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We present an investigation of the fundamental physical processes involved in deep-water
gravity wave breaking. Our motivation is to identify the underlying reason causing the
deficiency of the eddy viscosity breaking model (EVBM) in predicting surface elevation
for strongly nonlinear waves. Owing to the limitation of experimental methods in the
provision of high-resolution flow information, we propose a numerical methodology by
developing an EVBM enclosed standalone fully nonlinear quasi-potential (FNP) flow
model and a coupled FNP plus Navier–Stokes flow model. The numerical models were
firstly verified with a wave train subject to modulational instability, then used to simulate a
series of broad-banded focusing wave trains under non-, moderate- and strong-breaking
conditions. A systematic analysis was carried out to investigate the discrepancies of
numerical solutions produced by the two models in surface elevation and other important
physical properties. It is found that EVBM predicts accurately the energy dissipated by
breaking and the amplitude spectrum of free waves in terms of magnitude, but fails to
capture accurately breaking induced phase shifting. The shift of phase grows with breaking
intensity and is especially strong for high-wavenumber components. This is identified as
a cause of the upshift of the wave dispersion relation, which increases the frequencies of
large-wavenumber components. Such a variation drives large-wavenumber components to
propagate at nearly the same speed, which is significantly higher than the linear dispersion
levels. This suppresses the instant dispersive spreading of harmonics after the focal point,
prolonging the lifespan of focused waves and expanding their propagation space.
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1. Introduction

Surface gravity wave breaking is a highly important and challenging topic in engineering
and environmental science. Violent breaking waves can produce destructive loads causing
severe damage to, and even complete failure/loss of, naval, coastal and marine structures
including ships, breakwaters, seawalls and oil and gas platforms (Babanin 2011; Ma et al.
2014, 2016). More broadly, wave breaking plays a crucial role in the planetary-scale
atmosphere–ocean system by enhancing the exchange of mass, momentum and heat
across the air–sea interface, thus influencing the Earth’s climate and weather (Kiger &
Duncan 2012; Veron 2015). Breaking is also a major mechanism to dissipate wave energy,
preventing the endless growth of wind waves (Melville 1996). Breaking wave models,
in particular the accurate estimate of energy dissipated through the process, constitute a
key part of numerical ocean wave forecast, which is essential to the safety of maritime
activities including, but not limited to, fishery, ship navigation and offshore construction
and operation.

Despite the vast amount of theoretical, experimental and numerical work reported in the
past, the fundamental mechanism of wave breaking has not been understood thoroughly
yet due to its extraordinary complexity. Wave breaking is a multi-scale and multi-phase
problem, which involves multiple orders of scales ranging from the large orbital motions
induced by surface water waves to the small air bubbles entrained into water mass and
spray ejected into the atmosphere. To fully resolve the transient flow features of breaking
waves in numerical simulations, extremely fine meshes and small time steps are needed.
However, this will place a prohibitive burden on computing resources, restricting the
computational domain of high-fidelity numerical models to only several representative
wavelengths for three-dimensional (3-D) problems (Iafrati 2009; Lubin & Glockner 2015;
Deike, Pizzo & Melville 2017).

It is known that the onset of breaking and the post-breaking evolution of the wave field
are dependent on the breaking crest formation process, which is usually highly nonlinear
(Khait & Shemer 2018). The development of breaking wave crest involves significantly
large temporal and spatial scales that cannot yet be efficiently handled by high-fidelity
numerical models alone (De Vita, Verzicco & Iafrati 2018; Iafrati, De Vita & Verzicco
2019). To effectively deal with these large scales, it is necessary to use simplified models
such as the potential model which assumes the flow to be inviscid and irrotational. Under
such an approximation, the flow velocity can be calculated as the gradient of the potential
function. Although the potential approximation allows a substantial simplification of the
problem, it disregards the crucial physical effects such as fluid viscosity, flow vorticity and
two-phase features for wave breaking problems. Empirical closures are thus needed to take
into account these important effects in the evolution of wave field subject to breaking.

Chalikov & Sheinin (2005) noticed that the free surface close to an unstable crest
became nearly vertical upon the inception of breaking, and high-wavenumber spectral
harmonics, accompanied by the nonlinear flux of energy from low to high wavenumbers,
were generated. Damping the high-wavenumber components of the spectrum and therefore
dissipating the associated energy can help to stabilise the computation (Chalikov
& Sheinin 2005; Chalikov & Babanin 2014). The damping process was actually
accomplished by introducing empirical terms to the free-surface boundary conditions.
Similar approaches can be found in the extended high-order spectral models of Ducrozet
et al. (2012, 2016). For spectral ocean forecasting models, the nonlinear evolution of
waves is considered as an energy cascade that transfers energy between different frequency
harmonics. It allows us to take into account the spectral energy dissipation due to breaking
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On an eddy viscosity breaking model

by using observation-based empirical source terms to parametrise the reduction of spectral
components (Babanin et al. 2011; Annenkov & Shrira 2018).

Although damping high-frequency spectral components is computationally efficient,
this kind of method has inherent restrictions. One significant difficulty is that wave
breaking cannot be adequately described in the Fourier space because it is strongly
localised in the physical space. An alternative semi-empirical closure for wave breaking
was proposed by Tian, Perlin & Choi (2010, 2012). This model contains only one empirical
constant as opposed to numerous fitting parameters used in other breaking approximations.
Therefore, it is preferable for studying breaking processes at large spatial and temporal
scales. A number of researchers have demonstrated this model’s accuracy and robustness
in the prediction of energy flux reduction for spilling and plunging breakers (Tian et al.
2010, 2012; Seiffert, Ducrozet & Bonnefoy 2017; Seiffert & Ducrozet 2018; Hasan, Sriram
& Selvam 2019; Craciunescu & Christou 2020). However, notable disagreements with
experimental measurements in terms of the surface elevation for strongly nonlinear wave
trains have also been reported in the literature (Tian et al. 2012; Seiffert & Ducrozet
2018). In a scenario of a wave impacting on a marine structure, such a deficiency in
surface elevation prediction could hinder the accurate calculation of wave loadings, and
consequently affect the structural safety and integrity adversely (Bullock et al. 2007;
Kapsenberg 2011; Hu et al. 2017). The underlying reason causing the discrepancy between
the eddy viscosity model and laboratory experiments remains unclear.

This requests further investigation to identify the actual cause by producing a series of
realistic wave breaking scenarios and analysing a considerable amount of detailed flow
data. However, state-of-the-art laboratory facilities, in particular measurement equipment,
are still deficient in the provision of needed large amount of high-resolution spatial
and temporal flow information. To circumvent these restrictions, a hybrid low- and
high-fidelity numerical model is developed and applied in the present work. We coupled
a boundary element method (BEM) based fully nonlinear quasi-potential (FNP) model
with a volume-of-fluid (VOF) method based two-phase incompressible Navier–Stokes
(NS) model to formulate the hybrid FNP–NS model. This new approach is used to
deal with the generation, propagation and breaking of deep-water waves and their
post-breaking evolution. The accuracy of the numerical model is carefully assessed
through a breaking wave train subject to modulational instability. The computed results
are compared against the laboratory measurements and other numerical solutions reported
in the literature. The FNP–NS model is then used to simulate the evolution of six
broad-banded wave trains under non-, moderate- and strong-breaking conditions. The
standalone FNP model, incorporated with the eddy viscosity enclosure, is also applied
to compute these wave trains. This allows us to perform a comprehensive comparative
study of breaking waves with the standalone FNP model and the hybrid FNP–NS model
to quantify the deviations in surface elevation, energy dissipation and other important
physical properties. Close attention is paid to the phases of free waves, the dispersion
relationship between wavenumber and frequency, the trajectory of wave trains and their
height before, during and after focusing. Detailed analyses of these important properties
are carried out to examine the fundamental physical processes involved in breaking. For
simplicity, sometimes we just use ‘breaking’ to stand for surface gravity wave breaking in
the paper.

The remainder of the paper is organised as follows. The numerical methodology is
described in § 2 and carefully validated against wave flume experiments in § 3. A detailed
analysis of the wave train evolution observed in numerical simulations is presented in
§§ 4.1 and 4.2. The breaking-induced phase shifting phenomenon and variation of wave
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Figure 1. Schematic of the coupled FNP–NS model. BEM is used to discretise the FNP domain. The VOF
method is used to discretise the NS domain. In the present work we also use ‘BEM’ and ‘VOF’ to refer to the
low- and high-fidelity flow models, respectively.

train dispersion are discussed in §§ 4.3 and 4.4. Section 4.5 is devoted to the discussion of
the suppression of dispersive defocusing and associated processes. Conclusions are drawn
and practical implications are discussed in § 5.

2. Methodology

To reproduce realistically the generation, propagation and breaking of surface waves as
well as their afterwards evolution, a number of numerical approaches are applied in the
present work. This includes a FNP model and a two-phase incompressible NS model. A
hybrid FNP–NS approach is developed by connecting the FNP and NS models through a
one-way coupling strategy (see figure 1). Firstly waves are generated and propagated in the
domain of the FNP model. The NS model is initialised after a certain amount of time when
the waves arrive at its inlet boundary. Free-surface elevation and flow velocity computed
by the FNP model at the coupling boundary are then transferred to the NS model (see
more details in § 2.3).

As mentioned above, the FNP model is efficient for large-scale problems but ignores
important physical effects. On the contrary, the NS model includes important physical
effects and provides more detailed flow information at the cost of computational
efficiency. The coupled FNP–NS model provides a way to balance low- and high-fidelity
computations. Another benefit of using the coupled model is that it can produce more
realistic scenarios without introducing artificial conditions for wave breaking (Lubin &
Glockner 2015).

In the present work we focused on two-dimensional wave breaking problems. A series of
numerical computations of breaking events under different wave conditions were carried
out by using the standalone FNP model and the coupled FNP–NS model, respectively.
Detailed descriptions of the FNP and NS models are given in the following.

2.1. The FNP model (BEM)
Under the potential approximation, the velocity field U = {u,w} is given by the gradient
of the hydrodynamic potential ϕ, i.e. U = −∇ϕ. The BEM is used to determine the
distribution of ϕ across the FNP domain (Grilli, Skourup & Svendsen 1989; Grilli &
Svendsen 1990). In this approach, the fluid flow is governed by Green’s second identity:

αϕ(rs) =
∮
Γ

(
∂ϕ

∂n
(r)Φ(r, rs)− ϕ(r)

∂Φ

∂n
(r, rs)

)
dΓ (2.1)
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On an eddy viscosity breaking model

Here, Φ(r, rs) = −1/(2π) ln |r − rs| is the fundamental solution that represents the
potential flow at point r due to a source located at rs; Γ is the closed boundary of the
domain; α = π for regular nodes, and α = π/2 for corner nodes; n is the outward normal
direction to Γ . The solution of (2.1) provides the value of ∂ϕ/∂n or ϕ at the point r located
on Γ . The third-order mid-interval interpolation (MII) technique (Grilli & Subramanya
1996) was used to discretise the boundary Γ for numerical solution of (2.1).

The free surface is subject to the dynamic and kinematic boundary conditions
determining the time variation of its shape. Since we investigate strongly breaking wave
field, the inclusion of empirical closures in the FNP model is required to stabilise the
computation. For weakly damped waves (Ruvinsky, Feldstein & Freidman 1991), assuming
the flow to be quasi-potential with small vortical velocity components, we can obtain
the modified boundary conditions (Longuet-Higgins 1992; Dias, Dyachenko & Zakharov
2008; Dosaev, Troitskaya & Shrira 2021) given by

Dr
Dt

= −∇ϕ − ∇ × Ψ︸ ︷︷ ︸
wave breaking

(2.2)

Dϕ
Dt

= gz − 1
2
|∇ϕ|2 − p̃d

√
gh
∂ϕ

∂n
bf (x)︸ ︷︷ ︸

wave absorption

+ 2νeddy
∂2ϕ

∂s2︸ ︷︷ ︸
wave breaking

(2.3)

The vector streamfunction Ψ = (0, 0, ψ) contains only a vortical part of the flow; g is
the gravitational acceleration; h is the water depth; νeddy is the closure constant for the
wave breaking model; s is the direction tangential to the free surface. The value of the
streamfunction at the free surface is governed by the vorticity equation. The exact form
of this equation cannot be satisfied for potential flows, therefore its approximate version is
used (Ruvinsky et al. 1991; Dosaev et al. 2021)

∂

∂t
∂ψ

∂s
= 2νeddy

∂2

∂s2
∂ϕ

∂n
, (2.4)

where ∂ϕ/∂n is the solution of (2.1). Equation (2.3) is also responsible for wave absorption
at the end of the domain, see figure 1. The dimensionless constant p̃d characterises the
strength of wave damping; function bf (x) determines the location of absorption region
and the gradual increase of damping strength in the beginning of the region. The most
effective absorption occurs when p̃d = 2 (Khait & Shemer 2018, 2019b).

