3 0.38 1408.52 8.86 

            

north Wales /shale            

Cutplot-20NP 0-10 3.63 80 35.0 61.1 1.27 27.6 1010 

1.29 1674.11 7.73 Cutplot-20NP 10-20 - - 8.48 14.8 0.44 19.3 378 

Off-plot(unburnt) 0-10 3.53 73 43.2 75.2 1.51 28.6 788 

1.18 1323.39 8.91 Off-plot(unburnt) 10-20 - - 10.5 18.3 0.46 22.9 357 

Off-plot (burnt) 0-10 3.70 79 35.9 62.5 1.21 29.6 702 

1.13 1301.57 8.68 Off-plot (burnt) 10-20 - - 7.45 12.9 0.36 20.7 298 

OC= organic carbon, OM=Organic matter, TN= Total nitrogen, (laboratory replicate, n = 3) 

 



2.5.3 Extracted P by different chemical extraction methods 

 

Available P extracted by the different extractants from the organic and mineral layers were 

combined to assess the extractability of the extractants across the studied parent parents. 

In addition, data from the N and P fertilised plots and from the burnt area were not 

considered for further analysis as their sampling did not follow any logical approach 

compared to the samples taking from the native heathlands. Different extractants removed 

different amounts of P (Fig. 2.2). The average value of available P extracted with water was 

of 5.93 mgPkg-1, with dilute salt was of 3.92 mg P kg-1, with Mehlich-I was of 2.79 mg P kg-

1, with Mehlich-III was of 19.49 mg P kg-1, with Bray-I was of 16.94 mg P kg-1, with Bray-II 

was of 23.11 mg P kg-1 and with Olsen was of 41.82 mg P kg-1 (Fig. 2.2). The P extracting 

power of different extractants was in the order:  Mehlich-I<Dilute salts<water-P<Bray-

I<Mehlich-III<Bray-II<Olsen-P (Fig. 2.2). 

 

Figure 2.2: Extracted P by different extractants across the studied parent materials 
 

 

 

 



2.5.4 Distribution of soil P fractions across parent materials 

 

A one-way analysis of variance revealed that, the contents of all P fractions were generally 

higher in north Wales than was found in Peak District (Fig. 2.3). However, Fe-P was the 

dominate fraction which varied significantly (R2 = 0.48, p<0.0001) across parent materials 

followed by Al-P on sandstones and by residual-P on limestones in both locations (Fig. 2.3). 

Residual fraction was not significant (R2 = 0.11, p>0.05) across parent materials, but on 

shale, it was the highest P fraction which accounted for 32 % of the total soil P. Across parent 

materials, a greater proportion of the soil total P was present in the labile fractions, 

represented by the active-P. This fraction was significantly different (R2 = 0.36, p<0.001) 

across parent materials with the highest concentration (23.2 mg/kg) on sandstone parent 

materials in north Wales. Occluded-P ranged from 29 - 37% on sandstones in north Wales 

and Peak District respectively with a mean of 33 % of the total soil P but was not significantly 

different across parent materials.  The means of loosely soluble-P as a percentage of total 

soil P on sandstones and limestones in both locations were similar (1.1 % on sandstones and 

1.2 % on limestones). However, on the shale, loosely soluble P as a percentage of total soil 

P was thrice the average content found on sandstone and limestone in both locations (Fig. 

2.3). Soluble P was thus significantly different (R2 = 0.32, p<0.001) across parent materials. 

 

 

Figure 2.3: Sequential extraction partitioning and relative distribution of P fractions (mg kg-

1) across parent materials 
 



2.5.5 Correlation analysis 

 

From Table 2.4, moisture content, total carbon (TC), organic matter (OM), total nitrogen 

(TN) and total-P had significant contributions on the various fractions of P while soil pH 

weakly correlated with P fractions. In addition, water, Mehlich-I and III, and Bray-I extracted-

P significantly positively correlated with foliar P and negatively correlated with N: P ratio. 

Dilute salt, Bray-II and Olsen extracted-P showed no significant correlations with both foliar 

P and foliar N: P ratio (Table 2.4). Loosely soluble phosphate highly significantly correlated 

with water, dilute salt, Mehlich-I and III, and Bray-I extracted-P (Table 2.5). Consistently, Al-

P showed positive significant correlations with the different forms of available P with the 

exception of Olsen extracted-P while Bray-II was the only extractant that significantly 

positively correlated with active-P (Table 2.5). 



Table 2.4: Correlation coefficient (rho) between forms of phosphorus, plant nutrient characteristics and selected physico-chemical properties 
of soils (entire soil volume, 0 - 20 cm) across the studied parent materials 

Forms of P Moisture 

(%) 

Soil pH TC OM TN C:N ratio Total P Foliar 

N% 

Foliar 

P 

Foliar  

N:P ratio 

Loosely soluble .530** -.308 .524 .524 .486 .348 .414* .170 .458** -.367* 

Al-P .076 -.308 .111 .111 .093 .071 .282 -.125 .049 -.112 

Fe-P .407 -.024 .508 .508 .662 -.279 .840** -.099 -.444** .398 

Ca-P .261 .016 .266 .266 .394* -.333* .604** -.293 -.312 .179 

Active-P .415 -.141 .518** .518** .640*** -.198 .895*** -.180 -.345* 0.266 

Recal-P .725*** -.218 .771** .771*** .854*** .071 .887*** -.149 -.261 .190 

Resid-P .746*** -.334 .705 .705 .739 .191 .684 -.237 -.271 .217 

Occl-P .751*** -.318 .733*** .733*** . 782*** .157 .7408*** -.247 -.294 .229 

Water-P .377* -.0279 .408* .408* .359* .355* .283 .179 .466** -.039* 

Dilute salt .266 -.069 .360* .360* .415** .137 .372 .100 .122 -.128 

Mehlich-I .173 -.249 .162 .162 0.122 .225 .106 .071 .465** -.504** 

Mehlich-III .237 -.251 .202 .202 .156 .373* -.001 .207 .463** -.421** 

Bray-I .395* -.296 .381* .381* .342* .357* .196 .169 .449** -.425** 

Bray-II .180 -.185 .319 .319 .403* .031 .352 .250 -.105 .105 

Olsen-P -.054 .166 -.044 -.044 -.032 -.114 .154 .099 .158 -.176 

 
*/**/*** significant at p = 0.05, p = 0.01, p = 0.001 respectively, n = 40 
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Table 2.5: Correlation coefficient (rho) between available P removed by different extracting 
solutions and forms of phosphorus across studied parent materials 

 

P  

fractions 

Loosely 

soluble 

Al-P Fe-P Ca-P Active 

-P 

Recal 

-P 

Resid 

-P 

Occl- 

P 

Water-P .915*** .535*** -.053 -.278 .142 .190 .103 .109 

Dilute 

salt 

 

.544*** .408* .158 .024 .290 .312 .075 .110 

Mehlich-I .667*** .528*** -.140 -.304 .058 -.081 -.186 -.182 

Mehlich-

III 

.643*** .388* -.311 -.444** -.151 -.209 -.121 -.110 

Bray-I .765*** .512** -.117 -.134 .064 .137 .113 .033 

Bray-II .222 .389* .464** .137 .493** .296 .022 .066 

Olsen-P .268 .000 .098 -.108 .122 -.071 -.157 -.163 

 
*/**/*** significant at p = 0.05, p = 0.01, p = 0.001 respectively, n = 40 

 

Table 2.6 gives the capabilities of the various extracting methods in dissolving different 

fractions of P on individual parent materials. The capabilities of the different extractants 

were assessed following the criteria used by Grigg (1965). The criteria consider the 

closeness of correlations between extracted P by different extractants and the fractions of 

P, which the extractants dissolved in individual soils tested. When a correlation between 

the two is not significant, the capability of the extractant is considered ‘poor’, significant at 

5 % level = slight, significant at 1 % level = good, and significant at 0.1 % level = excellent. 

Non-labile fractions of P (recalcitrant-P, residual-P and occluded-P) were not considered in 

this assessment due to their limited availabilities to plants and the lack of significant 

correlations between them and the extracted P using different extractants (Table 2.5).
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Table 2.6: Capability assessment of different extracting solutions to dissolve P fractions 
across the studied parent materials 

Parent 

material/ 

P fraction 

Water-P Dilute salt Mehlich-I Mehlich-III Bray-I Bray-II Olsen-P 

Loosely  
soluble 

excellent excellent excellent excellent excellent Poor Poor 

Al-P excellent slight excellent slight Good slight Poor 

Fe-P Poor Poor Poor Poor Poor Good Poor 

Ca-P Poor Poor Poor Good Poor Poor Poor 

Active-P Poor Poor Poor Poor Poor Good Poor 

 

 

Across the studied parent materials, all extraction methods with the exception of Bray-II 

and Olsen had excellent capabilities to dissolve loosely soluble phosphate (Table 2.6). Water 

and Mehlich-I extractants also exhibited excellent capabilities to dissolve Al-P while dilute 

salt, Mehlich-III and Bray-II also showed slight capabilities to dissolve Al-P.  Bray-I had a good 

capability to dissolve Al-P. Bray-II and Mehlich-III showed good capabilities to dissolve Fe-P 

and Ca-P respectively but Bray-II was unable to dissolve Ca-P while Mehlich-III had a poor 

capability to dissolve Fe-P. Other extractants showed poor capabilities to dissolve both 

fractions of P. Of all the extractants tested, only Bray-II extractant exhibited good capability 

to dissolve the “active-P” whereas other extractants showed poor capabilities to dissolve 

“active-P” across the studied parent materials (Table 2.6). 
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2.6 Discussion 

 

2.6.1 General soil physical and chemical properties 

 

The studied soils had pH (H2O) values lower than 5.0 in both organic and mineral layers 

across parent materials (Table 2.3), an indication that heathland soils are mostly acidic 

(Roelofs, 1986). This is consistent with the known fact that heathland ecosystems generally 

thrive on acid soils (Clarke, 1997; Price, 2003). The result is in agreement with the findings 

of Marrs et al., (1998) who reported high acidity (soil pH between 3.9 and 4.2) in Minsmere 

heathland soils in the UK. Generally, soil moisture content was high (above 70 %) across the 

studied parent materials with the exception of sandstone-derived soils at Budworth, 

Cheshire (Table 3). Soil total carbon was generally high based on the critical rating of Rusco 

et al., (2001), implying that the soils in the study areas have a sufficient amount of soil 

carbon.  By direct implication, these soils are also high in organic matter content with the 

exception of sandstone-derived soils at Budworth. The medium values of organic matter in 

sandstone-derived soils at Budworth may cause rapid leaching of cations beyond roots of 

plants due to high water infiltration rate in sandy soils (Afu et al., 2017). The decrease in 

moisture content with depth may be attributed to the higher organic matter in the organic 

layers than the mineral layers. On shale parent material, the burnt plot consistently 

recorded a lower amount of soil carbon in both soil layers in comparison to the unburnt plot 

(Table 2.3). This suggests a loss of soil carbon due to organic matter combustion. Many 

results from previous studies in which burning reduced the level of soil carbon in surface 

and sub-surface soils (Romanyà et al., 1994; Giardina et al., 2000; Leonard et al., 2015) 

support this conclusion. 

 

The total nitrogen in the organic layer was generally high while mineral layers had low levels 

of total nitrogen (Tables 2.3) suggesting that organic layers across the studied parent 

materials contain sufficient amount of total nitrogen, which can replenish N pool in the 

mineral layers following NO3 leaching. Generally, the C: N ratio in the studied soils was 

above the range that would support rapid release of N through organic matter 

decomposition (Tisdale et al., 1993). However, C: N ratio less than 30, across the studied 
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parent materials is an indication that immobilisation of soil nitrogen is unlikely to occur 

(Tisdale et al., 1993; Afu et al., 2017).  

 

2.6.2 Levels of soil available phosphorus  

 

It is evident from the results presented in Fig. 2.2 that the seven extractants examined 

varied in their extracting abilities. There were differences in the amounts of available P 

extracted by the different extracting solutions tested, which may be related to the 

differences in parent materials and the preferential abilities of each extractant removing P 

from different sources. This is because plant-available P results from a continuum of P 

fractions (soluble-P, Al-P, Fe-P and Ca-P) aided by their reactions with soil components 

involved in P sorption (Haque et al., 2013). This conclusion is supported by findings from 

several studies in which, there were wide variations in extractability of P in different soils 

using different P extractants (Jalali and Jalali, 2016; Wuenscher et al., 2015; Grigg, 1965; 

Haque et al., 2013). In general, Olsen test P extracted the highest amount of available P 

followed by Bray-II in comparison with other extractants across the studied parent materials 

(Fig. 2.2). The high amount of available P extracted by Olsen test P may be related to Fe-P, 

the dominant phase of P observed across the studied parent materials (Fig. 2.2).  This is 

because Olsen test P has a greater dissolving capability against Fe phosphate in acid soils 

(Elrashidi, 2010; Iatrou et al., 2014). 

 

Water and dilute salt extractants estimate P concentration in soil solution (Castillo and 

Wright, 2008; Fuhrman et al., 2005), which has been suggested to be the smallest among P 

pools in soils (Pierzynski et al., 2005; Wuenscher et al., 2015; Kulhánek et al., 2009). In this 

study, the median concentration of available P extracted by water and dilute salt extractants 

were 5.36 mg P kg-1 and 2.56 mg P kg-1, respectively (Fig. 2.2). These amounts were 

relatively smaller than that extracted by other extractants with the except of Mehlich-I (Fig. 

2.2). When correlated with plant tissue P, water-P, Mehlich-I & III and Bray-I extracted P 

showed significant positive correlations with foliar P indicating the suitability of these 

extractants to estimate plant-available P across the studied parent materials (Table 2.4). 

However, the lack of significant relationship among Bray-II extracted-P, Olsen extracted-P 
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and tissue P concentration indicates that the amount of P extracted by these extractants is 

of low availability to plants. This could be attributed to the highly acidic (Bray-II) and highly 

alkaline (Olsen) solution pH (Kovar and Pierzynski, 2009) of the extractants enabling them 

to dissolve mainly the non-labile fractions of soil P. 

 

2.6.3 Distribution of P fractions and their relationships with selected physicochemical soil 

properties 

 

Generally, most fractions of soil P decreased with depth on all parent materials.  However, 

the decreased in amounts of P with depth was not consistent with all forms and this may 

be attributed to the mixing of P within the soil horizons due to the vertical movements of P 

from the surface to the subsurface layers (Uriyo and Kesseba, 1973). Fractions of soil P 

showed a very similar distribution across parent materials with Fe-P and Al-P being the 

dominant forms and loosely soluble phosphate the least after Ca-P (Fig. 2.3). This indicates 

that the studied soils in both geographical areas have been subjected to similar weathering 

conditions. In general, “active-P” was greater than the occluded-P and significantly (R2 = 

0.36, p<0.001) varied across parent materials suggesting a potential replenishment of soil 

solution P pool by the release of P from the active-P pool following plant uptake of P and/or 

P leaching. The relatively high recovery rate for P fractions observed on all studied parent 

materials could be attributed to redistribution of P between the labile forms and final 

deposition onto the residual form during the extraction process (Wang et al., 2013). The 

results conform to the findings of Grigg, (1965). Total-P, total carbon and organic matter 

were the main contributors of P fractions in the studied soils while moisture may facilitate 

their dissolution into plant-available forms as indicated by its high positive significant 

correlations with soil P fractions (Table 2.4). 

 

2.6.4 The capabilities of extracting solutions to dissolve P fractions 

 

Across studied parent materials, extractants varied in their capabilities in dissolving 

fractions of soil P (Table 2.6). The lack of significant correlations between all extracting 

solutions and non-labile fractions (recalcitrant, residual and occluded phosphates) suggest 
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that the tested extractants may not have the capabilities to dissolve these forms (Table 2.6). 

They also prove that these fractions are weakly available to plants (Saljnikov and Cakmak, 

2011; McDowell and Condron, 2000).  The absence of significant correlations between Fe 

bound phosphate and extractants with the exception of Bray-II suggest the weakness of 

such solutions to dissolve it. The weak correlation between Ca-P and the various available 

P removed by the different extracting solutions could be related to the relatively small 

amount of Ca-P in comparison with Al-P and Fe-P suggesting that the soils may be highly 

weathered (Anderson, 1988; Grigg, 1965; Melese et al., 2015). 

  

2.6.5 Conclusion 

 

Results indicated that water-P, Mehlich-I, Mehlich-III, and Bray-I chemical extractions 

removed more labile forms of P associated with carbonates (i.e. loosely soluble phosphate 

which related to plant tissue P), with little or no contributions from the active-P. Bray-II 

extractant efficiently dissolved the “active-P” across parent materials yet was unable to 

remove P that represented plant-available P. Except for Bray-II extractant, all extractants 

tested could potentially determine plant-available P across the studied parent materials. 

However, a simple, low-cost, time saving and easy to use method was needed for use 

effectively across soil types. Mehlich-III extractant includes a variety of acids [(Ammonium 

nitrate (NH4NO3), nitric acid (HNO3) and Ethylene diamine tetra acetic acid (EDATA)], making 

its usage time consuming and slightly challenging compared with the other methods. 

Additionally, Mehlich-III and Bray-I extractants had similar performances as water and 

Mehlich-I extractants (Table 2.6), while Bray-II significantly related to active-P. Hence, 

Mehlich-III and Bray-I were not considered for further testing on the N and P treatment 

plots at Budworth. Although Bray-II failed to predict tissue P, it is recommended for further 

testing in addition to water and Mehlich-I because of its efficiency in dissolving the main 

source (i.e. active-P) of plant-available P in the soils tested.  
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3 CHAPTER THREE 

Testing of selected P extraction methods in nutrient 

addition plots 

3.0 Introduction 

 

Phosphorus availability to plants can be increased through the addition of phosphate 

fertilisers. However, the amount of applied P that becomes available to plants depends on 

the properties of the soil and their time of contact with the applied fertiliser. In soils with a 

long history of phosphate fertiliser application, the amount of P that remains and becomes 

available to plants tends to be higher than non-fertilised soils, mainly due to the reduction 

of P binding sites (Roy et al., 2017). 

 

Thus, in long-term N and P addition plots (such as the experimental plots in Budworth), the 

applied phosphate fertilisers are expected to be available, making such plots an appropriate 

site to test the sensitivity of P extraction methods in determining the amount of applied P 

that remains available to plants.  

 

The selected extraction methods, namely water-P, Mehlich-I and Bray-II extractants (as 

discussed in chapter two), were further tested in a long-term (23 years) N and P addition 

plots in Budworth, north-west England. This was done to inform the selection of an 

appropriate extractant used to estimate available P in the N and P fertilised plots ( chapter 

4) and in soils sampled from the field survey across various heathland communities (chapter 

5) of this thesis work. 

 

3.1 Hypothesis 

It was hypothesised that the resulting ‘best’ extraction method would dissolve the labile 

fractions as well as the collective form (“active phosphate”) of P. It was also hypothesised 

that the extracted P would relate to plant tissue P. 
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3.2 Experimental Aim 

 

The overall aim of further testing the selected methods was to determine a single P 

extractant capable of extracting the labile fractions of soil P and collective form ( “active 

P”), which represents the main source of plant-available P in soils and best predicts plant-

tissue P across treatments.  

 

3.3 Materials and Methods  

 

3.3.1  Sampling from Budworth treatment plot 

 

Techniques for sampling and sample preparation, laboratory analytical procedures for total 

soil or foliar N and P concentrations were identical to those described in more detail in 

sections 2.3.1, 2.3.2, 2.3.3.3 and 2.3.3.4. 

 

Top soil (0 -15 cm depth) were collected from the 12 treatment plots at Budworth (Table 

2.1), air-dried and crushed to pass through a 2-mm sieve. Sample (both soil and plant tissue) 

preparation followed the same procedure as stated above in section 2.3.2. Additionally, 

determination of soil and plant tissue total P as well as soil available P by the selected 

extractants followed the procedures outlined in sections 2.3.3.3 and 2.3.3.5 while 

sequential fractionation of soil P and the measurement of P concentrations in extracts were 

as described in sections 2.3.3.6 and  2.3.3.5 respectively. 

 

3.4 Statistical analysis 

 

All statistical analysis was performed using R statistical package version 3.6.3 (R 

Developmental Core Team, 2017) and analytical data were log10 transformed where 

necessary. Differences among treatments were tested using one-way analysis of variance. 

In cases where significant differences were found, they were assessed using Tukey's 

honestly significant difference test (HSD). Correlations among variables were determined 

using Pearson correlation test. Multiple regression equations were calculated using lm 
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function to predict extractable P for each of the seven extractants using the various P 

fractions. Forward regression was used to determine equations of significant variables. Final 

regression models for each extractant were selected using the model for the last step in 

which all the variables were significant at P = 0.05.  A linear regression model was used to 

relate extractable P to soil variables as well as Calluna tissue P. 

 

3.5  Results 

 
3.5.1 Soil properties and plant tissues  

 

Selected soil properties, plant tissue P and percentage recovery of soil total P are shown in 

Table 3.1. Soil pH was relatively similar with no statistical significant difference across 

treatments. The result is consistent with an earlier study observing less variation in pH 

across heathlands (Roelofs, 1986).  The treatment plot receiving a combined application of 

N and P (60 kg N+20 kg P ha-1year-1) had the highest organic matter content, suggesting 

higher productivity resulting from the applied nutrients. However, the difference between 

treatment effects was not significant (Table 3.1). Total N ranged from 0.07-0.11 % (mean= 

0.11 %). Soil total P was not statistically significant but varied from 52.7 (60 kg N ha-1year-1 

treatment) to 136 mg P kg-1 (60 kg N+20 kg P ha-1year-1 treatment), mean = 83.1 mg P kg-1 

(Table 3.1).   Plant tissue P ranged from 716 (60 kg N ha-1year-1 treatment) to 1390 mg P kg-

1 (20 kg P ha-1year-1 treatment), with a mean of 1018 mg Pkg-1 and it was significantly higher 

(ANOVA, p<0.0001) on the P plots suggesting that the added P was available for plant 

uptake. Sequential extraction of soil P recovered, on average, 80 to 99 % of the total P, with 

the highest recovery associated with 60 kg N+20 kg P treatment. This indicates the reliability 

of the applied procedure in determining the fractions of soil P. 
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Table 3.1: Selected soil properties (0-15 cm, n = 3), plant tissue P and percentage recovery 
of total P 

Treatment 
(ha-1year-1) 

Soil pH LOI 
% 

Total N % Total P Tissue P % P 
 
Recovery 

(mg Pkg-1) 

Control(0N) 
(rainwater) 

4.26±0.08a  6.96±1.25a 0.15±0.01a 82.8±8.85a 766±12.4a 87 

60 kg N 4.47±0.03a 5.85±1.01a 0.09±0.01a 52.7±4.91a 716±21.6a 80 

60 kg N+20kg P 4.40±0.03a 7.88±1.73a 0.11±0.03a 136±33.0a 1200±42.3b 99 

20 kg P 4.26±0.08a 5.01±0.33a 0.07±0.02a 64.1±3.80a 1390±80.5b 86 

Mean values (±SE) indicated with the same letter were not significantly different at p< 0.05 

 

3.5.2  Distributions of P fractions 

 

Relative distribution of P fractions across treatments are shown in Fig. 3.1 while collective 

concentrations of labile (“active-P”) and non-labile (“occluded-P”) P fractions are presented 

in Table 3.2. Studied soils contained varied amounts of P fractions as modified by N and P 

additions. Soluble-P was low, about 1.9 % of total P but appears responsive to P addition 

and varied significantly (R2 = 0.71, p<0.05) across treatments (Fig. 3.1). However, when P 

was added in combination to N, soluble P seems to be quickly utilised and/ or presumably 

leached out to deeper horizons. Generally, iron (Fe) and aluminium phosphates (Al-P) were 

the dominant forms of inorganic P across treatments with appreciable proportions 

observed on the control plot relative to plots receiving sole treatments of N and P 

fertilisation (Fig. 3.1) while Ca-bound P was the least. However, Al-P was marginally 

significant (R2 = 0.61, p=0.05) while Fe-P varied significantly (R2 = 0.73, p<0.05) across 

treatments. Relative to the non-labile fractions (Occluded-P), the labile P fractions (“active-

P”) was higher across treatments with the highest concentration (94.4±15.4 mgkg-1) in 60 

kg N+20 kg P ha-1year-1 plot (Table 3.2). Active-P also varied significantly (R2 = 0.83, p<0.001) 

across treatments (Table 3.2). 
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Figure 3.1: Soil P fractions as altered by N and P fertilisation. Mean values (±SE) of three 
replicate plots are presented. 
 

Table 3.2: Amount of active and occluded phosphates across treatments 

Treatment 

(ha-1year-1) 

Active phosphate 

∑(Soluble-P +Al-P+ Fe-P+Ca-P) 

Occluded phosphate 

∑ (Recalcitrant P+ residual P) 

mg Pkg-1 

Control  55.7±8.96ab 17.0±1.46ab 

60 kg N 29.5±2.26c 12.5±1.37b 

60 kg N+20 kg P 94.4±15.37a 20.7±2.99a 

20 kg P 42.9±2.18bc 12.0±0.129b 

 

3.5.3 Extractable P 

 

A one-way analysis of variance was performed to compare mean differences of extracted P 

by different extractants tested. Tukey’s test for multiple comparisons indicated that the 

means of water, Mehlich-I and Bray-II were significantly different (p < 0.01 for water, p < 

0.0001 for Mehlich-I and p < 0.01 for Bray-II) (Fig. 3.2).  Across treatments, the mean value 

of extracted P with deionised water was 7.68 mg kg-1, with Mehlich-I was 5.31 mg kg-1, and 

with Bray-II was 24.54 mg kg-1. Bray-II and Mehlich-I extracted-P were significantly greater 
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in the N+P treatment compared to the control treatment (Fig. 3.2). In addition,  Mehlich-I 

extracted-P was significantly greater in the P and N+P treatments than in the N treatment 

while Bray-II extracted P showed no significant difference between P and control 

treatments. However, Bray-II extracted P was greater than the water- and Mehlich-I 

extracted P in all treatments (Fig. 3.2). Water-extracted P showed highly significant (p < 

0.001) variations among treatments, with the P treatment having approximately five times 

as much as water-extracted P as the control treatment. 

 

Figure 3.2: Soil available phosphorus extracted by different extractants from N and P 
nutrient addition plots. Mean values (±SE) of three replicate plots are presented. Means 
indicated with the same letter were not significantly different (p < 0.05) 
 

3.5.4 Correlations among Extractable P, soil properties and P fractions 

 

Extracted P removed by the three extractants were not significantly related to soil pH. 

However, correlations among them were negative (Table 3.3). LOI and total N did not make 

significant contributions to P extracted by the three extraction methods (Table 3.3), 

suggesting that the selected soil properties do not influence the availability of plant-

available P in soils of the experimental site. Water-extracted-P was positively related to 

loosely soluble-P (r = 0.95, p<0.0001) (Table 3.3, Fig. 3.3). Mehlich-I extracted-P positively 

correlated with loosely soluble-P (r = 0.77, p<0.001), Al-P (r = 0.62, p<0.01) and Active-P (r 
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= 0.58, p<0.01), while loosely soluble-P and Ca-P were the only fractions with positive 

relationships with both water- and Mehlich-extracted-P in the multiple regressions (Table 

3.4). P fractions extracted by water were loosely soluble-P and Ca-P. Mehlich-I extractant 

primarily removed extracted P from loosely soluble-P and Ca-P (Table 3.4) with some 

possible contributions from the Al-P and active-P (Table 3.3).  

 

Table 3.3: Correlations of extractable P with selected soil properties and P fractions  

Parameter Water-P Mehlich-I Bray-II 

Soil pH -0.27 -0.18 -0.12 

LOI 0.01 0.15 0.53 

Soil total N -.031 -0.17 0.31 

Tissue P 0.88*** 0.89*** 0.46 

P fraction 

Loosely soluble  0.95*** 0.77** 0.23 

Aluminium phosphate(Al-P) 0.48 0.62* 0.77** 

Iron phosphate (Fe-P) -0.19 0.25 0.80** 

Calcium phosphate (Ca-P) 0.02 0.48 0.91*** 

Active phosphate (active-P) 0.21 0.58* 0.96*** 

Recalcitrant phosphate (Recal-P) -0.08 0.33 0.77** 

Residual phosphate (Resi-P) -0.15 0.14 0.64* 

Occluded phosphate  (Occlu-P) -0.13 0.20 0.70* 

Total P 0.19 0.54 0.91*** 

Extractant 

Water-P - 0.86*** 0.35 

Mehlich-I 0.86*** - 0.71** 

Correlations of tissue P with P fractions 

 Loosely 

soluble 

Al-P Fe-P Ca-P Active-P Recal-P Resi-P Occlu-P Total 

P 

Tissue 

P 

0.88*** 0.42 -0.01 0.23 0.28 0.12 -0.04 0.01 0.21 

*Significant correlation at P = 0.05., **Significant correlation at P = 0.01. 

***Significant correlation at P = 0.001. 
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Water-extracted P, Mehlich- I extracted P and loosely soluble P were each positively related 

to tissue P (Table 3.3).  Bray-II extracted P was positively related to Al-P (r = 0.77, p<0.001), 

Fe-P (r = 0.80, p<0.001), Ca-P (r = 0.91, p<0.0001), Active-P (r =0.96, p<0.0001), Recal-P (r = 

0.77, p<0.001), Resi-P (r =0.64, p<0.01 ), Occlu-P (r = 0.70, p<0.01) and soil total P (r = 0.91).  

