
Please cite the Published Version

Hodgkiss, Jack and Djahel, Soufiene (2022) MARS - Towards Mobile Assisted RSSI Secret
Key Extraction Strategy in WBANs. In: 2022 IEEE 19th Annual Consumer Communications &
Networking Conference (CCNC), 08 January 2022 - 11 January 2022, Las Vegas, NV, USA.

DOI: https://doi.org/10.1109/CCNC49033.2022.9700605

Publisher: IEEE

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/628600/

Usage rights: In Copyright

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0002-1286-7037
https://doi.org/10.1109/CCNC49033.2022.9700605
https://e-space.mmu.ac.uk/628600/
https://rightsstatements.org/page/InC/1.0/?language=en
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines


MARS - Towards Mobile Assisted RSSI Secret Key
Extraction Strategy in WBANs

Jack Hodgkiss and Soufiene Djahel
Department of Computing and Mathematics, Manchester Metropolitan University, UK

{jack.hodgkiss@stu.mmu.ac.uk, s.djahel@mmu.ac.uk}

Abstract—The emergence of wireless body area networks
(WBANs) has paved the way for real-time sensing of human
biometrics in addition to remote control of smart medical devices,
which in turn is revolutionising the smart healthcare industry.
However, the limited power and computational capabilities of
WBAN sensors make them vulnerable to a myriad of security
attacks, thus securing them is paramount to their success and
wider adoption. Received signal strength indicator (RSSI) secure
key extraction (SKE) methods are used for securing WBAN
sensors. However, such methods may suffer from stagnant RSSI
values, significantly increasing the secret keys construction time.
To remedy this, we propose a new method that involves one of
the two sensors being mobile and thus can be picked up and
moved around. This results in the stimulation of RSSI values
which in turn improves the quality of the generated keys and
thus shortening the execution times of the SKE process. The
evaluation results highlighted the effectiveness of our method.

Index Terms—WBANs, RSSI, Secret Key Extraction

I. INTRODUCTION

In recent years there has been significant progress in de-
veloping tiny wireless sensors capable of sensing events and
enacting change within their deployment environment. The
medical domain is among the most popular environments
where such sensor technology is deployed (e.g., worn or
implanted within the patient body) and used by medical profes-
sionals in hospitals to monitor the patients’ health and control
specialised medical instruments. Example of such sensors used
in hospitals can range from ECG (Electrocardiogram), CGM
(Continuous Glucose Monitor) or a pacemaker. Some of these
sensors may also be purchased and used by home users who
desire to monitor their current wellness and fitness.

These sensors are only capable of wireless communication
and must form a WBAN (Wireless Body Area Network)
which is a specialised network type for deployment on or
within the human body. As these sensors engage in wireless
communication this does open up the potential for intrusions
by unauthorised adversaries who can eavesdrop on the infor-
mation being transmitted throughout the network. This can
put at risk not only the wearer’s privacy, which must be
maintained at all times as it is a requirement by law [1], but
also their health as sensors, such as a pacemaker, could be
tampered with in order to turn them off or operate outside safe
limits. Unfortunately, any attempt to secure these sensors must
overcome the stringent constraints that accompany sensors of
such a miniature size. This is because to conform with the
operating regulations and specifications these sensors must

have a small form factor limiting the overall size of the
components used such as the microprocessor and battery. This
poses a significant challenge to researchers as conventional
methods of authentication are not appropriate due to their
demanding requirements.

Therefore, a significant work has been undertaken to secure
such networks while satisfying the requirements of WBAN
sensors. This has been achieved through novel and inventive
ways to take advantage of what is available to sensors. For
example, WBANs have unique access to vital signs, such as
ECG, and therefore they can use them for the purpose of key
generation and authentication [2], [3]. However, these methods
fragment the network as only sensors capable of sensing the
ECG signal can benefit from this feature and be involved
in the authentication process. In addition, recent works, such
as [4], have highlighted potential exploits and vulnerabilities
that target PPG (Photoplethysmogram) based authentication
schemes. Therefore, alternative methods should be used, such
as RSSI (Received Signal Strength Indicator) Secret Key
Extraction (SKE), due to the fact that all wireless sensors are
capable of measuring such a metric. Despite of its advantage
over the use of ECG, RSSI SKE based schemes have a serious
weakness related to the key construction time which can be
of the order of several minutes, making it not viable for use
within emergency settings as every second counts. This paper
will therefore introduce a novel strategy to complement RSSI
SKE based authentication schemes by increasing the rate at
which the keys are generated, thus reducing the wait time
before these sensors can operate securely. This strategy is
known as MARS (Movement Assisted RSSI SKE Strategy)
and will be the focus of the rest of this paper.

