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Thesis abstract  

Parrots are one of the most threatened bird groups worldwide. The Ecuadorian 

Amazon parrot, Amazona lilacina was described as a full species in 2014 however, 

details on its ecology and status were missing. This research aimed to gather and 

collate information using natural and social science methods, to further our knowledge 

and provide an evidence base to inform conservation action. The five key areas of 

research were 1) conservation status, 2) species distribution, 3) fine-scale habitat 

preferences, 4) roosting dynamics, and 5) human interactions with the species. I 

conducted field surveys throughout coastal Ecuador to gather observations of A. 

lilacina and to locate communal roosting grounds. I conducted surveys of these 

roosting grounds and estimate the global population at 741-1,090 birds. Compared to 

data from 20 years ago, I suggest a population decline of 60%, meaning that A. lilacina 

fulfils the criteria for Critically Endangered on the IUCN Red List. I developed 

community questionnaires to record local peoples’ observations of A. lilacina and used 

responses from >400 people, combined with my own observations, to model 

distribution. From this I predict that 17,772 km² of suitable habitat remains. Within this 

area, I assessed fine-scale forest characteristics over 35,800 m² and identified 36 tree 

species that A. lilacina uses. I developed a roost survey protocol to assess fluctuation 

in roost size and composition for one subpopulation. This method is often used to 

estimate the reproductive output of Amazon parrot populations, however my results 

from surveys over 36 consecutive months, suggest this is not possible and highlight a 

change in roosting dynamics since 20 years ago. I developed community interview 

questions, to understand local peoples’ experiences and attitudes towards parrots, 

trapping and pet keeping, and results from >100 people suggest that parrot trapping 

and pet keeping occurs throughout the species’ range. I developed a model to predict 
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the distribution of pet parrots, based on wild parrot abundance and human 

accessibility, and combined this with interview responses to assess the risk of parrot 

trapping. This highlighted that parrots in the south of the range are at greater risk, and 

I provide recommendations for development and continuation of support for 

conservation efforts with local communities. 

 

 

Figure 1: The Ecuadorian Amazon parrot Amazona lilacina in a nest cavity in the Cerro 

Blanco Protected Forest, Guayas Province, Ecuador. 
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Chapter One: Introduction and aims   

One million animal and plant species are threatened with extinction from human 

activities (Brondizio et al. 2019; Tollefson 2019). The current extinction rate is tens to 

hundreds of times higher than average for the past ten million years (Barnosky 2009; 

Ceballos et al. 2015; Brondizio et al. 2019). According to the IUCN Red List, of the 

11,158 bird species described and evaluated, 14% are threatened with extinction 

(BirdLife International 2020a). This is a lower proportion than for other animals groups, 

perhaps because birds are more adaptable to environmental change due to their ability 

have large home ranges and travel long distances (Donald et al. 2010). Despite this, 

200 bird species have become extinct during the last 400 years and this extinction rate 

shows no signs of slowing (Donald et al. 2010). In the last 20 years, the number of 

birds at the highest levels of extinction risk - listed as Endangered or Critically 

Endangered by the IUCN Red List - has increased from 503 to 684 (BirdLife 

International 2020a). Extinction rates for birds would be higher if it were not for 

successful conservation efforts. A review of Critically Endangered bird species with 

populations of <200 individuals and population declines of >80%, showed that over 

half would have become extinct between 1994 and 2004 in the absence of 

conservation interventions to mitigate specific threats (Butchart et al. 2006). 

Conservation interventions that prevented certain or a very high chance of extinction 

included control of exotic predators (e.g. rats and cats), intense captive breeding and 

reintroduction, nest management (nest guarding, clutch and brood fostering, provision 

of nest boxes), habitat protection (national park creation, land purchase and fencing) 

and habitat restoration (reduction of grazing or chemical use) (Butchart et al. 2006).  

One of the largest and most threatened bird families is the parrots, Psittaciformes 

(Marsden & Royle 2015). They have a higher extinction risk than other comparable 
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bird groups and 31% are categorised as threatened or extinct (Olah et al. 2016; 

BirdLife International 2020a). Over half of all parrot species are in decline due to 

anthropogenic threats, with the most frequent being agriculture, hunting, trapping, and 

logging (Olah et al. 2016). A recent study which assessed information for 192 

Neotropical parrot populations found that since 2001, a declining trend was reported 

for 38%, and that information from which to assess population trend was missing for 

32% (Berkunsky et al. 2017). The main threats were related to human activities, with 

72% of populations threatened by agriculture, 68% effected by the pet trade, 55% 

threatened by logging, and 55% by human intrusion or disturbance (Berkunsky et al. 

2017). The threat most closely associated with population decline, which is affecting 

53% of populations, is capture for the local pet trade (Berkunsky et al. 2017). 

Worryingly, this study also found that conservation management, which could be in 

the form of just one of the following; nest box provision, nest and/or roost surveillance, 

habitat restoration, or improvement of natural cavities, was in place for less than 20% 

of all parrot populations (Berkunsky et al. 2017). Considering that 72% of populations 

are threatened by agriculture alone, conservation management for less than 20% of 

populations is insufficient to ensure parrots’ survival.  

Two of the bird species saved from extinction by conservation interventions between 

1994 and 2004 were parrots; the Puerto Rican Amazon Amazona vittata and the Echo 

Parakeet Psittacula eques (Butchart et al. 2006). At the time A. vittata faced threats of 

habitat loss, hunting for food and pest control, trapping for cage-bird trade, and nest 

predation and competition, but during the ten-year period the use of artificial nest-sites, 

control of nest predators and competitors, captive breeding and reintroduction, and 

creation of protected areas, prevented it from becoming extinct (Butchart et al. 2006). 

Psittacula eques was threatened by habitat destruction and degradation owing to 
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cyclones and introduced plants, introduced predators and food/nest-site competitors, 

but again extinction was prevented through extensive captive breeding and habitat 

management (Butchart et al. 2006). The Conservation Evidence website 

(conservationevidence.com) currently lists 17 actions that have been used to manage 

parrot populations. Unfortunately, 15 of these are considered to have unknown 

effectiveness based on limited evidence. The two actions that are suggested to be 

beneficial to parrot conservation are; the use of legislative regulation to protect wild 

populations, and translocation. One example shows that population densities of the 

Yellow-crested Cockatoo Cacatua sulphurea citrinocristata increased between 1992 

and 2002 following a ban on trade in wild caught parrots (Cahill et al. 2006) and 

another showed that the number of parrot chicks taken from nests reduced after 

protective legislation in Africa, Asia and Australasia (Pain et al. 2006). Regarding 

parrot translocation for conservation, three studies of two programmes showed that 

translocation could result in successful establishment of populations and colonisation 

of new areas (Williams et al. 2020). The lack of evidence for the effectiveness of other 

actions listed, for example education programmes, community engagement, 

supplemental feeding, and artificial nest boxes, highlights the need for conservation 

interventions to be designed in a way that allows ongoing monitoring and evaluation.  

The level of extinction risk to parrots varies depending on certain social factors and 

ecological characteristics (Olah et al. 2016). For instance, species whose range 

overlaps with countries where a greater proportion of the human population lives in 

urban areas, are at higher risk, and endemic parrots, or those restricted to a single 

country, are disproportionately likely to become extinct (Olah et al. 2016). Parrots with 

a larger body size and longer generation times, such as those in the genus Amazona, 

are also more likely to be classified as threatened (Forshaw & Knight 2010; Olah et al. 
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2016). Today 21 of the 36 species within this genus are listed as threatened or extinct 

in the wild (Olah et al. 2016; BirdLife International 2020a). As mentioned already, the 

threat most closely linked with population decline is capture for the local pet trade, 

which impacts some species more than others, because humans have a preference 

for which species they like to keep as pets (Berkunsky et al. 2017; Romero-Vidal et al. 

2020). For example species within the genus Amazona are favoured due to their 

attractiveness and ability to mimic the human voice, and as a consequence they face 

increased demand and sell locally for a higher market value, factors which arguably 

increase their risk of extinction (Tella & Hiraldo 2014; Romero-Vidal et al. 2020). The 

method of capture can also affect the impact of trapping on a population. Results of 

50 year simulations for Grey Parrot Psittacus erithacus populations, suggested that 

the inclusion of just a small number of adults in the capture ‘harvest’ had a far greater 

negative impact on the population than a similar number of juveniles (Valle et al. 2018). 

Furthermore, that irregular spikes in the number of birds trapped are more likely to be 

detrimental to populations than steady annual harvests, therefore if trade is going to 

continue, sustainably, it requires information and quotas regarding not only the number 

but also the demography of birds that are being trapped (Valle et al. 2018). 

The study species for this thesis, Amazona lilacina, formally A. autumnalis lilacina, 

was brought to the attention of the European zoological community in the 1980’s, when 

customs staff at European airports made large seizures of wild caught birds. In 1982 

approximately 100 Amazons were confiscated in England, and in 1983 approximately 

50 were confiscated in Germany (Pilgrim 2000). The Convention on International 

Trade in Endangered Species of Wild Fauna and Flora (CITES) is an international 

agreement set up to ensure that trade does not threaten the survival of species. 

Although A. lilacina is not specifically listed by CITES, due to a change in taxonomic 
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nomenclature, all Psittaciformes have been included on CITES appendix II since 1981. 

Ecuador was one of the original countries to sign up to this agreement in 1975, 

furthermore in 1983 the country made the export of all indigenous wildlife illegal 

(Ecuadorian National Assembly 2017). Therefore, all export or import of wild caught 

A. lilacina is prohibited. Publicly available CITES documents report the scale of annual 

A. lilacina exports from Ecuador since 1981. Exports of live A. lilacina rose between 

1981–1984, peaking at approximately 3,000 in 1984, before dropping off almost 

completely (CITES 1986). The vast majority of birds were exported to the USA who 

imported 2,780 birds in 1984 alone (CITES 1986). At this time, concern was raised 

about the extinction risk of A. lilacina (then A. a. lilacina) due to a significant population 

decline resulting from habitat destruction (CITES 1986). Further reports from the 

United Nations Environment Programme World Conservation Monitoring Centre show 

that between 1981 and 2009, 2,871 A. lilacina were imported by the USA with trade 

halting in 1994, 150 were imported by Japan in 1985, and 254 birds were imported by 

Europe with trade halting in 1988 (UNEP-WCMC 2011). At least 101 of the confiscated 

wild caught birds entering Europe were distributed between multiple zoological 

collections, including Chester Zoo, and went on to form the basis of the European 

Association of Zoos and Aquaria Ex situ Population (EEP) managed by Dr Mark 

Pilgrim since 1993 with assistance from myself since 2012 (Pilgrim 2000). The EEP 

currently consists of 62 birds distributed between 24 participating collections, and 

represents the only coordinated captive breeding programme for this species 

worldwide. It is however likely, that more birds exist in the private trade in Europe and 

the USA, and in rescue centres and zoological collections in Ecuador.  

The taxonomy of A. lilacina / A. a. lilacina had been questioned for a number of years, 

and the arrival of these birds into Europe posed a unique opportunity to investigate 
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this further. Originally, A. lilacina was deemed a sub-species or race of the Amazona 

autumnalis group, along with A. autumnalis autumnalis, A. a. salvini, and A. a. 

diadema, known collectively as Red-lored Amazons (Figure 1). The group’s original 

distribution was believed to stem from the eastern slopes of Mexico, through eastern 

Nicaragua, Costa Rica, Venezuela, to western Colombia and western Ecuador, with A. 

a. diadema occurring in a geographically isolated population in north-western Brazil 

(Forshaw 1989). Investigation into the morphology, genetics and behaviour of the four 

different sub-species through detailed study of captive birds and museum specimens, 

revealed that A. a. lilacina was in fact distinct, and in 2014 it was classified as a full 

species by BirdLife International (Pilgrim 2010; del Hoyo & Collar 2014).  

 

Figure 1: A. a lilacina was originally believed to be a sub-species or race of the 

Amazona autumnalis group along with A. a. autumnalis, A. a. salvini, and A. a. 

diadema. Figure courtesy of Dr Mark Pilgrim (Juniper & Parr 1998; Pilgrim 2010). 

The reclassification of A. lilacina highlighted a need for research into the species in 

situ status, initially to determine the overall extinction risk. Whilst listed as part of the 
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A. autumnalis group, Red-lored Amazons had (and still have) a collective IUCN Red 

List categorisation of Least Concern (BirdLife International 2018a). However, it was 

already known that the lilacina sub-species was likely to have a very small population 

size, estimated at just 400-600 birds (Juniper & Parr 1998) and be threatened by 

deforestation and persecution (Ridgely & Greenfield 2001a). Despite this, detailed 

information on the range, distribution, preferred habitats, behaviour, and specific 

threats was lacking, making it hard to implement effective conservation measures. In 

2012, prior to the start of my PhD research, Chester Zoo (R. Biddle and M. Pilgrim) 

began initial field investigations and communications with Ecuadorian NGOs. We 

conducted roadside surveys for species presence and pilot roost surveys at one well-

known communal roost site. This information, alongside existing historical records of 

trapping and deforestation rates in coastal Ecuador, resulted in the species being listed 

as Endangered by the IUCN Red List in 2016 under criteria C2a(i); a global population 

of less than 2,500 mature individuals and no subpopulation estimated to contain more 

than 250 mature individuals (IUCN 2012; BirdLife International 2018b).  

From initial field surveys and previous literature, A. lilacina is believed to occur in dry 

forest habitats, and be loyal to traditional roost sites that are used by most of the 

individuals occurring in the local area (Berg and Angel 2006, Kunz 1996, Ridgley and 

Greenfield 2001). However, the function of this communal roosting behaviour is 

unclear. It has been shown that other Amazon parrot communal roosts are ten times 

larger when food is more highly dispersed, suggesting that gathering at roost sites 

may help to inform foraging strategy (Salinas-Melgoza et al. 2013). Studies have 

shown for example that parrots are able to minimise intraspecific competition by 

choosing different departure flight paths to their roost mates (Chapman et al. 1989; 

Boyes & Perrin 2009). On the contrary, it is also suggested that when food resources 
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are low, it is energetically favourable for parrots to avoid long displacements to the 

large roosts and find alternative shelters near foraging areas to spend the night 

(Seixas & Mourão 2018). Another common theory is that communal roosting provides 

protection from predators, for example that the flocking behaviour reduces the risk 

from avian predation (Enkerlin-Hoeflich et al. 2006) and the location of the roost site, 

for example on a mangrove island, provides protection from land-based predators 

(Kunz 1996). Either way, if suitable roosting habitat is limited, this is likely to influence 

overall population health. The study of communal roosts has also been used widely to 

monitor long-term trends in population size and structure, from which to infer 

information about a population’s reproductive health. This is particularly useful for 

Amazons that are cryptic and secretive during the day, and therefore may be 

especially hard to observe when nesting (Collar 2000; Enkerlin-Hoeflich et al. 2006). 

In many cases roost size diminishes gradually as the breeding season advances when 

breeders roost in nests, and sharply increases after young fledge and follow their 

parents to the roost site (Dénes et al. 2018). For A. lilacina, it has been shown that 

parental responsibilities during the nesting period may explain fluctuations in the 

number of birds attending the communal roost site. These fluctuations can be used to 

estimate the number of reproductive birds within the population (Berg & Angel 2006). 

Therefore, the study of roosts, through roost surveys, can be extremely useful to 

understand roost function, estimate the size population, and measure reproductive 

health. 

Zoological collections have an obligation to conduct research to inform conservation 

as per the European council directive of 1999, and one of four objectives listed for all 

EAZA members, is to conduct and fund in situ conservation. As an Endangered 

Ecuadorian endemic species, A. lilacina, is a high priority for research to inform 
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conservation planning for its survival. Parrots are notoriously hard to study, they breed 

slowly, have wide ranges, may exhibit unpredictable and cryptic behaviour, and have 

been described as “calculated to defy the scientific investigator” (Collar 2000). 

Consequently, information on population parameters and ecology to support 

conservation status assessments is often missing (Berkunsky et al. 2017). Local 

communities in the rural coastal provinces of Ecuador are closely connected with A. 

lilacina, and it is essential that they are involved with research and conservation 

activities. Throughout this thesis, I refer to A. lilacina as the Ecuadorian Amazon, but 

acknowledge that it is also referred to in English as the Lilacine Amazon.  Neither of 

these common names have Spanish translations that are used in Ecuador - most local 

communities refer to “loro frentirrojo” (Red-lored Amazon), which in English describes 

the A. autumnalis group and includes A. a. salvini in northern Ecuador. To avoid 

confusion, the name A. lilacina  was used in all communication with local communities, 

and photographs were used to confirm identity. For consistent naming of all other 

parrot species, I follow the International Ornithologists Union (IOC) bird name 

nomenclature (Gill et al. 2021).  

My goal for this research was to work in partnership with local communities to 

document a body of knowledge about A. lilacina’s ecology and threats, to inform its 

conservation. My five research aims, with specific objectives are listed below:  

1) Review the conservation status of A. lilacina in order to evidence a comprehensive 

ICUN Red List status assessment:  

i. update the current known Extent of Occurrence and estimate area of daily 

dispersal; 

ii. estimate the global population size;  

iii. determine any change in roost size as an indicator of population trend; 
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iv. quantify the prevalence of pet parrots within the species’ range. 

 

2) Assess the global distribution of A. lilacina through field observations, community 

surveys and species distribution models: 

i. collate all known species locality records, including from our own 

observations, reports from expert ornithologists, and reliable eBird records 

(2010-2020) and use these to build distribution models; 

ii. collect data on local peoples’ experiences and observations of wild A. 

lilacina through structured face-to-face interviews; 

iii. assess community survey data based on different quality filters and use 

these data to build distribution models;  

iv. determine the best performing distribution models built from species records 

and community reports, and compare their outputs in order to direct future 

field investigation. 

 

3) Describe the fine scale habitat characteristics in areas used by A. lilacina: 

i. confirm which tree species are required for feeding, nesting and roosting; 

ii. compare the habitat characteristics between areas used and not used by A. 

lilacina to distinguish key characteristics associated with presence; 

iii. predict the suitability of habitat in an area in which A. lilacina are believed to 

occur but species observations were not collected during this study. 
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4) Assess the attendance and composition of A. lilacina at a well-known roost site to 

understand roosting dynamics; 

i. estimate the size of the subpopulation from the maximum number of birds 

observed during roost surveys;  

ii. determine if there is a difference between the number of birds observed 

during morning and afternoon surveys, and which is likely to give a more 

reliable representation of roost size and seasonable fluctuation; 

iii. assess whether roost surveys can be used as an indicator of population 

reproductive health. 

 

5) Identify areas where A. lilacina are most at risk from trapping and pet keeping, and 

understand the frequency and drivers of these behaviours, to inform conservation 

action planning;  

i. conduct surveys across coastal Ecuador to locate communities with pet 

parrots; 

ii. use the locations of known pet parrots, to predict the distribution of pets 

throughout the species range, using variables related to parrot availability, 

opportunity and demand;  

iii. interview local people from communities where pet parrots are present, to 

quantify the level of parrot ownership, trapping and the attitudes towards 

these behaviours; 

iv. develop a trapping pressure index based on model predictions, locally 

reported incidence and attitudes towards parrot capture and ownership, to 

highlight areas of possible increased extinction risk.  
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Chapter Two: Conservation status of the recently 

described Amazona lilacina.  

Biddle R, Solis-Ponce I, Cun P, Tollington S, Jones M, Marsden S, Devenish C, 

Horstman E, Berg K, Pilgrim M. 2020. Conservation status of the recently described 

Ecuadorian Amazon parrot Amazona lilacina. Bird Conserv Int 30:1–13.  

Abstract 

Amazona lilacina is a threatened species endemic to Ecuador, existing across a 

patchwork of mangroves, lowland coastal forests, agricultural and community owned 

land. The species was described in 2014 and listed as Endangered by the IUCN Red 

List, however, full assessment of the population was lacking. Using a combination of 

field observations, roost surveys and community questionnaires, conducted over the 

last twenty years, we provide up to date information on the species’ Extent of 

Occurrence, estimate its global population size, and evaluate its level of threat. Our 

results suggest the species occurs across an area of 19,890 km² in three distinct 

geographically isolated subpopulations. Roost surveys across the range estimate the 

minimum remaining population at 741 - 1,090 individuals and we present evidence to 

suggest a 60% decline over the past 19 years in one part of the species’ range. We 

conducted community questionnaires with 427 people from 52 communities. The 

presence of pet parrots was reported in 37 communities, including 17 communities 

who reported pet A. lilacina. From this we predict that over half of all communities 

within our study area keep parrots as pets and at least 96 communities keep A. lilacina. 

Our findings justify an IUCN Red Listing of at least Endangered for this species and 

highlight need for conservation support. In order to assess population health in more 

detail, further research is required to assess genetic diversity and roost dynamics, and 
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to identify areas that may be important for feeding and nesting throughout the range. 

As many of these areas are likely to overlap with community owned land, we suggest 

that future conservation actions should revolve around, and be led by these 

communities.   

Introduction  

A third of all Psittaciformes are classified as threatened and over half of all populations 

are in decline, yet population parameters to support conservation status assessments 

are missing for many neotropical parrots (Berkunsky et al. 2017). Parrots are 

commonly threatened by habitat loss, persecution, and the pet trade, and many 

species are in need of conservation support (Berkunsky et al. 2017). Endemic parrots 

with small fragmented populations, and those such as amazon parrots with large body 

size and long generation times, are disproportionately at greater risk of extinction 

(Snyder et al. 1987; Purvis et al. 2000; Grady et al. 2004; Olah et al. 2016). Indeed 

58% of species in the genus Amazona are currently listed by the IUCN as threatened 

or extinct in the wild (BirdLife International 2020a). 

Amazona lilacina is endemic to Ecuador and was described as a full species in 2014 

(Pilgrim 2010; del Hoyo & Collar 2014). An initial Red List assessment categorised it 

as Endangered due to its small and fragmented population (BirdLife International 

2018b) however, detailed status information was lacking, uncertain or outdated. For 

example, the northern-most limit of the species’ Extent of Occurrence (EoO), was 

historically recorded as southwest Colombia (Juniper & Parr 1998; Forshaw & Knight 

2010), which is now believed to be incorrect. Additionally, its dispersal area and habitat 

preference was recorded as regions encompassing both mangrove and lowland 

coastal forest habitats (Ridgely & Greenfield 2001a; Athanas & Greenfield 2016), yet 
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recent study confirmed the presence of a large roost in a non-mangrove habitat 

(Blanco et al. 2016).   

Evidence suggests that population size and trajectory are strongly correlated with 

extinction risk among vertebrates (Grady et al. 2004) but, since A. lilacina was 

described as a full species, the population size has not been estimated and little is 

known about its trend in recent years. The species was reported to have undergone 

severe population decline prior to the mid-1980s in response to ongoing habitat loss 

and trapping pressure (CITES 1986; Ridgely & Greenfield 2001a), and by 1998 the 

population was estimated at just 400-600 individuals (Juniper & Parr 1998). However, 

this estimate is now almost twenty years old and its reliability is questioned due both 

to possible declines and to the recent identification of new roosts (pers. obs., Blanco 

et al. 2016). Roost surveys have been used to estimate global and local population 

sizes in many parrots species (Gnam & Burchsted 1991; Martuscelli 1995; Matuzak & 

Brightsmith 2007; Dénes et al. 2018) and provide a tool for long term population 

monitoring (Wermundsen 1998; Wright et al. 2019). Amazona lilacina’s communal 

roosting behaviour thus allows us to update the population estimate and conduct long 

term monitoring to assess population trajectory.   

In response to the ‘uplisting’ of this species to Endangered in 2014, we re-examined 

its Red List status through personal field observations and collation of information from 

local experts, NGOs, and communities, over a seven year period to fulfil four 

objectives:  

i. update the current known Extent of Occurrence and estimate area of daily 

dispersal; 

ii. estimate global population size;  
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iii. determine change in roost size as an indicator of overall population trend; 

iv. quantify prevalence of pet parrots within the species’ range. 

Methods 

Study area and roost sites 

Amazona lilacina is reliant on lowland coastal forests (Ridgely & Greenfield 2001a) 

where it feeds on a variety of fruits and seeds, and nests in cavities formed in the 

trunks and branches of tree species such as Pigío Cavanillesia platanifolia and Ceibo 

Ceiba trichistandra (Kunz 1996; Berg & Angel 2006). Although we know little about 

this species’ reproductive behaviour, adults appear to explore cavities in 

October/November and produce one or two chicks that fledge between mid-February 

and late-March (Kunz 1996; Berg & Angel 2006).  As with several other Amazona 

species, with the exception of breeding birds, or at least females during the incubation 

and early chick stages, it returns to communal roost sites every evening (e.g. A. 

brasiliensis (Cougill & Marsden 2004), A. auropalliata auropalliata (Matuzak & 

Brightsmith 2007), A. amazonica (de Moura et al. 2012)). For A. lilacina, these roost 

sites mainly occur on mangrove islands where birds join together every night (Berg & 

Angel 2006). Birds tend to arrive at sunset, flying in loose-knit flocks made of paired 

birds, single birds, triplets or small groups, often making loud contact calls as they fly. 

For this reason roost locations are often well known by local communities, who hear 

the birds as they arrive and depart the following morning. In contrast, during the day, 

birds are secretive and extremely difficult to locate as they feed silently and high in the 

canopy in small groups (Ridgely & Greenfield 2001a).  

For this study, we identified four roost sites that are occupied throughout the year. We 

believe they contain a large proportion, if not all, of the remaining global population of 

this species and they are separated from each other by at least 50 km (Figure 1). 
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Roost 1 is located on a mangrove island in Manabí Province and was brought to our 

attention by Fundación Jocototo in 2012. Roost 2 is located in Santa Elena Province 

and is known to us through the work of Guillermo Blanco and José Tella (Blanco et al. 

2016). This is the only roost we know of that does not occur in mangroves. Instead, 

the birds roost in stands of the locally known ‘algarrobo’ tree Prosopis julifora. Roost 

3 is perhaps the most well-known roost, located northwest of the Gulf of Guayaquil, in 

the El Salado Mangrove Reserve where mangrove islands have been frequented by 

A. lilacina since at least the early 1990s (Berg & Angel 2006). Roost 4 is situated 

southeast of the Gulf of Guayaquil on an island within the Manglares Churute 

Ecological Reserve. It was located in 2016 through our community questionnaires.  
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Figure 1: Four A. lilacina roosts are believed to contain the majority of the global 

population, three of these occur on mangrove islands. Mangroves (Hamilton & Casey 

2016) and communities taking part in researcher led questionnaires are indicated. 

Field observations  

Observational data collected during ten field trips were used to address Objective i 

(November 2012, January and August 2014, November 2015, August 2016, January 

and March 2017, February 2018, January and August 2019). Field trips lasted two to 

three weeks during which we investigated potential areas of suitable habitat, verified 

any recorded sightings of individuals, and monitored known and newly reported roosts. 

Data collection was informed by: 1) existing information on known distribution and 

habitat use (Juniper & Parr 1998; Ridgely & Greenfield 2001a; Berg & Angel 2006; 

Forshaw & Knight 2010; Athanas & Greenfield 2016); 2) information on habitat 

distribution from Google Earth and available ecosystem maps (Ministerio del Ambiente 

2012); 3) direct communication with local NGOs, ornithologists, local guides and bird 

tour companies and 4) communication through researcher-led questionnaires with 

local communities.  

All sightings of perched A. lilacina made by ourselves, Fundación Jambeli staff, and 

Juan Freile within the last ten years were georeferenced (sightings of birds in flight 

were omitted). eBird presence data were lacking, however complete checklists that 

failed to report A. lilacina were used to gain an idea of absence areas: a total of 34,974 

complete checklists for mainland Ecuador were downloaded in February 2019.  

Roost surveys  

To meet Objective ii, we conducted repeat surveys at all roosts. Although these were 

not located through systematic survey, they represent the combined current 

knowledge regarding this species according to the authors, local experts and 
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communities. Initially, we conducted practice censuses at each roost to identify the 

best vantage points. Surveys were then conducted twice per day and where possible, 

for a minimum of four days to control for intrinsic variability (minimum of two, maximum 

of 20 consecutive surveys). To maximise our chances of counting all individuals 

leaving or arriving at each roost, morning surveys began before sunrise and lasted for 

two hours, whilst evening surveys began an hour before sunset and finished when it 

was too dark for birds to be identified. To reduce observer bias, all surveys were 

carried out by a combination of the same three researchers (RB, IS, PC), with one 

person counting and identifying birds using binoculars, the other keeping record. Roost 

sites are separated by at least 50 km and it has been suggested for other Amazon 

species that if roosts sites are isolated by >8 km, daily movement between roosts is 

unlikely (Cougill & Marsden 2004). Still, to account for possible movement of birds 

between roosts, which could result in counting the same birds twice, only roost surveys 

conducted during the same weeks of each year were used to estimate population size. 

Unfortunately, Roost 1 was disrupted and not occupied by Amazons during one year 

of the study, thus an average of counts before and after this disruption, but prior to the 

next global count, was used. The sum of these counts is presented as an estimated 

range in minimum global population size during the given time frame. Counts 

conducted in March are likely to include both adult and juvenile birds returning to the 

roost after the breeding season, so are suggested to be the most inclusive estimate. 

Surveys from 2014 onwards at Roost 3 were conducted from an observation tower 

within the town of Puerto Hondo, approximately 300 m in front of the roost, allowing a 

full view of each parrots’ flight path to and from the roost. This tower gives a good view 

of the roost area and approximately 1.2 km on either side. Morning surveys were 

conducted, by the same researcher, who attended the vantage point from 05h30–
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07h30. At this roost birds are only seen flying in one direction (into or out of the roost) 

and therefore it is unlikely that birds were double counted. A consecutive day counting 

regime was used - the last four days of each month, which has been previously found 

to be more precise than counting on random days throughout the month; the regime 

used in 1999/2000 (Cougill & Marsden 2004; Berg & Angel 2006). 

To facilitate Objective iii, we compiled all available surveys conducted at Roost 3 to 

assess long-term change in the size of this roost over time. Survey data were available 

from June 1999–May 2000 (conducted by Berg and Angel 2006) and for various 

months between November 2015 and May 2018.  

Community questionnaire  

To address Objective iv, information on the presence of pet parrots was gathered 

through researcher-led questionnaires in 52 communities within the study area (Figure 

1). A total of 427 people took part, representing between 4 and 23 households per 

community. ‘Open Street Map’ (OSM) was used to categorise communities as 

hamlets, villages, or towns. Communities were selected due to their close proximity to 

lowland dry tropical forests (Ministerio del Ambiente 2012). Following trial surveys, 

questionnaires were carried out from January to July 2017. A combination of 

photographs, questions and sound recordings were used to ascertain if the participant 

could correctly identify A. lilacina. Participants were then asked: “Are there any pet 

parrots in your village?” and “Which parrot species are kept as pets?” 

Questionnaires were conducted in Spanish and only the researcher (IS) and 

participant were present. Due to potential bias in self-reporting behaviour using direct 

questioning, especially in cases where that behaviour is illegal (Fisher 1993; Nuno & 

St. John 2014), we only asked participants to report the presence or absence of pets 
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in their community as a whole. Participants could decline from contributing and were 

asked for verbal consent prior to participation once the purpose of the research was 

explained. Interviews were anonymous and data were coded to ensure that no 

individuals could be identified.  

Data analysis 

For Objective i, observation locations were used to estimate the Extent of Occurrence 

(EoO) using the IUCN Red List guidelines (IUCN 2012). ArcGIS was used to calculate 

the EoO, defined as “the area contained within the shortest continuous imaginary 

boundary which can be drawn to encompass all the known, inferred or projected sites 

of current occurrence of a taxon” (IUCN 2012). The minimum bounding convex 

polygon tool was used within ArcToolbox to estimate area of EoO, with no exclusion 

areas.  

To estimate the area of land that birds are likely to disperse over daily, buffers of 10 

km were created around observation points; this is suggested to be the approximate 

diurnal ranging area of A. auropalliata in Costa Rica (Salinas-Melgoza et al. 2013). 

Buffers were dissolved in ArcToolbox. To analyse possible movement between daily 

dispersal areas, absence points were created using eBird complete checklists that did 

not record the species. Data were filtered and extracted using the auk package in R 

and following suggestions on best practice from Johnston et al. (2019), by restricting 

checklists to <5 h duration, <5 km in length, and with <11 observers. 

For Objective iii, count data from roost surveys conducted using comparable 

methodology were analysed to assess any change in the size of Roost 3 from 

1999/2000 and 2017/2018. For this analysis, only morning counts were used owing to 

the conclusions of Berg and Angel (2006) who found that their morning counts were 
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more consistent, larger, and thus more accurate. Additionally, Cougill and Marsden 

(2004) showed morning counts to be more precise for estimating size of other amazon 

roosts. A generalised linear mixed model (GLMM) with a Poisson distribution and 

‘month’ a random effect was fitted to compare counts from the two data sets. All 

statistical analyses were conducted in R version 3.6.0 (R Core Team 2019). 

For Objective iv, ‘Open Street Map’ (OSM) was used to identify all communities in the 

study area, in the categories of hamlet/village/town. Predictor variables were 

calculated for each community (surveyed and not surveyed) using the Euclidean 

Distance and Values to Points tools in ArcToolbox. These related to species 

availability, accessibility and land protection status: distance to nearest sighting/roost, 

elevation (Jarvis et al. 2008), distance to nearest road (defined by OSM), and inclusion 

status within the National System of Forest and Protected Vegetation 2015 (Ministerio 

del Ambiente 2012). Additionally, mean Normalised Difference Vegetation Index 

(NDVI) from the monthly MODIS product, MOD13A3, averaged across the period 

2010-2015, was included as a proxy of vegetation cover. Random forests were used 

to classify surveyed villages with and without pet parrots, and with/without pet A. 

lilacina (Breiman 2001). The predict function in this package was then used to predict 

the likelihood of pet parrots and pet amazons being present in the remaining non-

surveyed communities within the study area. Communities with a predicted vote score 

of 0.6 or over, thus a greater than 60% probability were considered as likely to have 

pets.  

Results  

A total of 132 occurrence points were gathered, and analysis of eBird checklists 

resulted in confirmation of 4,626 points of species absence (Figure 2a). The estimated 

Extent of Occurrence is 19,890 km² within which 5,313 km² is used by the species 
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during daily dispersal. According to the IUCN’s definition of subpopulations (IUCN 

2012) we suggest that Amazona lilacina occurs in at least three distinct subpopulations 

separated by a minimum of 40 km (Figure 2b). 

  

Figure 2a: Presence (n = 132) and absence (n = 4,626) points recorded for A. 

lilacina. Presence points are joined by a convex hull to estimate the species' Extent 

of Occurrence of 19,890 km². Figure 2b: Occurrence points are surrounded by 10 km 

buffers to represent a daily dispersal area of 5,313 km², within three subpopulations. 

Minimum and maximum counts from each roost survey (Table 1) reflect fluctuations in 

the number of birds attending each roost during the survey period. Although it is always 

possible that more roosts exist within the study area, we believe we have identified all 

remaining large roosts (>30 individuals) and thus we estimate the remaining global 
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population at 741 - 1,090, which includes mature and immature birds. We suggest that 

counts conducted in March (1,090) at the end of the breeding season, represent the 

population including young birds, and that counts from January (804) represent the 

population without breeding birds or at least females with eggs or chicks in the early 

developmental stages. We saw a slight decrease in global population size between 

March (1,090) and August (1,046) which may represent juvenile mortality.  

Table 1: Number of A. lilacina counted during roost surveys at all known roosts. Roost 

1 was not present in March 2017. Local reports suggest this was in response to 

damage caused to the mangrove island roost site by a large earthquake. Thus, the 

mean of all counts prior to January 2019 is used: 97 and 103 (Nov 2012), 84 and 86 

(Aug 2014). 