(Table 3.3, Fig. 3.3). Multiple regression indicated that Al-P, Active-P and Recal-P were 

positively correlated to Bray-II extracted P (Table 3.4). Although Fe-P, Ca-P, Resi-P and 

occluded-P were significantly correlated with Bray-II extracted P, they did not add 

significantly to the regression model. Loosely soluble P was not significantly related to Bray-

II extracted P (r = 0.23) and was unable to improve the regression model. This suggests that 

Bray-II extractant removed only a small fraction of the loosely soluble P across treatments 

indicated by the poor correlation between them.  The P fractions extracted by Bray-II 

included Al-P, Active-P and Recal-P with some contributions from Fe-P and Ca-P. Bray-II 

extracted P was the only P extraction that did not have a significant positive correlation with 

tissue P (Table 3.3), probably because of the relatively high Bray II extracted-P values across 

treatments (Fig. 3.2) which may have prevented a significant linear relationship.   Of all the 

P fractions studied, loosely soluble was the only form that related to plant tissue P (Table 

3.3) with some possible P availability from the Recal-P (Table 3.4). 
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Figure 3.3: Relationships between P fractions and extracted P by different extractants (red 
dots= Bray-II, blue points dots = Mehlich-I and green dots = Water-extracted P) 
 

3.5.5.  Relationships among plant tissue P, P fractions and extracted P 

  

A linear regression model was built to compare the relationship among plant tissue P, P 

fractions (Fig. 3.4) and extracted P (Fig. 3.5) removed by the various extractants.
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Table 3.4: Regression Equations relating soil extractable P to plant tissue P and soil P fractions in fertilised heathland soils 

Water extractable phosphorus 

Step 1  Step 2  Step 3 

Variable P>F R2 Variable P>F R2 Variable P>F R2 

Soluble-P <0.000 0.977 Ca-P 0.005 0.993 Recal-P 0.116 0.995 

Final model+: Water-P= -0.032+ 1.85 (soluble-P)***+ 0.44(Ca-P)**, (R2 = 0.993) 

Mehlich- I extractable phosphorus 

Step 1  Step 2  Step 3 

Variable P>F R2 Variable P>F R2 Variable P>F R2 

Soluble-P <0.000 0.891 Ca-P 0.000 0.891 - - - 

Final model: Mehlich- I= -2.399+ 1.08 (soluble-P)***+ 1.732 (Ca-P)***, (R2 = 0.891)  

Bray-II extractable phosphorus 

Step 1  Step 2  Step 3 

Variable P>F R2 Variable P>F R2 Variable P>F R2 

Al-P 0.004 0.977   Active-P 0.000 0.887 Recal-P 0.001 0.930 

Final model: Bray-II= -1.26 - 0.68(Al-P)**+ 1.19(Active-P)*** - 8.40(Recal-P)**, (R2 = 0.977) 

 
Plant tissue phosphorus 

Step 1 Step 2 Step 3 Step 4 

Variable P>F R2 Variable P>F R2 Variabl
e 

P>F R2 Variable P>F R2 

Soluble-P 0.00 0.77  Active-P 0.15 
 

0.92 Recal-P 0.01 0.89 Resi-P 0.29 0.94 
 

Final model: Plant tissue P= 612 + 98.7(Soluble-P)***+(196)Recal-P*, (R2 =  0.94)    

*Regression term was significant at P = 0.05, **Regression term was significant at P = 0.01, ***Regression term was significant at P = 0.001 
+ Final model for each extractant were selected by using the model for the last step in which all variables were significant at P =0.05. Fractions considered 
were soluble-P, Al-P, Fe-P, Ca-P, Active-P, Recal-P and residual P 
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The model showed a highly significant correlation (R2 = 0.88, p < 0.0001) between plant 

tissue P and loosely soluble P (Fig. 3.4 a). However, the correlation between plant tissue 

P and the remaining fractions were not significant. Regression analysis between plant 

tissue P and extracted P showed that water-and Mehlich-I extracted-P were significantly 

related to tissue P (Figs. 3.5 a and 3.5 b), in contrast to the luck of such relationship with 

Bray II-extracted P. 

 

 

 

 

Figure 3.4: Relationship between plant tissue P and P fractions across treatments
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Figure 3.5: Prediction of plant tissue phosphorus by soil available phosphorus 
determined using different extraction solutions  
 

3.5.6  Comparison of extractants 

 

Correlations and relationships between extractants tested and P fractions differed 

(Tables 3.3 and 3.4). However, the relationships of water and Mehlich I- extracted P with 

loosely soluble P were significantly positive. Active-P was related to Mehlich-I and highly 

positively correlated with Bray-II extracted-P (Table 3.3). Linear regression model fitted 

to the data presented in Figure 3.2 indicated that the coefficient of determination (R2) 

varied from 0.126 - 0.741 (Table 3.5). There were strong positive relationships between 

water- and Mehlich-I extracted-P and between Mehlich-I and Bray-II extracted-P (Tables 

3.3 and 3.5), indicating that P fractions extracted by water and Mehlich-I extractants, and 

by Mehlich-I and Bray-II extractants are generally similar for the soils studied. The 

stepwise multiple regression indicated that P fractions via loosely soluble-P and Ca-P 

jointly contributed 99 and 89 per cent of the variations in water and Mehlich-I extracted-

P respectively while fractions via Al-P, Active-P and Recal-P accounted for 98 per cent of 

the variations in the Bray-II extracted-P (Table 3.4). 
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Table 3.5: Regression equation and coefficient of determination (R2) for relationships 
among P extracting solutions  

 

P extracting solution Regression model equation  R2  p-valve 

Water-P vs. Mehlich-I Y = 0.128 + 0.928x 0.741 0.0003 

Water-P vs. Bray-II Y = 0.106 + 0.496x 0.126 0.257 

Mehlich-I vs Bray-II Y = 0.830 + 1.07x 0.510 0.009 

 

Sequential extraction of P determines the amount of P in increasingly less available forms 

of P.  In this study, the most labile form was found to be loosely soluble phosphate, which 

also likely represents the major source of plant-available P in the studied soils (Fig. 3.4 

a). Water extracted-P as was designed to measure labile P in soils (Castillo and Wright, 

2008) correlated well with loosely soluble phosphate (Table 3.3, Fig. 3.3 a) and plant 

tissue P (Fig. 3.4a). Thus, taking water extracted P as a reference method, extractants 

that provide P concentrations at or slightly above water extracted-P approach the level 

of P concentration available for plant uptake with some level of overestimation. Figure 

3.6 illustrates the relationships between Mehlich-I extracted P and water extracted-P, 

and between Bray-II extracted P and water extracted-P.  The lines in the figures indicate 

1:1 ratio between the compared extractants. Mehlich-I and Bray-II extracted P’s were 

therefore expected to fall on the 1:1 line if Mehlich-I and Bray-II extractants removed 

only water extracted-P. Figure 3.6 indicates that Mehlich-I extractant underestimated 

water extracted-P with few data points above the 1:1 ratio line contrary to Bray-II 

extractant, which overestimated water extracted-P. 
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Figure 3.6: Water extracted-P across treatments compared with Mehlich-I and Bray-II 
extracted-P 
 

3.6 Discussion 

 

3.6.1  Effects of N and P fertilisers on the distribution of P fractions 

 

Generally, iron (Fe) and aluminium phosphates (Al-P) were the dominant forms of P 

across treatments (Fig. 3.1), possibly due to the effects of the long-term N and P fertiliser 

applications (Chang and Chu, 1961). Additions of N and P in separate applications largely 

reduced Fe-P and Al-P while their combined effects (N+P) significantly elevated Fe-P 

(ANOVA, p <0.05 for Fe-P) and appreciably increased Al-P in comparison with the control 

(Fig 3.1). Chang and Chu, (1961) made similar observations in acid soils sampled from 

two replicate plots of a long-term fertiliser treatment in Taiwan where they recovered 

added soluble phosphate completely as iron and aluminium phosphates. The result 

supports that, in acid mineral soils, P is largely fixed by Al and Fe oxides and hydroxides 

(Peltovuori et al., 2002).  Combined additions of N (60 N kg ha-1 yr-1) and P may potentially 

retain added P in the studied soils in the form of Al and Fe phosphates resulting in a slow 

release of available P for plant uptake, as these forms (Al-P and Fe-P) in comparison to 

loosely soluble phosphate are not readily accessible to plants. This may be beneficial to 
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perennial plants such as Calluna that have long growth period.  Addition of P significantly 

(ANOVA, p< 0.05) increased the readily available form (i.e. loosely soluble phosphate) 

(Fig. 3.1), an indication that significant proportion of the added P was transformed into 

forms exchangeable with the solution P pool potentially available for plant uptake  (Vu 

et al., 2010). The reduction of loosely soluble phosphate in the N+P plot relative to the 

levels in the P plot may partly be attributed to the presence of bryophytes on the plots 

since the potential for bryophytes to effectively use N for growth can depend on 

sufficient supply of other nutrients such as P and K (Pilkington et al., 2007; Arroniz-

Crespo et al., 2008). Addition of N also causes soil acidification characterised by greater 

mobilisation of soil aluminium and iron compounds thereby reducing available P through 

increased P sorption (Roelofs, 1986; Vogels et al., 2017). The readily available form of P 

is therefore likely to be less as P is supplied together with N. The relatively low (<10 mg 

P kg-1) levels of loosely soluble phosphate across treatments confirm the observation 

made by Melese et al., (2015) and support the accession that loosely soluble phosphate 

represents the least form of P pool in soils  (Williams et al., 1967; Saljnikov and Cakmak, 

2011). However, it was significantly increased by the continual and prolonged P 

fertilisation (ANOVA, p < 0.05) indicating a significant proportion of the added P largely 

transformed into a form likely to be accessible to plants. As expected, calcium phosphate 

(Ca-P) was the least (accounted for 2-3% of total P) fraction of P because soils of 

heathlands are strongly acidic (de Graaf et al., 2009). Although added N in combination 

with P (i.e. the N+P treatment) increased Ca-P content by two-fold as compared to the 

control, there was no clear tendency of the increased across treatments (Fig. 3.1). The 

absence of the effect of mineral fertilisation, especially P-fertilisation on Ca-P has been 

reported in other studies (Hartikainen, 1989; Chang and Chu, 1961). The low content of 

Ca-P also suggests that the examined soils may have been derived from an intensively 

weathered parent material (Grigg, 1965; Anderson, 1988; Melese et al., 2015).  

 

Phosphorous availability to plants depends on the proportion of the labile soil P other 

than the occluded fraction. In this study, the active-P representing the concentrations of 

all the labile phosphates was greater than the occluded phosphates and varied 

significantly across treatments (Table 3.2). Thus, it is notable that, more than half of the 

soil P in the studied soils exist within the labile fractions, one of which is readily available 
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(loosely soluble) while others are moderately available for plant uptake (Indiati and 

Sharpley, 1998; Costa et al., 2016). This suggests that a greater proportion of P in the 

labile fractions may potentially desorb to replenish solution P pool following plant P 

uptake (Abdu, 2006). The dominance of Fe-P and Al-P across treatments suggests that 

these fractions were the major contributors of active P and most likely to control the 

release of phosphate ions from the active P pool. The appreciable proportion of the non-

labile fractions (recalcitrant and residual phosphates) across treatments (Fig. 3.1) may 

also be related to the long history of P fertilisation enabling excess P to accumulate in 

non-labile forms (Saljnikov and Cakmak, 2011). This may serve as a reserve to supply 

available P for plant use in cases of lack of availability. However, the high proportion of 

residual-P observed in the control plots (rainwater only added) was unexpected, but 

perhaps it might have resulted from a strong long-term fixation due to preferential 

uptake of N. 

 

3.6.2  Relationship between extracted P and P fractions 

 

Water-extractable P represents the amount of labile P but may include little 

contributions from other fractions (Castillo and Wright, 2008). However, other 

extractants usually measure the relative labile and non-labile P fractions. This may 

account for the difference among extracted P by the various extractants (Fig. 3.2). As 

available P occurs from a continuum of fractions, extractants may preferentially extract 

from different fractions due to their reactions with P binding agents involve with P 

sorption. Additionally, extractants vary in their extractability to remove different 

portions of available P due to their selectivity in solubilising specific fractions of P 

(Humphreys et al., 1998).  Among the P fractions, Fe-P and Al-P were the major 

contributors of available P as estimated by the various extractants, and Ca-P contributed 

very little to the extracted P (Table 3.3). The mean of Bray-II extracted P was greater than 

the means of water, and Mehlich-I extracted P (Fig. 3.2), suggesting that Bray-II 

extractant removed additional forms of P that were not immediately available to water 

and Mehlich-I extractants. Bray-II extractant may, therefore, overestimate available P in 

the soils studied. Extracted P removed by water and Mehlich-I extractants were 
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significantly related to loosely soluble P, whereas Bray II extracted-P did not (Table 3.3). 

This suggests that the Bray-II extractant was able to recover some of the more non-labile 

P fractions but was limited in removing P associated with the readily available form.   

 

3.6.3  Relationships among extracted P, P fractions and plant tissue P 

 

Water-and Mehlich-I extracted P significantly correlated with loosely soluble P while all 

the three variables related to plant tissue P (Table 3.3; Figs. 3.4 a, 3.5 a and 3.5 b) 

suggesting that, loosely soluble P may represent the potential source of readily available 

P to plants in the studied heathland. Bray-II extracted P failed to relate to plant tissue P 

probably because the extractant included a greater proportion of the moderately and 

non-labile P fractions while water and Mehlich-I did not (Table 3.3). Although Al-P, Fe-P 

and Ca-P were major contributors of active-P, they have a stronger resistance to the 

release of P for plant uptake relative to loosely soluble P and this may have contributed 

to the luck of significant relationship between plant tissue P and Active-P (Table 3.3). The 

limited availability of non-labile P fractions was evident by the poor relationships 

between them and plant tissue P (Table 3.3, Fig. 3.4). 

  

3.6.4   Selection of a suitable P extractant 

 

The comparison of extracted P by different extractants (Table 3.5) suggests that Mehlich-

I extractant provided comparable estimates with water and Bray-II extractants, although 

the quantity measured varied substantially (Table 3.5). The absence of a significant linear 

relationship between water- and Bray-II extracted P further emphasises the fact that 

Bray-II extractant overestimated available P in the studied soils (Table 3.5, Fig. 3.6 b). 

Bray-II extracted-P may not accurately represent plant-available P across treatments 

evident by the poor relationship between Bray-II extracted-P and plant tissue P (R2 = 

0.49, p = 0.13) (Fig. 3.5 c). Bray-II extractant, therefore, appears to be a poor soil-test P 

for predicting plant-available P in the Calluna-dominated heathland studied. The primary 

reason for this conclusion is the inclusion of more non-labile P fractions, particularly the 

occluded P, which has limited availability to plants (McDowell (McDowell and Condron, 
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2000; Saljnikov and Cakmak, 2011). The stronger coefficient of determination (R2 = 0.74, 

p <0.0001) resulting from the relationship between water- and Mehlich-I extracted-P 

suggests the potential suitability of both extractants to estimate plant available P in the 

soils studied. However, Calluna being a slow-growing perennial plant which occupies 

nutrient-poor acidic soils (Gimingham, 1972), may require a continuous, but slowly 

released supply of nutrients, particularly P for its growth. P fractions other than the 

loosely soluble may need to be included in a soil-test P to provide a better estimate of 

plant-available P in Calluna-dominated heathland soils. Although with some contribution 

from the Ca-P (Table 3.4), water extractant essentially extracted available P from the 

loosely soluble-P fraction (Table 3.3), making water appear to be a relatively poor choice 

for the determination of plant-available P in comparison to Mehlich-I extractant while 

acknowledging the fact that both extractants predicted plant tissue P well (Figs. 3.7a, 

and 3.5b).  There was a strong positive relationship between Mehlich-I extracted P and 

plant tissue P (R2 = 0.96, p < 0.0001) (Table 3.1b) which can be explained by the significant 

positive correlations and regressions between Mehlich-I extracted-P and the various 

labile P fractions (i.e. loosely soluble, Al-P and Active-P) (Table 3.3). As Mehlich- I 

extractant removed available P from more than one labile P fractions including the 

“active-P” which represents the main source of plant-available P while excluded the non-

labile P fractions makes Mehlich-I extractant the “best” predictor of plant-available P in 

the studied heathlands. 

 

3.7 Conclusion 

 

Semi-natural vegetation such as heathlands is not usually managed by fertilisation but 

knowledge about nutrient input via fertilisation may be useful in planning proper 

management strategies to protect heath vegetation adapted to nutrient-poor 

environment. In this study, nutrient additions in the studied heathland led to a greater 

distribution of phosphorus mainly in the Fe-P and Al-P fractions. The distribution of the 

labile fractions was in the order of Ca-P<loosely soluble-P<Al-P<Fe-P for the control and 

N+P treatments while in N and P separate treatments the distribution followed the 

order:  Ca-P<loosely soluble-P<Fe-P<Al-P. Water extractant mainly measured loosely 
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soluble-P whereas Mehlich-I extractant included primarily loosely soluble-P, Al-P and 

active-P. Bray-II included Al-P, Active-P and more recalcitrant forms of P, thus was unable 

to predict plant tissue P. Water and Mehlich-I extracted-P related with loosely soluble P 

as well as plant tissue P. Of all the P fractions studied, only loosely soluble-P correlated 

with plant tissue P suggesting that this fraction may represent the readily available 

source of P to plants. However, there was an indication that phosphate ions could 

potentially desorb from the active-P pool to solution P pool to maintain equilibrium 

following plant P uptake. Mehlich-I was the only extractant tested that included the main 

source of plant-available P (i.e. active-P) while excluding the more non-labile forms of P 

with the highest prediction (R2 = 0.96, p<0.0001) of plant-available P. Thus, the results 

indicate that, Mehlich-I should be the ‘best’ determinant of plant-available P in the 

studied heathland. However, using deionised water as P extracting reagent also proved 

to be a good determinant of plant-available P (R2 = 0.87, p<0.0001) showing a more 

sensitive measure of the readily available source of P across treatments. Thus, water 

extracted P could also be used as an indicator of plant-available P across heathland 

communities. In addition, using water extracted P, as an indicator of plant-available P 

may be cost-effective in term of time and laboratory reagents. 
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4 CHAPTER FOUR 

Do P availability and soil-plant nutrient  

stoichiometry (lower N: P ratio) increase resilience 

of lower plants to adverse effects of N deposition? 

 

4.0 Introduction 

 

Nitrogen plays an important role in controlling species composition and functioning of 

terrestrial ecosystems. Thus, its supply often limits plant growth especially in heathlands 

where slow-growing vegetation established on nutrient-poor soils are primarily adapted 

to survival under limited supply of atmospheric N which has been markedly increased by 

atmospheric N deposition in recent times (NEGTAP, 2001; RoTAP, 2012). As such, 

heathland vegetation can compete successfully only in soils deficient in N (Bobbink et al., 

1998 ; Carroll et al., 1999). The low N levels in soils upon which heathlands thrive enable 

coexistence of a mixture of plant species (i.e. higher and lower plants). High N deposition 

in heathlands is therefore expected to cause a competitive balance between species and 

ultimately to change species competition (Carroll et al., 1999; Pitcairn et al., 1995; Power 

et al., 1998b). For instance, in the Netherlands, high N deposition has caused a complete 

deterioration of many heathland communities (Roelofs, 1986; Aerts and Heil, 1993) 

resulting in loss of mosses and lichens (lower plants) with increased dominance of 

nitrogen-dependant species (e.g. Molinia caerulea). Results of many N enrichment 

studies in the UK also support this view (although without completely consistent patterns 

as found elsewhere) and show increased growth of grasses with high N deposition 

(Marrs, 1993; Britton et al., 2003).   Grasses being a higher plant respond positively to 

high N input and rapidly expand in cover (Roelofs, 1986) at the expense of lower plant 

species  (Van Der Wal et al., 2003; Britton and Fisher, 2007) . This increase in higher plant 

cover may also increase shading, suppressing the growth of lower plants (van der Wal et 

al., 2005) while lower plants themselves may be directly sensitive to high N deposition 
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(Curtis et al., 2005), leading to their decline in heathland vegetation. This disturbance, if 

prolonged, can cause heathlands to move to a state, which will require an external 

influence (Ludwig et al., 1997) to cause them to return to their former state - making 

them less resilient to high N deposition. 

  

The decline of lower plants in heathlands is thus commonly attributed to both the direct 

toxic effects and indirect effects of high N deposition through the competitive exclusion 

of characteristic plants by nitrophilic species (Bobbink et al., 1998). The mechanisms 

thought to underlie N-driven loss of lower plants in heathlands include reduce light 

availability to understorey vegetation by taller plants (van der Wal et al., 2005), high litter 

production by higher plants (Chapin et al., 1987; Carroll et al., 1999) and direct effects 

of N deposition (Carroll et al., 1999). Despite these N-driven adverse effects on lower 

plants, little research attention has been paid to whether a shift in the ratio between the 

supply of N and other nutrients (particularly P) in soils and plants might also drive the 

effects of N deposition on competitive interaction between higher and lower plant 

species. This is because, ecological stoichiometry suggests that, plant elemental ratios 

reflect changes in the environmental conditions (Elser et. al., 1996), thus plant growth 

rates can relate to changes in the availabilities of N and P, and N: P co-limitation under 

specific environmental conditions.  

 

In nutrient-limited systems such as heathlands, increased N deposition has the potential 

to cause a substantial increase in N availability relative to P (Aerts et al., 1992)  and can 

potentially trigger an increase in N: P ratios (Gusewell, 2004) of soils and plant tissues 

favouring N-tolerate species (Roelofs, 1986) against N-sensitive ones (Cunha et al., 

2002). In contrast, a lower N: P ratio may protect lower plants, which are mostly N-

sensitive (Curtis et al., 2005; Pilkington et al., 2007) from the adverse effects of N 

deposition making them resilient to atmospheric N pollution.  While competitive 

interaction between species in heathlands may be controlled by nutrient stoichiometry, 

few experimental studies have addressed whether soil and plant nutrient ratios are 

related and whether such relationship accounts for the recovery and thus the resilience 

of lower plants to N deposition in UK heathland communities. Therefore, assessing the 

relationship between soil-plant N and P availabilities and ratios in UK upland and lowland 
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heaths would provide supporting evidence or otherwise for the long-held premise that 

a lower N: P ratio due to soil-plant P availability promotes the growth of lower plants in 

instances of high N deposition (Phoenix et al., 2003; Gordon et al., 2001; Pilkington et 

al., 2007). 

 

4.1 Effects of N deposition on mycorrhizal phosphorus, tissue surface phosphatase 

activity and nitrogen: phosphorus ratios of key heathland species  

 

Prolonged N deposition increases demand for P and hence stimulates plant roots and 

soil organisms to increase their mechanisms for P uptake capacity from a variety of 

sources including the synthesis of phosphatases and from a symbiotic relationship 

between plant roots and mycorrhizal fungi (Johansson, 2000; Phoenix et al., 2003; 

Pilkington et al., 2005; Rowe et al., 2008). In heathlands, mycorrhizal-mediated P 

availability may be an efficient pathway of nutrient transfer from the moss layer to 

Calluna enabling direct cycling of nutrients (including P) from litter and through-fall back 

to Calluna. It has been demonstrated that N deposition has no adverse effects on 

mycorrhizal infection in heathlands (Caporn et al., 1995) making mycorrhizal-mediated 

P a potential source of available P to the key plants of the heathland ecosystems. 

However, the mycorrhizal fungi association with Calluna may not only enhance P 

availability and uptake but also may provide access to organic forms of N (Nielsen et al., 

2009) likely to counteract the enhanced P for plants uptake. Thus, such P source may be 

insufficient to alleviate P limitation (Vitousek et al., 2010) and unable to prevent an 

increase in N: P ratio (Peñuelas et al., 2013).  

 

Phosphomonoesterase enzyme, on the other hand, enables the release of inorganic 

phosphate from organic compounds during organic matter degradation (Johnson et al., 

1999). The activity is an important process for P mineralisation in soils. However, N 

deposition causing a greater demand for P may lead to an increased PME activity in soils 

(Pilkington et al., 2005) since more P will be required to keep the balance of N: P ratio in 

plants under conditions of N enrichment. Thus, N deposition is likely to increase tissue 

PME activity but change tissue N: P from values typical of N limitation to those indicative 
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of P limitation. N-driven increases in PME activity is a prime indication that a plant 

community of a particular ecosystem is limited by P, not N likely to cause a higher tissue 

N: P ratio. 

 

4.2 Soil-plant N: P stoichiometry as an indicator of N deposition impacts in heathlands 

 

Plant tissue N: P ratios are widely used as indicators of soil nutrient availability 

(Koerselman and Meuleman, 1996) probably because plants generally grow best near 

their optimal elemental ratios (Sterner and Elser, 2002) which are highly influenced by 

the surrounding environment. Variation in one nutrient relative to the other can thus 

change plant nutrient ratios (Roem et al., 2002). For instance, N-driven acidification of 

soils and increased NH4
+ concentrations (Roelofs, 1986; Roem et al., 2002; van den Berg 

et al., 2005) can significantly lower P availability (Vogels et al., 2017) for plant uptake and 

consequentially increase plant tissue N: P ratios. Such increased P-limitation can cause a 

significant reduction in both species richness and diversity in heathlands (Roem et al., 

2002). However, by promoting P limitation, high N deposition can also increase diversity 

by favouring rare species under P-limited conditions (Wassen et al., 2005). Such 

contrasting N-driven impacts on vegetation can potentially alter species composition. 

Thus, the considerable nutrient limitation, soil acidification and highly sensitive 

vegetation (i.e. vegetation that rapidly respond to changes to nutrient availability) 

characterising heathland communities (Bobbink et al., 1998) make these habitats a 

unique model to test soil-plant stoichiometric responses to N pollution. In attempting to 

understand N deposition impacts in heathlands in which the stoichiometric effects of 

increased N and P availability on vegetation composition are compared, there is a need 

for a study that considers the impacts of N deposition in the soil-plant system. 

 

In the UK, soil-plant N and P concentrations and N: P ratios in relation to N deposition in 

heathlands have been studied extensively (Kirkham, 2001; Britton and Fisher, 2007; 

Rowe et al., 2008; Jones and Power, 2015). Rowe et al., (2008) found N deposition 

positively significantly related to tissue N and negatively correlated with N: P ratio of C. 

vulgaris across Calluna-dominated heathlands throughout Britain while there was a 
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positive linear relationship between N deposition and both tissue N and N: P ratio of C. 

vulgaris in upland moorlands in England and Wales (Kirkham, 2001). Jones and Power, 

(2015) confirmed these observations in a range of lowland heaths across southern 

England. However, Britton and Fisher, (2007) found no significant correlation between N 

deposition and tissue chemistry of Racomitrium lanuginosum and C. vulgaris in low-

alpine heathlands across Scotland. These works have typically been carried out as 

surveillance studies where tissue N, P and N: P ratios of plant species were used as 

indicators of N deposition impacts across the different heathland types studied with little 

or no emphasis on how soil P availability might modify plants responses to N deposition. 

Although, similar studies have been carried out in field nutrient addition experiments 

(Pilkington et al., 2007; Stiles et al., 2017) , there is still a knowledge gap about how 

individual higher and lower plant species would respond to N deposition if soil-plant N 

and P concentrations and N: P ratios are altered by P availability.  

 

Increased availability of N in heathlands due to high N deposition may affect the 

competitive interactions within the system, not only for dominant species but also for 

(sub) dominant and subordinate species (Bobbink et al., 1998). Although this may be due 

to competition for light with tall species responding positively to N inputs (Bobbink et al., 

1998), the competitive interaction is also likely to be controlled by soil-plant N: P ratios 

with species having a higher N: P ratios (>20) gaining dominance over plants with lower 

N: P ratios (< 10) under high levels of N deposition (Sardans et al., 2016b). For instance, 

Güsewell (2004) reports that, on average, graminoids have a higher N: P ratios than 

forbs, which may probably explain the higher positive response of grasses to N 

deposition in heathlands relative to other plant species (Marrs, 1993). In the case of 

lower plants, fewer works have considered N and P stoichiometry (Aerts et al., 1992). 

However, Bragazza (2004) suggested an N: P ratio of 30 for Sphagnum mosses in an 

ombrotrophic bog ecosystem indicating the threshold for transition from N to P 

limitation. This also suggests a higher threshold of N: P ratio for lower plants compared 

to higher plants. However, the dramatic increase in N deposition in recent times coupled 

with the global limitation of atmospheric P deposition (Tipping et al., 2014) makes the 

interpretation of this threshold problematic, as the main nutrient source for bryophytes 

and lichens is atmospheric deposition from which these two life forms absorb nutrients 
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entirely on their tissue surfaces (Malmer et al., 2003). Therefore, tissue nutrient 

concentration of lower plants is likely to reflect the accumulation of non-limiting nutrient 

rather than scarcity. 

 

Lower plants (mosses and lichens) are particularly sensitive to high N deposition 

(Søchting and Johnsen, 1987; Curtis et al., 2005) although N availability may be required 

for their growth (Bobbink et al., 1998; Malmer et al., 2003). They are therefore highly 

negatively impacted when atmospheric N deposition surges as studies have shown 

significant negative effects of high N deposition on the growth of mosses and lichens 

(Søchting and Johnsen, 1987; Barker et al., 2004). However, it has been found that the 

addition of P promotes the growth of typical and frequently occurring lower plants in 

heathlands that are characterised by increasing N enrichment (Roem et al., 2002; 

Pilkington et al., 2007) presumably due to high phosphate absorption potentials of 

mosses (Chapin et al., 1987) enabling efficient utilisation of excessive N for growth 

(Arroniz-Crespo et al., 2008). This has led to a long-held hypothesis that, P availability 

could mitigate some of the negative effects of N deposition on lower plants (Carfrae et 

al., 2007; Armitage et al., 2012; Phoenix et al., 2003). However, this hypothesis has not 

been fully tested, limiting current knowledge on the possible recovery of lower plants 

from the negative impacts of N deposition as mediated by P availability.  

 

To test this hypothesis, the effects of P availability and a change in soil-plant N and P 

ratio resulting from N or P additions in two long-term nutrient addition experiments (30 

and 23 years additions of N and P in upland and lowland heaths respectively) on species 

responses to N deposition were evaluated at the level of individual species and plant 

functional types (higher and lower plant species). This was done to unravel whether P 

offers a protective role for lower plants against the negative effects of N deposition or 

drives species loss in addition to that driven by N. 
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4.3 Hypothesis 

 

The present study hypothesised that changes in plant nutrient stoichiometry (N: P ratio) 

would reflect changes in soil nutrient concentrations and that an increased in soil 

available P would lead to an increased tissue P content and a decreased tissue N: P ratio 

thus indicating a direct relationship between tissue and soil N: P ratios. It was also 

hypothesised that percentage cover of higher and lower plant species would relate to N: 

P ratios of soils and plant tissues such that, a lower soil-plant N: P ratio would predict an 

increased in the cover of lower plants indicating lower plants recovery/resilience to the 

adverse effects of N deposition. In addition, the study hypothesised that addition of N 

would stimulate phosphatase activities in tissue surfaces of plant functional types (using 

Calluna vulgaris and Hypnum jutlandicum hence forth referred to as Calluna and Hypnum 

as representative plants for lower and higher plants, respectively) in response to the 

long-term simulated N deposition. It was thus expected that, plants responses to N 

deposition would lead to an increased uptake of phosphorus caused by high N deposition 

increasing soil extractable N and tissue N concentrations especially in the N treated plots 

and that the activity would decline upon addition of P in the P treated plots.  

