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Abstract 

The reprogramming of somatic cells to induced pluripotent stem cells (iPSC) has huge potential for 

disease modelling, drug screening and regenerative medicine, and is an extremely important area of 
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research and development across the globe. The inefficiency of the reprogramming process from 

somatic cell to pluripotency using established gold-standard methodologies is a major roadblock to 

realising the full potential of iPSC in cell therapy. The sequestosome protein p62 is an evolutionarily 

highly conserved scaffolding protein with roles in a range of crucial cell regulatory processes 

including autophagy, nutrient sensing and inflammation as well as being involved in the pathology or 

causation of various diseases. The canonical role of p62 is to aggregate ubiquitinated proteins to 

form the sequestosome, a precursor to the autophagosome, in the induction of autophagy under 

conditions of stress or starvation, but it has six known functional domains with a range of binding 

partners including NRF2, NF-κB, Traf6 and LC3. In addition, p62 directly binds to ubiquitinated 

proteins involved in the anti-oxidant response and inflammation and mediates mitophagy. There is an 

emerging role for autophagy in iPSC reprogramming, and a growing body of evidence for the role of 

p62 in maintaining stemness in cancer stem cells. As yet, the role of p62 in establishing or 

maintaining pluripotency in iPSCs has not been elucidated. I have created a ‘genetic-manipulation 

toolbox’ including overexpression, shRNA and functional mutants of p62 in order to assess the 

mechanistic role of p62 in iPSC reprogramming and maintenance of pluripotency. Utilising p62 null 

patient fibroblasts, and lentiviral based shRNA to create a stable p62 knock-down cell line, I have 

established a novel role for p62 in the maintenance of the pluripotent state. Future works will further 

utilise the tools and cell lines I have created to elucidate the mechanisms by which p62 exerts its 

effects on the pluripotent state. 
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Chapter 1: Introduction 

1.1. Stem cells 

A stem cell is defined as a cell with the capacity for unlimited self-renewal, coupled 

with the ability to differentiate into one or more cell types. Stem cells exist in the 

developing embryo and in the adult (Zakrzewski, et al, 2019). In the first days of 

embryonic development, the one-cell zygote begins to undergo a series of cell 

divisions: these cells are totipotent, meaning they are capable of differentiating into 

every cell of the body and the extra-embryonic tissues required to support the 

developing embryo and later fetus (Zakrzewski, et al, 2019). At around Day 2-3 in 

mice, and Day 5 in humans, the early blastocyst forms, made up of an outer layer of 

trophectoderm that goes on to form extraembryonic tissues such as the placenta; 

and an asymmetric ball of cells called the inner cell mass (ICM) (Figure 1.1) 

(Chagastelles and Nardi, 2011; Rossant and Tam, 2017). Cells within the ICM are 

pluripotent stem cells that have the capacity to go on to differentiate into the three 

germ layers: ectoderm, endoderm and mesoderm. These three germ lineages then 

go on to further differentiate into all cell types in the human body (Chagastelles and 

Nardi, 2011; Modo, 2008). As the cells of the developing fetus begin to differentiate 

and become more specialised, their potency becomes more limited. Multipotent 

cells, such as those in each of the three germ layers, can differentiate into multiple 

cell types, but only within a specific lineage. For example, ectoderm cells go on to 

differentiate into the cells of the central nervous system; the endoderm gives rise to 

the internal organs such as the liver and pancreas; and the mesoderm differentiates 

into cells comprising the skeleton and muscles (Kiecker et al, 2016; Elshazzy et al, 

2021).   
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Figure 1.1: Derivation of ESCs. The totipotent cells of the zygote form an early 

blastocyst at around embryonic Day 3 in mice and Day 5 in humans. The blastocyst is 

made up of the trophectoderm, which goes on to form extra-embryonic tissues including 

the placenta and the ICM, which goes onto form all cells of the body. ESCs are pluripotent 

cells derived from the ICM of a blastocyst that can be maintained in culture in the lab.  

1.2. Embryonic Stem Cells (ESCs) 

ESCs are pluripotent stem cells derived from the ICM of the blastocyst and 

maintained in culture. ESCs can be cultured long-term, whereby they demonstrate 

the defining characteristics of pluripotent stem cells: the ability to proliferate 

indefinitely and the capacity for differentiation into cells from all three germ layers 

(Figure 1.2) (Gepstein, 2002; Vazin and Freed, 2010). The first mouse ESCs 

(mESCs) were derived in 1981 by culturing cells directly from the ICM in media 

conditioned by an established embryonal carcinoma cell line (Martin, 1981). 

Thompson et al. first derived human ESCs (hESCs) in the lab in 1998, by disrupting 

the human blastocyst and maintaining colony-forming pluripotent cells in long-term 
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culture. These cultured ESCs were able to form teratomas containing cells from all 

three germ layers when injected into immunodeficient mice and expressed key 

markers of pluripotency such as alkaline phosphatase, SSEA3, Tra-160, and Tra-

181. This opened up a completely new field of developmental biology, the potential 

for regenerative medicine, and the expansion of the scope of research into human 

disease. These hESCs cells could, in vitro, broadly recapitulate the process of 

human embryonic development; having the ability to spontaneously differentiate into 

cells from all three germ layers, or undergo a directed differentiation towards a 

multitude of somatic cell types including cardiac cells, neurons and vascular cells 

(reviewed in Ludwig et al, 2018).  

However, the use of hESC in research has always caused some ethical concerns 

since the derivation of hESCs from the ICM of an embryo thus destroys the embryo. 

Many nations worldwide still preclude the use of hESC in research or therapy due to 

moral or religious objections. In the UK, there is a well-regulated governance and 

ethical approval process for the use of hESC in research or regenerative medicine. 

All activities of the ‘UK Stem Cell Bank and all UK research involving established 

hESC lines is overseen by the UK Stem Cell Bank Steering Committee’ in 

association with the Department of Health, the Human Fertilisation and Embryology 

Authority (HFEA), the Human Tissue Authority (HTA) and the Medicines and 

Healthcare Products Regulatory Agency (MHRA) (MRC/UKRI, 2021: online). 
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Figure 1.2: ESCs are capable of differentiating into cells from all three germ layers, 

the germ cells, and from there can be further specialised and differentiated into multiple 

different cells types, recapitulating the characteristics of the ICM cells in vitro. (Modo, 

2008) 

 

1.3. Introduction to induced pluripotent stem cells (iPSCs) 

The next huge leap in the field of stem cell research came when, in 2006, Shinya 

Yamanaka described the reprogramming of mouse embryonic and adult fibroblasts 

to a state that mimicked that of pluripotent embryonic stem cells (Takahashi et al, 

2006). These embryonic-like cells were named induced pluripotent stem cells 

(iPSC). Yamanka and colleagues, after a rigorous trial and error of dozens of factors, 

had used four key ‘reprogramming factors’: Oct4 (Octamer-binding transcription 

factor 4); SOX2 (Sex determining region Y-box 2); KLF4 (Kruppel-like factor 4) and 

c-MYC (myc proto-oncogene) (collectively known as OKSM) in retroviral vectors for 

the iPSC reprogramming. The successful reprogramming of human adult fibroblasts 

using the same OKSM iPSC reprogramming factors was achieved a year later by the 

same group (Takahashi et al, 2007). At around the same time, the Thompson group 

achieved similar results reprogramming human fibroblasts using a slightly different 



19 
 

combination of factors in a lentiviral system: Oct4, SOX2, NANOG and Lin28 (Yu et 

al, 2007). Thus, patient derived cells, for example skin fibroblasts isolated from a 

small skin biopsy or cells derived from a blood sample, can be returned to an 

embryonic-like state by the forced expression of a small number of key genes (Okita 

et al, 2013).  

The derivation of patient-specific iPSC has created a brand new platform for 

personalised medicine in disease modelling and drug screening because, unlike 

mouse and other animal models, which often do not entirely recapitulate human 

disease, iPSC share a genetic background and cellular phenotype with the patients 

(Ellit et al, 2018; Farkhondeh et al, 2019). For example, patient fibroblasts 

reprogrammed to pluripotency and then subjected to directed differentiation to 

neurons would share genetic and phenotypic characteristics with the patients’ 

neurons. The potential of induced pluripotent stem cells (iPSC) for use in disease 

modelling, drug screening and regenerative medicine is enormous and the full extent 

of this potential is not yet fully realised.  

1.4. Methods of iPSC reprogramming 

Since the first description of iPSC reprogramming in 2006, a number of methods for 

iPSC reprogramming have been developed, including the use of adenovirus 

(Stadtfeld et al, 2008), Sendai virus (Fuscaki et al, 2009), lentivirus (Sommer et al, 

2009), recombinant protein (Zhou et al, 2009) and mRNA (Anokye-Danso et al, 

2011). Additionally, various modifications have been made to the exact combination 

of genes used to trigger reprogramming. These methods have varying degrees of 

safety and efficiency (Table 1.1), with one often coming at the expense of the other. 

For example, genome integrating oncoretroviruses or lentiviruses are the most 

efficient at producing iPSC, but the risks of deleterious insertional mutagenesis and 
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the potential downstream effects associated with this preclude their application in 

clinical therapies. In contrast, small molecules and mRNA do not carry the same 

risks, but are either far less efficient at iPSC production, expensive or extremely 

labour intensive (Moradi et al, 2019, Singh et al, 2015).  

Table 1.1: An overview of iPSC reprogramming methods, seminal papers, reprogramming 

factors used, reprogramming efficiencies typically achieved and the key pros and cons 

associated with these methods.  

O, Oct3/4; K, Klf4; S, Sox2; M, c-myc 

(Schlaeger et al, 2015; Singh et al, 2015) 

 Method Factors Cell type Efficiency 

(%) 

Pros and cons 

I

n

t

e

g

r

a

t

i

n

g 

m

e

t

h

o

d

s 

Retroviral 

transduction 

(Takahashi 

and 

Yamanaka, 

2006) 

OKSM Mouse 

fibroblasts 

0.0001-1 ● Can be highly efficient 

● Genomic integration carries a risk 

of insertional mutagenesis 

● Viral protein has the potential to 

trigger innate immune response – 

limited clinical translation potential 

Lentiviral 

(Huangfu et 

al, 2008) 

OKSM Human 

fibroblasts 

1 ● Highly efficient 

● Able to transduce multiple cell 

types 

● Genomic integration carries a risk 

of insertional mutagenesis 

● Viral protein has the potential to 

trigger innate immune response – 

limited clinical translation potential 

N

o

n

-

i

n

t

e

g

r

a

t

i

n

g 

m

Sendai 

virus 

(Fusaki et 

al, 2009) 

OKSM Human 

fibroblasts 

~0.1 ● High reprogramming efficiency 

● Non-integrating 

● Single transduction and relatively 

low workload 

● Virus persists in iPSCs for many 

passages, a problem for clinical 

translation 

● Expensive 

oriP-EBNA 

episomal 

plasmids 

(Yu et al, 

2009, Bang 

et al 2018)  

OKS,  

l-myc, 

LIN28 

+shp53 

Fibroblasts ~0.01-

0.017 

● Non-integrating, and non-viral 

● EBNA1 protein tethers the 

plasmid to the host chromosome 

allowing replication 

simultaneously to mitosis 

● Transient expression 
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e

t

h

o

d

s  

● Inexpensive and easy to store and 

produce 

● Single nucleofection required 

● Effective in multiple cell types 

● Use of shp53 is potentially 

tumourigenic, limiting clinical 

translation 

● EBNA1 viral protein can persist 

and potentially cause an immune 

response  

PiggyBAC 

transposon 

(Woltjen et 

al, 2009) 

OKSM Mouse and 

human 

embryonic 

fibroblasts 

0.01 ● Doxycycline inducible, easy 

excision  

● Transient expression of non-viral 

reprogramming factors 

● ‘Footprint’ free, leaves no trace 

● Reprogramming takes 

approximately 14-28 days  

● Doxycycline independence takes 

several weeks  

RNA 

modified 

synthetic 

mRNA 

(Warren et 

al, 2010) 

OKSML Human 

fibroblasts 

0.6-4.40 ● Highly efficient 

● Non-integrating 

● Modifications ensure evasion of 

anti-viral response 

● iPSC colonies form rapidly (14-17 

days) 

● Labour intensive and requires 

multiple transfections over 17 

days  

● Repeated transfections means 

mRNA could be reverse 

transcribed into DNA and 

integrate into the genome of the 

transfected cells   

● Lower overall success rate than 

other methods 

 

A couple of years after the publication of Yamanaka’s seminal paper the Thomson 

lab developed the OriP/EBNA episomal plasmids containing SOX2, KLF4, L-MYC, 

LIN28, Oct3/4 and an shRNA (short hairpin RNA) for p53 alongside transient 

expression of EBNA1 (Eptein Barr Nuclear Antigen 1); both of which improve iPSC 

reprogramming efficiency (Yu et al, 2009, Okita et al, 2011, Okita et al, 2013). The 
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oriP/EBNA episomal plasmid is the current gold standard of iPSC reprogramming, 

particularly for a clinical setting, because they do not integrate into the host genome 

and are relatively safe and cost effective. These non-integrating episomal plasmids 

provide a good balance between safety and efficiency (Moradi et al, 2019). The 

McKay lab utilise these OriP/EBNA episomal plasmids as standard in our iPSC 

reprogramming experiments. iPSC, like ESCs, have the potential for both unlimited 

self-renewal as well as the potential for differentiation into any mature cell type. 

1.5. Benefits and drawbacks of using iPSCs in disease modelling  

Animal models have provided a vast wealth of information relating to human 

development, health and disease over centuries of scientific research and discovery, 

beginning in ancient Greece in the 6th Century BCE (Ericsson et al, 2013). In 

particular, the use of rodents as animal models have been exceedingly popular since 

the twentieth century because they are relatively cheap to house and easy to handle 

when compared to other animals. Rodents have short lifespans and fast 

reproduction rates; and, perhaps most importantly, are resistant to repeated 

inbreeding (Franco, 2013). As a result of the use of animal models for studying 

human diseases an enormous range of medical breakthroughs have been achieved 

including the discovery of insulin as a treatment for type 1 diabetes and the 

development of many vaccines including for smallpox and polio (Barre-Sinoussi and 

Montagutelli, 2015). In addition, cancer treatments, pioneering surgical techniques 

such as balloon angioplasty for cardiovascular disease and treatments for AIDs have 

all been developed due to the use of animal models (National Academy of Sciences 

and Institute of Medicine; 1991).  

However, the use of animals as models for human diseases has many limitations. 

First and foremost, there are obvious genetic differences between humans and other 
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animals, even closely related ones such as chimpanzees and other non-human 

primates (Doncheva et al, 2021). Even where genes are conserved across species, 

there are differences in gene regulatory networks and epigenetic profiles (Barre-

Sinoussi and Montagutelli, 2015), creating an entirely different genetic background 

upon which diseases are modelled and drugs are tested. There are often important 

differences in the presentation of diseases between species: for example, genetically 

engineered mouse models of Cystic Fibrosis have similar intestinal disease to those 

seen in humans, but lack the pulmonary effects (Ericsson et al, 2013). In addition, 

drugs can have vastly different reactions in different species including 

pharmacokinetics, drug metabolism and immune responses. One devastating 

example of this was when six human volunteers in Phase 1 clinical trial received an 

immunomodulatory drug called TGN1412 and all suffered severe adverse reactions 

and multiple organ failure due to a cytokine storm. This drug had been tested on 

mice, rats, rabbits and non-human primates with no similar effects (Attarwala, 2010; 

Akhtar, 2015). Lastly, there are obvious ethical and moral objections to the use of 

animals in medical research and the NC3Rs framework of reducing, replacing and 

refining the use of animals in research to make it more humane aims to address 

these concerns in the UK (NC3Rs, accessed 2021).  

IPSCs are one major way in which the use of animal models in research can be 

reduced, since IPSCs can provide a new platform with which to model human 

diseases. In particular, iPSCs have been particularly well utilised in the study of 

neurological diseases, where appropriate animal models have been lacking to date 

(Volpato and Webber, 2020). IPSCs derived from human donor somatic cells 

possess the exact same genetic and epigenetic background, providing a more 

suitable context in which to study disease (Bragança et al, 2019). Cells 
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reprogrammed from a patient with a disease caused or influenced by genetic 

mutations or variants can be differentiated into cells or even tissues affected in that 

disease and studied in vitro and have been shown to recapitulate key phenotypic 

features (Bragança et al, 2019; Sharma et al, 2020; Volpato and Webber, 2020). For 

example, iPSC derived neurons are capable of releasing neurotransmitters and firing 

action potentials: fundamental functions of this cell type (Volpato and Webber, 2020).   

One major benefit of the use of iPSC derived cell lines for disease modelling is the 

ability to differentiate iPSCs into cell types that are ordinarily difficult to obtain directly 

from human or culture, such as primary neurons (Borger et al, 2017). In addition, it is 

possible to expand and freeze iPSC lines, thereby creating a large supply of these 

cells (Borger et al, 2017). Further, patient derived iPSCs have the identical genetic 

background at the somatic cells from which they are derived, and all other cells in 

that particular patient: This is a major benefit of the use of iPSC-based cell models 

over other primary or immortalised cell line models. Even using gene-editing 

techniques such as shRNA to reduce the expression of a particular gene, or 

CRISPR-Cas9 mediated genetic modification to induce a specific gene mutation 

does not recapitulate the genetic and epigenetic background seen in human patients 

(Luciani et al, 2020).  

However, there are potential pitfalls when considering the use of iPSC derived cell 

models. Firstly, variability can be introduced at multiple points during the collection of 

somatic cell samples; the culturing of the primary cells; the iPSC reprogramming 

process and culturing of resultant iPSC clones; and the differentiation process to 

other cell types such as NSCs or neurons (Luciano et al, 2020). Isogenic control 

lines can be utilised in order to try to overcome these barriers, whereby disease-

causing mutations are artificially introduced in a cell line and the unedited line serves 
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as a control with an identical genetic background (Wang et al, 2014). This can also 

be performed ‘in reverse’ whereby a patient derived iPSC line with a known disease 

causing mutation can be genetically ‘corrected’ using gene editing techniques such 

as CRISPR-Cas9 or TALENS to create a ‘healthy’ isogenic control line (Merkert et al, 

2017).  

1.5.1. Disease modelling and clinical application for lysosomal storage disorders 

Lysosomal storage disorders (LSD) are a group of inherited, usually progressive, 

metabolic diseases caused by lysosomal deficiencies of various enzymes that result 

in a built of waste products that cannot be degraded (Sun, 2018). There are a range 

of clinical manifestations and disorders including the mucopolysaccharidoses, 

Gaucher’s disease and the neuronal ceroid lipofuscinoses (Sun, 2018). There are a 

number of mucopolysaccharidoses with various gene associations and enzyme 

deficiencies and these disorders are mostly inherited in an autosomal recessive 

manner (apart from MPS-II, which is x-linked) (Sun 2018).  

Gaucher’s disease is caused by mutations in the GBA gene, resulting in a deficiency 

of the glucocerebrosidase enzyme (Sun, 2018) and is the most common LSD, with a 

prevalence of approximately 1 in 40,000 (Mehta, 2006). Gaucher’s disease can 

cause a range of symptoms including hepatosplenomegaly, bone pain and poor 

growth, seizures, severe developmental delay and cognitive regression depending 

on the type (Sun, 2018).  

The neuronal ceroid lipofuscinoses (NCL) are a group of disorders caused by 

mutations in the CLN genes (currently there are 13 or 14 genes known to cause 

NCLs) and are progressive neurodegenerative disorders (Nita et al, 2016; Sun, 

2018). NCLs are characterised by an accumulation of lipopigments in and around 
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neuronal cells (Nita et al, 2016) and many NCLs manifest in infancy or childhood and 

typical clinical manifestations include seizures, blindness and loss of language and 

motor skills; most patients do not survive past adolescence (Sun, 2018). The 

functions of several of these genes remains unknown, limiting research into potential 

therapeutics (Nita et al, 2016).  

Overall, there are over fifty types of LSD, and together there is a prevalence of up to 

1 in 4000 live births and most are lacking effective treatments options due to the 

diverse array of gene associations, causative enzyme deficiencies and clinical 

manifestations (Borger et al, 2017). iPSC based disease models of these diseases 

have changed the way that researchers can study these diseases: Since they are 

rare and caused by specific gene mutations, appropriate animal models have been 

lacking and human iPSC derived cell models are able to more accurately mimic 

LSDs (Borger et al, 2017).  

iPSC derived neuronal stem cells (NSC) are multipotent, and express key neural 

markers such as Pax6 and Nestin and have the potential to be differentiated into 

neurons, oligodendrocytes and astrocytes, meaning they have the potential to 

recapitulate the pathologies seen in neurodegenerative LSDs (Luciani et al, 2020). 

iPSCs derived from skin or blood cells of patients with LSDs have the exact same 

genetic mutations and genetic background; hence, when reprogrammed to 

pluripotency and differentiated into neuronal cell types these mutations remain, 

providing an ideal platform for understanding the mechanisms of these rare 

disorders and developing novel therapeutics (Luciani et al, 2020).  

As an example, patient specific iPSC lines from a patient with NCL caused by 

mutations in the CLN3 gene have been used to create a model of the blood-brain-
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barrier, which showed phenotypic features, associated with CLN3 disease including 

the accumulation of lipofuscin and mitochondrial dysfunction (Kinarivala et al, 2020). 

This novel model system was then used to screen previously identified potential 

therapeutic compounds for their ability to reduce the phenotype seen (Kinarivala et 

al, 2020). Another publication described the use of an iPSC derived neuronal cell 

model to elucidate the mechanism of disease in Gaucher’s disease and identify 

mTORC1 as a potential therapeutic target due to its control of the defective 

autophagolysosome pathway in Gaucher’s disease patient derived cells (Brown et al, 

2019). Dysregulation of autophagy is a key feature of LSDs due the fundamental role 

of lysosomes in the autophagy pathway (See sections 1.9 and 1.10 for further 

information).  

1.6. Clinical application of iPSC 

Although the potential for the use of human iPSC in regenerative medicine is 

enormous, to date this potential has not been reached. There are clear advantages 

to the use of human iPSC over hESC cells in a clinical setting: firstly, iPSC avoid the 

ethical concerns around the use of hESC. Secondly, the use of autologous iPSC- 

derived from a patient’s own cells avoids any kind of immune rejection (Vanneaux, 

2019). The basic premise of these regenerative therapies is thus: iPSC are 

differentiated into any desired cell or tissue type and transplanted into the patient to 

replace lost or damaged cells (Moradi et al, 2019). Of course, this is particularly 

relevant to degenerative diseases, which are characterised by cell loss.  

The first clinical trial utilising autologous human iPSC was launched in 2014, in 

Japan, with the aim of treating age-related macular degeneration (AMD). However, 

this study was suspended shortly after due to safety concerns regarding some copy-

number alterations in the iPSCs and iPSC derived RPE cells in one patient: it could 
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not be determined if these changes may be potentially tumourigenic and so the trial 

was aborted (Mandai et al, 2017). The use of allogenic stem cells (coming from a 

healthy donor and undergoing extensive safety testing), was then deemed to be 

safer and quicker (Vanneaux et al, 2019). The first successful Phase 1 clinical of an 

allogenic iPSC derived mesenchymal stem cell product was initiated in 2016 and 

completed in June 2020 by Cynata Therapeutics, this is now moving into Phase 2 

trials (Clinical Trials, 2021: NCT02923375; Bioinformant, 2021). In 2019, eleven 

clinical trials using iPSC had been approved, for a range of diseases including AMD, 

Parkinson’s disease and spinal cord injury (Vanneaux et al, 2019, Wiegand and 

Bannerjee, 2019).   

However, there has not yet been the explosion of human iPSC based trials that one 

might expect and as of September 2020 no pluripotent stem cell- based therapy 

(including both ESC and iPSC derived cells) is in routine clinical use (Deinsberger et 

al, 2020). This is partly due to safety concerns regarding potential immunogenicity 

and oncogenicity (Garretta et al, 2018) and partly because derivation of the number 

of cells required for clinical application, manufactured according to current Good 

Manufacturing Practise (GMP) is extremely difficult to achieve (Wiegand and 

Banerjee, 2019). This is because the exact mechanisms, cell signalling and timing of 

the iPSC reprogramming process remains elusive and the process is still highly 

inefficient.  

 

1.7. Mechanism of iPSC reprogramming.  

 

The forced expression of ‘reprogramming genes’ confer a wide range of 

morphological, epigenetic, transcriptomic and metabolic changes in adult somatic 

https://clinicaltrials.gov/ct2/show/NCT02923375?term=CYP-001&draw=2&rank=1
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cells in a process which is not yet mechanistically or temporally clearly understood 

(Jackson and Sridharan, 2013; David and Polo 2014). iPSC reprogramming of adult 

somatic cells such as fibroblasts is widely considered to consist of three main 

phases, a stochastic initiation phase, maturation and a hierarchical stabilisation 

phase (Samarvachi-Tehrani, et al, 2010; Buganim, et al, 2012; David and Polo, 

2014) (Figure 1.3) 

 

 

Figure 1.3: Summary of the three phases of iPSC reprogramming- initiation, 

maturation and stabilisation. Image adapted from David and Polo, 2014. 

 

During the initiation phase, cells undergo a range of changes including the loss of 

somatic cell programming by epigenetic gene methylation; further epigenetic 

changes including histone modification; increased proliferation rate; metabolic 

changes from oxidative to glycolic energy production; and clear and easily visible 
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morphological changes from a mesenchymal to epithelial (MET) phenotype. During 

MET, cells gain polarity and begin to express E-Cadherin (Hawkins et al, 2014).  

In the maturation phase, cells begin to ‘switch on’ transcription of a programme of 

pluripotency genes including Nanog and OCT4 in preparation for independence from 

transgenes (David and Polo, 2014). An upregulation of genes driving and regulating 

glycolysis is also associated with the maturation phase of iPSC reprogramming 

(Jackson and Sridrahan, 2013) This phase of reprogramming completes the shift in 

glucose metabolism from oxidative phosphorylation to glycolysis, rapidly providing 

energy for the reprogramming and proliferating cells and potentially facilitating 

chromatin remodelling related to pluripotency (Jackson and Sridrahan, 2013).   

Finally, in the stabilisation phase cells gain this transgene independence, lose the 

epigenetic memory of the somatic cells from which they were derived, and achieve 

stable pluripotency (David and Polo, 2014). During transition from the maturation to 

the stabilisation phase of reprogramming, cells unable to down regulate transgene 

expression cannot proceed to the stabilisation phase (Jackson and Sridrahan, 2013). 

Most cells that enter the reprogramming process are not ‘stabilisation competent’ 

(i.e. cannot reach or maintain the stabilisation phase) (Golipour et al, 2012) and the 

activation of endogenous pluripotency genes is essential to enter the stabilisation 

phase (Hawkins et al, 2014).  

Current methods for reprogramming cells to pluripotency are largely inefficient; 

usually much less than 1% of gene-modified cells successfully progress to a state of 

stable pluripotency (Bragança, et al, 2019). In addition, the quality of the resultant 

pluripotent stem cells can be highly variable as the process is long, occurring over 

25-30 days with stabilisation of iPSC colonies taking much longer. Hence, analysis of 
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this variable and temporal process is challenging. This variability and lack of quality-

controlled stages limits the potential for producing the quantity and quality of 

reproducible iPSC needed for application in research and therapy. Elucidating the 

exact mechanisms and cellular pathways of reprogramming to pluripotency could be 

extremely useful for improving the efficiency and reproducibility of iPSC production 

and therefore their use in disease modelling, drug screening and regenerative 

medicine. 

1.8. Differences in mouse and human pluripotency  

Although mouse and human iPSC can be reprogrammed using the same set of 

reprogramming factors and are defined by the same properties of self-renewal and 

multi-lineage differentiation potential (Schnerch et al, 2010), there are some 

fundamental differences in the pluripotent states of cells from the two species. Both 

species rely upon the central self-regulatory network of Oct4, Sox2 and Nanog in 

order to gain and maintain pluripotency (Schnerch et al, 2010; Hawkins et al, 2016), 

but the wider gene regulatory networks and signalling pathways are not identical. For 

example, the cell surface antigens SSEA3 and SSEA4 are key markers of 

pluripotency in human cells, whereas SSEA1is a key pluripotency marker in mouse 

cells: expression of SSEA1 is associated with early differentiation in human cells.  

In addition, the process of iPSC reprogramming takes significantly longer in human 

cells than in mouse cells (For example within the McKay lab an human iPSC 

reprogramming experiment takes approximately 25 days, whereas a mouse iPSC 

reprogramming experiment takes around 14 days.). During the initiation phase of 

iPSC reprogramming, Sox2 supresses EMT (epithelial to mesenchymal transition) 

via Snail, while Klf4 induces E-Cadherin expression, which in turn promotes MET 
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(Hawkins et al, 2016). In mouse, BMP (bone morphogenic protein) is also essential 

for promoting MET in the early stages of iPSC reprogramming (Hawkins et al, 2016). 

In later stages, FGF2 (fibroblast growth factor) has been reported as essential for the 

maintenance of the pluripotent state in human pluripotent cells (Schnerch et al, 

2010). In contrast, Stat3/LIF (Leukemia inhibitory factor) signalling is essential for 

maintenance of pluirpotency in mouse cells (Schnerch et al, 2010) and LIF is an 

essential component in mouse iPSC and ESC culture media (Ginis et al, 2004; 

Abradijev et al, 2012).  

In mice embryos, there exist two distinct pluripotent states: naïve (cultured mESCs 

recapitulate this state) and primed (mouse epiblast stem cells (mEpiSCs convey the 

characteristics of the primer pluripotent state in culture) (Kumari, 2016). Naïve and 

primed states of pluripotency have some key distinguishing features including colony 

morphology, growth factor requirements and, in females, chromosome-X activation 

status (Kumari, 2016). During the stabilisation phase of mouse iPSC reprogramming, 

chromosome-x is reactivated, meaning they exist in the naïve state (Hawkins et al, 

2016). In contrast, X-reactivation does not occur in human iPSC reprogramming in 

the presence of FGF2, meaning that human iPSC typically exist in the primed state 

(Hawkins et al, 2016). However, in the presence of LIF, human fibroblasts have been 

shown to be reprogrammed to a naïve state, suggesting that the state of pluripotency 

is context dependent (Hawkins et al, 2016). Mouse ESCs derived from the ICM of 

pre-implantation embryos are naïve, whereas mEpiSCs derived from the epiblast of 

post-implantation embryos are primed (Kumari, 2016). Human ESCs derived from 

the ICM of pre-implantation embryos and human iPSCs typically exemplify a primed 

pluripotent state and are similar to mEpiSCs (Kumari, 2016). One key difference 

between naïve and primed pluripotent cells is that naïve cells use both oxidative 
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phosphorylation and glycolysis to produce energy, whereas primed cells use 

primarily glycolytic energy production (Kumari, 2016). In addition, suppression of 

autophagy has been demonstrated during the transition from naïve to primed 

pluripotency in mouse embryos via activation of mTOR (Kalkan et al, 2017).  

1.9. Autophagy  

1.9.1. Introduction to Autophagy 

Autophagy is the process by which cells remove and recycle misfolded or 

aggregated proteins, damaged organelles and even pathogens as well as 

conserving and balancing energy sources during cell stress or starvation (Glick et al, 

2010). Autophagy can be divided into three sub-categories: macro-autophagy, 

chaperone-mediated autophagy and micro-autophagy; although all three types share 

the common function of the facilitation of proteolytic degradation of cytosolic 

components in the lysosome (Glick et al, 2010, Parzych and Klionsky, 2014). 

Chaperone mediated autophagy involves the degradation of soluble proteins, 

transported directly to the lysosome by way of a chaperone (Parzych and Klionsky, 

2014). Microautophagy is the process by which cytosolic components are 

sequestered directly into the lysosome by the invagination of the lysosomal 

membrane (Mizushima et al, 2008).  

1.9.2. Macro-autophagy 

During macro-autophagy, cytosolic components such as aggregated proteins and 

organelles are engulfed with a newly formed double-membrane structure known as 

the autophagosome. Ultimately, the autophagosome fuses with the lysosome to form 

the autophagolysosome and components are degraded (Yu et al, 2018) (Figure 1.4). 
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Macro-autophagy is the most well understood, and the classically thought-of form of 

autophagy (Parzych and Klionsky, 2014), and the form that will henceforth be 

referred to as ‘autophagy’. A whole host of autophagy related genes (Atg) have been 

identified which control every stage of autophagic processing (Wu et al, 2015). 

 
Figure 1.4: Overview of autophagic processing with the selective autophagy 

adaptor, p62. An autophagosome is formed from the elongation of an isolation 

membrane. Damaged proteins and organelles are ‘marked’ for degradation by the process 

of ubiquitination and targeted to the autophagosome by p62, which then binds to LC3-II on 

in the cytoplasmic membrane of the autophagosome. The autophagolysosome binds to a 

lysosome, forming an autophagolysosome where damaged proteins and organelles are 

degraded. Image adapted from Choi and Kim, 2013.  

1.9.3. mTOR 

mTOR (mammalian target of rapamycin) is ubiquitously required for the regulation of 

cell growth and survival. mTOR integrates various nutrient and hormone signals, 

which are distributed between different protein complexes: mTORC1 and mTORC2, 
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which have distinct functions and interacting partners (Pollizi et al, 2015). mTORC1 

is better characterised and understood, and is sensitive to rapamycin via the PI3K 

(Phosphoinositide-3-kinase)-Akt (Protein kinase B)-mTOR pathway (Feldman et al, 

2009). mTORC2 is not sensitive to rapamycin (Fan et al, 2012).  

Under conditions of nutrient starvation, autophagy is induced in organisms from 

yeast to mammals. In mammals, mTORC1 (also known as mechanistic target of 

rapamycin complex 1) is inactivated leading to activation of the ULK1/2 (Unc-51 like 

kinase) pathway, increasing the ability of the cell to form autophagosomes (Lane et 

al, 2017). Autophagy is initiated by the formation of an intracellular isolation 

membrane, which expands and invaginates to form the autophagosome (Yu et al, 

2018), engulfing cytosolic components within the double-membraned organelle 

(Glick et al, 2010). Ubiquitinated proteins are destined for degradation via the 18s 

proteasome or via autophagy and the multi-domain, multi-function autophagy 

receptor protein p62 (also known as SQSTM1 (Sequestosome 1)) has a triple role in 

this process as described below and summarised in Figure 1.5. 

1.9.4.  p62 in autophagy 

Phosphorylation of p62 enables the binding of ubiquitinated proteins via its UBA 

(Ubiquitin associated) domain (Liu et al, 2016). p62 complexes are tethered to the 

autophagosome through interaction between the LIR (LC3-interacting region) 

domain of p62 and microtubule-associated protein light chain 3 (LC3-II) on the 

autophagosome membrane.  Finally, the p62 PB1 domain allows for oligomerisation 

of p62 and the associated autophagy targets (Lane et al, 2017).  In the last step of 

autophagy, the autophagosome fuses with a lysosome to form an 

autophagolysosome where material is degraded (Mizushima, 2007). Conversely, the 
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process of autophagy constantly feeds back to autoregulate p62 levels, as p62 is 

degraded by autophagy (Ichimura et al, 2008).  

 

Figure 1.5: The role of p62 in autophagic processing. P62 has three key roles during 

autophagy. Firstly, p62 binds to ubiquitinated cargoes for the UBA domain. Secondly, p62 

forms dimers and oligomers by homodimerising via its PB1 domain. Finally, p62 targets 

ubiquitinated targets to the autophagosome where it binds to LC3-II via its LIR domain on 

the elongating isolation membrane and tethers the proteins or organelles to the forming 

autophagosome. Image adapted from Lane et al, 2017).  

 

1.10.  The role of autophagy in iPSC reprogramming 

Autophagy plays a crucial role in iPSC reprogramming, namely the stochastic 

initiation phase. Early in iPSC reprogramming, autophagy is upregulated. Some of 

the key iPSC reprogramming factors (SOX2, OCT4, KLF4 and c-MYC) work to inhibit 

mTORC1, which in turn induces autophagy (Wu et al, 2015). In particular, SOX2 

expression early in iPSC reprogramming transiently downregulates mTORC1, and 
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iPSC reprogramming cannot occur without this event (Wang et al, 2013). Enhanced 

autophagy has also been seen in early embryonic development and iPSC efficiency 

can be improved by the addition of mTOR inhibitor rapamycin early in 

reprogramming (Wang et al, 2013).  

 

It is possible that inhibition of mTORC1 during the initiation phase of iPSC 

reprogramming enhances MET or prevents cellular senescence; thereby improving 

iPSC reprogramming outcomes (Menendez et al, 2011). Furthermore, inhibition of 

both mTORC1 and mTORC2 has been shown to induce MET in cancer cells 

(Menendez et al, 2011).  As previously discussed, during the initiation phase of 

successful iPSC reprogramming, an enormous amount of cell proliferation occurs. 

