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Abstract—This paper introduces an original multi destination
path planning approach for Unmanned Aerial Vehicles (UAVs)
named MQTPP (Multi Q-Table Path Planning). MQTPP aims
to reduce the computational burden of cyclical/continuous path
planning through a Q-learning planning process whilst overcom-
ing the fixed path origin problem. The preliminary performance
evaluation results indicate that MQTPP performs well for longer
paths, and allows for more efficient re-planning should mission
objectives or environmental topography change.

Index Terms—UAVs, Path Planning, Q-learning

I. INTRODUCTION

The diversity of problems to which advances in Unmanned
Aerial Vehicle (UAV) research may be applied drives signifi-
cant interest in the UAV research space. As UAV technology
progresses further from its original military origins, burgeon-
ing commercial and consumer markets display a clear interest
in the use of UAVs in scenarios such as: consumer delivery [1],
communications [2] and agricultural processes [3]. Tied with
the drive for carbon-neutral infrastructure unmanned aerial
service platforms prospectively offer the capability of fulfilling
roles once handled solely by larger, heavier, and less energy-
efficient vehicles, whilst also gaining the significant associated
cost reductions in physical manpower and infrastructure for
their individual market gains.

The effective path planning of UAVs raises new challenges
in control and planning design, with traditional movement
planning constraints becoming irrelevant within a UAV’s
three-dimensional operational space. However, the associated
increases in freedom of movement are shared within the
environment space by all associated operational objects, re-
sulting in greater challenges in ensuring UAV coordination and
collision free movement. In general, we distinguish between
two variants of the UAV path planning problem: a lower-level
individual UAV path planning problem, focused on the gen-
eration of an obstacle-free path between to distinct locations
within an environment, and a higher-level collective planning
problem, which is a variation on existing Travelling Salesman
and Vehicle Routing Problems focused on the efficient use of a
fleet of UAVs to achieve multiple objectives spread within the
environment. Solution approaches to the collective planning
problem vary greatly [4], requiring consideration of wider
mission constraints and optimisation objectives. In this paper,
we consider only the individual UAV path planning problem.

A typical path planning process is dependent upon a solid
contextual understanding of the operational environment, en-
abling a complete path to be planned from start to finish as a
single planning event. Conversely, many UAV usage scenarios
feature potentially unanticipated changes in target destination
and/or the potential for the presence, location, size, or shape
of environmental obstacles to change during operation. Such
dynamic environments present a planning problem that cannot
be defined as a single planning event, because the availability
of planned paths may change periodically during flight path
execution. This does not, however, mean a planning process
cannot distinguish between what is static and known and what
may be dynamic and unknown. Knowledge gained from static
and known objects and obstacles can be considered fixed
over time, influencing a planning process beyond a single
planning event. Introducing a hybridised off-line and on-line
planning approach, [5] initially plans core paths using a static
representation of the environment, whilst in-flight a UAV may
re-evaluate the core path whenever a dynamic or unknown
obstacle is encountered. Thus, the path planning becomes a
recurring process based upon the in-flight proximal interpre-
tation of a UAV’s environment. Such continuous planning
greatly increases the computational processing power required
for path planning, which presents a valid concern due to the
limited nature of UAVs’ computational and battery power.

II. Q-LEARNING BASED PATH PLANNING: OVERVIEW AND
LIMITATIONS

Following a traditional reinforcement learning based Q-
learning methodology [6], the process of learning is conducted
upon an environment containing a single origin and single tar-
get location. Given a sufficiently populated Q-table (improved
through learning iterations) an optimal path can be planned
between the two locations as illustrated in Fig. 1.
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Fig. 1. Single Q-table path generation.



Where a sufficient level of exploration of the environment
space exists, a single Q-table can generate a path between any
given environment location and its learning origin, without
the need to relearn the environment. However, there exists a
problem with a single Q-table approach: because all learning
is focused through a single environment point, so too must
all path planning. Thus, if such an approach is extended to
apply to multi-destination problems, all planned paths must
transit through the learning origin. This limitation significantly
reduces the applicability of single Q-table based planning
approaches to collective UAV routing problems. Seeking to
overcome this multi-destination problem, [7] first optimises
a visitation sequence for target destinations, before apply-
ing the Q-learning planning process to each destination pair
within that visitation sequence. This allows for point-to-point
planning at the expense of computational power and time,
with each destination pair requiring an individual Q-learning
training process to derive a path solution.

In this paper, we introduce an original multi-destination
path planning approach named MQTPP (Multi Q-Table Path
Planning). The approach targets both the efficiency concerns
of cyclical/continuous path planning and the fixed path origin
problem, and will be the focus of the remainder of this paper.