 

4.4 Experimental aims 

 

The specific objectives of this study were to (1) determine the effect of N and P additions 

on soil and plant tissue nutrient concentrations (2) assess relationship among soil and 

plant tissue N and P concentrations and stoichiometric ratios,(4) evaluate if P availability 

and soil N: P ratios relate to  higher plant cover particularly of lower plants used as a 

measure of lower plants recovery from adverse effects of N deposition, (4) relate soil 

nutrients and other soil variables to individual plant species cover in assessing species-

specific response to nutrient availability. 
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4.5 Materials and methods 

 

4.5.1 Study sites and vegetation survey  

 

The study sites were two heathlands N addition experiments: Ruabon moor (upland 

heath) in north Wales and Little Budworth Common lowland heath in Cheshire (Table 

2.1) from which soil samples from the treated plots were taken for the method 

development in chapters two and three. Both heathlands sites are long-term 

experimental N and P addition sites, which have been used for several N deposition 

studies over the past three decades from which many scientific papers have been 

published (e.g. (Caporn et al., , 1995; Evans et al., 2006; Pilkington et al., 2007; Field et 

al., 2013). As mentioned in Table 2.1 of chapter two, the upland heath is managed by 

periodic burning to maintain Calluna dominance of the plant community and to promote 

grazing grounds for sheep. In one of such management practices, the experimental plots 

were accidentally burnt in the process leading to complete loss of plant biomass in the 

plots. However, in September 2018, the plots have started recovering from the effects 

of the accidental fire thus vegetation survey was conducted using a quadrat technique 

where each 2 x 2 m quadrat used was further subdivided into smaller cells using canes. 

Data from a total of 32 smaller cells per quadrat on each plot were recorded. Percentage 

cover of species was estimated from virtual inspection of species present in the plots.  

The number of species and Shannon diversity index were calculated from the vegetation 

data of all plant species rooted in the plots. Vegetation data (i.e. percentage cover, 

species richness) for the plant functional types (i.e. lower and higher plants) were also 

estimated from the % cover and species richness values from the species recorded. 

  

4.5.2 Material sampling and laboratory analysis 

 

4.5.2.1 Soil nutrient measurement 

 

Total N and P were measured in air-dried bulked soil samples (0-15 cm depth) collected 

randomly from five different spots per plot. Sample depth 0-15 cm was considered, as 
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preliminary analysis during the method development stage indicated no significant 

differences in soil chemistry between upper and lower soil horizons. Moreover, plant 

nutrient abstraction takes place in the entire soil volume (both upper and lower layers) 

thus; both soil layers were bulked and used in this study. For total N, analysis followed 

the protocol described in detail in section 2.3.3.4. However, total P determination was 

made by microwave-assisted digestion described in section 2.3.3.3. Soil available P was 

assessed using water extraction technique, as was described in chapter two. The 

procedure and method of analysis followed exactly that given in more detail in section 

2.3.3.5 while soil pH was measured following protocols as mentioned in section 2.3.3.1. 

 

Extractable N was determined by extracting 5 g of sieved (<2mm), homogenised, fresh 

field moist soil with 25ml of 1 % (10g KCl =1000 ml H2O) potassium chloride (KCl) (Allen 

et al., 1989) as 7 % KCl failed to give reliable results. After 2 hours of agitation on a rotary 

shaker, the mixture was filtered first through a Whatman No. 42 paper and then through 

a 0.45 µm syringe filter to remove all soil from the solution. The concentrations of NH4
+-

N and NO3
- -N in the filtrates were measured by ICP and were combined to give a total 

value for extractable N. 

 

Soil organic matter content was determined by Loss-On-Ignition, as described by Allen 

et al., (1989).  1 g of oven-dried (at 105oC) soil was combusted at 550oC for 2hrs. The loss 

of weight upon combustion expressed as the percentage of the original air-dried sample 

weight gave the total organic matter content, as shown below: 

 

𝐿. 𝑂. 𝐼 (𝑊𝑒𝑖𝑔ℎ𝑡 %) =
𝑠𝑜𝑖𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑡 105°C − 𝑠𝑜𝑖𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑡 550°C

𝑠𝑜𝑖𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑡 105°C
 𝑋 100 

           Equation (4) 

 

4.5.2.2  Tissue nutrient measurement 

 

Due to the accidental burning of Ruabon experimental plots in summer 2016 which led 

to considerable reduction in the cover of plant species in the plots, there was little 

biomass of both Calluna and Hypnum to harvest for chemical analysis at the time of the 
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vegetation survey (Table 2.1). Hence, plots were allowed one more year to slightly 

recover from the burn and when sufficient biomass was available, tissue samples of 

Calluna and Hypnum were collected randomly from 5 different spots (bulked to form a 

composite sample) in locations close to where soil cores were sampled. Approximately 

0.5 g samples of oven dried Calluna and Hypnum tissues (60 oC for 48 hours) were 

separately digested, and the P content of the digest determined following protocols 

described in section 2.3.3.3. Tissue N content was measured as mentioned in section 

2.3.3.4. 

 

4.5.2.3  Phosphatase activity assay 

 

The assay was assessed following the protocol as described by Phoenix et al., (2003). For 

Calluna, the assay was determined on approximately 0.5 g fresh weight of 3 cm apical 

shoot while in Hypnum, a few fresh apical shoots (approximately 0.5 g fresh weight 

equivalent) were used for the PME activity. Samples were added separately into a 50 ml 

centrifuge tubes containing 10 ml of 4 mM p-NPP (0.004M p-NPP) in 4 ml buffer (0.1 M 

citric acid and/0.1 M NaOH. The buffer was adjusted to pH of 5.0, to reflect an average 

pH typical of heathland soils, as all studied plant species were sampled from heathlands 

growing on nutrient-poor, acidic soils (pH 3.5 - 6.7). After an hour of incubation, while 

shaking at 200 rpm at 37oC, a subsample (0.2 ml) of the solution was added to 3 ml of 

terminating solution, 0.1 M Tris adjusted to pH 12 with 0.1 M NaOH. Release of p-NP was 

calculated from appropriate standards prepared from a stock solution of 1 mM p-

nitrophenol in 5 ml terminating solution +0.2 ml buffer.  The enzyme activity was 

expressed as nmoles p-NP released per gram dry weight per 60 minutes after drying 

tissues at 75oC for 48 hours at the end of the enzyme assays following the procedure as 

described by Jackson et al.,  (2013) using the equation below: 

 

𝐸𝑛𝑧𝑦𝑚𝑒 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑈) =
𝐹𝑖𝑛𝑎𝑙 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒

(𝐶 𝑥 𝑖𝑛𝑐𝑢𝑏𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 (min) 𝑥  𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)) 
 

 
Equation (5) 

 

Where:  Final absorbance = Sample absorbance – control absorbance, C = Slope of the 

curve  
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4.6 Statistical analysis 

 
The overall effects of N and P treatments (i.e. excluding the recovery plots) on measured 

parameters in the studied upland and lowland heaths were assessed using a mixed-effect 

model with “nlme” function  (Pinheiro et al., 2007) and sequential ANOVA method to 

determine differences between each treatment level. Treatments and blocks were used 

as fixed and random effect variables respectively while the model was fitted using the 

restricted maximum likelihood algorithm to estimate an unbiased variance within the 

fixed effect parameter. A post hoc test using Tukey Honestly significant difference (HSD) 

tests was performed with Lsmeans and lmerTest functions in R (Kuznetsova et al., 2015; 

Lenth and Lenth, 2018) to compare differences between means of significant terms. 

Where there were significance treatment effects, a test for recovery using paired t tested 

of the continually treated and recovery side of each plot was performed in the case of 

the upland heath in Ruabon to determine under which treatment recovery occurred. The 

experimental plots in Budworth have no recovery sides hence; such analysis could not 

be done for the lowland heath.  Additionally, data on parameters such as tissue N 

concentration of H. jutlandicum in the lowland heath, tissue N of Calluna and Hypnum in 

the recovery plots of the upland heath, as well as soil PME activity of both heathlands 

could not be generated due to the sudden closure of Manchester Metropolitan 

University in response to the coronavirus breakout. As not all soil variables satisfied the 

normality assumption for a linear regression model even after transformation, the non-

parametric Kendall’s rank correlation test was used to analyse the relationship between 

soil nutrients and vegetation data (i.e. tissue N and P concentrations and ratios, plant 

cover, species richness and diversity). This was used to assess if soil nutrient 

concentrations and ratios as influenced by nutrient addition reflected nutrient 

availability to plants. To assess differential responses of individual plants to soil nutrient 

availability and stoichiometric ratio, floristic data (i.e. percentage cover of individual 

plants) were related to the measured soil variables using Principal Component Analysis 

(PCA). Soil measurements were used as active variables for the PCA analysis. The 

obtained PCA information was used to predict the cover of individual species shown in 

blue and dashed lines in Figures 4.12 and 4.13 after data normalisation by subtracting 

the mean and dividing by the standard deviation.  
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4.7  Results 

 
4.7.1  Nutrient availability and stoichiometric ratio 

 

4.7.1.1 Soil 

 

Treatment additions significantly (F7, 21 = 4.11, p<0.001) increased soil extractable N in 

the upland heath (Fig. 4.1a) and a paired t test analysis revealed a marginal increase in 

the treated plots relative to the recovery under 120N treatments. There was a 

substantial increase in soil extractable N under 120N+20P treatment but the increase 

was not statistically different between treated and recovery plots (Fig. 4.1a). N addition 

also increased soil P availability under all N treatments in both treated and recovery plots 

relative to the control plots (Fig. 4.2a). Moreover, P addition increased soil available P 

with concentrations varying from 10.7 in the control to 55.1 mg/kg in the 20N+20P plots 

with a marginal significant (F7, 21 = 2.597, p=0.043) difference across treatments (Fig. 

4.2a). 

 

In the lowland heath, plant available N showed an increasing trend across treatments. 

However, this was not statistically significant (F3, 6 =1.02, p=0.448) (Fig. 4.1b) as opposed 

to soil available P which significantly (F7, 21 = 11.63, p< 0.001) increased from 2.82 mg/kg 

in the control to 15.4 mg/kg in the plot receiving P as a single treatment due to P addition 

(Fig. 4.2b).   

 

Figure 4.1:  Soil extractable nitrogen in the top 15 cm of soils across N and P treatments 
in the (a) upland and (b) lowland heaths 

a a 

a 

a 
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Figure 4.2: Soil available phosphorus in the top 0-15 cm of soils (a) upland and (b) lowland 
heaths. Treatments sharing a letter are not significantly different. 
 

Soil N: P ratio on the other hand was significantly (F3, 6 = 5.50, p< 0.05) different across 

treatments with P added as a single treatment significantly reducing N: P ratio (Fig.4.3b) 

in the lowland heath. However, soil N: P ratio tended to increase (F7, 21 =2.03, p=0.099) 

under N treatments in both treated and recovery plots in the upland heath (Fig. 4.3a). 

Figure 4.3:  Soil N: P ratio across N and P treatments in the top 15 cm of soils (a) Upland 
and (b) Lowland heath studied. Treatments sharing a letter are not significantly different. 
 

4.7.1.2 Tissue 

 

Tissue N concentration in Calluna and Hypnum did not differ significantly across 

treatments in the upland heath (F7, 21   = 1.05, p =0.430 for Calluna; F7, 21 =0.120, p =0.99 
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for Hypnum) (Figs. 4.4 a and 4.4 b) and the lack of data in the recovery plots prevented 

test of recovery. However, the result showed that N addition increased the uptake of soil 

P leading to an increased tissue P content in both species particularly under 10N and 20N 

treatments (Fig. 4.4c). P addition also increased tissue P with concentrations ranging 

from 899 (40N plots) to 1311 mg/kg (120N+20P plots) in C. vulgaris and from 436 (40N) 

to 1238 (0N+20P) mg/kg in H. jutlandicum (Figs. 4.4 c and 4.4 d). For C. vulgaris, 0N+20P, 

20N+20P and 120N+20P treatments led to significant increases (F7, 21 = 4.84, p<0.001) in 

Calluna tissue P concentrations. This conformed markedly with Hypnum where P 

treatments also led to a significant (F7, 21 = 5.24 p<0.001) increase in tissue P 

concentration (Fig. 4.4d). Tissue P thus showed recovery in the treated plots under 10N, 

20N+20Pand 120N+20P treatments for Calluna and under 10N and 120N treatments for 

Hypnum. However, N addition significantly (p<0.05) increased Calluna tissue N: P ratio 

under the highest N (120N) treatment but addition of P highly significantly reduced 

Calluna tissue N: P ratio under 0N+20P and 20N+20P treatments (p<0.001 and p<0.0001 

for 0N+20P and 20N+20P treatments, respectively) (Fig. 4.4 e). Similarly, Hypnum tissue 

N: P ratio significantly responded to nutrient addition overall (F7, 21 =10.4, p< 0.0001) with 

N addition increasing tissue N: P ratio by up to 1.08-, 1.29- and 1.4-fold under 20N, 40N 

and 120N treatments (Fig. 4.4 f). In contrast, P addition significantly reduced Hypnum 

tissue N: P ratio where the greatest reduction was observed in the plots receiving P 

added as a single treatment (p<0.0001) (Fig. 4.4 f). 
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Figure 4.4: Nitrogen and phosphorus concentrations and N: P ratios of Calluna vulgaris 
(a, c, e) and Hypnum jutlandicum (b, d, f). Mean values (±SE) of four replicate plots are 
presented. Significant differences between the controls and the treated plots (*, p<0.05; 
**, p<0.01; ***, p<0.001) were evaluated with Tukey test. Treatments sharing a letter 
are not significantly different’. Black arrows show significant differences between the 
treated and recovery sides of each plot (paired-t-test) (i.e. significant or marginal 
recovery).  
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In the lowland heath, there was no significant (F7, 21 = 2.147, p = 0.196) response of tissue 

N in Calluna to nutrient addition (Fig. 4.5 a) but P addition slightly increased tissue N of 

Calluna in the P plot where P was added as a single treatment (Fig. 4.5 a). In contrast, 

Calluna tissue P and N: P ratio significantly responded to nutrient additions (F7, 21 =48.9, 

p < 0.0001 for tissue P; F7, 21 = 28.0, p <0.0001 for N: P ratio) where P addition did increase 

tissue P concentration (Fig. 4.5 b) and decrease tissue N: P ratio (Fig. 4.5 c). N treatment 

tended to increase Calluna tissue N: P ratio.  

 
 

 
 
Figure 4.5: Nitrogen and phosphorus concentrations and N: P ratios of C. vulgaris (a, b, 
c) in the lowland heath. Mean values (±SE) of three replicate plots are presented. 
Treatments sharing a letter are not significantly different. 
 

4.7.2 Responses of Calluna and Hypnum cover to nutrient additions 

 

There was no significant response in percentage cover of Calluna and Hypnum to 

nutrient additions in both heathlands (Mixed model, p>0.05 for both species in both 

heathlands) (Fig. 4.6 a-d). However, in the upland heath, there was a greater Calluna 

cover in both treated and recovery plots under 120N treatment relative to the control. 

Calluna cover tended to show recovery under 20N and 120N treatments (Fig. 4.6 a). 

There was also a greater Hypnum cover associated with all N treatments in comparison 
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to P treatments but cover tended to show recovery only under 120N and 0N+20P 

treatments (Fig. 4.6 b). 

 

In the lowland heath, both N and P additions tended to decrease percentage cover of 

Calluna and Hypnum (Mixed model, p>0.05 for both species) with a greater reduction 

associated with P treatments (Fig. 4.6 c and 4.6 d). 

 
Figure 4.6: Percentage cover of Calluna and Hypnum in the upland heath (Figs.6 a and 6 
b) and the lowland heath (Figs. 6 c and 6 d). Treatments sharing a letter are not 
significantly different. 
 

4.7.3 Response of species cover, species richness and diversity of plant functional 

types to nutrient addition 

 

In the upland heath, lower, higher and total plant cover did not respond significantly to 

N and P treatments (Mixed model, p>0.05 for both species) (Fig. 4.7 a-c). Similarly, 

additions of N and P had no significant effect on species richness of both lower and 

higher plants (Mixed model, p>0.05 for both variables) (Fig. 4.8 a-b). No significant 

recovery of percentage cover and species richness was therefore observed in either 

plant functional type (i.e. lower and higher plant species). However, total plant richness 

significantly responded to nutrient additions (F7, 21 = 4.57, p< 0.001) with approximately 

27 % increase under 120N+20P treatment (Fig. 4.8 c) and showed a marginal decline 

towards the recovery plots (Fig. 4.8 c). Simulated N deposition also significantly reduced 
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total plant richness by 35 and 47 % under 40N and 120N treatment respectively. 

However, addition of P tended to increase total plant richness especially when combined 

with N treatments (Fig. 4.8 c). Total species richness showed no recovery in the upland 

heath. 

 

In contrast, species diversity responded significantly to nutrient addition (F7, 21 = 2.64, p< 

0.039) (Fig. 4.8 d) with 1.6-fold increase under 0N+20P treatment. However, under 40N 

treatments diversity was declined approximately by 33 % (Fig. 4.8 d). Species diversity 

thus, showed significant recovery under P (i.e. 0N+20P) addition in treated plots in the 

upland heath. 

 

 

Figure 4.7: Percentage cover of (a) lower plants, (b) higher plants and (c) total plants 
species across N and P treatment in the upland heaths.  
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Figure 4.8: Species richness of (a) lower plants, (b) higher plants, (c) total plants and (d) 
diversity across N and P treatments in Ruabon experimental plots. Significant differences 
between the controls and the treated plots (*, P <0.05; **, P<0.01) were evaluated with 
Tukey test. Black arrows show significant differences between the treated and recovery 
sides of each plot (paired t test) (i.e. significant or marginal recovery). 
 
 

 

Figure 4.9: Percentage cover of (a) lower plants, (b) higher plants and (c) total plants 
species across N and P treatments in the lowland heath. Treatments sharing a letter are 
not significantly different. 
 
 

Regardless of nutrient type added, plant cover, species richness and species diversity of 

functional types did not vary significantly across treatments in the lowland heath (Mixed 
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model, p>0.05 for both variables) (Figs. 4.9 a-c; 4.10 a-c). However, higher and total plant 

cover had similar patterns of response to nutrient amendments with the control 

treatment showing the highest cover for both functional types (Figs. 4.9 b-c). Due to the 

absence of recovery plots in Budworth experimental site, test of species recovery from 

adverse effects of N deposition could not be performed. However, data suggests that, P 

addition is likely to decrease the cover of higher plants (Fig. 4.9 b), increase lower and 

total plant richness (Figs. 4.10 a and 4.10 c) in the lowland heath. 

 

 

 

Figure 4.10:  Species richness of (a) lower plants, b) higher plants, (c) total plants and (d) 
diversity across N and P treatments in the lowland heath.  Treatments sharing a letter 
are not significantly different. 
 

4.7.4 Tissue surface phosphatase activity  

 

In the upland heath, simulated N deposition increased tissue surface PME activity in C. 

vulgaris with the highest activity observed under the highest N (i.e. 120N) treatment  but 

the increase was only marginally significant (F7,21 = 2.11, p = 0.08)(Fig. 4.11 a).  However, 

P addition consistently decreased PME activity from the combined N and P treatment 

plots to the plot receiving P added as a single treatment (Fig. 4.11 a).  Calluna tissue PME 

activity was therefore reduced by P addition with activity in 0N+20P plots being 54 % less 
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than in control plots.  A test of recovery revealed significant recoveries in Calluna tissue 

PME in the treated plots under 40N, 120N and 120N+20P treatments. 

 

Tissue PME activity in H. jutlandicum did not response significantly to N and P additions 

(F7,21 =1.05, p = 0.428) but consistent lower activity was associated with both N and P 

treatments with the highest reduction in the P plots. (Fig. 4.11 b). Due to the non-

significant response of Hypnum PME activity to nutrient addition, a test for recovery was 

not performed but data showed considerable recovery in Hypnum PME activity under 

10N, 40N, 0N+20P and 120N+20P treatments. 

 

 

 

Figure 4.11: Tissue surface phosphate activity (nmoles p-NP g/dwt /60 minutes) in (a) 
Calluna and (b) Hypnum in the upland heath; (c) Calluna and (d) Hypnum in the lowland 
heath.  
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In the lowland heath, both N and P additions significantly (F3, 6 = 17.4, p = 0.001) reduced 

Calluna tissue PME activity with a greater reduction in the P addition plots (Fig. 4.11 c). 

A similar trend was observed for Hypnum tissue PME activity but the reduction was not 

significant (Fig. 4.11 d). Regardless of tissue type, PME activity in the control plots was 

greater relative to the other treatment plots but a similar range of activity was observed 

in response to the treatments (Figs. 4.11 c and 4.11 d). 

 

4.7.5 Correlation analysis 

 

Tables 4.1, 4.2 and 4.3 show the results of Kendall correlation analyses of tissue nutrient 

concentrations and ratios, plant cover, number of species and tissue PME activity against 

the variables measured in the soil in both the upland and lowland heaths. The results 

revealed weak non-significant correlations between Calluna tissue N and soil extractable 

N (Tables. 4.1 and 4.3), contrary to the highly significant positive correlations between 

Calluna tissue P and soil available P.  There was a significant negative correlation between 

Calluna tissue P and soil N: P ratio in both heathlands. However, the effect was stronger 

in the lowland heath as opposed to the upland heath in both treated and recovery plots 

(Tables 4.1, 4.2 and 4.3). In the upland heath treated plots, soil extractable N significantly 

(tau =.49, p<0.001) increased Hypnum tissue N concentration while Hypnum tissue P 

positively correlated with soil available P (tau = 0.71, p<0.0001) and inversely related to 

soil N: P ratio (Table 4.1). As expected, soil available P significantly (tau = -.48, p<0.001) 

decreased Hypnum tissue N: P ratio but a marginal increase in Hypnum tissue N: P ratio 

resulting from increased soil extractable N led to a significant increase in Hypnum tissue 

N: P ratio as soil N: P ratio increased. However, lack of data precluded analysis of Hypnum 

tissue nutrients with soil nutrient concentrations in the lowland heath (Table 4.3). Thus, 

soil available P and soil N: P ratio were the variables that highly correlated with tissue P 

and tissue N: P ratio of both species in the upland heath and with Calluna tissue P and 

tissue N: P ratio in the lowland heath. This significant trend for soil N: P ratio to increase 

Calluna N: P ratio and to decrease tissue P concentration with a similar trend observed 

for Hypnum tissue nutrient concentration suggests that, plant tissue nutrient 
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concentrations and N: P ratios in both heathlands may be highly controlled by soil 

available P (i.e. P limitation) not N.  

 

When soil variables were correlated with individual species cover of Calluna and 

Hypnum, the percentage cover of Calluna marginally (tau =.31, p =.08) related to soil N: 

P ratio in the treated plots but significantly (tau = .39, p < 0.05) correlated with soil N: P 

ratio in the recovery plots in the upland heath (Tables 4.1 and 4.2). However, there was 

no significant correlation between Hypnum cover and soil variables. In the lowland 

heath, Calluna cover positively significantly correlated (tau =.74, p<0.001) with soil N: P 

ratio while Hypnum cover was marginally decreased by soil available P but was not 

related to soil extractable N and soil N: P ratio (Table 4.3). No significant correlations 

were observed among soil extractable N, available P and percentage cover of functional 

plant types in both heathlands (Tables 4.1, 4.2 and 4.3) with the exception of marginally 

significant  (tau = -.33, p< 0.07) relationship between lower plant cover and soil available 

P in the upland heath treated plots (Table 4.1). Increased soil N: P ratio on the other hand 

significantly increased both higher and total plant cover but did not relate to lower plant 

cover in the lowland (Table 4.3). In the upland heath recovery plots, increased soil N: P 

ratio is likely to increase the cover of both lower and total plants but not higher plants 

while no relationship among these variables is likely to occur in the treated plots (Table 

4.1).  

 

Species richness on the other hand, failed to relate significantly to soil variables 

measured in both heathlands (Tables 4.1 and 4.3). However, in the lowland heath, 

diversity was marginally increased by soil available P while both soil extractable N and 

soil N: P ratio had no significant correlation with species diversity. In the upland heath 

treated plots, increased soil N: P ratio significantly declined species diversity suggesting 

that P alleviation in both heathlands may potentially increase species diversity further 

validating the results of the mixed model analysis. 

 

For both species, soil extractable N tended to decrease tissue PME activity in the lowland 

heath (Table 4.3) but increased it in the upland heath treated plots (Table 4.1). However, 

there was a significant trend for both Calluna and Hypnum tissue PME activity to decline 
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in response to an increased soil available P and to increase in relation to an increased in 

soil N: P ratio in both heathlands (Tables 4.1, 4.2 and 4.3). However, in the upland, such 

a significant trend was only observed for Calluna tissue PME activity but not for Hypnum 

(Table 4.1). Tissue nutrient concentrations and ratios also had no significant effects on 

tissue PME activity of both species in the upland heath. In contrast, Calluna PME activity 

was significantly (tau = -.78, p<0.001) inhibited by tissue P while activity was highly 

stimulated by tissue N: P ratio in the lowland heath (Table 4.3). For Hypnum, tissue P had 

an effect on tissue PME activity while the absence of data prevented analysis with tissue 

N and N: P ratio (Table 4.3). 
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Table 4.1: Correlation among vegetation and soil parameters 

 Soil extractable  N Soil available P Soil N:P ratio 

Upland heath treated plot tau p-value tau p-value tau p-value 

Tissue nutrient concentration 

Calluna tissue N .21ns .25 -.01ns .94 .05ns .79 

Calluna tissue P .09ns .63 .45* .01 -.36* .042 

Calluna tissue N:P ratio .04ns .85 -.18ns .33 .36. .063 

Hypnum tissue N .49** .004 -.05ns .79 .25ns .17 

Hypnum tissue P -.51ns .003 .71*** .0001 -.6*** .0004 

Hypnum tissue N:P ratio .33• .062 -.48** .006 .53** .001 

Plant cover 

Individual species cover 

 

C. vulgaris .088ns 0.63 -.12ns 0.5 .31• .08 

H.jutlandicum .17ns .35 -.03ns .87 .26ns .15 

Functional group type  

Lower plants cover -.18ns .32 -.33• .07 .17ns .35 

Higher plants cover -.01ns .95 .12ns .52 -.07ns .64 

Total plants cover -.11ns .55 -.12ns .53 .05ns .79 

Number of species 

Species richness .13ns .51 .03ns .88 -.19ns .31 

Diversity index -.21ns .13 .22ns .24 -.43* .014 

Tissue PME activity 

C. vulgaris PME .16ns .39 -.39* .026 .54** .002 

H.jutlandicum PME .11ns .53 -.23ns .21 .10ns .58 

Correlations of tissue PME activity with tissue nutrient concentrations and ratios  

Tissue PME activity Tissue N Tissue P Tissue N :P  

 tau p-value tau p-value tau p-value 

C. vulgaris PME .28ns .12 -.12ns .52 .24ns .52 

H.jutlandicum PME .3ns .98 -.36ns .049 .30ns .10 

ns: not significant; *: p<0.05; **: p<0.01; ***: p<0.001; r is the standardised correlation 

coefficient. 
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Table 4.2: Correlation among vegetation and soil parameters 

 Soil extractable  N Soil available P Soil N:P ratio 

Upland heath Recovery 

 plot 

tau p-value tau p-value tau p-value 

Tissue nutrient concentration 

Calluna tissue N - - - - - - 

Calluna tissue P .03ns .87 .14ns .45 -.38* .03 

Calluna tissue N:P ratio - - - - - - 

Hypnum tissue N - - - - - - 

Hypnum tissue P -.1ns .59 .35• .05 -.45** .009 

Hypnum tissue N:P ratio - - - - - - 

Plant cover 

Individual species cover 

 

C. vulgaris .04ns .82 -.15ns .40 .39* .03 

H.jutlandicum .07ns .72 -.15ns .42 .33• .07 

Functional group type  

 

Lower plants cover .02ns .90 -.20ns .27 .32• .08 

Higher plants cover .00ns .99 .10ns .59 .26ns .15 

Total plants cover .01ns .94 -.10ns .6 .35* .04 

Number of species 

Species richness -.19ns .31 -.06ns .76 -.16ns .37 

Diversity index -.16ns .39 .02ns .9 -.12ns .52 

Tissue PME activity 

C. vulgaris PME .057ns .76 -.26ns .16 .15ns .42 

H.jutlandicum PME -.076ns .68 .01ns .95 .21ns .25 

Correlations of tissue PME activity with tissue nutrient concentrations and ratios  

Tissue PME activity Tissue N Tissue P Tissue N :P  

 tau p-value tau p-value tau p-value 

C. vulgaris PME - - -.18ns .34 - - 

H.jutlandicum PME - - -.34• .06 - - 

ns: not significant; *: p<0.05; **: p<0.01; • p<0.10; r is the standardised correlation 

coefficient. 
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Table 4.3: Correlation among vegetation and soil parameters 

 

Lowland heath 

Soil extractable  N Soil available P Soil N:P ratio 

tau p-value tau p-value tau p-value 

Tissue nutrient concentration 

Calluna tissue N -.14ns 0.66 .36ns .25 0.23ns 0.49 

Calluna tissue P -.02ns 0.94 .89*** .0001 -0.76** .007 

Calluna tissue N:P -.04ns .91 - .79** .002 0.77** .0037 

Hypnum tissue N - - - - - - 

Hypnum tissue P - - - - - - 

Hypnum tissue N:P  - - - - - - 

Plant cover 

Individual species 

C. vulgaris cover -.14ns 0.67 -.4ns .20 .74** .006 

H.jutlandicum cover .27ns 0.39 -.57• 0.05 .45ns .14 

Functional group type 

Lower plants cover -.07ns 0.82 .03ns .93 .095ns .77 

Higher plants cover -.12ns 0.71 -.49ns .11 0.79** .002 

Total plants cover -.14ns 0.66 -.28ns .37 0.61* .035 

Number of species 

Species richness -.12ns .72 .39ns .21 -.28ns .41 

Diversity index -.46ns 0.13 .53• .08 -.21ns .53 

Tissue PME activity 

Calluna  tissue PME -.3ns .35 -.7* .01 0.6* .04 

Hypnum tissue PME -.23ns .48 -.71* .01 0.51• .07 

 

Correlations of tissue PME activity with tissue nutrient concentrations and ratios  

Tissue PME activity Tissue N Tissue P Tissue N :P  

 tau p-value tau p-value tau p-value 

Calluna PME -.26ns .42 -.78** .0027 .72** .008 

Hypnum tissue PME - - -.00ns .98 - - 

ns: not significant; *: p<0.05; **: p<0.01; ***: p<0.001; • p<0.10; r is the standardised 

correlation coefficient. 
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4.7.6 Ordination of potential explanatory variables and species responses to soil 

nutrient availability and stoichiometric ratio 

 

The PCA ordination diagrams for species responses to soil nutrient concentrations and 

ratios in both heathlands are presented in Figs. 4.12 and 4.13, for the upland heath 

treated and recovery plots and the lowland heath respectively. The radius of the 

equilibrium circle represents a variable that would contribute equally to all dimensions 

of the PCA space. Thus, for any given pair of axes, the variable that has vector longer 

than the radius makes a higher contribution than average. However, from the PCA plots 

presented, variables made relatively similar contributions to the PCA space (Figs. 4.12 

and 4.13). The correlations between the original seven soil variables along the three 

principal component axes are shown in Table 4.4. For the purposes of this study, 

correlations above 0.5 are deemed large in magnitude and farthest from zero in either 

direction, thus important. These larger correlations are in boldfaces in the table. 