The no-penetration condition ∂ϕ/∂n = 0 is applied at the bottom and right boundaries.
A moving boundary with specified velocity is introduced at the left side of the domain to
replicate the motion of a wave paddle, see figure 1. The domain size and grid resolution
used in the simulations are summarised in table 1. Grid convergence study is presented in
Appendix A. The integration time step was taken to satisfy the numerical stability criterion
defined by the Courant number CFL ≤ 0.1 (Grilli & Svendsen 1990).

Two approaches, namely regridding and empirical eddy viscosity, for approximating
the energy dissipation due to wave breaking are considered in the paper. First, it
was found that regridding the free-surface mesh at the instant of breaking inception
can stabilise the numerical simulation without using the eddy viscosity closure, i.e.
νeddy = 0 in (2.2) and (2.3). For convenience, this model is designated as ‘BEMr’ in the
following.

The grid nodes at the free surface represent the floating Lagrangian markers having
all degrees of freedom. The distance between two neighbouring nodes is constantly
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A. Khait and Z. Ma

Gaussian wave train Modulated wave train

Length of the domain 26λ0 31λ0
Still water depth h 0.6 m 3.0 m
Length of the absorbing region 7λ0
Free-surface grid resolution 30 nodes per λ0
Bottom boundary resolution 20 nodes per λ0

Table 1. Parameters of the BEM model. Details on the wave trains studied are presented in § 2.4; λ0 is the
carrier wavelength.

4

3

2

1

0

–1

–2

7.60 7.65 7.70 7.75 7.80 7.85

x (m)

η (cm)

Regridded crest

Unstable crest

3.75

3.50

3.25

3.00

7.750 7.755 7.760 7.765 7.770

k0ζ0 = 0.4

Figure 2. Shape of the pre-breaking wave crest before and after re-meshing. Cross markers show the mesh
nodes on the free surface.

varying due to the propagation of nonlinear waves. The regridding method developed by
Subramanya & Grilli (1994) establishes equal lengths of the arcs between all neighbour
nodes as measured along the boundary elements. At the instance of breaking inception,
the distance between the nodes at the pre-breaking crest becomes critically small leading
to consequent crest overturning and loss of computation stability. The shape of the
pre-breaking crest with and without regridding is shown in figure 2. It can be seen that the
regridding method smooths the shape of the pre-breaking crest and removes the unstable
overturning part.

A more advanced approximation for wave breaking energy dissipation is based on the
eddy viscosity empirical closure suggested by Tian et al. (2010, 2012). According to this
method, the location of breaking crest is established by using the geometrical criterion
Sb ≥ Sc; where Sb is the local free-surface slope, while its threshold value is Sc = 0.95.
Once the location of breaking is determined, the eddy viscosity value is calculated by
using the empirical relation (Tian et al. 2010, 2012)

νeddy = α
HbLb

Tb
(2.5)

Here, Hb and Lb are the characteristic vertical and horizontal scales of a breaking event,
respectively, while Tb is the characteristic time scale. All these values are determined by
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On an eddy viscosity breaking model

Model type BEMr BEMν

Eddy viscosity νeddy = 0 νeddy /= 0
Regridding on off

Table 2. Types of the breaking approximations.

using the empirical relations

Lb = 24.3Sb − 1.5
kb

Tb = 18.4Sb + 1.4
ωb

Hb = 0.87Rb − 0.3
kb

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
. (2.6)

Here, kb and ωb are local wave parameters; Rb is a geometrical factor showing the vertical
asymmetry of breaking wave crest. The value of the proportionality constant in (2.5) is
α = 0.02. The determined eddy viscosity νeddy is applied in the energy dissipation region
with length Lb. The duration of eddy viscosity impact is Tb; afterwards wave breaking
is assumed to be finished implying νeddy = 0. The methodology for determining all the
required empirical constants is detailed in the work of Tian et al. (2012). Further, we
designate the given eddy viscosity type of the BEM model as ‘BEMν’, see table 2. In the
following part of the paper, we use ‘BEM’ and ‘FNP’ interchangeably when referring to
the potential flow model.

2.2. Two-phase NS model (VOF)
A VOF based two-phase incompressible NS flow solver namely interFoam, available in the
open source library OpenFOAM, is used in the present work to develop a coupled FNP–NS
model. The underlying NS model has been tested extensively for a series of wave–structure
interaction problems including dam break, water entry, wave propagation and breaking
wave impacting with fixed and moving structures, and the computed results have been
verified against analytical solutions, laboratory experiments and other numerical results
reported in the literature (Ma et al. 2016; Martínez Ferrer et al. 2016; Larsen, Fuhrman &
Roenby 2019). The governing equations of the NS model represent momentum and mass
conservation laws supplemented with the transport equation for the volumetric fraction of
water phase

∂ρU
∂t

+ ∇ · (ρUU) = ∇ · (μ∇U)+ σκ∇α − g · r∇ρ − pd (2.7)

∇ · U = 0 (2.8)

∂β

∂t
+ ∇ · (βU) = 0 (2.9)

Density of the mixture ρ is determined by using the water volumetric fraction β as follows:
ρ = βρw + (1 − β)ρa, where ρw and ρa are the densities of water and air, respectively.
Similar expression is used to determine the dynamic viscosity of the mixture μ.
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Gaussian wave train Modulated wave train

Coordinate of the left boundary Li 3.0 m 30 m
Length of the domain 24λ0 16λ0
Total height of the domain (2h) 1.2 m
Length of the absorbing region 8λ0
Grid resolution 256 cells per λ0

Table 3. Parameters of the VOF model. Details on the wave trains studied are presented in § 2.4; λ0 is the
carrier wavelength.

Equation (2.7) involves the dynamic pressure pd = p − ρg · r, where r is the radius vector
in Cartesian coordinates and g is the acceleration due to gravity. Surface tension is taken
into account by the coefficient σ and the local interface curvature κ . The VOF based
NS model (2.7)–(2.9) is discretised by a finite volume method on collocated grids and the
transient flow problem is solved by the pressure-implicit with splitting of operators (PISO)
method (Oliveira & Issa 2001). In the following part of the paper, we use ‘VOF’ and ‘NS’
interchangeably when referring to the two-phase incompressible viscous flow model.

To be consistent with the BEM model’s 2-D domain, the VOF domain was discretised by
cuboid mesh cells with one single layer in the y direction, thus generating a pseudo-2-D
domain, see figure 1. The left boundary of the VOF domain was displaced by Li with
respect to the BEM domain as shown in figure 1. The solution of the BEM model was
thus used to determine both the initial and the left boundary condition for the VOF model
to establish a one-way coupling between them. The numerical absorption of waves at the
end of the domains was performed independently in both BEM and VOF models in order
to avoid any interplay between them that may affect the wave train evolution process.
The velocity field damping using effective viscosity was implemented near the far-end
boundary of the VOF domain.

The Reynolds number for the wave trains considered in the research is (Iafrati 2009)

Re = ρwg1/2λ
3/2
0

μw
> 105. (2.10)

It suggests that non-breaking wave trains may produce turbulence, as demonstrated by
Babanin & Chalikov (2012). Even for a 2-D problem, the numerical simulation of flows
at such high Reynolds number requires enormous computational effort to resolve all the
scales involved in wave breaking. Assuming that the nearly laminar flow due to the surface
gravity wave is dominant in the problems considered, it is expected to have the grid
convergence in terms of free-surface elevation. In the course of the study it was established
that the grid resolution of 256 cells per carrier wavelength (λ0) is sufficient to produce
converged solutions while balancing the computational efficiency and the capability to
resolve key flow features. The details on grid independence are given in Appendix A,
while the domain configuration is summarised in table 3.

The spatial and temporal numerical schemes for solution of the equations (2.7)–(2.9)
were selected by following the recommendations for the interFoam solver (Larsen et al.
2019). Adaptive time step was used and the stability criterion was set as CFL ≤ 0.65.
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On an eddy viscosity breaking model

2.3. Coupling of the FNP and NS models
The coupling of the FNP and NS models was achieved through the following steps. Firstly,
the velocity field U was constructed in the interior area of the BEM domain using the
known boundary values of ϕ and ∂ϕ/∂n. The values of U in the BEM domain were
calculated at the coordinates corresponding to the cell centres of the VOF mesh. Several
numerical techniques of evaluation of U ≡ {u,w} = −∇ϕ were examined in terms of
accuracy and computational efficiency. It was found that the simplest central differencing
scheme provides a reasonable accuracy, while keeping the process computationally
efficient ⎧⎪⎪⎨

⎪⎪⎩
u = −ϕ(xcell + Δx, zcell)− ϕ(xcell − Δx, zcell)

2Δx
,

w = −ϕ(xcell, zcell + Δz)− ϕ(xcell, zcell − Δz)
2Δz

,

⎫⎪⎪⎬
⎪⎪⎭ (2.11)

where xcell and zcell are coordinates of the mesh cells of the VOF domain. The resolution
of the scheme Δx = Δz was taken equal to 1/10 of the size of the VOF cell. Other
resolutions, i.e. 1/6 and 1/16, were also tested. The values of the potentials ϕ(x, z) in (2.11)
were calculated in the BEM solver by selecting the location of the source at the coordinates
rs = (x, z) and performing integration of (2.1). Secondly, the BEM velocity field and the
free-surface profile were used to derive the appropriate boundary and initial conditions for
the VOF model.

2.4. Wave train generation
Two types of wave trains are considered in this study. To validate the proposed hybrid
BEM–VOF model against the experiments of Tian et al. (2012) and Seiffert & Ducrozet
(2018), we investigate the wave breaking appearing in a narrow-banded wave train
subjected to modulational instability. The surface elevation at the wavemaker location is

η(t) = a0 cos(ω0t)+ b cos
(
ω1t − π

4

)
+ b cos

(
ω2t − π

4

)
, (2.12)

where a0 and ω0 are the amplitude and angular frequency of the carrier wave; frequencies
of the sideband perturbations are ω1 = ω0 − Δω/2 and ω2 = ω0 + Δω/2. The following
parameters were adopted from the case MI0719 of Seiffert & Ducrozet (2018) study:
ω0 = 4.398 s−1, Δω = 0.317, b/a0 = 0.5. The carrier angular frequency is related to the
corresponding wavenumber k0(ω0) by the linear dispersion relation

ω2 =
(

gk + σ

ρ
k3

)
tanh(kh). (2.13)

For the range of the wavenumbers considered in the paper, capillary effect is not significant
so we set σ = 0. The initial steepness of the wave train was k0a0 = 0.19.

A broad-banded Gaussian-shaped focusing wave train was selected for a further
investigation of wave breaking phenomena. This wave train implies the spatial periodicity
of the free-surface elevation if the domain is sufficiently long, which is critically required
for the accurate post-processing of simulation results. The strongest wave breaking in this
case is expected in the vicinity of the focus location whose coordinate relative to the
wave-generating boundary in the BEM domain (x = 0) was selected as xf = 8.5 m. For
this group of numerical experiments, the length of computational domain is L ≈ 26λ0 ≈
18 m. The coordinate xf = 8.5 m is selected approximately in the centre of the domain so
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Figure 3. Broad-banded Gaussian-shaped focusing wave train considered in the study: (a) free-surface
elevation at the focal point xf = 8.5 m; (b) wave profile at the focal time tf = 0; (c) frequency; and
(d) wavenumber power spectra. Vertical red lines designate the range of frequencies and the wavenumbers
containing 95 % of the spectral energy.

that it can provide enough space for wave train development in both pre- and post-breaking
stages. The surface elevation variation with time at xf is

η(t, x = xf ) = ζ0 exp

{
−

(
t

mT0

)2
}

cos(ω0t). (2.14)

The parameter m = 0.6 determines the broad-banded wave train; the carrier wave period
and angular frequency are T0 = 0.7 s and ω0 = 2π/T0, respectively. According to the
linear dispersion relation (2.13) the carrier wavelength is λ0 = 2π/k0 = 0.765 m. The
dimensionless water depth corresponds to deep-water conditions (Dean & Dalrymple
1991), i.e. k0h = 4.93 > π. The plot of η(t) at the focal point xf is shown in figure 3(a);
the spatial surface elevation η(x) at the instant of focusing tf is plotted in figure 3(b).

In this study we investigate the evolution of free waves, and this requires us to
exclude the bound waves from the BEM and VOF results. Since bound waves appear
predominantly at high and low frequencies with respect to the carrier frequency ω0, it
is possible to partially avoid their influence by band-pass filtering those regions. Consider
the Fourier transform of surface elevation (2.14)

η̂(ω) = F {η(t)} = ζ0

2
√

2
mT0 exp

{
−π2m2

(
1 + ω

ω0

)2
}(

1 + exp
{

4π2m2 ω

ω0

})
.