Roost One Two  Three Four  Population estimate 

March (2017/18) 93 300 - 480 28 - 110 320 - 407 741 - 1090 

Jan (2019) 44 - 95 181 - 338 41 - 72 220 - 299 486 - 804 

August (2019)  60 - 116 124 - 144 32 - 57 628 - 729 844 - 1046 

When considering all surveys conducted at Roost 3 from 1999–2018, there has been 

an overall decline in the total number of birds (Figure 3). Our GLMM revealed that 

average counts declined between the two periods of data collection representing a 

significant drop in roost size in 2017-2018 compared with 1999-2000 (β = -1.02, S.E 

= 0.24, p <0.001). On average, the difference between monthly counts suggests a 

60% reduction in the size of the roost. The maximum roost size in 2000 was 229 birds 

(Berg & Angel 2006), but just 117 in 2018. 
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Figure 3: Roost surveys recording the total number of birds departing Roost 3 during 

morning surveys conducted between June 1999 and May 2018.  

Of 52 communities surveyed, presence of pet parrots was confirmed in 37. A total of 

eleven parrot species, including A. lilacina were recorded: Yellow-crowned Amazon A. 

ochrocephala, Orange-winged Amazon A. amazonica, Southern Mealy Amazon A. 

farinosa, Red-lored Amazon A. autumnalis salvini, Bronze-winged Parrot Pionus 

chalcopterus, Blue-headed Parrot P. menstruus, Red-masked Parakeet Psittacara 

erythrogenys, Grey-cheeked Parakeet Brotogeris pyrrhoptera, White-winged Parakeet 

B. versicolurus and Pacific Parrotlet Forpus coelestis. Communities with pet parrots 

could be classified (out of bag error rate 16%) using variables of elevation and distance 

to the nearest roost, it is predicted that 1,617 of the 3,231 additional non-surveyed 

communities within the study area have a greater than 60% probability of containing 

pet parrots.  
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Of the 37 communities with confirmed presence of pet parrots, 17 held pet A. lilacina. 

These 17 could be classified (out of bag error rate 31%) using predictors of distance 

to roost, distance to sighting and NDVI. It is predicted using this classification, that 79 

of the 3,231 additional non-surveyed communities within the study area have a greater 

than 60% probability of having pet A. lilacina. It was felt the value of 60% across the 

community as a whole, would equate to a much higher probability of at least one pet 

being owned. From the above, we suggest that within our study area, approximately 

1,645 communities have pet parrots, and at least 96 of these have pet A. lilacina (Table 

2). 

Table 2: Of the 52 surveyed communities, 37 reported pet parrots and 17 reported pet 

A. lilacina. Using random forests to predict the occurrence of pet parrots throughout 

similar communities within the study area, we suggest 1,617 communities have pet 

parrots and at least 96 have pet A. lilacina. 

 Pet parrots  Pet A. lilacina   

Surveyed communities with confirmed presence  37 / 52 17 / 37 

Out of bag error rate of classification of surveyed 
communities 

15.7% 31.4% 

Classification error table  
 

Confusion matrix: Confusion matrix: 

 N Y   N Y  

N 10 5 0.33 N 31 4 0.11 

Y 3 33 0.08 Y 12 4 0.75 

Mean decrease in 
accuracy value for 
each predictor  

Community type 2.51 -5.82 

Distance to sighting  9.45 -1.50 

Distance to roost 12.95 9.79 

Distance to road 1.74 -0.88 

Elevation 16.97 -3.14 

NDVI 1.98 1.06 

In protected area or not 4.81 0.17 

Number of communities predicted >60% probability of pets  1,617 / 3,231 79 / 3,231 

Suggested number of communities with pets   1,645 96 
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Discussion  

We estimate the Extent of Occurrence (EoO) for the recently recognised Amazona 

lilacina to be half of that currently listed on the IUCN Red List, which from available 

data represents the smallest remaining EoO of any Endangered mainland Amazon 

parrot (BirdLife International 2018a). We suggest A. lilacina has a population size of 

between 741 and 1,090 birds and that this population is declining, with Roost 3 

showing a reduction in size of 60% over the past 19 years – a similar decline to that 

seen in other parrot species globally (Berkunsky et al. 2017). This rate of decline 

supports the IUCN listing of Endangered under criterion A, and if reflected over the 

whole population may qualify the species for listing as Critically Endangered. Further 

research is needed to assess this, however, when comparing our 2019 counts, to 

unpublished counts from researchers in 2014, we see a decline of 59% also at Roost 

2; an area where strong poaching pressure has been observed (G. Blanco, F. Hiraldo 

and J.L. Tella, pers. comm. 2020). We report that local capture for pets is an ongoing 

threat, and support the notion that Ecuador should be prioritised for parrot 

conservation (Olah et al. 2016).  

As commonly seen in parrot roost counts, our results showed variability in roost size 

within and across months. This may be explained in part by imperfect detection 

whereby birds arrive at or depart roosts undetected due to low light levels or weather 

conditions (Dénes et al. 2018). Although every attempt was made to account for this, 

due to the opportunistic nature of some of our roost surveys, a structured counting 

regime as suggested by Cougill and Marsden (2004) was not always followed. 

Additionally, it is also possible that some birds may have gathered temporarily in 

smaller, undetected roosts and thus be missed from main roost surveys. Despite this, 
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we believe the results presented here offer a valuable first estimate of population size 

and trajectory for this Endangered species.   

Amazona lilacina’s northern border was previously recorded as southwest Colombia 

or the Esmeraldas province of Ecuador (CITES 1986; Juniper & Parr 1998; Ridgely & 

Greenfield 2001a; Forshaw & Knight 2010; Athanas & Greenfield 2016), but we 

suggest, in agreement with local experts, that these more northern birds are in fact A. 

autumnalis salvini (pers. comm.: R. Orrantia, Fundación Jambeli 2013, M. Schaefer, 

Fundación Jocotoco 2014, R. Ridgely, Rainforest Trust 2015). Within our newly 

presented EoO we no longer believe the species is restricted to mangrove roosting 

areas, owing to the discovery of a new roost located >50 km from any mangroves. 

However, we do suggest that the species is still highly geographically restricted, with 

an estimated daily dispersal area of just 5,313 km² split between three distinct 

geographically isolated subpopulations. Although movement between these three 

areas is unlikely due to their separation distance of approximately 40 km, further 

research into the daily movement and genetic structure of these subpopulations is 

needed to confirm this. 

Historically, threats to this species have been severe: CITES reported thousands of A. 

lilacina being trapped and exported out of the country in the early 1980s (CITES 1986), 

and Ecuador reported the highest rate of deforestation in South America for the period 

2000 – 2005 with the main cause of this being clearing of the lowland coastal forests 

for agricultural crops (Mosandl et al. 2008). As early as 1986, the plight of this species 

was highlighted (CITES 1986) and we believe the population is still at risk and in 

decline. A likely contributor to this is that the range overlaps with a large proportion 

(46%) of Ecuador’s human population (INEC 2010). In addition to the direct threat of 

local capture for pets, anthropogenic effects such as fire, hunting, land trafficking and 
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the development of squatter settlements are reported as the greatest threats to the 

lowland coastal forests this species relies on (Horstman 2017). 

We predict that over half of all communities within the study area have pet parrots, 

despite it being illegal since the mid-1980s to hunt or trade species included in the 

CITES Appendices. Indeed a few of these could be long-lived individuals; however, 

we expect that to be a minority. Ecuador’s confiscation reports also suggest a large 

number of parrots in captivity with 91% of all birds confiscated between 2003 and 2014 

being Psittacidae and 7% of these being A. autumnalis (Ortiz-von Halle 2018). Law 

enforcement in the form of pet confiscation does not appear to be a strong deterrent, 

and only once has a case of bird crime resulted in jail time in Ecuador (Ortiz-von Halle 

2018). We predict that nearly 100 communities hold A. lilacina, but expect this is an 

underestimation due to difficulties in identifying parrots to species level. We did gather 

evidence of poaching of A. lilacina chicks and adults during fieldwork, either to 

generate core income, or incidentally, to fulfil a specific economic need such as buying 

uniforms at the start of the school term. Additionally, reports of farmers using nets or 

poison to protect their crops against parrots and historical reports of family relatives 

shooting macaws and Amazons for food were made. Although legal subsistence 

hunting does not appear a threat to the species, recent concern has been raised 

regarding its sustainability in the light of changes in human population size, hunting 

methods, and habitat fragmentation (Suarez & Ríos 2019). 

The lowland coastal provinces where A. lilacina occurs have been identified as 

having an acute lack of protected areas (Cuesta et al. 2017). Additionally, the lowland 

forests, mangroves and algarrobo trees, are all habitats essential for local community 

income and sustenance be it through hunting, fishing for crabs, cutting of firewood 

or making charcoal. Outside of these habitats, our observations occasionally 
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recorded the species in crop fields, gardens, and even villages where fruit trees have 

been planted, and in the last couple of years eBird users are more frequently recording 

the species within the large city of Guayaquil. This species is clearly existing across a 

highly anthropogenically influenced landscape, and although there are examples 

worldwide of parrots adapting to such environments (Lill 2009; Martens & Woog 2017) 

the effects this may have on their natural behaviours or ecological functions could be 

significant (Luna et al. 2018).  

Conclusion and further research  

Following the analysis of the data presented in this chapter and published by Biddle 

et al 2020, a reassessment was made of Amazona lilacina’s Red List status. The 

species no longer met the criteria of Endangered based on the reported population 

size and that of the subpopulations (IUCN 2012). The Extent of Occurrence and 

population size now met the threshold for Vulnerable, whilst the population trajectory 

met the criteria of Critically Endangered (IUCN 2012). The 60% decline over 20 years 

that we reported in one subpopulation was likely to equate to 82% decline over three 

generations (37 years). After an open online discussion forum and further evidence 

suggesting that this decline was consistent across the species range, A. lilacina was 

up-listed to Critically Endangered (BirdLife International 2020b). 

Another key finding from this chapter was that A. lilacina did not only occur in areas 

nearby to mangroves where they could communally roost. This meant that there could 

be, previously overlooked, suitable inland habitat. Therefore, the next research priority 

was to assess the species distribution. Numerous studies have shown that local 

ecological knowledge can provide extremely useful information about species 

distributions, particularly for species that are cryptic and hard to observe  (Melovski et 
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al. 2018; Díaz-Ruiz et al. 2019; Ghoshal et al. 2019; Skroblin et al 2019). We believed 

this to be especially likely for A. lilacina, due to their gregarious and noisy roosting 

behaviour. Despite it being extremely hard to observe foraging or nesting birds, 

anyone living nearby to a roost is likely to hear them arrive and depart each day 

(Ridgely & Greenfield 2001a; Enkerlin-Hoeflich et al. 2006). Therefore, researcher–

led questionnaires were conducted, across the range to gather people’s observations 

of parrots in their local area. The results of these and field observations from within 

the species extent of occurrence were then analysed and used to build species 

distribution models, to predict areas of suitable habitat – see Chapter Three. 
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Chapter Three: The value of local community knowledge in 

species distribution modelling for Amazona lilacina.   

Biddle R, Solis-Ponce I, Jones M, Marsden S, Pilgrim M, Devenish C. 2021. The value 

of local community knowledge in species distribution modelling for a threatened 

Neotropical parrot. Biodiversity and Conservation 30:1803-1823.  

Abstract 

Species distribution models are widely used in conservation planning, but obtaining 

the necessary occurrence data can be challenging, particularly for rare species. In 

these cases, citizen science may provide insight into species distributions. To 

understand further the distribution of the newly described and Critically Endangered 

Amazona lilacina, we collated species observations and reliable eBird records from 

2010 – 2020. We combined these with environmental predictors and either randomly 

generated background points or absence points generated from eBird checklists, to 

build distribution models using MaxEnt. We also conducted interviews with people 

local to the species’ range to gather community-sourced occurrence data. We grouped 

these data according to perceived expertise of the observer, based on the ability to 

identify A. lilacina and its distinguishing features, knowledge of its ecology, overall 

awareness of parrot biodiversity, and the observation type. We evaluated all models 

using AUC and Tjur R². Field data models built using background points performed 

better than those using eBird absence points (AUC=0.80+/-0.02, Tjur R²=0.46+/- 0.01 

compared to AUC=0.78+/-0.03, Tjur R²=0.43+/- 0.21). The best performing community 

data model used presence records from people who were able recognise a 

photograph of A. lilacina and correctly describe its distinguishing physical or 

behavioural characteristics (AUC=0.84+/- 0.05, Tjur R²=0.51+/- 0.01). There was up 
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to 92% overlap between the field data and community data models, which when 

combined, predicted 17,772 km² of suitable habitat. Use of community knowledge 

offers a cost-efficient method to obtain data for species distribution modelling; we offer 

recommendations on how to assess its performance and present a final map of 

potential distribution for A. lilacina.   

Introduction 

Understanding species distributions is essential for conservation planning (Wilson et 

al. 2005) but for species that are rare, sparsely distributed, or inconspicuous, this 

information is often lacking. In such cases, species distribution models (SDMs) and 

their outputs, can be particularly useful, as long as they are based on ecological theory 

and built using accurate data (Guisan & Thuiller 2005). SDMs allow the probability of 

occurrence to be predicted in un-surveyed areas, which can inform future field 

investigations and have many important conservation applications (e.g. Pearce & 

Lindenmayer 1998; Araújo et al. 2004). For all SDMs, species presence data are 

needed. Traditionally this comes from direct species observations or museum records, 

but more recently scientists have looked to integrate different sources of data, such as 

citizen science, to make better inferences of the true distribution of species (Amano et 

al. 2016; Coxen et al. 2017; Fletcher et al. 2019; Steen et al. 2019; Isaac et al. 2020). 

The quality of outputs gained from SDMs is affected by factors such as data type, 

sampling bias and imperfect detection (Lahoz-Monfort et al. 2014; Guillera-Arroita et 

al. 2015). MaxEnt is one of the most commonly used methods for deriving SDMs and 

has been shown to produce useful models even when dealing with small sample 

sizes (Wisz et al., 2008; Elia et al. 2015). Whilst other methods require absence data 

to be collected, MaxEnt uses presence data combined with a background sample 

drawn randomly from the study area (Phillips et al. 2006, Phillips & Dudík, 2008; Elith 
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et al., 2011). Both presence-absence and presence-background data methods have 

limitations; namely that presence data often do not represent an unbiased sample of 

locations at which the species is present, and that absence data can lead to the 

inclusion of false absences (Guillera-Arroita et al. 2015). These limitations must be 

considered against the proposed use of model outputs; for instance, presence-

background data may be sufficient when outputs are to be used to direct further field 

investigations, but insufficient if outputs are to directly inform land management for 

conservation (Lahoz-Monfort et al. 2014). The predictive ability of models may also be 

reduced if imperfect detection is not accounted for, and may result in outputs being 

more likely to predict areas in which the species is easier to observe, rather than where 

it is more likely to occur. It is therefore essential that the effects of imperfect detection 

are minimised by ensuring a sufficiently large sampling effort at surveyed locations 

(Lahoz-Monfort et al. 2014) 

For species where field observations are lacking, citizen science data is a valuable 

and widely used resource (Brook & McLachlan 2008) which can help determine 

species presence, absence or abundance (Melovski et al. 2018; Díaz-Ruiz et al. 2019; 

Ghoshal et al. 2019; Skroblin et al 2019). Some methods allow large volumes of data 

to be collected more cost effectively than traditional field survey methods, for example 

postal surveys (FitzGibbon & Jones 2006), telephone interviews (Mallory et al. 2003) 

and social media (Pace et al. 2019). Often this data is used to supplement ‘expert’ 

data by guiding further field surveys (Hart & Upoki 1997; O’Brien et al 1998; Chaiyes 

et al 2017) but in some cases it is shown to be just as accurate as the equivalent 

‘expert’ data, providing that some form of filter for reliability is incorporated (Polfus et 

al. 2014). Recently, a number of studies have even shown that georeferenced 

occurrence data collected through citizen science platforms and online biodiversity 
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databases such as eBird, can be used to build accurate SDMs (Bradsworth et al. 2017; 

Coxen et al. 2017; Fournier et al. 2017; Saunders et al. 2020). However, it is important 

to note that all opportunistically collected citizen science data present additional 

challenges such as spatial biases and variation in observer skill (Isaac & Pocock 2015; 

Johnston et al. 2020) and online recording schemes such as eBird create barriers by 

requiring observations to be collected and submitted in a particular way. 

Within all types of citizen science data, there is variation in accuracy. For example 

studies have shown that ‘freelisting’ (Bernard 2006), a quick survey method where 

participants are asked to list the species they see in their local area, can result in 

people reporting species that do not occur and omitting ones that do (Can & Togan 

2009; Díaz-Ruiz et al. 2019). However, the cost efficiency of citizen science may 

compensate for reduced accuracy depending the data collected and extent of errors 

(Gardiner et al. 2012). If citizen science data are to be used to infer information about 

distribution, and as input data for the creation of SDMs, some method of boosting data 

accuracy or accounting for level of expertise is essential (Kosmala et al. 2016; 

Johnston et al. 2019). Previous studies have used prior selection of participants i.e. 

only interviewing key informants selected by community leaders due to their perceived 

expertise (Mallory et al. 2003; Lopes et al. 2018). Others have developed some kind 

of scoring system, to determine data accuracy (Frey et al. 2013) by only regarding 

contributions from participants who are able to recognise photographs of the study 

species and provide accurate location information (Ghoshal et al. 2019), or by using 

photographs of non-native species to assess participants identification skills (O’Brien 

et al. 1998).  
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To further our understanding of the distribution of a newly described and Critically 

Endangered parrot species Amazona lilacina (Biddle et al. 2020; BirdLife International 

2020b), we: 

i. collate all known species locality records, including from our own observations, 

reports from expert ornithologists, and reliable eBird records (2010-2020) and use 

these to build distribution models; 

ii. collect data on local peoples’ experiences and observations of wild A. lilacina 

through structured face-to-face interviews; 

iii. assess community survey data based on different quality filters and use these data 

to build distribution models; 

iv. determine the best performing distribution models built from species records and 

community reports, and compare their outputs in order to direct future field 

investigation. 

Methods  

Study area 

Amazona lilacina, a species recently split from the A. autumnalis group, is found in the 

coastal region of Ecuador where its small population is sparsely distributed  around 

dry forests and mangrove ecosystems (Biddle et al 2020). These habitats are 

described as amongst the most imperilled ecosystems on earth (Dodson & Gentry 

1991). During the day time A. lilacina is highly inconspicuous, feeding silently in the 

forest canopy in small groups which presents difficulty in using traditional field surveys 

methods to collect presence data (Ridgely & Greenfield 2001a). However, in the 

evenings birds will form conspicuous groups and fly to communal roost sites (Berg & 
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Angel 2006) which means that communities anywhere on this flight path, are often 

aware of the species presence.  

The rural coastal communities are considered to be in the most deprived areas of 

Ecuador, with almost one quarter of all people living in multidimensional poverty 

(Mideros 2012). The deprivation gap regarding food and water, education, 

communication, and housing, is greater here than in any other part of the country  

(Mideros 2012). Within our sampled communities, (Figure 1a) people mainly make a 

living as farmers, fishers or crab fishers, and 60% have either none, or only primary 

level schooling. Many communities in this region are highly inaccessible, especially in 

the rainy season and 57% of people we surveyed had lived in their village their entire 

lives. The flow of information into and out of these communities is reported to be almost 

non-existent, with only 40% of households having access to one form of 

telecommunication (radio, television, phone, computer) (Mideros, 2012).   
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Figure 1 (1a): Locations of all households taking part in interviews, all records of 

Amazona lilacina collated between 2010 – 2020 and, (1b): eBird absence points, 

representing all complete checklists that did not report A. lilacina, and random 

background points matching the number of eBird absence points available, within a 

30km buffer of all A. lilacina presence records.  

Field observations and eBird records   

Observational data were collected during ten field trips led by RB, lasting two to three 

weeks each (November 2012, January and August 2014, November 2015, August 

2016, January and March 2017, February 2018, January and August 2019). Data 

collection was informed by: 1) existing information on known distribution and habitat 

use (Juniper & Parr 1998; Ridgely & Greenfield 2001; Berg & Angel 2006; Forshaw & 

Knight 2010; Athanas & Greenfield 2016); 2) information on habitat distribution from 

Google Earth and the Ministerio del Ambiente ecosystem map; 3) direct 

communication with local NGOs, ornithologists, local guides and bird tour companies. 

All sightings of perched A. lilacina made by RB, ISP, MP,  Fundación Pro-Bosque staff, 

Fundación Jambeli staff, and Juan Freile between 2010 and 2020 were georeferenced 

(sightings of birds in flight were omitted).  

All eBird data for Ecuador, including observations and sampling data were 

downloaded in December 2020. To ensure that no records were missed due to 

changing taxonomic nomenclature, data were filtered to include all birds recorded as 

A. autumnalis (which included A. a. lilacina and A. a. salvini) between 01/01/2010 and 

31/12/2020. Records that were not deemed as A. lilacina based on either photographic 

evidence or location (i.e. within the Esmeraldas province) were removed, as were 

records that were already represented by our own observations (within 1 km). To avoid 

misrepresentation of location, all records that were reported as “general area” which 
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implies the record does not correspond to that exact location were removed, as were 

records with survey effort >5 hours and >5 km in length (Johnston et al 2019). Finally, 

locations of parrots within urban locations in the big city of Guayaquil (visualised on 

Google Earth) were removed to avoid escaped pets or captive birds being included in 

models.  

Distribution models from field observations and eBird records   

The MaxEnt function of the package ‘dismo’ (Hijmans et al. 2020) in R (version 3.6.0, 

R Core Team, 2019) was used to create species distribution models from field 

observations and eBird records, referred to from now on as the field models. These 

were first built using eBird absence points generated by filtering for all complete 

checklists within our study area that did not report the presence of A. autumnalis (A. 

a. salvini or A. a. lilacina) (Figure 1b). Absence points were also limited to checklists 

that were <5 km in length, <5 hours in duration and with fewer than ten observers 

(Johnston et al. 2019), and to a buffer of 30 km from all field observations and eBird 

records. Our second and third field models were built using random background points 

generated in ArcGIS (Version 10.8.1) from within the same buffer: the second model 

had 4,597 and the third had the same number as eBird absences available (458). 

Spatial autocorrelation was controlled for by limiting points to one per 1 km using the 

R package ‘spThin’ (Aiello-Lammens et al. 2015). A set of interpolated bioclimatic 

predictor variables available from WorldClim (https://www.worldclim.com/bioclim) 

representing different measures of temperature and rainfall, plus additional predictors 

thought to have some biological significance for the species were used: Normalised 

Difference Vegetation Index (NDVI) from the monthly MODIS product over the period 

2010-2015 as a proxy of vegetation cover; distance to mangrove (Hamilton & Casey 

2016) and distance to the nearest river (Military Geographic Institute, IGM). Predictors 

https://www.worldclim.com/bioclim
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were checked for pairwise correlation across random points within the study area, 

using pair plots (Zuur et al. 2010); where correlation coefficients between pairs of 

predictors were >=0.70, the less biologically meaningful predictor was removed. The 

final variables were; distance to the mangrove, distance to a river, annual mean NDVI 

and NDVI seasonality, mean diurnal temperature range, annual mean temperature 

and temperature seasonality, precipitation of wettest month, precipitation of coldest 

quarter and precipitation of driest month. To allow comparison between the field and 

community models, we averaged predictor values across 9 km² at all points used in 

all models to reflect respondents’ reference to their ‘local area’, which could 

encompass areas of community owned land >1 km away from their house. To ensure 

this did not affect model outputs or accuracy we trialled models built using predictor 

values at the exact location, compared to those  averaged over 9 km², and found no 

difference. 

Models were evaluated with AUC and Tjur R² (Tjur 2009) over five-fold cross 

validation; the mean evaluation metrics and their standard deviation are presented. 

AUC measures how well model predictions discriminate between presence and 

absence (Wisz et al. 2008). Tjur R² represents the difference between the mean model 

value at the presence locations and the mean value at the absence / background 

locations. All the data were included in the final models. Finally, we present variable 

importance scores, with  permutation values  >10%, with a high value indicating that 

the model depends heavily on that variable (Phillips et al. 2006) and response plots 

for the most accurate field model. 

Community questionnaires and response filtering  

Researcher–led questionnaires were carried out to identify areas that were reported 

by local people to be occupied by A. lilacina. Communities were chosen to be included 
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in this study due to their close proximity to dry lowland forests (within approximately 

10 km), identified using the Ministerio del Ambiente ecosystem map. Furthermore, all 

communities surveyed were inside or within 70 km of the species Extent of Occurrence 

(Biddle et al 2020). A pilot study was conducted after which interviews were carried 

out in January-July 2017. Questionnaires were conducted in Spanish by a local 

Ecuadorian researcher (ISP), with only the interviewer and respondent present 

(Tourangeau & Yan 2007). We aimed to survey a minimum of three households per 

community representing a cross section of demographic groups, but often this 

depended on the availability of participants and the size of the community. In all cases, 

prior verbal consent was obtained, and although less than fifteen people did not 

complete interviews, interviewees could decline from contributing once the purpose of 

the research was explained (Appendix 1).  

The location of each questionnaire, normally by the participant’s house, was recorded 

and participants were asked to respond with reference to their immediate local area 

which included their house, garden, and local community land. Demographic 

information regarding age, gender, level of schooling, and how long they had lived in 

the village, was collected, but interviews were anonymous, and data were coded to 

ensure that no individuals could be identified. Interviewees were not made aware of 

the species in concern before starting the interview, during which they were asked to 

name and describe which parrot species (if any) they see in their local area, then 

confirm from a selection of ten parrot photographs (the order of which was rotated at 

random between surveys) (Table 1). If a participant confirmed they currently (within 

the last year) see A. lilacina at their location, they were then asked a number of 

questions designed to help assess the accuracy of this information. Each interview 

(Appendix 2) took approximately 20 minutes to complete. 
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Table 1: Photographs of ten parrot species were presented to questionnaire 

participants. The chance of observation is rated as likely (if the species range covers 

the entire study area), possible (if the species range covers more than half of the study 

area) or unlikely (if the species range covers less than half of the study area) (Freile & 

Restall 2018). 

Parrot species  Chance of 
observation  
 

Species status  

1. Southern Mealy Amazon Amazona farinosa 
 

Unlikely   Rare  

2. Blue-headed Parrot Pionus menstruus 
 

Possible Common  

3. Bronze-winged Parrot Pionus chalcopterus 
 

Possible Uncommon  

4. Red-masked Parakeet Psittacara erythrogenys 
 

Likely  Common 

5. Great Green Macaw Ara ambiguous 
 

Unlikely  Very rare  

6. Pacific Parrotlet Forpus coelestis 
 

Likely  Common  

7. Grey-cheeked Parakeet Brotogeris pyrrhoptera 
 

Possible  Uncommon  

8. Lilacine or Ecuadorian Amazon Amazona lilacina 
 

Possible Rare 

9. Brown-headed Parrot Poicephalus cryptoxanthus 
 

Not present  Not present  

10. Yellow-crowned Amazon Amazona ochrocephala 
 

Not present  Not present  

 

To examine the influence of accuracy of community data, we filtered responses 

according to the ability to recognise the species, knowledge of its distinguishing 

features, overall awareness of parrot biodiversity, and observation type (i.e., if the bird 

was seen flying, nesting, perched or feeding). We created six groups of responses to 

represent realistic scenarios that may be used to select which observations to include 

in distribution investigations (Table 2). We created a further eleven groups which 

represented all possible combinations of groups three to six, for example group seven 

represented a group of participants who had answered correctly for all of groups three, 

four, five and six (Appendix 3).  
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Table 2: Six methods of community data filtering were developed to group community 

responses. All possible combinations of response groups three – six were included, 

resulting in 17 groups of community data from which to build species distribution 

models. 

Community 
data group   
 

Question  Answer suggesting accurate presence report  

1. Can you name the different 
parrot species you see in 
your local area? 
 

Gives any name used locally for A. lilacina. 

2. Can you confirm from the 
following photographs, 
which parrot species occur 
in your local area?  
 

Recognises and identifies the A. lilacina photograph. 

3. Describe how you 
distinguish A. lilacina from 
other parrot species 
around here. 

Confirms A. lilacina is present from photograph or 
naming, and also provides one or more physical 
(description of the overall body shape i.e. square tail, 
medium size, red forehead, black beak) or behavioural 
(migration behaviour and associated distinct 
vocalisation) characteristic specific to A. lilacina. 
 

4. What habitat do you think 
A. lilacina prefers? 

Confirms A. lilacina is present from photograph or 
naming, and also describes preferred habitat as forest 
or mangrove ecosystem. 
 

5. Can you confirm from the 
following photographs, 
which parrot species occur 
in your local area?   

Confirms A. lilacina is present from photograph or 
naming, and also recognises the Red-masked 
Parakeet Psittacara erythrogenys and the Pacific 
Parrotlet Forpus coelestis (which are both common 
and likely to be observed).  
 

6. What were the A. lilacina 
doing in your local area? 
(flying / nesting / feeding / 
perched / something else). 
 

Confirms A. lilacina is present from photograph or 
naming, and also confirms it was either perched, 
nesting or feeding (i.e. not just flying over).  
 

 

Distribution models from community data  

We created distribution models based on groups of community data with varying levels 

of accuracy as listed in Table 2; the community models. Each participant’s response 

was associated with a location representing a 1 km² pixel on our distribution maps. 

These presence locations were combined with environmental variables and 
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background points following the same methods as for the field model. All background 

points were restricted to buffers of 30 km from community survey presence points. We 

averaged predictor values across the 9 km2, as for the field model, to reflect 

respondents’ reference to their ‘local area’, which could encompass additional areas 

of community owned land. In order to evaluate the accuracy of the community data 

models, we use the same methods as for the field models; AUC and Tjur R2 (Tjur 

2009) over five-fold cross validation. We present these, alongside permutation values 

where their contribution to the model is >10% for all models, and the habitat suitability 

output and response plots for the best performing model. 

Model comparison  

Once we had identified the best performing field observation model and community 

data models, we compared the overlap between their habitat suitability outputs. These 

outputs are interpreted as maps of potential distribution with values indicating the level 

of habitat suitability for each pixel, on a scale of zero to one. There are several 

methods used to compare model outputs (Galante et al. 2018). We chose Moran’s I 

which represents the difference between suitability values at each cell, and the relative 

rank coefficient which estimates the probability that the relative suitability ranking for 

a patch of habitat cells is the same for the two models (Warren et al. 2008; Warren & 

Seifert 2011). We calculated these using the niche overlap function in ENMTools 

(Warren et al. 2010). Both methods produce metrics which range from zero (no 

overlap) to one (complete overlap).  

To predict areas of potential distribution, it was necessary to classify areas as either 

‘suitable’ or ‘unsuitable’ depending on their model value. Many thresholding rules are 

justified for presence-only occurrence data (Peterson et al. 2011). We chose the 10% 
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omission rate threshold (Galante et al. 2018) where the model value which includes 

90% of the values predicted at the presence locations used to create that model, is 

applied as a threshold to the habitat suitability output to distinguish between presence 

and absence. We calculated and applied this independently to the two best performing 

models. We present a final combined map of distribution that represents areas 

predicted as suitable or not by either of the final models. We extracted the values for 

the top three predictor variables from the best performing models, in areas where both 

models predicted presence, compared to areas where only the field model or only the 

community model did, and plotted these using the R package ‘ggplot2’ (Wickham 

2016).  

Predictors of community data performance   

Once the best performing community data model been determined, a generalized 

linear mixed model (GLMM) was conducted in R (version 3.6.0, R Core Team, 2019) 

using the package ‘lme4’ (Bates et al. 2020). The binomial response of whether or not 

a participant was included in the response group used to build that model was 

analysed to determine any effects of participants’ social demographics: gender, level 

of schooling, age and number of years in the village. Only communities where at least 

one wild A. lilacina observation had been reported were included, and the community 

location was included as a random effect. We checked for correlation between the age 

and number of years spent in the village using Pearson's product-moment correlation, 

and between gender and level of schooling (some or none) using a Chi-squared test 

of independence, and only included non-correlated variables in our GLMM. 
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Results 

Field observations and distribution model  

Our field observations generated a total of 132 occurrence points. A further 14 

locations from eBird were included, to create a final dataset of 146 A. lilacina presence 

locations. These were reduced to 59 (47 field observations and 12 eBird records) 

during the spatial rarefication process, combined with either: 458 eBird absence points 

(model one); 4,597 randomly generated background points (model two) or; 458 

randomly generated background points (model three) and entered into model building 

with the ten non-correlated predictor variables. The resulting mean of five-fold cross 

validation AUCs were 0.78+/-0.03, 0.80+/-0.02, 0.79+/-0.02 and the resulting mean of 

five-fold cross validation Tjur R²s were 0.43+/-0.21, 0.46+/-0.01 and 0.41+/-0.01 for 

models one to three, respectively. Therefore, field model two was considered to be the 

best performing model (Table 3). The habitat suitability output from model two shows 

that the suitable habitat follows the Chongón Colonche mountains range, from 

Guayaquil north-west towards the coast, with additional suitable areas in the far south 

of the country bordering Peru, and the north of the study area in mid-Manabí (Figure 

2a). Environmental variables that showed a permutation importance of >10% were 

annual mean NDVI, distance to the mangrove, and  temperature seasonality and 

response plots (Figure 2b) suggest that suitability of habitat is associated with close 

distance to mangrove and a relatively high annual mean NDVI. 

Table 3: Results of the three field models showing permutation values of environmental 

where >10%. Based on AUC and Tjur R² values, model two (in bold) is the best 

performing field data model. 
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Model Sample 
size (after 
thinning) 

Permutation importance of variables 
>10% 

Mean of five-
fold cross 
validation 
AUC (+/-sd) 
 

Mean of five-
fold cross 
validation Tjur 
R² (+/-sd) 

Field model 1 
with eBird 
absences 
(458) 

146 (59) Mean annual NDVI (34%) 
Precipitation of coldest quarter (19%) 
Precipitation of wettest month (16%) 
Mean diurnal temperature range (14%) 
 

0.78 (+/-0.03) 0.43 (+/- 0.21) 

Field model 2 
with 
background 
points (4,597) 
 

146 (59) Mean annual NDVI (32%) 
Distance to mangrove (24%) 
Temperature seasonality (17%) 

0.80 (+/-0.02) 0.46 (+/- 0.01) 

Field model 3 
with restricted 
background 
points (458)  
 

146 (59) Mean annual NDVI (25%) 
Distance to mangrove (24%) 
Temperature seasonality (21%) 
Precipitation of coldest quarter (20%) 

0.79 (+/-0.02) 0.41 (+/- 0.01) 

 

 

Figure 2 (2a): The habitat suitability output from the best performing field model which 

is built using 59 species records and 4,597 background points (2b): The variable 

response plots for this model.  
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Community questionnaires and reliability scoring  

A total of 404 people from 72 communities took part in questionnaires, including 183 

women and 221 men, with an average of 5.6 households per community (min two, 

max 23). There was a variety of schooling levels, from none (31), primary (214), 

secondary (128), to university (31) and in how long participants had lived in their 

community (1-84 years) but the majority (88%) had lived there for ten or more years. 

Of the 404 participants, 393 reported seeing parrots in general. Although it was posed 

in our questionnaires that participants should answer with reference to birds seen in 

the wild, when asked “where did you see this bird?” 15 respondents replied “as a pet” 

- these 15 responses were removed from the community models.  

Distribution models from community data  

After filtering community data based on the six groups in Table 1, and creating 

combination groups where participants answered positively for multiple categories, 

each group had a sample size of >=27 (27–155). After spatial thinning all datasets 

contained >=18 (18-67) georeferenced occurrence points. Each group of points was 

combined with 3,931 background points and the same ten non-correlated predictor 

variables as those included in the field model. Models were built based on groups one 

to six of data, and then all eleven possible combinations of groups three to six.  None 

of the combination models improved the performance of the model (Appendix 3). The 

mean of five-fold cross validation AUC for the six main models was >0.74+/-0.03 and 

Tjur R² >0.39+/-0.02. Based on these values, model three is the best performing 

community model (Table 4). The habitat suitability map of community model three 

shows a similar area of suitable habitat to the field data model, but with additional 

increased suitability predicted along the coastline (Figure 3a). Environmental variables 
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with a permutation importance of >10% were distance to the mangrove and 

temperature seasonality, and response plots for this model suggest that suitability of 

habitat is associated with areas closer to mangroves (Figure 3b).  