According to the PCA ordination plots, the eigenvalue of the first three ordination axes 

explained 85.4% of the total variance in soil properties in the upland heath treated plots 

(Fig. 4.12 a). Specifically, the first principal axis (PC1) accounted for 40.7 % of the total 

variance. This component axis strongly and positively correlated with soil pH, organic 

matter, soil total and extractable N, soil N: P ratio and predicted well the cover of 

Brachythecium rutabulum (correlation coefficient = 0.62, p<0.0001) (Fig. 4.12 a).  The 

second component explained 34.4 % and was highly positively correlated with soil total 

and available P and inversely related to soil N: P ratio (Table 4.4). This component axis 

was not related to the cover of any specific species but it did indicate an increased cover 

of Vaccinium myrtillus as soil P availability increased. The third component accounted for 

10.3 %, which positively correlated with soil pH and did not relate to the cover of any 

species. Mover, percentage cover of the remaining species is likely to decline as soil 

nutrient availability increases in the treated plots of the upland heath (Fig. 4.12 a). 
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Table 4.4: Coordinates for potentially explanatory variables in relation to the first three 
principal components of total variation for both heathlands studied 

 

Soil variables Upland heath 
(Treated) 

Upland heath 
(Recovery) 

Lowland heath 

 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 

pH 0.63 -0.23 0.72 0.32  0.17  0.88 -0.49 -0.14 0.71 

LOI 0.83 0.40 -0.09 0.96 -0.06 -0.18 0.93 0.17   0.19 

Soil available P 0.08 0.91 -0.15  0.05  0.84 -0.35 -0.25 0.83 -0.23   
Extractable N 0.68 -0.32 -0.04   0.54  0.24 0.22 -0.29 -0.16 0.71   
Total P 0.03 0.94 0.23  0.36   0.86 -0.02 0.71 0.55 0.40 

Total N 0.90 0.32 -0.15 0.98 -0.01 -0.09 0.95 -0.23 0.09   

Soil N:P 
 ratio 

0.69 -0.53 -0.31 0.75 -0.61 -0.15 0.27 -0.90 -0.20   

 

 

 

Figure 4.12: Ordination of soil and vegetation measurements on the first three principal 
components of total variation in the a) upland heath treated plots, b) upland heath 
Recovery plots. soil_N: P = soil N: P ratio; ext_N = soil extractable N; pH= soil pH; soil_totN 
= soil total N; LOI = organic matter; water_AvP = soil available phosphorus; soil_totP = 
soil total phosphorus 
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For the recovery plots, the first three principle axes explained 84.2 % of the total variance 

in the soil properties (Fig. 4.12 b) with the first axis accounting for 42.3 %, which was 

strongly positively correlated with four of the original soil variables (Table 4.4). The first 

principal component increases with increasing organic matter, soil total and extractable 

N and soil N: P ratio (Table 4.4) suggesting that these four soil properties vary together. 

Furthermore, the first component (PC1) most strongly correlated with soil total N (0.98) 

indicating that, this component axis is primarily a measure of soil total N. However, it did 

not predict well the cover of any species. The second component accounting for 27.4 % 

of the total variation increased with soil total and available P and decreased with soil N: 

P ratio. As with PC1, the second component axis (PC1) also failed to predict plant cover 

although Hypnum jutlandicum and Campylopus flexuosus cover were strongly associated 

with soil N: P ratio (Fig. 4.12 b). The third component axis increased with only soil pH 

indicating that, an increase in soil pH could potentially provide a good soil condition for 

growth leading to increase cover of plants. 

 

In the lowland heath, the first, second and third component axes accounted for 84.8 % 

of the total variance in soil properties (Fig. 4.13). The first component explained 38.8 % 

of the total variance and highly positively correlated with organic matter, soil total P and 

total N and related to Calluna cover (correlation coefficient =.76, p<0.01). The second 

and third components explained 27.5 % and 18.5 % of the total variance respectively. 

The second component positively correlated with both soil total P and available P and 

predicted the cover of Kindbergia praelonga (correlation coefficient =.80, p<0.01). 

However, it inversely related to soil N: P ratio while the third component had strong 

positive correlations with soil pH and soil extractable N. 
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Figure 4.13: a) Ordination of soil and vegetation measurements on the first three 
principal components of total variation in the lowland heath, b) Eigenvalues of soil 
measurements. soil_N: P = soil N: P ratio; ext_N = soil extractable N; pH= soil pH; 
soil_totN = soil total N; LOI = organic matter; water_AvP = soil available phosphorus; 
soil_totP = soil total phosphorus 
 
 
4.8 Discussion 

 

The study considered analysis of soil-plant tissue nutrient (N and P) availabilities and 

stoichiometric ratios, P additions, percentage cover, species richness and recovery from 

simulated N deposition used as a measure of lower plant resilience to N pollution. 

 

4.8.1 Effects of nutrient application on tissue nutrient concentrations 

 

Nutrient concentrations in tissues differed markedly between Calluna and Hypnum in 

both heathlands. In the upland heath treated plots, tissue samples taken from the 

control plots had Calluna tissue N concentration 48 % higher than that of Hypnum. The 

mean tissue N concentration in Calluna was 1.62 % greater than the 1.21 % measured in 

Hypnum but was not statistically different (F 1, 21 = 1.05, p< = 0.430) across treatments. 
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Addition of N did not significantly increase tissue N concentrations in both species (Figs. 

4.4 a and 4.4 b). Only 5 and 29 % increases in tissue N concentrations were obtained for 

Calluna and Hypnum respectively under the highest N (120N) treatments. Thus, the 

results are associated with modest N accumulation in tissues of plants but with relatively 

moderate tissue N: P ratios (Figs. 4.4 e, 4.4 f and 4.5 c). Although N addition led to non-

significant increase in tissue N concentration the result still supports earlier work 

undertaken on the neighbouring original experiment where added N led to a significant 

increase in Calluna tissue N concentration and very high N: P ratio (Carroll et al., 1999). 

However, the results suggest the possibility of greater loss of tissue N concentration due 

to the accidental fire (Allen, 1964) that led to complete loss of plant biomass on the plots.  

For Calluna, this marginal tissue N accumulation may have beneficial effects on its 

growth at the early stages of development, especially as it recovers from the effects of 

the accidental fire. This is because regenerating stands of Calluna in the ‘pioneer growth 

phase’ (Gimingham, 1972) is characterised by higher growth rates and greater demand 

for nutrients, particularly bioavailable N (Power et al., 1998a; Carroll et al., 1999).  In 

Hypnum, the increased tissue N concentrations (non-significant trend) by simulated N 

deposition confirms its ability to absorb and retain nutrient from the atmosphere 

(Malmer et al., 2003; Carfrae et al., 2007; Arroniz-Crespo et al., 2008).  

 

In the lowland heath, similar non-significant effects of N addition on Calluna tissue N 

occurred and lack of data did not allow such assessment on Hypnum tissue N to be 

performed. Although results are consistent with findings of a study in a similar ecosystem 

in Surrey, UK (Power et al., 1995), where added N resulted in small non-significant 

increases in tissue N concentration of Calluna (concentration below 1%), data in this 

study suggests a relatively high Calluna tissue N concentration (tissue N content mostly 

above 1 %). However, marked tissue N responses have been observed in other studies 

for Calluna treated with increased N deposition in the field (Uren et al., 1997; von 

Oheimb et al., 2010).  

 

P addition had opposite effects, significantly increasing tissue P concentration and 

decreasing tissue N: P ratios in Calluna and Hypnum in both heathlands (Fig. 4.4 for the 

upland heath and Fig. 4.5 for the lowland heath) suggesting that, P was readily taken up 
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by both plant species. The combined increased tissue and soil P concentrations by N 

addition (Fig. 4.2 a; Fig. 4.4 c) strongly suggests that N addition increased the availability 

and uptake of P (Rowe et al., 2008; Jones and Power, 2012). 

 

4.8.2 Responses of soil nutrient concentrations to N and P additions 

 

As with tissue nutrient concentrations, soil nutrients had varied responses to nutrient 

addition with added N significantly increasing soil N content in the upland heath similar 

to the observation made by Pilkington et al., (2005) although measurement were made 

in different soil layers (top 15 cm soil layer in current study, 0-2 cm layer studied by 

Pilkington et al., (2005).  Non-significant increase in response to N addition was observed 

in the lowland heath (Fig. 3.1) further suggesting increased N loadings by N deposition 

in the lowland heath. However, P addition had a positive effect on soil P concentration 

in the lowland heath and decreased soil N: P ratio but with a marginal increase in soil P 

concentration in the upland heath (Fig. 4.2 b). However, the results confirm findings of 

Nielsen et al., (2009) who reported an enhanced soil available N and P by nutrient 

addition. In the upland heath, the relatively less soil responses to nutrient addition might 

have been caused by the accidental burning of the plots as burning has the potential to 

cause loss of plant nutrients (Allen, 1964) while in the lowland heath, it may be 

presumably due to the effects of high N loadings in the plots. 

 

Accidental fires commonly occur in heathlands during summer, although in the UK, 

controlled burning is one of the management practices adopted for the management of 

heathlands to ensure Calluna dominance of the plant community as the practice leads 

to substantial removal of accumulated N from the system (Barker et al., 2004; Jones and 

Power, 2015). Accidental fires involve a high temperature (Allen, 1964), thus they can 

sometimes burn the litter layer and due to their unpredictability, the amount of nutrient 

loss is difficult to quantify. Thus, concerning the burning of the experimental plots in the 

upland heath, it is difficult to account for its effects on nutrient loss both in tissues and 

in soils as well as its detrimental effects on loss of plant cover and species richness in this 

study. 
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4.8.3 Soil-plant stoichiometric responses to nutrient addition 

 

There was a different pattern of response of tissue N: P ratio to N and P fertilisation in 

both heathlands. Tissue N: P ratio was thus positively affected when only N was added 

and was negatively affected when P was applied. A similar pattern of response was 

obtained for soil N: P ratio in both heathlands. For Calluna, only the highest N (120N) 

treatment increased tissue N: P ratio showing a value of 20:1 compared to 18:1 in the 

control plots in the upland heath treated plots (Fig. 4.4 e). For Hypnum, tissue N: P ratio 

was clearly increased by N treatments with the control plots showing values of  23:1 

relative to 32:1 in the highest N treatments (Fig. 4.4 f)(recovery plots had no data on 

tissue N for both species).  

In the lowland heath, measurements showed values of 16:1 in the 60N treatments and 

14:1 in the control plots for Calluna (Fig. 4.5 c). There was no data for Hypnum tissue N 

in the lowland heath and all P treatments decreased Calluna and Hypnum tissue N: P 

ratios in both heathlands.  According to the threshold values suggested by Güsewell 

(2004) for higher plants (N: P ratio < 10 for N limitation) and (N: P ratio < 20 for P 

limitation) and that proposed by Bragazza et al., (2004) for bryophytes (N: P ratio of 30 - 

representing transition from N to P limitation), the tissue N: P ratios in the control plots 

in both heathlands were within the proposed threshold limits for both vegetation types. 

A similar trend was observed for soil N: P ratio indicating that both heathlands may be 

co-limited by N and P.  In both heathlands, the positive correlations among Calluna and 

Hypnum tissue P and soil available P and between tissue and soil N: P ratios (Tables 4.1, 

4.2, 4.3) suggest a direct relationship between tissue and soil nutrient concentrations 

and stoichiometric ratios. Moreover, the increased tissue P concentrations leading to a 

significant reduction in tissue N: P ratios of both vegetation types as soil N: P ratio 

increased clearly indicates that, plant tissue P reflected soil P availability. However, tissue 

N concentrations did not reflect soil extractable N with the exception of Hypnum tissue 

N in the upland heath treated plots (Table 4.1). This positive response of Hypnum tissue 

N to soil extractable N confirms the findings of Ayres et al., (2006) who demonstrated 

that mosses are able to derived N from their substrates in addition to their ability to 

acquire nutrients from the atmosphere (Phuyal et al., 2008). 
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4.8.4 Effects on percentage cover, species richness and diversity of individual species 

and functional plant types to nutrient addition  

 

Despite the regular treatment of the experimental plots with a range of concentrations 

of N and P fertilisers (Table 2.1), there were no significant increases in the overall cover 

of C. vulgaris and H. jutlandicum (Figs. 4.6 a and 4.6 b) as well as the cover of plant 

functional types (Fig. 4.7), although relative cover of Vaccinium myrtillus, Dicranum 

scoparium, Pleurozium schreberi and Brachythecium rutabulum increased. However, N 

addition tended to increase the cover of Hypnum (Fig. 4.6 b), leading to slight increases 

in lower and total plant cover (Figs. 4.7 a and 4.7 c) but such was not observed in the 

lowland heath (Fig. 4.6 d). This result thus differs from observations made in other 

studies where the cover of Calluna responded markedly to N additions in both upland 

(Pilkington et al., 2007) and lowland (Power et al., 1998a) heaths. Significant increases in 

the cover of Hypnum was also observed upon addition of N (Pilkington et al., 2007). The 

non-significant responses of plant cover to nutrient addition observed in the upland 

heath was unsurprising because both species were slowly regenerating from the effects 

of the accidental fire. Barker et al., (2004) made a similar observation from a simulated 

accidental fire in a lowland heath in Surrey, southern England. 

  

In the lowland heath, the absence of a cover increase in response to nutrient addition 

may be due to several reasons as stated by Carroll et al., (1999), which include increasing 

N load of the treated plots, increased N deposition and age-related change in Calluna 

canopy structure. These factors as noted by Carroll et al., (1999) cause N saturation of 

the system and lead to deficiencies of other nutrients, including P. However, in-spite of 

non-significant responses of tissue N concentration to N addition, there was no clear 

evidence of increased N loadings in the lowland heath. This is supported by the fact that, 

when plant cover and species richness were correlated with soil N and P nutrient 

availability, both soil variables did not relate significantly to species cover nor species 

richness of plant functional types as well as the cover of Calluna and Hypnum (Figs. 4.6 

a-d, 4.7 a-c). It is therefore difficult to evaluate the possibility of N saturation in the 

lowland heath although a prediction by Evans et al., (2006) indicates a high N leaching 
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rate in that same nutrient addition experimental site, which was attributed to a high 

organic matter decomposition due to the relatively dry and warm conditions as well as 

the freely-drained nature of the sandy soils at the site.  

 

In both heathlands, species richness of higher and lower plants also failed to respond to 

N and P additions suggesting that their growth may be limited by different nutrients 

either than N or than P limitations. However, the significant reduction in total species 

richness in response to N addition particularly under 40N and 120N treatments (Fig. 4.8 

c) supports the observations made from gradient studies conducted to investigate the 

impacts of N deposition on UK heathlands (Edmondson et al., 2010; Maskell et al., 2010; 

Field et al., 2014). In these studies, significant reductions in species richness with 

increasing N deposition were reported in both upland and lowland heaths. The decline 

in species diversity under 40N treatments in the upland heath supports the claim that N 

availability reduces species diversity in heathlands (Roem and Berendse, 2000; Roelofs, 

1986). 

 

P addition even tended to decline the cover of both Calluna and Hypnum relative to N 

enrichment in both heathlands (Figs. 4.7 a-c for upland heath; 4.9 a-c for lowland heath). 

This is likely to be a reflection of P being a factor of species lost particularly in the lowland 

heath although in comparison to N, P appeared to be limiting judged from the positive 

responses of tissue P in both species to added P in both heathlands (Figs. 4.4 c, 4.4 d and 

4.5 b).  The significant increase in species diversity with P availability in the upland heath 

(Fig. 3.8 d) with no such effects in the lowland heath (Fig. 4.10 d) further suggests that P 

may be limiting in the upland heath. However, stiles et al.,(2017) examined plant 

responses to P addition and found a negative relationship between P availability and 

species diversity in UK heathlands. 

 

4.8.5 Tissue surface phosphatase activity 

 

Phosphate enzymes catalyse the hydrolysis of phosphatase esters, causing the release 

of orthophosphate and hence increase the available P in the immediate environments. 
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It has been shown to vary in response to P requirements (Phoenix et al., 2003; Turner et 

al., 2001). In this study, tissue PME activity in Calluna and Hypnum was less responsive 

to N treatments in both heathlands (Figs. 4.11 a-b and 4.11 c-d) and also least sensitive 

to changes in tissue and soil extractable N concentrations judged by the weak strength 

of correlations among these variables (Tables 4.1, 4.2 and 4.3). These further emphasise 

the relatively weak effects of N addition on both vegetation types in the studied 

heathlands.  Although there is not much evidence to support the hypothesis that 

enhanced N availability leads to increased PME activity, the marginal increase in Calluna 

tissue PME activity in response to N addition in the upland heath conforms to the general 

view that N availability causes an increase in P demand (Phoenix et al., 2003; Turner et 

al., 2001). Studies on Calluna tissue PME activity in heathlands have mostly concentrated 

on its litter, roots and substrate (Pilkington et al., 2005; Jones and Power, 2012). Thus, 

Calluna tissue PME activity assessed in this study appears to the first of its kind. However, 

it did not respond significantly to the stimulatory effects of N addition. For Hypnum, N 

addition tended to reduce tissue PME activity, which is in contradiction to the findings 

of other studies that found an overall stimulatory effect of N additions on Hypnum 

surface PME activity where about 30 % increase in tissue PME activity was reported in 

an ombrotrophic bog in the UK (Phuyal et al., 2008).  

 

By contrast, PME activity was highly sensitive and more responsive to the P treatments 

as the addition of P dramatically inhibited PME activity of both species in both heathlands 

(Fig. 4.11), presumably as a result of increased tissue P concentrations (Figs. 4.4 c and 

4.4 d, Fig. 4.5 d). Several studies have found similar results where increased tissue P 

resulting from P addition significantly suppressed PME activity in different species in a 

range of habitats (Phoenix et al., 2003; Turner et al., 2003; Arroniz-Crespo et al., 2008; 

Phuyal et al., 2008).  However, this inhibitory effect was better expressed on Calluna 

tissue PME activity in the lowland heath than in the upland heath in both treated and 

recovery plots (Tables 4.1, 4.2 and 4.3) further suggesting possible high N loadings in the 

lowland heath. PME activity in Calluna decreased with an increased in tissue and soil P 

concentrations but increased with increased soil N: P ratio. This indicates that the 

availability of soil P may also repress phosphomonoesterase enzyme production in 

Calluna.   When N was added, tissue P concentration of Calluna and Hypnum increased 
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under some of the N treatments (Figs. 4.4 c, 4.4 d and 4.5 a) presumably as a 

consequence for efficient utilisation of excess N for growth (Vitousek, 2010; Carfrae et 

al., 2007). Although, the cause of inhibition of PME activity in Hypnum in both heathlands 

and in Calluna in the lowland heath is not clearly known, this N-mediated increased in 

tissue P concentration may account in part for PME activity inhibition in tissues of both 

vegetation types. 

 

4.8.6 Responses of species composition to soil nutrient availability 

 

Principal component analysis visually explained the relationships between soil properties 

and species composition. In the upland heath, the first PCA ordination axis showed that 

soil pH, organic matter, soil total and extractable N and soil N: P ratio were related and 

for the treated plots, these variables had significant effects on the percentage cover of 

Brachythecium rutabulum. This suggests that an increased in soil N resulting from high N 

deposition would be the principal factor explaining variation in species composition 

largely increasing the cover of Brachythecium rutabulum. On the contrary, the second 

component showed strong positive correlations with soil total and available P and 

negative correlation with soil N: P ratio (Table 4.4) confirming the results of the mixed 

model analysis suggesting that an increased in soil P may be available for plant uptake, 

which may principally increase the cover of Vaccinium myrtillus in the treated plots. 

However, soil N and P availability may limit the cover of other species. This also further 

confirms the results of the Kendall’s correlation analysis, which revealed negative 

correlations (non-significant trend) among soil extractable N, soil available P and the 

cover of Calluna and Hypnum (Tables 4.1 and 4.2). There was no recovery of plant species 

in the recovery plots as principal axes failed to relate to the cover of species although 

there were some indications that recovery of Hypnum jutlandicum, Campylopus 

flexuosus and Vaccinium myrtillus may be related to soil P and N: P ratio.  

 

In the lowland heath, organic matter, soil total P and total N were shown by the first 

principal axis as the important soil properties required to increase the cover of Calluna 

evident from the positive correlations among these variables and the first principal axis. 
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Soil total P, available P and soil N: P ratio were explained by the second principal axis 

similar to the observation made in the upland heath suggesting that soil N and P have 

opposite effects on plant cover but their effects are consistent regardless of the 

heathland type.  

 

4.8.7 Species recovery from N deposition effects 

 

In relation to P availability aiding the recovery of lower plants from the effects of N 

pollution and thus resilience to N deposition, the result suggests absence of species 

recovery from the simulated N deposition overall, although, in the upland heath, there 

were some indications of species recovery across treatments. It is likely that the 

accidental fire, which led to almost total destruction of plant biomass in the plots highly 

influenced this observation contributing immensely to the lack of lower plant recovery 

from the adverse effects of N deposition. Other N enrichment studies in heathlands also 

suggest that negative impacts of N deposition on lichen cover, Calluna growth and 

flowering  and litter nutrients after seven to eight years cessation of simulated N 

deposition may be non-reversible (Edmondson et al., 2013; Power et al., 2006). Thus, by 

increasing P availability to reverse N-driven impacts on vegetation may not lead to less 

competitive species replacing N-dominant ones that might have already established. This 

suggests that, an immediate change in species composition is unlikely to occur, which 

was also evident from non-invasion of grass species at both sites although in the lowland 

heaths at Budworth, grazing by rabbits may play a key role preventing a change in species 

composition.  

 

4.9 Conclusion 

 

Overall, N additions significantly enhanced soil extractable N in the upland heath but not 

in the lowland heath. In contrast, P addition increased soil available P and reduced soil 

N: P ratios in both heathlands. As a consequence, there were non-significant tissue N 

responses to N deposition while tissue P and tissue N: P ratio were very sensitive to P 

addition suggesting that in both heathlands high N deposition is likely to increase N 
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loadings relative to P in the near distance future. However, tissue and soil N and P 

stoichiometric responses to nutrient addition suggest N and P co-limitation in both 

heathlands. In addition, there were direct relationships between tissue and soil nutrient 

concentrations and stoichiometric ratios in the studied heathlands. Nutrient additions 

did not relate to species cover or species richness, and there was no indication of lower 

plants recovery from the adverse effects of N deposition. In general, recovery of plant 

species from N deposition may not be related to soil P availability. However, there were 

indications that recovery of Hypnum jutlandicum, Campylopus flexuosus and Vaccinium 

myrtillus may be related to soil P and N: P ratio. Evidence of adverse effects of N 

deposition on species composition in both heathlands was less clear, but the addition of 

N marginally stimulated tissue surface PME activity in Calluna and Hypnum, while P 

addition showed opposite effects. 
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5 CHAPTER FIVE 

Soil-plant N and P concentrations and ratios across British 

Calluna-dominated heaths: relationships with geology, climate 

and N deposition 

 

5.0  Introduction 

 
Heathland ecosystems are expected to be sensitive to nutrient input as they are highly 

limited mainly by nitrogen (N) and phosphorus (P). N enrichment, in particular, increases 

productivity and biomass accumulation in heathland vegetation (Power et al., 1995; 

Carroll et al., 1999; Power et al., 1998a) and strongly impacts on phosphatase enzyme 

activity in the P-limited heathland soils (Pilkington et al., 2005) increasing the availability 

and uptake of P (Jones and Power, 2012) to keep N: P ratio constant in plants and soils. 

P, on the other hand, is reported to enhance the growth of lower plants (mosses and 

lichens) even in the face of high N deposition (Pilkington et al., 2007). Contrary to the 

beneficial effects of these two nutrient elements on heathland vegetation, N and P 

enrichments have been shown to be major drivers of species richness and diversity loss 

in heathlands (Maskell et al., 2010; Bobbink and Hettelingh, 2010) and other vegetation 

types such as grasslands (Duprè et al., 2010; Ceulemans et al., 2014; Stiles et al., 2017). 

 

Underlining reason may be that, individual plant species either higher (vascular) or lower 

(non-vascular) plants response differently to nutrient enrichment (De Schrijver et al., 

2011; Gordon et al., 2001) leading to their contrasting responses to N and P fertilisation. 

For instance, Caporn et al., (2014) demonstrated species-specific responses of 

bryophytes to N deposition, with the abundance of Campylopus introflexus and 

Kindbergia praelonga increased and that of Hycolonium splendens and Pleurozium 

schreberi decreased as N deposition increased. A fertiliser experiment (100 kgha-1 yr-1 of 

N and P) of Potter et al., (1995) also showed increased biomass of Polytrichum commune 

and a decreased biomass of Hylocomium splendens with high N deposition.  However, 
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the relative contributions of N and P (i.e. N: P stoichiometric ratio) to species lost still 

remains poorly understood and has not been thoroughly investigated particularly across 

British heathland communities along N deposition gradient under different climatic and 

geologic conditions. Jones and Power, (2012) investigated heathland responses to N 

deposition against background P availability across England, but the study only 

considered sites in lowland heaths along relatively a narrower range of geographic, 

geologic and climatic conditions. The study found tissue N: P ratio was not a consistent 

indicator of plant responses to N deposition input confirming findings of earlier surveys 

by  Rowe et al., (2008) and  Power and Collins, (2010). However, it is, difficult to establish 

if such observations are also apparent across Great Britain (i.e. England, Wales and 

Scotland) where a wider range of edaphic conditions can greatly influence plant 

responses to N deposition. In addition, responses of upland heaths to N deposition as 

modified by natural gradient of P availability are likely to differ from that of lowland 

heaths as upland vegetation characterised by higher altitudes are largely exposed to 

relatively high N both through wet deposition and direct deposition of cloud droplets 

(known as “occult deposition”) (Leith et al., 1999; Hicks et al., 2000; Kirkham, 2001) 

compared to the surrounding lowland areas. This also has the potential to alter plant and 

soil nutrient concentrations and ultimately change community composition and 

ecosystem functions. 

 

N deposition undoubtedly drives species loss (Stevens et al., 2006) and research suggests 

that it also relates to soil and tissue N: P ratios indicating either N or P limitation in a wide 

range of habitats (Kirkham, 2001; Wassen et al., 2005; Venterink, 2011). However, the 

effects of cumulative N deposition (CuNdepo) could be more important for species 

assemblage in terrestrial ecosystems because greater biodiversity loss can be driven by 

long-term N deposition input (Duprè et al., 2010). A significant loss of species can also 

occur at the lowest cumulative N deposition at a faster rate than losses at higher input 

(De Schrijver et al., 2011; Payne et al., 2013). N deposition impacts can take a long time 

to develop, but by increasing N stocks in soils and plant tissues (Stevens et al., 2009), N 

deposition tends to have cumulative impacts (Payne et al., 2019) while rapid recovery of 

vegetation from its effects is unlikely at least in the short term (Payne et al., 2017). Rowe 

(2017) and Payne et al., (2019) thus, recommend the use of long-term (30 years) N 
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deposition in studying N pollution impacts on species as this approach tends to give 

reliable results that are ecologically meaningful although current deposition is also likely 

to have  a significant impact on species. 

 

It is therefore important to use both current and cumulative N deposition data in 

assessing resilience of plants (particularly lower plants) to the negative effects of N 

pollution as mediated by natural availability of soil P. This is because lower plants are 

likely to be more sensitive to the relatively current levels of N pollution (shorter widow, 

recent 3-year N deposition data) while both lower and higher plants may decline at the 

lowest levels of cumulative N deposition input. 

 

Aside from the effects of N deposition on species performance, plant growth is also 

affected by base cations, particularly calcium (Ca2+) and magnesium (Mg2+). While Ca2+ 

can interfere with root absorption of other nutrients and their translocation within plants 

(Tyler, 1992), Mg2+ is required to capture sun’s energy for photosynthetic processes in 

plants (Jones and Lunt, 1967). Both nutrient elements can, therefore limit the growth of 

terrestrial plants communities. Despite their importance in plant nutrition, reserves of 

Ca2+ and Mg2+ in the upper (30 cm) soil layers where a greater proportion of fine roots of 

plants are situated is limited although sources from atmospheric deposition may 

complement this amount (Walker and Syers, 1976; White, 2006).   Calcium and 

magnesium can leach from soils faster than their release from weathering of underlying 

bedrocks under conditions of high precipitation and low temperatures (Gimingham, 

1972). Induction of soil acidity by high N deposition through nitrification processes and 

the release of hydrogen ions, causing a lower soil pH (Roelofs, 1986) may also displace 

these base cations with mobilisation of potentially toxic metals such as Al3+.  