(2.15)
The wavenumber spectrum for deep-water waves can be obtained by expressing ω from
the linear dispersion relation (2.13) and substituting it into (2.15). The energy fraction δe
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1.0

0.8

k0ζ0 = 0.2

k0ζ0 = 0.3

k0ζ0 = 0.4

k0ζ0 = 0.6

k0ζ0 = 0.8

k0ζ0 = 1.0

0.6

0.4

0.2

–10 –5 0

t/T0

εmax(t)

ε = 0.3

ε = 0.1

5 10

Figure 4. Time series of maximum wave train steepness (2.18) for all the considered cases. In this plot,
the dispersive focusing appears at t = 0. Two grey vertical lines depict the range −7.14 ≤ t/T0 ≤ +7.14
particularly considered in the study. Within this time interval the full length of the wave train is present in
the limits of the computational domain of both BEM and VOF models.

contained in the frequency range [ω0 − Δω,ω0 + Δω] is

δe =
∫ ω0+Δω

ω0−Δω
η̂2dω∫ +∞

0 η̂2 dω
≈ 2

√
2πm

exp(−6π2m2)
(
1 + exp(4π2m2)

)2

1 + exp(2π2m2)

Δω

ω0
. (2.16)

Solution of (2.16) with respect to Δω assuming δe = 0.95 allows us to find the
frequency band containing 95 % of the spectral energy. Following this procedure, the
frequency and the wavenumber ranges that will be considered in the further analysis were
estimated as follows: 0.48 ≤ ω/ω0 ≤ 1.52; 0.27 ≤ k/k0 ≤ 2.31. The power spectra with
the corresponding frequency and the wavenumber bounds are depicted in figures 3(c) and
3(d).

Assuming deep-water dispersion k = ω2/g, the spatio-temporal variation of surface
elevation can be obtained from (2.14) and (2.15) by using the linear approximation for
water waves

η(x, t) = F−1 {
η̂(ω) exp [ik(ω)x]

} = F−1
{
η̂(ω) exp

[
i
ω|ω|

g
x
]}
, (2.17)

where F−1 is the inverse Fourier transform. At each instant t, the maximum steepness of
the wave train is calculated as

εmax(t) = max−∞<x<+∞

∣∣∣∣∂η(x, t)
∂x

∣∣∣∣ . (2.18)
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There exist a number of breaking inception criteria, including relatively simple
geometric criteria and more complicated kinematic and dynamic principles (Perlin, Choi
& Tian 2013). According to the simplest breaking onset criterion, a wave is expected to
break if its steepness exceeds a certain threshold. In the current study we assume that a
wave with steepness ε > 0.3 is likely to break. Increasing the wave steepness beyond this
threshold may lead to a single or multiple breaking events. The strength of breaking is
also dependent on the value of ε. Varying the value of the constant ζ0 in (2.14), (2.15)
and (2.17), six wave trains of different steepnesses k0ζ0 = 0.2, 0.3, 0.4, 0.6, 0.8 and 1.0
are taken for investigation. Note that the spatial wave steepness ε is used throughout this
work.

The time series of maximum wave steepness εmax (2.18) for all the considered cases are
plotted in figure 4. As expected for a broad banded focusing wave train, the peak value
of εmax is seen in the vicinity of the focal point, while it reduces farther away from this
location. Note that in the course of the study, particular attention is given to the time
interval −7.14 ≤ t/T0 ≤ +7.14, when the full length of the wave train is present within
the limits of the computational domain of both BEM and VOF models. The steepness of all
wave trains within the given time interval is εmax > 0.1, thus showing the significance of
nonlinearities. A mild single breaking event may be expected for k0ζ0 = 0.3, because the
steepness satisfies the condition εmax > 0.3 near the focal point for this case. If k0ζ0 ≥ 0.6,
the steepness is greater than 0.3 within the entire time interval of interest as shown in the
figure. This means that waves may continuously break throughout the evolution of the
wave train.

Since the accuracy of wave generation is critical in the current investigation, the
second-order accurate method for calculation of the wavemaker motion from the surface
elevation was adopted (Khait & Shemer 2019b). The obtained wavemaker motion was then
used to control the displacement of the wave-generating boundary in the BEM model, see
figure 1. The surface elevation variation with time at the wavemaker location η(x = 0, t)
was calculated according to (2.17).

2.5. Spectrum decomposition
It is known that the domains of free and bound waves may overlap each other in
both frequency and wavenumber spectra (Khait & Shemer 2019b). Despite limiting the
analysis to a certain frequency range as discussed above, the effect of bound waves
on the surface elevation spectrum may still be large, leading to complication of the
analysis. To facilitate the study, the bound waves should be separated from the free
waves by using Zakharov’s weakly nonlinear theory for surface water waves (Zakharov
1968; Stiassnie & Shemer 1984, 1987; Krasitskii 1994). Within this theory, the surface
elevation of nonlinear waves may be represented as a series of contributions appearing at
different orders of small parameter ε: η = η(1) + η(2) + O(ε3); ε is the characteristic wave
steepness conventionally defined in space; η(1) and η(2) are contributions of the free and
the second-order bound waves, respectively.

Application of the discrete Fourier transform to the spatial distribution of free wave
surface elevation η(1) gives the complex wavenumber spectrum A(km), where km is the
wavenumber of the mth harmonic. The free wave surface elevation is now

η(1)(x) = Re

{ M∑
m=0

A(km) eikmx

}
, (2.19)
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On an eddy viscosity breaking model

where M is the number of the discrete harmonics. Surface elevation of the second-order
bound wave is

η(2)(x) = Re

{ M∑
m=0

M∑
n=0

[
B(km, kn) exp(i(km + kn)x)+ C(km, kn) exp(i(−km + kn)x)

+ D(km, kn) exp(i(−km − kn)x)

]}
. (2.20)

The complex amplitudes B(km, kn), C(km, kn) and D(km, kn) are expressed in terms of
A(km), as given in Appendix B.

At each instant t, the results of BEM and VOF simulations are processed to determine
the distribution of surface elevation in space η(x) as a series of discrete values at 2048
points equidistantly distributed along the domains. The range of the spatial coordinates
considered in the analysis is Li ≤ x ≤ Lb, where Li corresponds to the inlet boundary of
the VOF domain and Lb is the coordinate of the beginning of the absorbing region, see
figure 1. To decompose the fully nonlinear surface elevation η(x) into free and bound
waves it is assumed that η(x) ≈ η(1)(x)+ η(2)(x). From this expression it is possible to
find the complex spectra A, B, C and D iteratively by following the algorithm presented
in Shemer, Goulitski & Kit (2007) and Khait & Shemer (2019a). In the first iteration,
the free waves spectrum can be taken as A(k) = FFT{η(x)}, where FFT stands for the
fast Fourier transform. Usually, 10 to 20 iterations are sufficient to converge the spectrum
decomposition. Considering only the separated free waves spectrum A(k) and limiting the
analysis to the wavenumber range found in the preceding section, see figure 3, it is possible
to minimise the effect of bound waves.

3. Model validation and statement of the problem

Breaking in wave trains subject to the modulational instability (2.12) was investigated by
Seiffert & Ducrozet (2018). The spatial evolution of waves was tracked in experiments
by measuring the surface elevation at several coordinates along the wave flume. In
particular, the emphasis was given to the following locations with respect to the wavemaker
coordinate (x = 0): x = 30.06, 34.26, 37.88 and 50.23 m; the total length of the wave
flume is 148 m. They implemented the eddy viscosity approximation proposed by Tian
et al. (2010, 2012) in a high-order spectral (HOS) code. To validate the BEM–VOF
numerical model proposed in this paper, we compare our computations with the numerical
and experimental results of Seiffert & Ducrozet (2018).

The computed and measured surface elevations are shown in figure 5(a–d). Note that
spectrum decomposition is not applied here to separate the free and bound waves from
the fully nonlinear wave train. Raw data of temporal elevation and spatial profile of the
wave train are used for analysis. First, it can be seen that the BEMν results agree very well
with the HOS simulations of Seiffert & Ducrozet (2018). This confirms the validity of the
BEMν model. At the same time, the VOF solutions are very close to the experimental
measurements and this demonstrates the accuracy of the two-phase high-fidelity model.

Now compare the results of BEMν, BEMr and VOF simulations, see figure 5(e). It is
clearly shown that at a distant location from the wavemaker, WG14 = 50.23 m, the plots
of BEMν and BEMr computations are close to each other. This suggests that the simple
remeshing technique implemented in the BEMr model (Subramanya & Grilli 1994) can
produce as good results as the complicated eddy viscosity approximation. It can be clearly
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Figure 5. Measured and calculated surface elevations for a wave train subject to modulational instability at four
wave gauges: WG10 = 30.06, WG11 = 34.26, WG12 = 37.88 and WG14 = 50.23 m (a–e). HOS simulations
and experiments were performed by Seiffert & Ducrozet (2018). ( f ) Snapshots of free-surface profiles taken at
two instants t = 54.29 and t = 57.51 s denoted by the vertical dotted lines in (e).
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seen that there is a significant discrepancy between the low-fidelity calculations and the
experiment from approximately 62.5 to 64.5 s regarding the peak elevations, potentially
critical to maritime safety. A similar phenomenon can be observed for the time between
52 and 57 s. While the high-fidelity results are quite close to the measurements in terms
of peak surface elevation. Similar observations were reported by Tian et al. (2012) and
Seiffert & Ducrozet (2018). Seiffert & Ducrozet (2018) attempted to address this issue
by modifying the eddy viscosity approximation without receiving much success. Figure
5( f ) shows two snapshots of the spatial distribution of surface elevation obtained by the
low- and high-fidelity models. These snapshots were taken at t = 54.29 and t = 57.51 s,
two instants indicated by the two vertical dotted lines in (e). Note that there are no
measurements of free-surface spatial profiles available in the literature for comparison
here. Close to WG14 (x = 50.23 m), we can see that a very significant discrepancy between
the numerical solutions appears in the vicinity of the steep wave crest at the moment
t = 54.29 s. For a lower wave crest obtained at t = 57.51 s, the discrepancy is still quite
visible though less significant than the moment t = 54.29 s.

The eddy viscosity approximation for wave breaking is based on the weakly damped
wave theory (Ruvinsky et al. 1991; Longuet-Higgins 1992; Dias et al. 2008), which
assumes the rotational components of the fluid velocity to be small. However, strongly
breaking waves may generate significant non-potential flows; such as sheared currents,
vortices, etc. (Iafrati, Babanin & Onorato 2013; Deike et al. 2017; Lenain, Pizzo &
Melville 2019). This could be a reason for the eddy viscosity method producing inaccurate
prediction of surface elevation. To further our study of the eddy viscosity model and the
underlying wave breaking physics, it is necessary to process free surface profiles by using
the discrete Fourier transform. However, it is not trivial to carry out this task for the highly
non-periodic wave profiles shown in figure 5( f ). Therefore, we use a group of particularly
designed Gaussian-shaped wave trains to facilitate the study in the following.

4. Results and discussion

4.1. Surface elevation
Here we investigate the evolution of Gaussian-shaped broad-banded wave trains (2.14) by
using the standalone FNP model and the hybrid FNP–NS model. We selected a series
of representative wave trains with steepnesses of k0ζ0 = 0.2, 0.3, 0.4, 0.6, 0.8 and 1.
Computed surface elevations recorded at x = 4.5, x = xf = 8.5 m (xf is the expected
focal point) and x = 12.5 m are plotted in figure 6. For wave trains with low steepness
k0ζ0 ≤ 0.4, there is only one mild breaking event or even no breaking at all. Thus the eddy
viscosity closure was not used for the cases illustrated in (a–c).

Figure 6(a) shows perfect coincidence of the results obtained by BEMr and VOF
simulations when no breaking is present. It confirms the effectiveness of the BEM–VOF
coupling used in the current study. The shape of the wave train at the focal point xf = 8.5 m
is very close to the linear prediction shown in figure 3(a). However, since the wave train
is substantially nonlinear, a certain amount of asymmetry of the surface elevation before
and after the focal point can be noticed. An increase in steepness, i.e. figures 6(b) and
6(c), leads to a significant deviation of either the BEMr solution or the VOF result from
the linear estimation at the focal point, as expected for the steeper nonlinear waves. For
the cases with higher steepness parameter k0ζ0 ≥ 0.6 shown in figure 6(d–f ), both the
BEMr and BEMν models were used. In compliance with the previous results, see § 3, no
significant difference was noticed between the BEMr and BEMν results. Therefore, further
analysis in the paper will be based on the BEMν model.
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Figure 6. Surface elevation variation with time obtained by three numerical models: VOF, BEMr and BEMν.
The value of time in the horizontal axes was displaced using the group velocity cg0 calculated for the carrier
(peak) frequency of the wave train spectrum. The linear dispersive focusing is expected at t − x/cg0 = 0.