Therefore, the prevention of cellular senescence by inhibition of mTORC1 is likely a 

crucial factor in the initiation of iPSC reprogramming. Interestingly, KLF4 and c-MYC 

increase expression of autophagy related genes whereas SOX2 and OCT4 

downregulate them leading to temporal and context dependent modulation of 

autophagic processing (Menendez et al, 2011). In addition, mTORC1 promotes 

mitochondrial remodelling, which is essential for iPSC reprogramming, due to the 

essential switch from oxidative to glycolytic energy production in the initiation phase 

(Menendez et al, 2011). Atg-5-independent autophagy has been shown to be 

essential in the regulation of mitochondrial clearance, which facilitates the metabolic 

switch and allows iPSC reprogramming to occur (Ma et al, 2015). The induction of 

autophagy for a prolonged period is detrimental to reprogramming efficiency (Wu et 

al, 2015). Finally, autophagy leads to the degradation of the p62 protein inside the 

autophagolysosome but iPSC-reprogramming efficiency is increased in cells where 

p62 is accumulated due to a deficiency in autophagy (Wu et al 2015). It is important 
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to understand that p62 is a fundamental component of autophagy but elevated levels 

of p62 accumulation is indicative of a block in autophagy or “autophagic shunting”. 

The role of p62 in iPSC reprogramming remains unclear and unstudied. Figure 1.6 

provides a graphical summary of the role of autophagy in iPSC reprogramming. 

 

 

 

 

 

 

 

 

 

Figure 1.6: The proposed role of autophagy in iPSC reprogramming. During the early 

part of the initiation phase or iPSC reprogramming key reprogramming factors, in particular 

Sox2 inhibit mTORC1 signalling, an event which is essential for iPSC reprogramming. The 

downregulation of mTORC1 leads to an upregulation of autophagy. mTORC1 inhibition is also 

hypothesised to play a role in enhancing MET or preventing cellular senescence. Later in the 

reprogramming process, in a temporal and context dependent manner that is not entirely 

understood, Klf4 and c-MYC expression results in an upregulation of Atg genes. Autophagic 

processing is essential for mitochondrial clearance during iPSC reprogramming. Sox2 and 
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Oct4 are later responsible for the downregulation of autophagy genes, which could then lead 

to an upregulation of mTORC1 signalling. mTORC1 is known to promote mitochondrial 

remodelling, which is essential for the switch from oxidative to glycolytic energy production 

that occurs during the maturation phase of iPSC reprogramming. The specific role of p62 in 

iPSC reprogramming has, to the best of my knowledge, never been studied. However, in 

physiological conditions p62 is degraded during autophagic processing. p62 is also known to 

be involved in the activation of mTORC1. In cells where p62 is accumulated due to a 

deficiency in autophagy iPSC reprogramming efficiency is increased. In contrast, if autophagy 

is upregulated for a prolonged period of time iPSC reprogramming efficiency is reduced. It is 

clear that a fine balance of the levels of autophagy is maintained throughout iPSC 

reprogramming, and given the essential roles that p62 plays in autophagy, it is hypothesised 

that p62 has a potential undiscovered role in the maintenance of pluripotency.  

1.11. SQSTM1/p62 biology 

p62 is a multi-domain; multi-function protein encoded by the SQSTM1 gene but will 

be referred to as p62 throughout this report. Vadlamudi and Shin first described the 

SQSTM1 gene in 1998. SQSTM1 is located on the fifth chromosome, and has eight 

exons, spanning ~16kb in total (Sanchez-Martin et al, 2018). p62 is highly conserved 

across species including fish, birds, amphibians, reptiles and mammals (Katsuragi et 

al, 2015), and is best known for its role as an autophagy adaptor protein. However, 

p62 has many other roles defined to specific protein structural moieties, including 

activation of mTORC1 in nutrient sensing (mTORC1 is active when bound to 

lysosomes) (Lippai and Low, 2014; Alegre et al, 2018) and the activation of NF-ΚB 

(Nuclear Factor kappa-light-chain-enhancer of activated B cells) in response to 

inflammation (Lippai and Low, 2014; Fan et al, 2018). p62 is also involved in the 

activation of the antioxidant response via upregulation of the NRF2-KEAP1 (nuclear 

factor erythroid 2–related factor 2, Kelch like ECH Associated Protein 1) interacting 

pathway (Sanchez-Martin et al, 2018).  It is also well known as a scaffold protein for 

PKC (atypical protein kinase C) and ERK (extracellular signal related kinase) 

signalling (Katsuragi et al, 2015).  
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The p62 protein localises in both the cytoplasm and the nuclei of cells, is ubiquitously 

expressed, and is able to shuttle between the nucleus and the cytoplasm. Under 

conditions of cellular stress, p62 is translocated to autophagy substrates (Katsuragi 

et al, 2015). p62 directly mediates autophagy via interaction with LC3-II on 

autophagosomal membranes (Ichimura et al, 2018), and by targeting ubiquitinated 

proteins to the autophagosome as previously discussed (Ma et al, 2019).  

1.12. p62 domains and mutations 

The SQSTM1 gene encodes for a protein that, in human, is 440 amino acids in 

length (Chen et al, 2020) and in mouse is 443 amino acids in length (Richard et al, 

1995). The p62 protein has multiple functionally distinct domains that each have 

different binding partners and interactions (Figure 1.7). p62 has a Phox-BEM1 (PB1) 

domain at is N-terminal which can form both p62 oligomers and heterodimers with 

other PB1 domain containing proteins such as atypical protein kinase C (aPKC) and 

NBR1 (Neighbour of BRCA 1) (Lippai and Low, 2014). A central zinc finger region 

(ZZ) and a Tumour necrosis factor (TNF) receptor-associated factor 6 (Traf6) binding 

region (TB) which, in combination with the PB1 domain, play a role in NF-κB 

signalling pathways (Pun and Park, 2017) are further functional domains within the 

p62 protein. p62 also has an LC3-II interacting region (LIR) which facilitates the 

delivery of ubiquitinated protein cargo to the autophagic pathway (Liu et al, 2016).  

The p62 protein is involved in the anti-oxidant response via its KEAP1 interacting 

region (KIR) which binds and regulates KEAP1, the primary inhibitor of the NRF2 

transcription factor and master regulator of the anti-oxidant response (Kansanen et 

al, 2012). KEAP1 binds and ubiquitinates NRF2 labelling it for proteasomal 

degradation (Sun et al, 2007). Finally, p62 has a clearly defined role as a selective 

autophagy receptor via the UBA domain, targeting ubiquitinated proteins to the 
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autophagosome for subsequent lysosomal breakdown (Katsuragi et al, 2015; Pun 

and Park, 2017). In addition to its six key functional domains, p62 also has two small 

nuclear localisation signals (NLS) and a nuclear export signal (NES) responsible for 

facilitating shuttling of p62 between the cytoplasm and the nucleus (Chen et al, 

2020). The role of p62 within the nucleus is not clearly understood but there is some 

evidence that nuclear p62 is deleterious and interferes with the BRCA1 (breast-

cancer 1)-mediated DNA damage response (Pankiv et al, 2010) resulting in the 

accumulation of genomic DNA damage. There are a huge number of post-

translational modifications of p62, such as phosphorylation and ubiquitination (Lane 

et al, 2017), which can affect its function in time and context dependent ways which 

are not yet entirely understood. These modifications can also be exploited in order 

understand better the functionality of p62 as individual domains, and as a whole. The 

domains of p62 are summarised in graphical form in Figure 1.7 and discussed in 

further detail in the following sections.  

1.12.1. Truncated human p62 

p62 is a multi-domain, multi-functional protein 440 amino acids in length, encoded by 

the SQSTM1 gene: specifically the SQSTM1-202 transcript. However, another 

commonly expressed transcript exists- SQSTM1-215. This transcript encodes a 

much shorter protein, only 167 amino acids in length. These 167 amino acids 

constitute a central portion of p62, since there are two locations in the p62 coding 

sequence where a methionine (M) amino acid is followed immediately by an alanine 

(A): at the very beginning of the human p62 sequence, and at the 255th base (Figure 

1.7) The protein translated from SQSTM1-215 constitutes amino acids 85- 251 of the 

440 amino acid complete human p62. This corresponds with a small portion of the 
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PB1 domain, a ZZ-type zinc finger domain, and the Traf6 binding region (TB) only 

(Ensembl, SQSTM1, Transcript ID: ENST00000514093.5) (Figure 1.7). 

 

 

Figure 1.7: Basic protein structure of p62 including key functional domains and 

interacting partners. In addition to the full-length p62 protein, the smaller truncated p62 

encoded by SQSTM1-215 is also indicated here.  

1.12.2. PB1 domain.  

There are several proteins that contain PB1 domains including p62, NBR1, aPKC 

and Mitogen Activated protein kinase 3 (MEKK3) (Sumimoto et al, 2007). PB1 

domains can contain two different types of highly conserved protein motif which 

allows for interaction with other PB1 domains. The OPCA type motif is highly acidic 

(also known as A-type), whereas the B-type motif contains a lysine residue and is 

basic; the acidic and basic motif types interact with each other (Lim et al, 2019). The 

N-terminal PB1 domain of p62 comprises approximately amino acids 20-102 (Chen 

and White, 2011) and has both an A-type and B-type domain, meaning that it can 

http://www.ensembl.org/Homo_sapiens/Gene/Splice?g=ENSG00000161011;r=5:179806398-179838078
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interact with other p62 molecules to form homodimers and oligomers (Sumimoto et 

al, 2007; Christian et al, 2014,). Of course, p62 is also able to form heterodimers and 

oligomers with other PB1 domain containing proteins as previously described (Lippai 

and Low, 2014).  

Most protein interactions so far identified between p62 and other PB1 domain 

interacting domains happen between the basic B-type motif of p62 and acidic A-type 

motif of the interacting partner. MEKK3, however, interacts in the opposite fashion, 

allowing the selective activation of canonical NF-ΚB signalling (Nakamura et al, 2010, 

Christian et al, 2014). Similarly, Phosphodiesterase-4 (PDE4) intereacts with the A-

type motif of p62, autophagy receptors p62 and NBR1 can work independently or 

together through heterodimerisation at PB1 domains to recruit targeted proteins to 

the autophagosome (Peng et al, 2017). Localisation of p62 to the membranes of 

autophagosomes is dependent on self-oligomerisation of its PB1 domains (Itukara 

and Mizushima, 2011). Further, cAMP dependent protein kinase (PKA) 

phosphorylates p62 at Serine 24 (S24) (conserved in human and mouse) and 

prevents hetero-oligomerisation with other PB1 domain containing interacting 

partners (Christian et al, 2014) while enabling homodimerisation (Christian et al, 

2014). Thus, mutating S24 to a non-reactive alanine (S24A) will prevent 

homodimerisation but enable heterodimerisation. p62 interacts with MEKK3 and 

Traf6 to activate NF-ΚB, while also activating mTOR (Linares et al, 2015). In addition, 

mutating human amino acid K7 to an Alanine (K7A) will also prevent 

homodimerisation of PB1 but not heterodimerisation, (Nakumura et al, 2010). 
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1.12.3. ZZ-type zinc finger region 

The ZZ-type zinc-finger region of p62 is not well characterised or studied, but it 

comprises amino acids 128-163 (Lippai and Low, 2014). Some studies have shown 

that the ZZ-type zinc finger region binds to Receptor-interacting serine/threonine-

protein kinase 1 (RIP1) and forms a signalling complex with aPKC (Lin et al, 2013). 

The interaction of the ZZ-type zinc finger region and RIP1 then works with the 

TRAF6 binding region and TRAF6 to activate canonical NF-ΚB signalling (Lippai and 

Low, 2014). In addition, the ZZ- domain works to mediate the aggregation of p62 into 

oligomers (Zhang et al, 2018).  

1.12.4. TRAF6 binding region 

The TB region of p62 has several complex and context dependent interactions. The 

TB region of p62 comprises amino acids ~228-254 (Wooten et al, 2005) (although 

some important TRAF6 interactions happen beyond this, at amino acids 269 and 

272). When human p62 is phosphorylated at amino acid residues T269 and S272 

(t272 in mouse) in response to the presence of amino acids, TRAF6 is recruited to 

p62 and mTORC1 is activated and translocated to the lysosome, later followed by 

polyubiquitination and activation of mTOR (Linares et al, 2015).  Downstream, 

activation of mTORC1 and mTOR regulates autophagic processing. In starvation 

conditions, phosphorylation of T269 and S272 does not occur. Mutating residues 

T269 and T272 to non-reactive alanine (A) residues prevents phosphophorylation 

occuring and therefore blocks recruitment of TRAF6 (Linares et al, 2015).  

The TRAF6 binding region of p62 has also been implicated in initiating apoptosis, 

whereby p62 interacts with TRAF6 and caspase-8 to activate downstream caspase 

activty (Schimmack et al, 2017; Islam et al, 2018). Furthermore, the TRAF6 binding 
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region (TB) binds to TRAF6, an important signalling molecule in inflammation 

(Moscat et al, 2007). p62 homodimerises in response to Receptor Activator of NF-ΚB 

ligand (RANKL) and Interleukin-1 (IL-1), leading to ubiquitination of TRAF6, 

activation of NF-ΚB and a whole cascade of pro-inflammatory events (Wooten et al, 

2005; Abbot et al, 2007; Manley et al, 2013). p62 also interacts with TRAF6 to 

regulate signalling of tumour necrosis factor-α (TNF-α), IL-1β, and nerve growth 

factor (NGF) (Sanz et al, 2000; Duran et al, 2004; Zotti et al, 2014).  

1.12.5. LC3 Interacting region 

LC3 interaction is necessary to facilitate p62 degradation by autophagy (Ichimura et 

al, 2008). The LC3 interacting region (LIR) of p62, consists approximately of amino 

acids 321-344, although the specific amino acid LC3 recognition sequence (LRS) is 

amino acids 334-344 (Pankov et al, 2007; Ichimura et al, 2008). LC3 is the human 

homologue of ATG8, an evolutionarily conserved autophagy gene. Within the p62 

LRS there are three consecutive aspartate residues (DDD), which are also highly 

conserved, and essential for binding to LC3, followed by WxxL amino acids 

(Ichimura et al, 2008; Johansen et al, 2011; Lin et al, 2013). The tryptophan residues 

at human p62 amino acid positions 338/340 (W338/W340) are essential for binding 

to LC3 and mutation of either of these amino acid to an alanine (W338A/W340A) has 

significantly reduced LC3 binding (Ichimura et al, 2008).  

1.12.6. KEAP-1 Interacting region 

The KIR region of p62 was determined by Komatsu et al (2010) to be comprised of 

amino acids 346- 359. p62 is involved in the anti-oxidant response via the KIR, 

whereby p62 forms a positive feedback loop by competing with NRF2 to bind with 
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KEAP1 under oxidative stress conditions (Liu et al, 2016). Amino acid 349 in human, 

and 351 in mouse, is phosphorylated in response to mTORC1, leading to regulation 

of the oxidative stress response, and host defence mechanisms (Ichimura et al, 

2013; Lane et al, 2017). Mutation of these residues in both mouse and human 

prevents this phosphorylation occuring, thus preventing binding of the KIR (Ichimura 

et al, 2013). In both mouse and human, amino acid residues P350, S351, T352, 

E354 and L355 are essential in the interaction with KEAP1 (Komatsu et al, 2010, 

Lau et al, 2010).  

Phosphorylation on p62 KIR aa349 in human induces binding of KEAP1, which in 

turn leads to Cullin-3 ubiquitination of aa420 in the UBA domain. This ubiquitination 

of aa420 prevents UBA dimer formation and increases UBA binding to ubiquitinated 

targets (Lane et al, 2017, Sanchez-Martin and Komatsu, 2018). KEAP1 is degraded 

by selective autophagy alongside p62. KEAP1 usually works to ihibit NRF2 activiy, 

and so in times of cell stress, competetive binding of KEAP1 by p62 frees NRF2 to 

translocate to the nucleas, leading to transcription of oxidative response genes 

including SQSTM1, in a competetive positive feedback loop (Komatsu et al, 2010, 

Liu et al, 2016, Lane et al, 2017, Islam et al, 2018). NRF2 is essential for the 

neutralisation of reactive oxygen species (ROS) (Komatsue et al, 2010). p62 cannot 

bind with LC3 and KEAP1 at the same time, due to the proximity of the LIR and KIR 

domains (Jain et al, 2010). 

1.12.7. UBA domain. 

The UBA domain of p62 comprises amino acids ~386 to 434 (Seibenhener et al, 

2004). The UBA domain of p62 directly interacts with poly-ubiquitinated proteins, 

with a preference for the higher molecular weight chains (K48 and K63) (Liu et al, 
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2016). The UBA domain of p62 can also homodimerise, and does so in times of p62 

inactivity, preventing interaction with ubiquitinated proteins (Sanchez-Martin and 

Komatsu, 2018). Upon phosphorylation of Serine 407 (S407) p62 is released from 

dimerisation, followed by a further phosphorylation event at serine 403 (S403) which 

facilitates binding to polyubiquitinated proteins (Long et al, 2010; Sanchez-Martin 

and Komatsu, 2018). Phosphorylation of Serine 403 (S403) by Casein Kinase 2 

(CK2) in the UBA domain, allows for efficient binding of ubiquitinated proteins, and 

increase recruitment of polyubiquitinated proteins to autophagy (Matsumoto et al, 

2011). Furthermore, phosphorylation of S403 inceases the rate of turnover of p62 

(Matsumoto et al, 2011) Mutation of the serine at 409 to alanine s409a will prevent 

UBA domain binding to Unc-51 like kinase (ULK) (a serine/threonine kinase involved 

in autophagy) (Lim et al, 2015). Mutating p62 at S403A/s405a or S407A/s409a 

reduces binding affinity of p62 to ubiquitinated proteins (Matsumoto et al, 2011; Lim 

et al, 2015). A summary of some of the key mutations found in p62 domains can be 

found in Table 1.2. 

Table 1.2: Key mutations in mouse and human p62.  

p62 

domain  

Mutation Effect Disease model  Key reference  

PB1 K7A Prevents homodimerisation/ 

oligomerisation of p62 

Human Nakumura et 

al 2010 

PB1 S24A Prevents homodimerisation but 

enables heterodimerisation of p62  

Human, mouse 

and rat  

Christian et al, 

2014 

TB T269A Prevents mTORC activation in 

conjunction with S/t272A/a 

Human and 

mouse  

Linares et al, 

2015 

TB S272A/t272

a 

Prevents mTORC activation in 

conjunction with T/t269A/a 

Human 

(S272A) and 

mouse (t272a) 

Linares et al, 

2015 

LIR d337/338/ 

339a 

Prevents p62/LC3-II interaction  Mouse Ichimura et al, 

2008  
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LIR W338A/ 

W340A 

Reduces LC3-II binding capability Human and 

mouse  

Ichimura et al, 

2008; Chen et 

al, 2013 

LIR l343a Reduces p62/LC3-II interaction  Mouse  Itakura and 

Mizushima,  

2011 

KIR S349A/ 

s351a 

Prevents binding to Keap1 Human 

(S349A) and 

Mouse (s351a) 

Ichimura et al, 

2013 

UBA S403A/ 

s405a 

Reduces binding affintiy to 

ubiquitinated proteins 

Human 

(S403A) and 

mouse (s405a) 

Matsumoto et 

al, 2011 

UBA S407A/ 

s409a 

Prevents binding to ILK Human 

(S407A) and 

mouse (s409a) 

Lim et al, 2015 

1.13. p62 in health and disease 

1.13.1. Paget disease of the bone 

Paget disease of the bone is a chronic disorder, and the second most common 

skeletal disease after osteoporosis, characterised by increased and uncrontrolled 

bone turnover. Osteoclasts in Paget disease are larger than normal and 

multinucleated with inclusion bodies (Lu et al 2017; Zach et al, 2018). Symptoms of 

Paget disease include bone pain, fequent fractures and bone deformity (Lu et al, 

2017, Shaw et al, 2019). p62 mutations are causative of Paget disease, particularly 

mutations in the UBA domain, whereby UBA is either truncated or non functional 

(Chamoux et al, 2009; Geetha et al, 2012).  In Paget disease, mutations in the UBA 

domain lead to impaired phosphorylation of TRAF6, which leads to NF-ΚB activation 

and increased osteoclastogenesis (Komatsu et al, 2012; Zach et al, 2018). The most 

common mutation of p62 in patients with Paget disease is P392L, accounting for up 

to 50% of familial cases and ~16% of sporadic cases (Geetha et al, 2012; Lu et al, 

2017). 
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1.13.2. Metabolic and cardiac disorders 

p62 binds to the insulin receptor substrate 1 (IRS-1) and is involved in insulin 

signalling (Long et al, 2017). As previously described, p62 plays a key role in 

autophagy, induced by nutrient depletion and is important in metabolism. Mice with 

abnormal p62 expression display abnormal lipid and glucose metabolism and p62-/- 

mice develop mature onset obesity (Rodriguez et al; Long et al, 2017). p62 levels 

are lower than normal in the visceral fat of obese and type 2 diabetic patients 

(Rodriguez et al, 2006). p62 is known to regulate adipogenesis and insulin 

resistance (Long et al, 2017; Sanchez-Martin and Komatsu, 2018). p62 deficiency 

has been associated with inhibited respiration due to a lack of substrates for 

mitochondrial complex 1 and decreased mitochondrial membrane potential 

(Bartolome et al, 2017). Additionally, p62 deficiency causes an increase in reactive 

oxygen species (ROS) (Bartolome et al, 2017). p62 may play a role in gout and 

thyroid disease (Kim et al, 2016; Long et al, 2017). As previously discussed, p62 is 

important in NF-ΚB signalling, and therefore inflammation. Atherosclerosis is an 

inflammatory disease, and studies have shown that p62 can prevent atherosclerosis 

(Sergin et al, 2016; Liang and Guan, 2017).  Furthermore, p62 aggregates have 

been found in athersclerotic plaques (Long et al, 2017), and p62 is increased in 

response to athrogenic signalling (Ishii et al, 2013). While this may seem 

contradictory, it is important to remember the complexities of the roles of p62. p62 

aggregation or accumulation is indicative of a failure of autophagy (Wu et al, 2020) 

and thus is abundance is indicative of a pathological state. In contrast, in healthy 

physiological conditions, p62 levels will increase and decrease as a result of 

autophagic flux (We et al, 2020), and so it’s presence in general is not detrimental. A 

fine balance of p62 levels can be protective in the case of atherosclerosis (Sergin et 
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al, 2016; Liang and Guan, 2017), but in the case of deficient autophagy and an 

accumulation of p62 athersclerotic processes may be in play (Ishii et al, 2013; Long 

et al, 2017).  

1.13.3. p62 in cancer  

p62 is implicated in tumourigenesis and cancer, due, at least in part, to its role in 

mTORC1 and NF-ΚB activation and signalling (Sanchez-Martin and Komatsu, 2018). 

p62 plays a role in the development of hepatic carcinoma via NRF2 and mTORC 1 

signalling and p62 is the main component of Mallory-Denk bodies, which are found in 

pre-malignant liver disease (Umemura et al, 2016). p62 seems to be important in the 

initiation of tumourigenesis in hepatic carcinoma, and is strongly predictive of 

recurrence in this cancer type as well as worse patient survival rates (Umemura et 

al, 2016; Denk et al, 2018). In hepatocellular carcinoma, p62 enhances malignancy 

through NRF2 signalling, which leads to metabolic reprogramming, and by 

upregulating inflammatory signalling pathways (Kessler et al, 2015; Saito et al, 

2016).  

p62 has been implicated in the oncogenesis of renal cell carcinoma through 

activation of mTORC1, and is accumulated in endometrial cancer (Iwadate et al, 

2015; Umemura et al, 2016). p62 expression is increased in malignant prostate 

cancer tumours (Kitamura et al, 2005). Dysregulation of NRF2 (which is of course at 

least partly controlled by p62), is known to play a role in renal cancer (Li et al, 2013). 

Furthermore, p62 accumulation is predictive of poor prognosis in lung cancer 

patients, and contributes to malignancy and metastatic tendency in cancer through 

NF-ΚB signalling (Inoue et al, 2012).  
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Furthermore, p62 plays a role breast cancer tumour progression (Rolland et al, 

2007), and p62 overexpression in triple-negative breast cancer (TNBC) is associated 

with a high level of metasteses (Luo et al, 2013). 31.3% of TNBC cases showed p62 

overexpression in one study, and patients with p62 overexpression have shorter 

disease-free survival rates (Luo et al, 2013). p62 can act as a tumour enhancer, or a 

tumour suppressor, depending on context and expression levels. Again, it is the fine 

balance of an appropriate level of autophagic flux which is essential to the regulation 

of homeostasis (Valencia et al, 2014).  

p62 also regulates resistance of ovarian cancer to cisplatin, a chemotherapeutic 

agent, via it’s NRF2-KEAP1 interactions (Xia et al, 2014). In multiple myeloma, the 

p62-KEAP1-NRF2 signalling pathway also regulates resistance to proteasome 

inhibitor drug treatment, and p62 inhibitors have been suggested as an add-on to 

treatment in some multiple myeloma patients (Riz et al, 2016). p62 has also been 

implicated in glioblastoma, gastric adenocarcinom, colorectal and colon cancer, 

(Polonen et al, 2019; Kim et al 2019; Roy et al, 2019; Zhang et al, 2019) 

1.13.4. Neurodegenerative disease 

p62 protein has been implicated  in a variety or diseases, particularly 

neurodegenerative diseases including Alzheimer’s disease (Salminen et al, 2012), 

Parkinson’s disease (Geisler et al, 2010) and lysosomal storage diseases such as 

Batten’s disease (Chandrachud et al, 2015). Batten's disease is a rare, fatal 

neurodegenerative disorder affecting children. Batten's disease is the most common 

type of neuronal ceroid lipofuscinosis (NCL) and numerous mutations in 16 different 

genes have been identified so far as causative of NCL. Mutations in the CLN3 gene 

are most prevalent and cause NCL with juvenile onset. The McKay lab has 
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previously engaged in research surrounding the development of iPSC-derived 

cellular models for NCLs caused by mutations in CLN3, CLN6 and CLN7 genes. The 

key pathological features of Batten’s disease are the accumulation of 

autofluorescent, electron dense lipopigment lipofuscin or ceroid as well as the 

progressive loss of neurons in the cerebral and cerebellar cortex and the retina 

(Haltia and Goebel, 2012). This Batten’s disease pathology causes a gradual onset 

of blindness and seizures, and later neurodegeneration resulting in mental and motor 

deterioration. There is no cure for Batten's disease and current treatments can only 

hope to alleviate symptoms and prolong survival. 

The Storch lab in Hamburg, Germany recently demonstrated that p62 and 

autophagic flux was elevated in Batten’s disease cells with mutations CLN6 and 

CLN7 genes (Brandenstein et al, 2016). As yet unpublished experiments from the 

McKay lab have demonstrated that Batten’s disease patient derived dermal 

fibroblasts (hDFs) carrying CLN6 and CLN7 mutations consistently and reproducibly 

reprogram to iPSc with higher efficiency than age-matched wild-type controls.  

Neurodegeneration and accumulation of hyperphosphorylated tau protein has also 

been documented in a p62-/- mouse model (Babu et al, 2008). Alzheimer’s disease 

pathology is characterised by accumulation of Amyloid-β and neurofibrillary tangles 

containing hyperphosphorylated tau, and these neurofibrillary tangles have been 

shown to co-localise with accumulations of both p62 and aPKC (Babu et al, 2008). In 

normal conditions, tau is transferred to proteasomes for degradation by p62 in 

neurons, but in the absence of p62, tau is accumulated (Babu et al, 2008). As p62 is 

so crucial in the trafficking of proteins and other cellular materials for degradation, it 

makes sense that any defect in the function, processing or accumulation of p62 
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would result in aberrant degradation or accumulation of proteins, a key hallmark of 

many neurodegenerative diseases.  

Serine-403 phosphorylation in p62 has been associated with Alzheimer’s disease 

and Amyotrophic Lateral Sclerosis (ALS) (Kurosawa et al, 2016); and a lack of p62 

protein has been shown to alter signalling pathways in Alzheimer’s disease, with p62 

protein expression shown to be lower in the frontal cortex of Alzheimer’s disease 

patients compared to controls. (Du et al, 2009; Salminen et al, 2012). p62 has also 

been shown to co-localise with ubiquitin in Parkinson’s disease and Lewy body 

Dementia, and may be able to regulate synaptic plasticity (Salminen et al, 2012). 

Furthermore, p62 has an important role in mitophagy (autophagic clearance of 

mitochondria), along with PINK1/Parkin: Parkin is also heavily implicated in the 

pathogenesis of Parkinson’s disease (Salminen et al, 2012). p62 overexpression has 

also been shown to accelerate ALS disease onset (Mitsui et al, 2018).  

The Carroll group in Helsinki, Finland have observed that fibroblasts derived from 

patients with loss of p62 expression have been shown to be extremely difficult to 

reprogram with a considerably lower efficiency and decreased autophagic flux 

compared to wild-type controls (conversation with Prof Chris Carroll). Interestingly, 

both elevated p62 and p62 depletion result in a neurodegenerative pathology. 

Exome sequencing of a small number of patients from four families with 

undiagnosed childhood or adolescent onset neurodegenerative disease revealed a 

number of mutations in SQSTM1 that led to a complete absence of p62. These 

patients had a range of phenotypes, but all had gait abnormalities and ataxia, as well 

as other varying neurodegenerative symptoms (Haack et al, 2016).  
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1.13.5. p62 and cancer stem cells 

Cancer stem cells (CSC) are a small sub-population of cells found in cancerous 

tumours. Cancer stem cells, like all stem cells, have the potential for unlimited 

proliferation and the ability to differentiate into multiple cell types (Yu et al, 2012).  

CSC are capable of seeding tumours in animal hosts, and are like the cause of 

metastatic activity in cancer (Yu et al, 2012). In ESC, iPSC and adult stem cells, self-

renewal occurs in a tightly regulated manner, and genetic mutations cannot, and 

must not occur. In contrast, CSC are able to acquire genetic mutations, which could 

confer the success of a tumour to be resistant to treatment, and to spread 

(Shackleton, 2010).  CSC are involved in all stages of oncogenesis and 

tumourigenesis from initiation and progression, to metastasis, treatment resistance 

and recurrence (Rahman et al, 2016).  

p62 overexpression has been noted in breast cancer stem cells, and positively 

correlated with MYC expression (Xu et al, 2016). MYC is a strong oncogene, but is 

also common in the genetic overexpression cocktail used to induce iPSC 

reprogramming. p62 may even be essential for the stem-like properties of CSC in 

breast cancer (Xu et al, 2016). CD44 (cluster of differentiation 44), is a key CSC 

marker, and high levels of CD44 have been shown to increase p62 expression. In 

turn, high levels of p62 expression results in increased NRF2 signalling which is 

linked to treatment resistance and poorer prognosis in breast cancer patients (Ryoo 

et al, 2018).  

Furthermore, p62 is known to regulate metabolic reprogramming and energy 

matabolism is glioblastoma stem cells. In p62 knock-down glioblastoma stem cells, 

cell migration and invasion was reduced, suggesting that p62 may play an important 

role in tumour formation and migration (Galavotti et al, 2012). p62 overexressing 
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transgenic mice displayed more CSC-like properties, had a more aggressive 

phenotype and had more chromosomal genetics which were pro-oncogenic that 

controls (Galavotti et al, 212). p62  may also play a role in CSC differentiation in 

hepatic cancer, via activation of mTORC1 in response to amino acids (Sugiyama ey 

al, 2016).  

In mesenchymal stem cells (also known as stromal cells) within prostate tumours, 

p62 reduction leads to higher levels of tumourigenesis (Valencia et al, 2014). In this 

instance, p62 acts as a tumour suppressor by reducing inflammatory signalling. p62, 

along with other markers of autophagy including LC3-II and Beclin1 have also been 

found to be upregulated in colon CSC (Roy et al, 2019). Finally, in ovarian cancer 

stem cells, p62 inhibition led to decreased NRF2 expression which in turn reduced 

the CSC-like properties. Conversely, high p62 and NRF2 levels enhanced CSC-like 

properties of ovarian cancer cells (Kim et al, 2018).   

1.13.6. p62 in stem cells and pluripotency 

To date, there is very little published research about the role of p62 in adult stem or 

pluripotent stem cells, their differentiation, reprogramming or maintenance. Despite a 

wealth of evidence to suggest p66 has an important role in several key cell 

regulatory pathways including metabolic reprogramming and energy production via 

it’s amino acid sensing and regulation of mTOR signalling; role in inflammation and 

anti-oxidant responses, and of course it three vital roles as an autophagy adaptor. It 

stands to reason, that in iPSC reprogramming or in differentiation to specialised cell 

types, processes which require massive phenotypic, epigenetic, and metabolic 

changes, p62 would play important regulatory roles.  
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Wang et al (2016), found that in autophagy deficient mice (various Atg gene knock-

outs), p62 accumulation was increased in neural stem cells (NSC) in the absense of 

Fip200 (a key autophagy inducer), but not mature neurons. Furthermore, removal of 

these p62 aggregates rescued defective NSC maintenance and differentiation in 

autophagy deficient mice (Short, 2016; Wang et al, 2016). p62 has also been 

implicated in mediating autophagic cell death in adult hippocampal neural stem cells, 

because of phosphorylation of S294 by 5' AMP-activated protein kinase (AMPK) (Ha 

et al, 2017). Finally, increased p62 and NRF2 was found to mediate the CSC 

properties and treatment resistant nature of ovarian cancer cells (Kim et al, 2018). 

NRF2 has been demonstrated to be a key regulator of the metabolic switch from 

oxidative to glycolytic energy production during iPSC reprogramming (Hawkins et al, 

2016). As previously discussed, p62 is a key signalling partner of NRF2 via KEAP1 

signalling and so perhaps p62 affects iPSC reprogramming via NRF2. There is no 

published literature about the role of p62 in iPSC reprogramming or the maintenance 

of pluripotency.  

1.14. Research statement and aims 

p62 is multi-domain, multi-functional protein with myriad roles in cell signalling and 

regulation. Many of these roles and interactions have been discussed here, but this 

is by no means an exhaustive list of the ways in which p62 regulates cells. p62 plays 

a key role in autophagy, inflammation, anti-oxidant responses, and cell metabolism. 

Aberrant expression or processing of p62 has been implicated in a range of 

diseases, and is particularly important in regulating and maintaining the self-renewal 

and differentiation potential of cancer stem cells. p62 levels must be tightly controlled 

in order to maintain cellular balance: overexpression or protein loss both contribute 

equally to pathogenesis depending on the context.  



57 
 

In combining all of the evidence about the ways in which p62 is so crucial for 

controlling cell states in both health and disease we began to hypothesise that p62 

may also be important in iPSC reprogramming or in pluripotency. The role of 

autophagy in iPSC reprogramming is broadly understood, although the specific time 

and context dependent roles of reprogramming factors in influencing the levels of 

mTORC1 and autophagy are yet to be elucidated. However, p62 specifically has 

never been studied in this regard. Unpublished observations from our colleagues in 

the Carroll lab in Helsinki suggested that human fibroblasts from patients with bi-

allelic SQSTM1 mutations resulting in a complete lack of p62 protein were refractory 

to iPSC reprogramming. In addition, unpublished observations from within the 

McKay lab suggested that CLN7 Batten disease patient fibroblasts may reprogram 

with higher efficiency than controls. p62 protein has been shown to be highly 

elevated in CLN7 mice (Brandenstein et al, 2017) and the added strength to the 

hypothesis that p62 levels could play a role in regulating the reprogramming process, 

or the maintenance of pluripotency.  

Given that there was evidence of an association between p62, CLN7 mutations, 

and/or iPSC reprogramming in human cell models, human patients, and mouse 

models, I planned to utilise both mouse and human cell models to try and elucidate 

this connection, if any. Further, as discussed in earlier sections, a wide range of loss 

of function mutations have been described in the p62 protein: some of these have 

been characterised in human, some in mouse, and some in both species, further 

adding to the rationale to use both species in my experiments. Further, there are well 

established differences between the gene regulatory networks involved in the 

reprogramming of mouse and human fibroblasts, and in the maintenance of 

pluripotency in these cells, and so to truly understand the role of p62, a gene which 
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is highly conserved across species, it will be important to elucidate similarities and 

differences in its functions in mouse and human systems. ). Further, I have acquired 

doxycycline inducible Mouse Embryonic Fibroblasts (MEFs) from the Hochedlinger 

lab at Harvard Medical School, USA (Statdfeld et al, 2008). This cellular reagent will 

enable the study of key regulators of reprogramming efficiency, including p62 

because induction is synchronised in all cells at the same time by doxycycline 

induction. For example, p62 levels could be assessed at multiple points during 

reprogramming experiments to determine if there is a clear upregulation or 

downregulation of p62 (or associated factors such as Atg genes, mTORC1, LC3-II) 

at key milestones of reprogramming.    

