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Abstract: Air pollution impacts all populations globally, indiscriminately and has site-specific vari-

ation and characteristics. Airborne particulate matter (PM) levels were monitored in a typical in-

dustrial Russian city, Chelyabinsk in three destinations, one characterized by high traffic volumes 

and two by industrial zone emissions. The mass concentration and trace metal content of PM2.5 and 

PM10 were obtained from samples collected during four distinct seasons of 2020. The mean 24-h 

PM10 ranged between 6 and 64 μg/m3. 24-h PM2.5 levels were reported from 5 to 56 μg/m3. About 

half of the 24-h PM10 and most of the PM2.5 values in Chelyabinsk were higher than the WHO rec-

ommendations. The mean PM2.5/PM10 ratio was measured at 0.85, indicative of anthropogenic input. 

To evaluate the Al, Fe, As, Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn concentration in PM2.5 and PM10, 

inductively coupled plasma mass spectrometry (ICP-MS) was used. Fe (337–732 ng/m3) was the 

most abundant component in PM2.5 and PM10 samples while Zn (77–206 ng/m3), Mn (10–96 ng/m3), 

and Pb (11–41 ng/m3) had the highest concentrations among trace elements. Total non-carcinogenic 

risks for children were found higher than 1, indicating possible health hazards. This study also pre-

sents that the carcinogenic risk for As, Cr, Сo, Cd, Ni, and Pb were observed higher than the ac-

ceptable limit (1 × 10−6). 

Keywords: PM10 and PM2.5; trace elements; industry emissions; health risk 

 

1. Introduction 

Globally, an increasing awareness of air quality and air pollutants in general are fos-

tered amongst populations due to media coverage, changing policies, new air quality 

standards, and disaster events such as the COVID-19 pandemic. As such, urban popula-

tions become increasingly aware of the impact that poor air quality has on their health 

and the environment [1]. Most countries have adopted air quality guidelines and in 2010, 

the Russian Federation approved the legislation for the maximum permissible concentra-

tions of atmospheric particles with aerodynamic diameter <2.5 μm (PM2.5) and <10 μm 

(PM10) (35 and 60 μg/m3 (24-h mean concentrations), 25 and 40 μg/m3 (annual mean con-

centrations), respectively) [2]. This evidently resulted in numerous monitoring stations 

across the country. It needs to be noted though, that the adopted guideline values are 

much higher than what has been recommended by the WHO, which recently changed to 
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even lower levels of 15 and 45 μg/m3 (24-h mean concentrations), and 5 and 15 μg/m3 

(annual mean concentrations), for PM10 and PM2.5, respectively [3]. 

The focus of this research is on a typical Russian industrial city, where urban air qual-

ity is further impacted by local industry. For example, it has been shown that mechanical 

engineering industries contributes up to 13% of ambient PM2.5, ferrous metallurgy up to 

79% of PM2.5, and non-ferrous metallurgy up to 43% of PM2.5 [4]. Concentrations of PM2.5 

and PM10 in the ambient air near industrial enterprises often exceed hygienic standards. 

This is most concerning as Russia currently reports an increase in industrial production. 

It is therefore not surprising that residents are worried about smog episodes driven by 

elevated particulate matter (PM) levels, especially in industrialized urban environments. 

If one considers the usual urban air pollution sources [5] in addition to industry emissions, 

it becomes evident that continuous site-specific air quality monitoring, source apportion-

ment, and data analyses are of cardinal importance for residents’ well-being and health. 

A potential way of source apportionment is to investigate the ratio of PM2.5 to PM10 

(PM2.5/PM10) as it can provide information on the origin and production processes [6,7]. 

Not only does it inform as to the predominant size of the PM, but could be an indication 

if the PM is predominantly anthropogenic (higher ratio) or naturally occurring airborne 

particles (lower ratio) [8]. In addition, the PM2.5/PM10 ratio has been shown to provide 

useful information on local dusty processes in the atmosphere and types of PM pollution 

in a particular region [9–14]. Apart from mass concentrations, the PM collected from in-

dustrial city areas is enriched with trace elements (TEs) [15–17]. Due to the difference in 

chemistry that these particles will exhibit, it is important to analyze the chemical profile 

of PM on a site-specific basis, so as to predict potential health risks of the inhabitants. 

As general continuous air quality monitoring is limited to the last decade in Russia, 

only a few studies [17] have been performed using one-year continuous PM data. Even 

fewer studies report the chemical profile and TEs in PM and atmospheric aerosol (Table 

S1). Mitigation strategies need to be informed by reliable long-term monitoring and anal-

ysis. For that reason, the main objectives of the study were (1) to identify the spatiotem-

poral variations in PM2.5, PM10, and PM2.5/PM10 in a typical industrial Russian city, Chel-

yabinsk; (2) determine the concentration of TEs in PM2.5 and PM10 collected in the Chelya-

binsk urban area; (3) assess non-carcinogenic and carcinogenic health risks associated 

with the inhalation of PM. 