Table 4: Georeferenced occurrence points for each group of community data were 

thinned to control for spatial correlation. The resulting models all showed high 

accuracy (AUC >0.74+/-0.03). Based on the AUC and Tjur R², model three (in bold) is 

the best performing community data model.   

Model Sample 
size 
(after 
thinning) 

Permutation importance of 
variables >10% 

Mean of five-fold 
cross validation 
AUC (+/- sd) 

Mean of five-fold 
cross validation 
Tjur R² (+/- sd) 

Community 
model 1 

27 (18) Distance to mangrove (52%) 
Distance to river (14%) 
NDVI seasonality (20%) 

0.83 (+/- 0.11) 
 

0.48 (+/- 0.06) 

Community 
model 2 

155 (67) Distance to mangrove (35%) 
Precipitation of wettest month 
(17%) 

0.77 (+/- 0.10) 
 

0.42 (+/- 0.03) 

Community 
model 3 

115 (53) Distance to mangrove (54%) 
Temperature seasonality (12%) 

0.84 (+/- 0.05) 
 

0.51 (+/- 0.01) 

Community 
model 4 

134 (64) Distance to mangrove (43%) 
Precipitation of wettest month 
(22%) 

0.76 (+/- 0.06) 
 

0.41 (+/- 0.01) 

Community 
model 5 

67 (40) Distance to mangrove (53%) 0.76 (+/- 0.07) 
 

0.40 (+/- 0.03) 

Community 
model 6 

40 (26) Distance to mangrove (37%) 
Precipitation of wettest month 
(19%) 

0.74 (+/- 0.03) 
 

0.39 (+/- 0.02) 
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Figure 3 (3a): The habitat suitability output from the best performing community data 

model, built using 53 reports where participants were able to recognise a photograph 

of the species and provide one or more physical or behavioural characteristic specific 

to A. lilacina. (3b): The variable response plots for this model. 

Model comparison 

After calculating and applying thresholds to the best performing field and community 

models, the field model predicts 13,969 km² of suitable habitat and the community 

model predicts 13,067 km² (Table 5). When we combine these threshold habitat 

suitability outputs, they overlap in 9,314 km² of predicted suitable habitat, the 

community data model predicts a further 3,753 km² that the field data does not, and 

the field data model predicts a further 4,655 km² that the community model does not 

(Figure 4). The top three predictor variables from both of these models were; distance 

to mangrove, temperature seasonality and mean annual NDVI. When plotting the 

values from predicted presence areas by both models, just the field model or just the 
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community model, areas that are predicted by only the community model only have a 

slightly lower mean annual NDVI and are closer to mangroves (Figure 5). There is a 

high level of overlap between the field data and community data habitat suitability 

outputs (before applying a threshold). The relative rank coefficient, which estimates 

the probability that the relative suitability ranking for a patch of habitat cells is the same 

for the two models, is 0.82, and the Moran’s I, which represents the difference between 

suitability values at each cell, is 0.92 (Table 5). 

Table 5: The area of predicted presence by the best performing field and community 

data models after calculating and applying a 10% omission threshold and the level of 

overlap between the two habitat suitability outputs before applying a threshold. 

Most accurate models  10% omission 
threshold value  

Predicted presence 
area (km²) 

Level of overlap: 
relative rank  

Level of overlap: 
Moran’s I 

Field data model 2 0.30 13,969 0.82 0.92 

Community data model 3 0.46 13,067 
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Figure 4: After calculating and applying thresholds independently to the two best 

performing models, their predicted suitable habitat overlaps in 9,314 km², but the 

community data model predicts a further 3,753 km² that is suitable, and the field data 

model predicts a further 4,655 km² that is suitable for A. lilacina. 
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Figure 5: Box plots showing predictor values in areas predicted as suitable (after 

applying a threshold) by both the best performing community and field data models, 

only the field data model, and only the community data model. The predictors with a 

permutation importance of >10% in the final models were included; mean annual NDVI 

(5a) Distance to mangrove (5b) and temperature seasonality (5c).   

Predictors of community data performance   

Of the 52 communities where at least one observation of wild A. lilacina was made, 

and thus species presence was likely, 35% (105/304) of participants were included in 

community data group with the best model performance. These 105 participants (70 

men and 35 women) were able to either name or recognise a photo of the species, 

and describe one of its distinguishing physical or behavioural characteristics (Table 

6). There was a high correlation coefficient of 0.70 (p<0.001) between the number of 

years lived in the village and the age of a participant. Additionally gender and level of 
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schooling were significantly correlated (X² = 8.24, df = 1, p = 0.004). Therefore, we 

only included the number of years a participant had lived in the village, and the 

participant’s gender in our GLMM. This revealed that of participants living in areas 

where A. lilacina was likely to be present, men were more likely to be included in the 

better performing community data group than women (Coefficient value: 0.62 ± 0.31 

(SE), p = 0.04), which is likely due to their spending more time outdoors in traditionally 

male working roles. The number of years a participant had lived in the community 

(Coefficient value: 0.012 ± 0.007, p = 0.14) had no significant effect.    

Table 6: The gender, level of schooling, and mean number of years lived in the village, 

for all participants that lived in communities where parrots were likely to be present, 

and for those who were included in the best performing community data group (group 

three).  

Response group Gender n Level of schooling Number of years in 
the village (mean) some none 

All responses Total  304 279 25 34 

Women 138  134 4 30 

Men 166  145 21 37 

Community data group 3 
 

Total  105 100 5 36 

Women 35  35 0 32 

Men 70  65 5 38 

 

Discussion  

We found that both field data and citizen science data in the form of community 

surveys were able to produce accurate species distribution models and their outputs 

had an overlap of 92%. When using field data, we found that models built using 

background points performed better than those built using absence points generated 

by eBird checklists, possibly due to the low frequency of eBird records in our study 

area. When using community data, we found the best performing models were those 

built using reports from observers who could name or recognise a photograph of A. 
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lilacina and correctly describe at least one distinguishing physical or behavioural 

characteristic.  

Recent studies have shown that web-based citizen science projects and online 

biodiversity databases can be used to build reliable species distribution models (e.g. 

Saunders et al. 2020; Langham et al. 2015; Fournier et al. 2017). This study presents 

evidence that in areas where there are substantial barriers to web-based citizen 

science projects, for example in socio-economically deprived areas (e.g. Hobbs & 

White 2012), community surveys can overcome these barriers and produce accurate 

species distribution models. This is of particular use for newly described and rare 

species. Gender disassociation in local ecological knowledge is not uncommon (Kai 

et al. 2014; Aswani et al. 2018); we found that men were more likely to provide 

accurate answers than women and suggest that this is due to a gender difference in 

traditional working roles (Voeks 2007; Ayantunde et al. 2008) which allows men to 

spend more time outdoors. Erosion of local ecological knowledge is a global trend 

(Aswani et al. 2018) and we support the continuation of community wide engagement 

projects to minimise this risk, with a focus on support for women to enable them to 

engage with conservation.  

After applying thresholds to our best performing field and community data models, 

they overlapped in their predictions of suitable habitat by 92% (in 9,314 km²). The level 

of overlap we see between our community and field data models is greater than seen 

in similar comparison of eBird community data and field-based satellite tracking data 

of Band-tailed Pigeons Patagioenas fasciata (Coxen et al. 2017). Our community data 

model predicts a further 3,753 km² of suitable habitat that our field data model does 

not. These areas were closer to mangroves than areas predicted only by the field data 
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model. This may be due to a factor of species detectability; A. lilacina are more 

detectable (highly vocal) when flying over to mangrove communal roost sites, so 

perhaps more likely to be seen by local communities in this habitat compared to when 

they are foraging inconspicuously in the dry forest (Ridgely & Greenfield 2001a). It is 

also possible that these areas represent locations in which local people have 

memories of the species occurring in the past, in which they no longer occur and thus 

were not recorded during field surveys. Our field data model predicts a further 4,655 

km² of suitable habitat that our community data models do not, and in areas with a 

slightly higher mean annual NDVI than areas predicted only by the community model.  

Similarly to Frey et al. (2013), we found variation in the accuracy of community data 

models built using different methods to filter interview responses. Our best performing 

model used a filter whereby participants needed to recognise a photograph of the 

species and provide a reliable description of how they distinguish it from other parrot 

species in their area. This suggests that, particularly in areas where many similar taxa 

may occur, the key to assessing the accuracy of information may be simply to ensure 

that participants are referring to the correct species. This draws parallels with checks 

that are in place for citizen science online databases such as eBird where records are 

flagged for systematic review and confirmed by a regional expert prior to their 

acceptance (Sullivan et al. 2014). It also supports the work of Frey et al. (2013) who 

conclude that, for easily-identifiable species at least, distribution modelling is possible 

using anecdotal reports. Our second best community data model (model one) greatly 

underestimated the predicted the area of suitable habitat. This group was based on 

the ‘freelisting’ method, where participants needed to name the parrot species in their 

area without any prior information or prompting. Previous studies using the freelisting 

method have yielded questionable results (e.g. Can & Togan 2009; Díaz-Ruiz et al. 



63 
 

2019) and we believe in our case, it was due to a very small sample size of participants 

who had the required natural history expertise to name this rare parrot species without 

any prompting or information.  

We found that using identification of other parrot species, to measure overall 

biodiversity knowledge and therefore accuracy of answers, did not produce the most 

accurate results. This may be due to A. lilacina’s unique daily migration behaviour, in 

some cases flying directly over villages and becoming conspicuous to many 

community members, not just those that are skilled at identifying multiple parrot 

species. Alternatively, it is possible that the two parrot species whose identification we 

assessed as a measure of reliability are incorrectly believed to be common and 

widespread throughout our study area (Ridgely & Greenfield 2001b; Freile & Restall 

2018). Identification of other closely related species was not a good measure of data 

quality either in surveys investigating the distribution of a native pheasant species – 

results showed frequent misidentification of an ‘imposter’ pheasant photograph, but 

reliable information about the native pheasant was still generated (O’Brien et al. 1998). 

Our distribution models based on field data and high quality community knowledge 

represent the first of their kind for the newly described and Critically Endangered A. 

lilacina, and have important conservation implications. With an estimated population 

size of just ~1,000 birds, and a suggested recent 60% population decline in parts of 

the range (Biddle et al. 2020), our results have identified new areas to survey. It is 

important to note that our model predictors did not include factors such as poaching 

that may have a strong impact on occupancy (Robinson et al. 2010). Whilst conducting 

community surveys for this study, we discovered a new large roost, unknown 

previously to local and international ornithologists, located near a socio-economically 
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deprived coastal community, on a mangrove island. Even local residents, because of 

the conflict with pirates, deem this area as unsafe. We therefore recommend that when 

parts of a species range fall within areas that are rarely visited by outsiders, the 

combined knowledge of communities local to that species is likely to be much greater 

than that of external scientists or researchers, and should thus be used to enhance 

and supplement traditional field survey methods.  

Conclusion and further research   

Our distribution models highlighted an area of almost 18,000 km² where environmental 

conditions suggest the habitat is suitable for Amazona lilacina. Within these areas, 

there is variation in habitat type. The coastal region in general, compared to the rest 

of the country, has extremely little remaining remnant vegetation and only a small 

proportion of this is included in the national protected areas system (Cuesta et al. 

2017). Furthermore, it is the most densely populated region of Ecuador and 

consequently represents a very anthropomorphically influenced landscape (CIESIN: 

Center for International Earth Science Information Network 2005). In the last ten years 

the Ecuadorian population has risen from 15 to 17.5 million, and there is no reason for 

this growth to slow (INEC 2010), but habitat modification by humans is a key factor 

threatening wild parrot populations worldwide (Snyder et al., 2000).  

Amazon parrots have shown high levels of adaptability to human modified landscapes, 

with introduced populations being found worldwide as a result of the global pet trade 

(Mori et al. 2017; Uehling et al. 2019). Of the 36 Amazon parrot species, 14 have been 

reported outside of their natural range, and nine have established breeding 

populations (Mori et al. 2017). Although there are many factors involved in whether or 

not a species can become naturalised outside of its range, for example the popularity 
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of the species in the pet trade and the frequency of accidental releases (Mori et al. 

2017), the adaptability of a species is likely to play a part, with more specialised 

species being less able to survive. For example the Yellow-headed Amazon A. oratrix, 

is now found breeding in a park in Stuttgart, Germany, but arguably only because of 

the presence of the London Plane tree in which it exclusively nests (Martens & Woog 

2017). In its native range this species has generalised nesting requirements, nesting 

in multiple tree species, but mainly dead palms - this lack of specialisation and ability 

to adapt to use cavities in the London Plane tree is likely to have contributed to its 

success in becoming naturalised outside of its traditional range (Eisermann 2003). 

There are no reports of A. lilacina occurring outside of their natural range (Mori et al 

2017). When considering a species with similar ecological needs to A. lilacina; the 

Red-tailed Amazon A. brasiliensis whose distribution is sympatric to the occurrence of 

mangroves and lowland forests (Martuscelli 1995), we also see no occurrence outside 

of its non-native range (Mori et al. 2017). It is likely that the complex habitat needs of 

these species restrict them from becoming naturalised in areas where these specific 

habitats do not occur. This specification may also reduce their ability to adapt to human 

modified landscapes and put them at a higher risk of extinction. In order to assess the 

level of habitat specificity of A. lilacina and identify any characteristics that may be 

associated with parrot presence, we conducted habitat assessments in areas that we 

know were suitable for parrots based on our observations and present the results of 

these in Chapter Four.  
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Appendices 

Appendix 1 

In all cases, prior verbal consent was obtained before conducting interviews and 

interviewees could decline from contributing once the purpose of the research was 

explained (in Spanish): 

 “We are collecting information about parrots as part of university research for 

Manchester Metropolitan University in the UK. The information gathered will be used 

to learn more about the parrots in this area and how we can help to conserve them, in 

their natural environment. I will be asking you some questions about the parrots you 

see around here, including where and how often you see them, but the answers will 

be completely anonymous. We will not be taking any names. We hope to publish this 

information in a scientific report, but the data will not be passed to others. You can 

decline to answer any questions you are not happy answering and you can withdraw 

at any time while completing the interview. Would you like me to repeat any information 

or do you have any further questions? Are you happy to take part in this research? 

[If participant agrees to take part] Thank you for taking part. I will now begin the 

interview. [If participant declines consent to take part] Thank you for your time.” 

Appendix 2 

All participants were asked the following questions by a local researcher in Spanish:  

Section 1: demographic information (all participants) 
 

Date: 
Name: 
Sex: 
Age: 
Level of schooling (none / primary / secondary / university):  
How many years have you lived in this village? 
GPS location (recorded by the interviewer): 
 

Section 2: parrots in general (all participants)  
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Do you see parrots in this area? (yes / no / not sure): 
Can you name the parrots you see in this area? (yes / no / not sure): 
Of the following ten photographs, which do you see here? (yes / no / not sure):  
Do you see any other parrot species? (yes / no / not sure): 
 

Section 3: A. lilacina specific (participants who report seeing A. lilacina in their area)   
 

Where / in which habitat around here did you see A. lilacina? 
Approximately how many did you see? 
What were they doing? (flying / nesting / feeding / perched / something else) 
Do you see them all year round? (yes / no / not sure) 
How do you distinguish them from the other parrots? 
What kind of habitat do you think they prefer? 
 

 

The following photographs were used to aid species recognition. Ten order 

combinations were available and rotated at random throughout the surveys. Most 

photographs used are taken from Athanas and Greenfield’s ‘Birds of Western 

Ecuador’. The photo of Amazona lilacina is by Daniel Arias and the photograph of the 

Brown-headed Parrot Poicephalus cryptoxanthus is by Bernard Dupont (cc: 

https://creativecommons.org/licenses/by-sa/2.0/deed.en). 

 

 

 

Size: 38 – 41 cm Size: 34 cm 

Size: 31 – 38 cm Size: 76 - 84 cm

https://creativecommons.org/licenses/by-sa/2.0/deed.en
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Appendix 3 

Evaluation metrics for all distribution models based on community data. Data were 

filtered based on different criteria (groups one to six). Models seven to seventeen are 

referred to as the combination models, with each representing a different combination 

of community data groups one to six. The mean and standard deviation of AUC and 

Tjur R² over five-fold cross validation are presented. The best performing model is built 

using community data group three (in bold).  

Size: 20 cm Size: 13 cm

Size: 28 cm Size: 31 - 35 cm

Size: 20 cm Size: 22 cm
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Community 
Model  

Sample 
size (after 
thinning) 

Permutation importance of variables >10% Mean of five-fold 
cross validation 
AUC (+/- sd) 

Mean of five-fold 
cross validation 
Tjur R² (+/- sd) 

1 27 (18) Distance to mangrove (52%) 
Distance to river (14%) 
NDVI seasonality (20%) 
 

0.83 (+/- 0.11) 
 

0.48 (+/- 0.06) 

2 155 (67) Distance to mangrove (35%) 
Precipitation of wettest month (17%) 
 

0.77 (+/- 0.10) 
 

0.42 (+/- 0.03) 

3 115 (53) Distance to mangrove (54%) 
Temperature seasonality (12%) 
 

0.84 (+/- 0.05) 
 

0.51 (+/- 0.01) 

4 134 (64) Distance to mangrove (43%) 
Precipitation of wettest month (22%) 
 

0.76 (+/- 0.06) 
 

0.41 (+/- 0.01) 

5 67 (40) Distance to mangrove (53%) 
 

0.76 (+/- 0.07) 0.40 (+/- 0.03) 

6 40 (26) Distance to mangrove (37%) 
Precipitation of wettest month (19%) 
 

0.74 (+/- 0.03) 
 

0.39 (+/- 0.02) 

7 
(3+4+5+6) 

28(18) Mean diurnal temperature range (54%) 
Distance to mangrove (30%) 
 

0.80 (+/- 0.04) 0.44 (+/- 0.06) 

8 (3+4+5) 40 (26) Distance to mangrove (34%) 
Annual mean NDVI (26%) 
Mean diurnal temperature range (20%) 
 

0.80 (+/- 0.07) 0.51 (+/- 0.02) 

9 (3+4+6) 67 (37) Distance to mangrove (48%) 
Precipitation of the coldest quarter (13%) 
 

0.82 (+/- 0.07) 0.48 (+/- 0.04) 

10 (3+5+6) 30 (20) Distance to mangrove (60%) 
Mean diurnal temperature range (15%) 
 

0.74 (+/-0.13) 0.49 (+/- 0.03) 

11 (4+5+6) 39 (24) Distance to mangrove (44%) 
Mean diurnal temperature range (33%) 
 

0.78 (+/- 0.07) 0.43 (+/- 0.04) 

12 (3+4) 102 (50) Distance to mangrove (56%) 
Temperature seasonality (12%) 
 

0.82 (+/- 0.04) 0.50 (+/- 0.01) 

13 (3+5) 45 (29) Distance to mangrove (51%) 
Mean diurnal temperature range (11%) 
Annual mean NDVI (10%) 
 

0.78 (+/-0.08) 0.52 (+/- 0.03) 

14 (3+6) 
 

76 (40) Distance to mangrove (57%) 
Annual mean temperature (15%) 
 

0.81 (+/-0.04) 0.49 (+/- 0.03) 

15 (4+5) 54 (34) Distance to mangrove (467%) 
Mean diurnal temperature range (23%) 
Annual mean NDVI (11%) 
 

0.75 (+/- 0.06) 0.41 (+/- 0.03) 

16 (4+6) 90 (48) Distance to mangrove (39%) 
Precipitation of the coldest quarter (21%) 
Precipitation of the wettest month (12%) 
 

0.73 (+/- 0.08) 0.41 (+/- 0.01) 

Community 
model 17 
(5+6) 

45 (27) Distance to mangrove (46%) 
Precipitation of the coldest quarter (16%) 
Precipitation of the driest month (15%) 
 

0.69 (+/- 0.05)  0.39 (+/- 0.04) 
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Chapter Four: The fine-scale habitat preferences of 

Amazona lilacina  

Abstract  

Parrots show a wide range in adaptability and ecological specialisation, with some 

surviving in towns and cities, whilst other remain restricted to areas where certain 

ecosystems occur. Human modification of landscape is a global threat to wildlife and 

the ability to adapt to such a changing landscape is likely to affect species extinction 

risk. The newly described Amazona lilacina occurs in the lowland coastal regions of 

Ecuador, the most densely populated region of the country, but we know little of its 

habitat preferences. We studied four areas where it occurs, including a protected area 

(CB2) and the disturbed boundary of this protected area (CB1), a community owned 

forest (LB) and recovering agricultural land (IS). We successfully observed parrots in 

all areas apart from the recovering agricultural land. We collected data on landscape 

and local scale habitat characteristics in the 200 m² surrounding presence (n = 42) 

and ‘pseudo-absence’ (n = 132) points. We compared the vegetation characteristics 

between four areas using Kruskal Wallis tests, and between presence and absence 

points using Wilcoxon rank sum tests. We then used random forests to assess the 

ability of habitat characterises to distinguish between parrot presence and absence. 

We recorded the species using five trees for nesting, four for roosting and at least 33 

for feeding, but found that the habitat variables across the four areas were significantly 

different. We suggest the area within a privately protected reserve is most suitable, 

due to its significantly lower evidence of humans, higher evidence of wild animals, and 

greater quantity and species richness of A. lilacina feeding trees. In the morning, 

parrots preferred areas at high elevation, with larger but fewer trees, whilst in the day 
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when foraging, they preferred areas at significantly lower elevation with larger and 

more trees. This suggests that they require a variety of habitat types in order to fulfil 

their daily requirements. Our random forest analysis was able to correctly distinguish 

absence points for the three areas but had a lower level of accuracy in predicting 

presence points. The predict function of random forests suggested that recovering 

agricultural land was suitable for parrots based on data from the disturbed protected 

area and community owned land, but not suitable based on data from the undisturbed 

protected area. This reflects the large difference between areas that parrots use, and 

thus highlights the need for landscape scale conservation to preserve the mosaic of 

habitats they need. 

Introduction 

Habitat availability is a limiting factor for the survival of many species worldwide and 

habitat loss has been linked directly to species extinction (Brook et al. 2003). A third 

of all Neotropical parrots are threatened with extinction and half of all populations are 

affected by habitat loss caused by agriculture and logging (Berkunsky et al. 2017; 

BirdLife International 2018c). Amazona lilacina is a Critically Endangered parrot 

endemic to the coastal provinces of Ecuador where it occurs over a patchwork 

landscape of dry forest, mangrove and agricultural land (Biddle et al. 2020; BirdLife 

International 2020b). One of its key threats is habitat loss and alteration as a result of 

expansion of the human population (Ridgely & Greenfield 2001a). Ecuador has been 

ranked as the sixth highest global priority for parrot conservation (Olah et al. 2016). 

Rapid deforestation for agriculture and anthropomorphic expansion led to the loss of 

half its original forest cover by 2008 (Mosandl et al. 2008). The lowland areas have 

been most intensively cleared (Tapia-Armijos et al. 2015) and as a result it is estimated 

that just 1% of dry forests (Dodson & Gentry 1991) and 60% of mangroves remain 
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(Hamilton 2013). Consequently, these ecosystems are listed as global conservation 

priorities due to their high biodiversity value and high level of threat from human activity 

(Miles et al. 2006; Romañach et al. 2018).  

A detailed knowledge of species ecological requirements and how these are met by 

their habitat is essential in order to understand the possible effects of habitat loss or 

alteration, and species with specialised ecological requirements may be more at risk 

of extinction than others (Frank & Amarasekare 1998; Davies et al. 2004). For 

example, it is suggested that cavity nesting birds, such as parrots, are affected by 

logging more than other species, because previously or selectively logged forests 

have significantly fewer and less suitable nesting cavities, than non-logged areas 

(Politi et al. 2010; Costantini et al. 2016; De Labra-Hernández & Renton 2016). Parrots 

also rely on species such as woodpeckers to initiate cavity creation (Guix et al. 1999), 

and these occur at a lower density and diversity in previously logged areas (Styring & 

Ickles 2001). Habitat alteration and logging may also affect foraging behaviour. A 

review of parrot densities and abundance worldwide, also suggests that parrot density 

is lower outside of primary or secondary forest (in selectively logged, fragmented, 

monocultural plantations) which suggests that they are having to use larger areas 

(Marsden & Royle 2015). Indeed, it has been shown that Amazon parrots forage over 

an area ten times as large when resource is limited, which is likely to have an energetic 

cost to the individual (Salinas-Melgoza et al. 2013).  

Amazona lilacina occur only in the lowlands of Ecuador, up to 700 m above sea level 

(Ridgely & Greenfield 2001a; Forshaw & Knight 2010; Freile & Restall 2018). They are 

reported to inhabit deciduous forest and mature secondary woodlands (Ridgely & 

Greenfield 2001a), scrubby dry forests and light woodlands (Juniper & Parr 1998; 

Athanas & Greenfield 2016), forest canopy, and forest edges (Freile & Restall 2018). 
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They roost in mangroves (Ridgely & Greenfield 2001a; Athanas & Greenfield 2016; 

Freile & Restall 2018) or more rarely stands of gallery trees (Forshaw 1981), and they 

nest in cavities formed in the trunks of large soft wood trees (Ridgely & Greenfield, 

2001). Site protection and management are the two most urgently and frequently 

required conservation measures for Neotropical parrots (Olah et al. 2016; BirdLife 

International 2018c). Following a recent conservation status review, A. lilacina has 

been up-listed on the IUCN Red List to Critically Endangered (Biddle et al. 2020; 

BirdLife International 2020a) however, the details regarding its specific ecological 

needs are unclear. Therefore, in order to help understand the species ecology and 

assist with conservation planning, this study aims to:   

i. confirm which tree species are required for feeding, nesting and roosting; 

ii. compare the habitat characteristics between areas used and not used by A. 

lilacina to distinguish key characteristics associated with presence; 

iii. predict the suitability of habitat in an area in which A. lilacina are believed to 

occur but species observations were not collected during this study. 

Methods 

Study area  

Four areas were included in this study (Figure 1) representing different habitat types, 

a protected area, a disturbed protected area, community owned land, and recovering 

agricultural land. The protected area, the Cerro Blanco is ~6,000 hectares of dry 

tropical forest managed by Fundación Pro Bosque, a non-profit organisation whose 

main objective is to protect the forest from threats such as fire, hunting, land trafficking 

and the development of squatter settlements, through ranger presence, reforestation, 

research, environmental education and ecotourism (Horstman 2017). As a dry forest, 

it is characterised by 50% drought-tolerant deciduous trees, a mean annual 
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temperature of >25ºC, and rainfall of 700 - 900 mm per year falling mainly between 

January and April (Sánchez-azofeifa et al. 2005; Horstman 2017). This is an area of 

forested hills, with little human presence, used by A. lilacina for nesting and foraging 

(R. Biddle pers. obs.). The boundary of this protected area is much more disturbed, 

with a network of buildings, trails and trees are accessible to paying visitors. Despite 

disturbance, this area is also used by A. lilacina, but mainly in the morning as the birds 

arrive from their El Salado mangrove roost site.  

The remaining two areas in this study represent places where little is known about the 

habitat use of A. lilacina. Las Balsas is community owned land ~50 km north-west of 

the Cerro Blanco Forest, in the Cordillera Chongón Colonche. This population of A. 

lilacina has been known by the local community for at least 50 years but was not 

recorded in any literature or online species databases until 2016 (Blanco et al. 2016). 

It occurs far from the coast and is the only identified population that does not use 

mangroves to roost, instead existing across a patchwork of community owned forest 

and agricultural land. Isla Santay is an island in the big city of Guayaquil, made up of 

coastal mangrove, shrubby dry forest, agriculture and recovering agricultural land. It 

is listed as a recreational area under Ecuador’s National System of Protected Areas 

(NSPA), which means that since 1990 no further settlement or agriculture has been 

permitted. The island is managed by the Ministry of Environment (MAE) and 

accessible to paying visitors by a pedestrian bridge from Guayaquil. There have been 

reports of A. lilacina foraging on the island from MAE wardens, and we have observed 

them in the coastal mangroves.   
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Figure 1: The four dry forest study areas were; Cerro Blanco 1 (CB1) the disturbed 

protected area, Cerro Blanco 2 (CB2) the protected area, Las Balsas (LB) the 

community owned land and Isla Santay (IS) the recovering agricultural land. The two 

nearby communal roosting sites for Amazona lilacina are also shown; El Salado and 

Rio Piedras.  

Parrot presence and absence points   

Between September 2016 and February 2017, we collected georeferenced locations 

of parrot presence and parrot absence points using Garmin eTrex GPS units. Our 

presence points referred to the exact location where we had seen parrots perched, 

and our ‘pseudo-absence’ points referred to locations within the vicinity of parrots (<2 

km from parrot sightings) but where no observations of parrots were made during our 

study. Due to the secretive nature of this species whilst foraging, we devised two 
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methods to observe parrots. First, we occupied vantage points over roost sites to 

visually track birds arriving into the forest between 05h00-08h00, projected the 

georeferenced locations of the parrots, and then later ground-truthed those locations. 

Second, we conducted forest transects along ranger patrolling routes between 08h00-

11h00 and 14h00-18h00 in small groups, whilst continuously scanning the canopy and 

quietly listening for parrots. Presence points were collected successfully in three of the 

four study areas, and our aim was to compare these with absence points in order to 

identify any habitat characteristics that parrots may prefer. To collect absence points, 

we followed a systematic approach whilst walking forest transects, scrambling 15 m 

into the forest on alternate sides, every 100 m. The transects followed paths that are 

used as foot access into the forest and between the guard stations in the protected 

area. These stations are based a high locations, and therefore the trails roughly follow 

the high ridges of the Cerro Blanco (white hill). It was not possible to select random 

locations due to the inaccessibility of the forest during the rainy season, and the desire 

not to cut paths or damage reforested and regenerating areas.  

Habitat characteristics   

To record habitat characteristics associated with parrot presence and absence, we 

formed small groups consisting of two Chester Zoo staff and one ranger from 

Fundación Pro Bosque. We treated each presence and absence point as a central 

point from which we walked 10 m in each compass direction to mark out a large 

quadrat of 200 m² (Figure 2). We waited until times of low bird activity to collect data, 

in order to minimise disturbance to parrots, and completed each quadrat in 

approximately 30 minutes. We followed similar methods to previous studies assessing 

the effect of habitat characteristics on bird presence / abundance (Chettri et al. 2005; 
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Reid et al. 2012; Zhang et al. 2013) and recorded landscape-scale variables of 

elevation (m) and XY coordinate, and the following local patch-level characteristics:  

 number of trees with a diameter at breast height (dbh) of >30 cm; 

 combined total dbh (cm) for the quadrat area; 

 for trees with a dbh >30cm; 

o exact dbh (cm); 

o species and if this is used by A. lilacina for feeding, roosting or nesting, 

based on our observations, observations of the rangers including across 

different seasons, and observations reported by other researchers (Kunz, 

1996; Juniper & Parr, 1998; Berg & Angel, 2006; Blanco et al., 2016); 

 density of foliage at chest height, measured by the number of squares in a clear 

plastic grid (10 cm by 10 cm) that are not obscured by leaves or woody material 

when looking from the central point to each corner of the quadrat, then averaged;  

 level of canopy openness, measured by the number of squares in the same clear 

plastic grid, that are not obscured leaves when looking upwards at the central point; 

 percentage ground cover in the categories of exposed soil, leaf litter, herbaceous 

plants (plants ≤1 m) or shrubs (plants ≥1 m); 

 signs of animal biodiversity as an indicator of ecosystem health, for example seen 

or heard specimens (mainly invertebrates, birds, reptiles), droppings or feeding 

marks - recorded as yes or no;  

 signs of indirect or direct human disturbance such as signs of fire, cut wood and 

logging, rubbish, grazing animals or dogs - recorded as yes or no. 
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Figure 2: A 200 m² quadrat was marked out around the central point which 

represents a parrot presence or absence point, by walking 10 m in each compass 

direction. Within this area, habitat characteristics were recorded. 

Data analysis  

To make an initial comparison between the forest types in the four areas we used 

habitat variables collected at the absence points. We calculated median and 

interquartile range for each and used Kruskal Wallis tests to identify significant 

differences.  In order to compare between the parrot presence and absence points, 

within the three areas for which these data were collected, we conducted unpaired 

two-sample Wilcoxon tests in R using the function ‘wilcox.test’.  

In order to assess the ability of the habitat variables to distinguish between parrot 

presence and absence in each area independently, and then for all areas combined, 

we conducted random forests analysis (Breiman 2001) using the R package 
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‘randomForest’ (Breiman et al. 2018). This analysis uses an ensemble of decision 

trees to classify data, with each tree predicting a classification, and the classification 

with the most votes becoming the model prediction. For each random forests model, 

we present the confusion matrix which confirms how many of the presence and 

absence points were correctly or incorrectly classified, and two model comparison 

methods; the out of bag error rate (OOB) and the mean decrease in accuracy (MDA). 

Random forests uses bagging (bootstrap aggregation), whereby a subset of the data 

is used to build the model, and then the remaining data (out of bag) is used as a test 

sample. The out of bag error rate (OOB) therefore measures the ability of the model 

to correctly classify the out of bag data, and provides a robust method of evaluating 

each model’s predictive performance (Breiman 2001). The mean decrease in accuracy 

(MDA) is presented for each variable, within each random forest model. This value 

represents the difference in predictive accuracy for the out of bag data when a variable 

is removed, and so the higher the value the more important that variable is for 

successful classification between presence and absence (Cutler et al. 2007). 

For the recovering agricultural areas, only absence data exists. To determine whether 

this area is suitable for parrots or not we used the predict function of the random forest 

package, to classify each location in the Isla Santay recovering agricultural area, 

based on the models built using presence and absence data from the protected area, 

the disturbed protected area, the community owned land, and then combined. All data 

analysis was conducted in R version 4.0.2 (R Core Team, 2020). 
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Results  

Key feeding, roosting and nesting tree species  

We collected data from a total of 179 locations; 42 parrot presence points and 137 

parrot absence points (Table 1). During the study, parrots were observed using the 

protected area, the disturbed protected area, and the community owned land. In the 

past, parrots have been seen using Isla Santay the recovering agricultural land - 

however, during our study no parrots were seen here. Across all sites, we recorded 

60 tree species during habitat assessments, and with the help of Fundación Pro 

Bosque plant nursery staff, were able to identify most of these to species level. Based 

on our observations, those of the forest rangers, and previously published literature 

(Kunz, 1996; Juniper & Parr, 1998; Berg & Angel, 2006; Blanco et al., 2016) we confirm 

that A. lilacina feeds on the flowers, fruits or seeds of 33 species, and roosts in either 

mangrove or Algarrobo trees. Active nests have been documented in Ceibo, Pigio, 

Bototillo, Guarumo and Balsa (Table 2).  

Table 1: Habitat variables were collected at 179 locations across four areas that 

parrots use.  

 Area Total  

Disturbed 
protected area 
(CB1) 

Protected 
area 
(CB2) 

Community 
owned land 
(LB) 

Recovering 
agricultural 
land (IS) 

Total points 17 122 24 16 179 

Presence points 10 23 9 0 42 

Absence points  7 99 15 16 137 
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Table 2: Tree species used by A. lilacina for feeding, nesting and roosting.  