For wave trains with strong breaking shown in figure 6(d–f ), the BEMν and VOF models
produced quite similar results at x = 4.5 m. On the contrary, in the vicinity of and beyond
the focal point, a considerable deviation between BEMν and VOF results is found and it
increases with the steepness k0ζ0. This indicates that certain physical processes associated
with the breaking events are not accurately reflected by the quasi-potential eddy viscosity
approximation in BEMν. It seems that this phenomenon is similar to the discrepancy we
observed in § 3 for the experiments of Tian et al. (2012) and Seiffert & Ducrozet (2018).
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Flooding contours of the velocity magnitude underneath the free surface are plotted in
figure 7 so that we can have a close look at the flow field to study the difference between
the two-phase VOF solutions and the fully nonlinear potential BEMν results. The fields are
derived at t = 35 s near xf = 8.5 m corresponding to the temporal and spatial location of
the expected focal point according to the linear wave dispersion. The BEMν model shows
a quite smooth distribution of the velocity in the domain, contrary to the VOF solution,
which embraces a certain perturbation component due to the vortical part of the flow.
The plots show that the amplitude of the vortical velocity −∇ × Ψ is no longer small as
assumed in the weakly damped theory used by Tian et al. (2010, 2012). Consequently, the
applicability of the eddy viscosity model for these problems is in question.

It is expected that the vortical flow consists of sheared currents and other local and
distributed non-potential fluid motions (Iafrati et al. 2013; Deike et al. 2017; Lenain et al.
2019). For instance, several vortical structures are clearly shown in figures 7(b) and 7(c).
A more detailed investigation of the non-potential flows supposes the need of quantitative
comparison of the BEMν and VOF velocity fields. However, a meaningful comparison is
practically impossible for the considered cases because the shapes of free surface obtained
by these models are very different.

4.2. Energy dissipation due to wave breaking
The spatio-temporal evolution of the wave train calculated by the BEMν model is
illustrated in figure 8 in terms of surface elevation. Wave breaking regions are highlighted
in the figure as rectangular areas enclosed by black solid lines. The dimensions of these
regions Lb in space and Tb in time were determined by the eddy viscosity closure (2.6).
For each region the constant value of the eddy viscosity νeddy was calculated by using
the formula (2.5). As expected, the non-breaking case, i.e. figure 8(a), does not have any
predicted breaking locations. We also note that increasing the steepness k0ζ0 can cause
multiple breaking events instead of a single very strong one. This is because the wave train
loses its stability much ahead of the focal point. At the same time, larger values of νeddy
correspond to more energy dissipation.

The energy dissipation locations shown in figure 8 do not overlap with each other. This
means that in the studied wave trains, waves always break at different locations. Before
the focal point, breaking always appears at the leading edge of the wave train because of
the presence of short steep waves. On the contrary, after the focal point breaking locations
move closer to the centre of wave train. Taking into account the fact that the leading edge
of the wave train after the focal point consists of long waves, it can be assumed that those
waves are more stable. This observation is usually involved in the spectral models of water
waves, where the energy dissipation mostly at high frequencies is incorporated (Babanin
et al. 2011; Annenkov & Shrira 2018).

Within the eddy viscosity quasi-potential approach, the energy dissipation process
can probably be seen as a transformation of the energy associated with surface gravity
waves into the rotational fluid flow energy. Since the considered broad-banded wave train
occupies a restricted space, it is convenient to estimate the strength of wave breaking by
tracing the amount of energy transferred by the wave train through different cross-sections,
i.e. integral energy flux (Banner & Peirson 2007; Drazen, Melville & Lenain 2008; Tian,
Perlin & Choi 2008; Derakhti & Kirby 2016). Taking into account that wave breaking is
a strongly localised phenomenon, energy loss is associated with a particular location and
appears as a reduction of the integral energy flux across the breaking location.
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Figure 7. Distribution of the velocity magnitude |U | beneath the free surface obtained in the BEMν and VOF
models for three strongly breaking cases: (a) k0ζ0 = 0.6, (b) k0ζ0 = 0.8 and (c) k0ζ0 = 1.0. The plots are
obtained at the instant of focusing tf = 35 s and in the vicinity of the focal point xf = 8.5 m: the horizontal
scale is 8 ≤ x ≤ 10.5 m.
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Figure 8. Energy dissipation regions predicted by the eddy viscosity approximation. (a–f ) Present the wave
trains having steepness parameter k0ζ0 = 0.2, 0.3, 0.4, 0.6, 0.8, and 1.0, respectively. The breaking regions
are depicted by black solid lines. Colour shows the spatio-temporal variation of the surface elevation η(x, t)
calculated by the BEMν model. Dashed lines show the location of the focal point expected according to the
linear dispersion.

The total integral energy flux passing through the cross-section x in the VOF model is
given by

FNL
VOF(x) =

∫ +∞

−∞
dt

∫ η(x,t)

−h

{
1
2
ρw |U |2 + ρwgz + p

}
uβ dz, (4.1)

where U = (u,w). This expression does not involve any physical simplification and thus
determines the fully nonlinear value of the energy flux. In the VOF model, the volume
fraction β is used to determine the percentage of water contained in a mesh cell. Thus
the height of the water layer in each cell is βdz. The so-called dry and wet cells are
distinguished by β = 0 and β = 1, respectively. Determination of the nonlinear energy
flux in the BEMν model is more complicated because the needed pressure p is not readily
available in the solution. Simplification of (4.1) can be achieved by using the Bernoulli
equation (2.3) and taking U = −∇ϕ

FNL
BEM(x) = −ρw

∫ +∞

−∞
dt

∫ η(x,t)

−h

∂ϕ

∂t
∂ϕ

∂x
dz. (4.2)

In laboratory it is not feasible yet to measure the nonlinear energy flux. Instead, a
linearisation of (4.2) is usually applied (Banner & Peirson 2007; Drazen et al. 2008; Tian
et al. 2008, 2010, 2012; Derakhti & Kirby 2016; Seiffert & Ducrozet 2018). Researchers
usually assume the equipartition of total energy between the kinetic and potential parts,
which is admissible for linear wave system. The linear approximation for the total energy
density is E = ρwgη2, where the overbar represents averaging over the local wavelength.
The linear approximation for the energy flux is then given by (Dean & Dalrymple 1991;
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domain x̂ = x/λ0 for the wave train with the steepness parameter k0ζ0 = 1. Black dashed line corresponds
to the best fit of the nonlinear energy flux FNL

VOF . (b) Dimensional integral energy flux computed for the wave
trains of different steepness. Solid lines: VOF simulations (FNL

VOF); dashed lines: BEMν simulations (FL
BEMν ).

Drazen et al. 2008; Derakhti & Kirby 2016)

FL(x) =
∫ +∞

−∞
Ecgs dt =

∫ +∞

−∞
ρwgcgsη

2 dt. (4.3)

Here, cgs is the spectral-weighted group speed approximating the velocity of energy
transferred by the given wave train

cgs =
∑

j cg,ja2
j∑

j a2
j
, (4.4)

where aj and cg,j are the amplitude and the group velocity of the jth component of the
wave packet spectrum.

The outcomes of (4.1) and (4.3) are compared in figure 9(a) for the steepest wave train
with k0ζ0 = 1.0. The dimensionless variables are introduced: energy flux F̂ = F/F0 and
spatial coordinate x̂ = x/λ0; F0 is the initial energy flux computed at x ≈ 0. Figure 9(a)
shows that the distributions of linear energy flux computed by the BEMν and VOF models,
i.e. FL

BEMν and FL
VOF, somewhat deviate from each other. The nonlinear energy flux FNL

VOF
obtained by the VOF model provides the highest values of F̂. In spite of the different
trajectories of FL

BEMν and FNL
VOF, the bulk amount of energy dissipation computed by the

VOF and BEMν models are close to each other for the cases considered here as shown
in figure 9(b). This suggests that the eddy viscosity approximation used in the BEMν
model predicts quite accurately the energy dissipation process, in agreement with earlier
investigations (Tian et al. 2010, 2012; Seiffert & Ducrozet 2018; Hasan et al. 2019). It is
interesting to note that the discrepancy in surface elevation calculation (see figure 6) does
not significantly affect the amount of wave energy dissipated by breaking.

In the present work, we use the mean gradient of nonlinear energy flux F̂x̂ = −dF̂/dx̂ to
characterise the strength of breaking. Such a quantify can be interpreted as the wave energy
dissipation rate in space. For the VOF model, we produced the best fit of the energy flux
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1.0

0.9

0.8

0.7

0.6
4 6 8 10 12 14 16 18

k0ζ0 = 0.4

k0ζ0 = 0.6

k0ζ0 = 0.8

k0ζ0 = 1.0

VOF simulations

Linear fit

F̂ 
=

 F
/F

0

x̂ = x/λ0

Figure 10. Distribution of the nonlinear energy flux FNL
VOF obtained by the VOF model. The solid curves

correspond to energy fluxes produced by the wave trains of different steepness k0ζ0. The dash-dotted lines
show the best fit of the data needed to compute the energy dissipation rate F̂x̂.

k0ζ0 F̂x̂ = −dF̂/dx̂ Ũ/cg0

0.3 0.00695
0.4 0.00852 4.02 × 10−3

0.6 0.0196 2.0 × 10−2

0.8 0.0284 4.08 × 10−2

1.0 0.0313 4.94 × 10−2

Table 4. The values of the energy dissipation rate and the equivalent depth-uniform current computed for the
wave trains of different steepness.

Ffit
VOF and illustrated it in figure 9(a) as the black dashed line, which has a gradient of

0.0313 in magnitude. The distributions of FNL
VOF and Ffit

VOF for wave trains with different
steepness k0ζ0 are plotted in figure 10. The calculated values of F̂x̂ are summarised in
table 4. It can be seen from figure 10 and table 4 that the energy dissipation rate F̂x̂
increases with the wave train steepness k0ζ0.

Based on a scaling analysis, the breaking parameter b was used by Duncan (1983)
and Drazen et al. (2008) to characterise energy dissipation caused by wave breaking.
This parameter provides a quantitative relationship between the kinematics of breaking
and the dynamics of energy loss. Importantly, the value of this parameter can be
estimated from the field observations of whitecaps (Drazen et al. 2008). It can be
instructive to quantify the value of the parameter b for the computations performed in
the current study. This will also allow us to assess the genuineness of numerical models by
comparing the calculated results against a set of published experimental and computational
data.
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According to Derakhti & Kirby (2016) the parameter b can be introduced by involving
numerical results in the following way:

bρwg−1c5
b = ε =

∫
x,t ΔF

τb
, (4.5)

where ε is the averaged wave energy dissipation rate, ρw is the water density, cb is the
phase speed of the breaking crest, ΔF is the loss of the total wave energy flux according to
(4.1) or (4.3). The time scale of active breaking is related to the period of breaking wave as
τb = αtTb. According to Drazen et al. (2008), Kleiss & Melville (2010), and Derakhti &
Kirby (2016), here, the proportionality constant is taken as αt = 0.75. The wavenumber kb
of a breaking wave is determined from the geometry of the breaking crest according to Tian
et al. (2010, 2012) and Derakhti & Kirby (2016). Other parameters for the breaking crest
are related to kb as follows: cb = (g/kb tanh kbh)1/2; Tb = 2π/(kbcb). After substituting
these into (4.5) we can obtain

b = g
∫

x,t ΔF

αtρwcb
5Tb

. (4.6)

Since multiple breaking events are observed in our simulations, the averaged parameters
of the breaking crest are used as shown in the expression (4.6). Note that the total energy
flux losses obtained by the VOF and BEMν models are very close to each other as shown
in figure 9(b).

The calculated values of breaking parameter b (4.6) are compared with previously
published results in figure 11(a). The widely used empirical parametrisation for b as
a function of linear wave slope S is adopted from Romero, Melville & Kleiss (2012):
b = 0.4(S − 0.08)5/2. The wave slope S is the maximal wave steepness calculated for the
linearly evolving wave train. For our cases one can estimate it as S = k0ζ0 (see figure 4).
It is clearly illustrated in figure 11 that the values of b calculated in our study by both
VOF and BEMν models compare well with the empirical expression of Romero et al.
(2012) and experimental data reported in the literature. Moreover, we present the result
for a highly energetic breaking event under the condition S > 0.8, which has not yet been
reported in the literature to the best of our knowledge. It is interesting to note that even for
such strong wave energy dissipation, the parametrisation of Romero et al. (2012) is still
applicable. Figure 11(b) suggests an exponential dependence of the breaking parameter b
on the energy dissipation rate F̂x̂. For the wave trains considered in the present study the
following empirical expression can be suggested: b = 3 × 10−3 exp(1.5 × 102 × F̂x̂).