This research, for the first time, suggests a potential role for p62 in iPSC 

reprogramming and the maintenance of pluripotency using p62-/- fibroblasts and 

shRNA mediated p62 knock-down in normal fibroblasts. Cells lacking p62 appear 

able to initiate reprogramming, but fail to complete the maturation or stabilisation 

stages of iPSC reprogramming, and do not display capacity for indefinite self-

renewal. In addition, a whole ‘tool-kit’ of genetic modification plasmids has been 

created to enable further study of the exact way in p62 has the effect on iPSC 

reprogramming and pluripotency maintenance.  
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1.15. Project aims and objectives: 

Overarching project aim:  

-To determine whether p62 plays a role in iPS reprogramming and the pluripotent 

state in order to better to understand the reprogramming process. The translation of 

iPSC to clinical utility depends upon the ability to produce safe, stable and well 

characterised cell products efficiently and reproducibly.  

 

Project objectives (summarised in Figure 1.8): 

● To characterise p62 null, control and CLN6 and CLN7 mutation patient 

fibroblasts for p62 localisation, levels, and associations 

● To refine and develop McKay lab iPSC reprogramming protocols in both 

mouse and human cells 

● To compare the efficiency of cellular reprogramming to induced pluripotent 

stem cells (iPSC) using human p62 null, control, and p62 overexpressing 

(CLN6 and CLN7 Batten’s disease) patient fibroblasts.  

● To perform iPSC reprogramming experiments in mouse doxycycline inducible 

MEFs 

● To undertake a qualitative and quantitative characterisation of autophagy in 

p62 null, control, and p62 overexpressing human dermal fibroblasts and 

resultant iPSC.  

● To use genetic modification techniques including lentiviral expression vectors 

and shRNA to modify expression of p62 in mouse and human cells  

● To assess the specific molecular function that affects iPSC reprogramming 

using human fibroblasts expressing p62 functional deletion mutants on a p62 

null background.  
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● To assess key markers of pluripotency in the context of p62 using doxycycline 

inducible MEFs and the resultant iPSCs  

● To interrogate the molecular role of autophagy and p62 during the 

maintenance of pluripotency.  

● To use shRNA’s to induce p62 RNA knockdown in both mouse and human 

cells to assess the impact on iPSC reprogramming and the maintenance of 

pluripotency 

NB. Many experiments had to be curtailed or were unable to be completed due 

to the Covid-19 pandemic and the resultant closure of the labs.  

 

 

Figure 1.8: Summary of intended objectives and paralell assessments of the role of p62 

in iPSC reprogramming and the maintenance of pluripotency in mouse and human 

derived iPSC cells. Please note this is also included in landscape larger format in Appendix 2 
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Chapter 2. Materials and Methods 

2.1. Cell Culture 

2.1.1. Primary fibroblast cell culture 

● p62 null human dermal fibroblasts (hDFs) were a kind gift from Dr. 

Christopher Carroll, St. George’s University of London.  

● Control neonatal human dermal fibroblasts (nhDF) were purchased from 

Fisher Scientific (C0045C).  

● MEFs for inactivation were purchased from Cambridge Bioscience (CBA-310).  

● CLN6 and CLN7 Batten’s Disease hDFs were acquired from Prof. Sara Mole 

at Laboratory for Molecular Cell Biology, UCL as part of the McKay lab 

BATCure Horizon2020 consortium collaboration. 

● Doxycycline inducible mouse embryonic fibroblasts (MEFs) were a kind gift 

from Professor Konrad Hochedlinger, Harvard Medical School, USA. 

● mESC were a kind gift from Juan Pedro Martinez Barbera at ES cell and 

chimera production service at UCL ICH. 

● WT MEFs were a kind gift from Dr Simon Waddington, UCL. 

● Shef3 hESCs were obtained from the UK Stem Cell Bank under the project 

SCSC10-48. 

 

All hDFs and MEFs were cultured in hDF media (Appendix 3) Cell culture media 

components). Media was refreshed every 48h and cells were routinely passaged 

approximately once per week (1:4) using TryplE (Gibco, 12605028), and 

centrifugation at 1200 rpm (Eppendorf centrifuge 5804 R) for five minutes before 

being resuspended in a volume of fresh culture media appropriate to the size of plate 

https://www.thermofisher.com/order/catalog/product/C0045C#/C0045C
https://www.thermofisher.com/order/catalog/product/12605028?ICID=search-product#/12605028?ICID=search-product
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or flask and seeded in new culture flasks or plates. For example, in a six-well plate 

format, approximately 2 mL of media was added; in a T75 cm2 flask, approximately 

10 mL of media was added. 

MEFs designated for use as feeder layers for iPS cells (iMEFs) were mitotically 

inactivated by incubation with mytomycin C (Sigma Aldrich, m4287) at a 

concentration of 0.1 µg/mL for 3 hours before washing with PBS (Gibco, 10010023) 

and dissociating with TryplE. iMEFs were then cryopreserved (2.1.3) in small 

batches sufficient to cover approximately a full six-well plate when thawed (2.1.4). 

MEFs were seeded at a density of ~5x104 cells/cm2 onto gelatin (Sigma, C1890) 

coated plates (2.1.5). 

Doxycycline Reprogrammable MEFs were a kind gift from the Hochedlinger lab, who 

provided me with four vials of MEFs: One vial of ‘JB8’ MEFs at P2, two vials of ‘JB7’ 

MEFs at P2 and one vial of ‘JB7’ MEFs at P1. ‘JB8’ MEFs are homozygous for 

OKSM reprograming factors, homozygous for rtTA and heterozygous for Oct-4-GFP. 

These cells were provided as a platform to practise the inducible reprogramming 

protocol on, before moving on to the ‘JB7’ cells, which are homozygous for OKSM, 

rtTA and Oct4-GFP. Cryopreserved vials were thawed into two wells of a six-well 

plate and passaged 1:4 below P3 and 1:3 beyond P3. Inducible MEFs were grown in 

a DMEM media, very similar to that for hDFs (Appendix 3), with the addition of β-

Mercaptoethanol (BME). Reprogrammable MEFs were thawed as described in 2.1.4 

and plated in six-well plates. Cells were passaged when ~80-90% confluent, and 

reprogrammed before passage 5 (Reprogramming described in 2.1.7) 

https://www.sigmaaldrich.com/catalog/product/sigma/m4287?lang=en&region=GB
https://www.thermofisher.com/order/catalog/product/10010023#/10010023
https://www.sigmaaldrich.com/catalog/product/sigma/g1890?lang=en&region=GB
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2.1.2. Pluripotent stem cell culture  

hESC and hiPSC were cultured in HESC media (Appendix 3), which was 

replenished every day. hESC were maintained on inactivated MEF (iMEF) feeder 

layers and passaged manually by excision of colonies and dissociation to single cells 

by pipetting.  

 

On occasion, cells were cultured ‘feeder-free’, in which case they were seeded onto 

Matrigel (Corning, 354277) coated plates in mTeSR™ media (Appendix 3). After 

passaging, the cell media was supplemented with a Rho-associated kinase (ROCK) 

inhibitor (RI) (Y-27632, Stem Cell Technologies) at 0.5 μL/mL, as this has been 

shown to significantly improve hESC and hiPSC recovery and growth after thawing, 

and to ‘kick-start’ slow growing colonies (Claassen et al, 2009).  

 

Doxycycline Induced mouse iPS cells (miPSC) were cultured in mESC media 

containing knock-out DMEM and LIF (Gibco™, A35934) (Appendix 3) and media 

replenished daily. miPSC colonies were passaged by manual excision as previously 

described. Other mESC and miPSC were cultured in standard mESC/miPSC media 

(Appendix 3) on gelatin-coated plates (2.1.5). Media was replenished daily and 

colonies passaged by manual excision every 3 days.  

2.1.3. Cryopreservation of cells.  

Cells were passaged as previously described: colonies were manually excised or 

cells subjected to 3 minutes incubation in TryplE before centrifugation at 1200 rpm 

for 5 minutes. Cells were resuspended in freeze media (Appendix 3), stored short-

https://ecatalog.corning.com/life-sciences/b2c/UK/en/Surfaces/Extracellular-Matrices-ECMs/Corning%C2%AE-Matrigel%C2%AE-Matrix/p/354277?pagePath=p/354277
https://www.stemcell.com/y-27632.html
https://www.thermofisher.com/order/catalog/product/A35934#/A35934
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term in a Mr Frosty at -80oC, and then transferred to liquid nitrogen for long-term 

storage.  

2.1.4. Thawing of cells 

Cells were thawed quickly by the addition of 10ml of warmed media, and 

centrifugation at 1200rpm, before removing supernatant and resuspending cell 

pellets in fresh media and plating as previously described.  

2.1.5. Preparation of gelatin and matrigel for coating cell culture plates.  

For the culture of iMEFs, plates and flasks were coated in 0.1% gelatin in sterilized 

ddH2O. In a six-well format ~1 mL of gelatin was added to each well, and incubated 

for at least 30 minutes at room temperature, or overnight in the fridge. Gelatin was 

removed immediately before cells were plated. Matrigel is a solubilised basement 

membrane preparation based on extracts from Engelbreth-Holm-Swarm (EHS) 

mouse sarcoma, rich in extracellular matrix proteins such as laminin and collagen, 

plus growth factors, which provide stem cells with structural and growth support. 

Matrigel was thawed slowly in the fridge to avoid gelling, and diluted in DMEM/F12 

according to the Lot dilution factor (~1:30). Tissue culture plates were coated in 

enough Matrigel to cover the entire well and incubated overnight in the fridge. 

Matrigel was removed immediately before seeding cells.  

 

 



66 
 

2.1.6. Human iPSc Reprogramming 

hDFs were transfected for reprogramming using an Amaxa nucleofector to deliver 

the reprogramming factors (SOX2, KLF4, L-MYC, Lin28, Oct3/4) as well as shp53 

and an additional EBNA expression cassette packaged as OriP/EBNA episomal 

plasmids. Plasmids are as follows and maps can be found on Addgene: 

● pCXLE-hSK (Addgene ID 27078) 

● pCXLE-hUL (Addgene ID 27080) 

● pCXLE-hOCTshp53 (Addgene ID 27077) 

● pCXWB-EBNA1 (Addgene ID 37624)  

● These plasmids were a gift from Shinya Yamanaka, via Addgene.  

 

2.0 µg of each plasmid were nucleofected together into 450,000 hDFs resuspended 

in 90 µL electroporation buffer + 20 µL supplement (LONZA, VPD-1001, Amaxa 

Nucleofector, program P-022) and seeded into a single well of a six-well plate in 

standard hDF media. Media was changed the next day and every other day 

subsequently. On Day 2-4, cells were passaged into a T75 cm2 flask, depending on 

confluence. On Day 8, cells were dissociated using TryplE and 30,000 cells were re-

plated onto iMEF feeder layers in one well of a six-well plate, or 15,000 cells into one 

well of a twelve-well plate. Media was changed to hESC maintenance media on day 

9 and then media changed every other day until Day 25 as a minimum (Figure 2.1). 

 

https://www.addgene.org/27078/
https://www.addgene.org/27080/
https://www.addgene.org/27077/
https://www.addgene.org/37624/
https://bioscience.lonza.com/lonza_bs/GB/en/Transfection/p/000000000000191786/Human-Dermal-Fibroblast-Nucleofector-Kit
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Figure 2.1: Brief outline of the McKay lab hDF reprogramming protocol. Day 1: Fibroblasts 
are nucleofected with reprogramming plasmids. Day 8: Cells are re-seeded onto iMEF feeder 
layers. Day 9: hDF maintenance media is replace with hESC media. Day 25: Colony counting via 
AP staining 

2.1.7. Reprogramming of inducible MEFs 

Doxycycline inducible MEFs were plated at a density of ~30,000 cells per well in a 

six-well directly into reprogramming media (Appendix 3) Colonies begin to appear at 

~8-12D and media can be changed to mESC maintenance media (Appendix 3) at 

~14-16D.  

2.1.8. Reprogramming of WT MEFs 

450,000 cells were transfected with 2 µg of each OriP/EBNA Episomal 

reprogramming plasmids by electroporation in 90 µl electroporation buffer + 20 µl 

supplement (LONZA, VPD-1001, Amaxa Nucleofector, program A-30) and seeded 

into a single gelatin-coated well of a six-well plate in standard MEF media. Media 

was changed to mESC/miPSC media (Appendix 3) after 48 hours.  
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2.2. Stem cell validation 

2.2.1. Tri-lineage Differentiation of iPS cells 

iPSC were subject to a 16-day spontaneous differentiation protocol, which consists 

of two main phases: Embryoid body (EB) formation; and the subsequent outgrowth 

of these EBs. A single confluent well of iPSC colonies were manually passaged as 

previously described (2.1.2) and replated 1:1 into low-attachment cell culture plates 

in HESC media plus RI at a dilution of 1:1000. Half of this media was replaced after 

24 hours. On Day 4, media was changed to hDF media, to encourage spontaneous 

differentiation. On Day 7, EBs were replated onto gelatin coated tissue culture 

treated plates and allowed to grow for 8 days.  

2.2.2. Immunostaining 

hDFs and MEFs were plated directly onto gelatin coated plates as previously 

described (for fluorescent microscopy), or glass bottomed plates (NUNC glass 

bottomed confocal dishes, Fisher Scientific UK, 15183728) (for confocal microscopy) 

and hESC and hiPSC were plated onto iMEF feeder layers for immunostaining. Cells 

were washed with PBS and fixed using either 4% paraformaldehyde (PFA) in PBS 

for 2 minutes or ice-cold 100% methanol for 5 minutes. Cells were then blocked for a 

minimum of 30 minutes using 2% bovine serum albumin (BSA) (Sigma Aldrich, 

A2153) + 0.1% Tween (Sigma Aldrich, P1379) in PBS (Lonza, BE17-512F). 

Antibodies were diluted to an appropriate concentration (see specific antibodies and 

concentrations in Table 2.1) and incubated overnight at 4°C. Cells were washed with 

PBS and appropriate secondary antibodies (Alexa Fluor, Abcam: See Table 2.2) 

were used at a concentration of 1:500 for 1 hour at room temperature in darkness. 

Cells were washed with PBS again and DAPI (Sigma Aldrich, D9542) was added at 

https://www.fishersci.co.uk/shop/products/nunc-glass-bottom-dishes/15183728
https://www.sigmaaldrich.com/catalog/product/sigma/a2153?lang=en&region=US&gclid=Cj0KCQjw78yFBhCZARIsAOxgSx2JU4VhjpEFVIgUdysGtWnI6E1TUSWDbuhh4sOjPc56Nhfr6sinCY8aAgPaEALw_wcB
https://www.sigmaaldrich.com/catalog/product/sial/p1379?lang=en&region=GB&gclid=Cj0KCQjw78yFBhCZARIsAOxgSx0Af4kuBXMAhcEOtG2LaBLTEdTvil-q0WcR3rSiFHH56AYx_q5YGhsaAn7SEALw_wcB
https://bioscience.lonza.com/lonza_bs/GB/en/Culture-Media-and-Reagents/p/000000000000184020/Dulbecco%27s-Phosphate-Buffered-Saline-%281X%29%2C-DBPS-without-Calcium-and-Magnesium
https://www.sigmaaldrich.com/catalog/product/sigma/d9542?lang=en&region=GB&gclid=Cj0KCQjw78yFBhCZARIsAOxgSx1Ju0fSkaqxVXK-nzrGg36ziWJGkeP8O-4oKZ-C7BY6KYbr815Zq6saAsMmEALw_wcB
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a 1:1000 dilution in PBS for 1 minute. DAPI containing PBS was replaced with fresh 

PBS before visualization on either a Leica fluorescent microscope or a Leica SP5 

confocal microscope.  

 

Table 2.1: Primary antibodies used in ICC experiments  

Antibody Ig  Host 

species 

ICC dilution Supplier, Cat no.  

Β-III Tubulin IgG Rabbit 1:200 Abcam, ab18207 

LAMP1 IgG1 Mouse 1:200 Abcam, ab25630 

Nanog IgG Rabbit 1:66 Abcam, ab80892 

Oct4 Recombinant 
fragment  

Rabbit 1:200 Abcam, ab200834 

p62 Recombinant 
full-length 
protein 
corresponding 
to Human 
SQSTM1/ p62 
aa 1-440. 

Mouse 1:200 Abcam, ab57416 

(discontinued, see 

Appendix 4 for 

data sheet) 

Sox 2 IgG Goat 1:100 Biotechne, 

AF2018 

Sox 17 IgG Goat 1:200 R&D Systems, 

AF1924 

Tra-160 IgM Mouse 1:200 Abcam, ab16288 

Tra-181 IgM Mouse 1:200 Abcam, ab16289 

 

 

 

https://www.abcam.com/beta-iii-tubulin-antibody-neuronal-marker-ab18207.html
https://www.abcam.com/lamp1-antibody-h4a3-ab25630.html
https://www.abcam.com/nanog-antibody-ab80892.html
https://www.abcam.com/oct4-antibody-epr17980-ab200834.html
https://www.bio-techne.com/p/antibodies/human-mouse-rat-sox2-antibody_af2018
https://www.rndsystems.com/products/human-sox17-antibody_af1924
https://www.abcam.com/tra-1-60-r-antibody-tra-1-60-ab16288.html
https://www.abcam.com/tra-1-81-antibody-tra-1-81-stem-cell-marker-ab16289.html
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Table 2.2: Secondary antibodies used in ICC experiments 

Antibody Conjugation Supplier, Cat. No  

Donkey Anti-Goat IgG Alexa Fluor® 488 Abcam, ab150129 

Donkey Anti-Rabbit IgG Alexa Fluor® 568 Abcam, ab175470 

Goat Anti-Rabbit IgG Alexa Fluor® 488 Abcam, ab150077 

Goat Anti-Mouse IgG Alexa Fluor® 488 Abcam, ab150113 

Donkey Anti-Goat IgG Alexa Fluor® 568 Abcam, ab175474 

Goat Anti-Mouse IgG Alexa Fluor® 568 Abcam, ab175473 

2.2.3. Alkaline Phosphatase staining  

iPSC colonies were stained for the presence of Alkaline Phosphatase (AP) using 

SIGMAFAST BCIP®/NBT (Sigma, B5655). One BCIP/NBT tablet was dissolved in 

10ml of ddH2O, and applied directly to live cells. After 15 minutes of incubation in the 

dark macroscopic and/or microscopic images were taken ready for analysis 

2.2.4. Analysis of AP staining using ImageJ  

AP+ colonies were counted and analysed in Image J. Macroscopic images were 

loaded into the software, and wells selected using the oval selector tool. Images 

were then converted to 8-bit and the threshold adjusted to create a white background 

and black colonies (Figure 2.2). Threshold values were kept consistent across 

matched experiments. Measurements were set in ImageJ and the software analysed 

colony number, size, shape and area.  

https://www.abcam.com/donkey-goat-igg-hl-alexa-fluor-488-ab150129.html?gclsrc=aw.ds%7Caw.ds&gclid=Cj0KCQjw2NyFBhDoARIsAMtHtZ4q8tBdGOrjbXCwWqbWroTRsnjRFTJcIgvF3_z_aScYKZGi1IX99U4aAsg8EALw_wcB
https://www.abcam.com/donkey-rabbit-igg-hl-alexa-fluor-568-ab175470.html
https://www.abcam.com/goat-rabbit-igg-hl-alexa-fluor-488-ab150077.html
https://www.abcam.com/goat-mouse-igg-hl-alexa-fluor-488-ab150113.html
https://www.abcam.com/donkey-goat-igg-hl-alexa-fluor-568-ab175474.html
https://www.abcam.com/goat-mouse-igg-hl-alexa-fluor-568-ab175473.html
https://www.sigmaaldrich.com/catalog/product/sigma/b5655?lang=en&region=GB&gclid=Cj0KCQjw2NyFBhDoARIsAMtHtZ791QC9g3pbXoxCNv8LSQfO1FI29xnI1rlTEnOrVf_b5cK8wXzTDgQaAk4eEALw_wcB
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Figure 2.2: ImageJ iPSC colony analysis. Representative example of a well of primary 

iPSC colonies, selected, transformed into 8-bit and threshold adjusted to identify and 

separate individual colonies for analysis. 

 

2.3. Western blot 

2.3.1. Western blot 

Cells were lysed for protein using RIPA buffer (Thermo Fisher Scientific, 89900) 

supplemented with protease inhibitor cocktail (PIC) (Sigma Aldrich, P8340) at a 

concentration of 1 µl/100 µl. Protein lysates were stored at -80°C. Protein 

concentration was determined using Bradford reagent (BioRad, 500-0006). Bradford 

reagent was diluted 1:5 and protein samples diluted 1:10 to minimize interference of 

RIPA buffer with the Bradford assay. 95µl of diluted Bradford reagent was added into 

each well of a colourless 96-well plate in triplicate for each of the protein standards 

as well as experimental samples. 5 µl of each standard and each sample was added 

to wells and mixed before spectrophotometric quantification at 630 nm.  

https://www.thermofisher.com/order/catalog/product/89900#/89900
https://www.sigmaaldrich.com/catalog/substance/proteaseinhibitorcocktail1234598765?lang=en&region=GB&gclid=Cj0KCQjw2NyFBhDoARIsAMtHtZ7x1pEabmoKPt1Srg7tmm2cMbMwJVbZa2CcXg-9Ry5krEux7DsgthIaAvFoEALw_wcB
https://www.bio-rad.com/en-uk/sku/5000006-bio-rad-protein-assay-dye-reagent-concentrate-450-ml?ID=5000006
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Later protein samples were quantified using BCA assay, whereby 25 µl of each 

standard and each unknown sample are added to each well of a colourless 96-well 

plate. 200 µl of working reagent (diluted according to manufacturer instructions) was 

added to each well, shaken, and incubated for 30 minutes at 37°C before 

spectrophotometric quantification at 562 nm.  

Proteins were separated using 15% SDS-PAGE. 15-50 µg protein was loaded onto 

SDS-PAGE gel alongside 5 µl of Precision Plus Protein Kaleidoscope Ladder 

(BioRad, 1610375) and electrophoresis was carried out at 100 v for 90 minutes in 

running buffer. Proteins were transferred onto nitrocellulose or PVDF membrane in a 

semi-dry blotter sandwiched with blotting buffer soaked blotting paper for 1 hour at 

15v. Membrane was blocked in 5% milk, 0.1% Tween in PBS for a minimum of 1 

hour before adding primary antibody diluted to an appropriate concentration in 

blocking buffer and incubating overnight at 4°C. Membranes were washed three 

times in PBS with 0.1% Tween for 5 minutes before blocking in HRP-conjugated 

secondary antibody (1:5000) for 1 hour at room temperature. Membranes were 

washed three x 5 minutes in PBS with 0.1% Tween before addition of Amersham 

ECL Western Blotting Detection Reagent (Fisher Scientific UK, 10340125) for 1 

minute and visualisation on a transilluminator. 

2.3.2. Densitometry analysis of western blots using ImageJ 

Images of western blots developed in a transilluminator were converted to grey scale 

and loaded into ImageJ. Measurements were set to analyse ‘grey mean value’. A 

‘region of interest’ (ROI) was defined for each protein, using the largest protein band 

in each row. This region of interest was saved for use in all bands for the same 

protein and each band was measured individually using this pre-defined ROI. 

https://www.bio-rad.com/en-uk/sku/1610375-precision-plus-protein-kaleidoscope-prestained-protein-standards?gclid=Cj0KCQjw2NyFBhDoARIsAMtHtZ7u2OlHk1RogT9HoPyIQO4YPmQzOBes42tjJX5iM-dumFuCjPYgnUMaAseREALw_wcB&WT.knsh_id=_kenshoo_clickid_&WT.srch=1&ID=1610375&WT.mc_id=170125005975
https://www.fishersci.co.uk/shop/products/amersham-ecl-western-blotting-detection-reagents-1/10340125
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Background measurements for the area immediately outside of the protein bands 

were also measured using the same ROI frame. Measurements were transported 

into excel and analysed as a ratio of protein of interest over loading control.  

2.4. MitoTracker RedTM and LysoTracker GreenTM live cell staining 

Cells were seeded in glass-bottomed wells and grown until approximately 80% 

confluent. MitoTracker Red (Fisher Scientific UK, M7512) was used at a 

concentration of 25 nM and cells were incubated for 20-25 minutes; LysoTracker 

Green (Fisher Scientific UK, L7526) was used at a concentration of 150 nM and cells 

were incubated for 2 hours before the stain containing medium was replaced with 

PBS and cells were viewed using a Leica SP5 confocal microscope.  

2.5. Cloning 

2.5.1. PCR amplification of mouse and human p62 genes to clone into pENTR1a 

Mouse p62 overexpression vector (mp62) was purchased from Origene (Rockville, 

MD, USA) (Figure 2.3) and a truncated human p62 overexpression plasmid (hp62 

with only the zz and TB regions) was de novo synthesized by GeneCopeia 

(Rockville, MD, USA) in the vector shown in Figure 2.4, with ampicillin resistance. 

Both of the p62 sequences from these plasmids was cloned into pENTR1a (Figure 

2.5) to make later site-specific mutation cloning easier by PCR amplification of the 

p62 sequences. For the mouse p62, sequence primers were designed with BamHI 

and EcoRI restriction sites added to allow easy re-ligation with the destination vector 

using complimentary restriction sites. Human p62 primers were designed similarly 

but with KpnI and EcoRI restriction sites. Sequences were amplified using either Q5 

high fidelity polymerase (NEB, M0491S) or Phusion polymerase master mix (NEB, 

https://www.thermofisher.com/order/catalog/product/M7512?ef_id=Cj0KCQjw2NyFBhDoARIsAMtHtZ7HicC4rWPY2aOYtnylDXk9BQKOL8aDl7Uv5v7h0v6zCHUgRiwZWK8aApI9EALw_wcB:G:s&s_kwcid=AL!3652!3!447292198736!b!!g!!&cid=bid_pca_iva_r01_co_cp1359_pjt0000_bid00000_0se_gaw_dy_pur_con&gclid=Cj0KCQjw2NyFBhDoARIsAMtHtZ7HicC4rWPY2aOYtnylDXk9BQKOL8aDl7Uv5v7h0v6zCHUgRiwZWK8aApI9EALw_wcB#/M7512?ef_id=Cj0KCQjw2NyFBhDoARIsAMtHtZ7HicC4rWPY2aOYtnylDXk9BQKOL8aDl7Uv5v7h0v6zCHUgRiwZWK8aApI9EALw_wcB:G:s&s_kwcid=AL!3652!3!447292198736!b!!g!!&cid=bid_pca_iva_r01_co_cp1359_pjt0000_bid00000_0se_gaw_dy_pur_con&gclid=Cj0KCQjw2NyFBhDoARIsAMtHtZ7HicC4rWPY2aOYtnylDXk9BQKOL8aDl7Uv5v7h0v6zCHUgRiwZWK8aApI9EALw_wcB
https://www.thermofisher.com/order/catalog/product/L7526?ef_id=Cj0KCQjw2NyFBhDoARIsAMtHtZ56JQ_ObwK-16nqBz6jIEg-GJBqIe-Ju_G4QCmAwP8P4y22ydbg9xUaAtlPEALw_wcB:G:s&s_kwcid=AL!3652!3!447292198736!b!!g!!&cid=bid_pca_iva_r01_co_cp1359_pjt0000_bid00000_0se_gaw_dy_pur_con&gclid=Cj0KCQjw2NyFBhDoARIsAMtHtZ56JQ_ObwK-16nqBz6jIEg-GJBqIe-Ju_G4QCmAwP8P4y22ydbg9xUaAtlPEALw_wcB#/L7526?ef_id=Cj0KCQjw2NyFBhDoARIsAMtHtZ56JQ_ObwK-16nqBz6jIEg-GJBqIe-Ju_G4QCmAwP8P4y22ydbg9xUaAtlPEALw_wcB:G:s&s_kwcid=AL!3652!3!447292198736!b!!g!!&cid=bid_pca_iva_r01_co_cp1359_pjt0000_bid00000_0se_gaw_dy_pur_con&gclid=Cj0KCQjw2NyFBhDoARIsAMtHtZ56JQ_ObwK-16nqBz6jIEg-GJBqIe-Ju_G4QCmAwP8P4y22ydbg9xUaAtlPEALw_wcB
https://international.neb.com/products/m0491-q5-high-fidelity-dna-polymerase#Product%20Information
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M0531S) using appropriate cycling parameters. All primers were purchased from 

Invitrogen and are listed in Appendix 5 

 

 

Figure 2.3: Mouse p62 overexpression plasmid (Origene, RG203214).  

 

 

https://www.thermofisher.com/order/catalog/product/F531S?ef_id=Cj0KCQjwnueFBhChARIsAPu3YkRuFXaLnr46CDbmTkQ5CnnVL_by-nLvqn8mrGv5pbIC0FOVASjDuJoaAnHHEALw_wcB:G:s&s_kwcid=AL!3652!3!394297685934!b!!g!!&cid=bid_mol_pch_r01_co_cp1358_pjt0000_bid00000_0se_gaw_dy_pur_con&gclid=Cj0KCQjwnueFBhChARIsAPu3YkRuFXaLnr46CDbmTkQ5CnnVL_by-nLvqn8mrGv5pbIC0FOVASjDuJoaAnHHEALw_wcB#/F531S?ef_id=Cj0KCQjwnueFBhChARIsAPu3YkRuFXaLnr46CDbmTkQ5CnnVL_by-nLvqn8mrGv5pbIC0FOVASjDuJoaAnHHEALw_wcB:G:s&s_kwcid=AL!3652!3!394297685934!b!!g!!&cid=bid_mol_pch_r01_co_cp1358_pjt0000_bid00000_0se_gaw_dy_pur_con&gclid=Cj0KCQjwnueFBhChARIsAPu3YkRuFXaLnr46CDbmTkQ5CnnVL_by-nLvqn8mrGv5pbIC0FOVASjDuJoaAnHHEALw_wcB
https://www.origene.com/catalog/cdna-clones/expression-plasmids/rg203214/sqstm1-nm_003900-human-tagged-orf-clone
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Figure 2.4: Truncated human p62 plasmid (de novo synthesised by GeneCopeia, 

pReceiver- Lv203).  

 

 

Figure 2.5: pENTR1A minimal cloning vector with select restriction enzymes shown in 

the multiple cloning site, kanamycin resistance. pENTR1A no ccDB (w48-1) was a gift 

from Eric Campeau & Paul Kaufman (Addgene, 17398). 

https://www.addgene.org/17398/
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2.5.2. shRNA  

shRNA mir sequences were predicted using the SplashRNA algorithm (Pelossof, 

Fairchild et al, 2017). Dr Stephen White assisted with the design of shRNA 

constructs (sh(h)p62 and sh(m)p62) and sequences were synthesized by Eurofin 

Genomics (Ebersberg, Germany) (Figure 2.6). Constructs were designed with inbuilt 

restriction sites HpaI and XhoI for ease of cloning into the pLL3.7 destination vector 

(Figure 2.7) which also contains these restriction sites. shRNA constructs contain 

three shRNA mir sequences with stem loops, and 60bp between each one to ensure 

maximum possible efficiency of protein knock-down. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: pEX-A128 minimal vector containing p62 shRNA sequences. Both human 

and mouse shRNAs were designed and produced in this minimal vector with selected 

restriction enzymes for ease of cloning. De novo synthesised by Eurofin Genomics.  
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Figure 2.7: pLL3.7 shRNA destination lentivector. pLL3.7 was a gift from Luk Parijs 

(Addgene, 11795) 

2.5.3. Additional cloning vectors 

Several other vectors were used in either cloning or transduction experiments as 

listed in Table 2.3.  

Table 2.3: Plasmids for cloning and transduction experiments 

Plasmid/Vector Originating Lab Addgene ID Figure  

pUMVC Bob Weinberg 8449 2.8 

pCMV-VSV-G Bob Weinberg 8454 2.9 

pBABE-puro-HA-p62 Jayanta Debnath 71305 2.10 

pBABE-puro-HA-p62-LIR Jayanta Debnath 71306 2.10 

pBMN-mCherry-p62(ΔUBD) Michael Lazarou 119687 2.11 

pBMN-mCherry-p62  

(W340A/ΔUBD) 

Michael Lazarou 119688 2.11 

 

https://www.addgene.org/11795/
https://www.addgene.org/8449/
https://www.addgene.org/8454/
https://www.addgene.org/71305/
https://www.addgene.org/71306/
https://www.addgene.org/119687/
https://www.addgene.org/119688/
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pUMVC and pCMV-VSV-G were the packaging and envelope plasmids used for the 

production of MuLV retroviral particles in Hek293T producer cells (Figures 2.8 and 

2.9).  

 

Figure 2.8: pUMVC packaging plasmid for producing MuLV retroviral 

particles. pUMVC was a gift from Bob Weinberg (Addgene, 8449) 

 

https://www.addgene.org/8449/


79 
 

 

Figure 2.9: pCMV-VSV-G envelope protein for producing lentiviral and MuLV 

retroviral particles. pCMV-VSV-G was a gift from Bob Weinberg (Addgene, 8454) 

 

pBABE-puro-HA-p62 is a retroviral plasmid for human p62 expression. pBABEpuro-

HA-p62-LIR has a DNA point mutation resulting in a single amino acid change at 

W338A (LIR region). This mutation changes Tryptophan (W) into an Alanine (A): 

tryptophan can be phosphorylated enabling protein-protein interactions, whereas 

alanine is non-reactive and cannot be phosphorylated. This means that the function 

of this particular amino acid in interacting directly with LC3-II is prevented (Figure 

2.10).  

https://www.addgene.org/8454/
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Figure 2.10: pBABE-puro-HA-p62 and pBABE-puro-HA-p62 LIR (identical except for 

W338A point mutation) for the expression of full-length human p62, and the expression of 

p62 with a point mutation at amino acid 338 that significantly reduces p62 binding to LC3. 

pBABEpuro-HA-p62 and pBABE-puro-HA-p62 LIR were a gift from Jayanta Debnath 

(Addgene, 71305 and 71306) 

 

pBMN mCherry-p62 (ΔUBD) is a retroviral plasmid for the expression of human p62 

without its UBD region: p62 was truncated at residue 385, meaning that the resulting 

protein could not bind to ubiquitinated proteins, thereby preventing the recruitment of 

these proteins to the autophagosome. pBMN mCherry-p62 (W340A/∆UBD) also has 

a point mutation leading to an amino acid change at W340A in the LIR region, again 

https://www.addgene.org/71305/
https://www.addgene.org/71306/
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preventing phosphorylation at this site and ameliorating the direct interaction of p62 

with LC3B (Figure 2.11). 

 

Figure 2.11: pBMN-mCherry-p62 (ΔUBD) and pBMN-mCherry-p62 (W340A/∆UBD) 

(identical except for W340A point mutation) for expression of p62 without the UBD 

domain, and with or without a point mutation in the LIR region that significantly reduces 

p62 binding to LC3. These plasmids were a gift from Michael Lazarou (Addgene, 119687 

and 119688) 

 

2.5.4. Cloning: restriction digest and gel extraction 

800 ng-1 µg of plasmid DNA was digested with 1 µl of each restriction enzyme (HpaI 

+ XhoI for cloning shRNA constructs or BamHI + EcoRI for mp62 overexpression 

plasmid constructs or KpnI + EcoRI for hp62 overexpression constructs) and 3 µl of 

https://www.addgene.org/119687/
https://www.addgene.org/119688/
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the appropriate NEB buffer made up to 30 µl with water for 1 hour at 37°C before 

separation by agarose gel electrophoresis. Alongside, pENTR1a (or other 

destination vector) was also digested using complimentary restriction enzymes to 

linearise. Correctly restricted bands were then excised from the gel and gel 

extraction was performed using columns according to kit instructions (Fisher 

Scientific, Machery and Nagel, 12303368) before determination of DNA 

concentration by spectrophotometry using a Nanodrop device (Thermo Fisher). 

Restriction Enzymes were all purchased from New England Biolabs and are listed in 

Table 2.4.  

Table 2.4: Restriction enzymes used in cloning experiments 

Enzyme Restriction sequence Cat. No.  

XhoI C^TCGAG R0146S 

BamHI G^GATCC R0136S 

EcoRI G^AATTC R3101S 

KpnI GGTAC^C R0142S 

HpaI GTT^AAC R0105S 

ClaI AT^CGAT R0197S 

NcoI C^CATGG R0193S 

 

2.5.5. Cloning: Ligation 

mp62, truncated hp62 and p62 shRNA constructs were all ligated with destination 

vectors (pENTR1a or pLL3.7) at three different molar ratios (1:3, 1:5 and 1:10) to 

maximise efficiency of re-ligation. Ligation reaction was made up with plasmid insert 

and linearised destination plasmid backbone, 10 µl ligase buffer (NEB, B2200S)), 1 

https://www.fishersci.co.uk/shop/products/nucleospin-gel-pcr-clean-up/12303368
https://international.neb.com/products/r0146-xhoi#Product%20Information
https://international.neb.com/products/r0136-bamhi#Product%20Information
https://international.neb.com/products/r3101-ecori-hf#Product%20Information
https://international.neb.com/products/r0142-kpni#Product%20Information
https://international.neb.com/products/r0105-hpai#Product%20Information
https://international.neb.com/products/r0197-clai#Product%20Information
https://international.neb.com/products/r0193-ncoi#Product%20Information
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µl quick ligase (NEB, M2200L) and H2O up to 10 µl and incubated at room 

temperature before transformation. Figure 2.12 provides and overview of cut and 

paste based cloning and ligation. Ligation reactions were made up with the 

appropriate amounts of insert and backbone according to the following calculation:  

Amount of insert (ng) = amount of vector (ng) x molar ratio x size of insert (bp) 

               Size of vector (bp) 

 

For example: 50 ng vector x 3 (molar ratio) x 437bp insert size   = 8.63 ng of insert required 

    7600bp vector size 

 

 
Figure 2.12: Basic schematic of cut-and-paste based cloning. The gene of interest is 

isolated using either restriction digest or PCR amplification, resulting in a linearised insert 

with ends complementary to the destination vector. Destination vector is also linearised 

with the same restriction fragments and when combined under ligation conditions the two 

pieces of DNA are seamlessly joined together. Image adapted from 

origene.com/blog/molecular cloning  
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2.5.6. Cloning: Recombination 

mp62 pENTR1a plasmid was recombined using GatewayTM cloning into SFFV 

lentiviral plasmid for lentiviral vector production and transduction into cells. 50 ng of 

SFFV GatewayTM and 50 g mp62 pENTR1a was combined with 3.1 µl TE buffer and 

1 µl of LR Clonase (Thermo Fisher Scientific, 11791019) and incubated at room 

temperature for 1 hour.  