III. MULTIPLE Q-TABLE PATH PLANNING

The MQTPP approach provides the ability to reference the
knowledge of multiple individual Q-tables, with each table
pertaining to the same environment space, upon which an
individual learning process has been conducted. However, the
environment perspective for each learning process is con-
trasted. The main phases of MQTPP are described below.

A. Initial Learning Process

To deliver a plannable environment knowledge base MQTPP
conducts four separate reinforcement learning processes upon
a single grid-based environment. We assume that during the
process of learning the environment remains static in nature,
consisting of predefined rigid infrastructure i.e., buildings.
Upon this environment four separate Q-learning instances are
deployed, targeting the NW (North West), NE (North East),
SE (South East), and SW (South West) cell of the grid,
each forming a separate learning origin. This results in the
generation of four individual Q-tables, each with a varying
learned perspective of the environment based on their NW,
NE, SE, SW cell origin.

1) Exploration vs. Exploitation: Numerous approaches
seek to develop an exploration vs. exploitation relationship
over the lifetime of the learning process, such as random
walks, exponential decay and reward based decay [8]. How-
ever, the concept of ¢ used as a tuneable hyper-parameter
influencing the agent’s learning is key to environment ex-
ploration. One of the most common exploration strategies
is e-greedy [9] which offers a simplistic balance between
choosing the current best Q-table value, whilst selecting a
random action with some small probabilistic frequency e.
Whilst a Q-table that can exploit the given environment to

generate an optimal path is desirable, given the path planning
nature of this problem, we must also consider the complete
exploration of the environment space as a critical component in
allowing multiple paths to be created across the environment.
Therefore, we propose an approach that combines both Q-
masking and agent location randomisation (ALR). Q-masking
seeks to limit early termination of learning episodes through
masking the exploitation possibilities of the Q-table when in
close proximity to an obstacle, aiming to aid exploration at
the edges of an environment grid space. ALR randomises the
starting location of the agent for each learning episode, thus
seeking to avoid learning “black spots” within the environment
grid space, often formed when an agent converges upon an
optimal path with limited environment exploration.

B. Path Generation

The use of multiple Q-tables allows opposing NW, NE,
SE, SW paths to be formed from the differing environment
perspectives. Each path consists of a series of grid locations
from target to destination. The paths from opposing Q-tables
naturally intersect when considered as operating within a
single environment. The natural creation of path intersection
points illustrated in Fig.2, facilitates the merging of paths on
collision free routes between multiple environment locations.
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Fig. 2. Multi Q-table path generation

Whilst MQTPP does not guarantee an optimal route (see
the red dashed line in Fig.2), the use of four learning origins
allows the evaluation of multiple collision free paths. In
contrast to single Q-table use, freedom is now given to plan
paths between two environment locations without revisiting a
learning origin.

Considering a wider environment picture MQTPP also offers
a structure of distinct navigation points. The curse of dimen-
sionality within Q-learning’s action and state space coined
by Bellman [10], ultimately applies a limit to the overall
effective dimensions of the environment space. Thus, MQTPP
environment construction presents the future ability to conjoin
multiple environment cells at points of learning origin, such
that UAVs can possess or share only the subsections of Q-table
environment knowledge they require for an operational task.

IV. PERFORMANCE EVALUATION

To evaluate the performance of MQTPP we will compare
it against an existing path planning algorithm (A*) in terms
of the perceived path generation time across a standardised
simulated environment.



A. Evaluation Metrics

The evaluation metric chosen for MQTPP is based upon a
continuous planning scenario whereby after each step taken
within an environment, a UAV would be required to evaluate
its current position. Path re-planning would be required if
an obstacle blocks the UAVs current path. The worst-case
scenario of such a situation would require a UAV to re-
plan its path after every step taken. Therefore, this is the
assumed testing metric for comparison of MQTPP against the
A* algorithm. Given the focus on the limited computational
power available to a UAV, the MQTPP learning process is
not directly considered for comparison with the A* algo-
rithm. It is recognised, however, that if a single A* planning
episode was compared directly against the combined MQTPP
learning process and planning episode, A* would significantly
outperform MQTPP due to the computational burden of the
required learning process. Thus the MQTPP learning process
is considered as an off-line event completed a priori, with this
evaluation considering a UAV’s on-line planning abilities.

We focus on two key evaluation experiments, firstly a
direct comparison between MQTPP and A*, evaluating the
comparative path planning computation times over a single
journey within the environment space. Secondly, a comparison
of computational time where an increasing number of random
locations are allocated to the UAV.