4.3. Shift of phase due to wave breaking
In the beginning and at the end of computations only a part of the wave train is present
within the domain. Therefore, in the analysis we focus on the interval 30 ≤ t/T0 ≤ 56.8,
when the full length of the wave train is present within the domain. The surface elevation
of free waves (2.19) obtained by the spectral decomposition (see § 2.5) of simulation results
can be written as

η(1)(x) =
M∑

m=0

|A(km)| cos(kmx + ξm), (4.7)

where the phase is given by

ξm = tan−1 Im{A(km)}
Re{A(km)} . (4.8)
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10–1

100

10–2

10–3

10–4

10–5 0

0.1

0.2

0.3

0.4

0 0.2 0.4

b = 0.4(S – 0.08)5/2

b = 3 × 10–3exp (1.5 × 102 × F̂x̂)

Drazen et al. (2008)

Deike et al. (2015, 2016, 2017)
Banner & Peirson (2007)

Derakhti & Kirby (2016)

BEMν  simulations

BEMν  simulations

VOF simulations

VOF simulations

Melville (1994)

0.6

b

S
0.8 1.0 0.005 0.010 0.015 0.020 0.025 0.030

F̂x̂ = – dF̂/dx̂

(b)(a)

Figure 11. (a) Breaking parameter b as a function of the maximum wave steepness in the course of the linear
wave train evolution, i.e. S = k0ζ0, see figure 4. Solid line: empirical expression based on scaling argument
from Romero et al. (2012). The present simulations are in agreement with experimental and other reported
numerical studies. The reference data are from the works of Melville (1994), Banner & Peirson (2007), Drazen
et al. (2008), Derakhti & Kirby (2016) and Deike, Popinet & Melville (2015); Deike, Melville & Popinet (2016);
Deike et al. (2017). (b) Breaking parameter b as a function of the energy dissipation rate F̂x̂, see table 4.

It was found that the amplitude spectra obtained from the BEMν and VOF simulations are
practically identical in terms of the absolute value of the amplitude |A(km, ωm)| regardless
of wavenumber and angular frequency, cf. figure 12(a–d). This observation confirms the
capability of the eddy viscosity approximation in predicting wave energy dissipation,
which is in line with previous studies (Tian et al. 2010, 2012; Seiffert & Ducrozet 2018;
Hasan et al. 2019), see also figure 9. Note that the energy contained in the spectrum
is

∑M
m=0 |A(km, ωm)|2. Therefore the visible divergence in surface elevation shown in

figure 6 is very likely caused by the phase ξm. The phase difference between the VOF
and BEMν results relative to the carrier wave characteristics ω0T0 is given by

Δξm

ω0T0
= 1

2π

(
ξm,VOF − ξm,BEMν

)
. (4.9)

The evolution of Δξm in time for different wavenumber km is plotted in figure 13 for the
wave trains with steepness k0ζ0 ≥ 0.4.

Figure 13 reveals a quite smooth and deterministic rather than stochastic evolution of the
phase shift Δξ in time. Moreover, there is a strong dependence of Δξ on the wavenumber.
The phase shift is relatively small at low wavenumbers, while at a high wavenumber it has
a much pronounced growth with time. For instance, at the end of the wave breaking region
the phase shift for a high wavenumber k/k0 ≈ 1.5 can increase by more than one full
revolution, see figure 13(d). If the wave train steepness k0ζ0 and subsequently the energy
dissipation rate F̂x̂ are relatively low, the corresponding phase shift is much weaker, see
figure 13(a). The phase difference between the BEMν and VOF calculations could be
due to the fact that the highly nonlinear rotational flows generated by breaking cannot be
properly handled by the weakly potential eddy viscosity approximation.
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Figure 12. Free wave spectra obtained in VOF (solid lines) and BEMν (dashed lines) models. (a–d) Present
the wave trains of different steepness parameter k0ζ0. Plots of different colour are obtained at various times of
simulations.

Considering the dependence of phase shift on the wavenumber k and time t for the
breaking strength F̂x̂, we approximate it with the following expression:

Δξ

ω0T0

∣∣∣∣
F̂x̂

= Ξ

[
k
k0

]ΘK
[

t
T0

]ΘT

. (4.10)

The values of three coefficients Ξ , ΘK and ΘT change from one wave train to another
due to different breaking strength. We applied the least squares method to obtain the
dependencies Ξ(F̂x̂), ΘK(F̂x̂) and ΘT(F̂x̂) from the numerical simulations, and present
them in figure 14. It is shown that the rate of phase shift has a nonlinear dependence on
time and wavenumber for relatively weak breaking; i.e. the values of the power coefficients
ΘK ≈ ΘT ≈ 4 when F̂x̂ < 0.01. If breaking is strong, the dependence of phase shift on
time tends to be linear with ΘT ≈ 1, while the dependence on wavenumber is close to
quadratic with ΘK ≈ 2. Both ΘK and ΘT are reduced almost linearly with the increase
of breaking strength F̂x̂. In turn, the proportionality coefficient Ξ(F̂x̂) demonstrates an
exponential dependence on the energy dissipation rate F̂x̂. Therefore it seems reasonable to
infer from the analysis that the phase shift can become quite significant for strong-breaking
events.

We applied the similar interpolation function to all the considered wave trains and
obtained the corresponding phase shift in a dimensionless form

Δξ

ω0T0
= Ξ

[
F̂x̂

]ΘF
[

k
k0

]ΘK
[

t
T0

]ΘT

. (4.11)
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Figure 13. Evolution of difference in the free waves phases Δξm between VOF and BEMν simulations. The
colour scheme from blue to red displays the plots obtained at different instances within the range 30 ≤ t/T0 ≤
56.8. Grey plots show other not coloured data within the same time interval. (a–d) Correspond to the wave
trains of various steepness k0ζ0.
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Figure 14. Dependence of the fitting coefficients Ξ , ΘK and ΘT (4.10) on the wave breaking strength F̂x̂.
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Ξ ΘF ΘK ΘT

5.02 1.926 2.362 1.2105

Table 5. Values of the dimensionless coefficients in the expression (4.11).
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Figure 15. Phase shift Δξ/ω0T0 as a function of wavenumber and time obtained for the wave trains of different
breaking strength: (a,b) F̂x̂ = 0.0196; (c,d) F̂x̂ = 0.0313. (a,c) Present the raw phase shift calculated using (4.9),
while (b,d) are plotted using the interpolation (4.11).

Applying the least squares fitting of the numerical results, we obtained the coefficients and
listed them in table 5. In addition to the previous findings, the value of ΘF ≈ 2 implies a
quadratic dependence of the phase shift on the energy dissipation rate.

In figure 15 the raw plots of Δξ(k, t) obtained from the numerical simulations are
compared with those reconstructed from (4.11) in order to study the accuracy of the
suggested approximation. It can be noticed that the plots obtained directly from
the simulations using (4.9), see (a,c), exhibit fluctuations at high wavenumbers because
the bound waves are not perfectly separated from the free waves by the decomposition
method (§ 2.5). Even minor presence of unseparated bound waves significantly influences
the phases of harmonics. Function (4.11) filters the fluctuations from the plots as presented
in (b,d), while keeping a good qualitative and quantitative correspondence with the raw
data extracted from the simulations.

The observed shift in phase is possibly related to the so-called phase-locking
phenomenon reported by Derakhti & Kirby (2016). The phase-locking process is
considered as a nonlinear linkage between high- and low-frequency wave components.
This linkage was demonstrated by analysing the wavelet spectra of the surface elevation
in the vicinity of the breaking event (Derakhti & Kirby 2016). The propagation velocity of
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the high frequency components of the breaking wave was found to be different from that
of the pre-breaking but stable wave.

4.4. Dispersion variation
It has been shown in various studies that the relationship between wavenumber and
frequency may deviate from the linear dispersion relation (2.13) when the frequency
spectrum is narrow. Krogstad & Trulsen (2010) studied the dynamic nonlinear evolution
of unidirectional Gaussian wave packets using the nonlinear Schrödinger equation and its
generalisations. It was observed that in the k–ω space the spectrum does not maintain a
thin well-defined dispersion surface but develops into continuous distribution. The spectral
components above and below the spectral peak were found to have the phase and group
velocities close to that of the spectral peak. It was concluded that in some cases it is
inappropriate to use the linear dispersion relation for the post-processing of experimental
data.

Houtani et al. (2018a) and Houtani, Waseda & Tanizawa (2018b) have demonstrated
that the dispersion characteristics of the Akhmediev breather solution to the nonlinear
Schrödinger equation in deep water deviates significantly from the linear relationship
(2.13). It was also shown that these findings extend beyond the applicability of nonlinear
Schrödinger equation. Accordingly, the highly nonlinear non-breaking modulated wave
trains also maintain the straight line relationship between the wavenumber and the
instantaneous frequency; this line is tangent to the dispersion relation curve (2.13) at
the carrier wavenumber. Gibson & Swan (2006) investigated the waves dispersion using
the numerical simulations based on the third-order Zakharov equation. Inconsistency of
the simulation results with the linear wave dispersion (2.13) was explained by analysing
the third-order resonant interactions. The nonlinear energy transfer between harmonics in
the free wave spectrum alters the values of the complex amplitudes. If interacting wave
components are out of phase, this energy transfer will change the instantaneous phases of
waves, which is reflected in the k–ω space. Adopting a similar Zakharov equation based
theoretical model, the nonlinear correction to the dispersion relation for gravity waves in
a constant depth was derived analytically by Stuhlmeier & Stiassnie (2019).

The phase of each free wave component is (Houtani et al. 2018a,b)

ξ(k, ω, t) = kx − ωt − δNL(k, t), (4.12)

where δNL(k, t) is the slowly varying nonlinear phase induced by the third-order resonant
interaction between the waves (Gibson & Swan 2006). The angular frequency can be found
from (4.12) by involving (2.13)

ω(k) = −∂ξ(k, ω, t)
∂t

=
√

gk tanh(kh)+
〈
∂δNL(k, t)

∂t

〉
. (4.13)

When analysing a long time evolution of the wave group, the influence of
〈
∂δNL/∂t

〉
/= 0

seen in k–ω spectrum may be interpreted as a deviation of the relationship ω(k) from
(2.13).

In the current study it was found that the nonlinear contribution δNL(k, t) can be caused
by the resonant interactions as well as the breaking-induced rotational flows. To construct
the k–ω spectrum from BEMν and VOF computations the discrete distribution of the
surface elevation in space is extracted from the numerical results. After applying spectrum
decomposition (see § 2.5) the elevations of free waves at different instants are expressed
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as a function η(x, t). The discrete 2-D Fourier transform of this function in the k–ω space
is given by

η̂(k, ω) = 1
NM

∑
x

∑
t

η(x, t) exp(i(kx − ωt)), (4.14)

where N and M are the number of discrete values of η in x and t directions, respectively.
Distributions of the absolute values |η̂(k, ω)| obtained from the VOF simulations are
shown in figure 16.

The highest values of |η̂(k, ω)| are located in a relatively narrow region approximately
defining the dispersion relation ω(k). For the considered broad-banded Gaussian wave
trains the distributions of |η̂(k, ω)| have no visible deviation from the linear dispersion
relation for both non-breaking and weakly breaking cases k0ζ0 = 0.3–0.4, cf. figures 16(a)
and 16(b). According to figure 4, the maximum steepness of these wave trains is within the
interval 0.2 < εmax < 0.4, indicating strong nonlinearity. Such dispersive properties are
different from those discussed in Gibson & Swan (2006), Krogstad & Trulsen (2010) and
Houtani et al. (2018a,b), where the linear dispersion relation was found to be inaccurate.
The difference in the wave packet evolution may be related to: (i) the width of the spectra
that is significantly higher for the wave trains considered in the current study, and (ii) the
reduction of wave steepness and nonlinear effects away from the focusing location.

Subsequent increase of the wave train steepness, i.e. k0ζ0 > 0.4, accompanied by the
intensification of wave breaking leads to the deviation of the distribution of |η̂(k, ω)| from
the linear dispersion curve (2.13), cf. figure 16(c–e). The magnitude of this deviation is
dependent on the wave train steepness parameter k0ζ0. Note that the wave trains with
k0ζ0 ≥ 0.6 are subject to breaking within the entire range of t and x used for computing
the k–ω spectrum. Moreover, the deviation is observed only for the wavenumbers above
the spectral peak k0, while long waves always follow the linear dispersion. To some extent,
this phenomenon is correlated to the phase shift plotted in figures 13 and 15, which is also
present at high wavenumbers only.

The dependency of frequency on wavenumber ω(k) can be approximated from the
distribution of |η̂(k, ω)| by using the following weighting:

ω(kn) =
∑

m ωm|η̂(kn, ωm)|2∑
m |η̂(kn, ωm)|2 . (4.15)

The outcomes of applying such a weighting to the BEMν and VOF simulations are plotted
in figure 16(c–e) by dashed and dash-dotted lines. It is interesting to note that the dispersion
curves of BEMν and VOF are quite close to each other in (c), and both deviate from
the linear dispersion curve. A further increase in breaking intensity, see (d,e), leads to
a pronounced deviation of the VOF curve from the BEMν one. This suggests that the
nonlinearities in the potential wave fields are only partially responsible for the change of
dispersion.