2.5.7. Cloning: Transformation and recovery.  

Chemically competent Stabl3 cells were thawed on ice for approximately 10 minutes. 

For transformation of existing plasmids 100 ng of plasmid DNA was added to 

chemically competent cells. For transformation of newly ligated plasmids, the entire 

ligation reaction was added. Cells were incubated on ice for 30-50 minutes. Cells 

were then heat-shocked at 42°C for 45 seconds before a further 2 minutes 

incubation on ice. 500 µl SOC broth (Thermo Fisher Scientific, 15544034) was 

added and cells underwent recovery for 45-60 minutes in a shaking incubator at 

37°C. After recovery, cells were plated onto Agar (Sigma Aldrich, 9002-18-0) plates. 

For existing plasmids, 100 µl of the comp cell/DNA/SOC mixture was spread onto 

plates. For newly ligated plasmids the cells were centrifuged (Sigma 1-16k) for 3 

minutes at 1000 rpm and the cell pellet resuspended in 100 µl SOC broth and spread 

onto agar plates with an appropriate antibody (Ampicillin or Kanamycin). The next 

day single colonies were asceptically picked and grown in LB growth medium (Sigma 

Aldrich, L3022-1kg) with antibiotic.  

https://www.thermofisher.com/order/catalog/product/11791019#/11791019
https://www.thermofisher.com/order/catalog/product/15544034#/15544034
https://www.sigmaaldrich.com/GB/en/product/sial/05039?gclid=Cj0KCQjw5PGFBhC2ARIsAIFIMNfBWAgoyqcEmkIgp9SyIFCmR_c8_WkcpJnmKyyhfOXjNbL3dmD9KR4aAifDEALw_wcB
https://www.sigmaaldrich.com/GB/en/product/sigma/l3022?context=product
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2.5.8. Qiagen Mini and Midi-Prep DNA preparation. 

Bacterial growth cultures were centrifuged at 4500rpm in a tabletop centrifuge for 30 

minutes (midi-prep) or at 13000rpm for 10 minutes in a microcentrifuge (Sigma 1-

14k) (mini-prep) before plasmid DNA was extracted and purified using columns 

according to the kit instructions (Qiagen Mini-Prep Kit, Qiagen, 27106, Qiagen Midi-

Prep Kit, Qiagen, 12143). DNA concentrations were determined using a Nanodrop. 

2.5.9. Cloning: In-Fusion® cloning for site specific mutations 

In-Fusion® cloning (Figure 2.13) allows direct cloning of any sequence into any 

destination vector in a single step. Primers were designed incorporating single 

nucleotide mutations to create mutations in various different function p62 domains 

for both mouse and human and can be found in Appendix 6 (with thanks to Dr Alicia 

Roig-Merino and Dr Richard Harbottle (DKFZ) for help and guidance with In-Fusion® 

cloning). hp62 and mp62 sequences + restriction sites were amplified from parent or 

pENTR1a vector with CloneAmp HiFi PCR Premix (Takara Bio, 639298) at 

appropriate cycling parameters.  

https://www.qiagen.com/us/products/discovery-and-translational-research/dna-rna-purification/dna-purification/plasmid-dna/qiaprep-spin-miniprep-kit/
https://www.qiagen.com/us/products/discovery-and-translational-research/dna-rna-purification/dna-purification/plasmid-dna/qiagen-plasmid-kits/?catno=12143
https://www.takarabio.com/products/pcr/pcr-master-mixes/high-fidelity/cloneamp-hifi-pcr-premix
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Figure 2.13: Basic principle of In-Fusion® cloning. Primers are designed with ~15bp of 
complementarity with destination vector ends and the desired DNA mutations. PCR 
product containing 15bp extensions and newly created DNA mutations are combined with 
the linearized vector and the In-Fusion® enzyme mix in a single step reaction and 
transformed into competent cells. Image adapted from 
https://www.takarabio.com/learning-centers/cloning/in-fusion-cloning-general-
information/in-fusion-cloning-overview 

 

Concurrently, destination vectors (hp62 pENTR1a or mp62 pENTR1a) were digested 

with restriction enzymes complimentary to those added in to PCR primer sequences 

(Appendix 6). 3 µg of destination vector (approx. 10 µl) was combined with 3 µl of 

each restriction enzyme, 5 µl of Fast Digest buffer, and approximately 29 µl H2O and 

incubated at 37°C for 1 hour. 

Digested destination vector and PCR product were separated by agarose gel 

electrophoresis (Agarose, Sigma, A9539; GelRed, Biotium, 41003). Vector backbone 

and hp62 or mp62 sequence with newly introduced mutation were gel extracted 

https://www.takarabio.com/learning-centers/cloning/in-fusion-cloning-general-information/in-fusion-cloning-overview
https://www.takarabio.com/learning-centers/cloning/in-fusion-cloning-general-information/in-fusion-cloning-overview
https://www.sigmaaldrich.com/GB/en/product/sigma/a9539?context=product
https://biotium.com/product/gelred-nucleic-acid-gel-stain/
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according to manufacturer’s instructions (Fisher Scientific, Machery and Nagel, 

12303368) before determination of DNA concentration by spectrophotometry using a 

Nanodrop device. Finally, 100 ng of backbone and 50 ng of insert were combined in 

an In-Fusion® reaction with 2 µl of infusion mix (Infusion HD Cloning Kit, Takara Bio, 

639645) and H2O up to a total reaction volume of 10µl. This was incubated at 50°C 

for 15 minutes before 25 µl of the In-Fusion® reaction was transformed into infusion 

compatible Stellar Competent Cells (Stellar Competent Cells, Takara Bio, 636763) 

and transformation, recovery and propagation in agar plates was carried out as 

previously described for all other cloning methods. 

2.6. Transfection; virus production and quantification; and transduction. 

2.6.1. Production of VSV-G psuedotyped lentivector using PEI.  

Using plasmid DNA VSV-G psuedotyped lentivirus preps were produced in a small 

scale (1 well to 1 well format) or large-scale format whereby virus can be 

concentrated and titred using p24 ELISA. With the small-scale protocol, cells were 

transduced directly with the filtered conditioned media from transfected Hek293T 

producer cells at both 48 and 72 hours post transfection and an approximation of 

transduction efficiency was estimated from GFP expression after 96 hours.  

2.6.2. Large- scale viral preparation 

Hek293T cells were grown in a T175 cm2 flask until 90% confluent. Plasmid DNA mix 

was made up with 6 mL OptiMEM (Reduced serum medium) (Fisher Scientific UK, 

15392402); 50 µg of vector construct; 17.5 µg of VSVg envelope plasmid (pMD2.G) 

and 32.5 µg of packaging plasmid (pCMVΔ 8.74). pMD2.G and pCMVΔ 8.74 were a 

gift from Didier Trono (Addgene, 12259 and 22036) 

https://www.fishersci.co.uk/shop/products/nucleospin-gel-pcr-clean-up/12303368
https://www.takarabio.com/assets/documents/Components%20List/639645-639647_093011.pdf
https://www.takarabio.com/products/cloning/competent-cells/stellar-chemically-competent-cells
https://www.fishersci.co.uk/shop/products/gibco-opti-mem-i-reduced-serum-medium-6/15392402
https://www.addgene.org/12259/
https://www.addgene.org/22036/
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Separately, 1 µl of 10 mM PEI was added to 6 mL OptiMEM and this was mixed 

together 1:1 with the plasmid DNA mixture and incubated at room temperature for 20 

minutes to allow DNA complexes to form. Media was removed from Hek293Ts, 

replaced with the 12ml of DNA mixture, and incubated at 37°C for 3 hours before 

changing to normal DMEM media. Media was then changed after 24 hours, and cell 

supernatant harvested at 48 and 72 hours.  

Cell supernatant was centrifuged at 5000rpm for 10 minutes at 4°C then passed 

through a 0.22 µm filter into a fresh 50 mL falcon tube. To concentrate the virus the 

filtered cell supernatant was centrifuged at 5000rpm and 10°C for 16-20 hours in a 

benchtop centrifuge. Supernatant was then carefully removed and discarded and the 

viral pellet air-dried for 2 minutes. Pellets were resuspended in 50 µl OptiMEM and 

incubated on ice for 1 hour before aliquoting and storing at -80°C. 

2.6.3. Small-scale viral preparation 

Hek293T cells were grown in one well of a six-well plate until 905 confluent. Plasmid 

DNA mix was made up with 324.5 µl OptiMEM; 2.75 µg expression vector construct; 

0.96 µg of VSV-G envelope plasmid (pMD2.G) and 1.79 µg of packaging plasmid 

(pCMVΔ 8.74). 

Separately, 5.5 µl of 0.1 mM PEI was added to 324.5 µl OptiMEM and this was 

mixed together 1:1 with the plasmid DNA mixture and incubated at room temperature 

for 20 minutes to allow DNA complexes to form. Media was then removed from 

HEK293Ts, replaced with the DNA mixture, and incubated at 37°C for 3 hours before 

changing to normal DMEM media. Media was changed after 24 hours, and cell 

supernatant harvested at 48 and 72 hours before filtering. 
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2.6.4. Virus quantification 

Concentrated lentivirus was quantified using an HIV-1 p24 antigen ELISA. 

(Zeptometrix, 0801111). The gag gene in recombinant lentiviruses encodes the viral 

capsid protein, p24. The amount of p24 in a viral sample is directly correlated to the 

viral titre. P24 ELISA was carried out according to the manufacturer’s instructions. 

Briefly, wells were pre-coated with Anti-p24, which binds p24 in samples, a 

biotinylated Anti-p24 and Streptavidin HRP with a colour producing substrate were 

then added. Samples were quantified by spectrophotometry at 450nm. By utilising a 

standard curve of known p24 antigen concentrations is possible to determine viral 

titre of unknown samples in the following formula:  

Viral Titer = ((OD –Intercept)/Slope) x 100 x dilution factor. 

 

The MOI, or volume needed to apply to cells for a desired MOI can then be 

determined using the following equation: 

MOI = (volume of virus applied to cells (µl) x titre)/cell number. 

 

 

 

 

 

 

 

 

https://www.zeptometrix.com/products/hiv-type-1-p24-antigen-elisa-96-determinations
https://www.zeptometrix.com/media/documents/PI0801111.pdf
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Chapter 3: Development and refinement of iPS reprogramming protocols and 

processes.  

1.1. Introduction 

There are multiple methods for the reprogramming of somatic cells to the pluripotent 

state, as discussed in detail in the main introduction of this thesis, but the current 

gold standard is the use of OriP/EBNA episomal plasmids (Yu et al, 2009, Okita et 

al, 2011, Okita et al, 2013). The OriP/EBNA plasmids strike a reasonable balance 

between efficiency and safety: Efficiencies of around 0.01-0.02% can be achieved 

but the episomal plasmids have several safety benefits, predominantly that they are 

non-integrating and non-viral (Yu et al, 2009; Bang et al, 2018). These plasmids 

encode the reprogramming factors Oct3/4, L-Myc, Lin28, Sox2, KLF4 as well as 

components which have been shown to help boost reprogramming efficiency shp53 

and EBNA1 (Okita et al, 2011; Okita et al, 2013). These non-integrating, episomal 

OriP/EBNA reprogramming plasmids are utilised as standard within the McKay lab 

for the reprogramming of human fibroblasts. The McKay lab does not have a 

standard reprogramming protocol used in the reprogramming on mouse cells, so one 

key aim of this chapter is to refine the existing protocols for use in mouse cells.  

In order to ensure that valuable patient cells, which had been acquired in very small 

numbers, were utilised in the best possible way, a series of reprogramming 

experiments were carried out in other cells types to learn, develop and refine the 

protocols necessary throughout the process. The reprogramming process is highly 

inefficient, and inherently has a large number of steps where failure can occur. 

Ensuring that cells survive nucleofection, are seeded at the right density, are 

switched to hESC growth media at the correct time, and are analysed and passaged 

at the optimal time all requires a huge amount of refining.  
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Further, p62 null patient cells were acquired at P8 from our collaborators in Finland. 

It is well known that increased time in culture decreases reprogramming efficiency, 

due to increased levels of cell senescence (Trokovic et al, 2015). Of course, the 

addition of shp53 in the OriP/EBNA episomal plasmids helps to alleviate this issue 

due to its suppression of cellular senescence pathways (Rasmussen et al, 2015; 

Fujita, 2019), but it was important to ensure that other cell types available within the 

McKay lab (i.e. control hDFs) could also be successfully reprogrammed at later 

passages as iPSC reprogramming experiments had never previously been carried 

out in cells beyond passage 5 within the McKay lab. 

1.2. Objectives:  

● Complete iPSC reprogramming experiments in a range of cells types 

including: 

o WT MEFs 

o Doxycycline inducible MEFs 

o Control hDFs 

o p62 overexpressing CLN6 and CLN7 Batten’s disease patient 

fibroblasts 

● Validate iPSC reprogramming experiments by immunocytochemical staining 

for key pluripotency markers 

1.3. Inducible MEF reprogramming 

We acquired, from the Hochedlinger lab, Harvard Medical School, MA, USA, a 

doxycycline inducible mouse embryonic fibroblast (MEF) cell line (Stadtfeld et al, 

2009). These MEFs were derived from ‘reprogrammable mice’ in which every cell 

possesses a single copy of a polycistronic reprogramming cassette containing the 

OKSM combination of reprogramming factors (Figure 3.1) This cassette is 
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doxycycline inducible, allowing for the controlled and synchronised induction of 

pluripotency. This highly efficient system represented the perfect starting point for 

reprogramming experiments, enabling the understanding of key milestones of 

pluripotency such as morphological evidence of MET.  

 

 

Figure 3.1: The STEMCCA multicistronic 2A-OKSM cassette was stably transduced 

into ‘reprogrammable mice’ by the Hochedlinger lab. MEFs derived from the embryos of 

these mice undergo synchronised iPSC reprogramming upon addition of doxycycline. 

Sommer et al, 2008 

 

Inducible MEFs were thawed as previously described in two wells of a 6-well plate 

(Methods, 2.1.1 and 2.1.4), and cultured in MEF maintenance media until ready to 

begin reprogramming. Upon the addition of reprogramming media containing LIF, 

Ascorbic acid and Doxycyline at a concentration of  2µg/ml, colonies began to 

appear at ~14d (Figure 3.2, A.). Mouse ES and iPS colonies are typically smaller 

than human ES and iPS colonies, and require passaging more frequently. Both the 

JB7, and JB8 lines supplied are homozygous for the OKSM cassette, but the JB8 

line may be heterozygous for Oct4-GFP. This has no effect on reprogramming 

efficiency as this construct is in place purely as a marker of pluripotency in the 

resulting iPS cells.  

At ~16d, doxycycline and ascorbic acid containing media was removed and replaced 

with mESC maintenance media as previously described (Appendix 3) and allowed to 
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acclimatise for 3 days before AP staining was carried out on ~d20 (Figure 3.2, B). AP 

staining shows a large number of colonies in both JB7 and JB8 reprogramming 

experiments. It was not possible to count individual colonies because there were too 

many to distinguish between them either manually or in ImageJ. Although not 

quantified, it is clear looking by eye at the AP staining that far more colonies were 

formed in JB7 cells than JB8, possibly because JB7 MEFs were reprogrammed at 

P3 whereas JB8 MEFs were reprogrammed at P5. Notably, the polycistronic OKSM 

reprogramming cassette in these cells does not contain shp53, unlike the OriP/EBNA 

plasmids used for other reprogramming experiments in this study. This could mean 

that the later passage JB8 MEFs had undergone some level of cell senescence, 

resulting in a lower reprogramming efficiency in these cells compared to the JB7. 

Primary JB7 and JB8 miPSC colonies were serially passaged and imaged at P2 

(Figure 3.2.C). JB7 and JB8 miPSC colonies are morphologically very similar and 

grow in similar numbers after passaging.  
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A.

 

B. 

 

Figure 3.2: iPSC reprogramming of JB7 and JB8 inducible MEFs.  

A. Primary (P0) miPSC colonies at ~14d, Images taken at 4x magnification. Scale bars 

represent 100µM  B. AP staining of P0 colonies at ~20d showing extremely high 

reprogramming efficiency (evidenced by the density of AP positive stained areas) in both 

JB7 and JB8 miPSC reprogramming experiments 
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C.  

 

Figure 3.2: iPS reprogramming of JB7 and JB8 inducible MEFs.  

C. JB7 and JB8 miPSC colonies after two passages. Several iPSC colonies with clearly 

defined borders and a typical rounded shape can be seen. Scale bars represent 100µM 

 

Finally, JB7 and JB8 were passaged again, fixed with 4% PFA and immunostained 

for SSEA1, a marker of pluripotency in mice (and of early differentiation in human 

cells) , and imaged for this, and constitutive OCT4-GFP expression (Figure 3.3). 

Both JB7 and JB8 miPSC are Oct4-GFP positive and SSEA1 positive, confirming 

pluripotency in these cells.  
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Figure 3.3 Iummunofluorescent cell staining for SSEA1, a key marker of 

pluripotency in mouse.  

A. Phase images JB7 mouse iPSC at passage 2; iummunofluorescent imaging of Oct4-

GFP (Green). The ‘reprogrammable mice’ from which these cells are derived contain the 

gene for enhanced GFP in the Oct4 locus, creating a marker for the acquisition of 

pluripotency as cells are GFP positive when endogenous Oct4 is being expressed. 

Iummunofluorescent cell staining for SSEA1, a key pluripotency marker in mouse is also 

shown in red. Images taken at 20x magnification, scale bars represent 100µm. 

 

A. 
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Figure 3.3 Iummunofluorescent cell staining for SSEA1, a key marker of 

pluripotency in mouse. B. Phase images JB8 mouse iPSC at passage 2; 

iummunofluorescent imaging of Oct4-GFP as previously described. Iummunofluorescent 

cell staining for SSEA1, a key pluripotency marker in mouse is also shown in red. Images 

taken at 20x magnification, scale bars represent 100µm. 

1.4. WT-MEF reprogramming 

Having successfully achieved iPSC reprogramming with doxycycline inducible 

MEFS, I next progressed to subjecting Wild-Type Mouse Embryonic Fibroblasts 

(WT-MEF) to iPSC reprogramming using an adapted version of the established 

McKay lab hDF reprogramming protocol. Mouse iPSC reprogramming happens 

slightly quicker than human iPSC reprogramming, and there is no need for MEF 

feeder layers, as the initial starting cells (MEFs) provide all the necessary structural 

support and growth factors. For this reason, media was changed to mESC media on 

day 2 instead of day 9, and cells were plated directly onto gelatin-coated plates 

 

B. 
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where they remained for the duration of the reprogramming experiment. 

Furthermore, primary iPS colonies in hDF reprogramming experiments are generally 

analysed and passaged at ~25d, whereas in mouse reprogramming experiments 

colonies are analysed and passaged earlier, at around ~16-20d. Figure 3.4.A shows 

WT-MEF at 10d and 16d of a reprogramming experiment. At 10d an early ‘pre-ipsc’ 

colony can be seen, and at 16d a well formed primary (P0) colony. At 16d newly 

formed miPSC colonies were passaged by manual excision, pipetted to a single cell 

suspension, centrifuged at 1200pm and reseeded at a density of 1:10 on inactivated 

MEF feeder layers. miPSC colonies are passaged every 3 days. Figure 3.4.B shows 

P4 WT-miPSC colonies compared with mESC colonies as a positive control. miPSC 

colonies, even at this very early passage where they are not yet mature and 

transgene free are morphologically similar to mESC colonies.  

 

A. 

 

 

Figure 3.4 Reprogramming of WT-MEFs to miPSC.  
A. WT-MEFs at D10 (left) and D16 (P0) (right) of miPSC reprogramming experiments. At 

D10, early colony formation can be seen, the cells in the colony like structure are small, 

round and lacking cytoplasm but the colony itself has not yet gained the well-defined 

border expected in an established iPSC colony. Phase images taken at 20x magnification. 

At ~16-18d primary (P0) colonies are passaged. Scales bars represent 100µM  
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B.  

 

 

Figure 3.4 Reprogramming of WT-MEFs to miPSC. B. miPSC colonies after 4 

passages (left) compared to established mESC colonies (right). Clear morphological 

similarities can be seen: colonies are of a similar size and have the same rounded 

appearance with well-defined borders. miPSC colonies are typically smaller than human 

and require passaging more frequently. miPSC colonies are cultured on iMEF feeder 

layers after initial passage, mESC are cultured on iMEF feeder layers  Phase images 

taken at 10x magnification, scale bares represent 100µM 

 

At P6 miPSC were fixed with 4% PFA and immunostained for key markers of 

pluripotency in mouse cells: Lin28, Nanog and E-Cadherin alongside mESC positive 

controls and MEF negative controls (Figure 3.5). miPSC were positive for Lin28, 

Nanog and E-Cadherin, like mESC positive controls, suggesting pluripotency. As 

expected, MEFs are negative for Lin28, Nanog and E-Cadherin. 
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A. 

 

Figure 3.5 Iummunofluorescent cell staining for key markers of pluripotency in 
miPSC colonies at P6.  
A. miPSC were derived from WT-MEFs. miPSC (top), mESC (positive control, middle) and 
MEFs (negative control, bottom) stained for Lin28 and Nanog. miPSC are positive for both 
Nanog and Lin28 and share a similar morphology to mESC positive controls, strongly 
suggesting pluripotency in these cells. Images taken at 10x magnification, scale bars 
represent 100µm. 
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B. 

 

 

Figure 3.5: Iummunofluorescent cell staining for key markers of pluripotency in 
miPSC at P6, compared to positive (mESC) and negative (MEF) controls.  
B. miPSC (top), mESC (positive control, middle), and MEFs (negative control, bottom) 
stained for E-Cadherin. miPSC colonies are positive for pluripotency marker E-Cadherin, 
along with the positive results in 3.5.A above, this suggests that reprogramming of WT-
MEFs has been successful and these cells are pluripotent. Images taken at 10x 
magnification, scale bars represent 100µm. 

 

1.5. hDF reprogramming 

Once MEF iPSC reprogramming protocols had been established and miPSC had 

been expanded and frozen for future use, I moved on to develop and refine the 

McKay lab standard human iPSC reprogramming protocol on a number of human 

dermal fibroblasts. The McKay lab iPSC reprogramming protocol is described in 

detail in the introduction but, briefly: Cells are nucleofected with the four OriP/EBNA 



103 
 

episomal plasmids (pCXLE-hSK, pCXLE-hUL, pCXLE-hOCT3/4-shp53-F and 

pCXWB-EBNA1) and seeded at high density in hDF maintenance media. Cells are 

passaged if/when ~85% confluent, and on D8 are re-seeded at low density onto 

iMEF feeder cells. At D9, media is changed to hESC media. Typically, at ~D14-18 

small colony like structures begin to appear, and at D25, wells are analysed for 

primary colony number (Refer back to section 2.1.6 for further detail). 

Firstly, control hDFs (nhDFs) were reprogrammed using the above described 

protocol. Figure 3.6 shows nhDFs at D7, D16 and at an early passage (P3). 

Typically, we would expect to see evidence of MET at ~D7, and this is not evident in 

these cells. However, these cells are at a relatively low confluency, which is likely the 

reason for the lack of visible MET and is not necessarily indicative of a failing in the 

reprogramming experiment. In the D16 image, there is evidence of early colony 

formation (red arrow) in the nhDF cells. Finally, at P3, nhDF derived iPSC colonies 

are well established, with colonies displaying typical iPSC morphology including very 

small cells, with almost no cytoplasm, tightly packed cells beginning to form a 

rounded 3D shape, and a defined and well demarcated border around the iPSC 

colony. All phase images are representative examples of the whole experimental 

well and are taken at 10x magnification.  
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Figure 3.6 Control hDF (nhDF) throughout iPSC reprogramming and at an early 
passage.  
Left, nhDFs at D7, just before being re-seeded onto iMEF feeder layers. Middle, nhDFs at 
D16 of a reprogramming experiment, the red arrow shows the emergence of a very early 
colony forming. Finally, right, established and stabilised nhDF derived iPSC at P3, 
showing a well rounded and clearly demarcated iPSC colony, typical of pluripotent stem 
cell colonies. Wells show representative examples of 3 experiments. Images taken at 10x 
magnification, scale bars represent 100µM 

 

The McKay lab has ready access to Batten disease patient-derived fibroblasts from a 

repository held at University College London. Batten disease is a collection of rare, 

childhood neurodegenerative disorders that leads to blindness, epilepsy and 

dementia caused by mutations in CLN6 and CLN7 genes (among others) (Nita et al, 

2016). Other members of the McKay lab have been investigating new cellular 

models for Batten disease, and as such we acquired many vials of patient 

fibroblasts. In 2016, Brandenstein et al showed hugely upregulated levels of p62 

protein in the brains of CLN7 KO mice. Within the McKay lab, pilot experiments 

suggested that CLN6 and CLN7 patient fibroblasts may have been reprogrammable 

with a higher efficiency than other cell types. In order to assess CLN6 & CLN7 

patient fibroblast reprogramming in my hands, I applied our standard reprogramming 

methodology.  

Figure 3.7 shows CLN6 batten disease patient fibroblasts (CLN6 hDFs) at D7 and 

D16 of a reprogramming experiment, as well as at P3. As observed in the nhDF 

experiment there is no clear evidence of MET at D7 in these cells. However, the 
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CLN6 batten patient fibroblasts are also at a relatively low density at this stage and 

typically cells would need to be in closer proximity to each other in order to display 

these clear morphological signs of MET. At D16 early colony formation is visible (red 

arrow). At P3 the image shows an iPSC colony displaying all the typical hallmarks of 

a pluripotent stem cell colony. At P3 CLN6 iPSC colonies are round with a clearly 

defined border, and cells that are tightly packed with very little cytoplasm. All phase 

images were taken at 10x magnification and are representative examples of the 

whole experimental well, CLN6 iPSC reprogramming experiments were performed 

multiple times, although quantification was not performed at this stage.  

 

Figure 3.7 CLN6 Batten’s disease patient hDF throughout iPSC reprogramming and 

at an early passage.  

Left, CLN6 hDFs at D7, just before being re-seeded onto iMEF feeder layers. Middle, 

CLN6 hDFs at D16 of a reprogramming experiment, the red arrow shows the emergence 

of a very early colony forming. Finally, right, established and stabilised CLN6 hDF derived 

iPSC at P3, showing a well-rounded and clearly demarcated iPSC colony, typical of 

pluripotent stem cell colonies. Wells show representative examples of at least 3 

experiments. Images taken at 10x magnification, scale bars represent 100µM 

 

Figure 3.8 shows CLN7 hDFs at D7 and D16 of a reprogramming experiment, as 

well as at P3. In the phase image taken at D7, there is clear evidence of MET 

occurring in CLN7 hDFs (left panel, red arrows). In contrast to the nhDF and CLN6 

experiments, the CLN7 hDFs are more confluent at D7, which is likely the reason for 

this MET morphology. At D16 there is clear evidence of early colony formation 
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(middle panel, red arrow). The image taken at P3 shows a morphologically typical 

iPSC colony derived from CLN7 hDFs, with a well-defined border and a rounded 

shape. All phase images were taken at 10x magnification, and are representative of 

the whole experimental well. Experiments were repeated multiple times but 

quantification was not carried out at this stage. 

 

 

Figure 3.8 CLN& Batten’s disease patient hDF throughout iPSC reprogramming and 

at an early passage.  

Left, CLN7 hDFs at D7, just before being re-seeded onto iMEF feeder layers. The red 

arrows show clear areas where MET can be seen, cells change morphology during this 

transition, becoming more compact and close packed together, cytoplasm reduces. 

Middle, CLN7 hDFs at D16 of a reprogramming experiment, the red arrow shows the 

emergence of an early colony forming. Finally, right, established and stabilised CLN7 hDF 

derived iPSC at P3, showing a well-rounded and clearly demarcated iPSC colony, typical 

of pluripotent stem cell colonies. Wells show representative examples of at least 3 

experiments. Images taken at 10x magnification, scale bars represent 100µM 

 

Additionally, CLN7-iPSC were routinely passaged and expanded until P10 (Figure 

3.9). At this point, iPSC colonies would likely be losing episomal reprogramming 

plasmid expression and heading towards transgene independency. Research has 

shown that episomes are lost at a rate of approximately 2-8% per cell (Drozd et al, 

2015) and iPSCs divide rapidly, more than once per passage. Cruvinel and 

colleagues demonstrated doubling times of between 28.3 and 33.9 hours in various 

human iPSC clones (Cruvinel et al, 2015). As shown in the images, at P10 CLN7-
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iPSC are well established and morphologically typical of human pluripotent stem cell 

colonies. All images were taken at 4x magnification. 

 

Figure 3.9 P10 CLN7 iPSC colonies are well established and morphologically 
typical.  

CLN7 iPSC derived from Batten’s disease patient fibroblasts, with known disease causing 
mutations in the CLN7 gene at P10 and approaching transgene independency. iPSC 
colonies are morphologically typical of established iPSC colonies, individual cells are 
small, lacking in cytoplasm and very round. iPSC colonies are also rounded, with cells 
closely packed together and well defined borders. Images taken at 4x magnification, scale 
bars represent 100µM 

 

CLN7-iPSC colonies were fixed using 4% PFA and immunostained for a range of 

key human pluripotency markers, and compared to both positive (Shef3-hESC) and 

negative (hDF) controls. Shef3-hESC are a research-grade human embryonic stem 

cell line derived and characterised as karyotypically normal by Aflatoonian and 

colleagues at the University of Sheffield between 2003 and 2007 (Aflatoonian et al, 
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2010). These cells were obtained from the UK Stem Cell Bank and serve as a 

control for iPSC experiments. Firstly, P10 CLN7-iPSC colonies were stained for 

Tra160 and Oct4, two key markers of pluripotency (Figure 3.10.A). The top panel 

shows images taken at 10x magnification and the bottom panel shows images taken 

at 20x magnification on a fluorescent microscope. Positive and negative controls are 

shown Figure 3.10.B and C. As expected, Shef-3-hESC cells are positive for stem 

cell markers and hDFs are negative for stem cell markers. Shef3-hESC images are 

taken at 20x magnification and hDFs images are taken at 10x magnification. 
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A. 

 

B. 

 

C. 

 

Figure 3.10. Iummunofluorescent cell staining in P10 CLN7 iPSC to confirm 

pluripotency.  

A. CLN7 iPSC stained for key pluripotency markers.  From left to right images show: 

Phase, DAPI (nuclear stain), Tra160, Oct4 and Tra160/Oct4 Merge. CLN7 iPSCs are 

positive for pluripotency markers Tra160 and Oct4. Tra160 is particularly important for 

confirming pluripotency as it is not present in OriP/EBNA reprogramming plasmids, 

suggesting that the cells endogenous pluripotency gene networks have been ‘switched 

on’. Top panel images taken at 10x magnification with scale bars representing 100µm, 

bottom panel images taken at 20x magnification, with scale bars representing 50µm.  

B. Shef3-hESC positive controls. From left to right: Phase, DAPI, Tra160, Oct4 and 

Tra160/Oct4 Merge. Images taken at 20x magnification, scale bars represent 50µm. C. 

hDF negative controls. From left to right images show: Phase, DAPI (nuclear stain), 

Tra160, Oct4 and Tra160/Oct4 Merge. Images taken at 10x magnification, scale bars 

represent 100µm. 
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CLN7-iPSC colonies were immunostained for Tra181 and Sox2, two further key 

markers of pluripotency (Figure 3.11.A). The top panel shows images taken at 10x 

magnification and the bottom panel shows images taken at 20x magnification on a 

fluorescent microscope. Positive and negative controls are also shown in Figure 

3.11.B and C. As expected, Shef-3-hESC cells are positive for stem cell markers and 

hDFs are negative for stem cell markers. Shef3-hESC images are taken at 20x 

magnification and hDFs images are taken at 10x magnification.  
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A. 

 

B. 

 

C. 

 

Figure 3.11 Iummunofluorescent cell staining of P10 CLN7 iPSC to confirm 
pluripotency.  

A. CLN7 iPSC stained for key pluripotency markers Tra181 and Sox2.  From left to right 

images show: Phase, DAPI, Tra181, Sox2 and Tra181/Sox2 Merge.CLN7 iPSC are 

positive for both of these key markers of pluripotency in human cells. Tra181 is not 

present in the OriP/EBNA episomal reprogramming plasmids, indicating that the cells own 

pluripotency gene regulation networks have been switched on. Top panel images taken at 

10x magnification with scale bars representing 100µm, bottom panel images taken at 20x 

magnification, with scale bars representing 50µm. B. Shef3-hESC positive controls. From 

left to right: Phase, DAPI, Tra181, Sox2, and Tra181/Sox2 Merge. Images taken at 20x 

magnification, scale bars represent 50µm. C. hDF negative controls. From left to right 

images show: Phase, DAPI (nuclear stain), Tra181, Sox2 and Tra181Sox2 Merge. Images 

taken at 10x magnification, scale bars represent 100µm. 
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Finally, CLN7-iPSC colonies were immunostained for Nanog (Figure 3.12.A.). The 

top panel shows images taken at 20x magnification and the bottom panel shows 

images taken at 10x magnification on a fluorescent microscope. CLN7-iPSC colonies 

were positive for Nanog, a marker of pluripotency in human stem cells. Positive and 

negative controls are shown in Figure 3.12.B and C. As expected, Shef-3-hESC cells 

were positive for stem cell markers and hDFs are negative for stem cell markers. 

Shef3-hESC images are taken at 20x magnification and hDFs images are taken at 

10x magnification.  
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A. 

 

B. 

 

C. 

 

Figure 3.12 Iummunofluorescent cell staining of P10 CLN7 iPSC to confirm 

pluripotency.  

A. CLN7 iPSC stained for Nanog, a key pluripotency marker.  From left to right images 

show: Phase, DAPI, Nanog and DAPI/Nanog Merge. CLN7 iPSC are positive for Nanog. 

Top panel images taken at 20x magnification with scale bars representing 50µm, bottom 

panel images taken at 10x magnification, with scale bars representing 100µm. B. Shef3-

hESC positive controls, positive for Nanog. From left to right: Phase, DAPI, Nanog, and 

DAPI/Nanog Merge. Images taken at 20x magnification, scale bars represent 50µm. C. 

hDF negative controls, negative for Nanog. From left to right images show: Phase, DAPI, 

Nanog and DAPI/Nanog Merge. Images taken at 10x magnification, scale bars represent 

100µm 

 

 



114 
 

CLN7-iPSC cells at P10 express multiple key markers for pluripotency. Importantly, 

not only do they positively express Oct4 and Sox2, which are both present in the 

episomal reprogramming plasmids; they also express Tra160, Tra181 and Nanog, 

key markers of pluripotency which are not in the reprogramming plasmids. This 

indicated that the cells own pluripotency regulatory machinery has been switched on, 

suggesting that these cells will retain pluripotency even when transgene free.  

1.6. Conclusions 

Overall, these data suggest that the McKay lab iPSC reprogramming protocols are 

effective at reproducibly producing a variety of different mouse and human iPSC 

lines that express key endogenous markers of pluripotency, and in the case of the 

CLN7 iPSC, this is true at a passage where transgene independency should be 

approaching. In order to confirm pluripotency  further, RT-PCR experiments using 

primers that included part of the 3’UTR region could have been carried out to show 

that the cells were actively transcribing pluripotency genes such as Oct4 and Sox2. 

By including the 3’UTR region in PCR primer design, the amplification of any 

transgene sequences is prevented as this region is absent from the episomal 

plasmids. Unfortunately, time constraints meant these experiments could not be 

completed.  
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Chapter 4: Design, cloning, and validation of a genetic manipulation toolkit for 

interrogating the role of p62 in iPSC reprogramming and the maintenance of 

pluripotency  

5.1.  Introduction 

As discussed at length in the Introduction, p62 is a multifunctional, multi-domain 

scaffolding protein with numerous roles. p62 is an autophagy adaptor; s involved in 

the anti-oxidant response via NRF2/KEAP1 signalling; in the activation of mTORC1 

in the presence of amino acids; in the inflammatory response via the activation of 

NFΚB and more (Lippai and Low, 2014; Katsuragi et al, 2015; Fan et al, 2018; 

Sanchez-Martin et al, 2018). Due to the many roles of p62 and its myriad of 

interacting partners, I decided to attempt to assess several of these functions in 

isolation in the context of iPSC reprogramming and the maintenance of pluripotency. 