Local Spanish name Scientific binomial Family Feed Nest Roost 

Pigío Cavanillesia  platanifolia Malvaceae Feed Nest   

Ceibo Ceiba trichistandra  Malvaceae Feed Nest   

Balsa Ochroma pyramidale Malvaceae Feed Nest   

Bototillo Cochlospermum vitifolium Bixaceae Feed Nest   

Guarumo Cecropia litoralis Urticaceae Feed Nest   

Mangle jelí Conocarpus erectus  Combretaceae   Roost 

Mangle Blanco Laguncularia racemosa  Combretaceae   Roost 

Mangle negro Avicennia germinans  Acanthaceae   Roost 

Algarrobo Prosopis julifora  Fabaceae Feed  Roost  

Cocobolo Cynometra bauhiniifolia  Fabaceae Feed   

Guarango Caesalpinia spinosa  Fabaceae Feed   

Beldaco Pseudobombax millei Malvaceae Feed   

Cascol Caesalpinia glabrata  Fabaceae Feed   

Ciruela Spondias purpurea  Anacardiaceae Feed   

Ficus Ficus sp  Moraceae Feed   

Guaba Inga spectabillis Fabaceae Feed   

Guanabana Annona muricata  Annonaceae Feed   

Guasmo Guazuma ulmifolia  Malvaceae Feed   

Guayaba Psidum sp Malvaceae Feed   

Higueron Ficus membranaceae  Moraceae Feed   

Mango Mangifera indica  Anacardiaceae Feed   

Matapalo Ficus cuatrecasana  moraceae Feed   

Muyuyo Cordia lutea  boraginaceae Feed   

Naranjo Citrus sinensis Rutaceae Feed   

Pechiche Vitex gigantea kunth  Lamiaceae Feed   

Pela Caballo Leucaena trichodes  Fabaceae Feed   

Pepito Colorado Erytrina velutina Fabaceae Feed   

Guachapeli Pseudosamanea guachapele  Fabaceae Feed   

Ciruelo de Monte Spondias mombim Anacardiaceae Feed   

Cojojo Acnistus arborescens  Solanaceae Feed   

Erythrina Erythrina fusca  Fabaceae Feed   

Tutumbo Cordia eriostigma Boraginaceae Feed   

Tinto Lonchocarpus apurpurea Fabaceae Feed   

Vanillo Senna sp. Fabaceae Feed   

Palo Santo Bursera graveolens  Burseraceae Feed   

Bolsa de chivo Stemmadenia obovata  Apocynaceae Feed   

 

Comparison of areas used by parrots 

When comparing the absence points across the four areas, we see significant 

differences in 12 of the 15 habitat variables (Table 3). For instance, the disturbed 

protected area and the recovering agricultural land, are at much lower elevation than 

the other two areas. In the protected area, the foliage is considerably denser at chest 

height than the other three areas and it has a much higher mean percentage of leaf 
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litter cover. In comparison, the recovering agricultural land has as a considerably more 

open canopy than the other three areas, fewer larger trees, and therefore a much 

lower total tree diameter at breast height. There is also a difference in the number of 

tree species that are important for parrots; the protected area has up to six feeding 

and one nesting tree per quadrant, but no roosting tree species which are only present 

in the recovering agricultural area and the community owned land.  Finally, there are 

differences in the level of human disturbance, with 100% of quadrats in the disturbed 

protected area showing some evidence of human disturbance, 88% in the recovering 

agricultural land, 47% in the community owned land, and 11% in the protected area.  
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Table 3: The lower quantile, median and upper quantile of each habitat variable at the absence and presence points in each of the 

four areas. The results of Kruskal Wallis tests indicate the ‘difference between the four areas’ and p-value results from Wilcoxon tests 

indicate ‘difference between presence and absence’ within each area. CB1 is the disturbed protected area, CB2 the protected area, 

LB the community owned land and IS the recovering agricultural land.  

Variable Value Absence Difference between 
four areas 

Presence Difference between presence 
and absence (p value) CB1 CB2 IS LB CB1 CB2 LB 

N = 7 N = 99 N = 15 N = 16 H P N = 10 N = 23 N = 9 CB1 CB2 LB 

Elevation (m) LQ 24 350 10 429 67 <0.001 63 112 84 <0.001 <0.001 0.049 

MED 24 365 11 450 68 327 120    

UP 37 379 13 459 71 343 370    

Chest height 
density (%) 

LQ 54 29 47 65 26 <0.001 48 31 45 0.696 0.377 0.355 

MED 70 43 60 78 60 47 59    

UP 84 60 84 91 87 74 80    

Canopy (%) LQ 31 8 35 10 13 0 76 9 35 0.256 0.665 0.134 

MED 50 30 100 20 85 18 45    

UP 65 67 100 45 95 50 90    

Leaf litter (%) LQ 10 30 0 5 29 <0.001 53 35 0 0.022 0.657 0.038 

MED 10 60 0 30 80 50 0    

UP 30 90 8 95 90 70 20    

Herb layer (%) LQ 30 0 9 0 38 <0.001 0 0 0 0.002 0.023 0.307 

MED 45 0 35 0 0 0 20    

UP 48 7 91 30 0 0 30    

Bare soil (%) LQ 0 0 0 0 3 0.41 3 0 5 0.110 0.44 0.224 

MED 0 0 0 0 10 0 10    

UP 8 5 0 10 14 3 20    
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Shrub layer 
(%) 

LQ 25 2 4 5 3 0.43 0 18 20 0.009 0.100 0.322 

MED 35 13 25 30 0 45 50    

UP 45 50 80 49 9 50 60    

Number large 
trees 

LQ 5 3 0 4 18 <0.001 2 5 2 0.223 0.044 0.187 

MED 8 5 2 7 3 8 4    

UP 9 9 4 9 4 10 6    

Largest tree 
(cm) 

LQ 50 55 23 60 23 <0.001 64 71 43 0.013 0.038 0.107 

MED 53 81 31 69 107 113 50    

UP 70 117 44 86 124 176 63    

Total tree dbh 
(cm) 

LQ 224 172 23 274 21 <0.001 123 290 81 0.045 0.002 0.084 

MED 287 320 68 349 149 590 152    

UP 330 490 168 446 177 743 345    

Number of 
feeding trees 

LQ 1 1 0 0 26 <0.001 0 2 0 1 0.649 0.424 

MED 1 3 0 1 1 3 0    

UP 1 6 1 5 2 6 2    

Number of 
nesting trees 

LQ 0 0 0 0 14 0 0 0 0 0.142 0.474 0.491 

MED 0 0 0 0 0 1 0    

UP 0 1 0 0 1 1 0    

Number of 
roosting trees 

LQ 0 0 0 0 43 <0.001 0 0 0 NA NA 1 

MED 0 0 0 0 0 0 0    

UP 0 0 1 1 0 0 1    

Human 
evidence 
(1=yes, 0=no) 

LQ 1 0 1 0 61 <0.001 0 0 1 0.016 0.329 0.228 

MED 1 0 1 0 0 0 1    

UP 1 0 1 1 1 1 1    

Animal 
evidence 
(1=yes, 0=no)  

LQ 0 0 0 0 7 0.079  0 0 0 0.954 0.005 0.152 

MED 0 0 0 0 0 0 0    

UP 1 0 0 0 1 1 0    
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Comparison of presence and absence points 

When comparing areas of parrot presence with absence, in the disturbed, protected 

area and community owned land, there were significant differences in a number of 

forest characteristics (Table 3) but the only one that was significant across all areas 

was elevation (Figure 3). Parrots use locations at lower elevation in the protected 

areas and the community owned land, but locations at higher elevation in the disturbed 

protected area (Figure 3). Throughout Cerro Blanco parrots use locations where the 

size of the largest tree is significantly bigger than in areas they do not use. In the 

protected areas, this is coupled with significantly higher leaf litter cover and lower herb 

and shrub layer cover, whilst in the disturbed protected area on the boundary of the 

forest, there are no significant differences in ground cover. In the protected area, 

parrots use locations with a greater number of large trees, and therefore a bigger 

overall diameter at breast height, whereas in the disturbed protected area, parrots 

select for areas with significantly fewer large trees (three rather than seven).  
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Figure 3: Boxplots to show the range of elevation (m) in areas of parrot presence 

and absence. CB1 is the disturbed protected area, CB2 the protected area, LB the 

community owned land and IS the recovering agricultural land. 

Classification of presence and absence areas  

Random forest analysis was able to distinguish between presence and absence points 

in the disturbed protected area with a high accuracy (OOB error rate: 6%); all of the 

absence points were categorised correctly, as were nine of the ten presence points. 

When looking at data from the protected area, models had lower accuracy (OOB error 

rate: 11%); but again were able to predict all of the absence points correctly, but only 

ten of the 23 presence points. Of those that were incorrectly predicted, i.e. those that 

showed a value of <0.5 for predicted probability presence (n = 14), the mean predicted 
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presence value was 0.26 (+/- 0.15). For the community owned land, models had an 

even lower accuracy (OOB error rate: 17%), correctly predicting all of the absence 

points (15) but just five of the nine presence points. When combining the data across 

the three areas, models showed an error rate of 16%, and were able to correctly 

classify 135 of the 137 absence points but again just 16 of the 42 presence points 

(Table 4).  

Table 4: Confusion matrix showing the out of bag error estimates and classification 

results of random forest models for the disturbed protected area (CB1) the protected 

area (CB2) and the community owned land (LB).  Numbers in bold indicate where 

models are able to correctly distinguish between presence and absence. 

CB1 - disturbed protected area 

OOB estimate of  error rate: 6% predicted presence predicted absence Error 

Actual presence (n = 10) 9 1 0.1 

Actual absence (n = 7)  0 7 0.0 

CB2 - protected area 

OOB estimate of  error rate: 11% predicted presence predicted absence Error 

Actual presence (n = 23) 10 13 0.56 

Actual absence (n = 99) 0 98 0.01 

LB - community owned land 

OOB estimate of  error rate: 17% predicted presence predicted absence Error 

Actual presence (n = 9) 5 4 0.44 

Actual absence (n = 15) 0 15 0 

All areas combined 

OOB estimate of  error rate: 16% predicted presence predicted absence Error 

Actual presence (n = 42) 16 26 0.62 

Actual absence (n = 137) 2 135 0.01 

Across all areas, elevation had the highest mean decrease in accuracy value (MDA) 

and was therefore most powerful at distinguishing between parrot presence and 

absence locations (Table 5). The second and third most important variables 

associated with the presence of parrots differs for each area: for the disturbed 

protected area it is herb layer and shrub layer cover, for the protected area it is number 

of large trees and shrub layer, and for the community owned land it is the number of 

nesting and roosting trees (Table 5).  
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Table 5: The mean decrease in accuracy for random forests models for each area. 

Values give an indication of how important that variable is in distinguishing between 

presence and absence points.  

Variable Mean decrease in accuracy  

Disturbed 
protected area 
(CB1) 

Protected area 
(CB2) 

Community 
owned land 
(LB) 

All areas 
combined  

Elevation 10.21 20.98 13.48 26.23 

Density at chest height  -1.62 -0.38 0.02 1.88 

Canopy  2.95 1.97 -1.46 8.33 

Leaf litter 3.82 4.96 5.92 7.82 

Herb layer 9.90 1.15 1.23 11.09 

Soil exposed -0.88 3.47 4.65 7.66 

Shrub layer 5.83 6.76 2.32 6.14 

Number of large trees 2.70 8.09 2.54 8.45 

Total tree dbh 2.12 6.67 2.50 12.66 

Largest tree dbh 3.02 4.14 3.89 9.15 

Number of feeding trees -2.12 1.59 5.19 5.55 

Number of nesting trees  1.34 1.88 0.00 1.24 

Number of roosting trees  0.00 0.00 5.66 5.02 

Human evidence  2.73 3.04 -1.19 7.20 

Animal evidence -0.37 0.53 0.00 -1.20 

We used the random forest models built with data from the three areas in which parrots 

were seen, to predict which of the 16 locations within the recovering agricultural land 

in Isla Santay may be suitable for parrots. All 16 locations were predicted to be 

presence points. On the contrary, when using the model built with data from just the 

protected area, 14 of the 16 recovering agricultural locations were predicted as 

absence points. When using the model built with just community owned land data, all 

16 recovering agricultural locations are predicted to be presence points, and again on 

the contrary, when using the random forest model built using all the data combined, 

all 16 of the recovering agricultural land locations were predicted to be absence points 

(Table 6).  



89 
 

Table 6: Predictions from random forest models built with data from each area, to show 

whether the locations in recovering agricultural land (IS) are suitable for parrots.  

Random forest model built using 
data from: 

Random forest predictions for the 16 IS locations  

Predicted presence Predicted absence 

CB1 disturbed protected area  16 0 

CB2 protected area 2 14 

LB community owned land 16 0 

Combined CB1, CB2 and LB data  0 16 

 

Discussion 

This study has shown that A. lilacina are present in at least three areas with 

significantly different fine-scale habitat characteristics, where they are known to use 

just five tree species for nesting, four for roosting and 33 for feeding. Our results 

suggest that the forest within a privately protected reserve, is likely the most suitable 

area for the species, because it has the most feeding and nesting trees, and the least 

evidence of humans which are known to pose threats to the species’ survival 

(Horstman 2017). Across all areas we found significant differences between the 

locations that are used, and not used, by A. lilacina suggesting that similarly to other 

Amazon parrots, they have a clear preference for certain habitats and characteristics 

(Gilardi & Munn 1998; Salinas-Melgoza et al. 2013; Figueira et al. 2015). These 

preferences vary depending on the area, for example between the disturbed protected 

area, which we observed being used predominantly at sunrise, and deeper inside the 

protected area which was used predominantly during the daytime. We suggest that 

these areas have different functions and that A. lilacina requires a mosaic of habitats, 

and has relatively complex habitat needs which may put it at an increased risk of 

extinction (Owens & Bennett 2000). Our models provided vastly different predictions 

regarding whether or not a recovering agricultural area was suitable for parrots, which 

further emphasises the variation in habitats this species requires.  
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We found that elevation is the most important contributing factor for distinguishing 

between presence and absence in all areas, but in the morning there is preference for 

higher elevation, whilst in the daytime the preference is for lower elevation. Overall, 

our results suggest that when birds are arriving from their roost site they prefer a higher 

elevation with one large dominating, whilst in the day when foraging they prefer a lower 

elevation and area with multiple large trees. In the forests of Peru, Amazon parrots 

were also found to avoid areas of high ground when foraging whilst larger bodied 

parrots, i.e. macaws, showed a preference for high ground (Gilardi & Munn 1998). This 

perhaps reflects A. lilacina’s secretive and cautious nature when foraging and 

vulnerability to avian predators such as the Grey-backed Hawk Pseudastur 

occidentalis (Kunz 1996; Ridgely & Greenfield 2001a). 

We found that tree size was significantly different in locations used by parrots 

compared to those that were not, in both the protected and the disturbed protected 

areas. In the disturbed protected area, the diameter at breast height (dbh) of the 

largest tree was seven times larger in areas used by parrots, and in the protected area 

it was over twice as large. This association is not found for other large frugivores 

(macaws, toucans, curassows, guans, chacalacas) in the forests of western Ecuador 

(Walter et al. 2017) which suggests that for Amazon parrots, these large trees may 

play a particularly important role, not just for feeding. In the disturbed protected area 

we found parrots using areas with fewer large trees, one of which was extremely large, 

but in the protected area, they had a preference for areas with a greater density of 

large trees. The protected area was used mainly by birds in the day for foraging, so 

this preference may be associated with selection of larger trees more mature trees 

that have a greater feeding resource. We also found that in this protected area, parrots 

use locations with significantly more evidence of other native animal species, which 
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again is perhaps associated with a more mature forest (Lawton et al. 1998). It is 

suggested that nesting trees for Amazon parrots must be a minimum of 59 cm dbh 

(Snyder et al. 1987), however we believe it is unlikely that parrots are selecting for 

areas with nest trees as they are known to be extremely cautious around nest cavities 

if observers are present (Enkerlin-Hoeflich et al. 2006).  

Our models to classify between presence and absence in each area independently 

had relatively low error rates (< 17%). However, the predictions of these models into 

a new area of recovering agricultural land in which we gathered no species 

observations, were vastly different. They suggested this area is suitable for A. lilacina 

based on information from community owned and disturbed protected forest, but not 

suitable for parrots based on information from a protected area. This highlights the 

large variation between the three areas that we observed parrots in, and indicates that 

there may be additional predictors of parrot presence that we did not capture in our 

methods. Our data collection protocol was time efficient and easily replicated by 

multiple members of staff speaking different languages, and our focus was on 

identifying the trees that are important to this species. Now this list has been compiled, 

future studies should pay particular attention to the phenology of these species whilst 

conducting habitat assessments. It has been shown that parrot presence is often 

influenced by food availability (Renton et al. 2015) therefore recording if trees have 

flowers, fruits or seeds, and quantifying this using established methods for censuring 

fruiting phenology such as fruit traps and ground raking (Zhang & Wang 1995) may 

help to further understand A. lilacina’s movements. Furthermore, the inclusion of 

additional landscape scale characteristics such as habitat patch size and connectivity, 

land use cover, distance to roosting sites and known nesting sites, may help to improve 

the predictive ability of our models.  
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A number of our results suggest that the protected area is the most suitable habitat for 

A. lilacina in our study. It had a much greater species richness of feeding trees, with 

33 compared to just five in the community owned land where previous research 

suggests that at least at certain times of the year, A. lilacina feed predominantly on 

just two species (Blanco et al. 2016). Furthermore, it had significantly lower evidence 

of human disturbance and significantly greater evidence of animal biodiversity, 

compared to the community owned land and the recovering agricultural land. Despite 

this, it is clear that these areas are all very important for A. lilacina. In light of a recent 

prediction that for parrots worldwide, future agricultural expansion will continue to have 

negative consequences on their survival (Vergara-Tabares et al. 2020), it is essential 

to work with local communities to enable them to preserve habitats that are suitable 

for parrots, within their community-owned lands.  

Conclusion and further research  

The habitat assessments presented in Chapter Four show that Amazona lilacina 

displays preferences for certain dry forest characteristics, and this varies depending 

on the time of day or behaviour. They also suggest that they use only a few tree 

species for nesting and roosting, and that three of the four roosting species are 

mangroves which are globally threatened (Hamilton & Casey 2016). The distribution 

of this species is likely to be dependent on the availability of suitable habitat for 

communal roosting, and it is possible that communal roosting can help to modify 

foraging behaviour. These Amazons appear loyal to roost sites, however the function 

of their communal roosting behaviour is unclear (Berg and Angel 2006, Kunz 1996, 

Ridgely and Greenfield 2001) - Chapter Five aims to study this roosting behaviour in 

more detail.  
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Chapter Five: Using roost surveys to assess population 

dynamics of Amazona lilacina  

Abstract  

Amazon parrots often utilise traditional communal roost sites, which they are loyal to 

for many years and return to each night. Surveys of such roosts, recording the total 

number and composition in which birds arrive or depart, can be used to estimate 

population size and reproductive parameters such as the number of nest attempts or 

fledged chicks. We conducted roost surveys for 36 consecutive months between 2016 

and 2019. Parrots were recorded in the morning when departing the mangrove roost 

site, and in the afternoon as they returned after a day foraging in the nearby dry forest. 

We compared the results of morning and afternoon surveys using paired t-tests and 

estimate the total roost size based on maximum counts. We estimate the population 

at 149 birds, which is the mean of the highest five counts ranging from 135 to 173 

individuals. We found significant differences between the overall morning and 

afternoon counts. We used generalised mixed linear models, to assess the 

significance of month on roost size and composition i.e. if birds were flying as a pair, 

single or triplet. The breeding season for this species is from November – March. We 

found that the roost was significantly larger in January, February and March and 

significantly smaller in November, December and April. This contradicts what is 

generally understood for amazon parrot roosts, and what was seen at this roost twenty 

years ago, where the peak roost size is during the non-breeding season. We found 

that a significantly greater proportion of the roost was made up of single birds in 

November, and of birds flying as triplets in May. However, because of the overriding 

unusual trend seen in overall roost size, it is difficult to further analyse roost 
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composition to estimate the population reproductive output. This seasonal fluctuation 

in roost size, which contradicts what was reported here twenty years ago raises 

concern over the stability and security of this roost site, as does the evidence of nest 

poaching during the study period. 

Introduction  

Amazon parrots are usually inconspicuous during the daytime when feeding, and 

many species are only visible at dawn and dusk when gathering or flying to and from 

communal roosting grounds (Snyder et al. 2000; Ridgely & Greenfield 2001a; Enkerlin-

Hoeflich et al. 2006). The study of such roosts has therefore long been a focus of 

researchers who are eager to understand more about the population ecology of these 

secretive birds. Roost surveying is relatively straightforward and cost effective, and 

can be as informative as other methods such as line transects, point transects and 

mark-resighting (Gnam & Burchsted 1991; Martuscelli 1995; Casagrande & Beissinger 

1997; Cougill & Marsden 2004). Previous studies have used roost surveys to estimate 

population size and to evaluate long-term population trends (Gnam & Burchsted 1991; 

Martuscelli 1995; Casagrande & Beissinger 1997; Wermundsen 1998; Cougill & 

Marsden 2004; Matuzak & Brightsmith 2007). In addition, assessment of seasonal 

fluctuation of roost size has been used to help understand aspects of population 

ecology, such as the proportion of a population that is breeding, the number of nest 

attempts, the number of fledged chicks, and the relationship between roosting 

strategies and foraging (Berg & Angel 2006; Matuzak & Brightsmith 2007; De Moura 

et al. 2010; Seixas & Mourão 2018; Wright et al. 2019). 

Interpretation of roost survey results requires a prior knowledge of Amazon parrot 

behaviour. Firstly, that birds are loyal to roost sites over the long-term, often using 

them every evening “as long as the trees are standing” (Martuscelli 1995) therefore 
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lack of attendance at a roost site is likely due to a factors such as adverse weather or 

human disturbance (Snyder et al. 1987; Cougill & Marsden 2004). Secondly, that their 

monogamous social systems makes pairs conspicuous in flight and thus study of the 

composition of groups flying to the roost may indicate social structure (Enkerlin-

Hoeflich et al. 2006). Finally, Amazon parrots have seasonal breeding with clearly 

defined parental roles, and thus attendance at the communal roost and the 

composition of the communal roost may fluctuate across the year. For example, 

females are responsible for incubating eggs in the nest cavity and therefore will not 

return to the communal roost at night during this time (Snyder et al. 1987; Berg & Angel 

2006). In many cases roost size may diminish gradually as the breeding season 

advances when breeders roost in nests, and may sharply increase after young fledge 

and follow their parents to the roost (Dénes et al. 2018). 

There are a number of best practices to consider when developing roost survey 

protocols (Dénes et al. 2018). The location of neighbouring roost sites may influence 

the daily variation in roost counts; therefore roosts must be independent, for example 

it was believed for Red-tailed Amazons, Amazona brasiliensis, that there would be 

relatively low day-to-day movement between two roost sites that were 8 km apart  

(Cougill & Marsden 2004; Dénes et al. 2018). Prior knowledge of the roost site and 

local area in question is essential and the location from which to conduct roost surveys 

must be carefully selected to allow a wide view over the roost site to see birds arriving 

or leaving, and multiple locations must be trialled in advance (Dénes et al. 2018). In 

some cases birds may fly in and out of the roost site repeatedly, therefore a method 

which allows this to be accounted for is necessary – i.e. an imaginary line that birds 

are counted in and out of when they pass  (Cougill & Marsden 2004). If it is not possible 

to conduct counts every day of the year, the counting regime must be carefully 
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considered. It has been found that a random selection of dates over a month (five to 

ten) or counts over successive days performed better at estimating roost size than 

returning periodically, i.e. retuning every four days within the same period (Cougill & 

Marsden 2004). A number of studies have found that counts conducted in the morning, 

when birds are passing closer to the observer, are more accurate than evening counts 

(Cougill & Marsden 2004; Berg & Angel 2006; Matuzak & Brightsmith 2007). This, 

however, cannot be assumed for all species and roost sites, thus morning and evening 

surveys must be conducted at least in the first instance to assess which is more 

reliable.  

Even when a robust protocol is developed, imperfect detection is a factor that must be 

considered (Dénes et al. 2018). Observer bias in detection can be minimised by 

ensuring that the same researcher conducts all counts, and sampling effort can be 

controlled for by ensuring the observer is present for the same amount of time each 

day, which encompasses all plausible flight times of the birds. For this study, we 

developed a roost survey protocol following best practice, and conducted roost counts 

at a long-standing independent roost of the Critically Endangered Amazona lilacina, 

for three years with the following specific aims: 

i. estimate the size of the subpopulation from the maximum number of birds 

observed during roost surveys;  

ii. determine if there is a difference between the number of birds observed during 

morning and afternoon surveys, and which is likely to give a more reliable 

representation of roost size and seasonable fluctuation; 

iii. assess whether roost surveys can be used as an indicator of population 

reproductive health. 
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Methods  

Study area  

For this study, we focused on the subpopulation of Amazona lilacina which forages 

and nests in the dry forests of the Cordillera de Chongón, in particular the Cerro Blanco 

Protected Forest, and roosts in the mangrove islands of the El Salado Reserve (Berg 

& Angel 2006). Birds travel between the two areas at dawn and dusk, flying over the 

fishing town of Puerto Hondo, a behaviour that has been observed by local 

communities since at least the early 1990s (Figure 1). It is understood that all A. lilacina 

individuals from the local area return to this roost site, which is believed to be 

independent (> 40 km away) from other roosts (Berg & Angel 2006; Biddle et al. 2020).  
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Figure 1: Map showing the Cerro Blanco Protected Area that is used by Amazona 

lilacina for foraging and nesting, the El Salado Mangrove Reserve where parrots roost 

overnight, and the vantage point from which roost surveys were conducted. The large 

city of Guayaquil is shown to the east of the roost site, and the rectangular clearings 

of mangrove to the south of the roost are shrimp farms.  

Reproductive timeline  

Parental responsibilities of A. lilacina during the breeding season may affect the 

attendance of birds at the roost site, as they may choose to roost overnight in nest 

cavities in the dry forest, rather than flying to the mangrove (Berg & Angel 2006). The 

breeding season is reported as January – March (Juniper & Parr 1998). From closely 

monitored active nests within Cerro Blanco Forest it appears that adults begin nesting 

from November and produce one or two chicks that fledge between mid-February and 

late March the following year (Kunz 1996; Berg and Angel 2006, Fundación Pro 

Bosque reports and R. Biddle pers. obs. 2017 - 2020). For this reason, we define the 

“breeding year” in this study, from November to October. The fledging date is also 

supported by studies of A. autumnalis (A. lilacina’s closest relative) where 24 nests 

were monitored in north-eastern Mexico. The mean length of incubation was 28 days, 

followed by 55 days of brooding before chicks fledged between the 19th of March and 

the 22nd of April (Enkerlin-Hoeflich et al. 2006). Prior to egg laying, the pair may roost 

in the nest cavity overnight rather than returning to the communal roost, then once 

eggs have been laid, the female is expected to roost in the nest cavity, whilst the male 

may return to the communal roost alone (Berg and Angel 2006). In the early stages of 

brooding one or both of the parents will roost in the nest cavity or nearby, but as chicks 

get larger there is less room in the cavity for roosting adults (Enkerlin-Hoeflich et al. 
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2006). After fledging, chicks are likely to spend one / two months around the nest cavity 

before making the journey to the mangrove roost site with their parents (Figure 2). 

 

Figure 2: Probable reproductive timeline of Amazona lilacina, showing parental 

responsibilities where they may affect parrots’ attendance at the communal roost site. 

Roost survey protocol  

We investigated possible vantage points from which to conduct roost surveys that 

were situated between the roost site, and the initial destination of the birds - the hills 

of Cerro Blanco Forest (Figure 1). We decided the observation tower in Puerto Hondo 

was the best vantage point, due to its proximity to the roost site (~700 m) which made 

the birds highly visible and audible, and its raised position (~20 m) which allowed 

observers to look over the mangroves and provided a wide field of view around the 

roost site. Our initial investigations revealed that the bird’s flight was always very 

determined and purposeful; they would only either fly into the roost in the afternoon or 

away from in it the morning (other species birds may fly in and out of the roost multiple 

times in one evening). This meant the risk of double counting birds was minimal. Birds 
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were very vocal during flight therefore relatively easy to identify by their call. To reduce 

observer bias, all surveys were conducted by Paùl Cun of Fundación Pro Bosque, who 

attended the vantage point from 05hr30-07hr30 and 17hr30-19hr30 and recorded the 

number of birds and the composition in which they were flying (Figure 3). Although 

observers were present for two hours in the morning and evening, most birds depart 

and arrive at the roost site within 20 minutes, therefore our increased lengths of 

observations were to enable us to be sure that all birds were counted. Surveys were 

carried out in all weather conditions, in the morning and evening of the last four days 

of every month between November 2016 and November 2019.  

 

Figure 3: Photographs showing the views in opposite directions from the observation 

tower viewpoint; the roost site and the Cerro Blanco Forest. From the viewpoint, the 

observer recorded the number and composition of birds that were seen flying past; 

photographs show examples of a pair and triplet group of Amazona lilacina.  
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Data analysis  

To assess how accurate observer counting was, we compared the number of birds 

counted in the PM, with the number counted the following AM. This should represent 

the same birds arriving in the afternoon, then departing the following morning, and so 

if the observer is successfully counting all birds, these numbers should be similar. For 

this we used a paired-t test, and examined the total number of birds counted, for each 

of these paired examples each month.  

Then to assess the overall difference between the results of AM surveys compared to 

the PM surveys, we used a paired t-test, but with counts paired within the same day, 

i.e. the AM survey paired with the PM survey conducted later that same day. This was 

important because a previous study from this roost site showed a significant difference 

between AM and PM roost counts, and concluded that counts from the AM were likely 

to be more accurate than those conducted in the PM (Berg & Angel 2006). They 

suggest this is because AM roost surveys were conducted ~700 m from the roost site, 

thus if the birds leave the roost at ~10 m above the ground on the same small island 

they are much closer to the observer, than in the PM when they arrive from a 

considerable distance (2-7 km) and height (50-500 m). We also used a two-sample 

test of variance to look for differences within the data from AM compared to from PM 

counts. 

In order to determine whether month had a significant effect on the size or the 

composition of the roost, we combined the three years of data, and used generalized 

linear mixed models with the total number of birds, and then the percentage of the 

roost made up of singles, pairs or triplets as the response. We included month as a 

fixed effect, and breeding year as a random effect. The family was set to Poisson to 

account for the distribution of our count data. We defined the reference month 
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(intercept) as August, as this is when there was the least chance of the reproductive 

timeline or parental responsibilities, affecting the number of birds attending the roost 

or the roost composition. Models were built in R using the glm function of the “lme4” 

package (Bates et al. 2020). The function rsquaredGLMM in the package "MuMIn" 

(Barton 2020) was used to calculate the variance explained by the fixed effects in each 

model.  

Results   

Observed roost size and difference between AM and PM counts     

We conducted 300 roost surveys; 90 in year one, 94 in year two and 116 in year three. 

These showed a mean of 43 (min 2 - max 121), 38 (min 1 – max 135) and 55 (min 0 

– max 173) in years one, two and three respectively. Our estimation of population size, 

based on the five highest counts (range 135 – 173) is 149 individuals. When looking 

at paired PM and AM counts as a measure of observer accuracy, there is no significant 

difference in most months, as would be expected. However, in March, May, July and 

September there is significant difference between the PM and the following AM counts. 

In four months, the AM count was higher than the PM count, but in general, there were 

more birds counted in the PM than in the AM (Table 1).  

When looking for an overall difference between AM and PM counts by comparing 

those within the same day, we see a significant difference in the total number of 

individuals and the number of pairs counted in the AM compared to the PM on the 

same day (Table 2). A two sample test of variance showed that there is no significant 

difference between the variance within AM counts compared to PM counts (p = 0.319, 

F = 0.763, df = 149) however, the boxplots show that when data are combined, the 

overall variance appears larger (Figure 4). Therefore, to minimise this variance, we 
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follow the conclusions of Berg and Angel 2006 who suggest that AM counts are likely 

to be more reliable, and use only AM counts for further analysis.  

Table 1: The number of birds observed attending the roost each month, averaged 

across breeding year one, two and three. The difference between the numbers of birds 

arriving in the PM, compared to departing the following morning as a measure of 

observer accuracy.  

Month Mean of 
all counts  

Mean of 
AM counts  

Mean of 
PM counts 

Difference between paired counts; PM 
paired with following AM  

p t df 

November 23 25 21 0.251 1.253 7 

December 27 28 25 0.175 1.508 7 

January 63 64 62 0.259 1.204 9 

February 83 82 83 0.821 0.234 8 

March 21 64 34 0.011 3.168 9 

April 28 26 31 0.731 0.355 9 

May 48 38 59 0.028 2.622 9 

June 29 31 54 0.128 1.677 9 

July 59 46 71 0.030 2.564 9 

August 40 34 45 0.184 1.440 9 

September 41 33 48 0.042 2.373 9 

October 49 40 58 0.115 1.771 8 

Table 2: The results of a paired t-test to indicate differences between the number of 

birds counted during AM surveys compared to PM surveys on the same day.    

 p t df 

Difference between total number of birds counted 0.015 2.44 149 

Difference between number of singles counted 0.090 1.70 149 

Difference between number of pairs counted 0.006 2.80 149 

Difference between number of triplets counted 0.355 0.93 149 
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Figure 4: The number of birds observed at the roost site for 36 months (year one in 

red, year two in green, year three in blue). Results are combined (a), and then split 

into AM surveys (b) or PM surveys (c).  
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Fluctuation in roost size and composition  

There is a peak in roost size during January, February and March (Figure 5). In all 

months, the roost consists mainly of paired birds, with fewer birds flying as triplets or 

singles. To account for the confounding roost size, i.e. the chance of there being more 

singles in a particular month as a result of an overall larger roost size, we calculated 

the percentage of the roost that was made up of singles, pairs and triplets, from the 

observed AM counts each month. Across all months, the majority of the roost is made 

up of pairs, but there is a peak in the proportion of triplets in May, and a peak in the 

proportion of singles in November (Figure 6).  

 

Figure 5: The average number of birds observed departing the roost site in the AM, 

per month, for three years.  
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Figure 6: The observed roost composition of birds recorded departing the roost during 

morning surveys for three years.  

The results of our GLMs showed that, in many cases, month had a significant effect 

on the number and composition of birds attending the roost site. The R² values show 

that month explained 85% of the variance for the total number of birds attending the 

roost, 84% of variance for the number of pairs attending the roost, 65% of variance in 

the number of triplets attending the roost, and 46% of variance in the number of singles 

attending the roost. There are significantly more birds attending the roost in the months 

of January, February and March, and the overall roost size is larger in May, July and 

October compared to August. When considering roost composition, single birds make 

up a significantly greater proportion of the roost in November, January and July and a 

significantly greater proportion of the roost is made up of triplets in March, April and 

May (Table 3).  
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Table 3: The estimated coefficients (β) and significance values from our GLMs looking 

at monthly total roost size and proportional composition. A positive β suggests that 

during that month the number of birds / proportion is greater than in August, whilst a 

negative β suggests it is lower.  