Approximate dispersion relations obtained from the BEMν and VOF results based on
(4.15) are plotted in figure 17(a) for the steepest wave packet k0ζ0 = 1.0. It can be noticed
that the weakly nonlinear dispersion relation (Melville 1983; Whitham 1999)

ω2

gk tanh kh
= 1 +

(
9 tanh4 kh − 10 tanh2 kh + 9

8 tanh4 kh

)
ε2 (4.16)

that takes into account the actual mean steepness of waves can largely explain the deviation
of dispersion observed in the BEMν model. In (4.16) we assume the steepness to be of
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Figure 16. Dimensionless free wave k–ω spectrum |η̂(k, ω)|/max(|η̂(k, ω)|) obtained from the VOF
simulations for wave packets with different steepness. A logarithmic colour scale is used. Solid line represents
the linear dispersion curve (2.13) with capillary effects accounted for; dashed and dash-dotted lines show
dispersion curves obtained by weighting (4.15) applied to BEMν and VOF computation results, respectively.

the order ε ∼ 0.3 since the considered wave packet is constantly subject to breaking.
This suggests that the effects observed in the BEMν model are probably caused by the
nonlinear wave train evolution rather than the application of empirical eddy viscosity
breaking approximation. See Appendix C for more discussion on this. To get further
insights into the actual wave train dispersion observed in VOF computations, we attempt to
correct the BEMν dispersion curve by involving the estimate of phase shift (4.11) and the
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BEMν corrected

VOF

Linear

2nd-order

1.4

1.2

1.0

0.8

0.6

0.4
1 2 3 4

k/k0

c p
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Figure 17. Dependence of (a) angular frequency and (b) phase speed on the wavenumber obtained from the
results of BEMν and VOF simulations using (4.14) and (4.15). The correction to the BEMν curve is obtained by
using (4.18). The steepest wave train is considered: k0ζ0 = 1.0, F̂x̂ = 0.03134. The linear (2.13) and the weakly
nonlinear (4.16) dispersion relations are given for reference.

expression (4.13)

ω(k) = ωBEMν(k)+
〈
∂Δξ

∂t

〉
≈ ωBEMν

〈
1 +ΘTΞ

[
F̂x̂

]ΘF
[

k
k0

]ΘK
[

t
T0

]ΘT−1
〉
. (4.17)

Taking into account (ΘT − 1) ∼ 0, the expression (4.17) can be simplified as

ω(k) = ωBEMν

(
1 +ΘTΞ

[
F̂x̂

]ΘF
[

k
k0

]ΘK
)
. (4.18)

The corrected dispersion curve (4.18) for the BEMν model plotted in figure 17(a) is close
to the VOF model. This suggests that the difference in wave dispersion between the two
models is caused by the phase shift phenomenon discussed in § 4.3.

A similar observation regarding the satisfactory accuracy of (4.16) for steep
non-breaking wave trains has previously been reported in the experimental study of
Melville (1983), in which local phases were extracted from the surface elevation
measurements by using the Hilbert transform. Nevertheless, Stansell & MacFarlane (2002)
questioned the physical significance of phase reversal effect emphasised by Melville
(1983) (reduction of the local phase speed below zero), as it can be subject to the
peculiarity of Hilbert transform. On the other hand, Banner et al. (2014), Fedele, Chandre
& Farazmand (2016) and Fedele, Banner & Barthelemy (2020) showed that the crest speed
of a nearly breaking wave can significantly deviate from the phase speed suggested by
both (2.13) and (4.16). The actual wave crest speed exhibits very fast variations: whether
a crest experiences slowing down or speeding up depends on the dispersion regime it
belongs to. Theoretical analyses demonstrated that quite complicated linear and nonlinear
processes can be involved in this phenomenon. Though the present study is not aimed at
addressing the complicated kinematics of breaking wave crests, it is of interest to analyse
the dependence of phase speed on the wavenumber cp(k) = ω/k evaluated from the
dispersion relationships, see figure 17(b). Linear and BEMν dispersions show significant
variation of the value of cp within the considered range of the wavenumbers. On the other
hand, the VOF data suggest a constant value of cp at high wavenumbers. This implies
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that relatively short waves propagate at a similar speed. Note that capillarity in (2.13)
has an insignificant effect within the considered range of wavenumbers. Contrary to the
observations of Houtani et al. (2018a,b), the property cp /= cp(k) is only held for high
wavenumbers in the considered case.

Ramamonjiarisoa & Mollo-Christensen (1979) studied the dispersion anomalies of
wind waves. They reported that the phase velocities for frequencies above the dominant
wave are nearly constant and almost equivalent to the dominant wave’s phase velocity.
For mechanically generated narrow-banded wave trains, they noted the absence of such
an effect except for a specific wave train subject to breaking. It is also found in their
work that once the wave train starts to break, the harmonics above the carrier wave
propagate at a very similar phase speed. Despite the experiments of Ramamonjiarisoa
& Mollo-Christensen (1979) are based on narrow-banded wave trains, the observed effect
they documented is possibly related to the phase shift phenomenon discussed in the current
study. It is also important to note that Ramamonjiarisoa & Mollo-Christensen (1979) did
not report/observe any deviation of the dispersion relation for nearly breaking wave trains.
Therefore, rather than being induced by the nonlinearities of the potential wave field, the
deviation of wave dispersion is more likely caused by the non-potential flows generated by
wave breaking or wind.

We note that the expression (4.18) can be written in another form

ω(k) = ωBEMν + k × Ũ. (4.19)

Here, the empirical constant Ũ = ΘTΞ F̂ΘF
x̂ cBEMν can probably be considered as the

velocity of an equivalent depth-uniform current, which can trigger off the dispersion
of waves similar to the phenomenon captured by the VOF model. Here, cBEMν is the
averaged characteristic phase velocity. The ratio Ũ/cg0 calculated for each wave train
(k0ζ0 ≥ 0.4) is listed in table 4. Although the given expression does not necessarily reflect
the actual currents generated by wave breaking, it provides us a tentative way to look at the
underlying physics. This might be beneficial to the improvement of eddy viscosity model
in the future.

4.5. Wave train trajectory
As demonstrated in § 4.4, wave breaking can cause high-frequency harmonics to propagate
at a speed appreciably greater than that defined by the linear dispersion relation (2.13).
Under these circumstances, short wave components propagate together with longer ones,
thus preventing the dispersive spreading of wave packet. Such an evolution can lead to
the distortion of wave train shape and spatio-temporal energy redistribution. Besides, the
propagation speed of the entire wave packet can also be influenced by wave breaking
nonlinearities. The propagation speed of wave packet energy in space is defined by the
group velocity. Consider group velocity of the carrier (peak) frequency harmonic by
differentiating (4.18)

cg0 = ∂ω

∂k

∣∣∣∣
k=k0

≈ cg0,BEMν

(
1 +ΘTΞ

[
F̂x̂

]ΘF
)
. (4.20)

The expression (4.20) suggests that the wave train propagation velocity increases with
breaking intensity defined by the energy dissipation rate F̂x̂. In this section, the dynamics
of wave packet evolution is studied to verify these hypotheses.

The propagation velocity of a wave train can be evaluated by analysing the surface
elevation envelope obtained from numerical simulations. At each instant t, the Hilbert
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transform is applied to calculate wave train envelopes from free wave surface elevations
η(x, t) obtained by the BEMν and VOF models

H (x) =
∣∣∣∣η(x)+ i

π
PV

∫ +∞

−∞
η(χ)

χ − x
dχ

∣∣∣∣ , (4.21)

and the dimensionless form is given by

H̃ (x, t) = H (x, t)
max

x,t
(H (x, t))

. (4.22)

In the limit of a linear system, the velocity of a Gaussian wave train is determined by the
propagation speed of the envelope maximum. When waves become highly nonlinear, the
instantaneous envelope is disturbed by the fast variations due to nonlinear interactions,
which redistribute the energy H̃ 2 within the wave train. Since these variations do
not determine the mean velocity of the energy propagation, the linear approach is not
applicable. There is no strict method yet to determine the propagation speed of a strongly
nonlinear wave packet. Following Pizzo & Melville (2016) here we define the wave train
trajectory in the x–t space by tracing the motion of the centroid of the energy density

XH(t) =
∑

x xH̃ 2(x, t)∑
x H̃ 2(x, t)

, (4.23)

where XH(t) is the instantaneous wave train coordinate. The instantaneous propagation
speed of the wave train is then v(t) = dXH/dt.

The distribution of H̃ (x, t) obtained by the BEMν model is plotted in figure 18 for
wave trains with different steepnesses. Note that the x coordinates are displaced by the
linear focus location xf and transformed using the linear group velocity of the wave packet.
For the purpose of analysis, the range of x coordinates containing the dominant portion of
the energy and determining the wave train boundaries is chosen by using the condition
H̃ 2 ≥ 0.1 as depicted by solid lines in figure 18. The distance between these boundaries
can be used as a measure of instantaneous wave train length LH(t), see (e, f ).

The spectrum of weakly nonlinear wave train varies slowly so that its shape is
conserved within the time intervals considered in the study. The peak values and the
spectral-weighted group velocities (4.4) are thus very close to each other, i.e. cg0 ≈ cgs.
Consequently the value of cg0 gives a reasonable estimation of the wave packet propagation
speed. Thus the wave train trajectory is aligned with the vertical axis as shown in
figure 18(a), where the wave train has a low steepness k0ζ0 = 0.2. The actual focal point
for this case practically coincides with the linear prediction shown in the figure by dotted
lines. Increasing the steepness to k0ζ0 ≥ 0.3 changes the free-surface elevation envelope.
The wave train trajectory XH(t) (4.23) is plotted by the dashed lines in figure 18(c–f ). It
is shown that the intensification of wave breaking (growth of k0ζ0 and F̂x̂) leads to the
inclination of wave train trajectory XH(t) from the vertical line, cf. (a–f ). For the cases
with relatively strong energy dissipation, i.e. k0ζ0 ≥ 0.6, the plots of XH(t) after the focal
point are almost linear. This suggests that for each of these cases, breaking increases the
wave packet propagation velocity v(t) = dXH/dt by a constant value equal to the gradient
of the straight line.

The evolution of weakly nonlinear wave train, see figure 18(a), consists of two
consecutive stages: (I) focusing within the time interval t = 30–35 s, and (II) defocusing
(dispersive spreading) within t = 35–40 s. Breaking is only expected to occur in the
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Figure 18. Surface elevation envelope H̃ (x, t) (4.22) in x–t space obtained from the results of BEMν
computations: (a–f ) present the wave trains of different steepness k0ζ0. The colour scale has the range 0 ≤
H̃ ≤ 0.8; higher values (H̃ > 0.8) are shown by red colour. The boundaries of the wave train corresponding
to the energy level H̃ 2 = 0.1 are plotted by solid lines. Dotted lines depict the linear focal point location.
The approximate wave train coordinates XH(t) (4.23) are plotted by dashed lines. The instantaneous wave train
length LH(t) is indicated in (e, f ). Areas of energy dissipation due to wave breaking predicted by the EVBM are
indicated with white solid lines. Weak breaking events are disregarded in the plots by limiting values of eddy
viscosity to νeddy > 10−4 m2 s−1.

vicinity of the focal point at t = 35 s. Although the surface elevation envelopes of
moderately nonlinear wave packets are distorted, both the focusing and defocusing stages
are still clearly present, cf. figures 18(b) and 18(c). However, the occurrence of multiple
stronger breakers modifies significantly the envelope evolution process for the cases with
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high steepness k0ζ0 ≥ 0.6, for which a defocusing stage is no longer clearly visible in
(d–f ).

In view of similarity in the propagation regime of breaking wave trains, we consider
the strongest energy dissipation case shown in figure 18( f ). This wave train exhibits
appreciable energy dissipation due to the strong and nearly continuous breaking within
the full time range studied here, as clearly shown in figures 4 and 8. Despite this, the
focusing stage is still largely pronounced. On the contrary, surprisingly, the spreading of
wave train in the post-focusing stage is completely suppressed, see figure 18( f ). Therefore,
the reduction of wave height due to dispersion is less pronounced than in the low steepness
cases presented in (a–c). This suggests that once extreme breaking waves appear, they
propagate together without spreading until breaking dissipates the excessive energy and
ceases. It also implies that such extreme waves could last longer than expected. Having a
close look at the red areas shown in figure 18, where H̃ (x, t) ≥ 0.8, we can clearly see
their growth in time with wave train steepness especially for k0ζ0 ≥ 0.6. For low steepness
wave trains k0ζ0 ≤ 0.4, the wave height reduces to less than 50 % of the maximum height
by time t = 38 s. But for highly nonlinear waves k0ζ0 ≥ 0.6, the red regions can extend
beyond t = 40 s. This means that increasingly intensified breaking can prolong the lifespan
of extreme waves, and such an effect may not necessarily be trivial.