Many of the signally pathways p62 is involved in are also crucial for the iPSC 

reprogramming process including autophagy, mitochondrial clearance, energy 

production and utilisation and the clearance of huge amount of debris from protein 

and organelles that are remodelled or no longer required as cells so from somatic to 

pluripotent cell types.  

Further, because p62 is highly conserved across species (Katsuagi et al, 2015), I 

wanted to determine if any effects of p62 on iPSC reprogramming or pluripotency 

maintenance are also conserved across mouse and human, and so cell lines from 

both species were employed throughout the course of this investigation. By 

introducing point mutations and thereby changing a single amino acid, it is possible 

to prevent phosphorylation of a protein moiety and alter a defined function of p62 

whilst preserving all others. This should allow us to gain valuable insight into the 
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exact mechanisms and binding partners by which p62 has its p62 reprogramming 

effects, if any. 

In order to assess the role of possibility of a role p62 in iPS reprogramming and in 

the state of pluripotency, a range of tools for the genetic manipulation of p62 

expression were designed, created and validated. These tools included lentivirus 

shRNA expression vectors for both human and mouse p62 (sh(h)p62 and sh(m)p62), 

respectively; complete human and mouse p62 overexpression lentivirus; and a range 

of p62 deletion mutants to change specific functions of p62. These unique tools were 

verified and utilised to varying degrees in a range of cell types throughout this 

project; and the vectors and viruses themselves, as well as the novel cell lines they 

have created have enormous potential for further use in future experiments. By 

introducing point mutations and thereby changing a single amino acid, it is possible 

to prevent phosphorylation of a protein moiety and alter a defined function of p62 

whilst preserving all others. This should allow us to gain valuable insight into the 

exact mechanisms and binding partners by which p62 has its p62 reprogramming 

effects. 

5.2. Objectives: 

● To design, clone and validate human p62 shRNA (sh(h)p62) 

● To transduce nhDFs with sh(h)p62 and determine the level of protein knock-

down achieved 

● To design, clone and validate a human p62 overexpression construct 

● To clone human p62 overexpression construct into lentiviral vector 

● To design, clone and validated a library of human p62 mutant overexpression 

vectors and transduce into p62 null patient fibroblasts 
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● To validate the Addgene purchased human p62 mutant overexpression 

vectors in p62 null fibroblasts (As described in Table 2.3). 

● To clone and validate a truncated p62 human overexpression construct  

● To transduce p62 null fibroblasts with truncated p62 overexpression construct 

● To design, clone and validate a mouse p62 shRNA (sh(m)p62) 

● To transduce WT-MEFs with sh(m)p62 and determine the level of protein 

knock-down achieved 

● To design, clone and validate a mouse p62 overexpression construct 

● To clone mouse p62 overexpression construct into lentiviral vector 

● To design, clone and validate a library of mouse p62 mutant overexpression 

constructs 

5.3. Human shRNA 

5.3.1. Human shRNA design 

Firstly, an shRNA construct for human p62 was designed in order to induce p62-

knockdown in nhDF control cells. shRNA sequences were generated using the 

Splash RNA algorithm (Pelossof et al, 2017), which predicts high-potency, miRNA 

based shRNA sequences (Table 4.2) whereby a score of over 1.0 suggests a good 

shRNA sequence. Three sequences can be combined to create a ‘triple-hit’ effect, 

thereby increasing efficiency and ensuring a good level of knock-down. Three 

sequences were selected from the algorithm-generated options. In this case, 

sequences SQSTM1202_1282_v2; SQSTM1202_1010_v2 and 

SQSTM1202_694_v2 were selected (highlighted green in Table 4.2); the remaining 

sequence was excluded (highlighted red in Table 4.2) because it contained 

significant overlap with one of the other sequences.  
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Table 4.1: miRNA sequences predicted by the SplashRNA algorithm to 

induce potent p62 knock-down in human cells 

Label Antisense Guide Sequence SplashRNA Score 

SQSTM1202_1282_v2 TTTGAATACTGGATGGTGTCCA 1.521 

SQSTM1202_1010_v2 TTTTGAAGACAGATGGGTCCAG 1.341 

SQSTM1202_1013_v2 TTCTTTTGAAGACAGATGGGTC 1.316 

SQSTM1202_694_v2 TTCTTCAGGAAATTCACATCG 1.289 

 

Next, sequences and their complimentary strands are aligned to the p62 sequence 

(Figure 4.1.A), with mismatches created in the complimentary strand in order to 

promote duplex unwinding and passenger strand degradation (Figure 4.1.B). 
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A. 

 

B. 

 

Figure 4.1 Design of miRNA sequences for sh(h)p62 lentiviral construct. 

A. Sequences identified by the SplashRNA algorithm are aligned to the human p62 

sequence. B. Mismatches are created in the miRNA sequences in the complimentary 

strand (in the positions highlighted blue) in order to promote duplex unwinding and 

passenger strand degradation. For example, note that the bases circled in red have been 

altered from TG to AA. 

 

Finally, these sequences are combined with restriction sites added at each end 

(HpaI and XhoI) for ease of cloning into our destination vector of choice (plL3.7). 

This shRNA was designed so that each individual sequence could be used 

separately or together, so restriction sites are also present between each shRNA 

sequence (PvuII between sequences 1 and 2; SalI between sequences 2 and 3) 

(Figure 4.2.A). The overall design of the shRNA sequence is shown in Figure 4.2.B; 

sequences have a stem loop between complementary strands, and approximately 

60bp between each sequence for maximum effectiveness. 
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A. 

 

B. 

 

Figure 4.2 Construction of ‘triple hit’ shRNA sequence for human p62 and the 

overall design concepts. 

A. The three pairs of miRNA sequences (highlighted pink, and with the addition of 

mismatches highlighted in blue) are strung together separated by approximately 60bp and 

with restriction enzymes (red) at either end and between individual sequences for ease of 

cloning. B. Key design elements of the ‘triple-hit’ shRNA design including the SplashRNA 

generated Mir sequences, reverse complement strands with mismatches introduced, a 

stem loop and a spacing of approximately 60bp between each sequence.  

5.3.2. Cloning and validation 

The sh(h)p62 construct was cloned into plL3.7 as descried in Materials and Methods. 

Both the plL3.7 destination vector and the originating plasmid containing the shRNA 

sequence were subject to restriction digest with Hpa1 and Xho1 enzymes. HpaI cuts 

DNA in a ‘blunt’ fashion, and XhoI leaves a sticky end to help ensure that the shRNA 

construct is religated into the destination vector in the correct directionality. Digested 
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plasmids were separated by agarose gel electrophoresis and correct bands were 

excised and DNA extracted from the gel (Figure 4.3)  

 

 

Figure 4.3: Cloning of shRNA for human p62 into plL3.7 destination vector. 

Agarose gel electrophoresis Showing shRNA construct and pLL 3.7 destination vector 

after restriction digest. Circled fragments were extracted and re-ligated. 

 

The linearised plL3.7 vector and the shRNA construct are then religated and 

transformed into Stbl3 competent cells. (See also Materials and Methods). Individual 

bacterial colonies were then prepped and subjected to restriction digest with HpaI 

and XhoI (the same enzymes used to clone the construct into the vector) in order to 

check the success of the cloning (Figure 4.4.A.). Clones that appeared correct were 

sent to Source Bioscience for Sanger sequencing (Figure 4.4.B.) and finally, these 

sequences were aligned with the designed sequence (Figure 4.4.C.). Both clones 

were perfectly aligned to the designed sequence. 

 



123 
 

A. 

 

B. 

 

Figure 4.4 Successful cloning of sh(h)p62 constructs into plL3.7 lentiviral vector.  

A.  

First stage colony screening was carried out by restriction digest with HpaI and XhoI. 

Lanes 2 and 3 showed correct clones, whereas lane 1 showed an incorrect clone. B. 

Clones that appeared correct on restriction digest were sent for Sanger sequencing at 

Source Bioscience. 
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C. 

 

Figure 4.4 Successful cloning of sh(h)p62 constructs into pLL3.7 lentiviral vector.  
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C. Sequencing results are compared and aligned to the designed sequence using CLC 
sequence viewer to confirm cloning has been successful. 100% alignment can be seen 
between both sh(h)p62 clones sent for sequencing (top two sequence sequences) and the 
sequence as designed.  

5.3.3. Transfection and Transduction of sh(h)p62 in Hek293T cells. 

After Sanger sequencing results had confirmed the correct cloning and orientation of 

the sh(h)p62 construct into the pLL3.7 lentiviral vector, a proof-of-principal 

experiment was carried out to ensure that the expression plasmid was functional. 

Hek293Tcells were transiently transfected with the plL3.7-sh(h)p62 plasmid as 

described in the Materials and Methods section. 48 hours after transfection with PEI, 

approximately 40% of Hek293Ts were GFP+ upon visualisation on a fluorescent 

microscope (Figure 4.5.A). 

Hek293T cells were then co-transfected with a 2nd generation lentiviral envelope 

plasmid (pCMVR8.74) and a VSV-G envelope expressing plasmid (pMD2.G). These 

plasmids contain rev, gag and pol lentiviral genes encoding the essential proteins 

required for producing and packaging lentiviral particles inside Hek293T cells. At 48, 

72 and 96 hours the virus containing media was collected, filtered through a 0.22µm 

filter, concentrated and applied to fresh Hek293Ts at a range of concentrations from 

0.125 – 2µl/ 2ml media for transduction (Figure 4.5.B), in order to visually determine 

the optimum concentration of virus, balancing a high level of transduction efficiency, 

while still ensuring that cells have only a single integration of virus into the host 

genome. Since Hek293T cells can be easily clonally expanded from a single cell, it is 

not necessary to have an extremely high level of transduction efficiency, as GFP+ 

cells can be clonally expanded to create a homogeneous population.   
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A. 
  

 

Figure 4.5 Validation of the sh(h)p62 construct in Hek293T cells 

A. Transient transfection of sh(h)p62-GFP plasmid in Hek293T cells. 

Approximately 40% transfection efficiency was achieved after 48 hours. All fluorescence 

images were taken at 10x magnification, scale bar represents 100µM 
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B. 

 

 

Figure 4.5 Validation of the sh(h)p62 construct in Hek293T cells 

B. Transduction of Hek293T cells with sh(h)p62-GFP virus and at a range of 
concentrations from 0.125-2μl/2ml, with a negative control. Good transduction efficiency is 
achieved at all concentrations.  All fluorescence images were taken at 10x magnification 
and scale bars represent 100µM 
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Once preliminary fluorescence imaging had showed that the sh(h)p62-GFP was 

functional, Hek293T-sh(h)p62 cells were plated as single cells in a 96-well format 

and allowed to clonally expand to create a homogeneous population (Figure 4.6.A.). 

Individual colonies of Hek293T-sh(h)p62 cells were then continually passaged until 

an appropriate number of cells were available to lyse for protein extraction. Western 

blots were carried out to determine the extent to which sh(h)p62 reduces p62 protein 

levels in Hek293T cells. Figure 4.6.B shows a representative example of three 

western blots comparing p62 protein levels, normalised to housekeeper β-actin. 

Untransduced Hek293Ts provide a positive control, while p62 null patient fibroblasts 

provide a negative control. Densitometry analyses using ImageJ determine that the 

sh(h)p62 lentivirus results in a ~85% reduction in p62 production levels, on average, 

across three independent experiments. (n=3, p<0.0001, p62 protein levels in 

sh(h)p62-Hek293Ts = 14.79% ±4.35) (Figure 4.6.C.) 
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A. 

 

B. 

 

C.  

 

Figure 4.6 p62 protein knock-down in Hek293Ts using sh(h)p62 shRNA 

A. Fluorescence imaging of sh(h)p62-Hek293T cells subjected to clonal expansion 

creating a homogeneous population of sh(h)p62-GFP+ cells. B. Representative example 

of 3 independent western blots showing p62 protein levels in Hek293T controls, sh(h)p62-

Hek293T cells and p62 null patient fibroblasts. Housekeeper is β-actin. C. Densitometry 

analysis in ImageJ shows a highly significant reduction in p62 protein levels in sh(h)p62-

Hek293T cells compared to control.  When normalised to both β-actin and Hek293T 

controls, p62 protein levels are reduced by an average of ~85% ±4.35%. (n=3, p<0.0001., 

error bar represents S.E.M, statistical analysis = paired t-test). Fluorescence image taken 

at 10x magnification, scale bars represent 100µm. 

5.3.4. Transduction into nhDFs 

These experiments showed that not only is the sh(h)p62 easily transfected and 

transduced, it also results in reliably and reproducibly high levels of protein knock-
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down. The next step was to test the sh(h)p62 lentivirus in our target cells: nhDFs. 

The concentrated virus was added to approximately 125,000 early passage (P3) 

nhDFs, in a range of concentrations from 0.25-1µl/ 2ml media. As shown in Figure 

4.7.A, a good level of transduction efficiency was again achieved in the nhDFs, 

particularly at the higher two concentrations. When 0.5µl/2ml of media was added, 

approximately 40% transduction efficiency was achieved; when 1µl/2ml media was 

added, approximately 80% transduction efficiency was achieved. Viral titre was 

estimated in these target cells. Viral titer can be estimated in the following 

calculation: 

Titer/ml (TU/ml) = cell number on the day of transduction x ((percentage of GFP+ 

cells/100)/ dilution factor) 

 

Thus, the titre of sh(h)p62 virus produced in this experiment can be estimated as 

follows: 

125,000 x (0.8/0.0005) = 2x108 TU/ml 

125,000 X (0.4/0.00025) = 2x108 TU/ml 

 

nhDFs stably transduced with sh(h)p62 were then sent to The University of 

Manchester for fluorescence activated cell sorting (FACS), in their core flow 

cytometry facilities. Cells were sorted by Dr Gareth Howell, and on his advice, cells 

transduced with all three MOIs of virus were pooled together, in order to ensure that 

enough cells were available for sorting (~5million). 62% of all cells (3.1million) sorted 

were GFP+. The resultant homogeneous population of 100% transduced cells 
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(Figure 4.7.B) were then passaged and expanded until ready to embark upon 

reprogramming experiments described in Chapter 6.  

Approximately 150,000 cells were lysed for protein extraction and a western blot 

performed as before to determine if the level of protein knock-down achieved in 

nhDFs was similar to that achieved in Hek293Ts (4.7.C). This was only carried out 

once and so statistical analysis was not carried out, however, protein knock-down 

levels achieved appear very similar to that in Hek293Ts 
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A.  

 

B. 

 

C. 

 

Figure 4.7. Transduction of nhDFs with sh(h)p62 lentivirus and p62 protein knock-

down.  

A. Transduction of sh(h)p62 lentivirus at concentrations of 0.25, 0.5 and 1 µl/2ml. 1µl/2ml 

sh(h)p62 lentivirus results in an approximately 80% transduction efficiency. B. Cells were 

sorted using FACS to create a homogenous population of cells, with a single integration of 

sh(h)p62 virus Images show the resulting cells with 100% GFP expression. C. Western 

blot analysis shows that the level of p62 knock-down achieved in nhDFs is very 

comparable to that achieved in the Hek293T cells when compared to control nhDFs, 

control Hek293T cells and p62 null patient cells (n=1).  Images taken at 10x magnification, 

scale bars represent 100µm. 
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5.3.5. Conclusions 

A shRNA construct was designed and cloned into the plL3.7 lentiviral vector, with 

Sanger sequencing data to support this. The shp62 cassette was then transiently 

transfected into Hek293T cells to produce lentiviral particles. Fresh Hek293Ts 

transduced with lentivirus containing media show a high level of transduction 

efficiency as evidences by GFP fluorescence. Further, in a homogenous population 

of Hek293T cells, densitometry analysis of three western blots showed that the 

sh(h)p62 cassette caused on average 85% reduction in p62 protein levels. Once 

these proof-of-principle experiments confirmed the effectiveness of the sh(h)p62 

construct, our target cells, nhDFs were transduced with sh(h)p62 virus. nhDFs 

transduced with the virus were then sorted by FACs, and a homogeneous line of 

nhDF-shp62 cells was created. These cells were then ready to undergo 

reprogramming experiments (Chapter 6). 

5.4. Human p62 overexpression 

5.4.1. Design, cloning and validation of human p62 overexpression construct. 

A construct for the overexpression of human p62 (hp62) was designed. The 

construct was designed as the whole of the human p62 coding sequence, which is 

1323bp in length and codes for the complete multi-domain p62 protein, which is 440 

amino acids in length. This sequence was bookended with EcoRI and XbaI 

restriction sites at each end for ease of cloning into the pENTR1A minimal vector. A 

4bp buffer between restriction sites and the coding sequence was also added. This 

construct was de novo synthesised under my instruction by Eurofins Genomics, and 

provided in a minimal plasmid with Ampicillin resistance.  
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The hp62 sequence was cloned into the pENTR1A plasmid by cut-and-paste 

cloning, as described previously; hp62 sequence and the pENTR1A vector are both 

linearised with restriction enzymes before being re-ligated together. pEX-A258-hp62 

plasmid and pENTRA1A were both digested with EcoRI and XbaI restriction 

enzymes and separated by gel electrophoresis (Figure 4.8.A) and the correct 

fragments (red circles) were extracted from the gel, re-ligated and transformed into 

Stbl3 competent cells as previously described. Individual bacterial clones were 

prepped, and again subjected to restriction digest with EcoRI and XbaI as a first line 

of screening. All seven clones showed digested bands of the correct size indicating a 

successful cloning (Figure 4.8B), and a few were sent to Source Bioscience for 

Sanger sequencing to confirm (Figure 4.9). 

A. 

 

B. 

 

Figure 4.8 Cloning of hp62 overexpression cassette into pENTR1A minimal vector. 

A. pEX-A258-hp62 and pENTR1A vectors were both digested with EcoRI and XbaI 

restriction enzymes, the correct fragments are ~1340bp long for hp62 and ~2200bp long 

for pENTR1A (red circles). C. Re-ligated hp62-pENTR is the transformed into Stbl3 comp 

cells, and grown overnight at 37oC. Individual bacterial clones are prepped and once 

again subjected to restriction digest with EcoRI and XbaI enzymes to create 2 bands on 

agarose gel of ~1340bp and ~2200bp. 
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Figure 4.9 Sequencing of hp62 pENTR1A clones demonstrates successful cloning. 

Clones that appear correct are sent for Sanger sequencing. Image shows multiple 

sequence alignment in CLC sequence viewer: 1 – hp62 overexpression sequence as 

designed. 2- SQSTM1-202 (p62) coding sequence (Transcript ID: ENST00000389805.1). 
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3. hp62-pENTR 1A sequencing results. All three are perfectly aligned, showing that the 

hp62 overexpression cassette has been successfully cloned into pENTR1A. 

The pENTR1A minimal vector is an ideal intermediate cloning vector: it has a small 

number of restriction enzymes in a multiple cloning site (MCS), allowing for easy 

cloning. Further, it contains attL1 and attL2 sites, which enable Gateway cloning. 

Gateway cloning is based on a site-specific recombination system used by phage in 

order to integrate its DNA into the chromosome of E.coli, whereby phage contains an 

attP site and E.coli contains an attB site, enzymes catalyse a reaction where the sites 

are recombined and create attL and attR sites in a reversible process. Gateway 

cloning allows convenient cloning from an Entry vector (pENTR1A) to a destination 

vector of choice (in this case SFFV-GW). The attL and attR sites, as well as any DNA 

between them are recombined in the LR reaction. hp62 pENTR1A and SFFV-GW 

vectors were recombined, transformed and grown overnight on ampicillin containing 

agar plates. Individual bacterial colonies were prepped and sent to Source bioscience 

for sequencing. SFFV-hp62 clones were not subjected to screening with restriction 

enzymes as the SFFV vector is very large (~10.5kb) and contains a huge number of 

restriction items and on this occasion, it was not possible to find suitable enzymes to 

screen for the success of the cloning. Figure 4.10 shows multiple sequence alignment 

of SFFV-hp62 sequencing results, along with the hp62 overexpression cassette as 

designed, and the SQSTM1-202 transcript coding sequence. Perfect alignment can 

be seen, proving that the hp62 overexpression cassette was successfully cloned into 

SFFV-lentiviral vector.  

 



137 
 

 

Figure 4.10 Sequencing of hp62-SFFV clones demonstrates successful cloning. 

B. Sequencing results and multiple sequence alignment confirm successful recombination 
of hp62 in SFFV lentivector.  
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5.4.2. Conclusions 

The hp62 overexpression cassette was successfully cloned into both the pENTR1A 

minimal cloning vector and the SFFV lentivector. However, it was later determined 

that this SFFV lentivector was not the ideal destination vector, as it contained neither 

a GFP cassette (or similar) or a puromycin selectable cassette. This meant that it 

would be impossible to determine transfection or transduction efficiency levels with 

the vector, and that it would not possible to create a homogeneous population of 

cells, which would be essential for experiments aiming to determine the role of p62 in 

iPSc reprogramming and pluripotency. Unfortunately, I was not successful in cloning 

the hp62 overexpression cassette into a more suitable GFP or puromycin containing 

lentivector within the timeframe or the project, although a suitable vector was 

identified, the MCS did not allow for the cloning of the p62 overexpression construct. 

As such, a retroviral vector containing an hp62 overexpression cassette and a 

puromycin selection marker was purchased from addgene.  

5.5. pBABE-puro HA-p62 and pBABE-puro HA-p62-LIR 

pBABE-puro HA-p62 (Addgene ID: 71305) is a retroviral vector based on Moloney 

murine leukemia virus (Mo MuLV) (Chen et al, 2013), with a puromycin selectable 

marker and a human p62 overexpression cassette. This was purchased in addition 

to pBABE-puro HA-p62-LIR (addgene ID: 71306), which is identical to pBABE-puro 

HA-p62, except for a mutation in the cDNA corresponding to a single amino acid 

change (W338A) in the LIR region of p62. This W338A mutation prevents p62 from 

being broken down by autophagy (Chen et al, 2013). See Materials and Methods for 

further details regarding these plasmids.  
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pBABE- puro HA-p62 and pBABE-puro HA-p62-LIR bacterial colonies were prepped 

and subjected to XhoI and HindIII restriction digest to confirm (Figure 4.11). 

Fragments of ~1700bp and ~4750bp indicate a positive result.  

 

 

Figure 4.11 Preparation of pBABE-puro-HA-p62 and pBABE-puro-HA-p62-LIR 

retroviral plasmids.  

A. pBABE-puro HA-p62 and pBABE-puro HA-p62-LIR plasmids were subjected to XhoI 

and HindIII restriction digest. Fragments of ~1700bp and ~4750bp indicate a positive 

result, and shown within the red circle.  

 

pBABE-puro plasmid preps were not sent for Sanger sequencing, as no cloning or 

genetic manipulation had occurred, and so a restriction digest was sufficient.  

pBABE-puro HA-p62 and pBABE-puro HA-p62-LIR retroviral plasmids were then 

transfected into Hek293T cells alongside pUMVC packaging plasmid for producing 

MuLV retroviral particles, and pCMV-VSV-G envelope protein producing vector (See 

Materials and Methods). 1.5µg pBABE-puro vector; 1µg pUMVC and 0.5µg VSV-G 

were co-nucleofected into 1,000,000 Hek293T producer cells per experiment. At 48, 

72 and 96 hours, the virus containing cell supernatant was collected, filtered through 
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a 0.22µm filter and applied directly to hDF-p62-/- 1:1 (one well of virus containing 

media applied to one well of hDF-p62-/-). Retrovirus cannot easily be concentrated, 

due to instability of the viral membranes.  

hDF-p62-/- stably transduced with pBABE-puro HA-p62 and pBABE-puro HA-p62-LIR 

were subjected to puromycin (concentration 1.5 µg/ml) selection for 48 hours (2D) 

(Figure 4.12). Since the pBABE retroviruses have within them a puromycin 

resistance gene, only cells which have been transduced by the viruses will survive 

selection; thus creating a homogeneous population of hDF-p62-/- whereby the 

expression of p62 has been recovered, either in its native form (hDF-p62-/--HA-p62) 

or with a mutation in the LIR, preventing degradation of p62 by autophagy (hDF-p62-

/--HA-p62-LIR). These newly created cell lines could be utilised in future iPSC 

reprogramming experiments.  
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Figure 4.12 Puromycin selection of retrovirus transduced hDF-p62-/-. 

hDF-p62-/- cells stably transduced with HA-p62 and HA-p62-LIR retrovirus were subjected 

to 48 hours of puromycin selection to create a homogeneous cell line. Images show 

representative example. hDF-p62-/- cells at day 0 and day 2 (48 hours) with and without 

1.5µg/ml puromycin. Cells were allowed to recover, expanded and frozen for future iPSC 

reprogramming experiments. Images taken at 4x magnification, scale bars represent 

100µM 

 

5.6. pBMN mCherry- p62 retroviruses.  

Two further human p62 overexpression mutant retroviral plasmids were purchased 

from Addgene: pBMN-mCherry-p62 (∆UBD) (Addgene ID: 119687) and pBMN-

mCherry-p62 (∆UBD/W340A) (Addgene ID: 119688) (Padman et al, 2019) (See 

Materials and Methods). pBMN-mCherry-p62 (∆UBD) is an overexpression plasmid 

for human p62, without its UBD domain. This mutation will prevent the binding of p62 

to ubiquitin tagged proteins, preventing the recruitment of these proteins to the 

autophagosome. Of course, other proteins besides p62 do contain UBD domains 

(e.g. OPTN, NBR1 and NDP52) (Padman et al, 2019), so this does not prevent that 
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targeting of ubiquitin tagged proteins to autophagosome in general, merely, the 

ability of p62 specifically to enact this function. pBMN-mCherry-p62 (∆UBD/W340A) 

has an additional mutation in the LIR region, resulting in a single amino acid change 

W340A, preventing the interaction of p62 with LC3.  

pBMN-mCherry-p62 (∆UBD) and pBMN-mCherry-p62 (∆UBD/W340A) plasmids 

were prepped and plasmids sent to Source bioscience for sequencing, as an 

appropriate restriction digest could not be found in this instance. Multiple sequence 

alignment in CLC sequence viewer shows the pBMN-mCherry-p62 (∆UBD) 

sequence as provided in Addgene, compared to sequencing results for both pBMN-

mCherry-p62 (∆UBD) and pBMN-mCherry-p62 (∆UBD/W340A) plasmid preps 

(Figure 4.13). The blue circle shows the single point mutation in the pBMN-mCherry-

p62 (∆UBD/W340A) sequence.  pBMN-mCherry-p62 (∆UBD) and pBMN-mCherry-

p62 (∆UBD/W340A) retroviral plasmids were co-nucleofected into Hek293T cells 

along with p-CMV-VSV-G and pUMVC retroviral envelope and packaging plasmids 

as previously described (See Materials and Methods).  
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Figure 4.13 Retroviral pBMN-mCherry-p62 vectors. 

Multiple sequence alignment in CLC sequence viewer shows sequencing results 

confirming pBMN-mCherry-p62 (∆UBD) and pBMN-mCherry-p62 (∆UBD) sequences, 

compared to the sequences provided in addgene. The blue circle also shows the single 

point mutation that results in the W340A amino acid change in pBMN-mCherry-p62 

(∆UBD). 
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pBMN-mCherry-p62 (∆UBD) and pBMN-mCherry-p62 (∆UBD/W340A) were co-

nucleofected into Hek293T producer cells with pCMV-VSV-G and pUMVC retroviral 

packaging and envelope plasmids as previously described. 48 hours after 

nucleofection Hek293T producer cells were imaged under fluorescence microscopy. 

Figure 4.14 shows Hek293Ts transfected with pBMN-mCherry-p62 (∆UBD) (Figure 

4.14.A) and pBMN-mCherry-p62 (∆UBD/W340A) (Figure 4.14.B) alongside p-CMV-

VSV-G and pUMVC packaging and envelope plasmids, at 10x (top of each panel) 

and 20x magnification (at bottom of each panel). Upon visualisation, approximately 

50% of Hek293T cells were mCherry+. Since the pBMN-mCherry retroviral plasmids 

are only very weakly expressed under the gag-pol promoter embedded in the 

plasmid, transient transfection efficiency with these plasmids is extremely low. 

Hence, this level of mCherry+ expression is only possible when co-transfected with 

the packaging and envelope plasmids; thus suggesting that virus is being 

successfully produced and released into the supernatant in this experiment, and that 

the mCherry+ expression comes from self-transduction of the Hek293T producer 

cells, rather than transfection itself. The virus containing cell supernatant was 

collected at 48, 72 and 96 hours, filtered through a 0.22µm filter, and applied directly 

to target cells.  
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A. 

 

 

 

 

 

 

 

 

 

B. 

 

 

 

 

 

 

 

 

 

Figure 4.14 Transfection and transduction of Hek293T cells with bBMN-mCherry-

p62 retroviruses. A. Hek293T cells imaged 48 hours after transfection with pBMN-

mCherry-p62 (∆UBD) alongside pCMV-VSV-G and pUMVC envelope and packaging 

plasmids. B. Hek293T cells imaged 48 hours after transfection with pBMN-mCherry-p62 

(∆UBD/W340A) alongside pCMV-VSV-G and pUMVC envelope and packaging plasmids. 

In both sets of images, approximately 50% of cells are mCherry+, suggesting that viral 

production has occurred and that these Hek293T cells have undergone some level of self-

transduction. Images taken at 10x (top panel) and 20x (bottom panel). Scale bars 

represent 100µM 
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In this instance, the target cells were hDF-p62-/- cells that had already been 

nucleofected with iPSC reprogramming OriP/EBNA episomal plasmids (as previously 

described in Results 1). hDF-p62-/- were nucleofected using the usual McKay Lab 

iPSC reprogramming protocol, but, on 1D when cell media was usually replaced with 

fresh hDF maintenance media, instead pBMN-mCherry-p62(∆UBD) and pBMN-

mCherry-p62(∆UBD/W340A) virus containing media was added. Virus containing 

media was also added two subsequent days, to ensure that as many cells were 

transduced as possible. As cell number and density are usually relatively low 

following nucleofection, a high transduction efficiency was achieved. Figure 4.15 

provides a schematic of this modified reprogramming protocol.  
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Figure 4.15 iPSC reprogramming of hDF-p62-/- + p62 overexpression mutant 

retrovirus (pBMN-mCherry-p62 (∆UBD and pBMN-mCherry-p62 (∆UBD/W340A). 

Experimental design overview.  

 

hDF-p62-/- cells nucleofected with reprogramming plasmids and transduced with 

pBMN-mCherry viruses were imaged on D5 of iPSC reprogramming (Figure 4.16). 

Again, these experiments could not be completed, but fluorescence imaging taken 

on D5 of iPSC reprogramming experiments indicated a very high level of 

transduction efficiency in these cells, suggesting that the experimental design was 

successful and important data could have come from these experiments. 
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A.

 

B. 

 

 

Figure 4.16 iPSC reprogramming of hDF-p62-/- + p62 overexpression mutant 

retrovirus.  

A. Phase images of hDF-p62-/- + pBMN-mCherry-p62 (∆UBD) (left image) and of hDF-p62-

/- + pBMN-mCherry-p62 (∆UBD/W340A) (right), at D5 of a reprogramming experiment. 

Cells appeared to have recovered well from nucleofection and three days of transductions 

and appear healthy. Phase images were taken at 10x magnification. B. Fluorescence 

imaging of hDF-p62-/- + pBMN-mCherry-p62 (∆UBD) (left image) and hDF-p62-/- + pBMN-

mCherry-p62 (∆UBD/W340A) at D5 of iPSC reprogramming. A high level of transduction 

is visible. Fluorescence images were taken at 20x magnification, scale bars represent 

50µm. 
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5.7. Truncated- hp62 overexpression plasmid 

As previously discussed, p62 is a multi-domain, multi-functional protein 440 amino 

acids in length, encoded by the SQSTM1 gene: specifically the SQSTM1-202 

transcript. However, another commonly expressed transcript exists- SQSTM1-215. 

This transcript encodes a much shorter protein; only 167 amino acids in length (See 

further details in Introduction, section 1.12. These 167 amino acids correspond with 

a small portion of the PB1 domain, a ZZ-type zinc finger domain, and the Traf6 

binding region (TB) only. Figure 4.17 shows truncated hp62 (hp62-trunc) aligned to 

the full-length protein. 
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Figure 4.17: Truncated human p62.  

A. Multiple sequence alignment in CLC sequence viewer shows the amino acid sequence 

for full-length human p62 encoded by the SQSTM1-202 transcript compared to truncated 

human p62 encoded by the SQSTM1-215 transcript. 
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A lentiviral overexpression vector containing this hp62-trunc expression cassette, 

controlled by a CMV promoter was purchased from GeneCopeiaTM, which also 

contains eGFP and puromycin selection cassettes. This hp62-trunc vector was co-

transfected into Hek293T producer cells alongside lentiviral envelope (pCMVR8.74) 

and VSV-G envelope expressing (pMD2.G) plasmids as previously described.  

Figure 4.18.A shows Hek293T cells 72 hours after transfection. Fluorescence 

imaging shows an extremely high level of GFP+ cells (~70%), suggesting a high 

level of transfection efficiency. Untransfected Hek293T cells are also shown, 

confirming that GFP+ expression is directly a result of the Lentiviral production and 

no auto-fluorescence is occurring. In addition, there was no fluorescence in the red 

channel (not shown).  

Virus containing media was collected at 48, 72 and 96 hours, filtered through a 

0.22µm filter and applied directly to fresh Hek293T cells to undergo transduction. 

Virus containing media was added either 1-well of virus media directly onto 1- well of 

Hek293T cells (1:1) or 1-well of virus containing media to 2-wells of Hek293T cells 

(1:2) (Figure 4.18.B). Transduction efficiency is approximately 25% at the higher 

concentration.  

 

 

 

 

 

 



152 
 

A. 

 

Figure 4.18 Transfection and transduction of hp62-trunc in Hek293Ts.  

A. Hek293T cells 72 hours after transfection with p-receiver-hp62-trunc-GFP lentiviral 
vector alongside envelope (pCMVR8.74) and VSV-G packaging expressing (pMD2.G) 
plasmids. A very high level of transfection efficiency is achieved.  
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B. 

 

Figure 4.18 Transfection and transduction of hp62-trunc in Hek293Ts.  

B. Hek293Ts transduced either 1:1 (top two panels) or 1:2 (bottom panel) with hp62-trunc-

GFP lentivirus containing media.  

 

Hek293T cells are not the ideal cell line in which to test this lentivirus, due to the high 

level of exogenous p62 protein expression. However, the GFP expression in the 

transduced cells suggested that the overexpression construct was at least actively 

expressed in Hek293T cells so I decided to test these cells in the hDF-p62-/- target 

cells.  
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Hek293T cells were co-transfected with alongside lentiviral envelope (pCMVR8.74) 

and VSV-G envelope expressing (pMD2.G) plasmids as previously described and 

imaged under a fluorescence microscope after 72 hours (Figure 4.19.A.). hp62-

trunc-GFP lentivirus containing media was collected and filtered through a 0.22µm 

filter at 48, 72 and 96 hours after transfection and applied 2:1 (in order to improve 

upon the transduction efficiency achieved in the Hek293T experiment) onto hDF-p62-

/- in a 6-well plate. hDF-p62-/- were imaged under fluorescence microscopy 72 hours 

after transduction (Figure 4.19.B) and ~50% of cells are GFP+.  

hDF-p62-/--hp62-trunc-GFP cells were then expanded and subjected to puromycin 

selection in order to create a homogeneous population of cells. A puromycin titration 

experiment was performed (Figure 4.19.C) in order to determine the optimum 

concentration of puromycin for these cells. It was determined that a concentration of 

1µg/ml puromycin was the optimum concentration to ensure that 100% of cells were 

GFP+ and therefore stably transduced with the hp62-trunc-GFP lentivirus without 

causing any toxicity. This brand new cell line of p62 null fibroblasts with a 

reconstituted, truncated form of p62 (hDF-p62-/--hp62-trunc-GFP) were expanded 

and placed in cryopreservation for future iPSC reprogramming experiments.   
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A. 

 

 

 

 

B. 

C. 

 

Figure 4.19 hDF-p62-/- transduced with hp62-trunc-GFP lentivirus.  

