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ABSTRACT 14 

Purpose: Producing a steady cadence and power while cycling results in fairly consistent average 15 

pedal forces for every revolution, though small fluctuations about an average force do occur. This 16 

force can be generated by several combinations of muscles, each with slight fluctuations in 17 

excitation for every pedal cycle. Fluctuations such as these are commonly thought of as random 18 

variation about average values. However, research into fluctuations of stride length and stride time 19 

during walking shows information can be contained in the order of fluctuations. This order, or 20 

structure, is thought to reveal underlying motor control strategies. Previously, we found persistent 21 

structure in the fluctuations of EMG signals during cycling using Entropic Half-Life (EnHL) 22 

analysis. These EMG signals contained fluctuations across multiple timescales, such as those 23 

within a burst of excitation, between the burst and quiescent period of a cycle, and across multiple 24 

cycles. It was not clear which sources of variation contributed to the persistent structure in the 25 

EMG. Methods: In this study, we manipulated variation at different timescales in EMG intensity 26 

signals to identify the sources of structure observed during cycling. Nine participants cycled at a 27 

constant power and cadence for 30 minutes while EMG was collected from six muscles of the leg. 28 

Results: We found persistent structure across multiple pedal cycles of average EMG intensities, 29 

as well as average pedal forces and durations. Additionally, we found the EnHL did not quantify 30 

fluctuations within a burst of EMG intensity; instead, it detected unstructured variation between 31 

the burst and quiescent period within a cycle. Conclusions: The persistent structure in average 32 

EMG intensities suggests that fluctuations in muscle excitation are regulated from cycle to cycle.  33 

 34 

Keywords: muscle, variability, motor control, sample entropy, entropic half-life.  35 



INTRODUCTION 36 

Variability is ubiquitous in human gait and small fluctuations within gait signals reveal underlying 37 

motor control processes at work. Even when performing a constrained task, such as walking on a 38 

treadmill at constant belt speed, or walking to the beat of a metronome, a person’s stride length, 39 

time, and speed fluctuate about average values (1,2). Historically these fluctuations were attributed 40 

to random noise in the motor system, but it is now known they are ordered throughout time and 41 

hence contain information considered to reveal aspects of the underlying system control (3,4). This 42 

temporal organization, or structure, can be generated by simple mechanical mechanisms or by 43 

neural command signals (3,5). To investigate the influence of control signals on the structure of 44 

gait parameters, we can examine fluctuations within the EMG signals of muscles that produce 45 

forces required for gait (6). Multiple control signals throughout the neuromuscular system possess 46 

structure; from single motor unit action potentials to multi-muscle coordination patterns, derived 47 

from information contained in EMG signals (7,8). Here we will explore structure in EMG intensity 48 

signals. While fluctuations in raw EMG signals reflect the time of individual action potentials, 49 

fluctuations in EMG intensities reflect the physiological time of a muscle twitch (9). 50 

 51 

To measure structure, previous studies have relied on Sample Entropy (SEn) analysis (10). By 52 

matching small motifs of consecutive data points, SEn quantifies the regularity of a signal (11). 53 

However, SEn cannot fully account for fluctuations that persist across multiple timescales (12). 54 

The Entropic Half-Life (EnHL) was presented by Zandiyeh and colleagues (12) as a metric to 55 

account for fluctuations that persist across multiple timescales with physiologically interpretable 56 

units. The EnHL quantifies the timescale at which signal structure breaks down. This involves 57 

reshaping the original signal such that consecutive data points become further apart, causing any 58 



structure present in the original signal to decay towards a random order. The regularity of the 59 

reshaped signals is then quantified with SEn and the EnHL marks the transition from, order seen 60 

in the original signal, to random order. The EnHL of neuromuscular coordination patterns derived 61 

from EMG was used to demonstrate that there was persistent structure contained within EMG (13). 62 