To the authors’ knowledge, this is the first time that the spatiotemporal variation of 

the metal(loid) concentrations in PM2.5 and PM10 in a typical Russian industrial city has 

been investigated systematically (120 samples analyzed during four seasons and at three 

different stations) for a time period of one year. 

2. Materials and Methods 

2.1. Study Area, Data and Samples Collection 

The three sampling stations were located in urban residential areas in Chelyabinsk 

(55°09′14″ N, 61°25′44″ E, Elevation: 219 m) (Figure 1). Chelyabinsk is located on the east-

ern slope of the Southern Urals. The city has a humid continental climate. The average 

temperature in January is well below freezing point (−14 °C). Mid-summer temperatures 

are relatively cool (19 °C), while the annual average is a few degrees above freezing point 

at 3 °C, indicating a moderate climate for Russia. The population of Chelyabinsk during 

the last census (2010) was 1.130 million. The city has a land area of roughly 530 km2. 

Chelyabinsk experiences heavy air pollution with about 120 days per year identified 

as high pollution days. The three most dangerous air pollutants in Chelyabinsk are for-

maldehyde, HF, and NO2 [5]. 
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Figure 1. The area under study and the observation instruments used to record data. (a) Сhelyabinsk (Russia) and the 

location of the three sampling stations. (b) Atmas (NTM Protection, Moscow, Russia) device, providing simultaneous 

measurement of the hourly data of PM2.5 and PM10. (c). The aerosol cascade impactor sampler. 

Station 1 was located near highways with heavy automotive traffic. Station 2 and 

Station 3 were industrial sites located near metallurgical plants. The Atmas device (NTM 

Protection, Moscow, Russia) measures PM2.5 and PM10 mass concentrations based on uni-

polar corona charging and electrostatic detection [18]. The analyzer consists of a 2.5 and 

10 μm cutoff diameter impactors for PM2.5 and PM10 fractional measurements. Ground-

based observations of hourly PM2.5 and PM10 mass concentrations were obtained from Jan-

uary 2020 to December 2020. 

In addition, 72-h PM2.5 and PM10 samples were collected on polycarbonate filters (Sar-

torius, Germany) with diameter of 25 mm and a pore size of 0.4 μm using low volume 4 

stage cascade impactor samplers (IKS-4, Ekaterinburg, Russia) operated at a flow rate of 

16 L· min−1 at a height of 2 m. The following size 4 fractions could be collected: >10 μm, 

10–5 μm, 5–2.5 μm, and <2.5 μm. The PM2.5 and PM10 samples were collected at each sta-

tion for each of the four seasons in 2020 (January 12–30, April 6–27, July 9–25, and October 

5–30). 

2.2. Sample Pretreatment and Chemical Composition Analyses 

The loaded PM2.5 and PM10 filters were placed into a polytetrafluoroethylene (PTFE) 

digestion vessel for acid treatment (2 mL hydrofluoric acid and 6 mL nitric acid), then mi-

crowave digested (MWS 4 Speedwave, Berghof, Germany) for 2 h after the setup routine 

to analyze metal(loid) elements [19–21]. After digestion, the extracts were filtered using a 

blue ribbon filter (Whatman Grade 589/3 ashless filter paper), and distilled water was 

added such that the total volume was 25 mL. The major (Al and Fe) and trace elemental 

compositions (As, Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn) were analyzed using iCAP 7200 

(Thermo Fisher, Waltham, MA, USA) Inductively Coupled Plasma Optical Emission Spec-

trometry (ICP-OES) and Perkin Elmer ELAN 9000 Inductively Coupled Plasma Mass 

Spectrometry (ICP-MS), respectively. 
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For quality control purposes the following certified reference materials were used: 

GSO 10413-2014 CO cespitose and podsolic srednesuglinisty soil (I BEND Ros-

selkhozakademiya’s VNIIA, Russia), GSO 7186-95 of loess soil (Bronnitsky geological and 

geochemical expedition Institute of Mineralogy, Geochemistry and Crystal Chemistry of 

Rare Elements, Russia), and GSO 3486-86 of aluminosilicate loose deposits (Vinogradov 

Institute of Geochemistry SB RAS, Russia). For quality assurance/quality control, 10 blank 

filters and standards were digested and analyzed as described above to serve as method 

blanks. For each element the limit of detection (LOD) has been estimated considering the 

standard deviation of 10 blank measurements (three times the standard deviation was 

used). The detection limits in ng/m3 on a 72 h measurement period and the recovery test 

results are presented in Table 1. The range of recovery efficiency was 87–119%. Reproduc-

ibility was tested by analyzing the same standard solution 10 times. 