A. Hek293T producer cells transfected with hp62-trunc-GFP lentiviral vector, alongside 

envelope (pCMVR8.74) and VSV-G packaging expressing (pMD2.G) plasmids and 

imaged after 72 hours. Transfection efficiency is very high. B. hDF-p62-/- transduced with 

hp62-trunc-GFP lentivirus containing media 2:1 and imaged after 72 hours. Transduction 

efficiency is also relatively high. C. Puromycin titration experiment in hDF-p62-/- 

transduced with hp62-trunc-GFP lentivirus. A range of puromycin concentrations from 0.5-

5µg/ml were applied to cells for 48 hours, and allowed to recover for a further 48 hours 

before imaging. 1µg/ml of puromycin is ideal (as indicated by the red box), and these cells 

were expanded and cryopreserved for future experiments 
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5.8. Mouse p62 cloning 

5.8.1. Introduction 

p62 is a highly conserved gene across all species, and study its effects in iPSC 

reprogramming and the maintenance of pluripotency could provide valuable insight 

into its biology. As such, I have created a library of genetic manipulation vectors for 

mouse p62 to compliment those created in human. I have created a mouse p62 

shRNA lentiviral vector, in much the same way as the human shRNA. Secondly, I 

have created a complete p62 overexpression lentivirus and employed state-of-the-art 

In-Fusion® cloning to create three functional mutants of p62 in key interacting 

regions.  

5.8.2. Mouse shRNA design 

A shRNA construct for mousep62 was designed in order to induce p62-knockdown in 

MEF control cells. shRNA sequences were generated exactly as human shRNA; 

using the Splash RNA algorithm (Pelossof et al, 2017), which predicts high-potency, 

miRNA based shRNA sequences (Figure 4.20), whereby a score of over 1.0 

suggests a good shRNA sequence. Three sequences can be combined to create a 

‘triple-hit’ effect, thereby increasing efficiency and ensuring a good level of knock-

down. Three sequences were selected from the algorithm generated options (in this 

case sequences 1, 2 and 5 were selected (highlighted in green) as 3 and 4 

overlapped with 1 (highlighted in red). Next, sequences and their complimentary 

strands are aligned to the p62 sequence, with mismatches created in the 

complimentary strand in order to promote duplex unwinding and passenger strand 

degradation as previously described. Finally, these sequences are combined with 

restriction sites added at each end (HpaI and XhoI) for ease of cloning into our 
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destination vector of choice (plL3.7). As with the human shRNA. This shRNA was 

designed so that each individual sequence could be used separately or together, so 

restriction sites are also present between each shRNA sequence (PvuII between 

sequences 1 and 2; SalI between sequences 2 and 3). Sequences have a stem loop 

between complementary strands, and approximately 60bp between each sequence 

for maximum effectiveness. 

Table 4.2: miRNA sequences predicted by the SplashRNA algorithm to 

induce potent p62 knock-down in mouse cells  

Label Antisense Guide Sequence SplashRNA Score 

Mouse_SQSTM_1016_v2 TTTTGAAGACAAATGTGTCCAG 1.724 

Mouse_SQSTM_283_v2 TTCTCTTTAATGTAGATGCGGA 1.630 

Mouse_SQSTM_1015_v2 TTTGAAGACAAATGTGTCCAGT 1.568 

Mouse_SQSTM_1019_v2 TTCTTTTGAAGACAAATGTGTC 1.443 

Mouse_SQSTM_1288_v2 TTCGAATACTGGATCGTGTCA 1.427 

5.8.3. Cloning and validation 

The sh(m)p62 construct was cloned into pLL3.7, whereby both the pLL3.7 

destination vector and the originating plasmid containing the shRNA sequence were 

subject to restriction digest with Hpa1 and Xho1 enzymes. HpaI cuts DNA in a ‘blunt’ 

fashion, and XhoI leaves a sticky end: this helps to ensure that the shRNA construct 

is religated into the destination vector in the correct directionality. Digested plasmids 

are then separated by agarose gel electrophoresis, correct bands are excised and 

DNA extracted from the gel (Figure 4.20). The linearised plL3.7 vector and the 

shRNA construct are then religated and transformed into Stbl3 competent cells. (See 

also Materials and Methods). Individual bacterial colonies were then prepped and 

subjected to restriction digest with Hpa1 and XhoI in order to check the success of 
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the cloning (Figure 4.21.A and sent for Sanger sequencing (Figure 4.21.B) 

Unfortunately, several attempts at Sanger sequencing failed to produce readable 

results despite positive restriction digests, preventing the validation of this construct 

in cells.  

 

 

Figure 4.20: Cloning of shRNA for mouse p62 into plL3.7 destination vector.  

Agarose gel electrophoresis showing shRNA construct and pLL3.7 destination vector after 
restriction digest. Circled fragments were extracted and re-ligated. 
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A. 

 

B. 

 

Figure 4.21 Cloning of sh(m)p62 constructs into pLL3.7 lentiviral vector.  

A.  

First stage colony screening is carried out by restriction digest with HpaI and XhoI. Lane 1 

shows a correct clone, with clean fragments of the correct size.  B. Clones which appear 

correct on restriction digest are sent for Sanger sequencing at Source Bioscience, 

unfortunately Source Bioscience failed to return good sequencing results on multiple 

occasions 
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5.9. Mouse p62 overexpression. 

5.9.1. Design, cloning and validation of mouse p62 overexpression construct.  

A construct for the overexpression of mouse p62 (mp62) was designed. The 

construct was designed as the whole of the mouse p62 coding sequence, which is 

1329bp in length and codes for the complete multi-domain p62 protein (443 amino 

acids in length). This construct was de novo synthesised under my instruction by 

Origene, and provided in a plasmid with Kanamycin resistance. The mp62 sequence 

was cloned into the pENTR1A plasmid by PCR cloning. PCR primers were designed 

for the start and end of the mouse p62 sequence, with the addition of a small 4pb 

‘buffer’ and EcoRI restriction site on the forward primer and BamHI restriction site on 

the reverse primer. The mouse p62 sequence was amplified using end-point PCR 

and the PCR product, alongside pENTR1A minimal cloning vector were digested 

with EcoRI and BamHI restriction enzymes. pENTR1A was separated by gel 

electrophoresis and the correct fragments were extracted from the gel, re-ligated 

with the mouse p62 sequence and transformed into Stbl3 competent cells as 

previously described. Individual bacterial clones were prepped, and again subjected 

to restriction digest with EcoRI and BamHI as a first line of screening. Correct clones 

should have two bands on an agarose gel, one at approximately 2200bp (pENTR1a) 

and one at 1300bp for mouse p62. All three clones appeared to be correct on 

restriction digest (Figure 4.22). 
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Figure 4.22 Mouse p62 overexpression vector is cloned into pENTRA1A minimal 

cloning vector.  

Restriction digest reveals 3 correct clones with fragments of the right size. 

5.9.2. Infusion cloning to create specific functional mutants of mouse p62.  

In order to study not just if p62 plays a role in iPSC reprogramming but how it exerts 

these effects, I designed a number of functional mutants to alter the phosphorylation 

status of a single amino acid, thereby preventing specific p62 interactions. For 

mouse p62, I designed mutations in three key p62 domains: the PB1 domain, the 

LIR and the KIR. Figure 4.23 shows the basic domain architecture of mouse p62, 

with red circles highlighting the location of the proposed mutations: s24a, w340a and 

s351a.  
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Figure 4.23: Desired functional mutations of mouse p62 as they relate to the domain 

architecture of the protein. The red circles highlight the location of s24a, w340a and 

s351a mutations.  

 

The In-Fusion® cloning strategy for specific site mutations was similar to the PCR 

based cloning already described. Mouse p62 sequences were amplified from 

pENTR1a vectors using primers designed with restriction enzymes as well as the 

specific base pair mutations we wanted to introduce and 15bp overlap with the 

desired destination vector. The pENTR1A backbone was then restriction digested 

using complimentary enzymes and the newly mutated p62 sequence reintroduced 

into the original vector.  Figure 4.24 shows a representative example of an agarose 

gel showing the PCR amplified mp62 sequence alongside digested and undigested 

(as control) pENTR1A backbone. After gel extraction, the In-Fusion® reaction is 

performed and the resulting DNA transformed into Stellar competent cells. 
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Figure 4.24 Infusion cloning of mp62 mutants in pENTRA1.  

mp62 sequence is amplified with primers containing the new mutation to be introduced 

and restriction sites within the mp62 sequence. pENTRA1 is digested with the same 

restriction enzymes. pENTR1A backbone and mp62 sequence extracted from the gel, 

religated and transformed into competent cells. 

 

Clones were sent for sequencing, and sequencing results are shown in Figure 

4.25.A, B and C. Correct clones with new mutations were created for mouse p62 as 

follows: mp62 s24a (PB1 mutation to prevent homodimerisation of p62), w340a (LIR 

mutation to prevent binding with LC3) and s351a (KIR mutation to prevent interaction 

with KEAP1), all in pENTR1A minimal cloning vector.  
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Figure 4.25.A: Successful mouse p62 mutation In-Fusion® cloning in pENTR1A 

cloning vector- s24a mutation.  

Red circle shows that 3 correct clones have the desired mutation, and are otherwise 

perfectly aligned. Mutation changes AGC (Serine) to GCT (alanine). 
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Figure 4.25.B: Successful mouse p62 mutation In-Fusion® cloning in pENTR1A 

cloning vector- w340a mutation.  

Red circle shows 2 correct clones have the desired mutation. The red circle shows DNA 

base changes from TGG (encoding aspartate) to GCT (alanine). 
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Figure 4.25.C: Successful mouse p62 mutation In-Fusion® cloning in pENTR1A 

cloning vector- s351a mutation.  

Red circle shows 2 clones with the correct mutation, while the rest of the sequence is 

perfectly aligned to the original. 
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5.9.3. Recombination into SFFV-lentiviral vector.  

As previously described, the pENTR1A minimal vector is an ideal intermediate 

cloning vector that allows for easy cloning and attL1 and attL2 site recombination 

into a Gateway destination vector of choice containing the attR1 and attR2 sites  (in 

this case SFFV-GW). The mp62 pENTR1A complete overexpression cassette and 

the three new functional mp62 mutants were recombined into SFFV-GW. Individual 

bacterial colonies prepped and sent to Source bioscience for sequencing. SFFV-

mp62 clones were not subjected to screening with restriction enzymes as the SFFV 

vector is very large (~10.5kb) and contains a huge number of restriction items and on 

this occasion, it was not possible to find suitable enzymes to screen for the success 

of the cloning. Figure 4.26.A, B, C and D show multiple sequence alignment of 

SFFV-mp62 sequencing results for the complete mp62 and the s24a, w340a and 

s351a mutants correctly aligned and sequenced in the SFFV lentiviral vector.  
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Figure 4.26.A Successful cloning of mp62 in SFFV lentiviral vector- mp62-SFFV-

Complete.  

Complete mouse p62 overexpression cassette successfully cloned into SFFV lentivirus as 

confirmed by Sanger sequencing. 
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Figure4.26.B Successful cloning of mp62 in SFFV lentiviral vector- mp62-SFFV-s24a 

s24a mutation in SFFV, red circle highlights the inserted mutation. 
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Figure 4.26.C Successful cloning of mp62 in SFFV lentiviral vector- mp62-SFFV-

w340a.  

w340a mutation in SFFV, red circle highlights the mutation. 
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Figure 4.26.D Successful cloning of mp62 in SFFV lentiviral vector- mp62-SFFV-

s351a.  

s351a mutation in SFF, red circle highlights the mutation. 
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Unfortunately, because I was unable to confirm the successful cloning of the 

sh(m)p62 vector, and I did not have access to any other suitable p62 null mouse 

cells, these vectors could not be implemented. However, these vectors are all 

available for future works investigating the functional role of p62 in iPSC 

reprogramming and maintenance of pluripotency in mouse cells: this will be 

discussed further in the ‘Future works’ section of this report.  

5.10. Conclusions 

Overall, the data from this chapter demonstrates the ability to create a myriad of 

tools for the manipulation of genetic and protein expression relating to p62 in both 

mouse and human cell models. Another element that was not discussed in this 

chapter was that a range of p62 mutant overexpression plasmids were also designed 

to create functional mutants in human p62 overexpression in much the same way as 

the mouse vectors were designed and cloned.  

The primary objective for these genetic manipulation vectors was to alter various 

functions of p62 and interrogate the effects this had on both mouse and human iPSC 

reprogramming experiments, and on the maintenance of pluripotency. However, 

alongside I would also have performed numerous analyses on the effects of these 

functional mutants on important cellular processes to gain a better understanding of 

the role of p62 in general. For example, Seahorse bioanalysis of energy production 

would have been invaluable to understand the metabolic and oxidative effects of p62 

mutation and loss of function. Immunocytochemistry for p62 and associated 

interaction partners such as LC3-II or Lamp1, both of which are important markers of 

lysosomal function. Evidence of an accumulation of p62 in one or more of the 

mutants could have confirmed or expanded the current understanding of the role of 

p62 in autophagic processing. For example, would a mutation in the LIR domain of 
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p62 result in a reduction in autophagic flux and an accumulation of p62? 

Alternatively, would another autophagy adaptor such as NBR1 be able to fully 

compensate for the loos of function in p62? In addition, mitochondrial staining could 

have revealed a failure of mitochondrial clearance or remodelling, especially if 

assessed during the iPSC reprogramming process. qPCR analyses could have 

looked at a wider network or associated genes. In fact, some very preliminary qPCR 

analyses on p70S6K, NFΚB, LC3-II, NRF2 and mTOR indicated that there might be 

some significant differences in the expression levels of these genes in the presence 

or absence of p62. Future works should definitely include qPCR or even RNA 

sequencing analysis to understand the wide gene regulatory networks involved in 

p62 signalling.  

Despite not being able to utilise the entire genetic manipulation toolbox to the full 

extent hoped during this project, I did have some key cellular models and the fully 

validated sh(h)p62 with which to interrogate the role of p62 in iPSC reprogramming 

and the maintenance of pluripotency, including p62 null patient fibroblasts.  
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Chapter 6. Validation and iPSC reprogramming 
of p62 null patient fibroblast. 
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Chapter 5: Results 3: Validation and iPSC reprogramming of p62 null patient 

fibroblast.  

6.1. Introduction 

In order to assess the importance and role for p62 in iPSC reprogramming and the 

maintenance of pluripotency, we acquired two vials of P8 patient fibroblasts from Dr 

Christopher Carroll (SGUL). These fibroblasts were isolated from patients with a rare 

neurodegenerative phenotype, characterised by gait problems, cognitive decline and 

gaze palsy, among other symptoms. Individuals from four families with similar 

presenting phenotypes were identifed, and exome sequencing of these individuals 

found three different bi-allelic loss of function mutations in the p62 gene. Fibroblasts 

from these individuals have a complete absence of p62 protein (Haack et al, 2016). 

For this study, these patient derived p62 null fibroblasts have been named  

hDF-p62-/-. 

6.2. Objectives 

● Confirm phenotype of hDF-p62-/-  by immunocytochemisty and western blot 

● Characterisation of hDF-p62-/- cells by immunocytochemisty with known 

interacting partners such as mitochondria and lysosomes 

● Successful iPSC reprogramming of hDF-p62-/- cells 

● Comparison of the efficiency of iPSC reprogramming between hDF-p62-/-  and 

nHDF controls 

● Comparison of the morphology of resultant iPSC colonies between hDF-p62-/-  

and nHDF controls 

● Comparison of the ability to maintain pluripotency between hDF-p62-/-  and 

nHDF controls 
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● Comparison of the ability to differentiate into all three germ layers between 

hDF-p62-/-  and nHDF controls 

● Comparison of pluripotency gene expression levels between hDF-p62-/-  and 

nHDF controls 

6.3. Characterisation of hDF-p62-/- 

Before beginning iPSC reprogramming experiments on hDF-p62-/-. cells a number of 

characterisation experiments were carried out. As with the iPSC reprogramming 

experiments detailed in the previous chapter, some refining of experimental 

procedures was necessary before investigating the hDF-p62-/- fibroblasts. p62 plays 

a key role in selective autophagy, targeting ubiquitin tagged proteins to the lysosome 

for degradation via the LC3 interacting region (LIR). LAMP1 is a lysosomal 

membrane protein and is responsible for maintaining the integrity of lysososomal 

membranes (Cohen-Dvashi et al, 2016),  LAMP1 is ubiquitously expressed and is a 

commonly used as a lysosomal marker (Andrejewski et al, 1999) therefore the 

distribution and potential association of p62 and LAMP1 was assessed by 

immunofluorescent cell staining and visualised using confocal microscopy.  

Firstly, WT-MEFS were plated on gelatin-coated glass-bottomed plates, and fixed 

with 4% PFA before immunocytochemical staining for p62 and LAMP1 (Figures 5.1 

and 5.2). Figures and  show WT-MEFs stained for p62 (RED) and Lamp1 (GREEN) 

and visualised using a confocal miscroscope, at 40x and 63x magnification, 

respectively. MEFs are positive for both p62 and LAMP1, although there is no clear 

evidence of colocalisation of the two. It is difficult to truly asses colocalisation in the 

images and ideally a much higher magnification, or preferably an electron 

microscope would be used. Unfortunately, this was the best microscope that was 

available to me. However, even at this magnification it is possible to see that there is 



177 
 

abundant, diffuse p62 signalling across the cytoplasm, and there are large lysosomal 

vesicles visible in WT-MEFs, particularly centered afound the nucleus. 

 

Figure 5.1 p62 (red) and LAMP1 (green) iummunofluorescent staining in WT-MEFs.  

A: DAPI nuclear stain. B: LAMP1 staining. C: p62 staining. D: Merge. WT-MEFs are 

strongly positive for both p62 and LAMP1. 40x magnification, scale bar represents10µm 
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Figure 5.2: p62 (red) and LAMP1 (green) iummunofluorescent staining in WT MEFs. 

A: DAPI nuclear stain. B: LAMP1 staining. C: p62 staining. D: Merge. Images were taken 

at 63x magnification, scale bar represents 10µm 

 

 

Once confident with the use of the confocal microscope, hDF-p62-/- and nhDF cells 

were seeded on gelatin-coated glass-bottomed plates and allowed to grow until 

confluent before being fixed with 4% PFA. Immunocytochemical cell staining for anti-

p62 and anti-LAMP1 was carried out in order to assess the distribution and potential 

co-localisation of the two proteins in nhDFs and to confirm the absence of p62 

protein in the hDF-p62-/- cells; while assessing the localisation of LAMP1.  
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Figure 5.3 and Figure 5.4 show hDF-p62-/- cells stained for p62 (or its absence) and 

LAMP1, with DAPI nuclear stain. As expected, the hDF-p62-/- cells are negative for 

p62 (Panel C in both Figures) but there is strong positive staining of lysosomal 

vesicles (Panel B). Figure 5.3 shows images taken at 40x magnification with a 2.5x 

digital zoom; Figure 5.4 shows images taken at 63x magnification with a 2.5x digital 

zoom.  

Figures 5.5 and Figure 5.6 show nhDFs stained for p62 and LAMP1, with DAPI 

nuclear stain at 40x magnification with 2.5x digital zoom and 63x magnification with 

2.5x digital zoom, respectively. nhDFs are strongly positive for both p62 (RED, Panel 

C) and LAMP1 (GREEN, Panel B.) There are also several clear areas that appear 

bright yellow: this could potentially (although not definitely) signal co-localisation 

(Panel D, Yellow areas), and an association between p62 and LAMP1 in nhDFs. 

nhDF cells have large lysosomes, and apparently co-localised areas are likely larger 

autophagosomal aggregates. However, further analyses would be needed to confirm 

this co-localisation such as the use of Co-Immunoprecipitation whereby p62 could be 

‘pulled-down’ along with its interacting partners (such as LAMP1) by an anti-p62 

antibody and bound to agarose or magnetic beads before separating and analysing. 

This is less prominent in MEFs. Lysosomes in hDF-p62-/- cells are generally smaller 

than those found in nhDF control cells, likely due to reduced fusion with 

autophagosomes, indicating a level of defective autophagy in these cells. Figure 5.7 

shows no primary antibody negative controls in hDF-p62-/- and nhDFs.  
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Figure 5.3: p62 (red) and LAMP1 (green) iummunofluorescent cell staining in hDF- 

p62-/- cells. 

As expected, hDF- p62-/- cells are negative for p62, confirming the phenotype. A: DAPI 

nuclear stain. B: LAMP1 staining. C: p62 staining. D: Merge. Images taken at 40x 

magnification with 2.5x digital zoom, scale bar represents 50µm 
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Figure 5.4: p62 (red) and LAMP1 (green) iummunofluorescent cell staining in hDF- 

p62-/- cells. As expected, hDF- p62-/- cells are negative for p62, confirming the 

phenotype. A: DAPI nuclear stain. B: LAMP1 staining. C: p62 staining. D: Merge. Images 

taken at 63x magnification with 2.5x digital zoom, scale bar represents 25µm 
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Figure 5.5: p62 (red) and LAMP1 (green) iummunofluorescent cell staining in 

nhDFs. nhDFs, are strongly positive for both p62 and LAMP1 and there are some bright 

yellow areas, which could indicate a co-localisation, although this cannot be confirmed at 

this magnification. A: DAPI nuclear stain. B: LAMP1 staining. C: p62 staining. D: Merge. 

Images taken at 40x magnification with 2.5x digital zoom, scale bar represents 50µm 
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Figure 5.6: p62 (red) and LAMP1 (green) iummunofluorescent cell staining in 

nhDFs. nhDFs, are strongly positive for both p62 and LAMP1. A: DAPI nuclear stain. B: 

LAMP1 staining. C: p62 staining. D: Merge. Images taken at 63x magnification with 2.5x 

digital zoom, scale bar represents 25µm 
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Figure 5.7 No primary antibody negative controls confirm the results of Figures 5.3-

5.6. A-D: nhDF control cells E-H: hDF-p62-/-. The secondary antibody to the anti-p62 

antibody is anti-mouse; the secondary antibody to the anti-LAMP1 antibody is anti-rabbit. 

 

hDF-p62-/-, nhDfs, CLN6-hDFs and CLN7-hDFs were also assessed for the 

presence of p62 protein by western blot (Figure 5.8). Figure 5.8,A shows 20µg of 

CLN6-hDF and nhDF protein, analysed for p62 with β-actin loading control. Figure 

5.8,B shows 20ug of nhDF, hDF-p62-/-, and CLN7-hDF protein analysed for p62 with 

β-actin loading control. As expected, and confirming that seen in the 

immunocytochemical staining images, hDF-p62-/- cell express no p62 protein. 

 

A B 

C D G 

E F 

H 
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Figure 5.8: Western blot analysis of various fibroblasts for p62 protein. 

A. CLN6-hDFs and nhDFs analysed for p62 protein by western blot, with β-actin loading 

control. 20µg of protein was added to wells. p62 antibody was used at a dilution of 1:2000; 

β-actin antibody was used at a dilution of 1:10,000. An HRP-conjugated secondary 

antibody was used at a dilution of 1:2000. B. nhDF, hDF-p62-/- and CLN7-hDFs analysed 

for p62 protein by western blot, with β-actin loading control. 20µg of protein was added to 

wells. p62 antibody was used at a dilution of 1:2000 β-actin antibody was used at a 

dilution of 1:10,000. An HRP-conjugated secondary antibody was used at a dilution of 

1:2000. NB Blots were all performed on the same day, extra irrelevant cell types 

(Hek293Ts) have been removed from this analysis.  

 

As discussed, p62 is known to have important roles in autophagy, metabolism and 

anti-oxidant responses. Autophagy has myriad time and context dependent roles in 

iPSC reprogramming including the regulation of mitochondrial remodelling and 

mitochondrial clearance, and so I wanted to determine if there different levels of p62 

would have an impact on mitochondrial number, localisation or morphology. During 

selective autophagy, mitochondria are specifically targeted for break down in a 

process called mitophagy (Wang and Klionsky 2011). In addition, p62 has been 

shown to target mitochondria for ubiquitination via KEAP1 in a process that is NRF2 
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independent (Yamada et al, 2019) and to aggregate damaged mitochondria via the 

PB1 domain (Narenda et al, 2010).  

hDF-p62-/- cells were analysed for the presence, number and localisation of 

mitochondria, using MitoTrackerTM. MitoTrackerTM stains mitochondria in live cells, 

but it also well retained after fixation. MitoTrackerTM staining was optimised using 

wild-type MEFs and it was determined that a concentration of 25nM and an 

incubation time of 20-25 minutes was optimal (not shown). A low concentration of 

MitoTrackerTM is crucial to ensure that only mitochondria are stained.  

hDF-p62-/-, nhDF, CLN6-hDF and CLN7-hDF cells were live stained for 

MitoTrackerTM at a concentration of 25nM for 20 minutes before imaging on a 

confocal microscope (Figure 5.9). All cell types are strongly positive for 

MitoTrackerTM, and some obvious elongation of the mitochondria can be seen in 

some areas. There does not appear to be any discernible difference in mitochondria 

number or localisation between the cell types.  
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A.                                                                 B. 

   

Figure 5.9 MitoTrackerTM staining on early passage hDFs.  

MitoTracker was applied to live cells in standard hDF maintenance media at concentration 

of 25nM for 20-25 minutes before visualisation on a Leica Confocal Microscope. A. p62-/- -

hDF 40x mag. (top image) and 63x mag (bottom image). B. nhDF 40x mag (top image) 

and 63x mag (bottom image). 

Scale bars represent 25µM 
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C.                                                                 D.  

 

Figure 5.9 MitoTrackerTM staining on early passage hDFs.  

MitoTracker was applied to live cells in standard hDF maintenance media at concentration 

of 25nM for 20-25 minutes before visualisation on a Leica Confocal Microscope. C. CLN6-

hDF 40x mag (top image) and 63x mag (bottom image). D. CLN7-hDF 40x mag (top 

image) and 63x mag (bottom image). Scale bar represents 25µm 

 

Finally, hDF-p62-/-, nhDF, CLN6-hDF and CLN7-hDFs were live stained for 

MitoTrackerTM (RED) as previously described, before being fixed with 4% PFA and 

immunocytochemically stained with anti-p62 antibody (GREEN) (Figure 5.10), to 

determine any associations between presence or absence of p62 and the 
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mitochondria as well as to gain insight into the mitochondrial morphology of the 

hDFs.  

 

Figure 5.10: MitoTrackerTM (RED) and p62 (GREEN) staining on early passage hDFs. 

MitoTracker was applied to live cells in growth media at concentration of 25nM for 20-25 

minutes before fixation and immunocytochemical staining with anti-p62 antibody and 

visualisation on Leica Confocal Microscope. All images are 43x magnification, scale bar 

represents 25µm 
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Images of MitoTrackerTM staining show some interesting differences in mitochondrial 

morphology in nhDF and hDF-p62-/- cells. In hDF-p62-/- cells the majority of 

mitochondria appear to have a tubular structure, and are distributed across the 

whole cell. In contrast, in nhDF cells, there are a mixture of tubular and fragmented 

mitochondria, and the more fragmented mitochondria are clustered in the perinuclear 

region whereas the more elongated mitochondria are towards the outer edges of the 

cell bodies. CLN6-hDF and CLN7-hDF mitochondria are broadly similar to those 

seen in nhDF controls. It is impossible to draw any conclusions from these images 

as the magnifications and resolution would both need to be higher to truly analyse 

organelle morphology and images would need to be take multiple times and 

quantification applied. However, this would be an interesting avenue to explore 

further given the literature that already supports a key role for p62 in the regulation of 

mitochondria. As previously shown, hDF-p62-/- cells do not express any p62 protein 

but nhDFs appear to display a higher ratio of p62 to mitochondria than CLN6 and 

CLN7-hDFs. 

6.4. 5.4 iPSC reprogramming 

Once hDF-p62-/- fibroblasts had been characterised alongside nhDFs, as well as 

CLN6 and CLN7 patient fibroblasts, iPS reprogramming experiments could be 

undertaken. Because no significant differences had been observed in CLN6 or CLN7 

hDFs in terms of p62 protein expression, or in the reprogramming efficiency of these 

patient cells, the decision was made to focus further experiments on just the hDF-

p62-/- cells. In order to compare the efficiency and stability of iPSC reprogramming 

and the resultant quality of iPS cells between hDF-p62-/- and nhDF control cells, a 

large number of reprogramming experiments were conducted.  
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To recap, reprogramming experiments take 25-30 days from nucleofection with 

OriP/EBNA episomal reprogramming plasmids to the first manual passage of 

colonies. The process of reprogramming adult somatic cells such as fibroblasts to 

iPSCs consists of three main phases, initiation, maturation and stabilisation. During 

the initiation phase, cells undergo a range of changes including the loss of somatic 

cell programming; increased proliferation rate; metabolic changes from oxidative to 

glycolic energy production; and clear and easily visible morphological changes from 

a mesenchymal to epithelial phenotype. During the maturation phase, cells begin to 

‘switch on’ a programme of pluripotency genes such as Nanog and OCT4 in 

preparation for independence from transgenes. Finally, in the stabilisation phase 

cells gain this independence and achieve stable pluripotency. Throughout the ~25-

day reprogramming process, two key stages are used to assess visually the success 

of the first two phases of iPS reprogramming, initiation and maturation.   

Parallel iPSC reprogramming experiments were set up with either hDF-p62-/- or 

nhDF. At ~7-8d, clear evidence of morphological change from a mesenchymal 

phenotype to an epithelial phenotype can be seen, with cells becoming smaller, 

more clustered together and less elongated. At ~8d in three independent 

reprogramming experiments, nhDF and hDF-p62-/- cells appear morphologically 

alike, with no distinguishable differences between the two cells types at this early 

stage of the reprogramming process (Figure 5.11A.). At D8, cells are then passaged 

onto MEF feeder layers, meaning that any morphological changes cannot be 

assessed for several days during culture acclimatisation.  

Between D14-18, early colony formation starts to occur, with small clusters of tightly 

packed cells beginning to appear. These colonies do not yet have the clearly defined 

borders and circular appearance of true, established iPS colonies but individual cells 
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do appear morphologically similar to iPS cells. At D16 of three independent 

reprogramming experiments, nhDF and hDF-p62-/- cells look morphologically very 

similar, with no discernible differences at this maturation stage (Figure 5.11.B.). 

These results suggest that there is no morphological evidence of differences 

between nhDF and hDF-p62-/- cells in the initiation and maturation phases of iPS 

reprogramming. 
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A. 

 

B. 

 

Figure 5.11: nhDF vs hDF-p62-/- iPSC reprogramming.  

A. Day 8 of reprogramming experiments on MEF feeder layers. Visible MET in both cell 

types (blue arrows), nhDF and hDF-p62-/- hDF cells looks morphologically very similar at 

day 8. B. Day 16 of three independent reprogramming experiments, where early colony 

formation is visible (blue arrows). Both nhDF control and hDF-p62-/- cells look 

morphologically very similar at this stage of the iPSC reprogramming experiment (images 

are representative of three independent experiments). 
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At D25, newly established iPS colonies are routinely stained for Alkaline 

Phosphatase (AP). Alkaline phosphatase activity is upregulated in embryonic stem 

cells and induced pluripotent stem cells, and staining for AP is a useful and 

commonly used marker of emerging pluripotency in early passage or newly formed 

iPS cells. AP staining also allows for easy analysis of colony number, size, shape 

and uniformity.   

At D25 in three independent iPSC reprogramming experiments, cells were stained 

for AP and both macroscopic and 4x magnification images were taken. In 4x 

magnification, it is clear that nhDF AP positive iPSC colonies are largely uniform in 

shape, with clearly defined borders. In contrast, hDF-p62-/- cell colonies are much 

more irregular, with many smaller colonies and colonies with varying levels of AP 

staining density (Figure 5.12.A.). Several areas of partial reprogramming or early 

spontaneous differentiation can also be seen in the images of hDF-p62-/- AP staining. 

Globally, it is clear that in the hDF-p62-/- cell containing wells there are many smaller, 

irregular areas of AP positive staining and that the process of reprogramming has 

been less controlled in hDF-p62-/- cells compared to nhDF controls (Figure 5.12.B). 
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A. 

 

Figure 5.12.A: Primary colony analysis of hDF-p62-/- reprogramming.  

A. nhDF compared with hDF-p62-/-  during iPSC reprogramming. Day 25, primary (P0) 

iPSC colonies stained with Alkaline Phosphatase (AP), 4x magnification. nhDF colonies 

appear morphologically more uniform and circular than hDF-p62-/-  colonies. B. 

Macroscopic images of iPSC reprogramming comparisons of nhDf and hDF-p62-/-  iPSC 

P0, day 25 of reprogramming. The hDF-p62-/- colonies are generally smaller, and less 

uniform, with many colonies that appear partially reprogrammed, or partially differentiated. 

Experiments were repeated on three independent occasions. 
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B. 

 

Figure 5.12.B: Primary colony analysis of hDF-p62-/- reprogramming.  

B. Macroscopic images of iPSC reprogramming comparisons of nhDf and hDF-p62-/-  

iPSC P0, day 25 of reprogramming. The hDF-p62-/- colonies are generally smaller, and 

less uniform, with many colonies, which appear partially reprogrammed, or partially 

differentiated. Experiments were repeated on three independent occasions. 

 

Macroscopic images of AP stained colony containing wells were then analysed using 

ImageJ for colony number, size and shape (Figure 5.13). Figure 5.13.A shows a 

comparison of the number of AP positive primary (P0) colonies at D25 of three 

independent reprograming experiments in nhDF control and hDF-p62-/- cells. On 

average, there were 95 (±8.49 S.E.M) primary (P0) nhDF iPS colonies at D25 of 

three independent reprogramming experiments, whereas there were 234 (±15.69 

S.E.M) AP positive hDF-p62-/- colonies at D25 of reprogramming. Across three 
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independent experiments, as shown in Figure 5.13.A  the number of areas stained 

positive for AP are significantly higher for hDF-p62-/- cells than for comparative 

nhDF control cells (Figure 5.13, A.) (n=3, p= 0.0336). The software counted all areas 

stained positive with AP, regardless of size or shape. The experimental variation 

(S.E.M) in hDF-p62-/- is also much larger than across nhDF control experiments, 

showing a greater level of variation in reprogramming in hDF-p62-/- cells (S.E.M = 

8.498 in nhDF experiments and 15.694 in hDF-p62-/- experiments).  

hDF-p62-/- AP positive colonies are also significantly smaller than those in nhDF 

controls (Figure 5.13.B.) (n=3, p= 0.0113).  On average, the size of nhDF iPS 

colonies is 87.53 pixels^2 (±8.0194 S.E.M), whereas the size of hDF-p62-/- colonies 

is 38pixels^2 (±7.747 S.E.M).  ImageJ measures size as number of pixels^2 in 

images that have been converted to binary and threshold adjusted (see materials 

and methods).  

Thirdly, primary (P0) colonies were analysed for circularity (Figure 5.13.C.). 

Circularity is measured by ImageJ using 4pi(area/perimeter^2) and a score of 1.0 

represents a perfect circle. The percentage of colonies that score between 0.5 and 

1.0 in circularity is significantly lower in hDF-p62-/- experiments than in nhDF 

controls (n=3, p= 0.00583). On average, 95.1% (±0.95 S.E.M) of nhDF colonies have 

a circularity score above 0.5, whereas only 74.4% (±2.31 S.E.M) of hDF-p62-/- 

colonies have a circularity score between 0.5 and 1.0. There is also a greater 

experimental variation (S.E.M in nhDF experiments = 0.95, S.E.M in hDF-p62-/- 

experiments = 2.31) in these circularity scores between hDF-p62-/-experiments than 

between nhDF experiments, suggesting that overall, iPSC reprogramming in hDF-

p62-/- cells is less well regulated than nhDF controls. 
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A. 

 

Figure 5.13.A: Comparison of nhDF and hDF-p62-/-  iPSC primary colony formation 

(P0).  

Total ‘colony’ count, analysed using ImageJ and including all areas stained with AP across 

the entire well of a 6-well plate. Average colony number in nhDF = 95±8.498, hDF-p62-/-  

= 234.33±15.694. (n=3, p= 0.0336) 

 

 

 

 

 

 

 

 



199 
 

B. 
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Figure 5.13.B: Comparison of nhDF and hDF-p62-/-  iPSC primary colony formation 

(P0).  

Average colony size, analysed using ImageJ and including all areas stained with AP 

across the entire well of a 6-well plate.  Average colony size in nhDF = 87.53 ±8.0194 

pixels^2 ±, hDF-p62-/-  experiments = 38.41 pixels^2 ± 15.694 (n=3, p= 0.0113). 

 

 

 

 

 

 

 

 

C. 

 

Figure 5.13.C: Comparison of nhDF and hDF-p62-/-  iPSC primary colony formation 

(P0). Percentage of colonies recorded in ImageJ as at least 0.5 in circularity where 1.0 is 

a perfect circle. Average percentage of ≥ 0.5 circularity colonies in nhDF = 95.1 % ±0.95 
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,hDF-p62-/-  = 74.4% ± 2.31 (n=3, p= 0.0494). Data are collated from 3 independent 

experiments. p-values obtained by performing an unpaired t-test. 

 

nhDF control and hDF-p62-/- primary (P0) pre-iPSC colonies were manually 

passaged and the shape and uniformity assessed and analysed visually at P1 

(Figure 5.14). All colonies were counted across three independent experiments in 

nhDF control and hDF-p62-/- cells. Typical iPSC colonies have a clear and well-

defined border around the whole circumference. True iPSC colonies in the 

stabilisation phase and beyond are generally close to circular in shape and cells 

have a largely uniform appearance with minimal spontaneous differentiation. Figure 

5.14.A. shows an example of nhDF control iPSC colonies at P1 and Figure 5.14.B 

shows an example of hDF-p62-/- colonies at P1. Clear morphological differences can 

be seen between the two cell types. nhDF colonies are largely uniform in shape, 

close to circular and have minimal amounts of spontaneous differentiation. In 

contrast, the hDF-p62-/- colonies are generally smaller, more irregular in shape and 

have lots of spontaneous differentiation visible. 
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Figure 5.14 iPSC reprogramming of nhDF and hDF-p62-/-, Passage 1 A. 