Persistent structure has also been found in raw EMG signals and in EMG intensities using EnHL 63 

analysis (6,8,14). 64 

 65 

Control signals collected during gait are cyclic and can be discrete or continuous. Cyclic-discrete 66 

signals have one datapoint per cycle that summarizes the whole cycle, such as the average EMG 67 

intensity per cycle, or the cycle duration. Cyclic-continuous signals have multiple datapoints that 68 

vary through time in each gait cycle. In EMG intensity signals, each cycle contains a burst of 69 

intensity and a period of quiescence. This repetitive pattern is removed in cyclic-discrete EMG 70 

signals because the cycles are summarized with one datapoint per cycle. Thus, the repetitive 71 

bursting pattern will not influence the SEn or EnHL of cyclic-discrete EMG signals. Any structure 72 

in these signals can then be attributed to ordered variation at timescales longer than one cycle. In 73 

cyclic-continuous EMG intensity signals, fluctuations between data points within a cycle are 74 

preserved. In addition to variation at timescales longer than one cycle, cyclic-continuous EMG 75 

intensity signals contain the variation between each burst of intensity and period of quiescence 76 

within the cycle, as well as variation within each burst of EMG intensity. Variation within a burst 77 

of EMG intensity is of particular interest because it may represent fine-tuned adjustments to 78 

muscular control within each cycle. If variations within a burst of EMG intensity were shown to 79 

influence the structure of cyclic-continuous EMG signals, they could reveal aspects about 80 

underlying motor control from moment to moment. For example, differences in the frequency of 81 



control system interventions to correct balance were revealed through EnHL analysis on centre of 82 

pressure signals during postural challenges (15). 83 

 84 

The repetitive variation of a burst of intensity and a period of quiescence within each cycle is 85 

thought to dominate the calculation of SEn and EnHL for cyclic-continuous EMG intensity signals 86 

(6,8). This cyclic pattern creates structure in the signal that would lead to very low values of SEn 87 

if left unfiltered due to the nature of the SEn calculation (16). Thus, any structure contained in 88 

variations between data points that are higher or lower frequency than the cycle frequency at which 89 

this cyclic pattern occurs will be masked. Previous researchers have damped the influence of the 90 

cycle frequency by filtering the EMG signals (6,13). However, EMG burst durations continue to 91 

show influence over the EnHL (6,8). It was suggested that the EnHL of cyclic-continuous EMG 92 

signals additionally reflects information about fluctuations occurring within each burst, as the 93 

EnHL of EMG intensity is shorter than the duration of a burst of EMG intensity (6,8). In this study, 94 

we will determine the extent to which EnHL can quantify variations within a burst of intensity in 95 

cyclic-continuous EMG intensity signals. Although the sensitivity of the SEn measurement to 96 

changes in input parameters was recently investigated for discrete and continuous signals (motif 97 

length m and error tolerance r ; (16)), it is not known how variation present at different timescales 98 

in discrete and continuous cyclic signals affects the structure measured by SEn and EnHL. 99 

 100 

Here we use a pedalling task to determine the influence of variation at different timescales on the 101 

structure of discrete and continuous cyclic EMG intensity signals. These timescales include: 102 

variation within a burst of EMG intensity, variation between the burst and quiescent period within 103 

a cycle, and variation present at timescales longer than one cycle. To investigate variation within 104 



a burst of EMG intensity, we compare the EnHL of cyclic-continuous EMG intensity to the EnHL 105 

of several bursting square wave signals that are constructed based on the EMG intensity signals 106 

but lack intra-burst fluctuations. If these are not different, EnHL is not able to quantify variation 107 

within a burst of EMG intensity in cyclic-continuous EMG signals. To investigate variation 108 

between the burst and quiescent periods within a cycle, the square waves will be constructed with 109 

a progressive increase in variation related to the cycle timing and intensities. We expect to see a 110 

progressively shorter EnHL as more variability is added to the generated signals. To investigate 111 

variation at timescales longer than one cycle, we use both continuous and discrete cyclic EMG 112 

signals. We randomize the cycle order of one set of square waves to remove the influence of 113 

ordered variation at timescales longer than one cycle. We then compare the EnHL of this square 114 

wave to the EnHL of a square wave with preserved cycle order. If these are not different, then the 115 

EnHL is not able to quantify fluctuations at timescales longer than one cycle in cyclic-continuous 116 