II. MOBILE ASSISTED RSSI SKE STRATEGY

RSSI SKE consists in four separate stages summarized as
follows [5]. (1) Transmitting Probes: the two sensors involved
transmit and receive probes or messages which can be used
to measure RSSI from the point-of-view of one another. (2)
Quantization: it could be lossy or lossless, in this stage both
sensors reduce the measured values into a binary sequence. (3)
Reconciliation: attempts are made to correct the discrepancies
that exist due to the irregularities in measurements originating
from wireless channel and temporal variations. (4) Privacy
Amplification: steps are taken to ensure that quantization and
reconciliation may not enable an eavesdropper to identify the
agreed upon key due to low entropy or a leakage.



As discussed earlier, RSSI SKE can in certain scenarios
suffer from prolonged construction times due to inadequate
variation in the RSSI values, which impacts the entropy when
quantized [5]. This can be experienced in situations where the
sensors involved in the secret key extraction process remain
stationary, which leads to low variation of RSSI values. This
can have a serious negative impact on the satisfaction and
security levels provided to end users, including significantly
prolonged construction times, which refers to the time taken to
generate and agree upon the key. To alleviate this issue, in the
past, several contributions have been proposed, focusing on
areas such as increasing the secret key strength and reducing
the construction time. Strength and construction time can be
at odds with one another as improvements to one come at
the cost of another. However, recent works have proposed
various modifications and improvements to individual stages
of RSSI SKE that do not require this trade off. For example,
[6] has improved the reconciliation stage by utilising Reed-
Solomon error correction codes. The authors of [7] have used
a virtual group to synthesis RSSI between more than two
sensors, enabling the extraction of a greater number of bits
due to the additional sources provided by the virtual group. In
[8], the authors presented a multilevel quantization function
in which the levels are determined based on the Nakagami-m
channel model which allows for the optimal level selection.

Our proposal differs from the above works as it does not
propose any changes to the stages, such as the application of
Reed-Solomon error correction codes [6]. Whilst Smartphones
may be equipped with multiple sensors there currently does
not exist any functionality to hop between antennas as required
by [9]. Rather, it is a strategy that can be used to speed
up the process of generating and agreeing on a symmetric
key between wireless sensors that are constrained by both the
available hardware and software functionalities.

MARS aims to increase the amount of entropy present
within the quantized bits to achieve shorter construction times.
This can especially be beneficial in emergency situations (e.g.,
road accidents and emergency department cases) where the
time spent without functional body sensors should be signifi-
cantly minimised. MARS can achieve this aim by stimulating
the RSSI values which in turn will increase the entropy of
the quantized bits. This is made possible because MARS
requires that one of the sensors used is mobile, referring to the
sensors ability to be picked up and moved such as a mobile
phone. Due to such a requirement it is therefore possible to
exploit the influence that movement can have on RSSI and
generate stimulated values which when quantized shall have
high levels of entropy. MARS focuses on the transmitting
probes, quantized stage of an RSSI SKE as any improvement
witnessed here will propagate down into the other stages of
the SKE process. MARS will prompt the user, such as a
nurse or a doctor, to perform a gesture during the transmitting
probes stages as this is when RSSI is being measured. The
gesture to be recommended for the user to perform will be
the one that improves upon the entropy of the quantized bits
while remaining easy for the typical level motion a person is

capable of. The gesture recommended could range from one
of the following; (i) Figure Eight, (ii) Shaking (Light), (iii)
Shaking (Heavy), (iv) Tilting, (v) Holding (Typical Use), and
(vi) Moving Towards & Away. Each of these gestures has been
evaluated within Section III.

III. PERFORMANCE EVALUATION

To determine if MARS improves upon the status quo we
have designed experiments that will highlight any improve-
ments within the quantization phase. We will also explore the
acceleration forces exerted on the mobile device by the user.
By investigating the impact of MARS on RSSI measurements
and the quantization of such data we can accurately determine
the improvements to the entire process. Moreover, analysing
motion sensor data will provide the necessary information to
understand the trade off involved with the different gestures.