The surface elevation envelopes computed by the VOF model for non-breaking wave
packets (k0ζ0 = 0.2 and 0.3) coincide with the BEMν results, cf. figures 18 and 19(a,b).
The distributions of H̃ (x, t) elicited from the VOF simulations for breaking wave trains
with k0ζ0 ≥ 0.4 are presented in figure 19(c–f ). Similar to the BEMν computations, the
evolution of non-breaking and weakly breaking wave trains consists of both dispersive
focusing and defocusing stages, while there is no clear defocusing stage for strongly
breaking cases in the domain of interest, cf. figures 18 and 19. At the same time, the
wave train boundaries obtained by the VOF model become rough with the intensification
of breaking.

The wave train trajectories XH(t) (4.23) obtained by the VOF model are plotted in
figure 19 with dash-dotted lines. Corresponding plots of XH(t) taken for reference from
figure 18 (BEMν) are shown by dashed lines. In the focusing stage, the trajectories of
weakly breaking wave trains computed by the BEMν and VOF models are very close to
each other as shown in figure 19(c). Once breaking is initiated in the vicinity of the focal
point, see locations depicted by white solid lines in the figure, a small divergence of the
trajectories appears. Note that such a deviation in trajectories is not seen prior to the first
breaking event. For strong-breaking events as shown in figure 19(d–f ), the divergence in
wave trajectory between the VOF and BEMν models becomes appreciably large. Wave
trains computed by the VOF model propagate over longer distances and thus have higher
propagation speeds compared with the BEMν outcomes. These observations confirm
our initial assumption that breaking can increase the propagation speed of wave trains
compared with non-breaking scenarios. And this is associated with the phase shifting
phenomenon as demonstrated in (4.20).

Applying linear regression to the trajectories XH(t) derived from BEMν and
VOF computations, the wave group propagation velocity v(t) = dXH/dt is estimated
numerically and plotted in figure 20. The linear group velocity cg0 calculated by using
the carrier frequency is included here for reference. Strongly nonlinear but non-breaking
wave trains (F̂x̂ ≈ 0) propagate at a speed moderately higher than the linear group velocity
cg0. The growth of propagation speed in this case is caused by the nonlinear resonant
interaction between spectral harmonics. A similar outcome has been obtained analytically
by Stuhlmeier & Stiassnie (2019) for nonlinear waves of Pierson–Moskowitz spectra.
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Figure 19. As in figure 18 for VOF model. Dashed and dash-dotted lines show XH(t) calculated from BEMν
and VOF simulation results, respectively.

Significant increases in the propagation speed can be clearly seen for the breaking waves
(F̂x̂ > 0), which may attain the following values: vBEMν ≈ 1.27cg0 and vVOF ≈ 1.36cg0.
While the growth observed in BEMν computations is mostly related to the nonlinearities
in the free-surface boundary conditions (2.2) and (2.3), the additional increment of speed
present in the VOF model is likely caused by breaking-induced rotational flows.

It is known that the balance of spectral energy in wave forecasting models is closely
dependent on wave group velocity, which is usually approximated by the linear dispersion
relation (2.13). Stuhlmeier & Stiassnie (2019) pointed out that a more accurate nonlinear
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Figure 20. (a) Dependence of the wave train propagation velocity v(t) = dXH/dt on the energy dissipation
rate F̂x̂ (i.e. wave breaking strength). Dashed and dash-dotted lines represent the linear fit of the data derived
from BEMν and VOF computations. Mean values of the spectral-weighted group velocities (4.4) obtained
from the BEMν simulations are plotted for the wave train evolution before and after the linear focus (t < tf and
t > tf ). (b) Variation of the spectral-weighted group velocities (4.4) with time obtained for the wave trains of
different steepness k0ζ0 using the BEMν model.

approximation of group velocity derived from the Zakharov equation is needed. This
means that the complex effect of wave breaking on group velocity is of practical
importance and needs to be taken carefully into account.

Next, numerical results collected in the work are used to assess the validity of the
spectral-weighted group velocity given by (4.4). The time series of cgs calculated by the
BEMν model for all the wave trains are depicted in figure 20(b). A gradual growth of
cgs is observed within the focusing stage for t < tf (tf = 35 s) due to energy downshifting
in the spectrum, see figure 12. It is interesting to see that the overall net change of cgs
becomes less pronounced after passing the linear focal point for each case. Since the
spectra predicted by the BEMν and VOF models are close to each other, the values of
cgs calculated by these two models are similar to each other. Taking this into account,
we estimate the mean values of cgs for the focusing and defocusing stages separately, i.e.
cgs|t<tf and cgs|t>tf , see figure 20(a). As one can see, the estimates of cgs for non-breaking
and weakly breaking wave trains are close to the centroid velocity v(t). A large increase
in breaking strength can cause cgs to deviate significantly from the centroid velocity in the
focusing stage. Meanwhile cgs is close to vBEMν in the defocusing stage. Both estimates do
not reflect the wave train propagation velocity computed by the VOF model as expected,
since the derivation and calculation of cgs are based on the linear assumption of all the
wave components in the spectrum. Despite the deficiency of the spectral-weighted wave
train propagation velocity, it can produce sufficiently accurate estimation of energy flux for
numerical simulations or experimental measurements, see figure 9(b) and the expression
(4.3). Note that we calculate energy fluxes for the VOF model with the expression (4.1)
without introducing any simplifications.

Figure 21 exhibits the temporal evolution of wave group length LH , which is defined
as the distance between the leading and trailing edges of a wave train, as shown in
figures 18 and 19. The wave group length is normalised by its value taken at t = 30 s
when wave generation is completed in both BEMν and VOF models. As discussed above,
all the non-breaking and weakly breaking wave trains (0.2 ≤ k0ζ0 ≤ 0.4) are subject to
consequent focusing and defocusing stages due to dispersion. For strongly breaking waves
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Figure 21. Evolution in time of the normalised length of the non-breaking to strongly breaking wave trains:
(a) BEMν and (b) VOF computations. Definition of the wave train length is shown schematically in figures 18
and 19; LH0 is the initial wave train length.

with k0ζ0 ≥ 0.6, the defocusing stage is suppressed, cf. figures 21(a) and 21(b). More
importantly, the relative wave packet lengths after focusing are nearly constant and have
similar magnitude in both BEMν and VOF computations: LH/LH0 = const ∈ [0.45, 0.5].
Wave packet spreading is expected to resume after the breaking process is completed.
However, the absolute values of wave group length computed by the BEMν and VOF
models are different because of the wave evolution peculiarities during the focusing stage.

It has been reported that wind has a pronounced height amplification effect on
broad-banded focusing wave groups in the defocusing stage (Touboul et al. 2008;
Chambarel, Kharif & Kimmoun 2010). It is also of interest and importance to analyse
the height amplification effect of wave breaking through the non-dimensional factor given
by

H̃(t) =
2 × max

x
{H (x, t)}

HS(k0ζ0 = 0.4)
. (4.24)

Here, we introduce the normalisation by using the constant significant wave height HS
calculated for the wave train at the verge of stability, i.e. weakly breaking group with
k0ζ0 = 0.4. Following the standard definition (Babanin et al. 2011), significant wave height
can be calculated from (2.15)

HS ≡ 4

√
1

2π

∫ +∞

−∞
η̂2(ω) dω = 4

√
8
π

√
mζ 2

0 T0
(
1 + exp(−2π2m2)

)
. (4.25)

The factor of 2 is introduced into the numerator of (4.24) to evaluate the expected wave
height from the envelope H . Figure 22 shows the temporal evolution of wave height
amplification factor defined by the expression (4.24). Linear regression is applied in panel
(b) separately to the focusing (t < 35 s) and defocusing (t > 35 s) stages. It is clearly
shown that the amplification of the non-breaking wave group (k0ζ0 = 0.2) is nearly
symmetric about the focal point. An increase in the steepness parameter k0ζ0 causes
certain asymmetry of H̃ in the pre- and post-focusing stages, see (a).

It is usually expected that strong breaking leads to an instantaneous reduction of wave
height. However, figure 22 demonstrates a quite opposite and non-trivial phenomenon.
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Figure 22. Evolution of the amplification factor H̃ (4.24) observed in BEMν and VOF computations: (a) non-
and weakly breaking wave trains, (b) strongly breaking wave trains. Dashed lines present the raw data derived
from the computations, while solid lines are obtained by the linear interpolation of the plots separately at
focusing and defocusing stages. Vertical dotted line shows focal point location at t = 35 s.

The height amplification factors of strongly breaking wave groups, in particular the
solution for k0ζ0 ≥ 0.6, decay much slower than the non-breaking and weakly breaking
ones, cf. (a,b). This is probably due to the suppression of defocusing and the consequent
conservation of wave train length shown in figure 21. Both VOF and BEMν models
demonstrate asymmetry of H̃ plots in the pre- and post-focusing stages with the increase of
wave steepness especially when breaking is initiated. The wave train dynamics observed
in the BEMν model is predominantly governed by the nonlinear wave interactions in the
field, see discussion in § 4.4 and Appendix C. On the contrary, the wave train characteristic
detected by the VOF model is appreciably different from the BEMν solution. This implies
that important physical effects are not reflected in the quasi-potential approximation.

Under strong-breaking conditions, see (b), the peak values of H̃ produced by the BEMν
model are higher than the VOF calculations for each wave train. Unlike the BEMν model
which shows significant decay rate of H̃ in the post-focusing stage regardless of wave train
steepness, the VOF solutions demonstrate a very mild decay of H̃ over time for k0ζ0 ≥ 0.6.
The implication of this phenomenon is that the space (range of x) where extreme waves are
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likely to appear might be larger in VOF simulations than FNP computations. For very steep
wave trains k0ζ0 ≥ 0.8, their amplification factors remain above 2.2 for a relatively long
time in the post-focusing stage as shown in figure 22(b). This can increase the occurrence
probability and lifespan of extreme waves.

The change of wave dispersion as well as the conservation of height amplification
factor recorded in our simulations are probably caused by breaking-induced rotational
flows. These rotational motions are disregarded in the FNP model. According to Rapp &
Melville (1990), the velocity field of breaking-induced flows consists of the contributions
from the mean current, reflected and random waves, turbulence, etc. All of these
contributions can be of significance as shown in figure 7. Decomposing the complex
velocity field into various components mentioned above is not trivial but actually hardly
feasible yet. To accomplish velocity decomposition, it requires substantial theoretical and
numerical studies that are beyond the scope of the present work. Nevertheless, following
the discussion of Longuet-Higgins (1992) it is probably reasonable to hypothesise that
breaking-generated currents are dominant here. This is evident in the proposed empirical
expression (4.19), which correlates the change of wave dispersion with the generation
of rotational flows. Our calculations show that even a small value of Ũ ≈ 5 × 10−2cg0
can cause a significant effect as shown in table 4 and figure 17. Therefore it is probably
reasonable to infer that breaking waves interact with the induced currents in a two-way
mechanism: breaking can produce currents, in turn the currents can influence the waves by
suppressing the dispersion and maintaining the existence of steep waves for a longer time.
An extensive theoretical study will be needed to carefully examine the hypothesis. The
method of Shrira (1993) probably needs to be implemented for this task. To accomplish
this task, a new method that can be used to decompose the velocity field should be
developed. We would like to point out that the duration of a single breaking event, crucial
for predictive oceanographic models (Kleiss & Melville 2010), is also an important topic
requesting further attention.

5. Conclusions

A suite of low-fidelity (FNP) and coupled low-/high-fidelity (FNP–NS) flow models
has been proposed to investigate the evolution of broad-banded wave trains under non-,
moderate- and strong-breaking conditions. The weakly potential approximation proposed
by Ruvinsky et al. (1991) was implemented in the FNP model to take into account the
energy dissipation caused by wave breaking. This approximation was closed by the eddy
viscosity model proposed by Tian et al. (2010, 2012).

The developed flow models were firstly tested with a narrow-banded wave train subject
to modulational instability. Within the FNP model we also applied the free-surface
re-meshing technique, which shows a similar performance as the eddy viscosity enclosure
in the stabilisation of breaking wave simulation. The computed results were compared with
laboratory measurements and other published calculations in terms of surface elevation.
It was found that the high-fidelity results compare well with experiments. Although the
low-fidelity calculations are rather close to the HOS solutions reported in the literature,
they deviate from laboratory measurements especially at locations far away from the
wavemaker.

To identify the underlying reason causing the deficiency of the eddy viscosity wave
breaking model in the prediction of surface elevation, we further examined the FNP and
FNP–NS models with six broad-banded focusing wave groups under non-, moderate-
and strong-breaking conditions. A direct comparison of the low- and high-fidelity results
reveals that the re-grid and eddy viscosity approaches predict accurately the energy
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dissipation caused by breaking. We then applied spectral decomposition to compute the
surface elevation of free waves by filtering out bound waves. Surprisingly, it was found that
the amplitude spectra obtained from the FNP and NS solutions are practically identical
in terms of magnitude, regardless of wavenumber and angular frequency. This led us
to speculate that the underlying reason causing the deviation of FNP solutions from
high-fidelity calculations (and laboratory measurements) in terms of surface elevation is
the discrepancy in phase.