 

Changes in soil nutrients such as these and changes in soil N and P availability can cause 

variations in plant growth (Venterink, 2011) reflecting changes in environmental 

conditions.  Thus, increased N deposition can potentially alter the relationship among 

soil nutrient concentrations particularly between N and P availability and ratios in 

nutrient-limited heathland ecosystems where an increased in nutrient concentration 

could greatly change species composition   (Marrs et al., 1993 ; Roelofs, 1986). Plant 
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species in British Calluna-dominated heathlands along environmental gradients are 

therefore likely to be ‘controlled’ by the relative availabilities of N and P and their 

stoichiometric ratios, but few studies have addressed whether the occurrence of plants 

(i.e. lower and higher plants species) is related to N and P stoichiometry in soils and in 

plants. In addition, studies that investigate the resilience of plants (particularly lower 

plants) to increased N deposition along a natural gradient of P availability in British 

Calluna-dominated heathlands are limited. 

 

This study thus investigated the resilience of plants, especially lower plants to relatively 

current 3-year average N deposition (2010 - 2012) and cumulative N deposition (26-year 

average) impacts using soil and plant tissue N and P availability and ratios in heathlands 

along N deposition gradients across a range of geologies. The different geological 

information underlying the surveyed heathlands were expected to provide sites of 

naturally high and low P availability. 

 

5.1 Influence of geological formation underlying British Calluna-dominated heathlands 

on soil nutrient availability 

 

British Calluna-dominated heathlands occur on a range of igneous, sedimentary, and 

metamorphic rocks under different climatic conditions (Gimingham, 1972). Based on 

their mineralogical composition and chemical weathering rate, they could be classified 

broadly into four categories following the example of a previous study in a similar 

ecosystem in Troms, north Norway (Arnesen et al., 2007). Thus, bedrocks could be 

classified as carbonate (carb), mafic, clastic and felsic rocks (Robertson, 1999) varying 

from carbonate, acid, alkaline to silicate rocks (Table 5.1). 
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Table 5.1: Broad categories of underlying geology with common examples across the UK 

Geology Common rock type Constituent mineral  Reference 

Carbonate Chalk, mudstone Dolomite, Calcite 
Magnesite 

(Schön, 2011) 
(Bucher and Grapes, 
2011) 

Mafic Amphibolite, tonalite 
and gabbro 

plagioclase, feldspars, 
biotite 

(Robertson, 1999) 

Clastic Sandstone, shale and 
Siltstone. 

quartz, feldspars and 
mica 

(Schön, 2011) 
(Robertson, 1999) 

Felsic Granite, Rhyolite and 
gneiss 

Feldspars and micas (Robertson, 1999) 

 

 

5.1.1 Carbonate rocks 

 

These rocks include limestone and dolomite, which usually metamorphosed into marble 

with calcite and dolomite as the main characteristic minerals of this group (Schön, 2011; 

Bucher and Grapes, 2011). Chalk and mudstone are also typical examples of carbonate 

rocks.  These rocks contain a high amount of carbonate minerals, but they are also 

characterised by variable quartz minerals (Bucher and Grapes, 2011). Thus, calcium 

carbonate (CaCO3) is the main constituents of carbonate-derived soils (calcareous soils). 

By their inherently high pH (pH 8) status, the CaCO3 tends to be insoluble, causing a 

scarcity of plant-available P in calcareous soils (Tyler, 1992).  

 

5.1.2 Mafic rocks 

 

This category of rocks are commonly dark in colour, usually characterised by frequent 

erosion with a high content of magnesium and iron (Robertson, 1999). Amphibolite, 

tonalite and gabbro are common examples with plagioclase, feldspars, biotite, 

pyroxenes, and amphiboles being the main constituent minerals.  
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5.1.3 Clastic rocks 

 

Clastic rocks are consolidated sediments formed from the accumulation of fragments 

from pre-existing rocks (Schön, 2011). Typical examples include sandstone, shale and 

siltstone. Their classification is based on the grain size of the clastic sediments: Pelites, 

Psammite and Psephites as fine, medium and coarse grain fractions (Schön, 2011; 

Robertson, 1999) respectively. Common minerals characteristic of this group includes 

`quartz, feldspars and mica (Robertson, 1999).  

 

5.1.4 Felsic rocks 

 

Rocks in this categories are light coloured rocks (Robertson, 1999), rich in quartz, hard 

and resistant to weathering and erosion. Granite, Rhyolite and gneiss are typical 

examples of felsic rocks with Feldspars and micas as common minerals. The varying 

amounts of minerals in these rocks that are likely to be released through weathering to 

their weathered substrates may present a gradient of nutrient availability including P, 

which across British Calluna-dominated heathlands may be important for vegetation 

composition and diversity.  

 

Rock weathering leads to the formation of soils having a variety of grain sizes/texture 

partly caused by the physical characteristics of the underlying bedrocks. The texture of 

the weathered materials could be clay-prone (‘heavy’) or sand-prone (Light) or with a 

mixture of clay, silt and sand-sized fractions referred to as ‘loam’. These textural classes 

are most likely to reflect the moisture-holding capacity of the soils (Arya and Paris, 1981).  

Weathering of rocks is also accompanied by the release of minerals and plant nutrients, 

which become the mineralogical and chemical composition of the soils that later develop 

from them (Holtan et al., 1988). As such, a complex variation in the mineralogical and 

chemical composition of soils derived from a range of geological materials underlying 

British heathlands is expected. This variation in soil nutrients (particularly P) may result 

in “rich” to “poor” edaphic gradient primarily important to plant composition, as the 

growth of plants in heathlands is nutrient-limited particularly by N and P. Both nutrients 
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can be recycled through organic matter degradation. Weathering of rocks also releases 

N but does not provide a significant input of N (Holloway and Dahlgren, 2002) as 

compared to P, which has a continuous release from weathering of minerals such as 

apatite or phosphorite (Holtan et al., 1988).  

 

In addition, the high acidic nature of heathland soils (Gimingham, 1972) can prevent 

rapid decomposition of organic matter (de Graaf et al., 1998) making P availability to 

heathland vegetation likely to be related to weathering of underlying bedrocks other 

than its release from organic matter mineralisation although bedrock-derived P is also 

likely to be limited. Limited sources from atmospheric deposition is also reported by 

Tipping et al., (2014) and Newman, (1995).  Given such P limitation in heathlands, the 

impacts of atmospheric N deposition on heathland vegetation may be dependent on the 

availability of P (Gordon et al., 2001).  

 

Although plants may secrete organic acids to solubilise inorganic compounds and 

phosphatase enzymes to breakdown organic P for uptake (Raghothama and Karthikeyan, 

2005) and mycorrhizae fungi also increase P acquisition in soils (Bolan, 1991), not all 

plant species have such capability to acquire soil P through these mechanisms. Thus, this 

tends to question if the availability of bedrock-derived P influences the distribution of 

plants in British heathlands, particularly enabling recovery of lower plants from the 

adverse effects of N deposition. 

 

5.2 Assessment of N deposition effects on vegetation 

 

The effects of N deposition on vegetation are assessed mainly by experimental N 

additions in the field (Carroll et al., 1999), an approach that gives excellent results on 

cause-effect relationships. Results of experimentally N additions, therefore, have been 

used for the establishment of empirical N critical loads (CL) for the protection of 

vegetation (Bobbink et al., 1996; Bobbink and Hettelingh, 2010; Hall et al., 2015) of which 

for heathlands, the critical load is currently set at 10-15 kg ha-1yr-1 (Hall et al., 2015). 

However, field N addition experiments come with several drawbacks. For instance, 
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experiments may be carried out with limited treatment combinations, which may also 

be well above the established critical loads and sometimes located in areas where the 

adverse effects of N deposition might have already impacted vegetation. This makes it 

difficult to assess plant responses to N deposition typical of a real-world situation. To this 

end, field vegetation surveys present alternative means of evaluating background N 

deposition impacts on vegetation. Although, field surveys also have limitations, when 

properly carried out along N deposition gradient may be useful in validating results of 

experimental N addition in an attempt to assess if experimental responses are also 

apparent under natural field conditions. Thus, results from N addition experiments 

should be supported by observations from the natural fields that are free from 

experimental nutrient manipulations.  

 

Thus, in this study, vegetation data (i.e. species richness, diversity and percentage cover) 

of lower and higher plants and other growth forms were recorded across British Calluna-

dominated heaths on a range of bedrocks (Fig. 4.1). These vegetation parameters were 

used as bioindicators of N deposition impacts on species as modified by natural 

availability of soil P. This was done in an attempt to assess the relationship among the 

chosen vegetation parameters, soil nutrients, geographic and climatic variables 

particularly determining the protective role of P for lower plants along a gradient of N 

deposition. 

 

5.3  Hypotheses 

 

It was hypothesised that 1) N deposition would change tissue nutrient (N and P) 

concentrations of Calluna vulgaris and Hypnum jutlandicum (used as representative 

plants for higher and lower species, respectively ) across British heathland communities 

and that,  this would at least in part, be related to the effects of N deposition on soil 

chemistry. C. vulgaris (the key species of heathlands) and H. jutlandicum (the most 

frequently occurring lower plants in these habitats) were chosen as representative 

species as their tissue N concentration has been demonstrated in many studies to 

represent long-term N deposition impact on vegetation (Pitcairn et al., 1995; Kirkham, 
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2001; Edmondson et al., 2010). 2) N deposition would increase species richness, species 

diversity and percentage cover of higher plants but decrease that of lower plants 

(particularly the N-sensitive ones). 3) Underlying geology would influence nutrient 

concentrations in plant tissues, which will drive their distribution across both heathlands. 

(4) Natural availability of soil P would increase species richness, species diversity and 

percentage cover of lower plants, indicating an increased in their resilience to N 

deposition as mediated by P availability.  

 

5.4 Experimental aim 

 

The overall aim of the study was to understand the interactive effects of N and P on 

heathland plant communities. 

 

5.5 Objectives 

The study aimed at: 

1) determining the levels and the relationships between soil and plant tissue nutrient 

status across the four categories of bedrocks in the two heathland types - upland and 

lowland heaths (2) determining in which soil layer, bedrock-related soil variables 

correlate with bedrock types and best explain variation in species composition (3) 

assessing the relationship among species composition, geographic and environmental 

variables. These objectives were expected to reveal if experimentally derived plant 

responses to N deposition as modified by P availability also occur in open heathlands 

along N deposition gradient in areas of high and low P availability.   

 

5.6  Materials and Methods 

 

5.6.1 Field survey and sample collection 

 

Heathland vegetation dominated by C. vulgaris conforming to the National Vegetation 

Classification H12 (NVC H12) was the target of this study. In the UK, such habitats occur 

over a large area that encompasses wide pollution and climatic gradients with a range of 



125 
 

geological differences. Forty-two sites of such Calluna-dominated heathlands, 

comprising 22 upland (Appendix I: Table I: 1) and 20 lowland heaths (Appendix H: Table 

H: 1) across Great Britain, i.e. England, Wales and Scotland were selected according to 

information available in literature, soil and geological maps (Chapman et al., 1989 ; 

British Geological Survey, 2006). Sites were chosen to maximise potential gradient of 

natural availability of soil P along N deposition gradients (3.78 – 25.6 Kgha-1year-1) across 

a range of underlying geologies (Fig. 4.1) including altitudinal and climatic variations 

characterising UK’s heathland ecosystems. The vegetation survey was carried out in 

summer over 5 months (starting from late May through to October, 2019), taking into 

consideration the current year growth of Calluna at all sites. Grid reference and 

altitudinal details were recorded while sites were chosen to keep vegetation as 

consistent as possible using random numbers with Calluna age classes. At each site, 

representative heathland patches consisting of an area of pioneer (early development), 

building (short plants), mature (dense canopy, maximum growth) and degenerate 

(uneven canopy) growth phases of Calluna per the descriptions provided by Gimingham, 

(1972) were located and surveyed. Five random quadrats (2 m x 2 m) were located using 

random numbers with the Calluna age classes, from which species composition and 

percentage cover of lower and higher plants were estimated through visual inspection.  

 

Samples collected from each Calluna growth phase were bulked and a representative 

sample collected for each site. Approximately 50 g of apical green shoots (about 3 cm 

from shoot tip) of C. vulgaris were randomly sampled at 5 points within each quadrate 

and from each growth phase, and aggregated into a single sample for each site. Where 

present, living biomass of healthy clumps of Hypnum jutlandicum and Cladonia 

portentosa were also sampled for chemical analysis. The choice for these species was to 

compare results from the treatment plots (Chapter three) as these two growth forms 

were the dominate species of mosses and lichens in the Ruabon (Pilkington et al., 2007) 

and Budworth treatment plots. Hycolonium splendens was also sampled (if present) for 

tissue chemistry. However, two sites were without either of the two species of mosses. 

Most sites had an absence of C. portentosa while others had few scattered individuals 

insufficient to be sampled for chemical analysis. Hence, for tissue chemistry, C. 

portentosa was not considered for data analysis.  
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A soil core was taken from the approximate centre of each quadrate after coarse litter 

layer removal. An aggregate of n = 5  soil cores was collected at each site by pressing a 5 

cm diameter by 30 cm plastic pipe into the soil until the end was levelled with the soil 

surface. The plastic pipe was carefully extracted with a plier. The harvested vegetation 

and soil samples were placed into labelled zip lock bags, kept in an ice-filled cool box and 

transported to the laboratory.  
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Figure 5.1: Site survey locations in relation to bedrocks across United Kingdom 
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5.6.2 Tissue sample preparation 

 

In the laboratory, dead leaves and branches were removed from the tissue samples and 

discarded. For C. vulgaris, green leaves used for chemical analysis were separated from 

the twigs (usually the larger twigs) to ensure uniformity of leaf samples from all sites.  In 

the case of Hypnum jutlandicum or Hycolonium splendens, the capitula (about 2-3 cm of 

terminal group of leaves) which included the green photosynthetically active growth 

region where N and P are more concentrated (Malmer, 1988) were used for tissue 

chemistry. Analysis from this part of moss plants may presumably reflect recent changes 

in the environment and may also ensure minimum contamination by epiphytes (Turner 

et al., 2003).  Samples of C. vulgaris, H. jutlandicum and thallus of C. portentosa were 

stored in separate paper bags and air-dried to prevent mouldiness and to ensure gradual 

drying of the vegetation samples. Dried samples were then ground and homogenised 

using a ball mill for chemical analysis. Before and between milling each sample, the ball 

mill was cleaned using deionised water and acetone to reduce the risk of cross-

contamination. Laboratory works could not proceed immediately after sampling, thus 

analytical protocols described by Hogan et al., (2010), and Higgins and Crittenden, (2015) 

were followed for phosphatase activity assay (PME). 

 

5.6.3 Soil sample preparation 

 

Soil cores stored in labelled zip-lock bags were frozen until analysis. Before sample 

preparation, frozen cores were allowed to thaw in a fridge at 4oC for 48 hours. Each core 

was then subdivided into three sections, the humus depth (0-5 cm), organic layer (5-15 

cm) and the mineral layer (15-30 cm). This was done to assess the individual effects of 

nitrogen deposition and underlying parent materials on plant species composition. N 

deposition was expected to have major effects on lower plants if species mostly derive 

nutrients from the humic layers, the main soil fraction that acts as a long-term sink for 

deposited N followed by the organic layers (Pilkington et al., 2005; Bahring et al., 2017). 

The reason being that although the major nutrient source for lower plants is from the 

atmosphere, they can also obtain nutrients from the upper soil layers  (Ayres et al., 2006)  
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particularly the humic layers as they have limited root systems. However, if species’ 

nutrient abstraction mostly takes place from the mineral layers (especially in the case of 

higher plants), the effect of bedrock-derived P was to be expected. Samples taken from 

peaty heathlands, particularly from the upland heaths, had a humic depth that extended 

beyond 5 cm. Thus, as a rule of thumb, only the top 0-5 cm of such soil cores was 

considered as ‘humus depth’ and used for analysis. The remaining fraction was disposed 

of. Each part was further subdivided into two of which a fraction was dried at room 

temperature while the undried fractions were used for chemical analyses that were to 

be carried out at field moist state. Both fractions (dried and moist soils) were sieved 

through a 2-mm sieve to remove stones, roots, litter and macrofauna. However, all soils 

inevitably contained some fine roots, which could contribute to the measured PME 

activity. 

 
5.6.4 Laboratory analysis 

 

5.6.4.1 General laboratory procedures 

 

Laboratory protocols, as described in section 2.3.3, were followed in cleaning laboratory 

wares for analysis to reduce the risk of sample contamination. In addition, a certified 

reference material (Strawberry leaves, LGC7162) was digested by closed vessel 

microwave-assisted digestion technique using aqua regia solution (3 ml HNO3
- +1 ml HCl) 

at 175 oC for 1 hour  (EPA, 2007). Total concentrations of P in digests were measured by 

inductively coupled plasma (ICP) to determine analytical precision (Table 4.1). 

 

Table 5.2: Certified reference material recovery values obtained by aqua regia acid digest 

 Strawberry leaves’ (LGC7162) 

LGC (Government chemist, UK) 

 Foliar P 

Certified value  (mg kg -1) 2600 

Recovered value range (mg kg -1) 2590± 15.3 

Recovery percentile 99.7 

Percentage relative standard deviation (% RSD) 0.591 
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Due to the large number of samples and the limited time available to achieve results, 

samples were analysed by a single digest. Before that, 20 samples (10 each for soils and 

Calluna tissues) from 10 survey sites were randomly selected and extracted (both by 

single and triplicate digests) for total P concentrations following aqua regia acid digest 

(3:1 ratio, HNO3: HCl). The resultant total P content showed no statistical significant 

difference between the two analytical procedures as indicated by a paired-t-test 

comparison in both ecological samples (Calluna tissue: t = - 1. 47, df = 9, p-valve = 0.175 

and Soil samples: t =1.31, df = 9, p-valve = 0.224). 

 

5.6.4.2 Soil pH determination  

 

Soil pH was assessed following the procedure described in section 2.3.3.1. 

 

5.6.4.3 Total N and P analysis 

 

Soil and tissue total N and P concentrations were determined by acid digest. The 

procedure and methods of analysis followed exactly that give in detail in sections 2.3.3.3 

and 2.3.3.4 for P and N analysis, respectively. 

 

5.6.4.4 Soil phosphatase activity assay 

 

Soil enzyme activity is best determined by analysing fresh soil samples recently taken 

from the field as compared with stored samples using freezing or drying (Peoples 

(Peoples and Koide, 2012). However, this was not possible in this study. Thus, 

phosphatase activity (PME) was assessed using frozen-thawed soils, as this approach is a 

better storage method for enzyme activity than drying (Peoples and Koide, 2012).  The 

method of analysis followed exactly as described by Johnson et al.,(1998). However, 

tissue phosphatase activity (PME) followed the protocol given in more detail in section 

4.5.2.3. 
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5.6.5 Statistical analysis 

 

Relatively current (averaged for 2010 - 2012) and cumulative N deposition (CuNdepo) 

(averaged for 1986 - 2012) data, modelled at a resolution of 5 km x 5 km were provided 

by the UK Centre for Ecology and Hydrology, Lancaster (Levy et al., 2020), upon request. 

As different effects may be associated with different forms of N (either reduced or 

oxidised) (van den Berg et al., 2016 ; Stevens et al., 2011), total N deposition was 

considered in this study to avoid possible spatial variability within the forms of N 

(reduced or oxidised) deposition across the study sites. The data were derived using the 

Empirical Concentration Based Estimated Deposition Model (C-BED) (Smith et al., 2000). 

Climate data (mean annual temperature (0C) and precipitation (mm) estimated from 

mean monthly precipitation amount and air temperatures) were also taken from the 

UKCP09 monthly gridded data under the UK Climate Impacts Programme for the period 

1986 - 2012 available on request from the website of the UK Meteorological Office (Met 

Office, 2020).   

 

The study aimed at examining whether the effects of N deposition on species 

composition (lower and higher plants, nitrophiles, nitrophobes, and all species), richness 

and diversity were similar on different geologies in each heathland. Thus, data were 

subdivided into four subsets based on the four broad categories into which the geology 

was classified: (Geology: ‘(1) Carbonate rocks (Carb)’ e.g. limestone, mudstone and chalk; 

‘(2) Mafic rocks (Mafic) rocks’, e.g. micro gabbro and Tonalite;   ‘(3) Felsic rocks (Felsic)’ 

Granite and Rhyolite; ‘(4) Clastic rocks, e.g. sandstone, siltstone, shale and Psammite). 

Psammite, semi-psammite, pelite and semipelite were considered as ‘Psammite’ as they 

form the grain sizes of clastic rocks but named differently based on their levels of mica 

and Feldspar minerals (Schön, 2011; Robertson, 1999). In the upland heaths, no site 

occurred on Mafic rocks while across the lowland heaths two sites were located on mafic 

rocks and a single site on felsic rocks thus, their standard deviations could not be 

calculated. However, by grouping bedrocks into these broad categories, the differences 

between P contents of bedrocks in species richness and diversity and in a lesser extent, 

differences between geographical and environmental variables were taken into account.  
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To relate species composition to the underlying bedrock categories, Shannon diversity 

index, species richness and percentage cover were estimated separately from the 

vegetation data for lower plants, higher plants, nitrophiles, nitrophobes and the entire 

data set on each bedrock category. The classification of nitrophiles and nitrophobes from 

the vegetation data followed the description given by Pitcairn et al., (2006). 

 

Non-metric multidimensional scaling (NMDS) with Bray-Curtis dissimilarity index was 

used to quantify ecological distance between sites. The NMDS ordination was employed 

to reveal general gradients within the vegetation dataset and to correlate bedrock-

related soil variables to bedrock types and species composition across both heathlands 

after plotting environmental variables presented as arrows on top of the NMDS plots.  

The stress term, which measures discrepancy between the distances in the ordination 

space and the dissimilarities estimated from the vegetation dataset was assessed using 

the stress rule of thumb, where a stress value lower than 0.2 indicates goodness of fit of 

the NMDS ordination plots (Clarke, 1993). 

 

Analyses were carried out separately using humic, organic and mineral soil variables to 

determine the influence of N deposition and soil nutrients (particularly bedrock-derived 

soil P) from different soil layers on species composition. Due to the small sampling sites 

on each bedrock category and the limited level of replications across both heathlands, 

testing for statistically significant differences in tissue nutrient concentrations, species 

richness, diversity and percentage cover (used as indicators of N deposition impacts) 

between bedrock categories failed with many statistical packages and in some cases, 

results were not meaningful. Moreover, across heathland types, Pearson correlation test 

(performed on logged transformed data) generally revealed non-significant correlations 

among bedrock-related variables (soil extractable N, soil available P and N:P ratio), tissue 

chemistry (i.e. tissue N and P concentration and ratio) and N deposition (both 3-year 

average and cumulative N depositions (Tables  5.3, 5.4 and 5.5; Appendix B: Table B: 1 ; 

Appendix C: Table C:1 ; Appendix C: Table C:1). The response of tissue N concentrations 

to N deposition may be non-linear (Hicks et al., 2000) but curvilinear analysis of the 

current data also produced non-significant relationships among variables; hence results 

of Pearson correction test were presented and discussed.  
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Soil variables and tissue nutrient concentrations were also described using descriptive 

statistics presented as bar graphs to illustrate the differences in these variables across 

the various categories of bedrocks. A constrained ordination - the Canonical 

Correspondence Analysis (CCA) was used to test the relationships among the overall 

species composition, geographic (slope, altitude, aspect), climatic (mean annual 

temperature and precipitation, N, Ca2+ and Mg2+ depositions) and bedrock-related soil 

variables across the various categories of bedrocks in each heathland. CCA, as a 

multivariate ordination method for direct gradient analysis (Palmer, 1993) measures 

how much variation in vegetation data can be explained by environmental variables 

using species percentage cover data.  A permutation test was used to select the 

significant variables that correlated with individual species in each heathland. Thus, 

selection of a variable is an ensemble of related drivers rather than that particular 

variable per se as no priori judgement of variable inclusion in the model was made. 

Species with p<0.05 were included in the model, thus were displayed on the CCA plots. 

All analyses were performed using the R statistical package version 3.6.3 (R 

Developmental Core Team, 2017). 
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5.7 Results 

 

5.7.1 Soil nutrient status 

 

Figures 5.2, 5.3 and 5.4 show descriptive statistics of measured variables in soils derived 

from the various categories of bedrocks in both upland and lowland heaths. Generally, 

soil pH was low (pH <5.0) in all soil layers across the various categories of bedrocks in 

both heathlands. Although not consistent on all bedrock types, there were slight 

increases in pH down the soil profiles (Figs. 5.2 a and b).   In the lowland heaths, organic 

matter as quantified by Loss-On-Ignition was higher (83.4 %) in the humic layers of soils 

derived from felsic rocks than values recorded on other bedrock types (Figs. 5.2 c and 

5.2 d). On clastic rocks, organic matter content in the organic layer was highest (33 %) 

among layers (Fig. 5.2 d). Humic soils derived from carb and clastic rocks in the upland 

heaths also had the highest and similar organic matter contents with the means of 60.6 

% and 60.4 % respectively, and the amounts decreased down the profile on all categories 

of bedrocks (Fig. 5.2 c). Soil extractable N, available P, total N and total P followed a 

similar trend recording highest and lowest values in the humic and mineral layers 

respectively on all categories of bedrocks in both heathlands (Figs. 5.2 e - h ; Figs. 5.3 a - 

d).  A notable exception is the highest concentrations of soil available P (22.5 mg/kg), soil 

total N (0.8 %) and soil total P (314.5 mg/kg) in the organic layers in comparison to other 

layers of soils derived from clastic rocks across the lowland heaths (Figs. 5.2 h,  5.3 b and 

5.3 d). This is likely to be related to the highest organic matter content in the same layer 

(Fig. 5.2 d) as both nutrients could be released through cycling of soil organic matter.  

The high P content in the humic layers than other layers on carb and clastic rocks in the 

upland heaths and on felsic rocks in the lowland heaths (Figs. 5.3 c and 5.3 d) may be 

due to the relatively high Ca2+ contents in the same layers (Figs. 5.3 g  and 5.3 h). This is 

because association of cations such as Fe2+, Al3+ and Ca2+ with humus can retain a higher 

amount of available P in the humic layers (Holtan et al., 1988).  
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Figure 5.2: Descriptive statistics for soil variables on various categories of bedrocks 
across British Calluna-dominated heathland communities: Soil pH - (a) Upland heaths, 
(b) lowland heaths; Loss-On-Ignition - (c) Upland heaths, (d) lowland heaths; Soil 
extractable N - (e) Upland heaths, (f) lowland heaths; Soil available P - (a) Upland heaths, 
(b) lowland heaths. 
 

Total P concentrations in the mineral layers, which may represent bedrock-related soil P 

were comparable across the broad categories of bedrocks (Figs. 5.3 c and 5.3 d). 
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However, there was a narrower concentration range in the upland heaths. The mean 

concentrations ranged from 85.4 mg/kg (clastic) to 241 mg/kg (carb) in the lowland 

heaths (Fig. 5.3 d). In the Upland heaths, the lowest (226 mg/kg) and highest (275 mg/kg) 

mean concentrations were observed on the carb and felsic rocks (Fig. 5.3 c), respectively. 

However, such concentrations did not translate to equivalent increase in availability, as 

available P was generally low across bedrocks, particularly in the mineral layers (Figs. 5.2 

g and 5.2 h). In the lowland heaths (Fig. 5.2 h), the lowest (0.62 mg/kg) concentration of 

available P in the mineral layers was recorded on mafic rocks and highest (6.93 mg/kg) 

on clastic while felsic and clastic rocks had the lowest (0.81 mg/kg) and highest (2.82 

mg/kg) across the upland heaths (Fig. 5.2 g). Soil N: P ratio was lower than 30 in all soil 

layers across bedrocks in both heathlands (Figs. 5.3 e and 5.3 f) and it decreased down 

the soil profile in the upland heaths. However, there was no such trend in the lowland 

heath across bedrocks. 

 

Calcium showed higher values in the humic and organic layers of soils derived from carb 

and clastic rocks than in the mineral layers across the upland heaths (Fig. 5.3 g). In the 

humic layers, the mean values were 558.7 mg/kg and 623.5 mg/kg for carb and clastic 

derived soils, respectively. The amounts were slightly lower in the organic layers and 

further decreased in the mineral layers. In the lowland heaths, calcium concentrations 

in soil layers were mostly lower than 500 mg/kg with the exception of the highest (892.4 

mg/kg) concentration recorded in the humic layers of felsic rock-derived soils (Fig. 5.3 

h).   

 

Magnesium is the main cation of mafic rocks (Robertson, 1999). Thus, it showed higher 

values in soils derived from mafic rocks in the lowland heaths (Fig. 5.4 b).  However, its 

concentration was generally high in all soils across bedrocks in both heathlands (Fig. 5.4 

a and Fig. 5.4 b). The average values increased from the humic to the mineral layers in 

soils derived from felsic and mafic rocks in the upland and lowland heaths, respectively. 

Soil PME activity was higher in the humic layers across bedrocks, which decreased down 

the soil profile in the upland heaths (Fig. 5.4 c). However, in the lowland heaths, the 

highest soil PME activity was found in the organic layers and the lowest in the mineral 
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layers of soils derived from the carb and clastic rocks (Fig. 5.4 d). There was a consistent 

decrease in PME activity on mafic rocks while no specific trend was found on felsic rocks. 

 

 

 

Figure 5.3: Descriptive statistics for soil variables on various categories of bedrocks 
across British Calluna-dominated heathland communities: Soil available phosphorus - (a) 
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Upland heaths, (b) lowland heaths; Soil total N - (c) Upland heaths, (d) lowland heaths; 
Soil total P - (e) Upland heaths, (f) lowland heaths; Soil N: P ratio - (g) Upland heaths, (h) 
lowland heaths. 
 