A. Evaluation Metrics

To evaluate the effectiveness of MARS we have opted to
use the intermediate data from the quantization phase of the
RSSI SKE. The data collected from this phase of the scheme
provides insight into how non-stationary gestures perform
against the stationary gesture in addition to their performance
relative to one another. Insight from the quantization phase is
provided by the number of bits quantized which will help
determine which gestures reject the least number of RSSI
readings, fewer rejections the better. The entropy of quantized
bits is also extracted from the quantization phase of the RSSI
readings, as it highlights the randomness of the sequence
of bits. High entropy leads to an increase in the number
of secret bits, therefore reducing the wait time. Besides the
quantized output our evaluation will also attempt to understand
the cost a gesture incurs as some gestures evaluated can be
described as difficult to perform compared to others due to
the required fast and wider motion to perform the gesture
correctly. Therefore, by utilising the motion sensors built
into the Smartphone we can evaluate each gesture’s cost by
calculating the magnitude of the motion data. By doing so we
can determine which gesture has an appropriate trade-off with
regards to performance and cost.

B. Evaluation Setup

In order to conduct the evaluation outlined above we need to
setup an easily repeatable experiment on physical hardware as
this is the easiest way to capture both RSSI and motion sensor
readings. To achieve this, we used the Texas Instruments (TI)
Launchpad CC26x2r1 as this is a development kit that in-
cludes support for various communication standards including
Bluetooth Low Energy (BLE). This device was configured
to broadcast a packet every 20 ms via BLE so that RSSI
values could be measured. This device acted as a stationary
device that would be worn by a user. As for the mobile
device, a Google Pixel 3a Android Smartphone was used and
was running a bespoke application, developed by us, capable
of measuring RSSI from the packets the TI Launchpad was



transmitting in addition to collecting motion sensor data from
the onboard accelerometer.

This setup enabled the collection of RSSI data and motion
sensor data that have been used within the evaluation of
MARS. For this experiment we have explored the following
gestures; figure-eight, shaking (light), shaking (heavy), tilting,
holding (typical usage) and moving towards & away. Each
gesture was repeated 10 times to ensure that our results are
reproducible. Every attempt has been made to ensure each
gesture is performed in similar manner between repetitions.

C. Evaluation Results Analysis

Figure 1 shows the RSSI values captured from a typical
experiment performed with four gestures; Stationary, Shaking
(Heavy), Figure Eight and Moving Towards & Away. The
figure demonstrates that Stationary has minimal variation be-
tween measurements, whereas other gestures such as Shaking
(Heavy) have significant variation throughout. Not only do
all non-stationary gestures have an important increase in the
variance of the measured RSSI values they also exhibit an
increase in range allowing for more unique values to occur as
opposed to the same few values being repeated. This can have
significant impact on the amount of data extracted during the
quantization stage.

Fig. 1: RSSI data captured from stationary and non-stationary
gestures over a single 30 second experiment

Table I summarises what is evident across all gestures and
repetitions of experiments with almost all gestures produc-
ing significant increases in metrics such as range, standard
deviation and variance. This table includes also the average
number of quantized bits from RSSI measurements captured
during experiments, which can determine actual performance
gains within the early stages of an RSSI reconciliation scheme
following our strategy. Moving Towards & Away when com-
pared to Stationary exhibits significant improvements with
an increase of almost 200 quantized bits. Figure Eight also
manages to increase the number of quantized bits generated
however it did not perform similar to Moving Towards &
Away. This could be due to the drop in metrics such as range,
standard deviation and variance. This is also experienced with
other gestures such as Shaking (Light) and Tilting which
both make minor increases to average quantized bits when
compared to a Stationary gesture.