B. Evaluation Setup

The evaluated UAV path planning problem is defined as a
2D stochastic maze environment of grid size 34x34 within
which the Q-learning agent can transit through. The maze
defines the environment through three reward states. When
the Q-learning agent transitions in to free, obstacle or goal
space, a reward of -1, -100, or 200 is issued respectively.
Movement of the Q-learning agent within the environment
is restricted to a Von Neumann neighbourhood, meaning it
maintains only four directions of freedom i.e., North, East,
South and West. The MQTPP relies solely on its four Q-
tables for path planning after the initial learning process has
concluded, Whereas the A* algorithm maintains continuous
access to a static representation of the environment.

C. Evaluation Results Analysis

1) O-masking Comparison: The principal of Q-table is
derived from the concept of UAVs being required to work
in real world dynamic environments where it is envisaged that
LiDAR or ultrasonic [11] sensors would offer a perception
mechanism for a UAV’s immediate environment. Therefore,
when an obstacle is detected in close proximity, Q-table
masking serves to block any action within the Q-table that
could cause a collision, thus forcing action selection to be
made from the remaining unmasked actions within the Q-table.

When masking is applied within the learning process two
distinct outcomes can be observed, Fig.3 illustrates a signif-
icant increase in the path success rate for epsilon values ¢
<0.75. Similarly, Fig.4 demonstrates the effective reduction
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Fig. 3. Q-masking Path Success Rate - 10000 episodes

in the obstacle collision rate when Q-table masking is intro-
duced. Masking reduces the collision rate to zero, in doing
so this initially leads to an increase in timeout steps exceeded
state. However, the action of keeping the agent within the
environment for an increased number of steps significantly
reduces the number of episodes required to reach the target
goal by 60%. Whilst the rate at which the agents learn from
the environment had been significantly improved, Fig.3 still
shows a lack of completeness with non of the exploration rates
applied achieving 100% path success.

2) ALR Comparison: The combination of both a ran-
domised starting location and Q-table masking for collision
avoidance offers further improvement in learning ability. Ap-
plying both approaches together in Fig. 5, along with an
arbitrary exploration value € = 0.9 (10% exploration rate),
accelerates the stabilisation of the average learning rate by
30%, compared to when Q-table masking is solely applied in
Fig. 3, with exploration achieving 100% path success.

3) Computational Comparisons: To compare the computa-
tional efficiency of MQTPP against A*, a single UAV journey
is selected from environment location (1,1) to (32,32), with
the UAV returning to its base location (1,1). A direct path
between the locations encounters four obstacles within the
environment. After each path step the UAV must instigate
the path planning process to generate its next location step
within the environment, the average process time for each
MQTPP and A* planning procedure is recorded in Fig.6.
The planned path consists of a total 124 steps across the
environment, 62 for each path leg. During this period MQTPP
maintains a near static path calculation time for all steps
taken. In contrast the A* path calculation time decreases as
it steps over the environment moving closer to the target
location. To evaluate MQTPP in a multi-location scenario we
compare an increasing number of locations (1-20) based on
the Manhattan distance separation between them. Where the
location separation exceeds 20 steps MQTPP serves to reduce
overall path processing time. Whilst when the Manhattan
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distance between locations is less than 20 steps the A*
algorithm offers a more efficient processing solution Fig7.
Significantly, whilst showing A* is dominant when searching
in close proximity to a target (grid environment<10x10) as the
environment search space for A* expands so to does the path
calculation time. Thus, for environments where paths traverse
greater distances MQTPP demonstrates a noteworthy reduction
in path calculation time.
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Fig. 6. Path calculation time comparison: MQTPP vs. A*

V. CONCLUSION

This paper introduced an original path planning method for
UAVs named MQTPP. Compared to A*, MQTPP offloads its
computational burden to its learning process. Once learning
is complete, MQTPP efficiently references multiple Q-table
knowledge for path planning tasks. In contrast, A* becomes
computationally burdened as the environment space grows
and repetitive path planning tasks are encountered. The future
of MQTPP offers the scope to mesh the wider environment,
whilst improving the Q-masking metric to influence Q-value

Manhattan Distance > 20 steps

g — MQTPP
< 0.8
o *
B A
< o6
S -
=
S o4
=
8
5 0.2
&£ —
123456 7 8 910111213141516 17 18 19 20
No. Destinations
Manhattan Distance < 20 steps
0.4
B — MQTPP
& ] o
g o3
=
<
=
B 02
=
8
£ 0.1
&£

1 2 3 45 6 7 8 9 1011121314 1516 17 18 19 20
No. Destinations

Fi

g. 7. Multi-destination Location Distance Comparison

selection based upon varying proximity to obstacles. As UAV
processing power is limited, MQTPP’s use of a prior learn-
ing step to offer lightweight and efficient re-planning offers
significant potential for use in UAV path planning problems.
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