Month Total number of birds Singles (proportion) Pairs (proportion) Triplets (proportion) 

β p β p β p β p 

August  3.5 <0.001 1.9 <0.001 4.4 <0.001 -0.3 0.027 

November -0.3 <0.001 0.7 <0.001 -0.3 <0.001 -0.1 0.239 

December -0.2 0.012 0.1 0.371 -0.1 0.015 0.3 0.033 

January 0.6 <0.001 0.4 0.002 -0.1 0.117 0.3 0.020 

February 0.9 <0.001 -0.1 0.694 0.0 0.437 0.2 0.165 

March 0.6 <0.001 0.0 0.755 0.0 0.969 0.9 <0.001 

April -0.3 <0.001 0.1 0.352 0.0 0.620 0.5 <0.001 

May 0.2 0.008 -0.2 0.251 -0.2 <0.001 0.7 <0.001 

June -0.1 0.215 -0.4 0.015 -0.3 <0.001 -0.1 0.594 

July 0.3 <0.001 0.5 <0.001 -0.1 0.022 0.1 0.367 

September -0.1 0.186 0.0 1.000 0.0 0.573 0.0 0.572 

October 0.2 0.009 0.2 0.257 0.0 0.932 -0.2 0.087 

 

Discussion 

Our estimate for the size of this subpopulation is 149 birds, which is considerably lower 

than the 214 estimated using the same methods twenty years ago (Berg & Angel 

2006). There is monthly variation in attendance of Amazon parrots at this roost site, 

however the seasonal pattern contradicts with both the typical fluctuation in Amazon 

parrot roost size (Dénes et al. 2018) and the pattern that was seen at this roost site 

twenty years ago (Berg & Angel 2006). Normally, more birds are present during the 

non-breeding season compared to the breeding season; however, our results suggest 

the opposite for this roost site, which reaches its peak size in January – March, to 

coincide with the breeding season. This raises concern over possible disruptions to 
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this roost site in the last twenty years. Because of this, it is difficult to estimate the 

proportion of birds that may be reproductively active. 

Results indicate that observer efficiency in counting birds at this site is high, with no 

difference between the numbers of birds counted departing the roost site in the 

morning compared to the number that arrived the previous afternoon, in eight months 

of the year. This high observer efficiency suggests that our population estimate for this 

roost site - 149 birds - is likely to be fairly reliable. However, during the four months 

where there was a significant difference between afternoon counts and the following 

morning counts, there may be external factors such as weather conditions that reduce 

the chance of observing all the parrots. Previous studies of Amazon parrot roost sites, 

show factors such as weather conditions which improve the observers’ vision, and 

parrot behaviour such as their height of flight, can impact the observers’ counting 

efficiency (Cougill & Marsden 2004; Berg & Angel 2006; Dénes et al. 2018).  

There were significantly more birds attending the roost during the breeding season, 

January-March. This contradicts the results from a previous study of the same roost 

site from 1999, which shows a peak roost size in the months of May, June, July and 

September which all fall outside of the breeding season (Berg & Angel 2006). Our 

results also contradict those of many other Amazon parrot roost studies that have 

found the size of communal roosts to be larger during the non-breeding season 

(Martuscelli 1995; Casagrande & Beissinger 1997a; De Moura et al. 2010; Tossas et 

al. 2012). This trend is often perceived to be so clear that many studies designed to 

estimate roost abundance, only conduct surveys during the non-breeding season 

(Gnam & Burchsted 1991; Cougill & Marsden 2004; Rodríguez-Ferraro & Sanz 2007; 

Wright et al. 2019). This change in the seasonal pattern of roost size, i.e. more birds 
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during the breeding season, raises questions about the function of this roost and the 

condition of the local area. It is possible that birds are relying on this roost site during 

the breeding season, because there is a limitation in dry forest nesting grounds 

elsewhere, and this roost site is close to the Cerro Blanco Forest where birds can 

successfully nest. Additionally, it is possible that birds are leaving this roost site during 

the non-breeding season due to disruption from the expanding city of Guayaquil and 

local shrimp farms. We must also consider that our reproductive timeline is based on 

just a handful of observed nests and therefore may not be representative of the whole 

population, so future resources to help locate and monitor when chicks fledge would 

be extremely useful.  

Although we did see significant differences in the percentage of the roost composed 

of singles, pairs and triplets, across the months, the overriding pattern of the total roost 

size, which conflicts with what is normally seen in amazon parrots roost, means that 

any further analysis of this composition in order to estimate reproductive output of the 

population is potentially unreliable. The proportion of singles peaked in November, 

which supports our proposed reproductive timeline and previous work that suggests 

this peak is due to males returning to the mangrove roost site alone, leaving their 

female mate to lay or incubate eggs in the dry forest nest cavity (Kunz 1996; Berg & 

Angel 2006; Enkerlin-Hoeflich et al. 2006). This is also seen in other species e.g. the 

Puerto Rican Amazon A. vittata where in the majority of cases, the female roosts in 

the cavity after the eggs are laid (Snyder et al. 1987). Although this is not a direct 

measure of reproductive success, for the Glossy Black Cockatoo Calyptorhynchus 

lathami the number of pairs attempting to nest was the principal determinant of annual 

productivity (Cameron 2009). The peak in the percentage of the roost made up of 

triplets in May also fits our reproductive timeline, and previous work which suggests 



110 
 

that young Yellow-naped Amazons A. auropalliata start to fly with their parents to the 

communal roost site one to two months after fledging (Matuzak & Brightsmith 2007). 

Therefore, if A. lilacina fledge mainly in late March this peak in triplets in May could 

represent fledged chicks.  

Whilst it has been shown that roost counts offer a robust method of estimating 

population size (Gnam & Burchsted 1991; Martuscelli 1995; Casagrande & Beissinger 

1997; Wermundsen 1998; Cougill & Marsden 2004; Matuzak & Brightsmith 2007), it is 

important to also note their limitations. Namely, that at different times in the year, birds 

may choose to roost in smaller more transient roosts, based on factors such the 

distribution and availability of food (Seixas & Mourão 2018). Therefore, it is essential 

to conduct surveys throughout the entire year, ideally across a number of years, and 

to spend time investigating the surrounding areas for small transient roosts. 

Furthermore, interpretation of seasonal fluctuation should be considered alongside not 

only the reproductive timeline, but also the phenology of important feeding tree 

species. Another factor that must be taken into account is that of imperfect detection -  

resulting from either the observer not successfully counting all birds arriving at / 

departing the roost site, or the birds not attending the roost site every night (Dénes et 

al. 2018). Future studies should investigate the use of more advanced statistical 

analysis methods, such as N-mixture models that allow a detection probability to be 

calculated and accounted for in estimation of monthly roost size (Royle 2004; Zulian 

et al. 2020).  

The results of this study, in comparison to twenty years ago, suggest that increased 

habitat degradation in this area is affecting A. lilacina’s roosting dynamics (Berg & 

Angel 2006). Communal roosting appears to be an extremely important behaviour for 
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this species and we suggest that roost monitoring should continue to allow long term 

population monitoring, but also to further understand roost function. Future work 

should also look to replicate this study at all remaining roost sites to assess roosting 

dynamics for the entire global population. 

Conclusion and further research  

The roost surveys presented in Chapter Five highlighted that the subpopulation of 

Amazona lilacina, attending the El Salado Mangrove roost site near the big city of 

Guayaquil, has declined in the last 20 years. However, we were unable to estimate 

information regarding the reproductive output of this population as has been done in 

previous studies. Due to the species cautious and secretive behaviour at nest sites 

(Kunz 1996; Berg & Angel 2006; Enkerlin-Hoeflich et al. 2006), between 2016 and 

2020 only five nests were located and monitored, using three different cavities in the 

Cerro Blanco Forest. In 2019, one cavity was destroyed in a storm during which the 

main trunk snapped at the point of the cavity, trapping the chick inside the rotten cavity 

on the forest floor. Luckily, this nest was being monitored by Fundación Pro Bosque 

staff, who were able to excavate the chick the next day and rehabilitate it, allowing it 

to re-join the wild population. Then, in 2020, another cavity was destroyed when the 

tree was purposefully cut down and the parrots were trapped and removed prior to 

fledging.  

For parrots worldwide, the threat most closely associated with decreasing population 

trend is capture for the local pet trade (Berkunsky et al. 2017). For A. lilacina, 

thousands of birds were exported internationally in the early 80s (CITES 1986). This 

became illegal in 1984 (Ecuadorian National Assembly 2017) and since then there is 

little information on the number of birds that are kept locally as pets, or indeed the 
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number of birds that are trapped by local rural populations. Furthermore, there is little 

known about the local attitude towards parrots - in a number of cases parrots are 

viewed as crop pests (Canavelli et al. 2014) and are persecuted because of this 

(Trainor 2002). Therefore, the next research priority was to understand local attitudes 

towards A. lilacina, the frequency of behaviours such as trapping and pet keeping, and 

the possible drivers behind these behaviours.  
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Chapter Six: Parrot ownership and capture in coastal 

Ecuador: developing a trapping pressure index  

Biddle R, Solis-Ponce I, Jones M, Pilgrim M, Marsden S. 2021. Parrot Ownership and Capture 

in Coastal Ecuador: Developing a Trapping Pressure Index. Diversity 13:15.  

 

 

Abstract 

We located rural communities with pet parrots and used these locations to predict the 

probability of illegal parrot ownership across coastal Ecuador, using variables related 

to demand for pets, parrot availability, and trapping accessibility. In twelve pet keeping 

communities we carried out in-depth interviews with 106 people, to quantify ownership, 

trapping, and interviewees’ attitudes towards these behaviours. We combined these 

data to calculate a trapping pressure index for four key roosting, feeding and nesting 

sites for the Critically Endangered Ecuadorian Amazon parrot Amazona lilacina. We 

found that 66% of all communities had pet parrots and 31% had pet A. lilacina. Our 
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predictive models showed that pet parrot ownership occurs throughout coastal 

Ecuador, but ownership of A. lilacina by rural communities, is more likely to occur 

within the natural distribution of the species. The number of people per community 

who had owned A. lilacina in the last three years varied from 0% - 50%, as did the 

number of people who had trapped them from 0% - 26%. We interviewed ten people 

who had captured the species in the last three years, who reported motives of either 

to sell or keep birds as pets. Attitudes towards pet keeping and trapping differed among 

the twelve communities: 20% - 52% believed it was acceptable to keep pet parrots, 

and for 32% - 74% it was acceptable to catch parrots to sell. This said, most people 

believed that wild parrots were important for nature and that local people had a 

responsibility to protect them. We conclude that trapping pressure is greatest in the 

southern part of A. lilacina’s range, and urgent conservation measures such as nest 

and roost protection, and local community engagement are needed. 

Introduction 

Parrots (Psittaciformes) are one of the most endangered and rapidly declining birds 

groups, with 28% of their species classified as threatened (Olah et al. 2016). Globally, 

over a third of parrot species are caught to fulfil the demand of the international wildlife 

trade (Wright et al. 2001; Olah et al. 2016; Dahlin et al. 2018). In the Neotropics, over 

half of the studied parrot populations are in decline (Berkunsky et al. 2017), and one 

reason for this is the high demand for the pet trade (Bush et al. 2014). Neotropical 

species are particularly favoured as pets (Wright et al. 2001; Sinovas & Price 2015) 

and it is suggested that trapping is a stronger threat to their conservation than habitat 

loss (Clarke & de By 2013). Amazon parrots and macaws are preferred due to their 

attractiveness and ability to mimic the human voice (Tella & Hiraldo 2014); this is 

illustrated in Costa Rica where nearly 20% of households have a pet parrot and half 
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of these are Amazona species (Drews 2001). Consequently, the rate at which Amazon 

parrots and macaws are trapped is much higher than expected considering their 

availability in the wild (Romero-Vidal et al. 2020). 

Trapping risk is highest where parrots are abundant in the wild, where demand is high 

and where parrots are relatively easy to catch and sell (Pires & Clarke 2012); therefore, 

trapping pressure may differ across a species’ range and also between species. 

Additional factors found to drive hunting and trapping include overlap with human 

population (Pires & Clarke 2012; Harrison et al. 2016) and proximity to infrastructure 

or towns (Benítez-López et al. 2017). Attitudes and subjective norms are also factors 

that influence decision making (St John et al. 2010) and are therefore likely to affect 

the level of pet keeping and capture in different areas. In Ecuador, wild bird keeping is 

illegal (Assembly 2017), and whilst ownership appears to be declining in major cities 

(Ortiz-von Halle 2018) demand is still high in rural areas, where over half of coastal 

communities still keep pet parrots (Biddle et al. 2020). The most frequently reported 

confiscated bird species in the country are those with wild distributions exclusive to 

this coastal region (Athanas & Greenfield 2016; Ortiz-von Halle 2018). Also, this region 

is one of the most densely populated and impoverished (Mideros M. 2012) parts of 

Ecuador, the habitats here have been drastically reduced (Dodson & Gentry 1991) 

and are greatly underrepresented in the country’s national protected areas system 

(Cuesta et al. 2017). 

The Critically Endangered Amazona lilacina, a species recently split from the A. 

autumnalis group, is found exclusively within the coastal region of Ecuador (BirdLife 

International 2018b). CITES reported thousands of individuals of this species being 

trapped and exported in the early 1980s (CITES 1986) and although frequency of 

trapping is likely to have reduced significantly in recent years, there are still multiple 
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reports of capture and pet keeping within rural communities (Biddle et al. 2020). An 

average of 392 wild-caught parrots, including 30 A. autumnalis were confiscated 

annually in Ecuador between 2003 and 2016 (Ortiz-von Halle 2018). Although some 

of these may be older birds, and they may be either A. lilacina or A. a. salvini, this 

figure suggests that some level of trapping is still occurring to fulfil the demand for 

pets. The goal of this study was to understand the risk of trapping in rural communities 

and formulate a strategy for conservation support. Specific objectives were:  

i. conduct surveys across coastal Ecuador to locate communities with pet parrots; 

ii. use the locations of known pet parrots, to predict the distribution of pets 

throughout the species range, using variables related to parrot availability, 

opportunity and demand;  

iii. interview local people from communities where pet parrots are present, to 

quantify the level of parrot ownership, trapping and the attitudes towards these 

behaviours; 

iv. develop a trapping pressure index based on model predictions, locally reported 

incidence and attitudes towards parrot capture and ownership, to highlight 

areas of possible increased extinction risk.  

Methods  

Surveys to locate communities with pet parrots  

In order to locate rural communities with pet parrots, we conducted surveys between 

January and July 2017. The study area encompassed the extent of occurrence of the 

A. lilacina and communities close (<10 km) to forest patches, where wild parrots may 

occur were selected. Participants were asked to confirm if they knew of pet parrots in 

their community, and if possible to identify the species. Prior verbal consent was 

obtained from each participant and full ethical approval of survey content and methods 
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was gained from The North of England Zoological Ethical Review Committee. We 

aimed to survey at least four households per community, however some communities 

were made up of just a few houses, so this was not always possible. We recorded the 

geographic coordinates of communities with all pets, pet parrots and pet A. lilacina 

and calculated how many communities each species was recorded in. We used IUCN 

Red List range maps provided by BirdLife International (BirdLife International 2019) in 

order to determine if species were native to the study area. Range maps are frequently 

updated so we report the year of update for each range map in the results.  ArcGIS 

(version 10.8.1) (Environmental Systems Research Institute 2020) was used, clipping 

the distribution shape files, to calculate the size of each species range within our study 

area.  

It is illegal to keep native bird species as pets in Ecuador (Ecuadorian National 

Assembly 2017), yet in our experience, people speak openly about their parrots and 

are proud to show them off. However, it was important that participants did not feel 

threatened or that we were collecting information to inform the authorities. Therefore, 

surveys were conducted by a local Ecuadorian researcher, in Spanish, with only the 

researcher and interviewee present and it was made clear that all information given 

was anonymous, and only to be used for scientific research.  

Distribution models to predict parrot ownership 

From our surveys, we created two groups of geographic coordinates to represent 1) 

communities with pet parrots, and 2) communities with pet A. lilacina. The MaxEnt 

package in R (version 4.0.3) (Phillips et al. 2006; R Core Team 2020) was used to 

build distribution models based on these coordinates combined with random 

background points within 30 km buffers of community locations, to predict the 

distribution of pet parrots, and the distribution of pet A. lilacina. Variables were 
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extracted to match each corresponding location and were chosen due to their 

influence over parrot ownership and trapping (Pires & Clarke 2012): opportunity 

(presence of parrots and their desirability); demand (presence of people and the 

infrastructure for trade); and accessibility (into the forest).  

For each location, we calculated a “species value” to represent parrot trapping 

opportunity. For the pet model this was calculated based on the presence of wild parrot 

species at that location using species range maps (BirdLife International 2019), 

combined with the frequency of the species being reported as a pet; 0.1 was allocated 

for each species present in that area, and an additional 0.1 was added if that species 

was reported in a single community, 0.2 if in two communities etc. This value used just 

for comparative purposes within the study and we gave equal weighting to wild species 

presence and popularity in captivity as we had no evidence that either was more 

important than the other. For the pet A. lilacina model, this value was replaced with the 

predicted occupancy area from our distribution models created using observations of 

the wild population (Biddle et al. 2020). For both models, we also used the estimated 

human population (Sorichetta et al. 2015), the Euclidean distance to the nearest town 

and nearest road calculated in ArcGIS using OpenStreetMap (OpenStreetMap 

Foundation 2019) data, and the mean annual Normalised Difference Vegetation Index 

(NDVI) from the monthly MODIS product over 2010-2015 as a proxy of vegetation 

cover.  

For each group of points, spatial autocorrelation was controlled for by limiting them to 

one per 1 km using the R package spThin (Aiello-Lammens et al. 2015). Predictors 

were checked for pairwise correlation across random points within the study area, 

using pair plot for collinearity (Zuur et al. 2009). Model evaluation was performed with 

five-fold cross validation and the mean AUC +/- SD are presented to demonstrate the 
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predictive ability. An AUC of 0.7 means there is an 70% chance that the fitted model 

will be able to correctly distinguish between presence and absence (Wisz et al. 2008). 

All data were included in the final models. We present the permutation importance (%) 

of variables with a high value indicating that the final model depends heavily on that 

variable (Phillips et al. 2006).  

Interviews to quantify parrot ownership, trapping and attitudes  

We selected twelve communities where pet parrots were present to conduct interviews 

with community members about their experiences and attitudes towards parrot 

ownership and capture. These communities ranged in size from 50 to 300 people. The 

reason these sites were chosen was because our focus was on understanding risk to 

A. lilacina, so the selected communities fell within the species extent of occurrence 

and were <15 km away from key roosting, nesting and feeding grounds (Biddle et al. 

2020). These twelve communities were grouped into four clusters (Figure 1). We 

interviewed at least six participants from different households in each community. 

Participants were outdoor workers (i.e. agriculturalists, fishers and crab fishers) 

selected for their familiarity with parrots in their local area. The same methods 

regarding informed consent and data anonymity as described above were followed. 

Due to low literacy levels amongst participants, all questions were read out aloud and 

the answer provided was recorded by the researcher. Age and gender of each 

participant was recorded. The interview consisted of eight questions and seven 

attitude statements arranged on a five point symmetric Likert scale (Table 1). The likert 

package (Jason Bryer 2016) in R (version 4.0.3) (R Core Team 2020) was used to 

visualise attitude statements. Responses were grouped into positive, neutral or 

negative and a non-parametric test (Kruskal-Wallis) was used to determine significant 

differences in responses between the four community clusters. 
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Figure 1: Interviews about parrot ownership and capture were conducted in twelve 

communities, grouped into four clusters (A, B, C, and D) near key A. lilacina roost 

sites. Each cluster contains three communities <10 km apart.  
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Figure 2: Examples of pet A. lilacina in four rural communities in coastal Ecuador. 

Parrots were kept in a variety of situations; indoors or outdoors, caged or with clipped 

wings. In some cases pet parrots that were housed in gardens were not initially 

considered to be captive by the owner, but for the purposes of this study any parrot 

living in the locality of people was classed as a pet.  

Table 2: The number of communities in which each of the 19 species was reported as 

a pet and the range size within the study area according to BirdLife International 

(BirdLife International 2019).  
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Parrot species (year of update) Range within 

study area 

SA (km²) 

Number of 

communities reporting 

the species (out of 65) 

Lilacine or Ecuadorian Amazon Amazona lilacina (2018) 38,860 20 

Grey-cheeked Parakeet Brotogeris pyrrhoptera (2014) 8,645 20 

Red-masked Parakeet Psittacara erythrogenys (2007) 54,327 17 

Pacific Parrotlet Forpus coelestis (2017) 55,300 8 

Red-lored Amazon Amazona autumnalis (2017) 5,583 6 

Blue-headed Parrot Pionus menstruus (2013) 27,943 2 

Southern Mealy Amazon Amazona farinosa (2013) 8,612 1 

Bronze-winged Parrot Pionus chalcopterus (2014) 46,508 1 

White-winged Parakeet Brotogeris versicolurus (2018) 549 1  

Chestnut-fronted Macaw Ara severus (2014) 49,329 0  

Blue-fronted Parrotlet Touit dilectissimus (2014) 13,470 0  

White-capped Parrot Pionus seniloides (2012) 1,482 0  

Rose-faced Parrot Pyrilia pulchra (2002) 12,828 0  

Great Green Macaw Ara ambiguus (2014) 3,899 0  

Red-faced Parrot Hapalopsittaca pyrrhops (2000) 49 0  

Cordilleran Parakeet Psittacara frontatus (2014) 1,347 0 

Barred Parakeet Bolborhynchus lineola (2014) 2,183 0 

Red-billed Parrot Pionus sordidus (2014) 1,565 0 

El Oro Parakeet Pyrrhura orcesi (1999) 615 0 

Kept by communities but non-native 

Orange-winged Amazon Amazona amazonica NA 1 

Yellow-crowned Amazon Amazona ochrocephala NA 5 

 

Results 

Predicted distribution of pet parrots 

The locations of the 43 communities with pet parrots and the 20 communities with pet 

A. lilacina, were reduced to 42 and 19 after limiting each group of locations to one per 

1 km. A total of 3,803 background points were randomly allocated. The mean AUC of 

resulting models was 0.69 ± 0.06 (sd) for pet parrots and 0.62 ± 0.20 (sd) for pet A. 

lilacina. The most important variables predicting the presence of pet parrots were 

distance to nearest road (permutation importance, PI = 40%) and distance to nearest 

town (PI = 28%); the key factors for the presence of pet A. lilacina were the mean 

annual NDVI (PI = 33%) and species value, representing the native distribution (PI = 

27%) (Table 3). Predictions show that pet parrots are likely to be widespread 
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throughout the study area, whereas pet A. lilacina seem to be more likely within the 

species range. Both models show high probability of occurrence of pets to the west of 

Guayaquil and out towards the coast (Figure 3).  

Table 3: Permutation importance values for variables used to create models predicting 

the distribution of pet parrots and pet A. lilacina in coastal Ecuador.  

 

 

 

 

Figure 3: Model predictions showing the distribution of pet parrots (a) and pet Lilacines 

A. lilacina (b). 

Variable Permutation importance (%) 

Pet parrot model Pet Lilacine model 

Mean annual NDVI  11 33 

Distance to road 40 1 

Human population density  18 23 

Distance to town  28 16 

Species value 3 27 
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Incidence of parrot ownership and trapping  

Within twelve selected communities where pet parrots occur, 106 (96 men / 10 women) 

participants (min 6, max 13, mean 8.8 per community) took part in interviews. All 

participants worked outdoors as farmers (57), fishers (25), crab fishers (18), 

beekeepers (3) or wildlife guides (3). Participants were familiar with A. lilacina, the 

majority seeing them daily (68%), weekly (19%), or monthly (8%), with the remaining 

5% just a few times per year. Of all participants, 66% (70) had owned a pet parrot 

either previously or currently and 36% (38) a pet A. lilacina. The majority (74%, 28) of 

A. lilacina pets had been caught by the owner themselves, with the remainder received 

as gifts (16%, 6), bought (2%, 6), or found (2%, 6). In the last three years, 15 people 

have owned a total of 24 A. lilacina. 34 people (32%) confirmed that they had 

previously captured A. lilacina, the majority (76%, 26) to keep as a pet themselves, 

the others to sell (9%, 26) or for undisclosed reasons (15%, 5). Pet ownership and 

trapping varied between community clusters, with the highest rates of historic and 

current ownership and trapping of A. lilacina occurring in the crab fishing communities 

(D) in the southern part of the range (Table 4).  

Table 4: The number, age and occupations of people interviewed from each 

community cluster and the number who reported owning parrots or catching parrots, 

either previously or in the last three years. 

Community 
cluster  

n Mean 
age 
(years) 

Occupation: farmer 
(F), fisher (Fi), crab 
fisher (CF), other (O) 

In life time: In the last three years:  

F Fi CF O Owned 
parrot 

Owned A. 
lilacina 

Caught A. 
lilacina 

Owned A. 
lilacina 

Caught A. 
lilacina 

A 31 53 8 19 1 3 23 11 9 0 0 

B 23 48 23 0 0 0 11 8 8 4 3 

C 29 53 26 0 0 3 18 4 4 1 1 

D 23 46 0 6 17 0 18 15 13 10 6 

Total 106 50 57 25 18 6 70 38 34 15 10 
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In the last three years, ten interviewees reported that they had caught A. lilacina, with 

at least 16 birds among them, to either keep the bird as a pet (7), to sell it (1), or for 

an undisclosed reason (2). All had either no or primary level schooling, and were men 

23 - 72 years old. They reported seeing wild A. lilacina daily (9) or weekly (1), and all 

but one believed the wild population was stable or increasing. In cases where the 

capture location was given, this always corresponded to the person’s occupation, i.e. 

farmers reported catching parrots in the forest, fishers and crab fishers reported 

trapping parrots in mangroves (Table 5). Seven of the ten people who had caught A. 

lilacina in the last three years, reported that multiple other people within their 

community also catch A. lilacina, and all ten know of multiple pet A. lilacina in their 

community (mean 5.2 A. lilacina).  

Table 5: The age, gender, schooling, and occupation of all interviewees who reported 

catching A. lilacina in the last three years. We report the trapping location, reason for 

capture and how many were caught. 

Community 
cluster  

Age 
(years) 

Gender Level of 
schooling  

Occupation  Location of 
capture 

Reason for 
capture 

Number of 
A. lilacina 
caught in 
last three 
years 

B 41 Male Primary Farmer  Dry forest Pet 1 

23 Male Primary Farmer Dry forest Pet 1 

72 Male Primary Farmer Dry forest Pet 1 

C 68 Male None Farmer Undisclosed Undisclosed 1 

D 
 

32 Male Primary Crab fisher Mangrove Pet 2 

54 Male Primary Crab fisher Mangrove Pet 1 

40 Male Primary Crab fisher Mangrove Pet  1 

47 Male Primary Crab fisher Undisclosed Undisclosed Unknown  

51 Male Primary Fisher Mangrove Pet 1 

67 Male None Fisher Mangrove Sell 7 

 

Attitudes towards parrot ownership and trapping  

Across all communities, responses to attitude statements show a strong feeling that 

wild parrots are important for nature and participants indicated that local people have 
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a responsibility to protect the environment. This is mirrored by a strong feeling of 

discomfort with outsiders coming to catch parrots and with parrots disappearing from 

their area. On the contrary, 46% of all participants believe it is OK to catch wild parrots 

to sell and 32% that it is acceptable to keep a pet parrot. Furthermore, 17% of people 

did not believe that catching wild parrots could make them become extinct in the local 

area (Figure 4). There were no significant differences between communities in the 

distribution of positive, neutral and negative responses to all attitude statements apart 

from one: “I think it is OK to keep a parrot as a pet”. For this there was a significant 

difference between mean responses of the community groups (H = 6.613, p = 0.022), 

with 52% of community cluster D believing this is acceptable, whilst just 20% of cluster 

A believing so.  

 

Figure 4: Responses to attitude statements are reported on a five point Likert scale (1 

= strongly disagree, 2 = disagree, 3 = neutral, 4 = agree, 5 = strongly agree). 
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Trapping pressure index    

When combining our results into a trapping pressure index we see variation between 

the four community clusters, with higher values suggesting a higher risk to the wild A. 

lilacina population in that area (Table 6). Wild A. lilacina occurring around community 

cluster D are at greatest risk, due to the high level of reported parrot ownership and 

capture, and a strong local attitude that this is acceptable. Those occurring around 

community cluster C are also at high risk, as model predictions here show a high 

probability of pet A. lilacina occurrence (0.78), which suggests a high probability of 

trapping as pet owners mostly report catching their pet themselves. The wild 

population occurring around community cluster A appears to be at the lowest risk from 

trapping, as there were no reports here of current A. lilacina ownership or capture, 

however this is the smallest remaining subpopulation of the species within its range, 

which could also explain the low prevalence of pets. When considered against 

participants’ responses to their perceived status of the wild population locally, we see 

more negative responses from the southern community clusters, with the most 

frequent response in cluster C being ‘decreasing’ (76%), in cluster D ‘stable’ (39%), 

whilst ‘increasing’ in cluster B (83%) and A (42%).  
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Table 6: Trapping pressure index for each community cluster, calculated by adding 

together factors of predicted or reported level of pet ownership and trapping, and 

attitudes towards pet keeping, capture and trade. Predicted probabilities were 

converted into percentages for this calculation. 

Trapping pressure factor 
 

A B C D 

Mean probability of predicted parrot ownership 
(0-1) 

0.47 0.35 0.70 0.36 

Mean probability of predicted Lilacine ownership 
(0-1) 

0.51 0.59 0.78 0.19 

Percentage of participants who owned pet 
Lilacines in the last three years 

0 17 3 43 

Percentage of participants who caught Lilacines 
in last three years 

0 13 3 26 

Percentage of participants believing it is OK to 
keep a pet parrot  

20 23 37 52 

Percentage of participants believing it is OK to 
catch wild parrots to sell  

39 32 41 74 

Overall trapping pressure index (rank) 157 (4) 179 (3) 232 (2) 250 (1) 

 

Discussion 

This study found that 66% of rural coastal communities in Ecuador have pet parrots 

and 31% have pet A. lilacina. Within these communities, 66% of people had owed a 

pet parrot during their lifetime, and 14% currently owned A. lilacina. This is similar to 

Costa Rica, where 18% of households owned a pet parrot in 2001 (Drews 2001). Our 

current ownership questions focused on just one species, so we expect the level of 

current ownership of all parrot species to be much higher and similar to Colombia 

where 58% of all people had pet parrots (Romero-Vidal et al. 2020)[10]. Current 

ownership and reports of A. lilacina trapping in the last three years varied between 

communities, with 0% to 50% and 0% to 26%, respectively. Ten participants confirmed 

that they had taken A. lilacina from the wild in the last three years to keep birds as 

pets, or to sell them, so we suggest that similarly to yellow-shouldered amazon A. 

barbadensis harvesting in Venezuela, there are at least two categories of trappers; 
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“poacher-keepers” and “poacher-sellers” (Sánchez-Mercado et al. 2020), with only the 

latter having the contacts and logistics to sell birds. People in occupations with an 

established and frequent trade link, for example fishers or crab fishers, may have more 

opportunity to transport trapped birds to other towns to sell. We also found that capture 

location corresponded to the occupation of the poacher, which may explain the 

variation between rural communities as occupation depends heavily on location i.e. in-

land or coastal. Our trapping pressure index identified that the southern distribution of 

the species is likely to be at greatest risk, fitting with earlier work showing a vast 

population decline in this area (Biddle et al. 2020) and providing further evidence that 

this area should be prioritised for conservation support. 

Understanding whether taking parrots from the wild is opportunistic or selective is 

important because selective capture can lead to the extinction of species through 

overharvesting (Romero-Vidal et al. 2020). Our results suggest that trapping is 

selective given the differences in the popularity of species, with some kept in 20 

communities and some in none. The two most frequently reported pet parrot species 

differed greatly in body mass, which in general is linked to longevity in captivity [36], 

suggesting that variation in popularity is not a side effect of survival rates in captivity. 

Similarly to previous research, there is preference for Amazon parrots, with all three 

wild occurring species and two non-native species being kept as pets (Tella & Hiraldo 

2014). However, parrot ownership and capture, at least within rural communities, may 

also be opportunistic. Most parrot owners had caught their bird locally, within areas 

they visit during a normal days’ work and our predictions showed that pet A. lilacina 

were more likely within the species’ wild distribution. Also, parrot species kept as pets 

had a larger average wild range size than those that are not. This all suggests that 

ownership and capture are driven in part by parrot availability and accessibility (Pires 
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& Clarke 2012), but more research including a true measure of wild parrot abundance, 

and surveys and interviews in larger towns and cities are needed. According to 

anecdotal reports in some rural communities, orders are placed by outsiders from 

cities such as Guayaquil or Quito, which fits the typical multi-level chain involving 

trappers, middlemen and markets described by Pires (Pires 2012) and needs 

investigation.  

Our interviews revealed that A. lilacina were trapped both in mangroves, where they 

roost, and dry forests, where they feed and nest (Berg & Angel 2006; Dupin et al. 

2020), suggesting that both adults and chicks are being taken from the wild. Anecdotal 

reports from communities suggest past events of outsiders casting nets over 

mangrove islands, to remove an entire roost of A. lilacina at a time. Research has 

shown that the removal of adults from a population can have more drastic 

consequences on population size and growth rate, than removal of chicks (Valle et al. 

2018). In a study of illegal wildlife trade markets in Bolivia, contrary to the idea that 

most parrots come from nest poaching, 70% of parrots were adults (Pires et al. 2016). 

Our results also suggest that 60% of Lilacines caught in the last three years were from 

mangroves, so are likely to be adult or juvenile birds. A number of studies have shown 

that anti-poaching efforts, in the form of additional human presence, can benefit bird 

populations (González 2003; Vaughan et al. 2005; Granadeiro et al. 2006) and that 

recruitment of young people (who may be facilitators in parrot trapping) from the local 

community to act as nest monitors, can significantly decrease poaching rate (Briceño-

Linares et al. 2011). In some cases, nest protection implemented at the correct time 

of year can have a significant effect (González 2003), but we suggest that year-round 

protection is needed to safeguard both vulnerable roosting and nesting sites for this 

species. 
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The lack of environmental education in Ecuadorian schools is a barrier to reducing 

parrot ownership and capture (Ortiz-von Halle 2018). The main purpose of any 

environmental education strategy is to change people’s knowledge and attitudes, and 

ultimately behaviours (Jacobson et al. 2015). Alone, or in combination with other 

conservation interventions, environmental education projects can result in a decrease 

in the persecution of parrots and consequently an increase in population size (Sanz & 

Grajal 1998; Vaughan et al. 2005). Most people in our study believed that wild parrots 

were important for nature and that they themselves had a responsibility to protect 

parrots. Local people do not want parrots to disappear and are strongly opposed to 

outsiders coming in to their community to catch them. On the contrary, up to 74% per 

community agreed that it was OK to take parrots from the wild to sell, and up to 52% 

believed that it was OK to keep them as a pet. Furthermore, up to 30% disagreed that 

catching parrots could make them locally extinct. We found similarity between attitudes 

and reported behaviours. In areas with more pet A. lilacina and reports of parrot 

trapping, there was also a stronger belief that this was acceptable, compared to areas 

with fewer pets and trapping. This suggests that changing these attitudes could have 

an impact on future behaviour and that implementation of a targeted behaviour change 

education project could have conservation benefits to A. lilacina. We suggest following 

the practices of the successful PRIDE campaigns (Butler et al. 2013) which inspire 

people to take pride in the species and habitats that make their communities so unique, 

whilst introducing viable alternatives to environmentally destructive practices.  
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Chapter Seven: Final conclusions and recommendations  

With this research I aimed to further the understanding of the conservation status, 

distribution, fine-scale habitat preferences, roosting dynamics, and human interactions 

with a newly described Amazon parrot Amazona lilacina (del Hoyo & Collar 2014). The 

key findings suggest that the global population is between 741-1,090 birds, and that a 

decline of 60% in the last 19 years in some parts of the range, justifies an IUCN Red 

List status of Critically Endangered (Biddle et al. 2020; BirdLife International 2020b). 

My distribution models show that there is 17,772 km² of suitable habitat for the species, 

which overlaps with a high proportion of Ecuador’s human population (INEC 2010). I 

report that A. lilacina uses at least four tree species for nesting, five for roosting, 33 

for feeding, and has preferences for certain fine-scale habitat characterises suggesting 

habitat specialisation, which may put the species at an increased risk of extinction. I 

estimate the size of one subpopulation, which uses a well-known traditional roost site 

in the south of the range, at 149 individuals - considerably lower than estimates from 

twenty years ago (Berg & Angel 2006). I also report a significant change in the 

seasonal roosting dynamics of this subpopulation and suggest this may be caused by 

degradation of suitable habitat in the local area. Local trapping and pet keeping is 

reported as the greatest threat to parrots worldwide (Berkunsky et al. 2017). My 

community surveys indicate that between 2014 and 2017, up to 50% of community 

members had owned a pet A. lilacina, and up to 26% had trapped one, which is likely 

to cause additional pressure to the population.  