Representative examples of nhDF iPSC on MEFs, P1. Three independent experiments. B. 

Representative examples of hDF-p62-/- iPSC on MEFs, P1. Three independent 

experiments. Clear morphological differences can be seen between the two cell types, 

with a higher level of spontaneous differentiation and irregularity in the colonies visible in 

hDF-p62-/- cells. Images were at 4x magnification, scale bars represent 10µM 

B

.

B 
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The number of P1 colonies were counted and compared in nhDF controls and hDF-

p62-/- cells across three independent experiments. There was no significant 

difference in the number of colonies formed at P1 (Figure 5.15.A) (nhDF average 

colony number = 23±1.73, hDF-p62-/- average colony number = 19±3.84. n=3, p= 

0.759). Next, the number and percentage of intact borders in nhDF and hDF-p62-/- 

colonies was compared (Figure 5.15, B.). P1 colonies were defined as having either 

a completely intact border or not, in three independent experiments in both nhDF 

controls and hDF-p62-/-. All images were randomised and blinded before being 

analysed in order to avoid any bias. Anywhere that a clear break in the colony border 

was visible where spontaneous differentiation had occurred was counted as not 

having an intact border. Significantly fewer hDF-p62-/- colonies have complete, intact 

borders compared to nhDF controls across three independent experiments. 

89.1%±2.49 of nhDF control P1 colonies have complete, intact borders, compared to 

just 49.1%±4.59 of hDF-p62-/- colonies (n=3, p= 0.00682). Of note, the standard 

error of the mean is also larger in the hDF-p62-/- experiments (4.59 in hDF-p62-/- 

compared to 2.49 in nhDF experiments), showing a larger variation and a greater 

degree of dysregulation in hDF-p62-/- cells.   
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A.  

 

B. 

 

Figure 5.15 Analysis of P1 nhDF and hDF-p62-/- iPSC colonies  

A. Average P1 colony number after manual passage of an equal number of P0 colonies in 

nhDF controls and hDF-p62-/-. There is no significant difference in the number of P1 

colonies formed (n=3, p= 0.759). B. Average number of P1 colonies with complete, intact 

borders in nhDF and hDF-p62-/- colonies across 3 independent experiments. Significantly 

fewer hDF-p62-/- colonies have complete, intact borders without spontaneous 

differentiation compared to nhDF controls. An average of 89.1%±2.49 of nhDF colonies 

have complete intact borders compared to 49.1%±4.59 of hDF-p62-/-  colonies (n=3, p= 

0.0069). Data collated from 3 independent experiments and analysed by unpaired, two-

tailed t-test. 
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As shown in Figure 5.16, at P3 there are clear morphological differences between 

nhDF and hDF-p62-/- cells (5.16.A), and by P6 there are virtually no remaining iPSC 

colonies in the hDF-p62-/- (5.16.B). Across >10 repeat experiments, all evidence of 

pluripotency and colony formation capacity has been lost by P6 at the latest, often 

much earlier in hDF-p62-/- cells. In comparison and as expected, nhDF colonies 

continue to get more uniform and more stable as they reach transgene 

independency, displaying unlimited capacity for self-renewal. In contrast, hDF-p62-/- 

cells decrease in number with every passage due to spontaneous differentiation and 

the failure to proliferate and stabilise into true transgene independent iPS cell lines. 
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A.  

 

B. 

 

Figure 5.16: hDF-p62-/- colonies rapidly lose pluripotency.  

A. nhDF and hDF-p62-/- iPS colonies at P3. nhDF colonies are well defined, 

circular, with small, tightly clustered cells. p62 colonies are smaller, more irregular 

and less morphologically similar to typical iPS or ES colonies. B. nhDF and hDF-

p62-/- ‘iPS’ colonies at P6. hDF-p62-/- cells have almost entirely lost all 

pluripotency related morphology by P6 while nhDF iPS cells maintain pluripotency. 
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6.5. Conclusions 

Overall, these data indicate that p62 could play an important role the stabilisation, 

maturation and maintenance of pluripotency. hDF-p62-/- fibroblasts lack any p62 

protein, but appear otherwise broadly similar to control nhDFs. hDF-p62-/- fibroblasts 

grow slightly more slowly than nhDFs (anecdotal observation only, although this 

could be quantified in future works). hDF-p62-/- cells show generally a less efficient 

and less well regulated iPSC reprogramming process than control nhDFs, and 

cannot maintain pluripotency beyond P6 at the latest. It is not yet clear how p62 may 

exert these effects on cells. If p62 is essential for successful reprogramming of 

stable iPSC cell lines, this could help to elucidate further the mechanisms behind 

iPSC reprogramming and therefore go towards improving iPSC reprogramming 

efficiency and iPSC stability, thereby increasing the opportunities for safe and stable 

iPSC therapeutic products to make it in to clinical practise.  
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Chapter 7. Reprogramming of nhDF-shp62 
cells. 
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Chapter 6: Results -4: Reprogramming of nhDF-shp62 cells. 

7.1. Introduction 

The successful cloning and validation of an shRNA for human p62, and the creation 

of a stably transduced GFP-positive cell line (nhDF-shp62) with significantly reduced 

p62 protein level could then be implemented in reprogramming experiments as 

previously carried in hDF-p62-/- cells. These experiments would seek to confirm that 

the effects on reprogramming seen in hDF-p62-/- cells were due to the absence of 

p62 itself and not due to some other unknown genetic difference. Comparing nhDFs 

to nhDF-shp62 cells allows for comparison of cells from the same genetic 

background with the only difference being knock-down of p62 protein. 

7.2. Objectives 

● Successful iPSC reprogramming of nhDF-sh(h)p62 fibroblasts 

● Comparison of the efficiency of iPSC reprogramming between nhDF-sh(h)p62 

and nHDF controls 

● Comparison of the morphology of resultant iPSC colonies between nhDF-

sh(h)p62 and nHDF controls 

● Comparison of the ability to maintain pluripotency between nhDF-sh(h)p62 

and nHDF controls 

● Comparison of the ability to differentiate into all three germ layers between 

nhDF-sh(h)p62 and nHDF controls 

● Comparison of pluripotency gene expression levels between nhDF-sh(h)p62 

and nHDF controls 
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nhDFs transduced with shp62 were sorted using fluorescence activated cell sorting 

(FACS) for GFP expression to create a homogenous population of 100% transduced 

cells before beginning iPSC reprogramming. This shRNA construct causes 

approximately 85% knock-down of the p62 protein, as previously demonstrated. 

Figure 6.1 shows a representative example of nhDF compared to nhDF-shp62 

throughout a reprogramming experiment.  

7.3. iPSC reprogramming and colony analysis 

Figure 6.1.A. shows nhDF and nhDF-shp62 reprogramming at D8, when clear signs 

of the initiation phase of reprogramming, particularly mesenchymal to epithelial 

transition (MET), can usually be seen. MET can be seen in both the nhDF (top 

panel) and nhDF-shp62 (bottom panel) examples with no discernible differences 

between the two. Figure 6.1.B shows D18 for the same reprogramming experiment. 

During D14-20 the maturation phase of iPSC reprogramming typically occurs. Early 

colony formation can be seen in both nhDF (top panel) and nhDF-shp62 examples. 

nhDF-shp62 are also strongly GFP positive at this stage of reprogramming and show 

colony forming and non-colony forming cells across the well. MEFs are not GFP 

positive.  
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A. 

B. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 nhDF and sh(h)p62 nhDF comparative reprogramming experiments.  

A. Day 8 (initiation phase), 4x.  Visible evidence of MET in both cell types, there is no 

morphological difference between the two cell types at this stage of reprogramming.  

B. Day 18 (maturation phase), 10x. Early colony formation is visible in both cell types, and 

sh(h)p62 cells are strongly GFP positive. No morphological differences can be seen 

between the two cell types at this stage. 
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After D25 of three independent iPS reprogramming experiments, cells were stained 

for AP and macroscopic images were taken. It is clear that in the nhDF-shp62 

containing wells there are many more small and irregular areas of AP positive 

staining and that the process of reprogramming has been less controlled in nhDF-

shp62 cells compared to nhDF controls (Figure 6.2). AP staining also appears less 

dense in the nhDF-shp62 compared to nhDF controls.  

Macroscopic images of AP stained wells were analysed using ImageJ for colony 

number, size and shape. Figure 2.6.C shows a comparison of the number of AP 

positive primary (P0) colonies after 25d of three independent reprograming 

experiments in nhDF control and stably transduced nhDF-shp62 cells. On average 

there were 16±1.00 primary (P0) nhDF iPS colonies after 25d of three independent 

reprogramming experiments, whereas there were 89±4.70 AP positive nhDF-shp62 

colonies after 25d of reprogramming on average. Across three independent 

experiments, as shown in Figure 6.2.C, the number of areas stained positive for AP 

are significantly higher in nhDF-shp62 than in comparative nhDF controls (n=3, p= 

0.0029) The software counted all areas stained positive with AP, regardless of size 

or shape. The S.E.M for nhDF-shp62 experiments is also much larger than across 

nhDF control experiments (S.E.M 4.70 across nhDF-shp62 experiments compared to 

1.0 across nhDF experiments) showing a greater level of variation in reprogramming 

the nhDF-shp62 cells.  
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C. 

 
Figure 6.2 nhDF vs p62 null hDF reprogramming. Day 25, primary (P0) iPS colonies 
stained with Alkaline Phosphatase (AP).  

Macroscopic images of three independent experiments nhDF (A) and sh(h)p62 (B) iPS 
P0, at day 25 of reprogramming. sh(h)p62 colonies are generally less densely stained, 
and less uniform, with many colonies that appear partially reprogrammed, or partially 
differentiated and many tiny areas of AP positive staining which are not colonies. C. Total 
‘colony’ count, analysed using ImageJ and including all areas stained with AP across the 
entire well of a 6-well plate. Average colony number in nhDF experiments = 16±1.00. 
Average colony number in sh(h)p62 hDF experiments = 89.33±4.70.( n=3, p= 0.0029)   
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nhDF-shp62 AP positive colonies are also significantly smaller than those in nhDF 

controls (Figure 6.3.A) (n=3, p= 0.0171). ImageJ measures size as number of 

pixels^2 in images that have been converted to binary and threshold adjusted (see 

materials and methods). On average the size of nhDF iPS colonies are 42.914 

pixels^2±4.74, whereas the size of nhDF-shp62 colonies is 10.771 pixels^2±1.08.  

Primary (P0) colonies were analysed for circularity (Figure 6.3.B). Circularity is 

measured by ImageJ using 4pi(area/perimeter^2) and a score of 1.0 represents a 

perfect circle. On average, nhDF-shp62 colonies are significantly less circular than 

nhDF controls. Across three independent experiments nhDF colonies have an 

average circularity of 0.897±0.02 whereas nhDF-shp62 colonies only score 

0.780±0.1 in circularity (n=3, p=0.0422).  
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A. 

 

B. 

 

Figure 6.3 nhDF and nhDF-shp62 comparative reprogramming experiments (P0)  

A. Average colony size analysed using ImageJ and including all areas stained with AP 
across the entire well of a 6-well plate.  Average colony size in nhDF experiments = 
42.914 pixels^2 ± 4.74, average colony size in nhDF-shp62 experiments = 10.771 pixels^2 
± 1.08 (n=3, p= 0.0171). B. Average circularity on day 25 of reprogramming (P0), across 
three independent experiments. ImageJ analyses particles on a scale of 0.0-1.0 where 1.0 
is a perfect circle. There is a significant difference in average circularity scores in nhDFs 
compared to nhDF-shp62 cells. Average colony circularity in nhDf controls is 0.897±0.02 
whereas average colony circularity in nhDF-shp62 cells is 0.780±0.01. (n=3, p= 0.0422). 
Data collated from three independent experiments, p-values calculated by two-tailed 
unpaired t-test. 
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nhDF control and nhDF-shp62 primary (P0) colonies were manually passaged and 

the shape and uniformity assessed and analysed visually at P1 (Figure 6.4). All 

colonies were counted across three independent experiments in nhDF control and 

nhDF-shp62. Typical iPS colonies have a clear and well defined border around the 

whole circumference. True iPS colonies in the stabilisation phase and beyond are 

generally close to circular in shape and cells have a largely uniform appearance with 

minimal spontaneous differentiation. Figure 6.4.A. shows an example of nhDF 

control iPS colonies at P1 and B. shows an example of nhDF-shp62 colonies at P1. 

Clear morphological differences can be seen between the two cell types. nhDF 

colonies are largely quite uniform in shape, close to circular and have minimal 

amounts of spontaneous differentiation. In contrast, the nhDF-shp62 colonies are 

generally more irregular in shape and have lots of spontaneous differentiation visible.  
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A. 

 
B. 

 
Figure 6.4 iPSC reprogramming of nhDF-shp62 cells and nhDF controls, P1.  

A. Representative examples of nhDF iPS on MEFs, P1. B. Representative examples of 
nhDF-shp62 iPS on MEFs, P1. Clear morphological differences can be seen between the 
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two cell types, with a higher level of spontaneous differentiation and irregularity in the 
colonies visible in nhDF-shp62 cells. Three independent experiments, 4x magnification 

 

First, the number of P1 colonies were counted and compared in nhDF controls and 

nhDF-shp62 cells across three independent experiments. There was no significant 

difference in the number of ‘colonies’ formed at P1 (Figure 6.5.A.) (nhDF average 

colony number = 16.333±1.67, nhDF-shp62 average colony number = 13.333±0.67 

(n=3, p= 0.2061).  

Next, the number and percentage of intact borders in nhDF and nhDF-shp62 

colonies was compared (Figure 6.5.B). P1 colonies were defined as having either a 

completely intact border or not, in three independent experiments in both nhDF 

controls and nhDF-shp62. All images were randomised and blinded before being 

analysed in order to avoid any bias. Anywhere that a clear break in the colony border 

was visible where spontaneous differentiation had occurred was counted as not 

having an intact border. Significantly fewer nhDF-shp62 have complete, intact 

borders compared to nhDF controls across three independent experiments. 

68.33%±4.67 of nhDF control P1 colonies have complete, intact borders, compared 

to just 35%±4.16 of nhDF-shp62 colonies (n=3, p= 0.00618). 
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A. 

 

B.  

 

Figure 6.5: nhDF and nhDF-shp62 comparative reprogramming experiments (P1) 

A. Average P1 colony number after manual passage of an equal number of P0 colonies in 

nhDF controls and nhDF-shp62 s. There is no significant difference in the number of P1 

colonies formed (16.33± 1.67 in nhDF experiments compared to 13.33±0.67 in nhDF-

shp62 experiments (n=3, p= 0.2061). B. Average number of P1 colonies with complete, 

intact borders in nhDF and nhDF-shp62 across 3 independent experiments. Significantly 

fewer nhDF-shp62 colonies have complete, intact borders without spontaneous 

differentiation compared to nhDF controls. An average of 68.3% (S.E.M 4.67)) of nhDF 

colonies have complete intact borders compared to just 35% (S.E.M 4.16) of nhDF-shp62 
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colonies (n=3, p= 0.00618).  Data collated for 3 independent experiments, p values 

calculated using unpaired t-test. 

 

nhDF and nhDF-shp62 iPS cells were manually passaged weekly. nhDF colonies, as 

expected became more uniform and less likely to spontaneously differentiate with 

each passage (Figures 6.6, 6.7 and 6.8) nhDF-shp62, do not become stabilised in 

the same way and showed clear similarities with the behaviour of hDF-p62-/- 

colonies. Large amounts of spontaneous differentiation continues to occur with 

passaging, and any surviving colonies do not have the typical uniformity of stable 

iPSC colonies. Most cells were not morphologically similar to the hDFs from which 

they were derived, but do not appear like true iPSCs either, suggesting an 

intermediate phenotype. At early passages (P2/3) some iPS-like cells remain (see 

white arrows on Figures 6.6 and 6.7), with others not resembling iPS cells at all (red 

arrows).  
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A. 

 

B. 

 

Figure 6.6: Phase and fluorescence imaging of nhDF and nhDF-shp62 derived iPS 

cells at passage 2.  

A. nhDF derived iPS controls: all colonies are uniform, well defined and morphologically 

typical of iPS colonies as well as being GFP negative. B. nhDF-shp62 ‘iPS’ cells. Large 
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amounts of spontaneous differentiation can been seen at this early passage, and cells 

have lost much GFP expression, indicating a repression of the sh(h)p62 construct. Cells 

that are morphologically iPS-like have the lowest levels of GFP expression. All images 

taken at 4x magnification, scale bars represent 100µm 

 

A. 

 
B. 

 

Figure 6.7: Phase and fluorescence imaging of nhDF and nhDF-shp62 derived iPS 
cells at passage 3. A. nhDF derived iPSC controls: all colonies are uniform, well defined 
and morphologically typical of iPS colonies as well as being GFP negative. B. nhDF-
shp62 ‘iPS’ cells. Even further amounts of spontaneous differentiation can been seen, 
Cells that are morphologically iPS-like have the lowest levels of GFP expression. With 
higher levels of spontaneous expression results in a return towards strong levels of GFP 
expression in these cells. All images taken at 4x magnification, scale bars represent 
100µm. A. nhDF derived iPS controls: all colonies are uniform, well defined and 
morphologically typical of iPS colonies as well as being GFP negative. B. nhDF-shp62 
‘iPS’ cells. Even further amounts of spontaneous differentiation can been seen, Cells that 
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are morphologically iPS-like have the lowest levels of GFP expression. With higher levels 
of spontaneous expression results in a return towards strong levels of GFP expression in 
these cells. All images taken at 4x magnification, scale bars represent 100µm. 

 

At later passages (P5-9) (Figures 6.8 and 6.9) almost no iPS-like cells remain, with 

all cells having differentiated or lost for nhDF-shp62, while nhDF controls continue 

indefinitely. nhDF-shp62 colonies have never survived beyond P9. This is slightly 

longer than the hDF-p62-/- cells, which could not be passaged beyond P6. In some 

reprogramming experiments, nhDF-shp62 have been lost or differentiated entirely at 

earlier passages.  

The sh(h)p62 construct also contains a GFP cassette. As shown in Figure 6.1, the 

hDFs that underwent reprogramming were 100% transduced with this construct and 

all cells were GFP expressing. However, as the cells undergo the later stages of the 

reprogramming process the GFP expression is partially lost, suggesting that the 

sh(h)p62 construct is being repressed in the iPS cells or that a small number of 

sh(h)p62/GFP negative cells overcome nhDF-shp62. Irrespective, these iPSC-like 

colonies are unable to persist long-term, suggesting that p62 is crucial in the 

stabilisation phase of iPS reprogramming and long-term colony maintenance. Our 

assessment of the shp62 knockdown shows that some residual p62 expression 

persists which may explain why nhDF-shp62 cells survive for slightly longer than p62 

null cells.  

In particular, it is notable that in fluorescence imaging of nhDF-shp62 cells at P2, 3 

and 9, the cells that are most stem-like morphologically tend to have little to no GFP 

expression at all. In contrast, cells that have clearly differentiated and possess 

markedly different morphologies have the highest level of GFP expression and 

therefore, potentially the lowest level of p62 expression. The shp62 cassette and 



225 
 

eGFP cassettes are controlled by two different promoters though, and p62 

expression levels have not been assessed in these cells.  

A. 

 
B. 

 

Figure 6.8: Phase imaging of nhDF and nhDF-shp62 derived iPS cells at passage 5. 

A. nhDF derived iPS controls: all colonies are uniform, well defined and morphologically 

typical of established, stable iPS lines.  B. nhDF-shp62 ‘iPS’ cells. Even further amounts 

of spontaneous differentiation can been seen with almost no cells resembling true iPS by 

this passage. All images taken at 4x magnification, scale bars represent 100µM 
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A. 

 

 
B. 

 
Figure 6.9 Phase and fluorescence imaging of nhDF and nhDF-shp62 derived iPS 

cells at passage 9. 
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A. Phase images of nhDF (top panel) and nhDF-shp62 (bottom panel) ‘iPS’ at passage 9. 

nhDF iPS colonies by passage 9 are well established and stabilised. B. Fluorescence 

imaging of passage 9 nhDF and nhDF-shp62 ‘iPS’ cells. By passage 9 little to no cells that 

are morphologically iPS like remain in the nhDF-shp62 experiments. All images taken at 

4x magnification, scale bars represent 100µm. 

7.4. Tri-lineage differentiation 

It is clear that nhDF-shp62 cells have a clear propensity for spontaneous 

differentiation, and as such, they were subjected to an established embryoid body 

(EB) spontaneous differentiation protocol. By removing media components essential 

for the maintenance of pluripotency (FGF) and subjecting cells to a serum containing 

media, cells are encouraged to differentiate without any specific directionality. As 

one of the key hallmarks of pluripotency is the ability for cells to be differentiated into 

cells from all three germ layers (endoderm, mesoderm and ectoderm); it is expected 

that established iPSC will spontaneously differentiate in this manner. Cells were 

imaged after 8d in suspension culture (Figure 6.10), before being re-plated in 

adherent cell culture plates and allowed to grow and differentiate for a further 8d 

(Figure 6.11). At day eight, nhDF-shp62 EBs are heterogeneously GFP positive, 

while cells that have grown out from these do not express the same levels of GFP 

(Figure 6.10). hDF-p62-/- cells were not subjected to this spontaneous differentiation 

experiment because it was not possible to amplify iPSC colonies to sufficient cell 

numbers.  
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Figure 6.10: Phase and fluorescence imaging of nhDF-shp62 embryoid bodies (EBs) 

after 8 days in suspension culture. EBs are GFP positive, but cells grown out from EBs 

are not. All images taken at 4x magnification, scale bars represent 100µm. 

 

 

Figure 6.11 Phase imaging of nhDF-shp62 embryoid bodies (EBs) after replating 

onto adherent plates and 8 days of outgrowth. A wide range of cell types and 

morphologies can be seen. All images taken at 4x magnification. 
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After 16d of spontaneous differentiation, cells were fixed and stained for βIII-tubulin 

and Sox17, two early differentiation markers for ectodermal and endodermal lineage, 

respectively. The nhDF-shp62 derived iPSCs subjected to this spontaneous 

differentiation protocol appeared to show a high level of proximity between sh(h)p62-

GFP and βIII-tubulin (Figure 6.12). In contrast, there was no visible co-localisation 

between sh(h)p62-GFP and Sox17 (Figure 6.13). nhDF derived control iPSCs 

subjected to spontaneous differentiation stained positive for both βIII-tubulin and 

Sox17 (Figure 6.14). Although this is preliminary data, it does suggest that nhDF-

shp62-derived iPS cells may have a propensity to differentiate towards a neural 

lineage. Interestingly, neuroectoderm is considered the “default” differentiation 

lineage when exiting pluripotency (Kamiya et al, 2011) meaning that loss of p62 

could be either promoting exit from pluripotency or neuroectodermal differentiation. 
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A. 

 

 
B. 

 
 
 
 
 
 
 
 
 
 
 

Figure 6.12 nhDF-shp62 ‘iPS’ cells subjected to 16 days of a spontaneous 

differentiation protocol and stained for βIII-Tubulin, an early neural specification 

marker A. High levels of co-expression can be seen with cells both sh(h)p62-GFP positive 

and positive for βIII-Tubulin, bright yellow areas suggest possible co-localisation, although 

a higher magnification would be required to confirm this. Panels highlighted by the red box 

are enlarged in B. All images taken at 4x magnification, with scale bars representing 

100µm. 
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A.  

 
B.  

Figure 6.13:  nhDF-shp62 ‘iPS’ cells subjected to 16 days of a spontaneous 

differentiation protocol and then stained for Sox17, an early endoderm marker. A. 

nhDF-shp62 are positive for both shp62-GFP and Sox17, Cells do not appear to co-

express sh(h)p62 and Sox 17, although a higher magnification would be required to 
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confirm. B. Panels highlighted in the red box are enlarged. All images were taken at 4x 

magnification, with scale bars representing 100µm. 

 

Figure 6.14 nhDF control IPSC were subjected to 16 day spontaneous differentiation 

protocol stained positive for both βIII-Tubulin and Sox17 but negative for GFP, as 

expected. All images taken at 4x magnification, with scale bars representing 100µm 

 

7.5. Discussion 

Overall, these results provide good evidence to support the hypothesis that p62 

plays a key role in the stabilisation phase of iPS reprogramming and in the 

maintenance of pluripotency. Both hDF-p62-/- and nhDF-shp62 cells form primary 

colonies, although these are significantly less uniform, smaller and generally 

dysregulated compared to nhDF derived controls. hDF-p62-/- and nhDF-shp62 

derived iPSC lines become more and more dysregulated with each subsequent 
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passage, with extremely high levels of spontaneous differentiation occurring. In 

addition, neither hDF-p62-/- and nhDF-shp62 derived iPSC lines have maintained 

pluripotent colonies beyond P6-9, respectively. nhDF derived control iPS lines have 

been passaged to beyond 30 passages within this project.  

It is possible that nhDF-shp62 derived iPS cells appear to repress the sh(RNA) 

construct once a level of pluripotency has been reached. This is a credible 

hypothesis due to the enormous number of genetic, epigenetic, metabolic and 

morphological changes that cells undergo throughout this process. Interestingly, I 

present preliminary data that suggests the nhDF-shp62 derived iPS cells begin to 

rapidly differentiate the construct appears to be switched back on. However, it is 

worth noting that the shp62 cassette and eGFP cassette are expressed under the 

control of two different promoters, and I have not assessed the level of p62 

expression in these differentiated cells. However, this lentiviral vector is commonly 

used in iPSC and differentiating cells with eGFP being used as a marker for 

expression of the inserted transgene (Singovski et al, 2015; Zhang et al, 2016; 

Zhang et al, 2017). 

Further, when subjected to an established spontaneous differentiation protocol, 

nhDF-shp62 derived iPSC lines may show a propensity to differentiate towards an 

ectodermal/neural lineage either as a targeted differentiation or as an exit from 

pluripotency signal in the absence of other differentiation cues.  
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Chapter 8. Discussion, future works and 
conclusions. 

  



235 
 

Chapter 7: Discussion and future works. 

The ability to reprogram adult somatic cells to an embryonic-like state known as 

induced pluripotency is an exciting and not yet fully realised technology for use in 

regenerative medicine, drug screening and disease modelling. Current gold-standard 

methods for iPSC reprogramming are highly inefficient, with much still unknown 

about the mechanisms by which it occurs, although a level of autophagic recycling, 

mitochondrial remodelling, bioenergetics and transcription level changes occur.  

p62 is a multi-domain, multi-functional protein with roles in autophagy, nutrient 

sensing, mitochondrial degradation and energetics and the anti-oxidant response. 

Until now, the potential role of p62 in iPSC reprogramming or the maintenance of the 

pluripotent state has been unknown. The data presented in this report suggest that 

p62 may play a role in iPSC reprogramming or the maintenance of pluripotency.  

Throughout this project I was able to successfully reprogram a number of fibroblast 

cells from mouse and human to pluripotency including Harvard doxycycline inducible 

MEFs, WT MEFs, control nhDFs, Batten disease CLN6 and CLN7 mutation patient 

fibroblasts, p62 null patient fibroblasts and shRNA mediated p62 knock-down 

fibroblasts. The McKay lab iPSC reprogramming protocol is robust and allows for the 

efficient iPSC reprogramming of any fibroblast using episomal OriP/EBNA 

reprogramming plasmids.  

Initial development of iPSC reprogramming skills and methodologies were carried 

out on the Harvard inducible MEFs, which reprogram to pluripotency at extremely 

high efficiency, in order to understand the practical processes involved in iPSC 

reprogramming within a robust and efficient system, and with the simple addition of 

doxycycline all that was required to induce reprogramming. In analysing primary 
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colonies, it was impossible to count colony number as individual iPSC colonies were 

too close together to be distinguished on a macro scale manually or in ImageJ 

software; this is compounded by the fact that mouse iPSC and ESC colonies are 

much smaller than their human counterparts are. Far more colonies were formed in 

JB7 (homozygous for OKSM and Oct4-GFP) cells than JB8 (homozygous for OKSM 

but heterozygous for Oct4-GFP), possibly because JB7 MEFs were reprogrammed 

at P3 whereas JB8 MEFs were reprogrammed at P5. Notably, the polycistronic 

OKSM reprogramming cassette in these cells does not contain shp53, unlike the 

OriP/EBNA plasmids used for other reprogramming experiments in this study. This 

could mean that the later passage JB8 MEFs had undergone some level of cell 

senescence, resulting in a lower reprogramming efficiency in these cells compared 

to the JB7. 

It is common to observe elevated levels of p62 in Batten disease neurons 

(Brandenstein et al, 2016) and fibroblasts, in fact other members of the McKay lab 

have observed higher levels of p62 expression in CLN7 neural progenitor cells. 

Other members of the McKay lab had previously found that CLN6 and CLN7 Batten 

disease patient fibroblasts reprogrammed with higher efficiency than our control cells 

(anecdotal, not quantified), although this was never the case in my hands. A 

statistical analysis was never carried out in these particular experiments, but a basic 

assessment of primary colony number did not suggest any difference in 

reprogramming efficiency between CLN6 or CLN7 fibroblasts compared to nhDF. 

Secondly, although significant p62 elevation has previously been reported in CLN7 

mutant mouse fibroblasts (Brandenstein et al, 2016), this has not been observed in 

human fibroblasts or iPSC within the McKay group (unpublished observations). 
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Collated across all iPSC reprogramming experiments I conducted on all cell sources, 

there was less evidence of MET occurring in cells seeded at a lower density. The 

reason for this difference in density is simply that some cells and some individual 

experiments take longer to recover from the stress induced at nucleofection; 

although the reasons for this disparity are not known. hDF-p62-/- cells grow more 

slowly than nhDF controls, so when the same number of cells are nucleofected they 

will take slightly longer to reach confluence than nhDF controls. However, this lack of 

visible MET is certainly not unique to the hDF-p62-/-. Importantly, I observed no 

correlation between a lack of visible MET and reprogramming success at P0, as 

evidenced by nhDF and CLN6 reprogramming experiments.  

CLN7-iPSC showed positive staining for a range of key pluripotency markers 

alongside hESC positive controls, including marker that aren’t in the OriP/EBNA 

reprogramming plasmids, suggesting that the cells own pluripotency maintenance 

regulatory gene network had been ‘switched-on’. Furthermore, CLN7-iPSC, CLN6-

iPSC and nhDF-iPSC were all cultured for many passages (up to 30) throughout the 

length of this project; far beyond the period for which episomal plasmids are retained 

and thus the cells are expected to be completely transgene independent.  

Throughout this project, I have created a wide range of tools in order to genetically 

modulate p62 expression in both mouse and human cells. Several genetically 

modified stable cell lines have been created, and some of these have been utilised in 

iPSC reprogramming experiments. This toolkit was not utilised as fully as hoped, but 

their potential for future use is enormous. The limitations of this study, as well as 

future works will be discussed later in this section.  
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Firstly, I designed, cloned, validated and implemented an shRNA for human p62 in 

order to create a cell line with p62 knock-down. Sequences were validated using 

Sanger sequencing, tested, and validated in a Hek293T cell line. Hek293T cells are 

useful for their rapid growth and proliferation as well as their high transfection 

efficiency and virus production (Thomas and Smart, 2005).  

In these initial Hek293T experiments, levels of p62 protein expression were only 

reduced a small amount. However, these cells were lysed only 48hours after 

transduction. With shRNA taking up to 22 hours to have its effects on transcription 

(O’Keefe, 2013) and studies suggesting that the half-life of p62 protein is up to 24 

hours (Lerner et al, 2013); it is possible that there had not been enough time to see 

sufficient reduction of p62 protein levels. In addition, a heterogeneous population of 

cells were lysed. Nevertheless, a sufficiently encouraging level of p62 protein 

reduction was achieved to carry out further experiments. Cells were clonally 

expanded to create a homogenous population of cells, and on analysis with western 

blot in three independent experiments, an average of 85.21% reduction in protein 

levels was achieved. When nhDFs were transduced with sh(h)p62, the time taken to 

expand these cells for sorting by FACS eliminated any concern over p62 protein half-

life.  

A human p62 overexpression plasmid was designed and de novo synthesised in a 

minimal promoterless vector. I designed this construct with restriction enzymes for 

ease of cloning into the pENTR-1a minimal cloning vector. This was done 

successfully, and confirmed by Sanger sequencing, as was subsequent 

recombination into the SFFV-GW lentivector. However, it was later decided that the 

addition of either a puromycin selection marker or GFP cassette or similar would be 

vital in ensuring transduction efficiency, the creation of a homogeneous cell line and 
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further analyses. Within the McKay lab we had a further lentiviral vector, which 

contains both puromycin resistance selection and a GFP cassette: I attempted to 

clone the hp62 cassette into the vector (IRES-GFP-PGK-PURO) however, 

unfortunately the proximity of suitable restriction sites within the multiple cloning site 

(MCS) of the destination vector made this unfeasible. Ultimately, in order to 

maximise time and opportunity to carry out further experiments, the decision to 

purchase a complete human p62 overexpression plasmid was made. However, this 

lentiviral vector may be useful in future works where a homogeneous population of 

cells is less important, or a more suitable vector may become available to clone the 

construct into.  

pBABE-puro-HA-p62 and pBABE-puro-HA-p62-LIR were created by the Jayanta 

Debnath lab (Chen et al, 2013) and purchased from Addgene. pBABE-puro-HA-p62 

is a retroviral expression plasmid for complete human p62. pBABE-puro-HA-p62-LIR 

has a mutation causing a single amino acid change from a tryptophan (W) to an 

alanine (A). The W338A mutation prevents p62 from recognising or being able to 

interact with LC3, and therefore the breakdown of p62 by autophagy (Chen et al, 

2013; Bertrand et al, 2015; Yan et al, 2018). pBABE-puro-HA-p62 and pBABE-puro-

HA-p62-LIR retroviral plasmids were successfully transfected into Hek293T cells, 

and subsequently stably transduced into hDF-p62-/- cells. Homogeneous lines of 

hDF-p62-/- cells transduced with either pBABE-puro-HA-p62 or pBABE-puro-HA-p62 

were created with puromycin selection. In future experiments, the downstream 

effects of W338A mutation could be validated by analysing the levels of p62-LC3 

interaction.   

pBMN-mCherry-p62(ΔUBD) and pBMN-mCherry-p62(UBD/W340A) retroviral 

plasmids were created by the Michael Lazarou lab (Padman et al, 2019) and 
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purchased from Addgene. pBMN-mCherry-p62(ΔUBD) is truncated to omit the UBA 

domain from amino acid 385 onwards, thereby preventing any interaction with 

ubiquitinated proteins or organelles such a mitochondria targeted for degradation. 

pBMN-mCherry-p62(UBD/W340A) is truncated at amino acid 385 and has an 

additional mutation leading to an amino acid change from tryptophan to alanine at 

340 (W340A). Sequences were confirmed with Sanger sequencing. Both W338A 

and W340A mutations work in the same way to prevent LC3 binding. Of course, 

other proteins besides p62 do contain UBD domains (e.g. OPTN, NBR1 and NDP52) 

(Padman et al, 2019), so this does not prevent that targeting of ubiquitin tagged 

proteins to autophagosome in general, merely, the ability of p62 specifically to enact 

this function. In addition, p62 is degraded by autophagy itself and both LC3 and UBA 

interactions are essential for this (Pankiv et al, 2007). Furthermore, autophagy can 

be initiated without p62 (Itakura and Mizushima, 2011) as other proteins with PB1, 

LIR and UBA domains exists.  

pBMN retroviruses were produced using Hek293T cells and hDF-p62-/- that were on 

D1 of iPSC reprogramming were stably transduced thereby introducing mutant p62 

protein expression on a null background at the very beginning of iPSC 

reprogramming. To my knowledge, and interrogation of iPSC reprogramming on cell 

lines expressing mutant p62 have not been carried out previously. Unfortunately, 

these experiments also had to be curtailed at day 6 of iPSC reprogramming.  In this 

case, it was determined that it was not necessary to create a homogeneous 

population of cells for iPSC reprogramming experiments. Instead, the hope was that 

because the pBMN plasmids contain mCherry, the experiments would have an 

‘internal control’ whereby we could assess in real time any differences in efficiency of 

iPSC reprogramming and the maintenance of pluripotency between hDF-p62-/- 
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(untransduced cells) and cells stably transduced with the p62 overexpression mutant 

viruses. It would also be interesting in the future to create a pure population of the 

cells and carry out iPSC reprogramming, however, as we only have hDF-p62-/- 

fibroblasts from P8 onwards, the time taken to transduce, expand and sort these 

would likely render them too old and senescent to be effectively reprogrammed. 