Table 1. Limits of detection and recovery rate for different elements. 

 LOD (ng/m3) Recovery (%) 

Al 0.1 97 

As 0.3 98 

Cd 0.5 109 

Co 0.1 98 

Cr 1.1 87 

Cu 1.8 110 

Fe 1.1 105 

Mn 0.4 95 

Ni 1.4 89 

Pb 4.2 119 

Zn 0.1 107 

LOD is limit of detection. 

2.3. Exposure Assessment and Risk Calculation 

The health impact from exposure to the elements in PM2.5 and PM10 is used in the US 

Environmental Protection Agency (USEPA) human health evaluation method [22]. There 

are three major exposure pathways to metal(loid)s: ingestion, inhalation, and dermal con-

tact [19,23,24]. In the present study, we assessed the health risk from inhalation [25] ac-

cording to USEPA standard [22,26]. The non-carcinogenic risk of nine elements As, Cd, 

Co, Cr, Cu, Mn, Ni, Pb, and Zn was estimated. 

The average daily dose (ADDinh) (mg kg–1 day–1) for elements via inhalation was cal-

culated as [27]: 

������ = � ·
��ℎ� · �� · ��

�� · ��
, (1)

where the ADDinh is the average daily dose (mg kg−1 day−1) of exposure to elements 

through inhalation; C is the concentration of elements, (mg m−3); InhR is the inhalation rate 

of PM2.5; EF is exposure frequency; ED is exposure duration; BW is average body weight; 

AT is average time with ATnon-car. A detailed description of the values of exposure factors 

for children and adults applied to the Equation (1) is given in Table 2. 

Table 2. Values of exposure factors for elemental doses for children and adults. 

Factor Unit 
Value 

References 
Children Adults 

EF days/year 350 350 [26,28,29] 

ED years 6 24 [22,26,28,29] 

BW kg 15 70 [22,26,28–30] 
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ATnon-carc days 365 × ED 365 × ED [22,28–30] 

ATcarc days 365 × 70 365 × 70 [26,28,29] 

InhR m3/days 7.6 12.8 [22,26,28,29,31] 

EF is exposure frequency; ED is exposure duration; BW is average body weight; ATnon-car and ATcarc 

are average times for non-carcinogens and for carcinogens, respectively; InhR is the inhalation 

rate. 

As some of the components differ between cities (countries) it is necessary to alter 

those values [32,33]. Unfortunately, we did not find information about body weight, for 

example. 

The non-carcinogenic health risk of exposure to elements from PM2.5 in Chelyabinsk 

is determined as the hazard quotient (HQ��ℎ) [29–31]: 

����ℎ =
�����ℎ

���
. (2)

In this equation, RfD is an estimation of maximum permissible risks to the human 

population through daily exposure with consideration of sensitive groups (children) dur-

ing their lifetime. 

To assess the cumulative potential non-carcinogenic effects posed by many contami-

nants, the total exposure hazard index, which is the summation of all the individual haz-

ard quotient, was calculated the HQ��ℎ value of each target chemical was summed: 

  �� = ����ℎ1 + ����ℎ2 + ⋯ + ����ℎ� (3)

If HQ��ℎ or HI < 1, a population is located in a safe area, whereas potential non-

carcinogenic effects would occur in case HQ��ℎ or HI > 1. 

The CRA (carcinogenic risk assessment) for individual elements was calculated [29–

32]: 

������� = � ·
��ℎ� · �� · ��

�� · ��
, (4)

��� =  ������ℎ · C����ℎ,  (5)

where AT is average time with ATcar and CSFinh is the slope factor. 

Carcinogenic risk is the probability of an individual developing any form of cancer 

from lifetime exposure to carcinogenic hazards. The recommended level of CRA < 1 × 10−6 

can be regarded as negligible, whereas CRA > 1 × 10−4 is likely to lead to health issues. The 

acceptable or tolerable risk for regulatory purposes ranges from 1 × 10−6 to 1 × 10−4 [29–36]. 

Arsenic, Cd, Co, Ni, and Pb were treated as potential carcinogenic contaminants, 

whereas the other elements were regarded as non-carcinogenic according to the classifi-

cation groups defined by USEPA [26]. Chrome Cr(VI) is more toxic than Cr(III) and only 

Cr(VI) is considered as a carcinogen. Therefore, the CSFinh and RfD of Cr(VI) were as-

sumed as for total Cr to assess the worst situation of Cr [37]. 