My results provide an overview of the ecological but also the social status of A. lilacina. 

The inclusion of people living within the species native range, in the collection of data, 

has allowed us to build good working relationships with these communities, particularly 

those nearby to important A. lilacina roost sites. The results presented here will be 
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shared with these communities through the development of new teaching materials 

and the delivery of a conservation education programme. A recent review of over 100 

conservation education programmes worldwide, showed that 98% produced at least 

one positive outcome from changes in awareness and knowledge, through to direct 

improvement of ecological indicators (Ardoin et al. 2020). I have shown that the 

inclusion of local communities in ecological research is extremely valuable, particularly 

for rare species that are hard to study in the wild (Biddle et al. 2021). I have developed 

and raised funds for a ‘community guardian’ project that will allow us to continue 

research and protection activities, such as roost monitoring, species observations and 

nest guarding, throughout the species range. Many case studies show that community 

engagement can be highly effective in tackling wildlife crime, through the development 

of shared goals for management of natural resources (Roe 2015) and I believe this 

approach is key to the conservation of A. lilacina. My results indicate an urgent need 

for a collaborative approach to conservation; with governments, local NGOs and 

conservation organisations working together to enforce law, reduce trapping, and to 

ensure vital remaining fragments of forest are protected, but most importantly, for local 

communities to be engaged and empowered towards the conservation of this species. 

It is suggested that A. lilacina could be the most threatened mainland Amazon parrot 

globally (Pilgrim 2010). There are 48 parrot species in Ecuador, ten of these occur on 

the coastal plain, of which, three are threatened with extinction; the Great Green 

Macaw Ara ambiguus (CR), the Grey-cheeked Parakeet Brotogeris pyrrhoptera (EN), 

and the Ecuadorian Amazon A. lilacina (CR) (Freile & Restall 2018; BirdLife 

International 2020b). There are four parrot species, similar in size to A. lilacina with 

overlapping ranges, but none of these are listed as threatened with extinction: Blue-

headed Parrots Pionus menstruus (LC), Bronze-winged Parrots P. chalcopterus (LC), 
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Red-masked Parakeets Psitticara erthrogenys (NT) and Southern Mealy Amazons A. 

farinosa (NT) (BirdLife International 2018d; Freile & Restall 2018). This raises the 

question of why is A. lilacina so rare, when these other four species are not. Whilst A. 

lilacina is restricted to elevation <700 m, the other four similar species range up to 

1,400 m or have additional areas of range outside of the coastal plain (Ridgely & 

Greenfield 2001a). The other four species also do not seem to have such complex 

habitat needs, and are more frequently reported in agricultural and human influenced 

lands. For example Bronze-winged Parrots P. chalcopterus and Red-masked 

Parakeets P. erthrogenys will feed in gardens, maize crops and fruiting trees in 

agricultural land, and Blue-headed Parrots P. menstruus can persist well in fragmented 

forest and secondary woodlands making them ‘less effected by deforestation’ 

according to Ridgely & Greenfield (2001). Amazona lilacina appears considerably 

more shy and cautious than the other four species; during fieldwork, the most 

frequently observed species was the Red-masked Parakeet P. erthrogenys, which was 

also highly notable in towns and cities. On the contrary A. lilacina were particularly 

hard to observe, and are reported as ‘inconspicuous during most of the day remaining 

in leafy canopy and only revealing their presence by occasional dropping of fruit 

pieces’ (Ridgely & Greenfield 2001a). As a consequence of this shy behaviour, caution 

over using agricultural land, and restriction to areas <700 m, it is likely that A. lilacina 

has been more heavily impacted by the vast clearance and urbanisation of the lowland 

coastal provinces than the other similar parrot species.  

The Southern Mealy Amazon A. farinosa is probably the most morphologically similar 

species to A. lilacina on the coastal plain, it is also restricted to areas <700 m, yet it 

outnumbers A. lilacina in most of its western distribution apart from within the Guayas  

province (it is also found on the east of the Andes) (Ridgely & Greenfield 2001a). A 
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clear difference between the two species, is that Southern Mealy Amazons A. farinosa 

rarely gather in large aggregations - they are more typically seen in groups of no more 

than 4-8 birds - whilst A. lilacina are reliant on communal roosting behaviour (Ridgely 

& Greenfield 2001a; Berg & Angel 2006). This communal roosting behaviour makes 

A. lilacina much more restricted by the distribution of suitable habitat than other 

species, thus contributing to its rarity. Not only do they require the presence of 

traditional roost sites large enough to accommodate in some cases hundreds of birds, 

they also have a preference for the rare mangrove ecosystem, and safety from 

predation (Ridgely & Greenfield 2001a; Berg & Angel 2006; Hamilton & Casey 2016). 

Furthermore, their roost site must be within a reasonable daily traveling distance of 

dry forests with suitable feeding and nesting tree species (Ridgely & Greenfield 2001a; 

Berg & Angel 2006). The population of A. lilacina is reported to have been significantly 

reduced as a result of vast habitat clearance in coastal Ecuador and large volumes of 

illegal parrot trapping and export (CITES 1986). The resulting small population is now 

likely to be very susceptible to relatively low-level pressures including small-scale land 

use change, which may result in loss of feeding and nesting trees through accidental 

fire or conversion to agriculture, and removal of chicks from nests to keep as pets, or 

trapping groups of birds at roost sites to sell. This emphasises the need to involve local 

communities in conservation planning.   

Despite the key findings of my research, there are still many questions that need to be 

addressed in order to help define conservation priorities for this species. For example, 

a full assessment of remaining suitable habitat would help to confirm the presence of 

any additional areas A. lilacina are using. Recently, there has been a large rise in A. 

lilacina observations recorded on eBird due to an increased local awareness of the 

species. The total number of records has doubled in the last two years and this offers 
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a fantastic resource for distribution investigations. In terms of population trend, 

replication of the three-year roost surveys to assess seasonal fluctuation and size, 

combined with long-term surveys would allow us to determine if the declining 

population trend seen at the El Salado Mangrove roost site is mirrored across the 

range. Furthermore, I suggest that the species occurs in three fragmented sub-

populations, but in order to understand the implications of this, investigations into the 

genetic variation between parrots at different roosting sites is essential. In particular, 

this would help to identify whether birds at the extreme North and South of the range 

are isolated or if there is evidence of movement between roosting grounds. Locating 

active nests has been particularly difficult. An important next step would be to confirm 

if the reproductive timeline I observed in the Cerro Blanco Forest is the same across 

all parts of the range, or if chicks are fledging earlier in the South as reported by some 

communities. Finally, further investigation into community reports of parrots nesting in 

mangrove trees in the far South of the range is needed, although I had no observations 

of this myself. 

It is clear that the Critically Endangered A. lilacina should be a conservation priority. 

From my results, it is possible to draw a number of conclusions and suggestions for 

the allocation of conservation resources, in the broad areas of habitat protection, 

habitat improvement, and reduction in trapping, which I expand on in the next sections.   

Habitat protection  

 
Habitat protection through the creation of legally protected areas is recognised 

worldwide for its benefits to biodiversity conservation (Leverington et al. 2010). For 

example, bird abundance and species richness is shown to be higher in legally 

protected forests than in exploited forests (Cueto & De Casenave 2000). This is 



137 
 

probably due to reduced disturbance – indeed in Ecuador it has been shown that 

deforestation rates are lower inside protected areas compared to outside (Van Der 

Hoek 2017). Although 20% of Ecuador is currently included in the national protected 

areas management system (Negru et al. 2020) very little of this falls within the lowland 

coastal provinces (Cuesta et al. 2017) where A. lilacina occurs. It is suggested that in 

Ecuador, the effectiveness of protected area management could be improved by 

increasing the involvement of communities and indigenous people in the decision 

making and benefits sharing  (Negru et al. 2020). In 2008, Ecuador initiated the Soci-

Bosque programme, a system that provides direct economic incentives to owners of 

land with native forests to guarantee its protection over the medium-to-long-term. 

Areas were prioritised due to their (1) deforestation threat; (2) importance for 

ecosystem services and; (3) poverty levels (de Koning et al. 2011). This resulted in a 

large proportion of the lowland coastal areas being listed as high priority. I suggest that 

support of local communities following a similar system to the Socio–Bosque 

programme, to provide economic incentives to land owners for the protection of stands 

of trees that are important traditional A. lilacina roost sites, feeding, and nesting 

grounds, would be beneficial to its conservation. There are also a number of privately 

protected areas within the coastal provinces, for example the Cerro Blanco Forest 

(Horstman 2017) which is very important habitat for the species. Often the NGOs that 

manage these areas lack resources, and therefore I recommend support of these 

NGOs to ensure effective management and protection of important parrot habitats.  

Mangroves are also an important ecosystem for A. lilacina; the coastal populations are 

distributed only where the three isolated patches of mangrove forests remain 

(Hamilton & Casey 2016). Between 1969 and 2006 there was a 30% reduction in the 

area covered by mangroves in Ecuador, which coincided with the growth of the shrimp 
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farming industry (Rodríguez 2018). Studies have shown that 80% of the loss of 

mangrove carbon in Ecuador is due to direct displacement of mangroves by shrimp 

farms (Hamilton & Lovette 2015). Although all mangroves are protected according to 

Ecuadorian law, 58% of the human population lives within 100 km of the coast, and 

depends on services provided by marine and coastal ecosystems (Rodríguez 2018). 

As of 2018, 46.5% of mangroves were classed as protected areas and 42% were 

protected through sustainable use and custody agreements or mangrove 

concessions, leaving 11.5% with no protection (Rodríguez 2018). Custody agreements 

or mangrove concessions enable ancestral communities to be granted the sustainable 

use of mangroves for subsistence (mainly collecting and selling of fish and crabs). The 

Socio-Manglares system aims to provide economic incentives to associations that 

have such agreements, supporting them to implement mangrove management plans, 

which contain guidelines on the sustainable use of resources, control and surveillance, 

and monitoring and evaluation. A review of these management plans suggests that 

there may be lack of resources and/or ability of crab fisher and fisher associations to 

implement plans, and that technical assistance provided by NGOs and universities, 

amongst others is very important support (Coello et al. 2008). I suggest that working 

with crab fisher and fisher associations may help to ensure that the importance of 

mangroves to A. lilacina is recognised and built-in to mangrove management plans. 

Furthermore, that additional resources and support to these associations outside of 

protected national parks, for example to assist with surveillance, may help to ensure 

protection of A. lilacina’s traditional roosting grounds.  
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Habitat improvement  

A recent study has shown that the most negative predictor of health of Ecuadorian dry 

forest habitat, is the human pressure index, which measures things such as wood 

extraction, grazing and trampling (Cueva Ortiz et al. 2019). My research suggests that 

outside of privately protected areas, there may be a lack of frequency and diversity of 

parrot feeding and nesting trees. I therefore suggest that increasing the number of 

parrot feeding and nesting tree species, through community initiatives in communal or 

Socio-Bosque forests, may be beneficial to A. lilacina. By providing support to enable 

and facilitate community reforestation projects, using the 36 “parrot friendly trees” 

identified in this research, it could be possible to increase the amount of resource 

available to parrots, whilst engaging community members in parrot protection within 

communally owned lands that parrots use. I also recommend provision of support to 

encourage the use of sustainable agriculture techniques, which in the long term may 

reduce the area of communally owned forest that is cleared for agriculture and improve 

the quality of remaining forest. Reduction in the use of chemical inputs can lead to an 

increase bird populations (Stoate 2002; Stevens & Bradbury 2006) which is also likely 

to improve overall forest quality. A number of NGOs have expertise in sustainable 

farming practices in the rural coastal provinces, so supporting them to build capacity 

in these areas is essential. Another risk to the Ecuadorian dry forest habitat is fire 

(Horstman 2017). The Guayaquil fire department reported 88 significant fires between 

2017 and 2019, of which 60% were caused by humans (I. Solis-Ponce pers. comms. 

Benemérito Cuerpo de Bombero de Guayaquil - Captain Roberto Jurado). In the rural 

communities, there were reports that such fires can be caused by people burning piles 

of rubbish in the forest, due to a lack of efficient waste collection services. I therefore 
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suggest that support for correct waste management, litter clear-ups, and fire 

management training may reduce the risks of fire to the important areas for A. lilacina.  

My research also indicates that the rate of breeding, for A. lilacina attending the El 

Salado Mangrove roost site may be low, as locating nests within a protected area over 

many years, was extremely challenging. One possible reason for this is a lack of 

suitable nesting cavities. Provision of artificial nest sites for birds is a commonly used 

conservation tool but for parrots, they have shown varying levels of success. For echo 

Parakeets Psittacula eques in Mautritius, they have been highly successful with 41 of 

65 nest boxes used in two years, and 71% of these fledging chicks (Tatayah et al. 

2007). Also for Scarlet Macaws Ara macau the use of nest boxes resulted in an 

increase in population size from 185-225 to 225-265 in three years (Vaughan et al. 

2005). On the contrary, for Yellow-eared Parrots Ognorhynchus icterotis at five sites 

in Colombia, artificial nest boxes were rarely used by parrots (Salaman 2006). 

Different designs have been used, most commonly PVC tubes or wooden boxes, but 

in some cases reinforcement of natural cavities has been more successful than the 

installation of boxes; for example for the Yellow-shouldered Amazon Amazona 

barbadensis  in Venezuela, only one artificial box was used compared to all of the 15 

repaired natural cavities (Sanz et al. 2003). We therefore recommended continued 

efforts to locate suitable nesting cavities and active nests within the Cerro Blanco 

Forest, so that cavity reinforcement can be provided if necessary, and the 

implementation of artificial nest box trials using designs successfully used by other 

Amazon parrot species, to supplement nesting opportunity. It is important to note that 

provision of nest boxes that may be more accessible than natural cavities, may result 

in increased risk of disturbance. Four out of five A. barbadensis  clutches in artificial 

nest boxes were removed by poachers (Sanz et al. 2003) and three Scarlet Macaw A. 
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macau clutches in PVC tube nest boxes were destroyed by monkeys (Vaughan et al. 

2003). It is therefore essential to provide increased resources for ongoing protection 

and monitoring of nest sites, through ranger presence, patrols and possibly remote 

monitoring to ensure the safety of chicks if artificial boxes are used.  

Reduction in trapping  

My research highlighted that trapping of A. lilacina for local pet keeping is a threat to 

the species. Up to 52% of people believed it was acceptable to keep pet parrots and 

up to 74% that it was acceptable to catch parrots to sell. It has been shown that anti-

poaching efforts in the form of additional human presence, can benefit bird populations 

(González 2003; Vaughan et al. 2005; Granadeiro et al. 2006) and that recruitment of 

young people (who may be facilitators in parrot trapping) from the local community to 

act as nest monitors, can significantly decrease poaching rates (Briceño-Linares et al. 

2011). A literature review revealed that some form of parrot nest protection reduced 

nest poaching by up to 50 times (Pain et al. 2006). In the last two years, we have 

initiated an Amazona Lilacina Community Guardian scheme, where local community 

members are trained and employed to monitor and protect nest and roost sites, 

amongst other research activities. We recommended the continuation and expansion 

of this scheme. In the last three years, we have also been working with local 

Ecuadorian educators to develop resources and deliver environmental education 

workshops in communities within the species range, as the lack of environmental 

education in Ecuadorian schools has been reported as a barrier to reducing parrot 

ownership and capture (Ortiz-von Halle 2018). Evaluation of this project has shown 

that after attending workshops, participants have a significantly increased knowledge 

and awareness of A. lilacina, how to recognise it, its main threats, and its endangered 
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and endemic status. I recommend the continuation of environmental education and 

increased partnerships with local teachers to create lesson plans and resources that 

allow sessions about the importance of parrots, and dry forest and mangrove 

ecosystems, to be delivered in schools. Conservation education should be aimed at 

changing attitudes towards parrot ownership / trapping, and combined with increased 

protection of wild birds through nest and roost guarding. Finally, during community 

surveys it was suggested that there are economic drivers of parrot trapping. First, that 

farmers have a need for additional income in March to pay for school uniforms and 

equipment at the start of the school term in April. Second, that crab fishers are legally 

prohibited from catching and selling crabs in March and consequently may trap and 

sell parrots instead. I recommended that research into these possible economic 

drivers of parrot trapping is needed, with the aim to develop solutions that reduce the 

need for the supplemental income that it provides to families.  

It is clear from the results presented in my thesis that local communities believe wild 

parrots are important for nature and that they themselves have a responsibility to 

protect nature. Local people do not want parrots to disappear from their local areas 

and they must be supported to enable them to protect A. lilacina from future extinction.  
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Summary

Amazona lilacina is a threatened species endemic to Ecuador, existing across a patchwork of
mangroves, lowland coastal forests, agricultural and community owned land. The species was
described in 2014 and listed as ‘Endangered’ on the IUCN Red List, however, full assessment of
the population was lacking. Using a combination of field observations, roost surveys and commu-
nity questionnaires, conducted over the last 20 years, we provide up-to-date information on the
species’ Extent of Occurrence, estimate its global population size, and evaluate its level of threat.
Our results suggest the species occurs across an area of 19,890 km2 in three distinct geographically
isolated subpopulations. Roost surveys across the range estimate the minimum remaining popu-
lation at 741–1,090 individuals and we present evidence to suggest a 60% decline over the past
19 years in one part of the species’ range.We conducted community questionnaires with 427 people
from 52 communities. The presence of pet parrots was reported in 37 communities, including
17 communities which reported pet A. lilacina. From this we predict that over half of all commu-
nities within our study area keep parrots as pets and at least 96 communities keep A. lilacina.Our
findings justify an IUCNRed Listing of at least ‘Endangered’ for this species and highlight the need
for conservation support. In order to assess population health in more detail, further research is
required to assess genetic diversity and roost dynamics, and to identify areas thatmay be important
for feeding and nesting throughout the range. As many of these areas are likely to overlap with
community owned land, we suggest that future conservation actions should revolve around, and be
led by, these communities.

Resumen

Amazona lilacina es una especie amenazada y endémica a la República del Ecuador. Habita en un
mosaico de manglares, bosques costeros, predios agrı́colas y tierras comunitarias. La especie fue
descrita en el año 2014, e incluida en la Lista Roja de la UICN bajo la categorı́a ‘En Peligro’, sin
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embargo, no se realizó la evaluación completa de la especie. Mediante información derivada de
observaciones en terreno, monitoreo de dormideros y encuestas a comunidades, actividades reali-
zadas durante el transcurso de los últimos 20 años, aquı́ presentamos un informe actualizado de la
Extensión de la Presencia de la especie, una estimación del tamaño poblacional global, y una
evaluación del nivel de amenaza que enfrenta. Nuestros resultados sugieren que la especie ocurre
a lo largo de un área de 19,890 km2, en tres subpoblaciones que se encuentran geográficamente
aisladas. El monitoreo de los dormideros a lo largo de su área de distribución dan una población
mı́nima estimada de 741 - 1,090 individuos, y presentamos evidencia que sugiere que la población
en una zona de su rango distribucional ha disminuido en un 60%durante el trascurso de los últimos
19 años. En encuestas realizadas con 427 personas de 52 comunidades la presencia de loros como
mascotas fue reportado en 37 comunidades, incluyendo 17 comunidades donde se registró la
presencia de ejemplares deA. lilacina en cautiverio. A partir de esto, predecimos que existen loros
en cautiverio en más de la mitad de las comunidades dentro del área de estudio, y que en por lo
menos 96 de éstas hayA. lilacina. Nuestros resultados justifican la inclusión de la especie, como
mı́nimobajo la categorı́a ‘En Peligro’ de la UICN, y destacan la necesidad de esfuerzos para su
conservación. Con el objetivo de evaluar la salud poblacional en mayor detalle, se requieren más
investigaciones para evaluar la diversidad genética y la dinámica de los dormideros, y para identi-
ficar áreas que pudiesen ser importantes para alimentación o nidificación a lo largo de su rango
distribucional. Ya que es altamente probable que muchas de estas áreas coincidan con zonas
pobladas, proponemos que acciones para la conservación de la especie a futuro deberán centrarse
en, y ser lideradas por, estas comunidades.

Keywords: amazon parrot, Ecuador, Endangered, pet trade

Introduction

A third of all Psittaciformes are classified as threatened and over half of all populations are in
decline, yet population parameters to support conservation status assessments are missing for
many Neotropical parrots (Berkunsky et al. 2017). Parrots are commonly threatened by habitat
loss, persecution, and the pet trade, and many species are in need of conservation support
(Berkunsky et al. 2017). Endemic parrots with small fragmented populations, and those such as
Amazon parrots with large body size and long generation times, are disproportionately at greater
risk of extinction (Snyder et al. 1987, Purvis et al. 2000, O’Grady et al. 2004, Olah et al. 2016).
Indeed 58% of species in the genus Amazona are currently listed by the IUCN as threatened or
‘Extinct in the Wild’ (BirdLife International 2017).
Amazona lilacina is endemic to Ecuador and was described as a full species in 2014 (Pilgrim

2010, del Hoyo andCollar 2014). An initial Red List assessment categorised it as ‘Endangered’due
to its small and fragmented population (BirdLife International 2014) however, detailed status
information was lacking, uncertain or outdated. For example, the northernmost limit of the
species’ extent of occurrence (EoO), was historically recorded as south-west Colombia
(e.g. Juniper and Parr 1998, Forshaw 2010), which is now believed to be incorrect. Additionally,
its dispersal area and habitat preference were recorded as regions encompassing both mangrove
and lowland coastal forest habitats (e.g. Ridgley and Greenfield 2001a, Athanas and Greenfield
2016), yet a recent study confirmed the presence of a large roost in a non-mangrove habitat
(Blanco et al. 2016).
Evidence suggests population size and trajectory are strongly correlated with extinction risk

among vertebrates (O’Grady et al. 2004) but, sinceA. lilacinawas described as a full species, the
population size has not been estimated and little is known about its trend in recent years. The
species was reported to have undergone severe population decline prior to the mid-1980s in
response to ongoing habitat loss and trapping pressure (e.g. CITES 1986, Ridgley andGreenfield
2001b), and by 1998 the population was estimated at just 400–600 individuals (Juniper and Parr
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1998). However, this estimate is now almost 20 years old and its reliability is questioned due
both to possible declines and to the recent identification of new roosts (Blanco et al. 2016,
authors’ pers. obs.). Roost surveys have been used to estimate global and local population sizes
in many parrots species (e.g. Gnam and Burchsted 1991, Martuscelli 1995, Matuzak and Bright-
smith 2007, Dénes et al. 2018) and provide a tool for long-term population monitoring
(e.g.Wermundsen 1998, Wright et al. 2019).Amazona lilacina’s communal roosting behaviour
thus allows us to update the population estimate and conduct long-term monitoring to assess
population trajectory.
In response to the ‘uplisting’ of this species to ‘Endangered’ in 2014, we re-examined its Red List

status through personal field observations and collation of information from local experts, NGOs,
and communities, over a seven year period to fulfil four objectives:

1. update the current known Extent of Occurrence and estimate area of daily dispersal;
2. estimate global population size;
3. determine change in roost size as an indicator of overall population trend;
4. quantify prevalence of pet parrots within the species’ range.

Methods

Study area and roost sites

Amazona lilacina is reliant on lowland coastal forests (Ridgley and Greenfield 2001b) where it
feeds on a variety of fruits and seeds, and nests in cavities formed in the trunks and branches of
tree species such as pigı́o Cavanillesia platanifolia and ceibo Ceiba trichistandra (Kunz 1996,
Berg and Angel 2006). Although we know little about this species’ reproductive behaviour,
adults appear to explore cavities in October/November and produce one or two chicks that
fledge between mid-February and late-March (Kunz 1996, Berg and Angel 2006). As with
several other Amazona species, with the exception of breeding birds, or at least females during
the incubation and early chick stages, it returns to communal roost sites every evening
e.g. A. brasiliensis (Cougill and Marsden 2004), A. auropalliata auropalliata (Matuzak and
Brightsmith 2007), and A. amazonica (de Moura et al. 2012). For A. lilacina, these roost sites
mainly occur onmangrove islands where birds join together every night (Berg andAngel 2006).
Birds tend to arrive at sunset, flying in loose-knit flocks made of paired birds, single birds,
triplets or small groups, often making loud contact calls as they fly. For this reason roost
locations are often well known by local communities, who hear the birds as they arrive and
depart the following morning. In contrast, during the day, birds are secretive and extremely
difficult to locate as they feed silently and high in the canopy in small groups (Ridgley and
Greenfield 2001b).
For this study, we identified four roost sites that are occupied throughout the year. We believe

they contain a large proportion, if not all, of the remaining global population of this species and
they are separated from each other by at least 50 km (Figure 1). Roost 1 is located on a mangrove
island in Manabı́ Province and was brought to our attention by Fundación Jocototo in 2012. Roost
2 is located in Santa Elena Province and is known to us through the work of Guillermo Blanco and
José Tella (Blanco et al. 2016). This is the only roost we know of that does not occur in mangroves.
Instead, the birds roost in stands of the locally known ‘algarrobo’ tree Prosopis julifora. Roost 3 is
perhaps the most well-known roost, located north-west of the Gulf of Guayaquil, in the El Salado
Mangrove Reserve where mangrove islands have been frequented by A. lilacina since at least the
early 1990s (Berg and Angel 2006). Roost 4 is situated south-east of the Gulf of Guayaquil on an
island within the Manglares Churute Ecological Reserve. It was located in 2016 through our
community questionnaires.
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Field observations

Observational data collected during 10 field trips were used to address Objective 1 (November
2012, January andAugust 2014, November 2015, August 2016, January andMarch 2017, February
2018, January and August 2019). Field trips lasted 2–3 weeks during which we investigated
potential areas of suitable habitat, verified any recorded sightings of individuals, and monitored
known and newly reported roosts. Data collection was informed by: 1) existing information on
known distribution and habitat use (Juniper and Parr 1998, Ridgley andGreenfield 2001b, Berg and

Figure 1. FourA. lilacina roosts are believed to contain themajority of the global population, three
of these occur on mangrove islands. Mangroves (Hamilton and Casey 2016) and communities
taking part in researcher-led questionnaires are indicated.
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Angel 2006, Forshaw 2010, Athanas and Greenfield 2016); 2) information on habitat distribution
from Google Earth and available ecosystem maps (Ministerio del Ambiente 2012); 3) direct
communication with local NGOs, ornithologists, local guides and bird tour companies and 4)
communication through researcher-led questionnaires with local communities.
All sightings of perched A. lilacinamade by us, Fundación Jambeli staff, and Juan Freile within

the last 10 years were georeferenced (sightings of birds in flight were omitted). eBird presence data
were lacking, however complete checklists that failed to reportA. lilacinawere used to gain an idea
of absence areas: a total of 34,974 complete checklists for mainland Ecuador were downloaded in
February 2019.

Roost surveys

To meet Objective 2, we conducted repeat surveys at all roosts. Although these were not located
through systematic survey, they represent the combined current knowledge regarding this species
according to the authors, local experts and communities. Initially, we conducted practice censuses at
each roost to identify the best vantage points. Surveys were then conducted twice per day and
where possible, for a minimum of four days to control for intrinsic variability (minimum of
2, maximum of 20 consecutive surveys). To maximise our chances of counting all individuals
leaving or arriving at each roost, morning surveys began before sunrise and lasted for two hours,
whilst evening surveys began an hour before sunset and finished when it was too dark for birds to
be identified. To reduce observer bias, all surveys were carried out by a combination of the same
three researchers (RB, ISP, PC), with one person counting and identifying birds using binoculars,
the other keeping record. Roost sites are separated by at least 50 km and it has been suggested for
other amazon species that if roosts sites are isolated by > 8 km, daily movement between roosts is
unlikely (Cougill and Marsden 2004). Still, to account for possible movement of birds between
roosts, which could result in counting the same birds twice, only roost surveys conducted during
the same weeks of each year were used to estimate population size. Unfortunately, Roost 1 was
disrupted and not occupied by amazons during one year of the study, thus an average of counts
before and after this disruption, but prior to the next global count, was used. The sum of these
counts is presented as an estimated range inminimumglobal population size during the given time
frame. Counts conducted in March are likely to include both adult and juvenile birds returning to
the roost after the breeding season, so are suggested to be the most inclusive estimate.
Surveys from 2014 onwards at Roost 3 were conducted from an observation tower within the

town of Puerto Hondo, approximately 300 m in front of the roost, allowing a full view of each
parrots’ flight path to and from the roost. This tower gives a good view of the roost area and
approximately 1.2 km on either side. Morning surveys were conducted, by the same researcher,
who attended the vantage point from 05h30 to 07h30. At this roost, birds are only seen flying in
one direction (into or out of the roost) and therefore it is unlikely that birds were double counted. A
consecutive day counting regime was used - the last four days of each month, which has been
previously found to be more precise than counting on random days throughout the month; the
regime used in 1999/2000 (Berg and Angel 2006, Cougill and Marsden 2004).
To facilitate Objective 3, we compiled all available surveys conducted at Roost 3 to assess long-

term change in the size of this roost over time. Survey data were available from June 1999 to May
2000 (conducted by Berg and Angel, 2006) and for various months between November 2015 and
May 2018.

Community questionnaires

To address Objective 4, information on the presence of pet parrots was gathered through
researcher-led questionnaires in 52 communities within the study area (Figure 1). A total of
427 people took part, representing between 4 and 23 households per community. ‘Open Street
Map’ (OSM)was used to categorise communities as hamlets, villages, or towns. Communities were
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selected due to their close proximity to lowland dry tropical forests (Ministerio del Ambiente
2012). Following trial surveys, questionnaires were carried out from January to July 2017. A
combination of photographs, questions and sound recordings were used to ascertain if the partic-
ipant could correctly identify A. lilacina. Participants were then asked: “Are there any pet parrots
in your village?” and “Which parrot species are kept as pets?”
Questionnaires were conducted in Spanish and only the researcher (ISP) and participant were

present. Due to potential bias in self-reporting behaviour using direct questioning, especially in
cases where that behaviour is illegal (Fisher 1993, Nuno and St John 2014), we only asked
participants to report the presence or absence of pets in their community as a whole. Participants
could decline to contribute andwere asked for verbal consent prior to participation once the purpose
of the research was explained. Interviews were anonymous and data were coded to ensure that no
individuals could be identified.

Data analysis

For Objective 1, observation locations were used to estimate the Extent of Occurrence (EoO) using
the IUCNRed List guidelines (IUCNStandards and Petitions Subcommittee 2016). ArcGISwas used
to calculate the EoO, defined as “the area contained within the shortest continuous imaginary
boundary which can be drawn to encompass all the known, inferred or projected sites of current
occurrence of a taxon (IUCN Standards and Petitions Subcommittee 2016). The ’Minimum Bound-
ing Convex Polygon’ tool was used within ArcToolbox to estimate area of EoO, with no exclusion
areas.
To estimate the area of land that birds are likely to disperse over daily, buffers of 10 km were

created around observation points; this is suggested to be the approximate diurnal ranging area of
A. auropalliata in Costa Rica (Salinas-Melagoza et al. 2012). Buffers were dissolved inArcToolbox.
To analyse possible movement between daily dispersal areas, absence points were created using
eBird complete checklists that did not record the species. Data were filtered and extracted using the
auk package in R and following suggestions on best practice from Johnston et al. (2019), by
restricting checklists to < 5 h duration, > 5 km in length, and with < 11 observers.
For Objective 3, count data from roost surveys conducted using comparable methodology were

analyzed to assess any change in the size of Roost 3 from 1999/2000 to 2017/2018. For this analysis,
only morning counts were used owing to the conclusions of Berg and Angel (2006) who found that
their morning counts were more consistent, larger, and thus more accurate. Additionally, Cougill
andMarsden (2004) showedmorning counts to bemore precise for estimating size of other amazon
roosts. A generalised linear mixed model (GLMM) with a Poisson distribution and ‘month’ as a
random effect was fitted to compare counts from the two data sets. All statistical analyses were
conducted in R (version 3.6.0; R Core Team, 2019).
For Objective 4, ‘Open Street Map’ (OSM) was used to identify all communities in the study

area, in the categories of hamlet/village/town. Predictor variables were calculated for each com-
munity (surveyed and not surveyed) using the ‘Euclidean Distance’ and ‘Values to Points’ tools in
ArcToolbox. These related to species availability, accessibility and land protection status: distance
to nearest sighting/roost, elevation (Jarvis et al. 2008), distance to nearest road (defined by OSM),
and inclusion status within the National System of Forest and Protected Vegetation 2015 (defined
byMinisterio del Ambiente). Additionally,meanNormalisedDifference Vegetation Index (NDVI)
from the monthly MODIS product, MOD13A3, averaged across the period 2010–2015, was
included as a proxy of vegetation cover. Random Forests (Breiman 2001) was used to classify
surveyed villages with and without pet parrots, and with/without pet A. lilacina. The ‘predict’
function in this package was then used to predict the likelihood of pet parrots and pet amazons
being present in the remaining non-surveyed communities within the study area. Communities
with a predicted vote score of 0.6 or over, thus a greater than 60%probability, were classed as likely
to have pets.
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Results

In total 132 occurrence points were gathered, and analysis of eBird checklists resulted in confir-
mation of 4,626 points of species absence (Figure 2a). The estimated Extent of Occurrence is
19,890 km2 within which 5,313 km2 is used by the species during daily dispersal. According to
the IUCN’s definition of subpopulations (IUCN Standards and Petitions Subcommittee 2016) we
suggest that Amazona lilacina occurs in at least three distinct subpopulations separated by a
minimum of 40 km (Figure 2b).
Minimum and maximum counts from each roost survey (Table 1) reflect fluctuations in the

number of birds attending each roost during the survey period. Although it is always possible that
more roosts exist within the study area, we believe we have identified all remaining large roosts (>
30 individuals) and thus we estimate the remaining global population at 741–1,090, which includes
mature and immature birds. We suggest that counts conducted in March (1,090) at the end of the
breeding season, represent the population including young birds, and that counts from January
(804) represent the population without breeding birds or at least females with eggs or chicks in the
early developmental stages. We saw a slight decrease in global population size between March
(1,090) and August (1,046) which may represent juvenile mortality.

Figure 2a. Presence (n = 132) and absence (n = 4,626) points recorded for A. lilacina. Presence
points are joined by a convex hull to estimate the species’ Extent of Occurrence of 19,890 km2.
Figure 2b. Occurrence points are surrounded by 10 km buffers to represent a daily dispersal area of
5,313 km2, within three subpopulations.
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When considering all surveys conducted at Roost 3 from 1999 to 2018, there has been an overall
decline in the total number of birds (Figure 3). Our GLMM revealed that average counts declined
between the two periods of data collection representing a significant drop in roost size in 2017/2018
compared with 1999/2000 (β = -1.02, SE = 0.24, P < 0.001). On average, the difference between
monthly counts suggests a 60%reduction in the size of the roost. Themaximum roost size in 2000
was 229 birds (Berg and Angel 2006), but just 117 in 2018.
Of 52 communities surveyed, presence of pet parrots was confirmed in 37. A total of 11 parrot

species, including A. lilacina were recorded: Yellow-crowned Amazon A. ochrocephala, Orange-
winged Amazon A. amazonica, Southern Mealy Amazon A. farinosa, Red-lored Amazon
A. autumnalis salvini, Bronze-winged Parrot Pionus chalcopterus, Blue-headed Parrot
P. menstruus, Red-masked Parakeet Psittacara erythrogenys, Grey-cheeked Parakeet Brotogeris
pyrrhoptera, White-winged Parakeet B. versicolurus and Pacific Parrotlet Forpus coelestis. Com-
munities with pet parrots could be classified (out of bag error rate 16%)using variables of elevation
and distance to the nearest roost, it is predicted that 1,617 of the 3,231 additional non-surveyed
communities within the study area have a greater than 60%probability of containing pet parrots.
Of the 37 communities with confirmed presence of pet parrots, 17 held pet A. lilacina. These

17 could be classified (out of bag error rate 31%) using predictors of distance to roost, distance to
sighting and NDVI. It is predicted using this classification, that 79 of the 3,231 additional non-

Table 1. Number of A. lilacina counted during roost surveys at all known roosts. Roost 1 was not present in
March 2017. Local reports suggest this was in response to damage caused to the mangrove island roost site
by a large earthquake. Thus, the mean of all counts prior to January 2019 is used: 97 and 103 (Nov 2012), 84
and 86 (Aug 2014). The population is estimated at a minimum of 741–1,090 individuals.