Perhaps a small molecule to inhibit p62, or specific p62 functions could be utilised to 

transiently reduce p62 expression at certain time points during the iPSC 

reprogramming process in order to assess the affects in a time and context 

dependent manner. For example, LP1-006 and XRK3F2 are both inhibitors of the 

p62-zz domain (Adamik et al, 2018; Li et al, 2019) which could be utilised to 

interrogate the specific function of the ZZ-domain during iPSC reprogramming or 

pluripotency.  

I also cloned a truncated version of human p62 which only contains a small central 

portion of human p62 encompassing the just the ZZ-type zinc finger region and TB 

domain. This truncated mutant of human p62 was successfully cloned into SFFV-

lentivirus and could be used in future experiments to examine the effect of p62 in 

iPSC reprogramming in the absence of the PB1, KIR, LIR and UBA domains. By 

preventing dimerisation at the PB1 domain, autophagy targets would not be 

aggregated and targeted for break down (Lane et al, 2017). This could, 

hypothetically, lead to an accumulation of organelles and proteins in cells, which 

could ultimately trigger apoptosis. Apoptosis has been demonstrated as a key event 

in early iPSC reprogramming (Li et al, 2011). Caspases involved in apoptosis are 

activated by Oct4 expression and the inhibition of this process prevents iPSC 

reprogramming (Li et al, 2011). However, an excess of apoptosis or cell senescence 

can cause cell death and prevent iPSC reprogramming (Cheung et al, 2012). 
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Perhaps apoptosis is required in the early initiation and induction of iPSC 

reprogramming but can be detrimental in later stages.  

In addition to the suite of human p62 genetic manipulation tools I created, I also 

designed and cloned a range of tools for the genetic manipulation of mouse p62 

expression. Human and mouse p62 are very similar, with the same basic domain 

architecture and many similar phosphorylation sites. Mouse p62 shRNA was 

designed and cloned into pLL3.7 lentiviral vector. A mouse p62 overexpression 

cassette was successfully cloned into SFFV-lentiviral vector. In addition, I utilised 

state-of-the-art InFusion® cloning to create 3 functional mutants s24a, w340a and 

s351a to prevent phosphorylation occurring at these sites and therefore curbing 

binding interactions between p62 and itself (s24a PB1 domain mutation), LC3 

(w340a LIR mutation) and KEAP1 (s351A KIR mutation). These unique mouse p62 

functional mutant lentiviral vectors can be utilised in future mouse iPSC 

reprogramming experiments. 

hDF-p62-/-  were characterised alongside nhDF controls using confocal microscopy of 

immunocytochemical staining for p62 and Lamp1. As expected, hDF-p62-/- cells 

express no p62 protein, whereas MEFs and nhDFs are both strongly positive for p62 

and Lamp1 by immunocytochemistry. Interestingly, I observed strong co-localisation 

between p62 and Lamp1 in nhDFs, in large aggregates suggesting fusion of 

autophagolysosomes containing p62 to be degraded. In contrast, in WT MEFs this 

co-localisation does not occur. One possible reason for this is that potentially the 

nhDFs were stressed at the time of PFA fixation; however, nhDFs and MEFs were 

cultured in the same media for the same amount of time and treated identically 

throughout culturing and fixing. Furthermore, in the hDF-p62-/- cells, lysosomes 
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appeared morphologically smaller, likely due to an absence or reduction of fusion 

with autophagosomes because of the absence of p62.   

Western blot analysis of p62 protein levels in hDF-CLN6, hDF-CLN7, nhDF and 

hDF-p62-/- cells revealed, as expected a complete absence of p62 protein in hDF-

p62-/- fibroblasts. Importantly, p62 protein levels were not elevated in CLN6 or CLN7 

mutant fibroblasts compared to nhDF controls in contrast to that observed in neural 

cell types in these Batten disease sub-types (Brandenstein et al, 2016).  

hDF-p62-/- fibroblasts were also assessed using MitoTrackerTM compared to nhDF 

controls. It has previously been reported that an absence of p62 can lead to a 

reduction in perinuclear clustering of damaged and fragmented mitochondria (Okatsu 

et al, 2010), and this can be seen when comparing nhDFs to hDF-p62-/-. 

Mitochondrial function is dependent on a continuously changing balance of fission 

and fusion to manage the number and size of mitochondria based on the cells 

energetic needs (Seibenhener et al, 2013). When mitochondria are damaged they 

can lose mitochondrial membrane potential and become depolarised (Zorova et al, 

2017) and fusion of mitochondria to form longer, tubular mitochondrial structures is 

reported to be a mechanism of recovering these damaged mitochondria and 

preserving their function (Twig et al, 2008). Furthermore, the fragmentation of 

mitochondria is directly related to dysfunctional mitochondrial bioenergetics. 

Alternatively, depolarised or fragmented mitochondria are also targeted for 

degradation by autophagy (Twig et al, 2008). Mitochondria were reported to be more 

fragmented in the absence of p62 in mouse fibroblasts, neurons and astrocytes and 

mitochondria returned to a tubular morphology when p62 was reintroduced 

(Seibenhener et al, 2013). However, hDF-p62-/- cells appeared to display the 

opposite morphology, with a high number of elongated, fused mitochondria, 
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particularly around the nucleus compared to controls. This was intriguing, given what 

is reported in the literature, however, it is possible that due to impaired autophagic 

processing in hDF-p62-/- cells damaged mitochondria are fused with healthy ones 

because they are not being degraded by autophagy to the same extent. Finally, 

Yamada et al (2018) found that mitochondria size was not altered by p62 knock-out 

in mouse hepatic cells, and this was true of cells in my experiments too.  

Further analysis would be necessary in order to fully assess differences in 

mitochondria in hDF-p62-/- cells compared to nhDF controls, including analysis of a 

much greater number of cells over multiple experiments, assessment of 

mitochondrial membrane potential using TMRM (Tetramethylrhodamine, Methyl 

Ester) and analysis of bioenergetics of both cell types using Seahorse bioanalyser. 

There is some debate over whether or not p62 is essential for mitochondrial 

clearance (Geisler et al, 2010; Okatsu et al, 2010; Arduíno et al, 2011): p62 is 

hypothesised to be important in the process of mitochondrial clearance, but it is 

possible that other similar proteins can compensate for p62 in its absence (Geisler et 

al, 2010). Interestingly, p62 induced degradation of mitochondria is mediated by 

PARKIN, and human fibroblasts express very low levels of PARKIN  (Calvo-Garrido 

et al, 2019) which could explain the lack of mitochondrial fragmentation seen in my 

hDF-p62-/- cells. It is necessary for the targeting of mitochondria both for 

ubiquitination and translocation to the autophagosome once ubiquitinated (Ni et al, 

2015).  

When assessing mitochondrial number size and morphology in association with p62 

staining nhDFs, CLN6 and CLN7-hDFs do not appear to show a high level of co-

localisation between mitochondria and p62. Intriguingly, CLN6 and CLN7-hDFs 
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appear to have a high number of mitochondria than nhDF control cells and  

hDF-p62-/-, and this could be an interesting line of further investigation.  

iPSC reprogramming experiments were carried out in hDF-p62-/-  fibroblasts 

compared to nhDF controls. At ~8d cells were assessed by microscopy and 

appeared morphologically similar: both nhDF controls and hDF-p62-/- cells display 

clear evidence of MET, an early event in the initiation phase of iPSC reprogramming. 

This suggests that hDF-p62-/- cells are able to initiate iPS reprogramming in the 

same way as nhDF control cells. Equally, when assessing very early colony 

formation, which generally starts to happen between ~14-18d, there are no 

discernible differences between hDF-p62-/- cells and nhDF controls. Early colony 

formation is indicative of the second phase of iPSC reprogramming, maturation, 

during which a programme of endogenous pluripotency regulating genes begin to be 

‘switched-on’ as a result of the forced over-expression of a select few of these genes 

supplied by the reprogramming plasmids (or virus/mRNA).   

However, upon analysis on primary (P0) ‘iPSC’ colonies at day 25, clear 

morphological and behavioural differences became apparent. nhDF primary colonies 

were largely round, well-defined, strongly positive for AP and show limited amounts 

of partial reprogramming or early spontaneous differentiation. Of course, when 

reprogramming to induced pluripotency there was always some level of 

differentiation or incomplete reprogramming, particularly at early passages because 

iPSC reprogramming is a multi-step process reliant on multiple successful phases.  

iPSC reprogramming, as discussed in the introduction, is highly inefficient and there 

are multiple points during the process during which the process can falter. Even the 

use of four separate plasmids for iPSC reprogramming means that the chances of 
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cells receiving equal amounts of each one are very slim. However, in nhDF cells the 

appearance of incompletely reprogrammed colonies or spontaneous differentiation is 

low, because conditions are such that true iPSC colonies flourish. In contrast, in 

reprogramming experiments with hDF-p62-/- cells, most primary (P0) colonies 

displayed signs of partial reprogramming or spontaneous differentiation. hDF-p62-/- 

primary ‘iPSC’ colonies are irregular in shape, have areas where AP staining is much 

weaker, and there was a high level of differentiation visible. In addition, there were 

multiple much smaller areas of AP positive staining, possible suggesting a high level 

of partial reprogramming. It seems unlikely that it is simply that hDF-p62-/- cells 

reprogram more slowly than nhDF controls because the two cell types are so similar 

in the early stages of the experiments.  

Macroscopic images of P0 colonies stained with AP show many more AP positive 

areas in the hDF-p62-/- experiments than in the nhDF controls. This must not be 

assumed to mean a higher reprogramming efficiency in hDF-p62-/-, on the contrary, 

most of these areas do not morphologically resemble iPSC colonies. Analysis of AP 

positive areas using ImageJ revealed a significantly higher number of AP+ areas in 

hDF-p62-/- cells compared to nhDF controls. On average, there were 95 (±8.498 

S.E.M) primary (P0) nhDF iPSC colonies at 25d of three independent 

reprogramming experiments, whereas there were 234 (±15.694 S.E.M) primary (P0) 

hDF-p62-/- ‘colonies’. Furthermore, the standard error of the mean was also much 

higher in hDF-p62-/- experiments compared to control (±15.694 compared to ±8.498, 

respectively), suggesting a higher level a variation between experiments.  

hDF-p62-/- ‘colonies’ were also significantly smaller than nhDF controls: hDF-p62-/- 

colonies were on average 38pixels^2 (±7.747 S.E.M) compared to nhDF colonies 

which were on average 87.53 pixels^2 (±8.0194 S.E.M). Finally, P0 hDF-p62-/- were 
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more irregular in shape than nhDF controls: only 74.4% of hDF-p62-/- colonies 

scored higher than 0.5 for circularity compared to 95.1% on nhDF P0 colonies. All 

that being said, a small number of colonies (or parts of colonies) that resembled 

iPSC colonies were present in hDF-p62-/- experiments and so these cells were 

passaged by manual excision in equal number to nhDF colonies. After approximately 

one week in culture, with daily media replenishment P1 ‘iPSC’ colonies were again 

analysed for number and colony regularity. P1 colonies were analysed visually, but 

all images were unlabelled at the time of analysis to avoid any confirmation bias. 

Colony number was similar across both nhDF control and hDF-p62-/- experiments, 

but there was a significant difference in the regularity and morphology of the 

colonies. In three independent nhDF derived iPSC experiments, 89.1% of colonies 

had the well-defined boundary surrounding the entirety of the colony that is typical of 

true pluripotent stem cell colonies. In contrast, only 49.1% of hDF-p62-/- colonies had 

complete borders. All other colonies had either no well-defined border at all or at 

least one area where spontaneous differentiation had occurred thereby ‘breaking’ 

this border. Further passages of hDF-p62-/- revealed that hDF-p62-/- derived colonies 

were unable to retain any level of pluripotency they once had. In the representative 

examples shown in Chapter 5, all signs of pluripotency had been entirely lost by 

passage 6, but this was actually the best-case scenario achieved throughout this 

project. Other reprogramming experiments with hDF-p62-/- cells did not survive past 

passage 3 (data not shown). In contrast, nhDF derived iPS colonies have been 

passaged upwards of 30 times during this project.  

Overall these data show, for the very first time (to the best of my knowledge), that 

cells are unable to complete the 3rd stabilisation phase of iPSC reprogramming, 

achieve transgene independency or maintain pluripotency in the absence of p62.  
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Cells can initiate iPSC reprogramming and appear to go through the earlier phases 

of iPSC reprogramming in a similar fashion to nhDF controls. p62 expression has 

been shown to promote cell proliferation in cancer stem cells in multiple cancer types 

via both NFΚB and NRF2 signalling (Duran et al, 2008; Komatsu et al, 2010; Duran 

et al; 2011; Nihira et al 2014). Further, the inhibition of p62 suppressed cell 

proliferation by preventing the correct formation of autophagosomes and inducing 

autophagic cell death (Nihira et al; 2014). These works indicate that rapid cell 

proliferation (as is necessary in both iPSC reprogramming, and in tumourigenesis) 

relies on the signalling of p62. However, a thorough literature review failed to show 

any published works on the effects of p62 specifically in pluripotency or iPSC 

reprogramming.  

Further studies are needed to understand why this is and the exact mechanistic role 

of p62 in regulating the maintenance of pluripotency. Many planned analyses on 

these particular cells were made almost impossible by the fact that cells were lost or 

differentiated so rapidly. Firstly, just having enough cells for protein or RNA 

extraction made qPCR of gene transcription levels or western blot analysis extremely 

difficult. Secondly, if cells are not true iPSC, as it is clear they are not, then what is 

the value in comparing them to nhDF derived iPSC controls and does a more 

suitable control exist? Some analyses that would have been possible and insightful if 

time had allowed include analysis of gene transcription levels, bioenergetics using 

Seahorse bioanalyser and the use of transcription factor activated reporters 

throughout the iPSC process, for example at ~8d, 16d, and 22d (just before primary 

colony analysis). This may have provided some insight into the exact point at which 

iPSC reprogramming faltered in hDF-p62-/- cells.  
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Furthermore, I had planned to gain crucial insight into the pathways and interacting 

partners involved in this p62-related failure to reach or maintain pluripotency by 

utilising the mutant overexpression vectors for human p62, which I created and 

validated. This would have told us whether the effect on pluripotency was due to the 

ability of p62 to induce autophagy (via it’s PB1, and LC3 domains); because of its 

involvement in mitochondrial remodelling and targeting for degradation; due to its 

UBA domain and the targeting of proteins for degradation by autophagy or a 

combination of these interactions. Multiple experiments had to be abandoned at 

short notice due to Covid-19 and the closure of the university: Dozens of iPSC 

reprogramming experiments (pBMN-mcherry-p62(ΔUBD) and pBMN (ΔUBD/W340A 

compared to controls) and several more flasks of cells which were ready to begin 

iPSC reprogramming (hp62-trunc overexpression; pBABE-pur-HA-p62 and pBABE-

puro-HA-p62-LIR) were unfortunately never able to come to fruition. However, all of 

the tools I have created for the manipulation of p62 can now be utilised in future 

experiments both in the context of iPSC reprogramming and pluripotency, and 

further afield; for example in studying neurodegenerative disease.  

hDF-p62-/- patient cells were a kind gift from Dr Chris Carroll. The work of his 

research group describing and characterising these cells shows that he has looked 

at cells from multiple patients: however, I am unaware which of these patients the 

cells I have come from and therefore have no other information about the genetic 

profile of these cells. In order to ensure that any effect on iPSC reprogramming seen 

in these cells is definitely the result of an absence of p62 and not some other genetic 

difference in the patient cells, I designed, cloned, validated and implemented an 

shRNA for human p62 (sh(h)p62).  
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This shRNA construct contained three individual mir-based hairpins, predicted by 

SplashRNA algorithm to provide at least 80% knock-down as previously described. 

Validation experiments in Hek293T cells confirmed that sh(h)p62 resulted in an 

85.21% reduction in p62 protein levels. A novel cell line (nhDF-shp62) was subjected 

to iPSC reprogramming alongside nhDF controls in the same manner as hDF-p62-/-. 

hDF-p62-/- cells were derived from a single patient and we did not have an isogenic 

control. By creating the nhDF-shp62 cell line it was possible to have cell line with 

significantly reduced p62 expression on the same genetic background as the nhDF 

control cells. Further, interrogating the effects of p62 knock-down on these cells 

confirmed that the results in in hDF-p62-/- cells were due to their lack of p62 and not 

some other unknown genetic differences. Further, the hDF-p62-/- cells were primary 

fibroblasts of which only a very small number were available. Utilising the sh(h)p62 

lentivirus to create nhDF-shp62 cells could be repeated at any time, providing more 

source material.  

Much like hDF-p62-/- cells, nhDF-shp62 cells appear morphologically similar to nhDF 

controls at both ~8d and ~16d of iPSC reprogramming. nhDF-shp62 and nhDF 

controls both show clear signs of MET at 8d, confirming initiation of iPSC 

reprogramming. Furthermore, at 18d early iPSC colony formation can be seen 

suggesting that cells have successfully reached the maturation phase of iPSC 

reprogramming. In addition, because the sh(h)p62 construct also has a GFP 

cassette, nhDF-shp62 cells at 18d reprogramming are strongly positive for GFP, 

suggesting that p62 knock-down is in effect (although it is worth remembering that 

the shRNA cassette and the GFP cassette are under the control of two separate 

promoters).  
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However, at 25d, much like in hDF-p62-/- experiments, there are clear differences 

between nhDF control and nhDF-shp62 cells. Once again, primary (P0) colonies 

were analysed in ImageJ for number, size and shape. There were significantly more 

AP+ areas in nhDF-shp62 experiments than nhDF controls. On average, there were 

16 P0 nhDF iPS colonies, whereas there were 89 AP positive nhDF-shp62 ‘iPSC’ 

colonies after 25d of reprogramming on average. In addition, nhDF-shp62 colonies 

were significantly smaller than the nhDF controls: on average nhDF derived iPSC 

colonies are 42.914 pixels^2, whereas the size of nhDF-shp62 colonies is 10.771 

pixels^2. Finally, P0 nhDF-shp62 colonies were significantly more irregular in shape 

than nhDF iPSC colonies. On average nhDF iPSC colonies score 0.897 for 

circularity, where 1.0 is a perfect circle and nhDF-shp62 colonies score just 0.78. 

nhDF-shp62 derived ‘iPSC’ colonies behave extremely similarly to hDF-p62-/- derived 

iPSC.  

As with hDF-p62-/- experiments, nhDF-shp62 derived P0 ‘iPSC colonies were 

manually passaged alongside nhDF iPSC controls. Colonies were visually analysed 

for colony number, regularity and morphology. Again, images were unlabelled at the 

time of analysis to avoid any bias. As previously described, P1 colony number was 

similar in both nhDF-shp62 and nhDF controls. 68.3% on nhDF iPSC colonies 

across three independent experiments had a well-defined border around the whole 

of the colony whereas only 35% of nhDF-shp62 derived colonies had complete 

borders. Significantly fewer nhDF-shp62 colonies were morphologically typical of 

iPSC colonies.  

Further passaging of nhDF-shp62 derived colonies revealed a similar profile of rapid 

spontaneous differentiation and cell loss to that seen in hDF-p62-/- experiments. In 

addition, analysis of GFP expression in these cells through multiple passages 
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revealed some very interesting results. As previously described at 18d of iPSC 

reprogramming, 100% of cells were GFP+. However, with subsequent passages 

GFP expression was reduced, particularly in those cells that were most 

morphologically like true iPSC cells. This could indicate that the sh(h)p62 construct 

was also repressed in these cells, which could explain why nhDF-shp62 derived 

‘iPSC’ colonies survived for slightly longer than hDF-p62-/- (although still never 

beyond passage 9). Cells that had undergone obvious spontaneous differentiation 

were, in general, strongly GFP+, suggesting that whatever suppression of 

expression of sh(h)p62 virus was reversed when cells differentiated or no longer 

expressed pluripotency genes.  

A search of the literature failed to uncover other robust examples of this occurring; 

however, the Retinblastoma gene (RB) is known to repress expression of the U6 

promoter. p53 regulates expression of Rb (Shiio et al, 1992), and our iPSC 

reprogramming plasmids contain a shRNA for p53. It is possible, that knock-down of 

p53 in our reprogramming cells leads to an increase in Rb expression and thereby 

suppression of the U6 promoter. The sh(h)p62 construct is under control of the U6 

promoter, followed by a CMV promoter controlled eGFP cassette. p62 protein levels 

were not assessed at the time and so it is impossible to know whether or not both 

GFP and sh(h)p62 expression were repressed. Hypothetically; if the shRNA was 

repressed and p62 expression levels were returned towards normal, this was able to 

rescue a pluripotent phenotype in the nhDF-shp62 cells; suggesting that p62 is 

crucial during the iPSC reprogramming, and that cells cannot reach transgene 

independency or maintain pluripotency without it. If the shRNA was not repressed, 

then our results continue to reflect those seen in the hDF-p62-/- cells.  
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My nhDF-shp62 cells faithfully recapitulated the novel results seen in hDF-p62-/- 

cells. In the absence of p62, cells are able to initiate iPSC reprogramming, and likely 

enter the maturation phase as well. However, cells are unable to complete the 

stabilisation phase of iPSC reprogramming, reach transgene independency or 

maintain pluripotency in the absence of p62.  

Tri-lineage differentiation experiments in nhDF-shp62 derived ‘iPSC’ cells also 

indicated that it is possible that cells tend towards a neural lineage in the absence of 

p62. EBs formed from dissociated nhDF-shp62 ‘iPSC’ were GFP positive and when 

transferred to adherent culture differentiated into cell types with diverse morphology. 

Cells were stained for Sox17 (an early endodermal marker) and β-III Tubulin (an 

early marker of neuroectoderm). Unfortunately, staining for α-smooth muscle actin, a 

mesodermal marker, was unsuccessful in this particular experiment and could not be 

repeated. Interestingly, neuroectoderm is considered the “default” differentiation 

lineage when exiting pluripotency (Kamiya et al, 2011) meaning that loss of p62 

could be either promoting exit from pluripotency or neuroectodermal differentiation. 

Recent studies have shown that p62 is essential for normal neural differentiation, 

and the switch to oxidative phosphorylation during this process (Calvo-Garrido et al, 

2019). This does suggest that perhaps an absence of p62 in my nhDF-shp62 cells is 

promoting an exit from pluripotency rather than differentiation to a neuronal lineage. 

In addition, if p62 is essential for a switch from glycolytic to oxidative phosphorylation 

during neuronal differentiation, it is likely that it is also essential for the switch from 

oxidative phosphorylation to glycolysis that happens during iPSC reprogramming. Of 

course, p62 is well known for its role in the response to oxidative stress (Jiang et al, 

2015).  
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Conclusions 

● I successfully reprogrammed a range of mouse and human fibroblasts to 

induced pluripotency using a variety of iPSC reprogramming methods.  

● I created a ‘tool-box’ of genetic manipulation vectors for the study of p62 

overexpression and knock-down in both complete and functionally mutated 

for9hms for use in mouse and human cells. 

● sh(h)p62 mediated knockdown achieves >85% reduction in p62 protein levels.  

● I characterised hDF-p62-/- cells and undertook extensive iPSC reprogramming 

experiments and analysis into the efficiency of iPSC reprogramming in these 

cells as well as their inability to maintain pluripotency.  

● The results seen in hDF-p62-/- iPSC reprogramming were faithfully 

recapitulated in nhDF-shp62 cells transduced with sh(h)p62 lentivirus.  

● nhDF-shp62 iPSC reprogramming and tri-lineage differentiation experiments 

gave some insight into the way that exit from pluripotency may be regulated 

by p62.  

Overall, my results reveal a potential novel role for p62 in the establishment and 

maintenance of pluripotency as evidenced in patient cells with a complete absence 

in p62 protein and in nhDFs stably transduced with shRNA to reduce p62 protein 

levels by 86%. Future works can utilise the genetic manipulation tools I created to 

elucidate the exact mechanism by which p62 and its downstream interacting 

partners are essential for iPSC reprogramming and the maintenance of pluripotency.  
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Appendix 1:  List of Abbreviations  

ALS:  Amyotrophic Lateral Sclerosis 

AMPK:  AMP-activated protein kinase 

aPKC:  atypical protein kinase C 

Atg:  autophagy related genes 

Cas9:…………………………………………………………………………………………………….CRISPR associated protein 9 

CD44:  cluster of differentiation  

CK2:  Casein Kinase 2 

CRISPR: ………………………………………………Clustered regularly interspaced short palindromic repeats 

CSC:  Cancer stem cells 

ERK:  extracellular signal related kinase 

ESCs:  Embryonic stem cells 

GMP:  Good Manufacturing Practise 

hESCs:  human ESCs 

ICM:  inner cell mass 

IL-1:  Interleukin-1 

iPSC:  induced pluripotent stem cells 

IRS-1:  insulin receptor substrate 1 

KIR:  Keap1 interacting region 

KLF4:  Kruppel-like factor  

LC3-II:  microtubule-associated protein light chain 3 

LIR:  LC3 interacting region 

LRS:  LC3 recognition sequence 

LSD:………………………………………………………………………………………….………..Lysosomal storage disorders 
MEKK3: …………………………………………………………………………………………………Mitogen Activated protein kinase 3 

MET:  mesenchymal to epithelial 

mRNA:  messenger RNA 

mTORC1:  mechanistic target of rapamycin complex 1 

NBR1:  Neighbour of BRCA 1 

NCL:  neuronal ceroid lipofuscinosis 

NES:  nuclear export signal 

NF-ΚB:  Nuclear Factor kappa-light-chain-enhancer of activated B cells 

NGF:  nerve growth factor 

NLS:  nuclear localisation signals 

NRF2-Keap1:  nuclear factor erythroid 2–related factor 2, Kelch Like ECH Associated Protein 1 

NSC:  neural stem cells 

Oct4:  octamer-binding transcription factor 4 

PB1:  Phox-BEM1 

PDE4:  Phosphodiesterase-4 

PKA:  cAMP dependent protein kinase 
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PKC:  atypical protein kinase C 

RANKL:  Receptor Activator of NF-ΚB ligand 

RIP1:  Receptor-interacting serine/threonine-protein kinase 1 

ROS:  neutralisation of reactive oxygen species, 35; reactive oxygen species 

RPE: …………………………………………………………………………………………………….Retinal pigment epithelium 

shRNA:  short hairpin RNA 

SOX2:  sex determining region Y-box 2 

TALENS…………………………………………………………………...Transcription activator like effector nuclease 

TB:  binding region, 28; TRAF6 binding region 

TFAR:………………………………………………………….………………………Transcription factor activated reporter 

TFEB:…………………………………………………………………………………………………………….Transcription factor EB 

TNBC:  triple-negative breast cancer 

TNF:  Tumour necrosis factor 

Traf6: TNF receptor-associated factor 6 

UBA:  Ubiquitin associated 

ULK:  Unc-51 like kinase 

ZZ:  zinc finger region 
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 Appendix 2: Summary of project aims and objectives in human and mouse cells.  

 



271 
 

 

 



272 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



273 
 

Appendix 3: Cell culture media components 

Media Components Amount/Final 
concentration 

Supplier  

hDF/MEF 
media 

Dulbecco’s Modified Eagle’s 
Medium (DMEM) with 4.5 g/L 
Glucose, without L-Glutamine 

450 mL Lonza, BE12-614F 

FBS  10% (50 mL) Gibco™ 10270106 

L-glutamine 2 mM Lonza, BE17-605E 

Penicillin/Streptomycin 50 µg/mL Lonza, DE17-603E 

Plasmocin or  
Mycozap  

10 µM Invivogen, ant-mpp 

Lonza, VZA-2032 

   

hESC/hiPSC 
feeder culture 
media 

DMEM/F12 45 mL Gibco, 10565-018 

Knock-Out serum replacement  20% (9 mL) Fisher Scientific UK, 
11520366 

Fibroblast growth factor (FGF) 5 µg/ mL Peprotech, 100-18B 

Penicillin/Streptomycin 50 µg/mL Lonza, DE17-603E 

β- Mercaptoethanol (BME) 0.1 mM Gibco, 31350-010 

Non-essential amino acids 
(NEAA) 

1 mL / 100 mL of 
media  

Gibco, 11140-050 

hESC/hiPSC 
feeder free 
culture media  

mTeSR™1 + Supplement As supplied  Stem cell technologies, 
85850 

Inducible MEF 
maintenance 
media  

DMEM with 4.5 g/L Glucose, 
without L-Glutamine 

450 mL Lonza, BE12-614F 

FBS  10% (50 mL) Gibco™ 10270106 

L-glutamine 2 mM Lonza, BE17-605E 

NEAA 1 mL / 100 mL of 
media  

Gibco, 11140-050 

BME 55 µM Gibco, 31350-010 

Inducible MEF 
reprogramming 
media 

Knock-out DMEM  400 mL  

FBS  20% (100 mL) Gibco™ 10270106 

L-glutamine 2 mM Lonza, BE17-605E 

NEAA 1 mL / 100 mL of 
media  

Gibco, 11140-050 

Ascorbic Acid  5 µg/ mL  

mLIF  1000 units/ mL  

Doxycycline 2 µg/ mL   

Induced miPS 
maintenance 
media 

Knock-out DMEM  400 mL  

FBS  20% (100 mL) Gibco™ 10270106 

L-glutamine 2 mM Lonza, BE17-605E 

NEAA 1 mL / 100 mL of 
media  

Gibco, 11140-050 

mLIF  1000 units/ mL  

mESC/miPSC 
maintenance 
media 

DMEM with 4.5 g/L Glucose, 
without L-Glutamine 

42.5 mL Lonza, BE12-614F 

FBS  15%  Gibco™ 10270106 

L-glutamine 2 mM Lonza, BE17-605E 

Penicillin/Streptomycin 50 µg/mL Lonza, DE17-603E 

NEAA 1 mL / 100 mL of 
media  

Gibco, 11140-050 

β- Mercaptoethanol (BME) 0.1 mM Gibco, 31350-010 

mLIF  1000 units/ mL  

Freeze media DMSO 90% Fisher Scientific, BP231-
100 

FBS  10%  Gibco™ 10270106 

https://www.sigmaaldrich.com/catalog/product/sigma/d6429?lang=en&region=GB&gclid=Cj0KCQjwwLKFBhDPARIsAPzPi-KYQ11Jl1cCxUCSDPg7z-RfThkSy3uNriOz3Qf-h0lOd0vq6PNZHdkaAg86EALw_wcB
https://www.thermofisher.com/uk/en/home/life-science/cell-culture/mammalian-cell-culture/fbs/qualified-fbs.html
https://bioscience.lonza.com/lonza_bs/GB/en/Culture-Media-and-Reagents/p/000000000000184036/L-Glutamine-for-cell-culture%2C-200-mM
https://bioscience.lonza.com/lonza_bs/CH/en/Culture-Media-and-Reagents/p/000000000000185607/Penicillin-Streptomycin-Mixture
https://www.invivogen.com/plasmocin
https://bioscience.lonza.com/lonza_bs/CH/en/Cell-analysis/p/000000000000195266/MycoZap-Prophylactic
https://www.thermofisher.com/order/catalog/product/10565018#/10565018
https://www.fishersci.co.uk/shop/products/knockout-serum-replacement-5/11520366
https://www.fishersci.co.uk/shop/products/knockout-serum-replacement-5/11520366
https://www.peprotech.com/gb/recombinant-human-fgf-basic-154-aa
https://bioscience.lonza.com/lonza_bs/CH/en/Culture-Media-and-Reagents/p/000000000000185607/Penicillin-Streptomycin-Mixture
https://www.thermofisher.com/order/catalog/product/31350010#/31350010
https://www.thermofisher.com/order/catalog/product/11140050#/11140050
https://www.stemcell.com/mtesr1.html
https://www.stemcell.com/mtesr1.html
https://www.sigmaaldrich.com/catalog/product/sigma/d6429?lang=en&region=GB&gclid=Cj0KCQjwwLKFBhDPARIsAPzPi-KYQ11Jl1cCxUCSDPg7z-RfThkSy3uNriOz3Qf-h0lOd0vq6PNZHdkaAg86EALw_wcB
https://www.thermofisher.com/uk/en/home/life-science/cell-culture/mammalian-cell-culture/fbs/qualified-fbs.html
https://bioscience.lonza.com/lonza_bs/GB/en/Culture-Media-and-Reagents/p/000000000000184036/L-Glutamine-for-cell-culture%2C-200-mM
https://www.thermofisher.com/order/catalog/product/11140050#/11140050
https://www.thermofisher.com/order/catalog/product/31350010#/31350010
https://www.thermofisher.com/uk/en/home/life-science/cell-culture/mammalian-cell-culture/fbs/qualified-fbs.html
https://bioscience.lonza.com/lonza_bs/GB/en/Culture-Media-and-Reagents/p/000000000000184036/L-Glutamine-for-cell-culture%2C-200-mM
https://www.thermofisher.com/order/catalog/product/11140050#/11140050
https://www.thermofisher.com/uk/en/home/life-science/cell-culture/mammalian-cell-culture/fbs/qualified-fbs.html
https://bioscience.lonza.com/lonza_bs/GB/en/Culture-Media-and-Reagents/p/000000000000184036/L-Glutamine-for-cell-culture%2C-200-mM
https://www.thermofisher.com/order/catalog/product/11140050#/11140050
https://www.sigmaaldrich.com/catalog/product/sigma/d6429?lang=en&region=GB&gclid=Cj0KCQjwwLKFBhDPARIsAPzPi-KYQ11Jl1cCxUCSDPg7z-RfThkSy3uNriOz3Qf-h0lOd0vq6PNZHdkaAg86EALw_wcB
https://www.thermofisher.com/uk/en/home/life-science/cell-culture/mammalian-cell-culture/fbs/qualified-fbs.html
https://bioscience.lonza.com/lonza_bs/GB/en/Culture-Media-and-Reagents/p/000000000000184036/L-Glutamine-for-cell-culture%2C-200-mM
https://bioscience.lonza.com/lonza_bs/CH/en/Culture-Media-and-Reagents/p/000000000000185607/Penicillin-Streptomycin-Mixture
https://www.thermofisher.com/order/catalog/product/11140050#/11140050
https://www.thermofisher.com/order/catalog/product/31350010#/31350010
https://www.fishersci.com/shop/products/dimethyl-sulfoxide-fisher-bioreagents-3/BP231100
https://www.fishersci.com/shop/products/dimethyl-sulfoxide-fisher-bioreagents-3/BP231100
https://www.thermofisher.com/uk/en/home/life-science/cell-culture/mammalian-cell-culture/fbs/qualified-fbs.html
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Appendix 4: anti-p62 antibody data sheet 

 

 

 

Appendix 5: PCR and cloning primers. Orange portions represent restriction sites. 

Mouse p62 forward primer TATCGGATTCATGGCGTCGTTCACGGTGAAG 

Mouse p62 reverse primer 1 GATCGAATTCTTAAACCTTATCGGTCGTCATCCTTG 

Mouse p62 reverse primer 2 GATCGAATTCTTAAACCTTATCGGTCGTCATCCTTGTAATCC 

Human p62 forward primer GATCGGTACCGATCATGGCGTCGC 

Human p62 reverse primer GATCGAATTCGATCTCACAACGGCGGGGGATGCT 
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Appendix 6: In-Fusion® cloning primers. Orange portions represent key mutation sites 

Human p62 

KpnI.hP62.Forward AGTCGACTGGATCCGGTACCATGGCGTCGCTC 

EcoRI.hP62.Reverse GTGCGGCCGCGAATTCTCACAACGGCGG 

K7A.Forward 
AGTCGACTGGATCCGGTACCATGGCGTCGCTCACCGTGgcgGCCTACCTTCT

GGG 

ClaI.T269A.Forward 
TTGAAGTTGATATCGATGTGGAGCACGGAGGGAAAAGAAGCCGCC 

TGgcgCCCGTCTCTCC 

S403.Reverse TCAGAGAAGCCCATGGcCAGCATCTGG 

Mouse p62 

BglII.P62.Forward GGTACCGAGGAGATCTATGGCGTCGTTCACG 

MluI.P62.Reverse GCGGCCGCGTACGCGTCAATGGTGGAGGGTGCTTCGAATACTGG 

BglII.S024.Forward 

GGTACCGAGGAGATCTATGGCGTCGTTCACGGTGaagGCCTATCTTCTGGGC

AAGGAGGAGGCGACCCGCGAGATCCGCCGCTTCGCTTTCTGCTTCAGCCCG

GA 

XbaI.W340.Reverse 

CTGTGAGGGGTCTAGAGAGCTTGGCCCTTCCGATTCTGGCATCTGTAGAGA

CTGGAGTTCACCTGTAGaTGGGTCCACTTCTTTTGAAGACAAATGTGTagcGT

CATCGTCTC 

XbaI.S351.Reverse 
CTGTGAGGGGTCTAGAGAGCTTGGCCCTTCCGATTCTGGCATCTGTAGAGA

CTGGAGTTCACCTGTAGcTGGGTCCACTTC 

mP62.subclone.Forward ATCCGGTACCGAATTATGGCGTCGTTCACGGTGAAGGC 

mp62.subclone.Reverse GTGCGGCCGCGAATTCAGGAAACAGCTATGACCGCG 

 

 

 

 

 

 

 