Finally, Holding (Typical Use) and Shaking (Heavy) have
demonstrably worse performance when compared to the Sta-

Fig. 2: Quantized bits extracted from collected RSSI data
across multiple gestures

Fig. 3: Entropy of the quantized bits collected from the RSSI
readings

tionary gesture on the basis that they produce fewer quantized
bits. However, in subsequent steps they may perform better
than the Stationary gesture as the entropy of their quantization
is higher and, therefore, they would experience fewer rejec-
tions requiring a smaller amount of quantized bits to proceed
to the next phase. This is shown in Figure 2 where Stationary
gesture contains large continuous blocks of the same bit value,
whereas Shaking (Heavy) contains fewer bits which are not
in large continuous blocks and therefore less likely to be
rejected later within a scheme. This is also supported by the
entropy calculated from the quantized bits presented in Figure
3. The entropy can be used to measure the predictability of
the sequence of bits that has been quantized, the lower the
value the easier it is to predict the sequence of quantized
bits, whereas higher values imply it is harder to predict and
therefore more resilient to security attacks.

|v| =
√
v2x + v2y + v2z (1)

We must also analyse the associated cost of performing
one of these gestures as we cannot simply recommend the
gesture that yields the greatest uplift in quantization without
considering its impact on users in terms of physical exertion.
Using the linear acceleration sensor on board the Android
Smartphone we can measure the acceleration experienced by
the device without the impact of gravity. In addition, we will
calculate the magnitude using Equation 1 to find out the total



Min Mean Max Range Standard Variance Average
Deviation Quantized Bits

Stationary -46.00 -40.09 -36.67 9.33 2.89 8.38 312
Figure Eight -52.67 -37.72 -30.33 22.33 3.63 13.19 423
Shaking (Light) -68.67 -44.98 -39.33 29.33 4.26 19.31 321
Shaking (Heavy) -74.33 -47.55 -39.67 34.67 4.61 21.47 290
Tilting -65.67 -45.99 -40.67 25.00 3.55 13.29 316
Holding (Typical Use) -53.00 -46.24 -42.33 10.67 1.95 4.20 295
Moving Towards & Away -74.33 -40.68 -27.67 46.67 7.57 57.46 509

TABLE I: Statistics of RSSI values obtained during the MARS experiments

Fig. 4: Magnitude of linear acceleration during the experiments

Min Mean Max Standard Variance
Deviation

Stationary 0.00 0.02 0.10 0.01 0.00
Figure Eight 0.07 1.32 3.06 0.50 0.25
Shaking (Light) 0.31 4.49 15.43 2.39 5.75
Shaking (Heavy) 0.21 19.19 54.47 10.50 110.47
Tilting 0.06 1.93 7.92 1.30 1.70
Holding 0.02 0.42 3.13 0.35 0.12
(Typical Use)
Moving Towards 0.06 1.05 2.56 0.45 0.21
& Away

TABLE II: Statistics of motion sensor data obtained during
the MARS experiments

acceleration exerted on the device across the three axes x, y,
and z where v refers to the current sampling of the linear
acceleration data. Figure 4 shows the magnitude of linear
acceleration across all axes. This figure demonstrates that
Shaking (Heavy) has a significant amount of energy exerted
by the user which can make performing this gesture harder for
individuals with restricted motion. Moreover, this gesture may
cause repetitive strain injuries (RSI) if performed on a regular
and prolonged basis as stated in [10]. Other gestures, such as
Figure Eight and Moving Towards & Away, when compared
to Shaking (Heavy) have a smaller magnitude, making them
easier to perform by the user with a reduced risk to RSI.

Table II presents several key statistical metrics to enable
understanding how demanding each gesture can be. In the case
of Shaking (Heavy) and Shaking (Light) it is clear that they
are both extreme outliers when compared to the other gestures
evaluated. They are both demanding gestures to perform due to
the constant back and forth motion whereas the other gestures
have very limited and slow motion.

IV. CONCLUSION

We proposed a new strategy to shorten the secret key
construction time in any RSSI secret key extraction (SKE)
method. Our strategy requires that one of the two devices
involved in the SKE process be mobile. It is thus the movement
that dramatically improves the entropy of the quantization
of measured RSSI values. This increase of entropy observed
within the quantization stage of the SKE process will benefit
subsequent stages and, therefore, allow for shorter wait times
endured by the user when constructing the key. The performed
experiments highlighted that all the evaluated gestures provide
significant improvement to the entropy of the quantized bits
compared to the stationary case. However, either moving
towards & away or figure eight is an easy recommendation
as they are both top performers in entropy and the number
of quantized bits. Moreover, our experiments’ results show
that these gestures are some of the least demanding gestures
performed by the user. In our future work, we will explore
the RSSI SKE process in full enabling insight into the im-
provements experienced throughout as opposed to only the
quantization phase.
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