Roost 1 Roost 2 Roost 3 Roost 4 Population estimate

March (2017/18) 93 300–480 28–110 320–407 741–1,090
Jan (2019) 44–95 181–338 41–72 220–299 486–804
August (2019) 60–116 124–144 32–57 628–729 844–1,046

Figure 3. Roost surveys recording the total number of birds departing Roost 3 during morning
surveys conducted between June 1999 and May 2018. The average number of birds counted
decreased by 60% between 1999/2000 and 2017/2018.
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surveyed communities within the study area have a greater than 60% probability of having pet
A. lilacina. It was felt the value of 60% across the community as a whole, would equate to a much
higher probability of at least one pet being owned. From the above, we suggest that within our
study area, approximately 1,645 communities have pet parrots, and at least 96 of these have pet
A. lilacina (Table 2).

Discussion

We estimate the Extent of Occurrence (EoO) for the recently recognised Amazona lilacina to be
half of that currently listed on the IUCN Red List (BirdLife International 2018), which from
available data represents the smallest remaining EoOof any ‘Endangered’mainland amazon parrot
(Birdlife International 2018).We suggestA. lilacina has a population size of between 741 and 1,090
birds and that this population is declining, with Roost 3 showing a reduction in size of 60%over the
past 19 years – a similar decline to that seen in other parrot species globally (Berkunsky et al. 2017).
This rate of decline supports the IUCN listing of ‘Endangered’ under criterion A, and if reflected
over the whole population may qualify the species for listing as ‘Critically Endangered’. Further
research is needed to assess this, however, when comparing our 2019 counts, to unpublished counts
from researchers in 2014, we see a decline of 59% also at Roost 2; an area where strong poaching
pressure has been observed (G. Blanco, F. Hiraldo and J. L. Tella pers. comm. 2020). We report that
local capture for pets is an ongoing threat and support the notion that Ecuador should be prioritised
for parrot conservation (Olah et al. 2016).
As commonly seen in parrot roost counts, our results showed variability in roost size within and

across months. This may be explained in part by imperfect detection whereby birds arrive at or
depart roosts undetected due to low light levels orweather conditions (Dénes et al. 2018). Although
every attempt was made to account for this, due to the opportunistic nature of some of our roost
surveys, a structured counting regime as suggested by Cougill andMarsden (2004) was not always

Table 2. Of the 52 surveyed communities, 37 reported pet parrots and 17 reported pet A. lilacina. Using
random forests to predict the occurrence of pet parrots throughout similar communities within the study
area, we suggest 1,617 communities have pet parrots and at least 96 have pet A. lilacina.

Pet parrots Pet A. lilacina

Surveyed communities with confirmed presence 37 / 52 17 / 37

Out of bag error rate of classification of surveyed
communities

15.7% 31.4%

Classification error table Confusion matrix: Confusion matrix:

N Y N Y

N 10 5 0.33 N 31 4 0.11
Y 3 33 0.08 Y 12 4 0.75

Mean decrease in accuracy value for
each predictor

Community type 2.51 -5.82
Distance to
sighting

9.45 -1.50

Distance to roost 12.95 9.79
Distance to road 1.74 -0.88
Elevation 16.97 -3.14
NDVI 1.98 1.06
In protected area
or not

4.81 0.17

Number of communities predicted >60% probability of
pets

1,617 / 3,231 79 / 3,231

Suggested number of communities with pets 1,645 96
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followed. Additionally, it is possible that some birds may have gathered temporarily in smaller,
undetected roosts and thus be missed frommain roost surveys. Despite this, we believe the results
presented here offer a valuable first estimate of population size and trajectory for this ‘Endangered’
species.
Amazona lilacina’s northern border was previously recorded as south-west Colombia or the

Esmeraldas province of Ecuador (CITES 1986, Juniper and Parr 1998, Ridgley and Greenfield 2001,
Forshaw 2010, Athanas and Greenfield 2016), but we suggest, in agreement with local experts, that
these more northern birds are in fact A. autumnalis salvini (R. Orrantia, Fundación Jambeli pers.
comm. 2013, M. Schaefer, Fundación Jocotoco pers. comm. 2014, R. Ridgley, Rainforest Trust pers.
comm. 2015). Within our newly presented EoO we no longer believe the species is restricted to
mangrove roosting areas, owing to the discovery of a new roost located > 50 km from any
mangroves. However, we do suggest that the species is still highly geographically restricted, with
an estimated daily dispersal area of just 5,313 km2 split between three distinct geographically
isolated subpopulations. Although movement between these three areas is unlikely due to their
separation distance of approximately 40 km, further research into the daily movement and genetic
structure of these subpopulations is needed to confirm this.
Historically, threats to this species have been severe: CITES reported thousands of A. lilacina

being trapped and exported from the country in the early 1980s (CITES 1986), and Ecuador
reported the highest rate of deforestation in South America for the period 2000–2005, with the
main cause being clearing of the lowland coastal forests for agricultural crops (Mosandl et al. 2008).
As early as 1986, the plight of this species was highlighted (CITES 1986) and we believe the
population is still at risk and in decline. A likely contributor to this is that the range overlaps with a
large proportion (46%) of Ecuador’s human population (INEC 2010). In addition to the direct
threat of local capture for pets, anthropogenic effects such as fire, hunting, land trafficking and the
development of squatter settlements are reported as the greatest threats to the lowland coastal
forests this species relies on (Horstman 2017).
We predict that over half of all communities within the study area have pet parrots, despite it

being illegal since the mid-1980s to hunt or trade species included in the CITES Appendices. A few
of these could be long-lived individuals, however we expect that to be a minority. Ecuador’s
confiscation reports also suggest a large number of parrots in captivity with 91% of all birds
confiscated between 2003 and 2014 being Psittacidae and 7% of these A. autumnalis (Ortiz von-
Halle 2018). Law enforcement in the form of pet confiscation does not appear to be a strong
deterrent, and only once has a case of bird crime resulted in a jail sentence in Ecuador (Ortiz-von
Halle 2018). We predict that nearly 100 communities hold A. lilacina but expect this is an
underestimation due to difficulties in identifying parrots to species level. We did gather evidence
of poaching of A. lilacina chicks and adults during fieldwork, either to generate core income, or
incidentally, to fulfil a specific economic need such as buying uniforms at the start of the school
term.Additionally, reports of farmers using nets or poison to protect their crops against parrots and
historical reports of family relatives shooting macaws and amazons for food were made. Although
legal subsistence hunting does not appear a threat to the species, recent concern has been raised
regarding its sustainability in the light of changes in human population size, huntingmethods, and
habitat fragmentation (Suarez and Zapata-Rios 2019).
The lowland coastal provinces where A. lilacina occurs have been identified as having an acute

lack of protected areas (Cuesta et al. 2017). Additionally, the lowland forests, mangroves and
algarrobo trees, are all habitats essential for local community income and sustenance, through
hunting, fishing for crabs, cutting of firewood or making charcoal. Outside of these habitats, our
observations occasionally recorded the species in crop fields, gardens, and even villages where fruit
trees have been planted, and in the last couple of years eBird users are more frequently recording
the species within the large city of Guayaquil. This species is clearly existing across a highly
anthropogenically-influenced landscape, and although there are examples worldwide of parrots
adapting to such environments (e.g. Lill 2009, Martens and Woog 2017) the effects this may have
on their natural behaviours or ecological functions could be significant (Luna et al. 2018).
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Our study highlights an urgent need for a collaborative approach to conservation to reduce
A. lilacina’s vulnerability to extinction; with governments, local NGOs and conservation organi-
sations working together to enforce law and to ensure vital remaining fragments of forest are
protected, but most importantly, for local communities to be engaged and empowered towards the
conservation of this species.
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Professor José Tella and Juan Freile, for sharing their knowledge about the species with
us. Thank you to the administration staff and park guards of Fundación Pro Bosque and to Belén
Chiriboga of Zoo El Pantanal for assisting with logistical support. Additionally, to the Fundación
Municipal of Guayaquil para la Regeneración Urbana for allowing access to the Puerto Hondo
observation tower outside of public opening hours. Finally, thank you to The North of England
Zoological Society for providing all the funds for this research, to Paul Bamford for providing the
summary translation, and to the many staff who assisted with data collection.

References

Athanas, N. andGreenfield, P. J. (2016)Birds of
Western Ecuador: A photographic guide.
Princeton, USA: Princeton University Press.

Berg, K. S. and Angel, R. R. (2006) Seasonal
roosts of Red-lored Amazons in Ecuador
provide information about population size
and structure. J. Field Ornithol. 77: 95–103.

Berkunsky, I., Quillfeldt, P., Brightsmith, D. J.,
Abbud, M. C., Aguilar, J. M. R. E., Alemán-
Zelaya, U. and Masello, J. F. (2017) Current
threats faced by Neotropical parrot popula-
tions. Biol. Conserv. 214: 278–287.

BirdLife International (2014) Amazona lila-
cina. The IUCNRed List of Threatened Spe-
cies2014: e.T22728296A40856859. http://
dx.doi.org/10.2305/IUCN.UK.2014-2.RLTS.
T22728296A40856859.en. Downloaded on
14May 2019.

BirdLife International (2018) Amazona lila-
cina. The IUCN Red List of Threatened Spe-
cies2018: e.T22728296A132031900. http://
dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.
T22728296A132031900.en. Downloaded on
14May 2019.

BirdLife International (2017) Handbook of the
Birds of theWorld and BirdLife International
digital checklist of the birds of the world.
Version 2. Available at: http://datazone.bird
life.org/userfiles/file/Species/Taxonomy/
HBW-BirdLife_Checklist_Version_2.zip.

Blanco, G., Bravo, C., Pacifico, E. C., Cha-
morro, D., Speziale, K. L., Lambertucci,
S. A., Hiraldo, F. and Tella, J. L. (2016) Inter-
nal seed dispersal by parrots: an overview of
a neglected mutualism. PeerJ. 4: e1688.

Breiman, L. (2001) Random Forests. Machine
Learning 45: 5–32.

CITES (1986). Significant trade in wildlife
Appendix II, Vol.3. Birds. CITES 2nd Tech
Committee. Downloaded from: https://www.
speciesplus.net/#/taxon_concepts/5318/docu
ments.

Cougill, S. and Marsden, S. J. (2004) Variabil-
ity in roost size in an Amazona parrot:
implications for roost monitoring. J. Field
Ornithol. 75: 67–73.

Cuesta, F., Peralvo, M., Merino-Viteri, A., Bus-
tamante, M., Baquero, F., Freile, J. F., Muriel,
P. and Torres-Carvajal, O. (2017) Priority
areas for biodiversity conservation in main-
land Ecuador. Neotrop. Biodivers. 3: 93–106.

de Moura, L. N., da Silva, M. L. and Vielliard,
J.M. E. (2012) Influence of the nycthemeral
cycle on the roosting behaviour of the
Orange-winged Amazon. Ann. Brazilian
Ac. Sci. 84: 509–515.

del Hoyo, J. and Collar, N. J. (2014) HBW and
BirdLife International illustrated checklist
of the birds of the world. Volume 1: Non-
passerines. Barcelona, Spain and

R. Biddle et al. 596

http://dx.doi.org/10.2305/IUCN.UK.2014-2.RLTS.T22728296A40856859.en
http://dx.doi.org/10.2305/IUCN.UK.2014-2.RLTS.T22728296A40856859.en
http://dx.doi.org/10.2305/IUCN.UK.2014-2.RLTS.T22728296A40856859.en
http://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22728296A132031900.en
http://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22728296A132031900.en
http://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22728296A132031900.en
http://datazone.birdlife.org/userfiles/file/Species/Taxonomy/HBW-BirdLife_Checklist_Version_2.zip
http://datazone.birdlife.org/userfiles/file/Species/Taxonomy/HBW-BirdLife_Checklist_Version_2.zip
http://datazone.birdlife.org/userfiles/file/Species/Taxonomy/HBW-BirdLife_Checklist_Version_2.zip
https://www.speciesplus.net/#/taxon_concepts/5318/documents
https://www.speciesplus.net/#/taxon_concepts/5318/documents
https://www.speciesplus.net/#/taxon_concepts/5318/documents


Cambridge, UK: Lynx Edicions and BirdLife
International.
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Abstract
Species distribution models are widely used in conservation planning, but obtaining the 
necessary occurrence data can be challenging, particularly for rare species. In these cases, 
citizen science may provide insight into species distributions. To understand the distribu-
tion of the newly described and Critically Endangered Amazona lilacina, we collated spe-
cies observations and reliable eBird records from 2010–2020. We combined these with 
environmental predictors and either randomly generated background points or absence 
points generated from eBird checklists, to build distribution models using MaxEnt. We 
also conducted interviews with people local to the species’ range to gather community-
sourced occurrence data. We grouped these data according to perceived expertise of the 
observer, based on the ability to identify A. lilacina and its distinguishing features, knowl-
edge of its ecology, overall awareness of parrot biodiversity, and the observation type. We 
evaluated all models using AUC and Tjur  R2. Field data models built using background 
points performed better than those using eBird absence points (AUC = 0.80 ± 0.02, Tjur 
 R2 = 0.46 ± 0.01 compared to AUC = 0.78 ± 0.03, Tjur  R2 = 0.43 ± 0.21). The best perform-
ing community data model used presence records from people who were able recognise a 
photograph of A. lilacina and correctly describe its distinguishing physical or behavioural 
characteristics (AUC = 0.84 ± 0.05, Tjur  R2 = 0.51± 0.01). There was up to 92% over-
lap between the field data and community data models, which when combined, predicted 
17,772  km2 of suitable habitat. Use of community knowledge offers a cost-efficient method 
to obtain data for species distribution modelling; we offer recommendations on how to 
assess its performance and present a final map of potential distribution for A. lilacina.

Keywords Local ecological knowledge · MaxEnt · Psittaciformes · Citizen science · 
Ecuador
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Introduction

Understanding species distributions is essential for conservation planning (Wilson et  al. 
2005) but for species that are rare, sparsely distributed, or inconspicuous, this informa-
tion is often lacking. In such cases, species distribution models (SDMs) and their outputs, 
can be particularly useful, as long as they are based on ecological theory and built using 
accurate data (Guisan and Thuiller 2005). SDMs allow the probability of occurrence to 
be predicted in un-surveyed areas, which can inform future field investigations and have 
many important conservation applications (e.g. Pearce and Lindenmayer 1998; Araújo 
et al. 2004). For all SDMs, species presence data are needed. Traditionally this comes from 
direct species observations or museum records, but more recently scientists have looked 
to integrate different sources of data, such as citizen science, to make better inferences of 
the true distribution of species (Amano et al. 2016; Coxen et al. 2017; Fletcher et al. 2019; 
Steen et al. 2019; Isaac et al. 2020).

The quality of outputs gained from SDMs is affected by factors such as data type, 
sampling bias and imperfect detection (Lahoz-Monfort et al. 2014; Guillera-Arroita et al. 
2015). MaxEnt is one of the most commonly used methods for deriving SDMs and has 
been shown to produce useful models even when dealing with small sample sizes (Wisz 
et al. 2008; Elia et al. 2015). Whilst other methods require absence data to be collected, 
MaxEnt uses presence data combined with a background sample drawn randomly from the 
study area (Phillips et al. 2006, Phillips and Dudík 2008; Elith et al. 2011). Both presence-
absence and presence-background data methods have limitations; namely that presence 
data often do not represent an unbiased sample of locations at which the species is present, 
and that absence data can lead to the inclusion of false absences (Guillera-Arroita et  al. 
2015). These limitations must be considered against the proposed use of model outputs; for 
instance, presence-background data may be sufficient when outputs are to be used to direct 
further field investigations, but insufficient if outputs are to directly inform land manage-
ment for conservation (Lahoz-Monfort et al. 2014). The predictive ability of models may 
also be reduced if imperfect detection is not accounted for, and may result in outputs being 
more likely to predict areas in which the species is easier to observe, rather than where it 
is more likely to occur. It is therefore essential that the effects of imperfect detection are 
minimised by ensuring a sufficiently large sampling effort at surveyed locations (Lahoz-
Monfort et al. 2014).

For species where field observations are lacking, citizen science data is a valuable and 
widely used resource (Brook and McLachlan 2008) which can help determine species pres-
ence, absence or abundance (Melovski et al. 2018; Díaz-Ruiz et al. 2019; Ghoshal et al. 
2019; Skroblin et  al. 2021). Some methods allow large volumes of data to be collected 
more cost effectively than traditional field survey methods, for example postal surveys 
(FitzGibbon & Jones 2006), telephone interviews (Mallory et al. 2003) and social media 
(Pace et al. 2019). Often this information is used to supplement ‘expert’ data by guiding 
further field surveys (Hart & Upoki 1997; O’Brien et al 1998; Chaiyes et al. 2017) but in 
some cases it is shown to be just as accurate as the equivalent ‘expert’ data, providing that 
some form of filter for reliability is incorporated (Polfus et al. 2014). Recently, a number 
of studies have even shown that georeferenced occurrence data collected through citizen 
science platforms and online biodiversity databases such as eBird, can be used to build 
accurate SDMs (Bradsworth et al. 2017; Coxen et al. 2017; Fournier et al. 2017; Saunders 
et al. 2020). However, it is important to note that all opportunistically collected citizen sci-
ence data present additional challenges such as spatial biases and variation in observer skill 
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(Isaac and Pocock 2015; Johnston et al. 2020) and online recording schemes such as eBird 
create barriers by requiring observations to be collected and submitted in a particular way.

Within all types of citizen science data, there is variation in accuracy. For example stud-
ies have shown that ‘freelisting’ (Bernard 2006), a quick survey method where participants 
are asked to list the species they see in their local area, can result in people reporting spe-
cies that do not occur and omitting ones that do (Can and Togan 2009; Díaz-Ruiz et al. 
2019). However, the cost efficiency of citizen science may compensate for reduced accu-
racy depending the data collected and extent of errors (Gardiner et  al. 2012). If citizen 
science data are to be used to infer information about distribution, and as input data for 
the creation of SDMs, some method of boosting data accuracy or accounting for level of 
expertise is essential (Kosmala et  al. 2016; Johnston et  al. 2019). Previous studies have 
used prior selection of participants i.e. only interviewing key informants selected by com-
munity leaders due to their perceived expertise (Mallory et al. 2003; Lopes et al. 2018). 
Others have developed some kind of scoring system, to determine data accuracy (Frey 
et  al. 2013) by only regarding contributions from participants who are able to recognise 
photographs of the study species and provide accurate location information (Ghoshal et al. 
2019), or by using photographs of non-native species to assess participants identification 
skills (O’Brien et al. 1998).

To further our understanding of the distribution of a newly described and Critically 
Endangered parrot species Amazona lilacina (Biddle et  al. 2020; BirdLife International. 
2020), we:

1. Built distribution models using all known locality records of A. lilacina from our own 
observations, those from expert ornithologists, and reliable eBird records (2010–2020);

2. Collected data on local peoples’ experiences and observations of wild A. lilacina through 
structured face-to-face interviews;

3. Grouped community interview data based on different quality filters and used these data 
to build distribution models;

4. Determined the best performing distribution models built from species records and com-
munity reports, and compared their outputs in order to direct future field investigation.

Methods

Study area

Amazona lilacina, a species recently split from the A. autumnalis group, is found in the 
coastal region of Ecuador where its small population is sparsely distributed around dry for-
ests and mangrove ecosystems (Biddle et al 2020). These habitats are described as amongst 
the most imperilled ecosystems on earth (Dodson and Gentry 1991). During the day-time 
A. lilacina is highly inconspicuous, feeding silently in the forest canopy in small groups 
which presents difficulty in using traditional field survey methods to collect presence data 
(Ridgely and Greenfield 2001a). However, in the evenings birds will form conspicuous 
groups and fly to communal roost sites (Berg and Angel 2006) which means that communi-
ties living anywhere on this flight path, are often aware of the species presence.

The rural coastal communities are considered to be in the most deprived areas of Ecua-
dor, with almost one quarter of all people living in multidimensional poverty (Mideros 
2012). The deprivation gap regarding food and water, education, communication, and 
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housing, is greater here than in any other part of the country (Mideros 2012). Within our 
sampled communities (Fig.  1a), people mainly make a living as farmers, fishers or crab 
fishers, and 60% have either none, or only primary level schooling. Many communities in 
this region are highly inaccessible, especially in the rainy season and 57% of people we 
surveyed had lived in their village their entire lives. The flow of information into and out of 
these communities is reported to be infrequent, with only 40% of households having access 
to one form of telecommunication (radio, television, phone, computer) (Mideros 2012).

Field observations and eBird records

Observational data were collected during ten field trips led by RB, lasting two to three 
weeks each (November 2012, January and August 2014, November 2015, August 2016, 
January and March 2017, February 2018, January and August 2019). Data collection was 
informed by: (1) existing information on known distribution and habitat use (Juniper and 
Parr 1998; Ridgely and Greenfield 2001a, b; Berg and Angel 2006; Forshaw and Knight 
2010; Athanas and Greenfield 2016); (2) information on habitat distribution from Google 
Earth and the Ministerio del Ambiente ecosystem map; (3) direct communication with 
local NGOs, ornithologists, local guides and bird tour companies. All sightings of perched 
A. lilacina made by RB, ISP, MP, Fundación Pro-Bosque staff, Fundación Jambeli staff, 
and Juan Freile between 2010 and 2020 were georeferenced (sightings of birds in flight 
were omitted).

Fig. 1  a Locations of all households taking part in interviews, all records of Amazona lilacina collated 
between 2010 – 2020 and, b eBird absence points, representing all complete checklists that did not report 
A. lilacina, and random background points matching the number of eBird absence points available, within a 
30 km buffer of all A. lilacina presence records
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All eBird data for Ecuador, including observations and sampling data were downloaded 
in December 2020. To ensure that no records were missed due to changing taxonomic 
nomenclature, data were filtered to include all birds recorded as A. autumnalis (which 
included A. a. lilacina and A. a. salvini) between 01/01/2010 and 31/12/2020. Records 
that were not deemed as A. lilacina based on either photographic evidence or location (i.e. 
within the Esmeraldas province) were removed, as were records that were already repre-
sented by our own observations (within 1 km). To avoid misrepresentation of location, all 
records that were reported as “general area” which implies the record does not correspond 
to that exact location were removed, as were records with survey effort > 5 h and > 5 km in 
length (Johnston et al 2019). Finally, locations of parrots within urban locations in the big 
city of Guayaquil (visualised on Google Earth) were removed to avoid escaped pets or cap-
tive birds being included in models.

Distribution models from field observations and eBird records

The MaxEnt function of the package ‘dismo’ (Hijmans et al. 2020) in R (version 3.6.0, R 
Core Team 2019) was used to create species distribution models from field observations 
and eBird records, referred to from now on as the field models. These were first built using 
eBird absence points generated by filtering for all complete checklists within our study area 
that did not report the presence of A. autumnalis (A. a. salvini or A. a. lilacina) (Fig. 1b). 
Absence points were also limited to checklists that were < 5 km in length, < 5 h in duration 
and with fewer than ten observers (Johnston et al. 2019), and to a buffer of 30 km from all 
field observations and eBird records. Our second and third field models were built using 
random background points generated in ArcGIS (Version 10.8.1) from within the same 
buffer: the second model had 4597 and the third had the same number as eBird absences 
available (458). Spatial autocorrelation was controlled for by limiting points to one per 
1 km using the R package ‘spThin’ (Aiello-Lammens et  al. 2015). A set of interpolated 
bioclimatic predictor variables available from WorldClim (https:// www. world clim. com/ 
biocl im) representing different measures of temperature and rainfall, plus additional pre-
dictors thought to have some biological significance for the species were used: Normalised 
Difference Vegetation Index (NDVI) from the monthly MODIS product over the period 
2010–2015 as a proxy of vegetation cover; distance to mangrove (Hamilton and Casey 
2016) and distance to the nearest river (Military Geographic Institute, IGM). Predictors 
were checked for pairwise correlation across random points within the study area, using 
pair plots (Zuur et  al. 2010); where correlation coefficients between pairs of predictors 
were ≥ 0.70, the less biologically meaningful predictor was removed. The final variables 
were; distance to the mangrove, distance to a river, annual mean NDVI and NDVI season-
ality, mean diurnal temperature range, annual mean temperature and temperature season-
ality, precipitation of wettest month, precipitation of coldest quarter and precipitation of 
driest month. To allow comparison between the field and community models, we averaged 
predictor values across 9  km2 at all points used in all models to reflect respondents’ refer-
ence to their ‘local area’, which could encompass areas of community owned land > 1 km 
away from their house. To ensure this did not affect model outputs or accuracy we trialled 
models built using predictor values at the exact location, compared to those averaged over 
9  km2, and found no difference.

Models were evaluated with AUC and Tjur  R2 (Tjur 2009) over five-fold cross valida-
tion; the mean evaluation metrics and their standard deviation are presented. AUC meas-
ures how well model predictions discriminate between presence and absence (Wisz et al. 

https://www.worldclim.com/bioclim
https://www.worldclim.com/bioclim
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2008). Tjur  R2 represents the difference between the mean model value at the presence 
locations and the mean value at the absence / background locations. All the data were 
included in the final models. Finally, we present variable importance scores, with permuta-
tion values > 10%, with a high value indicating that the model depends heavily on that vari-
able (Phillips et al. 2006) and response plots for the most accurate field model.

Community questionnaires and response filtering

Researcher–led questionnaires were carried out to identify areas that were reported by 
local people to be occupied by A. lilacina. Communities were chosen to be included in this 
study due to their close proximity to dry lowland forests (within approximately 10 km), 
identified using the Ministerio del Ambiente ecosystem map. Furthermore, all communi-
ties surveyed were inside or within 70 km of the species Extent of Occurrence (Biddle et al 
2020). A pilot study was conducted after which interviews were carried out in January-July 
2017. Questionnaires were conducted in Spanish by a local Ecuadorian researcher (ISP), 
with only the interviewer and respondent present (Tourangeau and Yan 2007). We aimed 
to survey a minimum of three households per community representing a cross section of 
demographic groups, but often this depended on the availability of participants and the size 
of the community. In all cases, prior verbal consent was obtained, and although less than 
fifteen people did not complete interviews, interviewees could decline from contributing 
once the purpose of the research was explained (Online Resource 1).

The location of each questionnaire, normally by the participant’s house, was recorded 
and participants were asked to respond with reference to their immediate local area which 
included their house, garden, and local community land. Demographic information regard-
ing age, gender, level of schooling, and how long they had lived in the village, was col-
lected, but interviews were anonymous, and data were coded to ensure that no individuals 
could be identified. Interviewees were not made aware of the species in concern before 
starting the interview, during which they were asked to name and describe which parrot 
species (if any) they see in their local area, then confirm from a selection of ten parrot 
photographs (the order of which was rotated at random between surveys) (Table 1). If a 

Table 1  Photographs of ten parrot species were presented to questionnaire participants

The chance of observation is rated as likely (if the species range covers the entire study area), possible (if 
the species range covers more than half of the study area) or unlikely (if the species range covers less than 
half of the study area) (Freile and Restall 2018)

Parrot species Chance of observation Species status

1. Southern Mealy Amazon Amazona farinosa Unlikely Rare
2. Blue-headed Parrot Pionus menstruus Possible Common
3. Bronze-winged Parrot Pionus chalcopterus Possible Uncommon
4. Red-masked Parakeet Psittacara erythrogenys Likely Common
5. Great Green Macaw Ara ambiguus Unlikely Very rare
6. Pacific Parrotlet Forpus coelestis Likely Common
7. Grey-cheeked Parakeet Brotogeris pyrrhoptera Possible Uncommon
8. Lilacine or Ecuadorian Amazon Amazona lilacina Possible Rare
9. Brown-headed Parrot Poicephalus cryptoxanthus Not present Not present
10. Yellow-crowned Amazon Amazona ochrocephala Not present Not present
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participant confirmed they currently (within the last year) see A. lilacina at their location, 
they were then asked a number of questions designed to help assess the accuracy of this 
information. Each interview (Online Resource 2) took approximately 20 min to complete.

To examine the influence of accuracy of community data, we filtered responses accord-
ing to the ability to recognise the species, knowledge of its distinguishing features, overall 
awareness of parrot biodiversity, and observation type (i.e., if the bird was seen flying, 
nesting, perched or feeding). We created six groups of responses to represent realistic sce-
narios that may be used to select which observations to include in distribution investiga-
tions (Table 2). We created a further 11 groups which represented all possible combina-
tions of groups three-six, for example group seven represented a group of participants who 
had answered correctly for all of groups three, four, five and six (Online Resource 3).

Distribution models from community data

We created distribution models based on groups of community data with varying levels of 
accuracy as listed in Table 2; the community models. Each participant’s response was asso-
ciated with a location representing a 1  km2 pixel on our distribution maps. These presence 
locations were combined with environmental variables and background points following 
the same methods as for the field model. All background points were restricted to buffers 
of 30 km from community survey presence points. We averaged predictor values across the 
9  km2, as for the field model, to reflect respondents’ reference to their ‘local area’, which 
could encompass additional areas of community owned land. In order to evaluate the accu-
racy of the community data models, we use the same methods as for the field models; AUC 
and Tjur  R2 (Tjur 2009) over five-fold cross validation. We present these, alongside permu-
tation values where their contribution to the model is > 10% for all models, and the habitat 
suitability output and response plots for the best performing model.

Model comparison

Once we had identified the best performing field observation model and community data 
model, we compared the overlap between their habitat suitability outputs. These outputs 
are interpreted as maps of potential distribution with values indicating the level of habi-
tat suitability for each pixel, on a scale of zero to one. There are several methods used to 
compare model outputs (Galante et al. 2018). We chose Moran’s I which represents the dif-
ference between suitability values at each cell, and the relative rank coefficient which esti-
mates the probability that the relative suitability ranking for a patch of habitat cells is the 
same for the two models (Warren and Seifert 2011). We calculated these using the niche 
overlap function in ENMTools (Warren et al. 2010). Both methods produce metrics which 
range from zero (no overlap) to one (complete overlap).

To predict areas of potential distribution, it was necessary to classify areas as either 
‘suitable’ or ‘unsuitable’ depending on their model value. Many thresholding rules are jus-
tified for presence-only occurrence data (Peterson et al. 2011). We chose the 10% omission 
rate threshold (Galante et al. 2018) where the model value which includes 90% of the val-
ues predicted at the presence locations used to create that model, is applied as a threshold 
to the habitat suitability output to distinguish between presence and absence. We calcu-
lated and applied this independently to the two best performing models. We present a final 
combined map of distribution that represents areas predicted as suitable or not by either 
of the final models. We extracted the values for the top three predictor variables from the 
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best performing models, in areas where both models predicted presence, compared to areas 
where only the field model or only the community model did, and plotted these using the R 
package ‘ggplot2′ (Wickham 2016).

Predictors of community data performance

Once the best performing community data model been determined, a generalized linear 
mixed model (GLMM) was conducted in R (version 3.6.0, R Core Team, 2019) using the 
package ‘lme4′ (Bates et al. 2020). The binomial response of whether or not a participant 
was included in the response group used to build that model was analysed to determine any 
effects of participants’ social demographics: gender, level of schooling, age and number of 
years in the village. Only communities where at least one wild A. lilacina observation had 
been reported were included, and the community location was included as a random effect. 
We checked for correlation between the age and number of years spent in the village using 
Pearson’s product-moment correlation, and between gender and level of schooling (some 
or none) using a Chi-squared test of independence, and only included non-correlated vari-
ables in our GLMM.

Results

Field observations and distribution model

Our field observations generated a total of 132 occurrence points. A further 14 locations 
from eBird were included, to create a final dataset of 146 A. lilacina presence locations. 
These were reduced to 59 (47 field observations and 12 eBird records) during the spa-
tial rarefication process, combined with either: 458 eBird absence points (model 1); 4597 
randomly generated background points (model 2) or; 458 randomly generated background 
points (model 3) and entered into model building with the ten non-correlated predictor var-
iables. The resulting mean of five-fold cross validation AUCs were 0.78 ± 0.03, 0.80 ± 0.02, 
0.79 ± 0.02 and the resulting mean of five-fold cross validation Tjur  R2s were 0.43 ± 0.21, 
0.46 ± 0.01 and 0.41 ± 0.01 for models 1 to 3, respectively. Therefore, field model 2 was 
considered to be the best performing model (Table 3). The habitat suitability output from 
model 2 shows that the suitable habitat follows the Chongón Colonche mountain range, 
from Guayaquil north-west towards the coast, with additional suitable areas in the far south 
of the country bordering Peru, and the north of the study area in mid-Manabí (Fig. 2a). 
Environmental variables that showed a permutation importance of > 10% were annual 
mean NDVI, distance to the mangrove, and temperature seasonality and response plots 
(Fig. 2b) suggest that suitability of habitat is associated with close distance to mangrove 
and a relatively high annual mean NDVI. 

Community questionnaires and reliability scoring

A total of 404 people from 72 communities took part in questionnaires, including 183 
women and 221 men, with an average of 5.6 households per community (min 2, max 
23). There was a variety of schooling levels, from none (31), primary (214), second-
ary (128), to university (31) and in how long participants had lived in their commu-
nity (1–84 years) but the majority (88%) had lived there for ten or more years. Of the 
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404 participants, 393 reported seeing parrots in general. Although it was posed in our 
questionnaires that participants should answer with reference to birds seen in the wild, 
when asked “where did you see this bird?” 15 respondents replied “as a pet” - these 15 
responses were removed from the community models.

Distribution models from community data

After filtering community data based on the six groups in Table 1, and creating com-
bination groups where participants answered positively for multiple categories, each 
group had a sample size of  ≥27 (27–155). After spatial thinning all datasets con-
tained ≥18 (18–67) georeferenced occurrence points. Each group of points was com-
bined with 3,931 background points and the same ten non-correlated predictor vari-
ables as those included in the field models. Models were built based on groups  one 
to six of data, and then all 11 possible combinations of groups three to six. None of 
the combination models improved the performance of the model (Online Resource 3). 
The mean of five-fold cross validation AUC for the six main models was > 0.74 ± 0.03 
and Tjur  R2 > 0.39 ± 0.02. Based on these values, model 3 is the best performing com-
munity model (Table 4). The habitat suitability map of community model 3 shows a 
similar area of suitable habitat to the field data model, but with additional increased 
suitability predicted along the coastline (Fig. 3a). Environmental variables with a per-
mutation importance of > 10% were distance to mangrove and temperature seasonality, 
and response plots for this model suggest that suitability of habitat is associated with 
areas closer to mangroves (Fig. 3b). 

Fig. 2  a The habitat suitability output from the best performing field model which is built using 59 species 
records and 4597 background points b The variable response plots for this model
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Model comparison

After calculating and applying thresholds to the best performing field and community mod-
els, the field model predicts 13,969  km2 of suitable habitat and the community model pre-
dicts 13,067  km2 (Table 5). When we combine these threshold habitat suitability outputs, 
they overlap in 9314  km2 of predicted suitable habitat, the community data model predicts 
a further 3753  km2 that the field data does not, and the field data model predicts a further 
4655  km2 that the community model does not (Fig. 4). The top three predictor variables 
from both of these models were; distance to mangrove, temperature seasonality and mean 
annual NDVI. When plotting the values from predicted presence areas by both models, just 
the field model or just the community model, areas that are predicted by only the commu-
nity model have a slightly lower mean annual NDVI and are closer to mangroves than areas 
only predicted by the field model (Fig. 5). There is a high level of overlap between the field 
data and community data habitat suitability outputs (before applying a threshold). The rela-
tive rank coefficient, which estimates the probability that the relative suitability ranking for 
a patch of habitat cells is the same for the two models, is 0.82, and the Moran’s I, which 
represents the difference between suitability values at each cell, is 0.92 (Table 5).  