EMG intensity signals. To directly examine the variation at timescales longer than one cycle, we 117 

calculate the EnHL of the average EMG intensity per cycle. Although the EnHL of cyclic-118 

continuous EMG-derived signals was first explored by Enders and co-workers (13), ours is the 119 

first study to investigate EnHL of cyclic-discrete EMG signals and thus the first to examine the 120 

average variation in EMG across whole cycles. Conducting the EnHL analysis on average EMG 121 

intensity per cycle allows investigation of the influence of control signals on the persistence of 122 

structure in whole gait cycles. As additional influence may come from translation of those signals 123 

into mechanical output through passive properties of the limb, we also determine the EnHL of 124 

average pedal forces and cycle durations.  125 

 126 

METHODS 127 



Data Collection 128 

We collected EMG and kinetic data from nine male participants (age 30 ± 6 years, height 176 ± 6 129 

cm, mass 73 ± 6 kg; mean ± SD). Each participant gave informed consent and ethical approval 130 

was granted by the Institutional Ethics Review Boards at Simon Fraser University. After shaving 131 

the skin and cleaning with alcohol, bipolar Ag/AgCl electrodes (10mm diameter, 21mm 132 

interelectrode spacing) were placed on the right leg over the mid bellies of the vastus medialis 133 

(VM), vastus lateralis (VL), rectus femoris (RF), medial gastrocnemius (MG), lateral 134 

gastrocnemius (LG), and soleus (SOL). EMG signals were amplified (gain 1000), band-pass 135 

filtered (bandwidth 10–500 Hz; Biovision, Wehrheim, Germany), and sampled at 2000 Hz (16-bit 136 

analog-to-digital converter: USB-6210; National Instruments, Austin, TX). Right effective pedal 137 

forces (tangential to the crank) were collected from instrumented pedals (Powerforce; Radlabor, 138 

Freiburg, Germany) and recorded at 2000 Hz. A pedal switch was recorded at 2000 Hz to 139 

determine cycle times. 140 

 141 

After adjusting the bike seat and handlebars to a comfortable position, participants self-selected a 142 

cycling cadence and resistance for the experiment through their warm up period. A metronome 143 

was played at various cadences and participants were asked to determine a cycling pace and load 144 

that would produce a good workout, that they could maintain for 30 minutes. During the data 145 

collection phase, the participants cycled at their self-selected cadence to the metronome for 31 146 

minutes and were notified of the time every five minutes and at one-minute remaining. 147 

 148 

EMG intensity and pedal force processing  149 



Noise from electrical line and motion-capture (collected but not reported in this study) was 150 

removed from the EMG signals by interpolating the raw frequency-transformed signals across the 151 

critical frequencies of 60 Hz, 180 Hz, and multiples of 100 Hz. EMG amplitudes were interpolated 152 

from 2 Hz below to 2 Hz above the critical frequencies, which reduced the noise but did not 153 

systematically alter the EMG intensity. EMG signals were resolved into EMG intensities using a 154 

bank of 11 non-linearly scaled wavelets, where the EMG intensity is a close approximation to the 155 

power in the EMG (9). The time resolution of the wavelets reflect the physiological time of a 156 

muscle twitch, thus the timescale of the fluctuations in the EMG intensities reflect these motor 157 

events (9). The total EMG intensity was calculated as the sum of the intensities from wavelets 1-158 

10 (covering a frequency band of 11 to 432 Hz), and down-sampled to 1000 Hz. We analyzed data 159 

from nine participants for the VM, VL, and SOL, and from eight participants for the RF, LG, and 160 

MG (one participant for the LG and MG and one participant for the RF were excluded for poor 161 

electrode contact). Right effective pedal forces were filtered to reduce line noise and motion 162 

capture interference (4th order low-pass Butterworth, cut-off frequency 200 Hz). 163 

 164 

Cyclic-discrete signals 165 

Cycle durations were calculated from the pedal switch. Pedal forces and EMG intensities were 166 

split into pedal cycles, based on the pedal switch, from which an average value was obtained for 167 

each cycle. The burst duration for each muscle was the time for which EMG intensity exceeded a 168 

threshold that was 5% of the difference between the minimum and maximum intensity of each 169 

cycle (17). Quiescent durations were the difference between the cycle durations and burst 170 

durations. 171 

 172 



Cyclic-continuous EMG intensities 173 

Preliminary work found the EnHL did not differ between 5-minute epochs of the 30-minute cycle. 174 