2.4. Scanning Electron Microscopy 

SEM analysis was performed on a Jeol JSM-7001F Scanning Electron Microscopy 

Complex, 30 keV, EDS Oxford INCA X-max 80, WDS Oxford INCA WAVE, EBSD and 

HKL (JEOL Ltd., Japan), equipped with standard automated features such as autofo-

cus/stigmator, auto gun, and auto contrast with multiple live image display. SEM-EDS is 

a non-destructive analytical method for surface elemental analysis, with a potential detec-

tion limit of 0.1–0.5 wt.% for most elements [38–41]. A thin layer of gold was deposited on 

the surface of each sample in order to achieve better conductivity and less electron charge. 
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3. Results and Discussion 

3.1. Pollution Characteristics of Atmospheric Particulate Matter 

Figure 2 shows the 24-h means of recorded PM2.5 and PM10 levels for each month of 

2020. 

 

Figure 2. 24-h PM10 and PM2.5 concentration measured in 2020 by the Atmas device. 

The mean PM10 ranged between 6 and 64 μg/m3. PM2.5 levels were reported from 5 to 

56 μg/m3. About 3% of PM10 and 30% of PM2.5 values exceeded the Russian standard val-

ues (35 and 60 μg/m3, respectively) by 1.1 to 1.7 times. It should be noted that Russian 

standards differ from WHO recommended limits. The WHO guidelines state that annual 

average concentrations of PM2.5 and PM10 should not exceed 5 and 15 μg/m3, while 24-h 

average exposures should not exceed 15 and 45 μg/m3, respectively [3]. About half of the 

24-h PM10 and most of the PM2.5 values in Chelyabinsk were higher than the WHO recom-

mendations. 

An increase of PM concentration during the spring-summer period is not surprising 

as it is generally the dry season how it can be seen in Figure S1a. What is interesting 

though, is that despite the increase in precipitation during August, the levels of PM10 and 

PM2.5 at Station 3 were quite high, pointing towards additional site sources during this 

time. Long-range transport from nearby forest fires may also have contributed to the mass 

concentrations during this period. More than 600 forest fires were registered in close vi-

cinity of the Chelyabinsk region in the summer of 2020 [42]. Figure S2 shows that there is 

a significant difference in both the magnitude of the area in which fires were reported as 

well as the number of fires when compared to 2019. Usually, forest fires in the Urals begin 

in April and end in October, peaking in May (Figure S2, 2019). However, in 2020, forest 

fires in the Sverdlovsk region (located north of Chelyabinsk) raged throughout the sum-

mer, with a maximum in July. The prevailing wind directions in summer 2020 were north 

and northwest (Figure S2c). It gave possibility of the smoke plume fromforest fires in the 

Sverdlovsk region to influence on the PM concentrations. In addition, summer inversions 

occur often, and between 8 and 12 days are typical night-time inversion occurrences, all 

of which may contribute to increased PM mass concentrations [43,44]. There is the possi-

bility of similar inversions during autumn and winter months, albeit less frequent, which 

could potentially also play a role in higher sporadic concentrations [43,44]. During the 

summer of 2020 there were 28 days with low wind speeds (less than 1 m per second) [45], 

which would further exacerbate pollution. 

At all the stations, the PM2.5 and PM10 levels decreased substantially during the au-

tumn-winter period starting from October. Chelyabinsk is one of the snowiest cities in the 

Russian Federation. The decrease of PM concentration in winter can partially be explained 

by the “wash-out” effect, as the first snowfall typically happens in October and are lasting 

throughout the winter [46–48]. Snow grains to moderate snow has been reported from 
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January–March and October–December of 2020 (Figure S1b). The established snow cover 

prevents dusting of urban soils, as well as resuspension of dust from roads and sidewalks 

(see pictures of the city in winter in Figure S1). The variation in PM mass concentration 

levels at Station 1, situated furthest from industrial activities, could most probably be as-

cribed to changes in traffic flow and natural occurrences. It should be noted that traffic 

volume varied only slightly because this is a transport site in a residential area. On the 

other hand, the level of PM mass concentration at Stations 2 and 3, which is overall higher 

than at Station 1, is probably due to the industrial emission influence. Station 2 was located 

near a large slag dump of a metallurgical enterprise. Station 3 was located within the zone 

of industrial emissions of a metallurgical plant. The substantial increase in PM2.5 and PM10 

levels from March to August at Station 2, compared to Stations 1 and 3, could be due to 

dust resuspension of the nearby slag dump caused by windy dry weather. During the 

autumn-winter period rains [46] and snow cover [47,48] significantly reduced dust epi-

sodes and the levels at Station 2 is comparable to that of Stations 1 and 3. The PM2.5 and 

PM10 concentrations observed during the spring-summer period of 2020 at Station 3 were 

substantially lower than at Station 2 and markedly lower than at Station 1. These lower 

levels correlate with the COVID-19 lockdown period during that time. On the other hand, 

the significant increase in both PM2.5 and PM10 during August correlated with an increase 

in plant production, after lockdown was lifted. 

Figure 3 shows that the average PM2.5/PM10 ratio was 0.85, and the minimum and 

maximum ratio 0.70 and 0.95, respectively. 