 
 

 
 
Figure 5.4: Descriptive statistics for soil parameters on various categories of bedrocks 
across British Calluna-dominated heathland communities: Soil total N - (i) Upland heaths, 
(j) lowland heaths; Soil total P – (k) Upland heaths, (l) lowland heaths; Soil NP ratio - (m) 
Upland heaths, (n) lowland heaths; Soil PME - (o) Upland heaths, (p) lowland heaths. 
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5.7.2 Tissue N and P availability and N: P ratio, tissue PME activity 

 

Generally, Calluna tissue N across bedrock categories was higher (concentration above 

1.5 %) than that of H. jutlandicum in both heathlands (Figs. 5.5 a and 5.5 b). However, 

Calluna tissue P consistently decreased from carb, clastic, mafic to felsic rocks in the 

lowland heaths while the highest concentration was observed on felsic rocks in the 

upland heaths (Fig. 5.5 c). For Hypnum, tissue P concentration was relatively similar 

across bedrocks in the upland heaths, but in the lowland heaths, tissue P was highest 

(906 mg/kg) on the carb and lowest (519 mg/kg) on mafic rocks.  Calluna tissue N: P ratio 

in the lowland heaths increased across bedrocks in the order: carb<clastic<mafic<felsic 

and the reverse order occurred across the upland heaths.  

 

Hypnum tissue N: P ratio was highest on felsic rocks in the upland heaths but lowest on 

the same bedrock in the lowland heaths than on other bedrock categories. Calluna tissue 

PME activity showed little variation across bedrocks in both heathlands except being 

slightly higher on felsic rocks in the upland heaths and higher on the carb rocks in the 

lowland heaths (Fig. 5.5 g). Hypnum tissue PME, on the other hand, was lowest on felsic 

rocks in both heathlands but showed the highest concentration on mafic rocks in the 

lowland heaths (Fig. 5.5 h). 

 

5.7.3 Species richness, diversity and percentage cover 

 

Overall species richness of lower and higher plants, nitrophiles and nitrophobes were 

low, varying from 16 to 18 species across sites in the upland heaths and 13 to 18 species 

across the lowland heaths (Figs. 5.6 a and 5.6 b). Nevertheless, species richness of 

nitrophiles was even lower than other growth forms on all bedrock-derived substrates 

(Figs. 5.6 a and 5.6 b). In the upland heaths, species richness of lower plants was highest 

(c. 11 species) on carb rocks and lowest (c. 9 species) on felsic rocks and the reverse 

order was observed across the lowland heaths. Species richness of higher plants also 

showed very little variation across bedrocks except being slightly higher on felsic and 

mafic rocks in the upland and lowland heaths respectively.  For nitrophobes, species 
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richness was considerably higher on mafic and felsic rocks in the lowland heaths (Fig. 5.6 

b) and on felsic rocks in the upland heaths (Fig. 5.6 a) than on other bedrock categories. 

 

 
 

 
 
Figure 5.5: Descriptive statistics for tissue nutrient concentrations and PME activity for 
Calluna vulgaris and Hypnum jutlandicum across the various categories of bedrocks in 
both upland and lowland heaths: Tissue N - (a) Calluna vulgaris (b) Hypnum jutlandicum, 
Tissue P- (c) Calluna vulgaris (d) Hypnum jutlandicum, Tissue N: P ratio (e) Calluna 
vulgaris (f) Hypnum jutlandicum, Tissue PME activity-(g) Calluna vulgaris (h) Hypnum 
jutlandicum 



141 
 

In the upland heaths, diversity of lower and higher plants, nitrophiles and nitrophobes 

was consistently high on carb rocks while such clear pattern occurred on mafic rocks in 

the lowland heaths (Figs. 5.6 c and 5.6 d). However, the diversity of lower plants on all 

bedrock categories was higher than that of higher plants and nitrophiles in both 

heathlands.  In general, diversity of plant growth forms was also somewhat lower on 

felsic rocks in both heathlands while on average diversity of nitrophobes was highest 

among diversity of all growth forms across bedrock categories in both heathlands 

probably indicating their positive response to N deposition along environmental 

gradients.  

  

Percentage cover of nitrophobes was higher than the percentage cover of other growth 

forms on all bedrock categories in both heathlands while the cover of higher plants and 

nitrophiles were the least in the lowland heaths representing less than 10% on all 

bedrock categories (Fig. 5.6 f). In the upland heaths, percentage cover of nitrophiles was 

the least among all plant growth forms on all bedrock categories. Percentage cover of all 

plant growth forms was lower on felsic rocks than on other bedrock categories in the 

upland heaths while the opposite occurred on mafic rocks with the exception of that of 

higher plants and nitrophiles. 

 

5.7.4 Correlation between soil variables and N deposition 

 

Generally, Pearson correlation identified non-significant relationships between N 

depositions (both relatively current and cumulative) and soil extractable N, available P 

and N: P ratio in all soil layers across heathlands (Figs. 5.7, and 5.8).  However, across the 

lowland heaths, cumulative N deposition intended to decrease soil N: P ratio (r = - 0.39, 

p= 0.08) and extractable N (r = -0.43, p= 0.07) in the humic (Fig. 5.7 c) and mineral layers 

(Fig. 5.7 g) respectively. However, in the upland heaths, humic soil N: P ratio (r = 0.40, p= 

0.06) intended to increase with increased cumulative N deposition (Fig. 5.8 c) while soil 

available P in the mineral layers intended to decrease as N deposition increased.  

Moreover, mineral soil N: P ratio (r = - 0.46, p<0.05) significantly decreased with 

increased cumulative N deposition (Fig. 5.8 i). In contrast, the relatively current (3-year 
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average) N deposition significantly decreased soil available P and tended to decrease soil 

N: P ratio in the humic layers across the lowland heaths (Appendix A, Fig. A: 1). In the 

organic layers, both soil extractable N and soil available P significantly decreased as 

current N deposition increased. Moreover, mineral soil N: P ratio also significantly 

decreased with increased N deposition. Across the upland heaths, humic soil N: P ratio 

tended to increase with increased N deposition while the opposite occurred in the 

mineral layers (Appendix A, Fig. A: 2). 

 

 

 
 

 
Figure 5.6: Species richness, Shannon diversity index and percentage cover of plant 
functional types across the four bedrock categories. 
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Correlation test 
 

 

Figure 5.7: Scatterplots showing correlations between soil characteristics in three soil layers and cumulative N deposition across the lowland 
heaths. 
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Figure 5.8: Scatterplots showing correlations between soil characteristics in three soil layers and cumulative N deposition across the upland heaths
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5.7.5 Correlation among plant tissue chemistry, vegetation characteristics and N 

deposition 

 

Cumulative N deposition decreased overall species richness across the lowland heaths 

irrespective of the soil layer from which plants derived major nutrients for growth (Tables 

5.3, 5.4 and 5.5). However, it had no effect on canopy height and overall species diversity 

but significantly increased total plant cover when plant nutrient abstraction mostly 

occurred in the organic and mineral layers. In contrast, cumulative N deposition 

significantly increased canopy height but did not relate to overall species richness and 

total plant cover across the upland heaths. However, there were no correlations 

between cumulative N deposition and tissue chemistry of Calluna and Hypnum if species 

obtained major nutrients from either of the three soil layers. The exception was across 

the humic layers, where cumulative N deposition marginally increased Hypnum N: P ratio 

(r = .380, p = .081) across the upland heaths and intended to decrease higher plant 

richness (r = -.426, p = .061) in the lowland heaths (Table 5.3). From the mineral layers 

across the lowland heaths, cumulative N deposition significantly reduced Calluna tissue 

N: P ratio but had a marginal effect (r = -.404,   p = 0.096) on lower plant richness (Table 

5.5).   

 

Meanwhile, the 3-year N deposition significantly positively increased canopy height in 

both heathlands but did not relate to overall species richness, diversity and total plant 

cover across the upland heaths (Appendix B, Table B: 1. Appendix C, Table C: 1.,  

Appendix D, Table D: 1.). However, it marginally decreased higher plant diversity if 

species obtained major nutrients from the humic layers (Appendix B, Table B: 1). As with 

cumulative N deposition, the 3-year N deposition also significantly decreased overall 

species richness across the lowland heaths. It also consistently increased Hypnum tissue 

N and N: P ratio but significantly decreased higher plants richness across the three soil 

layers (Appendix B, Table B: 1; Appendix C, Table C: 1; Appendix D, Table D: 1).  

 

 Soil extractable N consistently increased higher plant and overall species richness across 

the upland heaths irrespective of the soil layer serving as a source of plant nutrients 
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indicating the capability of higher plants to absorb nutrients from the entire soil volume. 

However, humic soil extractable N marginally increased higher plants diversity (r = .364, 

p = .096) and significantly increased canopy height. In the lowland heaths, soil 

extractable N in all soil layers significantly decreased lower plant cover and canopy 

height. Moreover, soil extractable N in the humic and organic soils across the lowland 

heaths is likely to have a profound influence on plant tissue chemistry as it negatively 

correlated with Hypnum tissue N and N:P ratio (Tables  5.3, 5.4 and 5.5 ; Appendix B, 

Table B:1 ; Appendix C, Table C : 1 ; Appendix D, Table D :1).  

 

In all soil layers in both heathlands, available P did not relate to tissue nutrient 

concentrations and vegetation characteristics except its concentration in the humic 

layers which significantly decreased total plant cover and tended to decrease Calluna 

tissue N (r = -.419, p = .066). However, higher plant and overall species richness were 

increased by available P in the humic layers (Table 5.3 and Appendix B, Table B: 1). Soil 

N: P ratio in the humic layers across the upland heaths tended to increase Hypnum tissue 

N: P. However, organic soil N: P ratio significantly increased higher plant richness and 

overall species diversity across the lowland heaths. 
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Table 5.3: Summary statistics from Pearson correlation analysis between plant 
(Calluna/Hypnum) tissue chemistry and vegetation and soil characteristics (in the humic 
soil layers) and cumulative N deposition across the upland and heaths 

Parameter Cumulative  N  

deposition 

Extractable N Soil available 

P 

Soil NP 

 r p-

value 

r p-

value 

r p-

value 

r p-

value 

Upland heaths 

Calluna tissue N .292 .187 .193 .389 -.144 .523 .123 .585 

Calluna tissue P .205 .359 -.036 .875 .078 .729 .049 .826 

Calluna tissue NP ratio .055 .808 .311 .159 -.148 .509 .045 .844 

Hypnum tissue N .291 .189 .229 .305 .020 .929 .200 .372 

Hypnum tissue P -.304 .179 -.126 .586 .167 .470 -.323 .153 

Hypnum tissue NP ratio .380 .081 .334 .129 -.035 .876 .412 .056 

Lower plant richness -.133 .555 -.082 .718 .022 .924 -.091 .686 

Lower plant diversity -.006 .978 .011 .961 .254 .253 -.070 .756 

Lower plants cover -.044 .845 -.179 .426 .208 .354 -.037 .870 

Higher plants richness -.079 .726 .516* .014 -.311 .158 -.241 .281 

Higher plants diversity -.270 .224 .364 .096 -.002 .992 -.187 .405 

Higher plants cover -.148 .511 -.324 .142 -.017 .939 -.022 .923 

Overall species richness -.163 .467 .101 .655 -.238 .285 -.191 .394 

Overall species diversity -.059 .792 .028 .903 .016 .944 -.069 .759 

Total plant cover (%) ex -.0496 .826 -.0514 .820 -.036 .873 -.136 .545 

Canopy height (cm) .472* .026 .511* .015 .046 .839 .022 .923 

Lowland heaths 

Calluna tissue N .028 .907 -.208 .379 -.419 .066 .164 .489 

Calluna tissue P .019 .937 -.181 .445 -.191 .419 .306 .189 

Calluna tissue NP ratio -.261 .266 .195 .409 .196 .407 -.006 .979 

Hypnum tissue N .336 .148 -.386 .092 .117 .623 -.069 .772 

Hypnum tissue P .216 .361 -.198 .402 .273 .245 -.069 .770 

Hypnum tissue NP ratio .238 .313 -.457 .043 .062 .797 -.092 .698 

Lower plant richness -.219 .352 -.082 .730 .348 .132 -.015 .948 

Lower plant diversity -.012 .959 -.239 .309 -.081 .735 -.028 .906 

Lower plants cover .213 .368 -.497* .026 -.091 .704 -.007 .977 

Higher plants richness -.426 .061 .359 .120 .380 .098 -.229 .329 

Higher plants diversity .0493 .836 .340 .142 -.088 .713 .047 .844 

Higher plants cover .084 .723 .238 .312 -.165 .488 .195 .409 

Overall species richness -.560* .010 .196 .406 .62* .003 -.011 .963 

Overall species diversity .096 .687 -.24 -.243 -.302 .256 .372 .106 

Total plant cover (%) ex .381 .098 -.130 .584 -.47* .038 .253 .282 

Canopy height (cm) .414 .068 -.59** .005 -.163 .491 -.139 .559 

*significant at p<0.05, ** significant at p<0.01 and ***significant at p<0.001 
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Table 5.4: Summary statistics from Pearson correlation analysis between plant 
(Calluna/Hypnum) tissue chemistry and vegetation and soil characteristics (in the organic 
soil layers) and cumulative N deposition across the upland and heaths 

 
Parameter Cumulative  N  

deposition 

Extractable N Soil available P Soil NP 

 r p-

value 

r p-

value 

r p-

value 

r p-

value 

Upland heaths 

Calluna tissue N .234 .332 .278 .249 -.173 .479 -.172 .483 

Calluna tissue P .191 .433 .0963 .695 -.185 .448 .0524 .831 

Calluna tissue NP ratio .0671 .785 .0497 .839 -.160 .512 -.187 .442 

Hypnum tissue N .292 .225 .078 .751 .285 .237 .279 .248 

Hypnum tissue P -.297 .231 -.321 .194 .260 .297 -.146 0.563 

Hypnum tissue NP ratio .361 .129 .283 .239 .0641 .794 .255 .293 

Lower plant richness -.214 .379 .219 .219 -.0055 .982 .048 .843 

Lower plant diversity -.0762 .757 .282 .242 -.025 .919 .106 .667 

Lower plants cover -.102 .679 .071 .774 .178 .467 .235 .333 

Higher plants richness -.0814 .740 .669** .001 -.184 .452 -.173 .479 

Higher plants diversity -.269 .264 .357 .134 -.089 .714 .088 .719 

Higher plants cover -.248 .306 .055 .822 .137 .577 .178 .465 

Overall species richness -.182 .457 .477* .039 .109 .654 -.063 .798 

Overall species diversity -.134 .585 .281 .245 .175 .473 .220 .364 

Total plant cover (%) ex -.132 .588 -.049 .841 .259 .283 .176 .472 

Canopy height (cm) .72*** .000 .026 .916 -.169 .490 -.057 .815 

Lowland heaths 

Calluna tissue N -.0341 .889 -.525* .021 -.381 .108 .389 .100 

Calluna tissue P .181 .458 -.197 .419 -.300 .212 -.216 .374 

Calluna tissue NP ratio -.378 .110 .289 .231 .379 .109 .139 .571 

Hypnum tissue N .264 .275 -.555* .013 .0458 .852 .0196 .937 

Hypnum tissue P .155 .527 -.295 .220 .236 .330 .145 .553 

Hypnum tissue NP ratio .164 .503 -.574* .011 -.194 .425 -.0736 .765 

Lower plant richness -.345 .147 -.0131 .958 .273 .259 -.0147 .953 

Lower plant diversity -.163 .506 -.267 .269 -.123 .614 -.0532 .829 

Lower plants cover .319 .184 -.331 .167 .0377 .878 -.237 .329 

Higher plants richness -.364 .126 .575* .010 .0877 .721 .469* .043 

Higher plants diversity .213 .381 .307 .201 -.259 .283 .132 .591 

Higher plants cover (%) .241 .319 .183 .455 -.211 .386 -.087 .725 

Overall species richness -.626** .004 .244 .314 .306 .202 -.135 .582 

Overall species diversity .248 .305 -.170 .486 -.213 .381 .497* .031 

Total plant cover (%) ex .510* .026 -.179 .461 -.332 .165 .363 .127 

Canopy height (cm) .333 .163 -.639** .003 -.026 .915 -.274 .256 

*significant at p<0.05, ** significant at p<0.01 and ***significant at p<0.001 
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Table 5.5: Summary statistics from Pearson correlation analysis between plant 
(Calluna/Hypnum) tissue chemistry and vegetation and soil characteristics (in the mineral 
soil layers) and cumulative N deposition across the upland and heaths 

 
Parameter Cumulative  N  

deposition 

Extractable N Soil available P Soil NP 

 r p-

value 

r p-

value 

r p-

value 

r p-

value 

Upland heaths 

Calluna tissue N .236 .332 .342 .152 -.242 .318 -.339 .156 

Calluna tissue P .191 .433 .278 .249 .135 .582 .0467 .849 

Calluna tissue NP ratio .067 .785 -.063 .796 -.359 .131 -.0849 .729 

Hypnum tissue N .292 .225 .103 .674 .172 .481 .209 .389 

Hypnum tissue P -.297 .231 -.163 .518 .304 .219 .084 .742 

Hypnum tissue NP ratio .361 .129 .126 .606 -.033 .894 .075 .760 

Lower plant richness -.214 .379 .143 .558 -.231 .341 .376 .113 

Lower plant diversity -.076 .757 -.030 .902 -.277 .251 .391 .0977 

Lower plants cover -.102 .679 -.105 .668 .004 .986 -.033 .894 

Higher plants richness -.081 .740 .462* .046 -.167 .494 .115 .638 

Higher plants diversity -.269 .264 .0124 .959 -.308 .199 .273 .259 

Higher plants cover -.248 .306 -.0845 .731 -.009 .969 -.226 .351 

Overall species richness -.226 .353 .393 .096 -.137 .575 .293 .224 

Overall species diversity -.158 .518 -.012 .961 -.091 .711 .412 .079 

Total plant cover (%) ex -.0959 .696 .325 .175 .0144 .953 .280 .245 

Canopy height (cm) .675** .001 -.111 .649 -.290 .228 -.175 .473 

Lowland heaths 

Calluna tissue N -.0371 .884 .205 .413 -.367 .134 -.415 .087 

Calluna tissue P .358 .145 .205 .413 -.270 .278 -.361 .141 

Calluna tissue NP ratio -.488* .039 -.281 .258 .138 .584 .314 .205 

Hypnum tissue N .256 .306 .042 .869 .0632 .803 -.219 .385 

Hypnum tissue P .149 .554 .251 .315 .209 .406 -.152 .547 

Hypnum tissue NP ratio .156 .537 -.071 .779 -.234 .351 -.074 .771 

Lower plant richness -.404 .096 .277 .266 -.139 .580 .109 .664 

Lower plant diversity -.207 .409 .195 .438 -.235 .348 -.028 .912 

Lower plants cover .341 .166 -.519* .027 .187 .458 -.069 .786 

Higher plants richness -.355 .149 .350 .154 -.0486 .848 .047 .854 

Higher plants diversity .290 .242 .137 .588 -.0984 .698 -.065 .797 

Higher plants cover .306 .216 -.146 .564 .0277 .913 .073 .774 

Overall species richness -.618** .006 .423 .079 -.073 .773 .249 .319 

Overall species diversity .406 .094 -.198 .430 .077 .759 .064 .802 

Total plant cover (%) ex .575* .013 -.348 .157 -.059 .814 -.150 .552 

Canopy height (cm) .346 .160 -.417 .084 .064 .801 .249 .319 

*significant at p<0.05, ** significant at p<0.01 and ***significant at p<0.001 
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5.7.6 Soil-plant relations 

 

The entire volume of bedrock-derived soil serves as a nutrient hub for plants. However, 

a greater amount of soil nutrients tends to be absorbed from the deeper layers (White, 

2006) where roots of plants are much concentrated than the humic layers. Higher plants 

are likely to obtain major nutrients from the mineral layers, but lower plants with limited 

root systems are unlikely to have a direct benefit of bedrock-derived soil nutrients in the 

mineral layers, which may potentially influence species distribution across heathland 

ecosystems. For both heathlands, vegetation on the same bedrock tend to be similar 

than on different bedrock types, as indicated by the NMDs ordination plots with stress 

levels less than 0.2 in all cases (Upland heaths: humic = 0.196, organic = 0.177 and 

mineral: 0.175; Lowland heaths:  humic: 0.182, organic: 0.171 and mineral: 0.149) (Figs. 

5.9 a - 5.9 f).  There was no significant correlation between bedrock-related soil variables 

and NMDS ordination configuration in the upland heaths if species obtained major 

nutrients from the humic and organic layers (Figs. 5.9 a and 5.9 c). In contrast, in the 

lowland heaths, soil available P and N: P ratio showed significant correlations with NMDS 

ordination configuration (P soil_Av_P <0.01, r2 = 0.46; P soil_NP_ratio < 0.05; r2 = 0.35) where 

soil available P was higher on felsic rocks and soil N: P ratios was related to clastic rocks 

(Fig. 5.9 b). A similar trend was observed if plants derived major nutrients from the 

organic layers, although the effects of available soil P was lacking (Fig. 5.9 d). In the 

mineral layers, soil N: P ratio (P soil_NP <0.05, r2 = 0.36) and extractable N (P ext_ N < 0.05, 

r2 =0.35) were the significant bedrock-related soil variables that correlated with the 

NMDs ordination axes in the upland and lowland heaths respectively with the direction 

of increase towards the clastic rocks in both heathlands (Figs. 5.9 e and 5.9 f). 
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Figure 5.9: Nonmetric multidimensional scaling of vegetation data sites and Bray-Curtis 
dissimilarity distance indicating ecological distance between sites in the upland heath 
using humic soil variables. (a and b) Humic, (c and d) organic, (e and f) mineral. Plots 
display environmental variables at p<0.05 significant level. 

a b 

c d 

e f 
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5.7.7 Relationships among species composition, geographic, climatic and bedrock-

related soil variables  

 

Relationships between environmental variables and species composition were analysed 

using canonical correspondence analysis (CCA) (Figs. 5.10 a - 5.10 f). The results showed 

that using bedrock-related soil variables in the humic layers, the CCA model accounted 

for 35 and 43 % of the total variance across the upland and lowland heaths, respectively 

(Table 5.6).  In the organic layers, variations explained by the model were 30 % for the 

upland heaths and 58 % for the lowland heaths. However, when species obtained major 

soil nutrients from the mineral layers, the model explained 30 and 36 % of the total 

variance in the species data that can be accounted for by the environmental variables 

across the upland and lowland heaths respectively. In general, the CCA model 

consistently explained higher variations in species composition in the lowland heaths 

than in the upland heaths across the three soil layers indicating that the model better 

quantified much variation in species data that can be explained by the environmental 

variables across the lowland heaths. Similar observations were made with the 3-year N 

deposition input (Appendix F, Table F: 1). Rainfall and soil N: P ratio had minimal inclusion 

in the CCA models (irrespectively of the soil layer from which species obtained major 

nutrients) suggesting that species distribution in both heathlands is not strongly 

influenced by rainfall regime and the stoichiometric relationships between soil N and P 

availability.  

 

In the upland heathlands, the bedrock-related soil variables in the humic layers included 

in the CCA were soil pH and soil available P.  Soil pH strongly correlated with the third 

CCA axis. In contrast, soil available P was related to the first axis, although their 

significances were less clear (Table  5.2; Appendix F, Table F: 1). The ordination plot 

shows that the effects of cumulative total N deposition, soil pH and slope aspect were 

orthogonal to soil available P while temperature correlated with cumulative total N 

deposition (Fig. 5.10 a). Slope aspect also had a strong positive correlation with soil pH. 

Species showing significant positive correlations with cumulative total N deposition and 

temperature included Brachythecium rutabulum, Campylopus introflexus, Hypnum 

Lacunosum, Ulex europaeus and to a lesser extend Cladonia squamosa. These species 
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are likely to be abundant in warmer sites where N deposition is high (Fig. 5.10 a). In the 

case of the 3-year N deposition input, Stellaria media, Kingbergia praelonga, Polygala 

serpyllifolia and Aulacomnium palustre associated with N deposition (Appendix G a). 

 

However, Hylocomium splendens, Carex flacca, Vaccinium vitis-idea, Nardus stricta, 

Agrostis canina, Rhytidiadelphus triquestus, Cladonia uncialis and Cladonia crispata 

negatively correlated with cumulative total N deposition and they are most likely to occur 

at cooler sites characterised by low N deposition rate (Fig. 5.10 a). Species that showed 

positive correlations with soil available P included Rhytidiadelphus lorus, Polytricum 

commune, Eriophorum vaginatum, Juncus squarrosus, Trichophorum cespitosum, Carex 

pendula. In contrast, the distribution of other species (e.g. Campylopus flexuosus, 

Racomitrium lanuginosum, Potentilla Erecta, etc.) is likely to be influenced by slope 

aspects and soil pH (Fig. 5.10 a).  

 

Across the lowland heaths, five bedrock-related soil variables in the humic layers were 

included in the CCA model:  soil extractable N, organic matter (measured by Loss-No-

Ignition), total soil Ca2+, soil available P and N: P ratio (Fig. 5.10 b).   Soil N: P ratio 

negatively correlated with cumulative total N deposition while soil available P positively 

related to organic matter across the lowland heaths. Stellaria media had a positive 

correlation with cumulative total N deposition but species showing significant 

relationships with soil available P and organic matter included Pleurozium schreberi, 

Rhytidiadelphus squarrosus, Nardus stricta and Cladonia coccifera (all positive). 

However, distribution of Vaccinium myrtillus, Molinea cearulea, Cladonia crispata and 

Deschapmsia flexuosa was driven by soil N: P ratio while Erica cinerea was related to soil 

total Ca2+ and soil extractable N (Fig. 5.10 b). In relation to the 3-year N deposition input 

across the lowland heaths, N deposition was not included in the CCA model but soil 

available P mostly related to Hylocomium splendens and Carex panicea while soil N:P 

ratio correlated with sphagnum palustre, Vaccinium  myrtillus, Erica  tetralix and Juncus 

squarrosus (Appendix G Fig. G: 1 b).   

 

In the organic layers across the upland heaths, organic matter which is not or indirectly 

related to the chemical composition of the underlying bedrocks was the only soil variable 
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included in the CCA (Fig. 5.10 c). However, the selected climatic variables were 

temperature and cumulative Ca2+ deposition, which positively correlated with each 

other.  While organic matter was highly correlated with the first CCA axis, cumulative 

Ca2+ deposition and temperature were strongly related to the second and the third CCA 

axes respectively (Table 5.6). Significant species that highly correlated with organic 

matter included Cladonia portentosa, Carex flacca, Potentilla Erecta, Cladonia squamosa 

but Rhytidiadelphus squarrosus, Brachythecium rutabulum, Ulex europaeus, Kindbergia 

praelonga, Hypnum Lacunosum and Rumex acetosa are likely to be abundant at cooler 

sites where Ca2+ deposition is low (Table 5.6 and Fig. 5.10 c).  However, across the 

lowland heaths, the first CCA axis was highly correlated with soil extractable N, altitude, 

cumulative N deposition, rainfall and temperature. The second axis strongly correlated 

with cumulative Ca2+ deposition, while the third axis related to organic matter and total 

soil Ca2+ (Table 5.6). Meanwhile, organic matter was the highest contributor (Pseudo-F 

soil_total_N = 2.00, p<0.001) of the model (Fig. 5.10 d), which strongly correlated with total 

soil Ca2+ and both related to Cladonia fimbriata. At warmer sites with high N deposition 

rate, species such as Hypnum jutlandicum, Molinea caerulea and Brachythecium 

rutabulum strongly correlated with temperature and cumulative N deposition while Erica 

tetralix, Galium saxatile, Sphagnum capillifolium, Empetrum nigrum were associated 

with wetter sites (Fig. 5.10 d). 

 

Using the 3-year N deposition input, soil total N and N deposition were the only variables 

included in the CCA model across the upland heaths (Appendix F, table F: 1). Both 

variables highly correlated with the first CCA axis. In the lowland heaths, soil N: P ratio 

and rainfall were related to the first CCA axis while N deposition was correlated to the 

second axis. Similar species (e.g. Vaccinium vitis-idea, Kinbergia Praelonga and 

Aulacomnium palustre) had positive correlations with N deposition across both 

heathlands (Appendix F, Appendix G, Figs. G: 1 c and 1 d). 

 

Species composition was also influenced by cumulative Ca2+ deposition and soil N: P ratio 

and less affected by soil available P in the mineral layers across the upland heaths as 

indicated by the CCA (Table 5.6; Fig. 5.10 e). The first CCA axis was strongly correlated 

with soil N: P ratio. In contrast, the second and third axes were related to soil available P 
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and cumulative Ca2+ deposition respectively (Table 5.6) while soil N: P ratio (F soil NP ratio = 

2.35, p<0.05) contributed most to the model (Table 5.6).  Species that associated with 

cumulative Ca2+ deposition included Rumex acetosa, Kindbergia praelonga, 

Brachythecium rutabulum and Rhytidiadelphus squarrosus while Cladonia crispata, 

Nardus stricta, Carex flacca, Polytrichum juniperium, Vaccinium vitis-idea, Racomitrium 

lanuginosum and Cladonia frimbriata positively correlated with both soil N: P ratio and 

soil available P. 

 

In the lowland heaths, organic matter, soil extractable N, cumulative total N deposition 

and temperature were included in the CCA with the first axis strongly relating to 

extractable N and cumulative total N deposition (Table 5.6). Organic matter and 

temperature were highly correlated with the second axis. However, soil extractable N 

was the most contributor (F soil_ext_N = 2.19, p<0.01) to the model (Table 5.6) which 

also strongly related to Cladonia portentosa, Plagiothecium undulatum, Agrostis canina, 

Rhytidiadelphus lorus, Erica tetralix and Hyloconium splendens while cumulative total N 

deposition was associated with Campylopus flexuosus, Hypnum jutlandicum, Polytrichum 

commune, Aulacomnium palustre. Although organic matter made significant 

contributions to the model, it was not specifically associated with any species while 

temperature marginally related to Rhytidiadelphus squarrosus (Fig. 5.10 f). 