To reduce the computational time of the EnHL analysis, 30 seconds of continuous EMG intensity 175 

were analyzed from the beginning of the trial, beginning after one minute of cycling. Four square 176 

wave signals were constructed from the burst durations, quiescent durations, and average EMG 177 

intensities creating signals ~30 seconds long. For square waves with consistent characteristics, the 178 

burst durations, quiescent durations, and burst intensities for each cycle were averaged for each 179 

30-second period. All square waves were given a value of 0 for the quiescent period. 180 

 181 

The square waves and EMG intensity for one subject and muscle are illustrated in Figure 1. Square 182 

wave 1 had constant burst duration, quiescent duration, and burst intensity for each cycle. Square 183 

wave 2 had constant burst intensity but variable burst and quiescent durations for each cycle. 184 

Square wave 3 had constant burst and quiescent durations but variable burst intensity for each 185 

cycle. Square wave 4 had variable burst intensity as well as variable burst and quiescent durations 186 

for each cycle. This resulted in a set of square waves that had a progressive increase in variation 187 

of the burst and quiescent characteristics within a cycle but that all lacked variation within a burst 188 

of EMG intensity. We created square wave 5 to remove any order in the variation at timescales 189 

longer than one cycle. Values from each cycle of square wave 4 were used to construct square 190 

wave 5, but we randomized the order of the cycles. This ensured any information related to the 191 

order of whole cycles in the original signal would be removed. Consistent with previous work 192 

(6,13) the EMG intensities and the square wave signals were filtered to dampen the influence of 193 

the cycle frequency on the EnHL (3rd order high-pass Butterworth, cut-off frequency 16 Hz). 194 



 195 

Figure 1:  EMG intensity and constructed square wave signals: Signals are shown for one 196 

participant for the VM muscle. Square wave 1 has constant burst and quiescent durations and 197 

constant intensity. Square wave 2 has variable burst and quiescent durations but constant burst 198 

intensity. Square wave 3 has variable burst intensity but constant burst and quiescent durations. 199 

Square wave 4 has variable burst and quiescent durations and variable burst intensity. Square wave 200 

5 was constructed by randomizing the cycle order (one burst and one quiescent period) of square 201 

wave 4. 5 seconds of the total 30 second signal are displayed. 202 

 203 

Sample entropy and reshaping 204 

The entropy analysis was conducted on both the discrete signals (cycle durations, average pedal 205 

forces per cycle, and average EMG intensities per cycle) and the continuous signals (EMG 206 

intensities and square wave signals). All signals were standardized by subtracting the mean and 207 

dividing by the standard deviation. Each signal was then reshaped for scales from 1 cycle (or 1 208 

ms) up to 1000 cycles (or 1000 ms; discrete and continuous signals, respectively) using the process 209 



described by Zandiyeh and Von-Tscharner (12). The SEn was calculated for each reshaped signal 210 

using open-source software (18) with a motif length of m=1 and an error tolerance of r=0.2. We 211 

tested values of m from 1 to 5 and r from 0.1 to 0.5. Values were chosen to minimize the standard 212 

error of the SEn estimate, maximize the number of initial and subsequent template matches, and 213 

to produce sigmoidal curves of SEn against reshaping scale. The SEn for each reshaped signal was 214 

then normalized according to Equation 1 (19), where SEnreshaped is the SEn of each reshaped signal, 215 

SEnoriginal is the SEn of the original signal (reshape scale of 1), and SEnrandom is the SEn of a 216 

completely randomized signal (equivalent to the SEn of the original signal when m=0; (11)). This 217 

allowed the EnHL to be determined in signals with low initial SEn, which were observed for the 218 

discrete signals. This normalization procedure differed from our previous work for the cyclic-219 

continuous EMG intensities, however preliminary tests revealed the difference in EnHL values 220 

from the two calculations to be small (5.7 % or 2.0 ms on average).  221 

 222 

SEnnormalized =  
SEnreshaped  −  SEnoriginal

SEnrandom  −  SEnoriginal
       [1] 223 

 224 

Entropic Half-Life (EnHL) 225 

The EnHL was calculated individually for each participant and muscle. To calculate the EnHL, 226 