 

Figure 3. PM2.5/PM10 ratio levels. 

The average PM2.5/PM10 ratio obtained in Chelyabinsk was generally higher than re-

ported for Asia (0.5) [9,14,49], China (0.62) [10–12], and in 20 European Cities (0.6) ([50] 

and references therein). Seasonal variation (often with a diurnal distribution) is also ob-

served and differs according to meteorological conditions. For example, in Wuhan the 

ratio decreases from spring through summer and increases again from autumn through 

winter, while in Africa the opposite is observed. The data in Figure 3 shows a near con-

stant ratio at Station 1, and a more prominent seasonal distribution for Station 2. This is 

indicative of constant sources of PM throughout the year, where differences in seasonal 
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meteorological conditions could explain the fluctuations in ratios. On the other hand, the 

ratio at Station 3 did not stay constant and did not display the typical seasonal variation. 

This could be due to the lockdown period during which it is reasonable to assume that 

the PM2.5 levels would drop significantly as a result of a drop in vehicle emissions and the 

nearby steel production plant. It is also evident from Figure 2 that the PM2.5 levels during 

the lockdown months were substantially lower. This conclusion is further supported by 

the significant rise in the ratio during August–September when production at the plant 

increased. According to Statistics Department data [51], in May 2020 metallurgical pro-

duction of the Chelyabinsk region decreased to 77.6% of the previous year’s production. 

After the slump in production during the May-June-July period, a gradual increase in Au-

gust and September was observed, although still lower than the previous year. In fact, for 

September, the level of production was 90.2% and in November it exceeded the previous 

year’s production by 1.8%. 

Table 3 presents the results of elemental composition of PM2.5 and PM10. The results 

reveal that Al (192–324 ng/m3) and Fe (337–732 ng/m3) concentrations constitute the major 

components. Both Al and Fe are normally assigned to crustal origin (natural sources) but 

could also be partially from anthropogenic origin, for example road dust resuspension 

(likely at all stations), slag dump dust (Station 2), and steel manufacturing plant emissions 

(Station 3 with nearly double the Fe concentration in the PM10 fraction). Zn (77–206 ng/m3), 

Mn (10–96 ng/m3), and Pb (11–41 ng/m3) had the highest concentration among the TEs, all 

of which could also be identified as potentially toxic elements and of anthropogenic origin 

[19]. There were no statistically significant season differences observed or a discernable 

difference between the two fractions, therefore the often observed enrichment of TEs in 

the smaller fraction was not evident in our data set. The Cd, As, Co, and Cr concentrations 

were quite low and near the detection limits at all monitoring stations. 

Table 3. The annual average concentrations (ng/m3) of metal(loid)s in PM2.5 and PM10 at recording stations in Chelyabinsk. 

 PM2.5 PM10 

Metal(loid) 
Station 1 

(n = 20) 

Station 2 

(n = 19) 

Station 3 

(n = 21) 

Station 1 

(n = 20) 

Station 2 

(n = 19) 

Station 3 

(n = 21) 

Al 192 ± 42 303 ± 66 268 ± 58 324 ± 71 319 ± 66 324 ± 71 

As 9.2 ± 3.6 2.2 ± 0.9 1.4 ± 0.6 9.2 ± 3.9 6.1 ± 2.5 1.9 ± 0.8 

Cd 1.0 ± 0.4 0.7 ± 0.3 0.6 ± 0.2 1.0 ± 0.5 0.6 ± 0.3 0.7 ± 0.3 

Co 0.2 ± 0.1 0.4 ± 0.1 0.4 ± 0.1 0.2 ± 0.1 0.1 ± 0.1 0.4 ± 0.1 

Cr 2.5 ± 0.4 3.5 ± 0.6 3.0 ± 0.5 8.4 ±1.3  1.7 ± 0.3 3.6 ± 0.6 

Cu 11 ± 2 6.5 ± 1.1 5.7 ± 1.0 13 ±2  5.4 ± 0.8 8.0 ± 1 

Fe 417 ± 98 693 ± 163 651 ± 153 337 ± 79 474 ± 101 732 ± 173 

Mn 21 ± 5 35 ± 9 30 ± 8 96 ± 24 10 ± 3 38 ± 10 

Ni 3.4 ±1.0 1.5 ± 0.4 1.4 ± 0.4 3.2 ± 1.0 1.7 ± 0.5 1.6 ± 0.5 

Pb 27 ± 5 15 ± 3 11 ± 2 41 ± 9 24 ± 5 15 ± 3 

Zn 115 ± 19 147 ± 25 142 ± 21 206 ± 34 77 ± 12 144 ± 24 

Table 4 shows the concentrations found in Chelyabinsk compared to the data re-

ported in other cities around the world. In general, the levels of the metals investigated in 

Asia are significantly higher than in our study. In fact, the data from our study compares 

surprisingly well with Brazil and European cities, apart from Zn which is substantially 

higher. The latter may be an indication of successful application of emission treatment 

processes, scrubbing the particulate matter released.  
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Table 4. Comparison between metal(loid)s (ng/m3) and PM2.5 (μg/m3) concentrations at different sites in the world. 