Predictors of community data performance

Of the 52 communities where at least one observation of wild A. lilacina was made, and 
thus species presence was likely, 35% (105/304) of participants were included in commu-
nity data group with the best model performance. These 105 participants (70 men and 35 
women) were able to either name or recognise a photo of the species, and describe one 

Fig. 3  a The habitat suitability output from the best performing community data model, built using 53 
reports where participants were able to recognise a photograph of the species and provide one or more 
physical or behavioural characteristics specific to A. lilacina. b The variable response plots for this model
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Fig. 4  After calculating and 
applying thresholds indepen-
dently to the two best performing 
models, their predicted suitable 
habitat overlaps in 9314  km2, but 
the community data model pre-
dicts a further 3753  km2 that is 
suitable, and the field data model 
predicts a further 4655  km2 that 
is suitable for A. lilacina 

Fig. 5  Box plots showing predictor values in areas predicted as suitable (after applying a threshold) by both 
the best performing community and field data models, only the field data model, and only the community 
data model. The predictors with a permutation importance of   > 10% in the final models were included; 
mean annual NDVI a distance to mangrove b and temperature seasonality c 
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of its distinguishing physical or behavioural characteristics (Table  6). There was a high 
correlation coefficient of 0.70 (p < 0.001) between the number of years lived in the vil-
lage and the age of a participant. Additionally, gender and level of schooling were signifi-
cantly correlated  (X2 = 8.24, df = 1, p = 0.004). Therefore, we only included the number of 
years a participant had lived in the village, and the participant’s gender in our GLMM. 
This revealed that of participants living in areas where A. lilacina was likely to be pre-
sent, men were more likely to be included in the better performing community data group 
than women (Coefficient value: 0.62 ± 0.31, p = 0.04), which is likely due to their spending 
more time outdoors in traditionally male working roles. The number of years a participant 
had lived in the community (Coefficient value: 0.012 ± 0.007, p = 0.14) had no significant 
effect.

Discussion

We found that both field data and citizen science data in the form of community surveys 
were able to produce accurate species distribution models and their outputs had an overlap 
of 92%. When using field data, we found that models built using background points per-
formed better than those built using absence points generated by eBird checklists, possibly 
due to the low frequency of eBird records in our study area. When using community data, 
we found the best performing models were those built using reports from observers who 
could name or recognise a photograph of A. lilacina and correctly describe at least one dis-
tinguishing physical or behavioural characteristic.

Recent studies have shown that web-based citizen science projects and online biodi-
versity databases can be used to build reliable species distribution models (e.g. Saunders 
et  al. 2020; Langham et  al. 2015; Fournier et  al. 2017). This study presents evidence 
that in areas where there are substantial barriers to web-based citizen science projects, 
for example in socio-economically deprived areas (e.g. Hobbs and White 2012), com-
munity surveys can overcome these barriers and produce accurate species distribution 
models. This is of particular use for newly described and rare species. Gender disas-
sociation in local ecological knowledge is not uncommon (Kai et al. 2014; Aswani et al. 
2018); we found that men were more likely to provide accurate answers than women 
and suggest that this is due to a gender difference in traditional working roles (Voeks 

Table 6  The gender, level of schooling, and mean number of years lived in the village, for all participants 
that lived in communities where parrots were likely to be present, and for those who were included in the 
best performing community data group (group 3)

Response group Gender n Level of schooling Number of years 
in the village 
(mean)Some None

All responses Total 304 279 25 34
Women 138 134 4 30
Men 166 145 21 37

Community data group 3 Total 105 100 5 36
Women 35 35 0 32
Men 70 65 5 38
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2007; Ayantunde et al. 2008) which allows men to spend more time outdoors. Erosion 
of local ecological knowledge is a global trend (Aswani et  al. 2018) and we support 
the continuation of community wide engagement projects to minimise this risk, with a 
focus on support for women to enable them to engage with conservation.

After applying thresholds to our best performing field and community data models, 
they overlapped in their predictions of suitable habitat by 92% (in 9314  km2). The level 
of overlap we see between our community and field data models is greater than seen 
in similar comparison of eBird community data and field-based satellite tracking data 
of Band-tailed Pigeons Patagioenas fasciata (Coxen et al. 2017). Our community data 
model predicts a further 3753  km2 of suitable habitat that our field data model does not. 
These areas were closer to mangroves than areas predicted only by the field data model. 
This may be due to a factor of species detectability; A. lilacina are more detectable 
(highly vocal) when flying over to mangrove communal roost sites, so perhaps more 
likely to be seen by local communities in this habitat compared to when they are forag-
ing inconspicuously in the dry forest (Ridgely and Greenfield 2001a). It is also possible 
that these areas represent locations in which local people have memories of the species 
occurring in the past, in which they no longer occur and thus were not recorded during 
field surveys. Our field data model predicts a further 4655  km2 of suitable habitat that 
our community data models do not, and in areas with a slightly higher mean annual 
NDVI than areas predicted only by the community model.

Similarly to Frey et al. (2013), we found variation in the accuracy of community data 
models built using different methods to filter interview responses. Our best performing 
model used a filter whereby participants needed to recognise a photograph of the spe-
cies and provide a reliable description of how they distinguish it from other parrot spe-
cies in their area. This suggests that, particularly in areas where many similar taxa may 
occur, the key to assessing the accuracy of information may be simply to ensure that 
participants are referring to the correct species. This draws parallels with checks that are 
in place for citizen science online databases such as eBird where records are flagged for 
systematic review and confirmed by a regional expert prior to their acceptance (Sullivan 
et al. 2014). It also supports the work of Frey et al. (2013) who conclude that, for easily-
identifiable species at least, distribution modelling is possible using anecdotal reports. 
Our second best community data model (1) greatly underestimated the predicted area of 
suitable habitat. This group was based on the ‘freelisting’ method, where participants 
needed to name the parrot species in their area without any prior information or prompt-
ing. Previous studies using the freelisting method have yielded questionable results (e.g. 
Can and Togan 2009; Díaz-Ruiz et al. 2019) and we believe in our case, it was due to a 
very small sample size of participants who had the required natural history expertise to 
name this rare parrot species without any prompting or information.

We found that using identification of other parrot species, to measure overall biodi-
versity knowledge and therefore accuracy of answers, did not produce the most accu-
rate results. This may be due to A. lilacina’s unique daily migration behaviour, in some 
cases flying directly over villages and becoming conspicuous to many community mem-
bers, not just those that are skilled at identifying multiple parrot species. Alternatively, 
it is possible that the two parrot species whose identification we assessed as a meas-
ure of reliability are incorrectly believed to be common and widespread throughout our 
study area (Ridgely and Greenfield 2001b; Freile and Restall 2018). Identification of 
other closely related species was not a good measure of data quality either in surveys 
investigating the distribution of a native pheasant species – results showed frequent 
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misidentification of an ‘imposter’ pheasant photograph, but reliable information about 
the native pheasant was still generated (O’Brien et al. 1998).

Our distribution models based on field data and high quality community knowledge rep-
resent the first of their kind for the newly described and Critically Endangered A. lilac-
ina, and have important conservation implications. With an estimated population size of 
just ~ 1,000 birds, and a suggested recent 60% population decline in parts of the range (Bid-
dle et  al. 2020), our results have identified new areas to survey. It is important to note 
that our model predictors did not include factors such as poaching that may have a strong 
impact on occupancy (Robinson et  al. 2010). Whilst conducting community surveys for 
this study, we discovered a new large roost, unknown previously to local and international 
ornithologists, located near a socio-economically deprived coastal community, on a man-
grove island. Even local residents, because of the conflict with pirates, deem this area as 
unsafe. We therefore recommend that when parts of a species range fall within areas that 
are rarely visited by outsiders, the combined knowledge of communities local to that spe-
cies is likely to be much greater than that of external scientists or researchers, and should 
thus be used to enhance and supplement traditional field survey methods.
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Abstract: We located rural communities with pet parrots and used these locations to predict the
probability of illegal parrot ownership across coastal Ecuador, using variables related to demand for
pets, parrot availability, and trapping accessibility. In 12 pet keeping communities, we carried out
in-depth interviews with 106 people, to quantify ownership, trapping, and interviewees’ attitudes
towards these behaviours. We combined these data to calculate a trapping pressure index for four
key roosting, feeding and nesting sites for the Critically Endangered Lilacine or Ecuadorian Amazon
Parrot Amazona lilacina. We found that 66% of all communities had pet parrots and 31% had pet
Lilacines. Our predictive models showed that pet parrot ownership occurs throughout coastal
Ecuador, but ownership of Lilacines by rural communities, is more likely to occur within the natural
distribution of the species. The number of people per community who had owned Lilacines in the
last three years varied from 0–50%, as did the number of people who had trapped them—from 0–26%.
We interviewed 10 people who had captured the species in the last three years who reported motives
of either to sell or keep birds as pets. Attitudes towards pet keeping and trapping differed among
the 12 communities: 20–52% believed it was acceptable to keep pet parrots, and for 32–74%, it was
acceptable to catch parrots to sell. This being said, most people believed that wild parrots were
important for nature and that local people had a responsibility to protect them. We conclude that
trapping pressure is greatest in the southern part of the Lilacine’s range, and urgent conservation
measures such as nest and roost protection, and local community engagement are needed.

Keywords: Amazona lilacina; poaching; conservation threats; mangrove; dry forest; local knowledge;
attitudes; Lilacine Amazon

1. Introduction

Parrots (Psittaciformes) are among the most endangered and rapidly declining bird
groups, with 28% of their species classified as threatened [1]. Globally, over a third of
parrot species are caught to fulfil the demand of the international wildlife trade [1–3]. In the
Neotropics, over half of the studied parrot populations are in decline [4], and one reason for
this is the high demand for the pet trade [5]. Neotropical species are particularly favoured
as pets [2,6], and it is suggested that trapping is a stronger threat to their conservation than
habitat loss [7]. Amazon parrots and macaws are preferred due to their attractiveness and
ability to mimic the human voice [8]; this is illustrated in Costa Rica, where nearly 20%
of households have a pet parrot and half of these are Amazona species [9]. Consequently,
the rate at which Amazon parrots and macaws are trapped is much higher than expected
considering their availability in the wild [10].

Trapping risk is highest where parrots are abundant in the wild, where demand is high
and where parrots are relatively easy to catch and sell [11]; therefore, trapping pressure may
differ across a species’ range and also between species. Additional factors found to drive
hunting and trapping include overlap with human population [11,12] and proximity to
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infrastructure or towns [13]. Attitudes and subjective norms are also factors that influence
decision making [14], and are therefore likely to affect the level of pet keeping and capture
in different areas. In Ecuador, wild bird keeping is illegal [15], and whilst ownership
appears to be declining in major cities [16] demand is still high in rural areas, where
over half of coastal communities still keep pet parrots [17]. The most frequently reported
confiscated bird species in the country are those with wild distributions exclusive to this
coastal region [16,18]. Moreover, this region is one of the most densely populated and
impoverished [19] parts of Ecuador, the habitats here have been drastically reduced [20]
and are greatly underrepresented in the country’s national protected areas system [21].

The Critically Endangered Lilacine or Ecuadorian Amazon Amazona lilacina, a species
recently split from the A. autumnalis group, is found exclusively within the coastal region
of Ecuador [22]. CITES reported thousands of individuals of this species being trapped
and exported in the early 1980s [23] and although frequency of trapping is likely to have
reduced significantly in recent years, there are still multiple reports of capture and pet-
keeping within rural communities [17]. An average of 392 wild-caught parrots, including 30
A. autumnalis, were confiscated annually in Ecuador between 2003 and 2016 [16]. Although
some of these may be older birds, and they may be either A. lilacina or A. a. salvini, this
figure suggests that some level of trapping is still occurring to fulfil the demand for pets.
The goal of this study was to understand the risk of trapping in rural communities and
formulate a strategy for conservation support. Specific objectives were:

1. Locate communities with pet parrots by conducting surveys across coastal Ecuador,
and use these locations to predict the distribution of pet parrots, and the likelihood of
local parrot trapping, using variables related to parrot availability, opportunity and
demand;

2. Within communities that keep pet parrots, interview local people to quantify the level
of parrot ownership, trapping and the attitudes towards these behaviours;

3. Develop a trapping pressure index based on model predictions, locally reported
incidence and attitudes towards parrot capture and ownership.

2. Materials and Methods
2.1. Surveys to Locate Communities with Pet Parrots

In order to locate rural communities with pet parrots, we conducted surveys between
January and July 2017. The study area encompassed the extent of occurrence of the Lilacine
Amazon Amazona lilacina and communities close (<10 km) to forest patches, where wild
parrots may occur were selected. Participants were asked to confirm if they knew of pet
parrots in their community, and if possible to identify the species. Prior verbal consent was
obtained from each participant and full ethical approval of survey content and methods
was gained from The North of England Zoological Ethical Review Committee. We aimed
to survey at least four households per community; however, some communities were made
up of just a few houses, so this was not always possible. We recorded the geographic
coordinates of communities with all pets, pet parrots and pet Lilacines, and calculated how
many communities each species was recorded in. We used IUCN Red List range maps
provided by BirdLife International [24] in order to determine if species were native to the
study area. Range maps are frequently updated so we report the year of update for each
range map in the results. ArcGIS (version 10.8.1) [25] was used, clipping the distribution
shape files, to calculate the size of each species range within our study area.

It is illegal to keep native bird species as pets in Ecuador [15], yet in our experience,
people speak openly about their parrots and are proud to show them off. However, it was
important that participants did not feel threatened or that we were collecting information to
inform the authorities. Therefore, surveys were conducted by a local Ecuadorian researcher,
in Spanish, with only the researcher and interviewee present, and it was made clear that all
information given was anonymous, and only to be used for scientific research.

Although we refer to A. lilacina as the Lilacine or Ecuadorian Amazon Parrot, neither
of these common names have Spanish translations that are used in Ecuador. Most local
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communities refer to “loro frentirrojo” (Red-lored Parrot), which in English describes the
A. autumnalis group and includes A. a. salvini in northern Ecuador. To avoid confusion,
we use A. lilacina in our communication with local communities and use photographs to
confirm identity, but refer to the Lilacine Amazon in this manuscript.

2.2. Distribution Models to Predict Parrot Ownership

From our surveys we created two groups of geographic coordinates to represent
(1) communities with pet parrots, and (2) communities with pet Lilacines. The MaxEnt
package in R (version 4.0.3) [26,27] was used to build distribution models based on these
coordinates combined with random background points within 30 km buffers of community
locations, to predict the distribution of pet parrots, and the distribution of pet Lilacines.
Variables were extracted to match each corresponding location and were chosen due to
their influence over parrot ownership and trapping [11]: opportunity (presence of parrots
and their desirability); demand (presence of people and the infrastructure for trade); and
accessibility (into the forest).

For each location, we calculated a “species value” to represent parrot trapping op-
portunity. For the pet model, this was calculated based on the presence of wild parrot
species at that location using species range maps [24], combined with the frequency of
the species being reported as a pet; 0.1 was allocated for each species present in that area,
and an additional 0.1 was added if that species was reported in a single community, 0.2 if
in two communities, etc. This value was used just for comparative purposes within the
study and we gave equal weighting to wild species presence and popularity in captivity, as
we had no evidence that either was more important than the other. For the pet Lilacine
model, this value was replaced with the predicted occupancy area from our distribution
models created using observations of the wild population [28]. For both models, we also
used the estimated human population [29], the Euclidean distance to the nearest town and
nearest road calculated in ArcGIS using OpenStreetMap [30] data, and the mean annual
Normalised Difference Vegetation Index (NDVI) from the monthly MODIS product over
2010–2015 as a proxy of vegetation cover.

For each group of points, spatial autocorrelation was controlled for by limiting them
to one per 1 km using the R package spThin [31]. Predictors were checked for pairwise
correlation across random points within the study area, using pair plot for collinearity [32].
Model evaluation was performed with five-fold cross validation and the mean AUC +/−
SD are presented to demonstrate the predictive ability. An AUC of 0.7 means there is a
70% chance that the fitted model will be able to correctly distinguish between presence
and absence [33]. All data were included in the final models. We present the permutation
importance (%) of variables, with a high value indicating that the final model depends
heavily on that variable [27].

2.3. Interviews to Quantify Parrot Ownership, Trapping and Attitudes

We selected 12 communities where pet parrots were present to conduct interviews
with community members about their experiences and attitudes towards parrot ownership
and capture. These communities ranged in size from 50 to 300 people. The reason these
sites were chosen was because our focus was on understanding risk to Lilacine Amazons,
so the selected communities fell within the species extent of occurrence and were <15 km
away from key roosting, nesting and feeding grounds [17]. These 12 communities were
grouped into four clusters (Figure 1). We interviewed at least six participants from different
households in each community. Participants were outdoor workers (i.e., agriculturalists,
fishers and crab fishers) selected for their familiarity with parrots in their local area. The
same methods regarding informed consent and data anonymity as described in Section 2.1
were followed. Due to low literacy levels amongst participants, all questions were read
out aloud and the answer provided was recorded by the researcher. Age and gender
of each participant was recorded. The interview consisted of eight questions and seven
attitude statements arranged on a five point symmetric Likert scale (Table 1). The Likert
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package [34] in R (version 4.0.3) [26] was used to visualise attitude statements. Responses
were grouped into positive, neutral or negative and a non-parametric test (Kruskal–Wallis)
was used to determine significant differences in responses between the four community
clusters.

Table 1. Interviews about parrot ownership and capture asking eight questions and seven attitude statements, which were
read out aloud by the researcher in Spanish. Interviews were anonymous and participants could decline to answer any
questions.

Interview Questions

1. How often do you see Amazona lilacina? daily/weekly/monthly/yearly/never

2. In your opinion, have A. lilacina numbers changed in the last
three years? increased/decreased/stayed the same/not sure

3. Have you ever owned a pet parrot? yes/no/prefer not to say

4. Have you ever owned a pet A. lilacina? yes/no/not sure/prefer not to say

- If yes, how did you get it? caught it/bought it/given it/prefer not to say

- If yes, where did you get it?

- If yes, how long ago did you get it? last year/two years/three years/> three years/prefer
not to say

- If yes, how many A. lilacina have you owned in the last
three years?

5. How many other people in the village have a pet A. lilacina?

6. Have you ever taken A. lilacina from a nest or caught one
from the wild? yes/no/not sure/prefer not to say

- If yes, how many in the last three years?

- If yes, for what purpose did you catch it?

7. Have you ever sold A. lilacina? yes/no/not sure/prefer not to say

8. To your knowledge, do other people in your village take A.
lilacina from nests/the wild? yes/no/not sure/prefer not to say

Attitude Statements

Response categories were: strongly disagree (1), disagree (2), neutral
(3), agree (4), strongly agree (5), I don’t know (NA). 1 2 3 4 5 NA

I think that it is OK to keep a parrot as a pet.

Catching parrots from the wild can make them extinct in my local area.

Wild parrots are important for nature.

I have a responsibility to protect the environment.

I am comfortable with outsiders catching parrots in my local area.

It is OK to catch wild parrots to sell to the pet trade.

It is OK if parrots disappeared from the wild.
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Figure 1. Interviews about parrot ownership and capture were conducted in 12 communities,
grouped into four clusters (A, B, C, and D) near key Lilacine Amazon roost sites. Each cluster
contains three communities <10 km apart.

2.4. Trapping Pressure Index

To prioritise areas for conservation support, we calculated a trapping pressure value
for each of the four community clusters, to represent the level of risk to the wild Lilacine
Amazon population from capture and local desire for pet keeping. This risk value was
calculated by combining the following six factors: (1) the mean model value for pet parrot
keeping (which represents a probability that pets occur at that location); (2) the mean
model value for pet Lilacine keeping; (3) the percentage of people who have owned a pet
Lilacine in the last three years; (4) the percentage who have trapped Lilacines in the last
three years; (5) the percentage of people who think it is OK to keep a parrot as a pet; and
(6) the percentage who think it is OK to catch wild parrots to sell.

3. Results
3.1. Locations and Species of Pet Parrots

Surveys were carried out in 65 communities (mean = 6 interviewed people per com-
munity; range 3–20). In 43 (66%), pet parrots were confirmed, and in 20 (31%), pet Lilacines
were confirmed. Of the 19 wild parrot species, nine were reported in at least one community,
with the most frequently reported being Lilacine Amazons (Figure 2) and Grey-cheeked
Parakeets Brotogeris pyrrhoptera. The mean range size within the study area of parrots found
as pets was 27,370 km2, compared to 8677 km2 for those not kept as pets (Table 2).
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Figure 2. Examples of pet Lilacine Amazons in four rural communities in coastal Ecuador. Parrots
were kept in a variety of situations; indoors or outdoors, caged or with clipped wings. In some cases
pet parrots that were housed in gardens were not initially considered to be captive by the owner, but
for the purposes of this study any parrot living in the locality of people was classed as a pet.

Table 2. The number of communities in which each of the 19 species was reported as a pet and the range size within the
study area according to BirdLife International [24].

Parrot Species (Year of Update) Range within Study Area
SA (km2)

Number of Communities Reporting the
Species (Out of 65)

Lilacine or Ecuadorian Amazon Amazona lilacina (2018) 38,860 20
Grey-cheeked Parakeet Brotogeris pyrrhoptera (2014) 8645 20
Red-masked Parakeet Psittacara erythrogenys (2007) 54,327 17

Pacific Parrotlet Forpus coelestis (2017) 55,300 8
Red-lored Amazon Amazona autumnalis (2017) 5583 6

Blue-headed Parrot Pionus menstruus (2013) 27,943 2
Southern Mealy Amazon Amazona farinosa (2013) 8612 1
Bronze-winged Parrot Pionus chalcopterus (2014) 46,508 1

White-winged Parakeet Brotogeris versicolurus (2018) 549 1
Chestnut-fronted Macaw Ara severus (2014) 49,329 0

Blue-fronted Parrotlet Touit dilectissimus (2014) 13,470 0
White-capped Parrot Pionus seniloides (2012) 1482 0

Rose-faced Parrot Pyrilia pulchra (2002) 12,828 0
Great Green Macaw Ara ambiguus (2014) 3899 0

Red-faced Parrot Hapalopsittaca pyrrhops (2000) 49 0
Cordilleran Parakeet Psittacara frontatus (2014) 1347 0

Barred Parakeet Bolborhynchus lineola (2014) 2183 0
Red-billed Parrot Pionus sordidus (2014) 1565 0
El Oro Parakeet Pyrrhura orcesi (1999) 615 0

Kept by communities but non-native

Orange-winged Amazon Amazona amazonica NA 1
Yellow-crowned Amazon Amazona ochrocephala NA 5
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3.2. Predicted Distribution of Pet Parrots

The locations of the 43 communities with pet parrots and the 20 communities with
pet Lilacines were reduced to 42 and 19, respectively, after limiting each group of locations
to one per 1 km. A total of 3803 background points were randomly allocated. The mean
AUC of resulting models was 0.69 ± 0.06 (sd) for pet parrots and 0.62 ± 0.20 (sd) for
pet Lilacines. The most important variables predicting the presence of pet parrots were
distance to nearest road (permutation importance, PI = 40%) and distance to nearest town
(PI = 28%); the key factors for the presence of pet Lilacines were the mean annual NDVI
(PI = 33%) and species value, representing the native distribution (PI = 27%) (Table 3).
Predictions show that pet parrots are likely to be widespread throughout the study area,
whereas pet Lilacines seem to be more likely within the species range. Both models show a
high probability of occurrence of pets to the west of Guayaquil and out towards the coast
(Figure 3).

Table 3. Permutation importance values for variables used to create models predicting the distribu-
tion of pet parrots and pet Lilacines in coastal Ecuador.

Variable
Permutation Importance (%)

Pet Parrot Model Pet Lilacine Model

Mean annual NDVI 11 33

Distance to road 40 1

Human population density 18 23

Distance to town 28 16

Species value 3 27
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3.3. Incidence of Parrot Ownership and Trapping

Within 12 selected communities where pet parrots occur, 106 (96 men/10 women)
participants (min 6, max 13, mean 8.8 per community) took part in interviews. All partic-
ipants worked outdoors as farmers (57), fishers (25), crab fishers (18), bee keepers (3) or
wildlife guides (3). Participants were familiar with A. lilacina, the majority seeing them
daily (68%), weekly (19%), or monthly (8%), with the remaining 5% just a few times per
year. Of all participants, 66% (70) had owned a pet parrot either previously or currently,
and 36% (38) a pet Lilacine. The majority (74%, 28) of Lilacine pets had been caught by the
owner themselves, with the remainder received as gifts (16%, 6), bought (2%, 6), or found
(2%, 6). In the last three years, 15 people have owned a total of 24 Lilacines. In total, 34
people (32%) confirmed that they had previously captured Lilacines, the majority (76%, 26)
to keep as a pet themselves, the others to sell (9%, 26) or for undisclosed reasons (15%, 5).
Pet ownership and trapping varied between community clusters, with the highest rates of
historic and current ownership and trapping of Lilacine Amazons occurring in the crab
fishing communities (D) in the southern part of the range (Table 4).

Table 4. The number, age and occupations of people interviewed from each community cluster and the number who
reported owning parrots or catching parrots, either previously or in the last three years.

Community
Cluster

n Mean Age
(Years)

Occupation: Farmer (F), Fisher (Fi),
Crab Fisher (CF), Other (O) In Life Time: In the Last Three

Years:

F Fi CF O Owned
Parrot

Owned
Lilacine

Caught
Lilacine

Owned
Lilacine

Caught
Lilacine

A 31 53 8 19 1 3 23 11 9 0 0
B 23 48 23 0 0 0 11 8 8 4 3
C 29 53 26 0 0 3 18 4 4 1 1
D 23 46 0 6 17 0 18 15 13 10 6

Total 106 50 57 25 18 6 70 38 34 15 10

In the last three years, 10 interviewees reported that they had caught Lilacines, with
at least 16 birds among them, to either keep the bird as a pet (7), to sell it (1), or for
an undisclosed reason (2). All had either no or primary level schooling, and were men
23–72 years old. They reported seeing wild Lilacines daily (9) or weekly (1), and all but
one believed the wild population was stable or increasing. In cases where the capture
location was given, this always corresponded to the person’s occupation, i.e., farmers
reported catching parrots in the forest, fishers and crab fishers reported trapping parrots
in mangroves (Table 5). Seven of the 10 people who had caught Lilacines in the last three
years reported that multiple other people within their community also catch Lilacines, and
all 10 knew of multiple pet Lilacines in their community (mean 5.2 Lilacines).

Table 5. The age, gender, schooling, and occupation of all interviewees who reported catching Lilacines in the last three
years. We report the trapping location, reason for capture and how many were caught.

Community
Cluster

Age
(Years) Gender Level of Schooling Occupation Location of Capture Reason for Capture Number of Lilacines Caught

in Last Three Years

B
41 Male Primary Farmer Dry forest Pet 1
23 Male Primary Farmer Dry forest Pet 1
72 Male Primary Farmer Dry forest Pet 1

C 68 Male None Farmer Undisclosed Undisclosed 1

D

32 Male Primary Crab fisher Mangrove Pet 2
54 Male Primary Crab fisher Mangrove Pet 1
40 Male Primary Crab fisher Mangrove Pet 1
47 Male Primary Crab fisher Undisclosed Undisclosed Unknown
51 Male Primary Fisher Mangrove Pet 1
67 Male None Fisher Mangrove Sell 7
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3.4. Attitudes towards Parrot Ownership and Trapping

Across all communities, responses to attitude statements show a strong feeling that
wild parrots are important for nature and participants indicated that local people have a
responsibility to protect the environment. This is mirrored by a strong feeling of discomfort
with outsiders coming to catch parrots and with parrots disappearing from their area. On
the contrary, 46% of all participants believe it is OK to catch wild parrots to sell and 32%
that it is acceptable to keep a pet parrot. Furthermore, 17% of people did not believe that
catching wild parrots could make them become extinct in the local area (Figure 4). There
were no significant differences between communities in the distribution of positive, neutral
and negative responses to all attitude statements apart from one: “I think it is OK to keep a
parrot as a pet”. For this, there was a significant difference between mean responses of the
community groups (H = 6.613, p = 0.022), with 52% of community cluster D believing this
is acceptable, and just 20% of cluster A believing so.

Figure 4. Responses to attitude statements are reported on a five point Likert scale (1 = strongly disagree, 2 = disagree,
3 = neutral, 4 = agree, 5 = strongly agree).

3.5. Trapping Pressure Index

When combining our results into a trapping pressure index, we can see variation
between the four community clusters, with higher values suggesting a higher risk to
the wild Lilacine Amazon population in that area (Table 6). Wild Lilacines occurring
around community cluster D are at greatest risk, due to the high level of reported parrot
ownership and capture, and a strong local attitude that this is acceptable. Those occurring
around community cluster C are also at high risk, as model predictions here show a high
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probability of pet Lilacine occurrence (0.78), which suggests a high probability of trapping
as pet owners mostly report catching their pet themselves. The wild population occurring
around community cluster A appears to be at the lowest risk from trapping, as there were
no reports here of current Lilacine ownership or capture; however, this is the smallest
remaining subpopulation of the species within its range, which could also explain the low
prevalence of pets. When considered against participants’ responses to their perceived
status of the wild population locally, we see more negative responses from the southern
community clusters, with the most frequent response in cluster C being ‘decreasing’ (76%),
in cluster D ‘stable’ (39%), whilst ‘increasing’ in cluster B (83%) and A (42%).

Table 6. Trapping pressure index for each community cluster, calculated by adding together factors of predicted or reported
level of pet ownership and trapping, and attitudes towards pet keeping, capture and trade. Predicted probabilities were
converted into percentages for this calculation.

Trapping Pressure Factor
Community Cluster

A B C D

Mean probability of predicted parrot ownership (0–1) 0.47 0.35 0.70 0.36
Mean probability of predicted Lilacine ownership (0–1) 0.51 0.59 0.78 0.19

Percentage of participants who owned pet Lilacines in the last three years 0 17 3 43
Percentage of participants who caught Lilacines in last three years 0 13 3 26
Percentage of participants believing it is OK to keep a pet parrot 20 23 37 52

Percentage of participants believing it is OK to catch wild parrots to sell 39 32 41 74
Overall trapping pressure index (rank) 157 (4) 179 (3) 232 (2) 250 (1)

4. Discussion

This study found that 66% of rural coastal communities in Ecuador have pet parrots
and 31% have pet Lilacine Amazons A. lilacina. Within these communities, 66% of people
had owed a pet parrot during their lifetime, and 14% currently owned Lilacines. This
is similar to Costa Rica, where 18% of households owned a pet parrot in 2001 [9]. Our
current ownership questions focused on just one species, so we expect the level of current
ownership of all parrot species to be much higher and similar to Colombia where 58% of all
people had pet parrots [10]. Current ownership and reports of Lilacine trapping in the last
three years varied between communities, with 0% to 50% and 0% to 26%, respectively. Ten
participants confirmed that they had taken Lilacines from the wild in the last three years
to keep birds as pets, or to sell them, so we suggest that, similarly to Yellow-shouldered
Amazon Amazona barbadensis harvesting in Venezuela, there are at least two categories of
trappers—“poacher-keepers” and “poacher-sellers” [35], with only the latter having the
contacts and logistics to sell birds. People in occupations with an established and frequent
trade link—for example, fishers or crab fishers—may have more opportunity to transport
trapped birds to other towns to sell. We also found that capture location corresponded to
the occupation of the poacher, which may explain the variation between rural communities
as occupation depends heavily on location, i.e., in-land or coastal. Our trapping pressure
index identified that the southern distribution of the species is likely to be at greatest risk,
which agrees with earlier work showing a vast population decline in this area [17] and
provides further evidence that this area should be prioritised for conservation support.

Understanding whether taking parrots from the wild is opportunistic or selective is
important because selective capture can lead to the extinction of species through over-
harvesting [10]. Our results suggest that trapping is selective given the differences in the
popularity of species, with some kept in 20 communities and some in none. The two most
frequently reported pet parrot species differed greatly in body mass, which, in general,
is linked to longevity in captivity [36], suggesting that variation in popularity is not a
side effect of survival rates in captivity. Similarly to previous research, we have noted a
preference for Amazon parrots, with all three wild occurring species and two non-native
species being kept as pets [8]. However, parrot ownership and capture, at least within
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rural communities, may also be opportunistic. Most parrot owners had caught their bird
locally, within areas they visit during a normal days’ work, and our predictions showed
that pet Lilacines were more likely within the species’ wild distribution. Moreover, parrot
species kept as pets had a larger average wild range size than those that are not. This all
suggests that ownership and capture are driven in part by parrot availability and accessibil-
ity [11], but more research including a true measure of wild parrot abundance, and surveys
and interviews in larger towns and cities are needed. According to anecdotal reports in
some rural communities, orders are placed by outsiders from cities such as Guayaquil or
Quito, which fits the typical multi-level chain involving trappers, middlemen and markets
described by Pires [37] and needs investigation.

Our interviews revealed that Lilacine Amazons were trapped both in mangroves,
where they roost, and dry forests, where they feed and nest [38,39], suggesting that both
adults and chicks are being taken from the wild. Anecdotal reports from communities sug-
gest past events of outsiders casting nets over mangrove islands to remove an entire roost
of Lilacines at a time. Research has shown that the removal of adults from a population
can have more drastic consequences on population size and growth rate, than removal of
chicks [40]. In a study of illegal wildlife trade markets in Bolivia, contrary to the idea that
most parrots come from nest poaching, 70% of parrots were adults [41]. Our results also
suggest that 60% of Lilacines caught in the last three years were from mangroves, so are
likely to be adult or juvenile birds. A number of studies have shown that anti-poaching
efforts, in the form of additional human presence, can benefit bird populations [42–44]
and that recruitment of young people (who may be facilitators in parrot trapping) from
the local community to act as nest monitors, can significantly decrease poaching rate [45].
In some cases, nest protection implemented at the correct time of year can have a signif-
icant effect [42], but we suggest that year-round protection is needed to safeguard both
vulnerable roosting and nesting sites for this species.

The lack of environmental education in Ecuadorian schools is a barrier to reducing
parrot ownership and capture [16]. The main purpose of any environmental education
strategy is to change people’s knowledge and attitudes, and ultimately behaviours [46].
Alone, or in combination with other conservation interventions, environmental education
projects can result in a decrease in the persecution of parrots and consequently an increase
in population size [43,47]. Most people in our study believed that wild parrots were
important for nature and that they themselves had a responsibility to protect parrots. Local
people do not want parrots to disappear and are strongly opposed to outsiders coming in
to their community to catch them. Contrastingly, up to 74% per community agreed that
it was OK to take parrots from the wild to sell, and up to 52% believed that it was OK to
keep them as a pet. Furthermore, up to 30% disagreed that catching parrots could make
them locally extinct. We found similarity between attitudes and reported behaviours. In
areas with more pet Lilacines and reports of parrot trapping, there was also a stronger
belief that this was acceptable, compared to areas with fewer pets and trapping. This
suggests that changing these attitudes could have an impact on future behaviour, and
that the implementation of a targeted behaviour change education project could have
conservation benefits to the Lilacine Amazon. We suggest following the practices of the
successful PRIDE campaigns [48] which inspire people to take pride in the species and
habitats that make their communities so unique, whilst introducing viable alternatives to
environmentally destructive practices.

We therefore recommend that a combination of environmental education to change
attitudes towards parrot ownership and trapping, and increased protection of wild birds
through nest and roost guarding, particularly in the southern part of its range, are conser-
vation priorities for the Lilacine Amazon.
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