normalized SEn was plotted against reshape-scale time, creating a sigmoidal curve. The EnHL was 227 

interpolated as the reshape-scale time when the normalized SEn equals 0.5 (12).  For the cyclic-228 

continuous EMG intensities and square waves, we analyzed all nine participants for the VM, VL, 229 

and SOL, and all eight participants with good electrode contact for the LG, MG, and RF. For the 230 

cyclic-discrete effective pedal forces and pedal cycle durations, we analyzed all nine participants. 231 

For the cyclic-discrete average EMG intensities, one participant each from the VM, VL, RF, and 232 



SOL had much lower normalized SEn than all other participants. This produced EnHL values for 233 

these participants that were 15-57 times greater than the interquartile range of the EnHL from all 234 

muscles. The EnHL calculated for these participants became strong outliers and they were 235 

excluded from further analysis. Therefore, we analyzed eight participants for the cyclic-discrete 236 

average EMG intensities of all muscles except for RF, where we analyzed seven participants.  237 

 238 

Surrogate Analysis 239 

To verify structure revealed through the SEn and EnHL analyses, we used surrogate analysis of 240 

the cyclic-discrete and cyclic-continuous signals. The original cyclic-discrete signals were 241 

randomized in time to create surrogate signals with identical distributions but random order. The 242 

surrogate signals were then reshaped and SEn calculated for each reshaping scale using the same 243 

procedure as the original cyclic-discrete signals. For the surrogate cyclic-discrete signals, the 244 

normalized SEn was close to the maximum of one across all reshaping scales (where one represents 245 

a randomized signal). Order in the surrogate cyclic-discrete signals was thus random before any 246 

reshaping occurred, preventing calculation of the EnHL. To verify structure contained in the 247 

original cyclic-discrete signals, we therefore compared the SEn of the original signals before 248 

reshaping to the SEn of the surrogates before reshaping.  249 

 250 

For the cyclic-continuous EMG intensities, we created phase-randomized surrogate signals. These 251 

retain identical distributions and power spectra to the original signals but do not possess structure 252 

related to the phase of the signal (6,13). We applied a Fourier transform to the raw EMG signals 253 

and randomized the phase, then performed an inverse Fourier transform. We then calculated the 254 



EMG intensities of these phase-randomized signals, and calculated the EnHL using the same 255 

procedure as the original cyclic-continuous EMG intensities. 256 

 257 

All above analyses were conducted in Wolfram Mathematica Version 12.1.1 (20) with exception 258 

of the SEn calculation which was conducted using a C executable file called through Mathematica.  259 

 260 

Statistics 261 

To test the difference in EnHL between the EMG intensities and square waves 1-5 we used a linear 262 

mixed effects model, conducted with the function lmer in the package lme4 in R (21). Signal type 263 

(EMG intensity or the five square waves) was modelled as a fixed effect, while subject and muscle 264 

were modelled as crossed (not-nested) random effects, accounting for a random intercept of each. 265 

The data were positively skewed and a Box-Cox transformation was applied to improve normality. 266 

This did not change the results of the analysis, thus we report the results before transformation. 267 

Post-hoc analyses were conducted with Tukey’s method using the function glht in the package 268 

multcomp (22) and a Holm correction for multiple comparisons was applied (23). Values are 269 

reported as mean and standard error across all participants. 270 

 271 

RESULTS 272 

All participants maintained their self-selected cadences and powers for the duration of the task, 273 

which were ~86 rpm and ~130 W respectively. As cadence varied slightly between participants, 274 

the total number of cycles (and thus length of the data) analyzed for the discrete signals was 275 

between 2077 and 2828. 276 

 277 



EnHL of cyclic continuous signals 278 

The EnHL of the EMG intensities were higher than their phase-randomized surrogates for each 279 

participant and muscle. The mean EnHL of the phase-randomized surrogate EMG intensities was 280 

6.7 ± 0.02 ms. The mean EnHL of the EMG intensities ranged from 25.1 ± 1.0 ms (RF) to 50.2 ± 281 