Area 
PM2.5 (24-h 

Mean) 
Al As Cd Co Cr Cu Fe Mn Ni Pb Zn Refs 

Standard Limits 15  6 5      20 50  [3,52] 

Agra (India) 131–189 1388–1688 17–35 22–26 3–4 309–354 190–210 3440–4290 58–82 61–67 320–670 319–758 [53] 

Nanjing (China) 281 1662 * 28 * 8.4 * 1.6 * 42 * 137 * 1163 * 123 * 27 * 448 * 878 * [54] 

Kanpur (India) 172 109 16 34 - 52 627 308 114 7 318 408 [55] 

Chelyabinsk (Russia) 5–56 192–303 1.4–9.2 0.6–1.0 0.2–0.4 1.5–3.5 5.7–11 417–493 21–35 1.4–3.4 11–27 115–147 This study 

Curitiba (Brazil) 9.2 *     1.7 * 2.2*    8.05 * 4.3* [56] 

Manaus (Brazil) 9.2 *     3.1 * 9.6*    12.1 * 19.9 * [56] 

Frankfurt (Germany)   0.4–1.8  0.1–0.8 4.4–17 13–121  4.6–40 2.3–10 0.6–46  [57] 

Salentum Peninsula 

(Italy) 
6–92 1.7–207    0.1–13.5 0.1–31.3 0.9–416.9 0.1–8.4 0.2–30.4 0.9–65.7 2.1–154.1 [58] 

Paris (France)  33 *  0.16 *  3.6 * 36 * 128 * 3.1 * 1.5 * 5.6 * 28 * [59] 

Αthens (Greece)    1 *  11 * 41 * 1024 * 19 * 11 * 16*  [60] 

* Mean values. 

3.2. SEM-EDS Analysis 

As the highest concentrations of TEs were observed in PM collected at Station 1, fur-

ther investigation was performed, using SEM-EDS. Information about the shape and com-

position of single particles can provide some insight in potential pollution sources as well 

as the fate of these particles upon inhalation [41]. According to the characteristic SEM-

EDS analysis, atmospheric particles collected in the winter of 2020 from the Chelyabinsk 

urban area (Station 1) contained 20 elements (Al, B, C, Ca, Cl, Cr, Cu, Fe, K, Mg, Mn, N, 

Na, Ni, O, Pb, S, Si, Ti, and Zn) with concentrations more than the detection limit (0.1 

wt.%). The most abundant elements were Fe and Mg which were present in 80–100% of 

the particles. These particles could be natural occurring aluminosilicates, which is indeed 

indicated in Figure 4e. This is not surprising as Chelyabinsk stands on sedimentary rocks 

and granite, typical for the Urals, consisting of oxides Al2O3 (14–15%), SiO2 (70–72%), 

Fe2O3 (0.7–1.1%), and MgO (0.6–1.1%) [61]. 

Figure 5 shows the predominant morphologies of carbon-rich (C-rich) particles col-

lected at Station 1. They were regular spherical and spheroidal shapes, with some present-

ing surface defects such as porosity. The particle size of this type varied in the range of 1–

5 μm. These particles are observed in cities with high vehicular traffic density and could 

be associated with exhaust emissions from automobiles using gasoline or diesel combus-

tibles, as well as fly ash originating from coal-fired power stations [62]. 

Station 1 had the largest number of sulfur-rich (S-rich) particles, with more than half 

of them containing more than 3% sulfur. Sulfate PM2.5 is commonly identified as markers 

of secondary aerosols related to long-distance transport [63–67]. The majority of the sul-

fate particles had one or more potentially toxic metal inclusions. Figure 6 shows typical 

rod-shaped, crystalline, and spherical particles. The size of metal-containing S-rich parti-

cles was about 1 μm. Most metal particles were classified as Fe-rich (e.g., hematite), Zn-

rich (e.g., zinc sulfate and zinc oxide), Pb-rich (e.g., anglesite), Mn-, or Pb-rich, which were 

likely emitted from road traffic (exhaust and tire, brake, car body, or road surface abra-

sions) [68]. Station 1 had the highest traffic volume and one can conclude that source of 

the metals is mostly traffic-related. Metals such as Fe and Zn can be linked to the corrosion 

of car-body parts. Zn, and Pb can be mostly related to brake-pad erosion; Fe, Cu, Pb, and 

Zn from brake-disc wear. Road dust and roadside soil often contain metals, including Pb, 

Cu, Cd, and Zn, indicative of contamination by road traffic emissions and the abrasion of 

road surfaces. It has been shown that sulfates from aqueous SO2 (S(IV)) oxidation cata-

lyzed by transition metals are an important atmospheric process during winter, an alter-

native to the photochemical pathway that is highly unlikely because of the ultralow O3 

concentrations [68]. Metal catalysis can promote the conversion of SO2 to sulfates in fog 

droplets [69]. The internal mixing of metals and acidic constituents solubilize metals and 
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modify metal inclusion shapes. The solubilization of metals in airborne particles can in-

crease their toxicity in the particles [70]. 