 

In contrast, the 3-year average N deposition was the most contributor (F Ntotdepo = 2.44, 

p<0.01 for upland heaths; F Ntotdepo =2.24, p<0.01) to the CCA model across the mineral 

layers in both heathlands (Appendix F, Table F: 1). Soil pH and available P were also 

included in the CCA model across the upland heaths but the effects of soil available P 

was less clear. In both heathlands, similar species such as Molinea caerulea, Hypnum 

juntlandicum, Kindbergia praelonga, Polygala serpyllifolia, Aulacomnium palustre, 

mostly correlated with N deposition (Appendix G, Fig. G: 1 e and 1 f).
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Table 5.6: Canonical correspondence analysis of vegetation data using selected environmental variables. Scores of environmental variables, 
pseudo-F and p-values generated using a permutation test 
 

Soil Layer Variable Upland Pseudo-F (p) Variable Lowland Pseudo-F (p) 
  CCA-axis 1 CCA-axis 2 CCA-axis 3  CCA-axis 1 CCA-axis 2 CCA-axis 3 
 
 
Humus 

pH -0.264   0.465  0.762 1.66(p=0.07) LOI -0.617   0.402   0.108 1.96(p<0.001) 
Av_P 0.521 -0.146 -0.196 1.51(p=0.05) ext_N          0.0737  0.698   0.179   1.62(p<0.05)   
Aspect -0.366 0.472 -0.775   1.98(p<0.01) Av_P -0.406  0.374 -0.542 1.45(p=0.06)   
CuNtotdepo -0.787 -0.171 -0.221 1.74(p<0.05) Soil total Ca   -0.101  0.937 -0.123 1.63(p<0.05)     
Temp -0.701 -0.455  0.267   1.75(p<0.05) Soil NP ratio   -0.763 -0.271   0.449   1.83(p<0.01) 

CuNtotdepo 0.788  0.121   0.425 1.38(p=0.08)   
 Inertia Explained (%) 34 22 16  Inertia Explained (%) 53 47 39  
 Percentage of total inertia explained = 35  Percentage of total inertia explained = 43 

 
 
Organic 

LOI 0.823 -0.373 -0.429    2.83(p=0.07)  LOI 0.246 -0.442 -0.552 2.00(p<0.001)  
Temp -0.603 -0.428 -0.673  1.97(p<0.05)  ext_N     0.566 -0.518 -0.424   1.90(p=0.05)   
Cadepo -0.611 -0.688 -0.390   1.58(p=0.07)   Soil total Ca   0.512 -0.322 -0.669 1.52(p=0.09)  
     Altitude -0.578 -0.145 -0.201   1.51(p<0.05)  
     CuNtotdepo 0.760 -0.514   0.0635   1.87(p<0.05)  

Cadepo -0.311   0.567 -0.080   1.58(p<0.05)  
Rainfall -0.705 -0.555 -0.184   1.95(p<0.05)  
Temp 0.610   0.110   0.529 1.55(p<0.05)  

 Inertia Explained (%) 33 18 9  Inertia Explained (%) 46 45 29  
Percentage of total inertia explained = 30  Percentage of total inertia explained = 58 

 
 
Mineral 

Soil NP ratio   -0.992 -0.117  0.0556    2.35(p<0.05)     LOI 0.523 0.582 -0.488   1.99(p<0.01) 
Av_P -0.691 -0.131 0.711   2.27(p=0.07)     ext_N          -0.572   0.523   0.0747   2.19(p<0.01) 
Cadepo 0.551 -0.815 -0.182 1.98(p<0.05)    CuNtotdepo 0.902  0.402   0.132 1.62(p=0.06)    
     Temp 0.582 -0.663 -0.0054   1.39(p=0.08)   
Inertia Explained (%) 34 18 7  Inertia Explained (%) 44 29 16  
Percentage of total inertia explained = 30  Percentage of total inertia explained = 36 

CuNtotdepo = cumulative total N deposition, ext_N= soil extractable N, Cadepo = calcium deposition,   Temp = temperature
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Figure 5.10: Canonical correspondence analysis (CCA) showing relationships among 
vegetation composition and environmental variables across soil profile layers in upland 
and lowland heaths. CCA plots display species at p<0.05 significant level. 

c d 

e f 

a b 
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5.8 Discussion 

 

This study assessed the influence of bedrock-derived soil variables on species  

composition across four categories of bedrocks in upland and lowland heaths along N 

deposition gradient. Bedrock-derived P was generally low across the four categories of 

bedrocks, and it was consistently decreased in all soil layers as cumulative N deposition 

increased (although not significant). Moreover, the 3-year N deposition input had 

stronger effects on soil available P across the lowland heaths. In addition, there was a 

stronger positive response in tissue nutrient concentrations of lower plants to current 3-

year average N deposition suggesting N limitation in the lowland heaths. However, both 

cumulative and current 3-year N deposition significantly decreased overall species 

richness across the lowland heaths but humic soil available P had opposite effects. On 

felsic and mafic rocks across the lowland heaths, relatively high soil P availability in the 

humic layers increased species richness and diversity of lower plants relative to higher 

plants and significantly influenced species composition. However, such observations 

were lacking across the upland heaths. 

 

5.8.1 Correlations among tissue chemistry, vegetation parameters, soil extractable N, 

available P, N: P ratio and total N deposition 

 

The lack of significant correlations among soil extractable N, available P, N: P ratio and N 

deposition across both heathlands (Figs. 5.7 and 5.8; Appendix A: Figs. A: 1 and 2) may 

in part be due to the inherent spatial variability in this large-scale survey across the UK. 

This may have probably resulted from the sampling methodology, which aimed at sites 

located on specific bedrock types differing in geographic and climatic conditions (Fig. 5.1) 

and may partly be due to the fewer sampling sites across both heathlands. The consistent 

decreased in soil available P (though non-significant) in all soil layers as N deposition 

increased (Figs. 5.7 b, 5.7 e and 5.7 h; 5.8 b, 5.8 e and 5.8 h) suggests that increased N 

deposition may decrease soil available P likely to cause P limitation across heathlands. 

This observation was similar with both forms of N deposition input (either the cumulative 

or 3-year average N deposition) but with stronger effects of the 3-year average N 
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deposition on soil available P in the lowland heaths. The results thus confirm the findings 

of a field survey across moorlands in England and Wales, which provides evidence of N 

deposition changing N-limited heaths to P-limited ones (Kirkham, 2001). However, the 

significant negative relationship between cumulative N deposition and mineral soil N: P 

ratio (Fig. 5.8 i; Appendix A: Fig. A: 1 i) contrasts with an earlier survey, which found no 

relationship between the two variables across British Calluna-dominated heathlands 

(Rowe et al., 2008). Similarly, across the lowland heaths, N deposition did not relate to 

soil available P (Figs. 5.7 b, e and h; Appendix A: Fig. A: 1 h) contrary to the observation 

made by Jones and Power (2012). They reported a significant positive relationship 

between N deposition and soil extractable P.  

 

In-terms of tissue chemistry, Jones and Power, (2012) observed non-significant 

relationships between H. jutlandicum tissue N and P concentrations with N deposition 

across British lowland heaths similar to the observation made in this study.  Contrary to 

this observation, the 3-year average N deposition input significantly increased Hypnum 

tissue N and N: P ratio but not tissue chemistry of Calluna across the lowland heaths 

suggesting that lower plants may be more responsive to a short widow of N pollution 

with stronger effects in the lowland heaths. This may also suggests that, lowland heaths 

may be N-limited.  

 

Several experimental N additions and field surveys across the UK have demonstrated an 

increased in Calluna tissue N with increased N deposition (Lee et al. 1992; Pitcairn et al., 

1995; Hicks et al., 2000; Rowe et al., 2008; Power and Collins, 2010; Jones and Power, 

2012) contrary to the findings of this survey. The lack of significant relationship between 

Calluna tissue N and cumulative N deposition observed in this study was not excepted 

and therefore slightly surprising, but the results agree with the findings of Maskell et al.,  

(2010) who also found non-significant relationships between tissue N and N deposition 

across British heathlands.  The observation in this study may have resulted from seasonal 

variation in the sampling period as Calluna tissue N peaks at early summer and declines 

to winter minimum thereafter due to growth dilution effect (Marrs, 1978; Pitcairn et al., 

2001). Secondly, by mixing plant materials harvested from all Calluna growth phases may 

have resulted in small but significant differences in tissue chemistry as shoot tips and 
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young leaves are usually much concentrated in N and P than older leaves due to nutrient 

translocation from matured leaves to meristematic tissues to support plant growth 

(Gusewell, 2004). Differences in soil types and management regimes at sampling sites 

could also be potential contributory factors because inappropriate management 

practices may mask the impacts of N deposition on vegetation (Marrs, 1978; Stevens et 

al., 2009; Power et al., 2001; Jones and Power, 2015). 

 

Moreover, plant tissue N and P concentrations may not relate to their availability in soils 

as microbial activity, competition for ions, leaching, etc. could influence nutrient uptake 

(Marrs, 1978). Thus, N and P availability in soils is relative to plants nutrient mobilisation 

and absorption (Di Palo and Fornara, 2017). Generally across survey sites,  tissue N and 

P concentrations and ratios were not related to their availability in all soil layers in both 

heathlands contrary to the observation in the treatment plots where there were 

significant relationships between tissue and soil nutrient concentrations and ratios (as 

discussed in chapter four). This may have resulted from the spatial variability across 

survey sites.  

 

There was a significant negative relationship between Calluna tissue N: P and N 

deposition across the lowland heaths (Table 5.5) which supports the findings of many 

workers (Jones and Power, 2012; Power and Collins, 2010; Rowe et al., 2008). However, 

the relationship was absent across the upland heaths and it occurred only when Calluna 

seemed to have obtained major nutrients from the mineral layers (Table 5.5) indicating 

the capability of higher plants to obtain nutrients from deeper layers. The primary 

nutrient source for lower plants is from direct uptake from the atmosphere (Malmer et 

al., 2003; Carfrae et al., 2007; Arroniz-Crespo et al., 2008) but they can also obtain 

nutrients from their substrates (Ayres et al., 2006). However, this is likely to occur in the 

humic soil layers as opposed to the deeper layers as lower plants usually have limited 

root systems. It is therefore not surprising that Hypnum tissue N: P ratio tended to 

increase with an increased N deposition across the humic layers. However, this was only 

observed across the upland heaths (Table 5.3). There was no evidence of a linear 

relationship between Calluna tissue P and N deposition across both heathlands contrary 

to the observations made by other workers (Jones and Power, 2012; Power and Collins, 
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2010; Rowe et al., 2008) who reported a strong positive relationship between Calluna 

tissue P and N deposition across British heathlands. 

 

Across both heathlands, N deposition did not correlate with tissue chemistry of Calluna 

and Hypnum as well as with the vegetation characteristics of lower and higher plants if 

species were assumed to have obtained major soil nutrients from the organic layers 

(Table 5.4; Appendix C: table C:1) indicating lack of N deposition signals in these layers. 

The lack of significant relationship between species diversity and percentage cover of 

both plant growth forms with N deposition suggests that growth of plants in relationship 

to N deposition is similar across heathlands and that certain species do not grow in 

dominance at the expenses of others. However, cumulative N deposition tended to 

decrease species richness of lower and higher plants in both heathlands similar to the 

negative relationships between them and the 3-year N deposition across the lowland 

heaths with a significant effect on higher plant richness. Moreover, both categories of N 

deposition significantly decreased the overall species richness (Tables 5.3, 5.4 and 5.5, 

Appendix B: Table B: 1, Appendix C: Table C: 1, Appendix D: Table C: 1) an observation 

also reported from a national-scale pollutant deposition gradient for British heather 

moorlands (Caporn et al., 2014).  

 
Soil extractable N in both humic and organic layers negatively related to Hypnum tissue 

N and N: P ratio across the lowland heaths (Tables 5.3 and 5.4) but its concentration in 

the mineral layers had no effect. Although it is difficult to explain this observation, it does 

indicate N deposition signals in the upper soil layers and confirms expectation that lower 

plants obtain some portions of their nutrients from their substrates (upper soil layers) 

(Ayres et al., 2006). The result also indicates the inability of lower plants to absorb 

nutrients from the mineral layers (Table 5.5).  

 

In all soil layers, both Calluna and Hypnum showed no pattern of response of tissue N, P 

and N: P ratio to increasing soil available P across both heathlands (Tables 5.3, 5.4 and 

5.5). For Calluna tissue P, the results contrast literature on C. vulgaris reflecting soil P 

availability in its vegetation (Gimingham, 1972).  Similarly, species richness, diversity and 

percentage cover of higher and lower plants did not relate to soil available P with the 
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exception of higher plant richness, which tended to increase with increased humic soil 

available P in the lowland heaths (Table 5.3). This lack of significant effects of soil 

available P on species indicates that available P may not influence plant distribution 

across both heathlands and that it may not protect lower plant species against the 

adverse effect of N deposition.  Thus, in general, across a gradient of N deposition in 

areas of low and high P availability in British Calluna-dominated heathlands, lower plants 

are unlikely to be resilient to the negative effect of N deposition as mediated by soil P 

availability although there was no clear evidence that high N deposition will also 

decrease lower plant species richness, diversity or percentage cover. However, the 

effects on certain bedrocks differed from this trend as species richness and diversity on 

felsic and mafic rocks (Figs. 5.6 b and 5.6 d), respectively across the lowland heaths 

increased which are likely to be related to the relatively high level of soil available P on 

these rocks (Fig. 5.2 h). 

 

Comparing observations in this current study with literature is difficult as correlations 

between tissue chemistry of Calluna and Hypnum as well as vegetation variables with 

soil available P in humic, organic and mineral soil layers are rare. However, literature 

indicates the possibility that soil available P may influence resilience of lower plants to 

the adverse effects of N deposition  (Gordon et al., 2001 ; Phoenix et al., 2003 ; Pilkington 

et al., 2007) but the data presented here suggest this is not the case across the various 

categories of bedrocks in Calluna-dominated heathland communities across the UK. 

However, the results must be interpreted with caution as the survey involved relatively 

small sampling sites. 

 

The N: P ratio in tissues of plants has been used to indicate whether N or P limits plant 

growth (Koerselman and Meuleman, 1996; Gusewell, 2004) with a ratio < 10 suggesting 

N limitation and >20 indicating P limitation (Gusewell, 2004). A different threshold is 

proposed for bryophytes where N: P ratio of 30 indicates a transition from N to P 

limitation (Bragazza et al., 2004). Generally, N: P ratio reported in this study for soil, 

Calluna and Hypnum tissues did not show marked variation across the various categories 

of bedrocks (Figs. 5.5 e and 5.5 f) similar to the soil N: P ratio (Figs. 5.3 e and 5.3 f).  
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Results suggest that in both heathlands, growth of Calluna and Hypnum is co-limited by 

N and P in all soil layers across the various categories of bedrocks in both heathlands. 

 

5.8.2 Influence of phosphorus availability and N: P ratio on species composition 

 

Phosphorus availability in heathlands is primarily derived from the underlying bedrocks, 

but it can be recycled from organic matter decomposition although organic matter can 

also serve as a sink for soil phosphate (Holtan et al., 1988). However, P release from rock 

weathering may have less possibility in making P available in heathlands, as lower 

temperature regimes across Great Britain (Gimingham, 1972) may slow down rock 

weathering processes. The data confirmed this assumption, as the sites were generally 

low in P availability particularly in the mineral layers (< 10 mgkg-1) in both heathlands 

where available P may largely represent bedrock-derived P (Figs. 5.2 g and 5.2 h; Figs. 

5.3 c and 5.3 d).  This level of P availability did not relate to cumulative N deposition (Figs. 

5.7 b, 5.7 e and 5.7 h and 5.8 b, 5.8 e and 5.8 h) but the 3-year average N deposition 

negatively decreased available P in both humic and organic layers across the lowland 

heaths (Appendices A: Figs. A: 1 b and A: 1 e). In contrast, Jones and Power (2012), found 

a positive linear relationship between soil extractable P concentration (F1, 27 = 5, p<0.05) 

and N deposition explaining that N deposition increased the availability and uptake of P 

across British lowland heaths.  

 

Among sites in both heathlands, P availability did not seem to vary across the various 

categories of bedrocks and soil layers with the exception of humic layers in the lowland 

heaths where there appeared to be a varying P availability among bedrocks (Fig. 5.9 b). 

In these layers, the mean value of P on felsic rocks was higher (31.2 mg kg-1) than that 

on other bedrocks (carb: 15.3±4.09; mafic: 12.9 and clastic: 22.5±5.79 mg kg-1). Thus, 

felsic rocks had higher scores on available P axis while carb, clastic and mafic rocks 

showed lower scores in the NMDs plots (Fig. 5.9 b). This available P in the humic layers 

is likely to have been released from organic matter mineralisation as opposed to its 

release from weathering of the underlying bedrocks as P availability in the mineral layers 

is low (Fig. 5.2 h). However, influence of bedrock-derived P can play a significant role in 
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cycling of organic matter through roots nutrient absorption from soils and translocation 

to plant leaves.  The available P in the humic layers, particularly in soils derived from 

felsic rocks could be significant for vegetation in the lowland heaths.  This may 

particularly affect the distribution of lower plants across the lowland heaths, evident 

from the highest species richness of lower plants observed on felsic rocks (Fig. 5.6 b) 

although, percentage cover of lower plants may reduce on that same rock type (Fig. 5.6 

f). Other plant growth forms are unlikely to be influenced by soil available P in the humic 

layers in both heathlands probably because most of these growth forms particularly the 

higher plants may derive a greater proportion of soil nutrients from the deeper layers, 

which were low in P content (Figs. 5.2 g and 5.2 h). However, across the upland heaths, 

the highest species richness of lower plants and the highest species diversity of all growth 

forms were observed on the carb (Fig. 5.6 c) which also recorded the highest available P 

content in the humic layers (Fig. 5.2 g) although not included in the NMDs (Fig. 5.9 a).  

 

In the lowland heaths, the highest species diversity of all growth forms predominantly 

occurred on the mafic rocks, which are also likely to be related to the highest available P 

content in the humic layers relative to other soil layers (Fig. 5.2 h). This indicates that soil 

P availability may increase species richness of lower plants and diversity of all growth 

forms along N deposition gradients but on certain categories of bedrocks in each 

heathland type probably due to the differences in climatic and biogeochemical factors 

between upland and lowland heaths (Chapman and Clarke, 1980), which may act on the 

release of soil nutrients for plant uptake. In addition, there was an indication that 

bedrock-related soil P availability was low (particularly in the mineral layers) and very 

unlikely to have influenced species distribution in both heathlands indicated by its 

absence on the NMDs plots (Figs. 5.9 e and 5.9 f).  

 

However, soil N:P ratio had a significant influence on species composition in both 

heathlands but with a greater effect in the lowland heaths at high N-rich sites mainly 

located on clastic rocks (Figs. 5.9 b, 5.9 d and 5.9 e). N has limited release from rock 

weathering (Holloway and Dahlgren, 2002) thus, high N content in these sites may have 

resulted from organic matter degradation or high N deposition (Stevens et al., 2009).  

The latter seems more probable as it had the highest contribution to the CCA models 
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across soil layers, particularly across the lowland heaths (Fig. 5.10). However, soil 

extractable N showed a greater effect (Figs. 5.10 b, 5.10 d and 5.10 f).   

 

5.8.3 Individual species responses to N deposition, soil pH, soil P availability and N: P 

ratio in relation to other environmental variables 

 

In both heathlands cumulative N deposition correlated with temperature especially 

when species obtain major nutrients from the humic layers in the upland heaths (Fig. 

5.10 a) and from the organic and mineral layers (Figs. 5.10 d and 5.10 f) in the lowland 

heaths while both environmental variables strongly positively correlated with 

Brachythecium rutabulum, Hypnum jutlandicum, Molinia caerulea, Campylopus 

introflexus particularly across the lowland heaths. This seems to suggest that these 

species are less sensitive to N deposition as has been found in other studies (Roem et al., 

2002; Pilkington et al., 2007; Payne et al., 2014). Pitcairn et al., (2006) classified most of 

these species as nitrophilic, which may increase in abundance in response to increased 

N deposition. These species are also likely to occur in areas of warmer temperatures 

(Figs. 5.10 a and 5.10 d) as N deposition tends to increase with increased temperatures 

(Rowe et al., 2008 ; Jones and Power, 2012).  The differences in soil layers from which 

species obtained major nutrients may be due to the differences in the thickness of the 

humic layers in both heathlands - upland heaths are mostly peaty while lowland heaths 

have ‘non-existing’ humic layers, which may compel species to obtain nutrients from the 

organic and/or mineral layers rather than the humic layers.  

 

Across the upland heaths, species that showed negative responses to N deposition with 

their major nutrients derived from the humic layers included Agrostis canina, 

Hylocomium splendens, Carex flacca, Vaccinium vitis-idaea, Nardus stricta, Cladonia 

uncialis, Rhytidiadelphus triquestus, Cladonia crispata.  However, in the lowland heaths, 

their relationship with N deposition was less clear, but most of these species seemed to 

show a preference for sites characterised by high organic matter and high soil P 

availability while Stellaria media a nitrophillic species (Hill et al., 1999; Pitcairn et al., 

2006) responded positively to cumulative N deposition (Fig. 5.9 b). Stellaria media has 
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also been found to show a positive change in habitat suitability (-0.046) in responses to 

cumulative N deposition in a modelling study (Stevens et al., 2016). A gradient study 

across the UK suggests that Hylocomium splendens occurs in less N polluted sites (Caporn 

et al., 2014) similar to the findings of this survey.  A meta-analysis by Payne et al., (2014) 

also indicates a significant negative relationship between H. splendens and cumulative N 

deposition. However, a positive response of Nardus stricta and Vaccinium vitis-idaea to 

N deposition has been predicted in experiments (Leith et al., 1999; Hartley and Amos, 

1999). In contrast, the correlation of different species with the 3-year average N 

deposition across the humic layers in the upland heaths (Appendix G: Fig G: 1 a) suggests 

that species may response differently to different widows of N deposition. 

 

In both heathlands, species of both higher and lower plants, which are either N- tolerant 

or N-sensitive correlated positively with soil available P and N: P ratio irrespective of the 

soil layer that served as a medium providing major nutrient to plants. This indicates that 

soil available P and N: P ratio may in some instances promote the growth of all plant 

species in the face of high N deposition with soil available P presumably enabling efficient 

utilisation of excess N for growth (Pilkington et al., 2007; Arroniz-Crespo et al., 2008). For 

instance, nitrophilous species may fail to respond to N deposition if P limits their growth 

(Chapman et al., 1989).  Bedrock-derived soil available P did not relate to a significant 

proportion of lower plant species in both heathlands across N deposition gradient 

indicating that availability of bedrock-derived soil P may not increase the resilience of 

lower plants to the harmful effects of N deposition. The lack of significant effects of soil 

available P on lower plants may have resulted from the small sampling sites. Thus, an 

intensive survey including more sites may throw more light on the relationship between 

lower plants and bedrock related soil available P because there seems to be considerable 

heterogeneity across the various categories of bedrocks along N deposition gradient in 

both heathlands possibly due to the geographically wide sampling sites. 

 

Both soil total Ca2+ and Ca2+ deposition were included in the CCA, indicating that Ca2+ 

availability may be an important nutrient for vegetation in both heathlands (Fig. 5.10).  

N deposition did not significantly relate to soil total Ca2+ but had a slight correlation with 

Ca2+ deposition (Fig. 5.10 d) suggesting limited effects of N deposition on base cation 
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either through weathering or leaching (Rowe et al., 2008).  Together with Mg2+, sources 

of Ca2+ from atmospheric deposition and rock weathering can be quite high, but 

elemental losses by leaching and erosion can exceed atmospheric input. However, plants 

demand a similar magnitude of both nutrients for growth (Rowe et al., 2008 ; White, 

2006). Ca2+ deposition mostly related to N-tolerant species such as Kindbergia praelonga, 

Hypnum Lacunosum, Brachythecium rutabulum, Rhytidiadelphus squarrous and Rumex 

acetosa probably because of its positive correlation with N deposition (Fig. 5.10 d). 

 

Soil pH also proved to be an important soil variable to species composition but mostly in 

the humic layers across the upland heaths (Fig. 5.10 a; Appendix G, Fig G: 1 a) indicating 

that N deposition can alter soil nutrient concentrations and affects species composition 

through an increased in soil acidification (Roelofs, 1986). Soil pH positively correlated 

with slope aspect while both related to nitrophobe species such as Campylopus 

flexuosus, Pleurozium schreberi, Potentilla erecta and Cladonia coccifera suggesting that 

these species may occur at sites of low soil acidity characterised by lower slopes (Fig. 

5.10 a). 

 

Altitude related negatively to rainfall and both influenced species composition only when 

species derived major nutrients from the organic layers across the lowland heaths. 

Altitude related to Ulex europaeus while rainfall correlated with Sphagnum capillifolium, 

Erica tetralix and Galium saxatile. These species are thus likely to occur at relatively less 

wetter and lower altitudinal sites (Fig. 5.10 d).  N deposition increases with altitude and 

lower temperatures (Rowe et al., 2008), but such correlation was not found in this 

current survey presumably due to the inherent spatial variability among sites. 

 

5.9 Implication for N critical loads 

 

Field surveys are vital in validating results of experimental N addition in setting policies 

for the protection of ecosystems. The key policy tool usually used is the critical loads, 

which defines the level of pollution below which there are no harmful effects on 

ecosystems (Nilsson and Grennfelt, 1988). In the UK, there is an exceedance of the lower 
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limits of the critical load (10 - 20 Kgha-1 yr-1) set for the protection of heathland 

communities (Smith et al., 2000), which may probably explain the loss of plant species 

richness and diversity in heathlands as reported by many workers (Caporn et al., 2014 ; 

; Edmondson et al., 2010; Maskell et al., 2010). 

 

P availability on other hand enables efficient utilisation of excess N for growth, and it has 

been found to promote the growth of lower plants in the face of high N deposition in 

experiments (Gordon et al., 2001; Phoenix et al., 2003; Pilkington et al., 2007).  In this 

gradient study, there was an indication that in areas of high soil P in the humic layers 

(especially on felsic and mafic rocks in the lowland heaths) species richness and diversity 

of lower plants increased relative to that of higher plants and significantly influenced 

species composition (Fig. 5.9 b). However, across the various categories of bedrocks 

(Tables 5.3, 5.4, 5.5), the correlation among these variables and soil available P was not 

significant. This indicates that lower plants are likely to respond positively to high levels 

of soil P availability, but this may only occur on high P containing bedrocks (although 

mineral soil available P was generally low and did not relate significantly to species 

richness and diversity of lower pants). Given soil P as a co-limiting nutrient in the studied 

heathlands with its availability potentially increasing species richness of lower plants on 

high P containing bedrocks, critical load for N may be low where soil P availability is 

higher supporting earlier recommendations given by Gordon et al., (2001). Thus, soil 

available P may be considered when setting critical load for N deposition for a particular 

site as it can strongly modify species responses to N deposition. 

 

5.10 Conclusion 

 

The present survey analysed allocation patterns of N deposition in layers of soils 

developed from various categories of bedrocks that provided areas of low and high P 

availability along N deposition gradient in British Calluna-dominated heathland 

communities. The study aimed at assessing responses of plant species (particularly lower 

plants) to N deposition as mediated by soil P availability. Soil nutrient concentrations 

differed across bedrock categories in both heathlands and among soil layers. Humic 
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layers recorded the highest nutrient concentrations and the amounts decreased down 

the soil profile on all bedrocks in both heathlands. In general, N deposition significantly 

decreased overall species richness across the lowland heaths but such effect was absent 

across the upland heaths. In contrast, N deposition did not significantly relate to soil and 

tissue nutrient concentrations and other vegetation parameters across heathlands 

similar to bedrock-derived soil available P. However, there was an indication that, both 

3-year average N and cumulative N depositions (26-year average) could decrease soil 

available P in both heathlands suggesting N deposition could potentially limit the 

availability of P to plants. In contrast, soil available P in the humic layers of soils 

developed from felsic and mafic rocks increased species richness and diversity of lower 

plants and significantly influenced species composition across the lowland heaths 

indicating that P availability could increase resilience of lower plants to the adverse 

effects of N deposition across the lowland heaths but not in the upland heaths. However, 

this may only occur on high P containing bedrocks. Nevertheless, interpretation of results 

should be done cautiously as the survey covered relatively fewer sampling sites. 
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6 CHAPTER SIX 

Concluding chapter 

6.0 Introduction 

 

This study aimed to investigate the resilience of heathlands to the adverse effects of N 

deposition using soil-plant nutrient (N: P ratio) stoichiometry in nutrient addition 

experiments and a large-scale field survey across heathland communities. As efficient 

utilisation of N by plants depends on the availability of soil P (Pilkington et al., 2007; 

Arroniz-Crespo et al., 2008), an attempt was made to select a suitable P extraction 

method for an appropriate determination of plant-available P that represents plant 

tissue P in different soil-types across bedrocks, as P exists in a range of different forms 

varying from most labile to non-labile forms. Recovery of lower plants (i.e. moss and 

lichens) from the adverse effects of increased N deposition as mediated by P availability 

and the stoichiometric relationship between N and P in soils and plants was also 

assessed. In this chapter, findings of these investigations are summarised, and their 

implications for policy and ecological significance for general management of heathlands 

are discussed while recommendations are giving for further studies. 

 

6.1 Key findings arising from the study 

6.1.1 Selection of an appropriate P extraction method 

 

In the UK, the bicarbonate Olsen test P reagent adopted as an official soil test P (Ministry 

of Agriculture Fisheries and Food, 1986) has been used extensively for the determination 

of plant-available P in natural and semi-natural vegetation, including Calluna-dominated 

heathlands (Kirkham, 2001; Phoenix et al., 2003; Rowe et al., 2008; Ceulemans et al., 

2011). However, other studies have considered methods such as Troug (Jones and 

Power, 2015) and acetic acids (Chapman et al., 1989). All these methods reasonably 

estimate plant-available P in soils. 
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However, in this study, it was necessary to examine the extractability of different P 

extraction methods for the selection of a suitable extractant capable of determining 

plant-available P across parent materials as the study involved sampling from nutrient 

addition experimental plots and across heathlands located on specific parent materials 

varying in P availability. Mehlich-I extraction method proved a reasonably good predictor 

of the amount of P in soil solution following depletion through plant P uptake. Deionised 

water extraction was equally a good determinant of plant-available P as Mehlich-I 

extractant. The interpretation of these findings is that P extraction methods with a 

relatively mild solution and less extraction time could be used for the determination of 

plant-available P across heathland communities. There are additional benefits of being 

cost-effective in term of time and laboratory reagents especially regarding the use of 

deionised water as a P extracting reagent. However, the study also revealed the weak 

extractability of water extractant across heathlands located on different parent materials 

that are highly variable in P availability (as discussed in chapter five) contrary to its 

sensitive measure of the readily available source of P in the controlled experiment (as 

presented in chapter three). 