To verify this hypothesis, we undertook a detailed analysis of the phase difference
between the FNP and NS results. It was found that the difference in phase grows
with breaking intensity, and such an effect is especially profound for high-wavenumber
components. We proposed an empirical formula to correlate the phase shift with
wavenumber, energy dissipation rate and time in the power form by applying regression
to the data. For strongly breaking wave trains it was found that the phase shift has a
quadratic dependence on energy dissipation rate and wavenumber. Moreover, the shift of
phase occurs at relatively high wavenumbers, but is hardly observed for long waves. It was
also noticed that the growth of phase shift with time is nearly linear for strongly breaking
waves. It is suggested that the observed variation in phases has similar physical origin
as phase-locking effect reported by Derakhti & Kirby (2016). Therefore, phase locking is
considered to be the main reason for inaccuracy of FNP predictions.

The proposed phase shift regression function was then used to study the dispersive
property of breaking wave trains. It was found that weak breaking has very limited impact
on the dispersion of fully nonlinear wave packets. On the contrary, strong breaking has
great influence on the dispersive property of wave packets, causing the frequencies of
high-wavenumber components to increase significantly. This phenomenon has been clearly
demonstrated by using a 2-D Fourier transform of the high-resolution spatio-temporal
records of surface elevation. We also showed that the dispersion variation can be derived
from the phase shift regression function.

The change of wave dispersion caused by breaking increases the propagation speed of
high-wavenumber components. In the NS computation of strongly breaking waves, the
phase speeds of high-wavenumber components tend to be independent of the wavenumber
i.e. these harmonics propagate at a similar speed. As a result, the dispersive spreading of
wave train after the focal point is almost absent in all simulations of strongly breaking
waves. It was found that the evolution of wave trains involving strong breaking consists
of two distinctive stages: (i) a contraction of the wave train length and an accompanying
growth of the wave height due to focusing; and (ii) maintaining a nearly constant wave
train length after the focal point instead of spreading out immediately as usually expected.
This unusual conservation of wave train length is of significance because it can prolong
the lifespan of focused waves and expand the space for their propagation. This can raise the
probability of extreme wave formation in breaking scenarios compared with non-breaking
environments. Such an unexpected finding is contradictory to our general impression that
strong breaking can instantaneously reduce wave height by destructing initially stable
harmonics and dissipating their mechanical energy.

The proposed empirical expression (4.19) correlates the change of wave dispersion
with the breaking-induced rotational flow captured in our high-fidelity simulations. The
oceanography community recommends investigating wave-induced currents as a priority
in the research of wind-wave problems (Greenslade et al. 2020). For wind speeds larger
than 7.5 m s−1, most of the wind stress goes to generating wind waves rather than surface
currents (Greenslade et al. 2020). Under these conditions, wave breaking is considered as
an important source for generating currents (Greenslade et al. 2020). A detailed theoretical
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study is needed to examine the evolution of breaking waves coupled with breaking-induced
currents. Such a study can build on the time-varying non-potential velocity fields, which
need to be extracted from the VOF simulations. The extracted information can then be
used as the input for the theoretical analysis proposed by Shrira (1993).

We would like to emphasise that in the current stage the conclusions drawn here are
based on, and possibly limited to, the quantitative analysis of the wave trains considered
in the present work. More comprehensive theoretical, numerical and experimental
investigations are needed to arrive at definitive conclusions on phase shifting and other
related phenomena reported in this paper. The outcomes of the current research can be
beneficial to the development of more accurate theoretical models for wave breaking,
which can be used in the weakly and fully nonlinear modelling of ocean waves for
engineering and environmental science.
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Appendix A. Grid convergence

The grid convergence of BEMν and VOF numerical models is studied with respect to
the modulated wave train (2.12). The grid density determined as number of cells (nodes)
distributed along the carrier wave length λ0 is used for characterisation of the grid
quality. This allows generalisation of the convergence study outcomes to other wave trains
investigated in the paper. Four grids of different free surface mesh density ranging from
16 to 32 cells per λ0 are considered in the BEMν model, see figure 23. All meshes show
identical surface elevation plots close to the wavemaker (x = 35 m), as well as far away
from it (x = 50 m). Nevertheless, the finest mesh is used in the present work.

The grid resolutions of 64 to 256 cells per carrier wavelength λ0 were considered in
convergence study of the VOF model, see figure 24. In this case, first two grids fail in
simulation of the waves dispersion. The grid densities 192 and 256 cells per λ0 showed
practically identical results at x = 35 m. Deviation between the results obtained with these
two grids at x = 50 m is acceptably small, thus the convergence is established with respect
to the free-surface elevation. The finest grid of density 256 cells per λ0 is used for the
computations.

Appendix B. Coefficients of the weakly nonlinear Zakharov model

Assume A(k) being the discrete complex wavenumber spectrum of the free waves only.
Introduce the following wavenumbers:

kb = km + kn and kc = −km + kn and kd = −km − kn. (B1a–c)
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Figure 23. Surface elevation obtained in BEMν computations at two coordinates measured from the
wavemaker location: x = 35 and x = 50 m.
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Figure 24. As in figure 23 for the results of VOF computations.

The corresponding angular frequencies due to dispersion relation (2.13) are

ωb =
√

gkbtanh(kbh) and ωc =
√

gkctanh(kch) and ωd =
√

gkdtanh(kdh).
(B2a–c)

The complex wavenumber amplitudes in the 2nd-order bound waves spectrum required to
complete expression (2.20) are (Stiassnie & Shemer 1987; Krasitskii 1994)

B(km, kn) = −π

√
2gωb

ωmωn

V(ωb, ωm, ωn, km + kn, km, kn)

ωb − ωm − ωn
AmAn (B3)
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C(km, kn) = −π

√
2gωc

ωmωn

W(ωc, ωm, ωn,−km + kn, km, kn)

ωc + ωm − ωn
A∗

mAn (B4)

D(km, kn) = −π

√
2gωd

ωmωn

T(ωd, ωm, ωn,−km − kn, km, kn)

ωd + ωm + ωn
A∗

mA∗
n. (B5)

Here, m and n are numbers of harmonics in the discrete free waves complex spectrum
A(k); the star superscript ‘∗’ stands for the complex conjugation. The expressions for the
coefficients V , W and T are (Stiassnie & Shemer 1987)

V(ω0, ω1, ω2, k0, k1, k2) = 1
4π

√
g
2

{
1
2

√
ω0

ω1ω2

[(
ω1ω2

g

)2

+ k1k2

]

−
√

ω2

ω0ω1

[(
ω0ω1

g

)2

− k0k1

]}
(B6)

W(ω0, ω1, ω2, k0, k1, k2) = 1
4π

√
g
2

{√
ω2

ω0ω1

[(
ω0ω1

g

)2

+ k0k1

]

−
√

ω1

ω0ω2

[(
ω0ω2

g

)2

− k0k2

]

−
√

ω0

ω1ω2

[(
ω1ω2

g

)2

− k1k2

]}
(B7)

T(ω0, ω1, ω2, k0, k1, k2) = 1
4π

√
g
2

{√
ω2

ω0ω1

[(
ω0ω1

g

)2

+ k0k1

]

+1
2

√
ω0

ω1ω2

[(
ω1ω2

g

)2

+ k1k2

]}
. (B8)

Appendix C. Eddy viscosity damping in the framework of the modified nonlinear
Schrödinger equation

The variation of wave train dispersion is reported in the current study for the
quasi-potential solutions of the BEMν model, which is closed with the eddy viscosity
wave breaking approximation (EVBM). It is interesting and important to identify the
main source of the observed effects in waves dispersion: whether they are caused by
the fully nonlinear wave interactions or augmented by the applied empirical EVBM. For
simplicity we consider the evolution of a weakly nonlinear wave train in the framework of
the modified nonlinear Schrödinger equation (MNLSE).

Our numerical experiments with the BEMν model show that, within the adopted
eddy viscosity breaking closure, the viscous term in the kinematic boundary condition
(2.2) has negligible effect as compared with that in the dynamic boundary condition
(2.3). Therefore, a simplification of (2.2) introduced by Tian et al. (2010) is permitted.
Substitution of the linearised kinematic boundary condition to (2.4) allows its integration
with time. Substitution of the obtained form of ∂ψ/∂s into (2.2) leads to simplified
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kinematic and dynamic boundary conditions

∂η

∂t
= ∂η

∂x
∂ϕ

∂x
− ∂ϕ

∂z
− 2νeddy

∂2η

∂x2 , (C1)

∂ϕ

∂t
= gη − 1

2
|∇ϕ|2 + 2νeddy

∂2ϕ

∂x2 , (C2)

where η is surface elevation. Starting with the water waves problem given by the boundary
conditions above and assuming the deep-water limit, Dias et al. (2008) derived a weakly
damped form of the nonlinear Schrödinger equation (NLSE), which can be extended to
MNLSE

∂A
∂ξ

+ i
∂2A
∂τ 2︸ ︷︷ ︸

I (LSE)

+ i|A|2A︸ ︷︷ ︸
II (NLSE)

+ 8ε|A|2 ∂A
∂τ

+ 2εA2 ∂A∗

∂τ
+ 4iεA

∂Φ

∂τ

∣∣∣∣
Z=0︸ ︷︷ ︸

III (MNLSE)

+ 2νeddy
k2

0
ω0

A︸ ︷︷ ︸
IV (damping)

= 0.

(C3)
Asterisk ∗ designates complex conjugation, LSE stands for the linear Schrödinger
equation. The dimensionless potential Φ is governed by the following equations:

4
∂2Φ

∂τ 2 + ∂2Φ

∂Z2 = 0 Z < 0 (C4)

∂Φ

∂Z
= ∂|A|2

∂τ
Z = 0 (C5)

∂Φ

∂Z
= 0 Z → −∞. (C6)

Surface elevation is given by the dimensionless complex envelope A in the following
way: η = ζ0Re{A exp(i(k0x − ω0t))}, where ζ0, k0, and ω0 are carrier wave amplitude,
wavenumber and angular frequency, respectively. The dimensionless variables are defined
as

τ = εω0

(
x
cg

− t
)

ξ = ε2k0x ϕ = ω0ζ
2
0Φ Z = εk0z. (C7a–d)

To satisfy the narrow-band restriction implied by (C3), we select the parameter m = 4
in (2.14). A steep wave train of ε = 0.24 is considered. The eddy viscosity is assumed
to be of an order νeddy = O(10−3)m2 s−1. Other parameters of the wave train (2.14) are
similar to the main part of the paper. The initial shape of the wave train is shown in
figure 25(a). Equation (C3) was solved numerically by using the pseudo-spectral method
of Lo & Mei (1985) to find the wave train shape at the linear focus x = xf = 8.5 m, as
shown in (b). Here, we pay close attention to the influence of different terms in (C3)
(designated by I, II, III and IV) on the nonlinear evolution of the wave train. The solution
to the linear part of (C3), i.e. LSE, suggests mild shortening of the wave train envelope
due to dispersive focusing. The envelope shape for the NLSE demonstrates significant
enhancement of the wave height at the linear focus, while the wave train propagation speed
seems to be similar to the linear evolution case. Including the higher-order terms and then
solving MNLSE, we can see more complicated behaviours with a significant speed-up
of the wave train propagation. Note that the obtained wave train shapes are in a good
agreement with experiments of Shemer, Kit & Jiao (2002), and the nonlinear speed-up
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(b)

Figure 25. Evolution of the wave train governed by the equation (C3) with an emphasis on the impact of
different terms: (a) initial shape of the wave train at x = 0; (b) wave train shape at the linear focus x = xf =
8.5 m.

is a well-documented phenomenon (Chereskin & Mollo-Christensen 1985; Trulsen 1998;
Pizzo & Melville 2016).

The main concern now is the effect of the damping term IV in (C3). As one can see,
adding this term to NLSE, i.e. case I + II + IV, does not cause any variation of the wave
train propagation speed. Interestingly, the viscous damping resulted in a mild increase of
the wave height at the focusing location and appreciable reduction elsewhere. Moreover,
introducing the term IV to the full version of MNLSE does not lead to any increase in the
wave train propagation speed. On the contrary, it results in a moderate deceleration due to
gradual energy dissipation. Based on the given observations we can conclude that the wave
train speed-up observed in BEMν calculations is more likely a result of the nonlinear wave
component interactions than an outcome of the eddy viscosity breaking closure (EVBM).
Note that the variation of νeddy in space and time ignored in MNLSE is not likely to
play a role in the acceleration of wave trains. It implies that a recalibration of EVBM
probably will not improve the computation accuracy to the same level of the high-fidelity
NS simulation. The underlying reason is perhaps due to the important interactions of the
wave train with the breaking-generated rotational flows ignored by EVBM. It could be
valuable to study the impact of breaking-generated sheared currents on the propagation of
carrier wave train.
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