 

Figure 4. (a) SEM micrograph (magnification 500×), (b) chemical mapping of the most abundant 

elements, and (c) EDS spectrum of aggregate particles from the aluminosilicate group (d), maps rod-

like particles consisting of K, Ca, S, and O that could be potassium and calcium sulfates (e), and 

plates consisting of Fe-Mg-enriched aluminosilicates. 

 

Figure 5. C-rich particles, (a) SEM micrograph (magnification 500×) and (b) EDX spectrum. 
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Figure 7 shows spherical Fe-rich PM2.5 found at Stations 2 and 3. These particles con-

sisted of iron oxide. They could be steel furnace dust emitted by the metallurgical enter-

prises which is dumped in numerous slag waste dumps in the Chelyabinsk urban area 

near Stations 2 and 3. Their size ranges between 0.5 and 2 μm and they present a peculiar 

morphology; they are characterized by perfect sphericity indicating their smelting iron 

origin or metallurgical activities in general. 

 

Figure 6. SEM micrograph S-rich rod-shaped, crystalline, and spherical (magnification 5000×, 3000×, and 10,000×) particles 

(a,c,e, respectively) and their EDS spectrum (b,d,f, respectively). 
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Figure 7. (a) SEM micrograph Fe-rich particles (magnification 6000×) and (b) their EDS spectrum. 

3.3. Health Risk Assessment of Airborne Metal(loid)s 

Exposure to PM2.5 bound metal(loid)s may pose serious carcinogenic or non-carcino-

genic toxicity in humans depending on various factors such as exposure concentration, 

duration, and frequency. Health risk assessments of TEs through the inhalation pathway 

for both children and adult were determined, and the values of HQinh and HI are reported 

in Table 5. 

It was observed that the non-carcinogenic risk for each individual TE was well below 

the safe level (HQinh = 1) for both groups (adults and children), except HQinh (Mn) value 

for children at Stations 2 and 3. It was higher than 1 for stations located near metallurgical 

plants. Exposure to all other TEs through inhalation was within safe limits for all stations. 

The HQinh of all studied TEs indicated a greater hazard to children than adults. Table 5 

shows that HI values were lower than 1 for adults but risks for children were significant. 

The greatest danger was posed by metallurgical industrial PM emissions containing Mn. 

Table 5. The values of hazard quotient (HQinh) for children and adults in various stations. 

TE 
Children Adults 

Station 1 Station 2 Station 3 Station 1 Station 2 Station 3 

As 1.49 × 10−2 3.55×10−3 2.26 × 10−3 5.35 × 10−3 1.28 × 10−3 0.82 × 10−3 

Cd 4.86 × 10−2 3.40 × 10−2 2.92 × 10−2 1.75 × 10−2 1.23 × 10−2 1.05 × 10−2 

Co 1.70 × 10−2 3.40 × 10−2 3.40 × 10−2 6.14 × 10−3 1.23 × 10−2 1.23 × 10−2 

Cr 4.25 × 10−2 5.95 × 10−2 5.09 × 10−2 1.53 × 10−2 2.15 × 10−2 1.84 × 10−2 

Cu 1.33 × 10−4 7.86 × 10−5 6.89 × 10−5 4.80 × 10−5 2.84 × 10−5 2.49 × 10−5 

Mn 0.71 1.19 1.02 0.26 0.43 0.37 

Ni 1.18 × 10−1 5.21 × 10−2 4.86 × 10−2 4.26 × 10−2 1.88 × 10−2 1.75 × 10−2 

Pb 6.56 × 10−2 3.64 × 10−2 2.67 × 10−2 2.37 × 10−2 1.32 × 10−2 0.97 × 10−2 

Zn 0.93 × 10−3 1.19 × 10−3 1.15 × 10−3 0.34 × 10−3 0.43 × 10−3 0.42 × 10−3 

Hazard In-

dex (HI) 
1.02 1.41 1.21 0.37 0.51 0.44 

Arsenic, Cr, Cd, Co, Ni, and Pb were considered as carcinogens. The CRA was deter-

mined for children and adults and reported in Table 6. The CRA values for Cr and As had 

higher carcinogenic potential in both populations. The carcinogenic risk of each TEs for 

both groups were in the range of <1 × 10−6. The total CRA of all TEs was slightly higher for 

adults than for children. At Station 1 it was 1.06 × 10−5 and 1.53 × 10−5 for children and 

adults, respectively. It shows the high carcinogenic potential in both populations. 
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Table 6. The calculated values of carcinogenic risk for adults and children in the present study. 