 

Although water extraction method failed to predict plant tissue P across heathlands, its 

sensitive measure of plant-available P in the controlled experiments compared to Olsen 

test P and Bray-II extractants makes it a promising method for the determination of plant 

available P in heathland soils. In addition, water and Mehlich extractants use no or little 

reagents making them environmentally friendly extractants in comparison to methods 

that use aggressive reagents of which their usage requires much experience and highly 

equipped laboratory. In the case of water and Mehlich-I extractants, the methods can 

quickly be adopted by even young researchers, in a relatively less equipped laboratory. 

In the recent green laboratory era, policy frameworks designed for the adoption of P 

extraction methods could consider these extractants as they could be most appropriate 

and cost-effective measures of plant-available P in heathlands with less or no concerns 

of environmental pollution.   
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6.1.2 Effects of P availability on lower plants recovery from the negative effects of N 

deposition 

 

6.1.2.1  From nutrient addition plots 

 

The creation of recovery plots in the upland heaths in Ruabon experimental site was 

intended to evaluate species recovery from the negative effects of N deposition and 

most importantly how P availability would aid recovery of lower plants from N pollution. 

This enabled the assessment of species resilience to the adverse effects of N deposition. 

Given P limitation in heathlands in general and the protective role of P to lower plants 

(Gordon et al., 2001; Pilkington et al., 2007; Phoenix et al., 2003) , it was expected that 

addition of P would significantly increase the growth and cover of lower plants with a 

consequent increase in species richness and diversity in both heathlands. In contrast, N 

addition was expected to have opposite effects. The only change that did occur was a 

significant increase in total plant richness under combined N and P treatments (120N + 

20P) while it decreased under some of the N treatments (Fig. 3.8 c). Species diversity 

also increased significantly under P treatments but was decreased by N addition. Given 

significant responses of plants to nutrient additions reported in other studies (Stiles et 

al., 2017; Power et al., 2006; Pilkington et al., 2007) , the lack of responses observed for 

plant cover and species richness to individual nutrient addition was unexpected. 

Accidental burning of the plots likely constrained species responses to nutrient addition, 

particularly as the burning led to a complete loss of plant biomass. This lack of response 

is likely to be due to the burning effects rather than the failure on the part of species to 

respond to nutrient addition and this probably led to the indications of non-recovery of 

species (particularly lower plants) from the adverse effects of N deposition. 

 

In contrast, tissue nutrient concentrations markly responded to treatment additions. 

Similarly, nutrient addition increased soil N and P availability but the effects on soil 

extractable N was not significant as opposed to the significant increase in P availability in 

response to P addition in both heathlands. This suggests that both heathlands may be 

limited by P not N with a stronger effect in the lowland heath. However, the effects of 
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nutrient addition on soil and tissue N and P and N: P ratios conformed to observations 

made by other workers (Carroll et al., 1999; Power et al., 1995; Pilkington et al., 2005) 

while the direct relationships between soil and plant nutrient concentrations and ratios 

(with the exception of soil extractable N) is an indicative of plant nutrient uptake of the 

added nutrients. Although soil P availability and N: P ratios did not significantly influence 

plant recovery from the adverse effects of N deposition, the strong response of plants    

(i.e. tissue P concentration) for P uptake of the added P supports the claim that 

heathlands are P limited (Gimingham, 1972; de Graaf et al., 2009) particularly in the 

upland heath of which high N deposition is likely to increase such P limitation in 

heathlands. Thus, as a mitigation measure, heathland managements may include 

practices that can maintain P availability just at a level that meets plant nutrient 

requirements necessary to restore soil-plant P availability needed for growth. 

 

However, the expected effects of nutrient addition on tissue PME activity were achieved 

with N addition increasing PME activity (though non-significant trend) while P addition 

significantly decreased it. Meanwhile, soil N and P availabilities also had opposite effects 

on individual species cover as indicated by the PCA ordination plots (as presented in 

chapter four). N availability correlated with the first component axis while P availability 

related to the second but their effects were consistent regardless of the heathland type.  

 

6.1.2.2 From the field survey 

 

The field vegetation survey was intended to examine if experimentally derived plant 

responses to N deposition as modified by P availability were also apparent in open 

heathlands along N deposition gradient in areas of high and low P availability. This was 

done by assessing the relationship among vegetation parameters, soil nutrients, 

geographic and climatic variables across bedrocks in an attempt to determine the 

protective role of P for lower plants along a gradient of N deposition. The survey also 

built on the Terrestrial Umbrella (TU) survey of 2009 (Southon et al., 2013) by revisiting 

some of the original sites. By comparing inter-decade variations to quantify the effects 

of N deposition on species richness, results indicate significant reduction in species 

richness as N deposition increased particularly across the lowland heaths (Fig. 6.1 b).  
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Figure 6.1. Inter-decade comparison of N deposition effects on species richness across 
upland and lowland heaths 
 

This is most likely to be the effects of cumulative N deposition and suggests that lowland 

heaths are particularly sensitive to N deposition. The results of this present survey 

strongly supports the claim that N (particularly cumulative N) deposition drives 

significant loss of biodiversity (Duprè et al., 2010; De Schrijver et al., 2011; Payne et al., 

2014; Payne et al., 2019). 

 

Some factors relating to soil-plant nutrient availabilities (particularly soil P) were also 

assessed. Although results indicated comparable level of bedrock-derived total P across 

heathlands the soil total P did not translate to equivalent increase in availability as 

available P in soil layers (particularly the mineral layers) was low. Soil available P was also 

consistently decreased (although not significant) in all soil layers across the lowland 

heaths as N deposition increased (particularly with the current 3-year N deposition). 

However, there was relatively higher P availability in the humic layers on carb and clastic 

rocks in the upland heaths and on felsic rocks in the lowland heaths than the deeper 

layers.  In contrast, previous surveys have reported elevated soil P concentrations caused 

by high N input (Rowe et al., 2008; Jones and Power, 2012) suggesting that high N 

deposition may increase the availability and uptake of P. However, the significant of the 

current survey indicates that the underlying bedrocks of the studied heathlands may be 

low in P bearing minerals or extensively weathered leading to the low level of available 
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P in their weathered subtracts with high N deposition also decreasing this amount across 

the heathland communities. 

 

Species richness of plant growth forms (lower plants, higher plants, nitrophiles and 

nitrophobes) in both heathlands were generally low and did not relate to N deposition 

nor soil available P across bedrocks. However, N deposition significantly decreased 

overall species richness but soil available P in the humic layers had opposite effects and 

influenced species composition across the lowland heaths. Such relationships among the 

three variables did not occur in the upland heaths further suggesting that the lowland 

heaths may be more vulnerable to the negative effects of N deposition. The implication 

of this survey is that, the vulnerability of lowland heaths to the adverse effects of N 

deposition may be reversed if soil available P increased with potential beneficial effects 

for lower plants which may aid their resilience to the negative effects of N deposition 

although responses may differ depending on available P content of the underlying 

bedrocks.  

 

Variation in species composition was better explained by the environmental variables 

across the lowland heaths than the upland heathlands (Fig. 5.9). In both heathlands, soil 

N: P ratios significantly influence species distribution but individual species showed 

differential responses to N and P availabilities. For instance, across the upland heaths, 

Brachythecium rutabulum, Campylopus introflexus, Hypnum Lacunosum, Ulex europaeus 

positively related to N deposition. In contrast, Hylocomium splendens, Carex flacca, 

Vaccinium vitis-idea, Nardus stricta, Agrostis canina, Rhytidiadelphus triquestus, 

Cladonia uncialis and Cladonia crispata occurred at cooler sites characterised by low N 

deposition rate. Species that showed positive correlations with soil available P included 

Rhytidiadelphus lorus, Polytricum commune, Eriophorum vaginatum, Juncus squarrosus, 

Trichophorum cespitosum, Carex pendula. In the lowland heaths, Stellaria media, 

Kingbergia praelonga had a positive response to N deposition but species showing 

significant relationships with soil available P included Pleurozium schreberi, 

Rhytidiadelphus squarrosus, Nardus stricta and Cladonia coccifera (all positive).  
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Comparing findings from the experiments and large-scale field survey 

 

In terms of soil-plant nutrient concentrations and availability, experimental responses 

differed from responses in open heathlands. Data suggest that tissue N and P 

concentrations and ratios in the treatment plots reflected soil nutrient concentrations 

(particularly soil available P) contrary to the observation across the survey sites in both 

heathlands. However, in both studies (Nutrient addition experiment and field survey), 

plant growth may be co-limited by N and P availability. Across survey sites, soil N:P ratio 

had a significant influence on species composition in both heathlands but with a greater 

effect in the lowland heaths increasing overall species diversity when plants’ nutrient 

abstraction occurred in the humic and organic layers (Figs. 5.9 a, 5.9 b and 5.9 d).  In 

contrast, higher soil N: P ratio decreased species diversity in the treated plots of the 

upland heath but had no effect on species in the lowland heath or in the recovery plots 

of the upland heath. 

 

There were strong responses of lower plants to short widows of N deposition as tissue N 

increased with increased N deposition across the lowland heaths while on the treatment 

plots tissue N content of lower plants did not relate to simulated N deposition. This 

suggests that, N may be limiting across open lowland heathlands as opposed to possible 

N loading in the experimental lowland heath. 

 

In contrast, tissue PME activity was relatively similar in both nutrient addition experiment 

and survey studies. N addition increased tissue PME activity of Calluna and Hypnum while 

P addition decreased it in both heathlands. Meanwhile across survey sites, Calluna tissue 

PME activity increased on bedrocks with the lowest mineral soil available P (e.g. on felsic 

rocks in the upland heaths and on carb rocks across the lowland heaths (Fig. 5.5 g)). For 

Hypum, tissue PME activity in both heathlands was low on felsic rocks, the rock type that 

had the highest soil available P in the humic layers across the lowland heaths (Fig. 5.5 h 

and Fig. 5.2 h). A similar observation was made on mafic rocks across the lowland heaths 

suggesting that high soil available P can repress phosphatase enzyme activity in both 

vegetation types. The interpretation of these findings suggest that,  for tissue surface 
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PME activity experimental responses reflected responses in open heathlands and further 

confirms the soil layers which provide major nutrients for higher and lower plant species. 

 
Overall, there was lack of evidence to suggest that soil available P would increase 

resilience of lower plants to the adverse effects of N deposition regardless of heathland 

type both in nutrient addition experiment and in field survey. However, there was an 

indication that along environmental gradients, soil available P may promote growth of 

lower plants but this may occur only on high P containing bedrocks. Although responses 

may have been masked by many factors (e.g. accidental burning of the treatment plots, 

spatial variability between sampling sites, soil types and different geologies) results 

suggest similar effects of soil available P on lower plants’ responses to N pollution in 

experiments and in open heathlands. 

 

6.2 Recommendation for further research 

6.2.1 Increasing sampling sites in vegetation survey  

Given the relatively small sampling sites across the broad categories of bedrocks 

considered in this study, it would be worthwhile to carry out a similar survey by 

increasing sampling sites on each bedrock category. This may help clearly establish the 

effects of soil available P on lower plants’ responses to N deposition to confirm or 

otherwise the findings of this current study. The inferences made from this current 

survey may not be representative of the real effects of soil available P on lower plants’ 

recovery from the adverse effects of N deposition across heathlands as analysis in many 

cases was precluded by the limited sampling sites.  

 

6.2.2 Investigating the effects of soil available P on lower plants’ recovery from N 

deposition in undisturbed nutrient addition experiment sites 

 

Plant responses to nutrient addition have mostly been investigated in undisturbed 

experimental sites (Power et al., 1995; 1998b) unless study objectives required 

simulated disturbances (Barker et al., 2004). Thus, soil-plant responses to nutrient 

addition in a disturbed experimental site may be potentially misleading. 
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The assessment of soil-plant responses to N deposition in an accidentally burnt nutrient 

addition experimental site in this study is likely to produce misrepresentative plant 

responses to N deposition. Thus, it would be worthwhile to carry out a similar study in a 

similar but undisturbed nutrient addition experimental site to validate or nullify findings 

of this study. 

 

6.2.3 Model prediction of species responses to N deposition as mediated by soil 

available P 

Soil biogeochemical and vegetation model simulations give likely changes in species 

responses to N deposition for the future. Thus, they help resolve a complex situation in 

the real world. As studies have predicted a decline in biodiversity across heathland 

communities (Stevens et al., 2016), it would be appropriate that further studies examine 

the prediction of soil-plant responses to increased N deposition in a modelling 

simulation. This may provide valuable insights into N deposition impacts on plants and 

soils by establishing if experimental responses are also apparent in a real-world situation 

across heathland communities. 
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8 APPENDICES 

 

Figure A: 1. Scatterplots showing correlations between soil characteristics in three soil layers and a 3-year N deposition across the lowland heaths 
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Figure A: 2. Scatterplots showing correlations between soil characteristics in three soil layers and a 3-year N deposition across the upland heaths
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Appendix B: Table B: 1. Summary statistics from Pearson correlation analysis between 
plant (Calluna/Hypnum) tissue chemistry and vegetation and soil characteristics (in the 
humic soil layers) and a 3-year average N deposition across the upland and heaths  

Parameter Cumulative  N  

deposition 

Extractable N Soil available P Soil N:P 

 r p-value r p-value r p-

value 

r p-value 

Upland heaths 

Calluna tissue N .314 .154 -.035 .875 -.143 .522 .123 .585 

Calluna tissue P .264 .236 -.036 .875 .078 .729 .0497 .826 

Calluna tissue NP ratio -.0165 .942 .311 .159 -.148 .509 .0445 .844 

Hypnum tissue N .289 .192 .229 .305 .020 .929 .200 .372 

Hypnum tissue P -.168 .465 -.126 .587 -.035 .875 -.323 .153 

Hypnum tissue NP ratio .337 .125 .334 .129 -.035 .875 .412 .057 

Lower plant richness -.156 .487 -.081 .718 .021 .924 -.0913 .686 

Lower plant diversity -.0546 .809 .011 .961 .254 .253 -.070 .756 

Lower plants cover -.080 .722 -.179 .426 .208 .354 -.036 .870 

Higher plants richness -.185 .411 .51* .0141 -.311 .158 -.241 .281 

Higher plants diversity -.388 .0743 .364 .095 -.002 .992 -.187 .405 

Higher plants cover -.148 .511 -.324 .142 -.017 .939 -.0219 .923 

Overall species richness -.233 .298 .101 .656 -.239 .285 -.191 .394 

Overall species diversity -.161 .473 .0277 .902 .0157 .945 -.0693 .759 

Total plant cover (%) ex -.152 .499 -.051 .820 -.035 .8737 -.136 0.545 

Canopy height (cm) .480* .0237 .477* .0246 -.022 .92 0.0486 .829 

Lowland heaths 

Calluna tissue N .358 .121 -.208 .379 -.418 .066 .164 .489 

Calluna tissue P .0625 .794 -.181 .445 -.191 .419 .307 .189 

Calluna tissue NP ratio -.300 .199 .195 .409 .196 .407 -.01 .979 

Hypnum tissue N .502* .024 -.386 .092 .116 .623 -.069 .772 

Hypnum tissue P .3256 .161 -.198 .402 .273 .244 -.069 .770 

Hypnum tissue NP ratio .408 .074 -.45* .043 .062 .796 -.092 .698 

Lower plant richness -.110 .645 -.082 .730 .348 .132 -.0156 .948 

Lower plant diversity .241 .306 -.239 .309 -.080 .735 -.0281 .906 

Lower plants cover .151 .526 -.49* .025 -.090 .704 -.007 .977 

Higher plants richness -.509* .022 .359 .120 .380 .098 -.229 .329 

Higher plants diversity -.147 .536 .340 .142 -.087 .713 .047 .844 

Higher plants cover -.0965 .686 .238 .312 -.165 .488 .195 .409 

Overall species richness -.485* .0299 .226 .336 .63** .003 -.0559 .815 

Overall species diversity .0591 .805 -.184 .436 -.289 .216 .339 .143 

Total plant cover (%) ex .349 .131 -.130 .585 -.47* .038 .253 .282 

Canopy height (cm) .514* .020 -.668** .001 -.184 .438 .00887 .970 

*: p<0.05; **: p<0.01; ***: p<0.001; • p<0.10; r: correlation coefficient. 
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Appendix C: Table C: 1 Summary statistics from Pearson correlation analysis between 
plant (Calluna/Hypnum) tissue chemistry and vegetation and soil characteristics (in the 
organic soil layers) and  a 3-year average N deposition across the upland and heaths  

 
Parameter Cumulative  N  

deposition 

Extractable N Soil available P Soil NP 

 r p-

value 

r p-

value 

r p-

value 

r p-value 

Upland heaths 

Calluna tissue N .293 .223 .238 .325 -.054 .827 .077 .753 

Calluna tissue P .260 .282 .004 .986 .187 .445 -.015 .948 

Calluna tissue NP ratio .0052 .983 .262 .278 -.230 .343 .132 .591 

Hypnum tissue N .308 .200 .213 .382 .048 .847 .232 .338 

Hypnum tissue P -.151 .551 -.167 .507 .237 .344 -.366 .134 

Hypnum tissue NP ratio .332 .165 .375 .113 -.032 .895 .460* .047 

Lower plant richness -.239 .323 .0414 .867 .134 .584 -.228 .349 

Lower plant diversity -.139 .569 .150 .539 .302 .209 -.151 .536 

Lower plants cover -.146 .549 -.073 .766 .359 .131 -0.17 .486 

Higher plants richness -.145 .554 .449 .053 -.245 .312 -.248 .306 

Higher plants diversity -.375 .114 .351 .140 .057 .817 -.193 .428 

Higher plants cover -.238 .326 -.264 .275 .198 .416 -.214 .379 

Overall species richness -.2733 .258 .477* .039 .109 .655 -.0629 .798 

Overall species diversity -.2584 .285 .281 .245 .175 .473 .220 .364 

Total plant cover (%) ex -.203 .404 -.0493 .841 .259 .283 .176 .472 

Canopy height (cm) .597** .006 .0258 .916 -.169 .490 -.0574 .815 

Lowland heaths 

Calluna tissue N .394 .106 .238 .325 -.366 .135 .077 .753 

Calluna tissue P .338 .169 .004 .986 -.284 .253 -.015 .948 

Calluna tissue NP ratio -.512* .029 .262 .278 .363 .139 .132 .591 

Hypnum tissue N .532* .023 .213 .381 .134 .595 .232 .338 

Hypnum tissue P .311 .208 -.167 .507 .336 .172 -.367 .134 

Hypnum tissue NP ratio .419 .083 .375 .113 -.156 .536 .460* .047 

Lower plant richness -.363 .138 .221 .379 .342 .166 -.389 .111 

Lower plant diversity .0331 .896 -.014 .956 -.075 .764 -.253 .312 

Lower plants cover .304 .220 -.575* .013 .006 .983 .089 .723 

Higher plants richness -.445 .064 .604** .007 .075 .768 .122 .629 

Higher plants diversity .101 .691 .189 .451 -.309 .211 .439 .068 

Higher plants cover .158 .532 -.025 .923 -.281 .258 .481* .043 

Overall species richness -.486* .029 .264 .274 .298 .215 -.172 .480 

Overall species diversity .0591 .805 -.135 .582 -.268 .266 .464* .045 

Total plant cover (%) ex .349 .131 -.217 .373 -.308 .199 .363 .127 

Canopy height (cm) .514* .020 -.683** .001 -.048 .845 -.066 .788 

*: p<0.05; **: p<0.01; ***: p<0.001; • p<0.10; r: correlation coefficient. 
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Appendix D : Table D: 1 Summary statistics from Pearson correlation analysis between 
plant (Calluna/Hypnum) tissue chemistry and vegetation and soil characteristics (in the 
mineral soil layers) and a 3-year average N deposition across the upland and heaths  

 

Parameter Cumulative  N  

deposition 

Extractable N Soil available P Soil NP 

 r p-

value 

r p-

value 

r p-

value 

r p-value 

Upland heaths 

Calluna tissue N .293 .224 .342 .152 -.241 .318 -.339 .156 

Calluna tissue P .260 .282 .278 .249 .135 .582 .047 .849 

Calluna tissue NP ratio .005 .983 -.063 .796 -.359 .131 -.085 .729 

Hypnum tissue N .308 .200 .103 .674 .172 .481 .209 .389 

Hypnum tissue P -.151 .551 -.163 .518 .304 .219 .084 .742 

Hypnum tissue NP ratio .332 .165 .126 .606 -.033 .894 .075 .760 

Lower plant richness -.239 .324 .143 .558 -.231 .341 .376 .112 

Lower plant diversity -.139 .569 -.030 .902 -.277 .251 .391 .097 

Lower plants cover -.146 .549 -.105 .668 .0041 .986 -.033 .894 

Higher plants richness -.144 .554 .462* .047 -.167 .494 .115 .638 

Higher plants diversity -.375 .114 .0124 .959 -.308 .199 .273 .259 

Higher plants cover -.238 .326 -.085 .731 -.009 .969 -.226 .351 

Overall species richness -.273 .258 .393 .095 -.137 .575 .293 .224 

Overall species diversity -.258 .285 -.012 .961 -.091 .711 .412 .079 

Total plant cover (%) ex -.203 .404 -.325 .174 .0143 .953 .280 .245 

Canopy height (cm) .597** .007 -.111 .649 -.290 .228 -.175 .473 

Lowland heaths 

Calluna tissue N .383 .117 .342 .152 -.298 .228 -.339 .156 

Calluna tissue P .1887 .453 .278 .248 .035 .891 .047 .849 

Calluna tissue NP ratio -.399 .100 -.063 .796 -.070 .782 -.085 .729 

Hypnum tissue N .526* .025 .103 .674 .223 .372 .209 .389 

Hypnum tissue P .305 .219 -.163 .518 .365 .136 .084 .742 

Hypnum tissue NP ratio .415 .086 .1263 .606 -.123 .627 .075 .760 

Lower plant richness -.279 .263 .299 .227 -.139 .580 .109 .664 

Lower plant diversity .114 .654 .173 .492 -.216 .389 -.004 .986 

Lower plants cover .259 .299 -.494* .037 .171 .498 .085 .738 

Higher plants richness -.481* .043 .269 .279 -.023 .928 .063 .804 

Higher plants diversity -.002 .995 -.002 .993 -.0431 .865 -.027 .916 

Higher plants cover .0627 .805 -.192 .444 .0361 .887 .078 .759 

Overall species richness -.589** .009 .411 .101 -.0985 .697 .189 .451 

Overall species diversity .261 .296 -.042 .872 -.005 .987 -.0219 .931 

Total plant cover (%) ex .545* .019 -.338 .184 .0121 .962 -.161 .523 

Canopy height (cm) .552* .017 -.546* .023 .0586 .817 -.242 .332 

*: p<0.05; **: p<0.01; ***: p<0.001; • p<0.10; r: correlation coefficient. 
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Appendix F Table F: 1. Canonical correspondence analysis of vegetation data using selected environmental variables with a 3-year average N 
deposition data. Scores of environmental variables, pseudo-F and p-values generated using a permutation test  
 

Soil Layer Variable Upland Pseudo-F (p) Variable Lowland Pseudo-F (p) 

  CCA-axis 1 CCA-axis 2 CCA-axis 3  CCA-axis 1 CCA-axis 2 CCA-axis 3 

 
 
Humus 

pH -0.0899 0.723 -0.683   1.44(p=0.08)      LOI -0.277 -0.331   0.601 1.89(p<0.01)  

Aspect 0.256 0.407   0.846 1.72(p<0.05)   ext_N          0.350 -0.242   0.561  1.68(p<0.05)  

Cadepo 0.549 0.467 -0.092   1.52(p=0.07)   Av_P -0.128   0.279   0.681 1.59(p=0.06)   

Ntotdepo 0.957 0.135   0.105   2.046(p<0.01)  Soil total Ca   0.332 -0.146  0.853 1.85(p<0.05)   

     Soil NP ratio   -0.752 -0.549 -0.035  2.11(p<0.01)   

Temp 0.663 -0.237 -0.527 1.63(p<0.05)   
 Inertia Explained (%) 21 18 13  Inertia Explained (%) 43 34 29  

 Percentage of total inertia explained = 28  Percentage of total inertia explained = 45 

 
 
Organic 

Soil_N -0.841 -0.541   - 1.77(p=0.07)   Soil total Ca -0.102 -0.804 -0.438 2.03(p<0.01) 

Ntotdepo 0.800 -0.599    - 2.24(p<0.01 )   NP_ratio 0.961 0.0895 0.251 3.25(p<0.01) 
     Rainfall 0.682 -0.421 0.478 1.43(p=0.8) 

Ntotdepo -0.192 0.911 -0.000 1.38(p=0.09) 
Inertia Explained (%) 29 12 -  Inertia Explained (%) 44 30 19  
Percentage of total inertia explained = 20  Percentage of total inertia explained = 43 

 
 
Mineral 

pH   -0.117 -0.942 -0.226   1.88(p<0.05)  ext_N 0.575 -0.529 0.057 1.85(p<0.05)  

Av_P       0.654 -0.0135   0.543 1.48(p=0.09) Ntotdepo 0.225 0.891 -0.374 2.24(p<0.01)   

Soil_N 0.925 -0.0511   0.325   1.97(p=0.06)   Rainfall -0.574 -0.665 -0.478 1.64(p=0.6)   

Ntotdepo -0.711   0.0917   0.423  2.44(p<0.01)   Temp -0.579 0.622   0.324 1.52(p<0.05)   

Inertia Explained (%) 36 17 12  Inertia Explained (%) 42 32 16  
Percentage of total inertia explained = 37  Percentage of total inertia explained = 36 

Ntotdepo = cumulative total N deposition, ext_N= soil extractable N, Cadepo = calcium deposition,   Temp = temperature
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Appendix G:  
 

 

 
 

 
Figure G: 1. Canonical correspondence analysis (CCA) showing relationships among 
vegetation composition and environmental variables across soil profile layers in upland 
and lowland heaths. CCA plots display species at p<0.05 significant level. 
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Appendix H: Table H: 1. Site descriptive details across the lowland heaths 

 

Site Site ref. Grid ref. Aspect Altitude Geology Geology – 
 broad 
category 

Budworth LHE1 SJ584658 135 75 Sandstone Clastic 

Studland LHE2 SZ024841 120 14 Sandstone Clastic 

Cannock Chase LHE3 SK002148 170 187 Sandstone Clastic 

Frensham LHE4 SU850400 88 71 Sandstone Clastic 

Berkhamsted LHE5 SP999097 135 178 Chalk Carbonate 

Knettishall LHE6 TL951805 73 26 Chalk Carbonate 

Dale end LHE7 SE690926 220 217 Mudstone Carbonate 

South Cliff LHE8 SE860356 192 7 Mudstone Carbonate 

Roydon LHE9 TF678223 120 34 Sandstone Clastic 

Conwry LHW1 SH765778 65 157 Siltstone Clastic 

Penrhos fewils LHW2 SH214804 212 45 Psammite Clastic 

Rhossilli LHW3 SS421888 157 189 Sandstone Clastic 

Bull bay LHW4 SH433934 125 53 Psammite Clastic 

Cligwm LHW5 SN060373 86 309 Microgabbro Mafic 

Applecross LHS1 NG742442 190 252 Sandstone Clastic 

Culblean Hill LHS2 NJ430019 80 181 Tonalite Mafic 

Gordon bush LHS3 NC858066 270 68 Sandstone Clastic 

Torrish LHS4 NC977193 260 140 Granite Felsic 

Dingwall LHS5 NN518629 100 255 Psammite Clastic 

Inverroy LHS6 NN261826 180 183 Limestone Carbonate 
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Appendix I: Table I: 1. Site descriptive details across the Upland heaths 

 

Site Site 

ref. 

Grid ref. Aspect Altitude Geology Geology – 
 broad 

category 

Dartmoor UHE1 SX693815 140 454 Granite Felsic 

Porlock UHE2 SS851461 58 427 Sandstone Clastic 

Great 

longstone 

UHE3 SK195730 140 362 Limestone Carbonate 

Win Hill UHE4 SK189851 340 412 Sandstone Clastic 

Howden Moor UHE5 SK237947 266 392 Sandstone Clastic 

Bowland Forest UHE6 SD623531 260 327 Sandstone Clastic 

Shap UHE7 NY547107 345 369 Andsite Felsic 

Stiperstone UHE8 SO365982 280 492 Sandstone Clastic 

Blakely Ridge UHE9 SE679993 124 360 Sandstone Clastic 

Widdy Bank fell UHE10 NY818298 260 517 Limestone Carbonate 

Ruabon UHW1 SJ223491 120 485 Shale Clastic 

Pen-Y-benglog UHW2 SH641599 90 495 Siltstone Clastic 

Llanaelhaerean UHW3 SH370443 89 376 Rhyolite Felsic 

Trefil UHW4 SO111144 200 445 Limestone Carbonate 

Rhinogs UHW5 SH666297 85 416 Mudstone Carbonate 

Glascum UHW6 SO155523 136 353 Mudstone Carbonate 

Loch tag UHS1 NN802419 95 528 Psammite Clastic 

Bridge of 

brown 

UHS2 NJ086208 220 438 Psammite Clastic 

Durisdeer UHS3 NS901042 194 377 Mudstone Carbonate 

Auchallater UHS4 NO163876 52 417 Granite Felsic 

Dalwinnine UHS5 NN765696 200 346 Psammite Clastic 

Carfraemill UHS6 NT518557 90 362 Mudstone Carbonate 

 
 
 
 
 