Metals 
Children Adults 

Station 1 Station 2 Station 3 Station 1 Station 2 Station 3 

As 5.75 × 10−6 1.37 × 10−6 8.74 × 10−7 8.29 × 10−6 1.98 × 10−6 1.26 × 10−6 

Cd 2.62 × 10−7 1.84 × 10−7 1.57 × 10−7 3.79 × 10−7 2.65 × 10−7 2.27 × 10−7 

Co 8.16 × 10−8 1.63 × 10−7 1.63 × 10−7 1.18 × 10−7 2.36 × 10−7 2.36 × 10−7 

Cr (VI) 4.27 × 10−6 5.98 × 10−6 5.12 × 10−6 6.16 × 10−6 8.63 × 10−6 7.39 × 10−6 

Ni 1.68 × 10−7 7.43 × 10−8 6.94 × 10−8 2.43 × 10−7 1.07 × 10−7 1.00 × 10−7 

Pb 4.72 × 10−8 2.62 × 10−8 1.92 × 10−8 6.82 × 10−8 3.79 × 10−8 2.78 × 10−8 

Total risk 1.06 × 10−5 7.80 × 10−6 6.41 × 10−6 1.53 × 10−5 1.13 × 10−5 9.25 × 10−6 

4. Conclusions 

In this study the PM2.5, PM10, the PM2.5/PM10 ratio, and the concentrations of major 

elements (Al and Fe) and TEs (As, Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn) in PM2.5 and PM10 

were determined in an industrialized city, Chelyabinsk, Russia for the period January 

2020–December 2020. The new WHO guideline values for 24-h PM mass concentrations 

were exceeded during all seasons for PM2.5, while the PM10 mass concentrations ex-

ceeded it about half the time. The PM levels were lowest in winter. Mass concentrations 

at Stations 2 and 3 are substantially higher than at Station 1 and could be ascribed to the 

nearby industrial emissions. The average fine particle ratio (PM2.5/PM10) was 0.8 on aver-

age for the recording period, indicating anthropogenic origin. The concentrations of major 

components in PM were Al (192–324 ng/m3) and Fe (337–732 ng/m3) while Zn (77–206 

ng/m3), Mn (10–96 ng/m3), and Pb (11–41 ng/m3) had the highest concentrations among 

TEs. 

SEM-EDS allowed us to provide information about the sources of PM and their po-

tential toxic characteristics. Fe-rich metal particles were observed in industrial polluted 

stations. Fly ash and S-rich particles were ubiquitous at Station 1, characterized by heavy 

traffic flows. There is evidence of acid S-rich particles which seem to have solubilized 

metals from resuspended road dust. 

PM2.5-producing industrial processes and transport may contribute to excess expo-

sure of the two population groups (adults and children) to metals. Total non-carcinogenic 

risk values for children were more than 1 and on average 2.7 times higher than non-car-

cinogenic risk for adults. The common carcinogenic risk upon inhalation (considering As, 

Cr, Сo, Cd, Ni, and Pb) were higher than 10−6 but less than 10−4 for children and adults. It 

was indicative of a medium cancer risk during their lifetime. The risk values for adults 

were slightly higher. 

This study shows the importance of site-specific long-term monitoring in dynamic 

urban environments, such as industrialized cities. The contribution to PM levels form spe-

cific sources can be identified, facilitating mitigation steps. In addition, the human health 

risk can be determined. The latter can inform health professionals and residents, which 

will empower them to make informed lifestyle choices and diagnosis. The results suggest 

that measures to reduce air pollution should be implemented through the effective and 

efficient implementation of urban environment management planning to maintain ac-

ceptable urban air quality. The observed concentrations and profiles provide new insights 

into the sources and dispersion of different types of particle pollution illustrating the im-

portance of adopting sustainable air quality strategies in urban planning of Russian cities. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-

cle/10.3390/ijerph182312354/s1, Figure S1: Effect of snowfalls and snow cover on the decrease of air 

pollution in Chelyabinsk during winter comparing with summer 2020: relative humidity (a) and 

precipitation (b) in Chelyabinsk during 2020 according [11], Figure S2: Effect of forest fires on the 

air pollution in Chelyabinsk during summer 2020: number (a) and area of forest fires (b) on the 

Sverdlovsk region in 2020 compared with 2019 according to [12], wind rose in Chelyabinsk during 
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June-August 2020 (c) according to [11], the map of studied area (d), Table S1: Summary of conducted 

studies in Russian Federation on metal(loid)s contamination of atmospheric aerosol. 
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