1.1 ms (SOL) (Figure 2). The sigmoidal curves used to calculate EnHL were visually similar 282 

between the EMG intensities and the generated square waves. p-values from the post-hoc analysis 283 

are reported in Table 1. We were unable to detect a difference between the EnHL of the EMG 284 

intensities and square waves 2-5 (Table 1). Square wave 1 (with constant burst and quiescent 285 

periods) had longer EnHL than the EMG intensities (Table 1), ranging from 36.9 ± 1.9 (MG) to 286 

64.0 ± 4.0 ms (LG) (Figure 2). 287 

 288 

Table 1: Comparing EnHL of cyclic-continuous signals: Holm-corrected p-values 
 

 
EMG 

intensity 

Square wave 

1 

Square wave 

2 

Square wave 

3 

Square wave 

4 

Square wave 

5 

EMG intensity – – – – – – 

Square wave 1 0.001* – – – – – 

Square wave 2 1 0.022* – – – – 

Square wave 3 1 0.006* 1 – – – 

Square wave 4 1 4.66x10-6 * 0.421 0.800 – – 

Square wave 5 1 5.32x10-6* 0.421 0.800 1 – 

p-values from the post-hoc test of the linear mixed effects analysis are shown. We compared the EnHL of EMG 

intensities to the EnHL of five square wave signals lacking intra-burst fluctuations. * indicates low p-value. Square 

wave 1 had longer EnHL than all other signals. 

 289 



 290 

Figure 2:  EnHL of the cyclic-continuous EMG intensities and the square wave signals. The 291 

boxes represent the median and interquartile range of EnHL’s for each muscle. The whiskers show 292 

the minimum and maximum EnHL, with any outliers displayed as points above the maximum 293 

values.  294 

As the variation of the square wave signal increased, the EnHL tended to decrease (Figure 2). The 295 

bursting structure thus decayed at a faster rate. For five of six muscles, the mean EnHL decreased 296 

if variable time was included (square wave 2). For five muscles, the mean EnHL further decreased 297 

if instead, variable intensity was included (square wave 3). And for five muscles, the mean EnHL 298 

yet further decreased if both variable intensity and time were included (square wave 4). 299 

Randomizing the order of the bursts (in square wave 5) had no effect on the EnHL as most 300 

participants showed identical EnHL between square waves 4 and 5 (Figure 2). 301 

 302 

EnHL of cyclic discrete signals  303 

The SEn of the original cyclic-discrete signals before reshaping was lower than the randomized 304 

surrogates for all individuals, muscles, and discrete signal types. The mean SEn of the original 305 



cycle durations, pedal forces, and EMG intensities were 1.64 ± 0.04, 1.67 ± 0.03, and 1.75 ± 0.01, 306 

respectively; while the mean SEn of the randomized cycle durations, pedal forces, and EMG 307 

intensities were 2.13 ± 0.01, 2.01 ± 0.03, and 1.92 ± 0.01, respectively. EnHL was defined for the 308 

original cycle durations, pedal forces, and EMG intensities (Table 2). Little to no differences were 309 

observed in the EnHL between these signals. The range of EnHL values between subjects was also 310 

small: the EnHL of the cycle durations ranged from 2-6 cycles while the pedal forces ranged from 311 

2.5-7 cycles. After outlier removal, the EnHL of the EMG intensities occupied a similar range, of 312 

2-8 cycles, with one participant showing an EnHL of 14 cycles for RF. Full results including 313 

outliers are reported in the Supplementary Material. 314 

 315 

Table 2: Entropic Half-Life of the cyclic-discrete signals 

 Pedal 

Cycle 

Durations 

Effective 

Pedal 

Forces 

Average EMG Intensities 

 
VM VL RF LG MG SOL 

EnHL 

(number 

of 

cycles) 

3.00 ± 0.16 3.61 ± 0.15 4.25±0.23 3.94±0.26 5.60±0.6 2.25±0.06 2.44±0.08 3.19±0.16 

Values are mean ± standard error. 
 316 

DISCUSSION 317 

We explored the effect of fluctuations at different timescales on the persistence of structure in 318 

EMG. The EnHL was unable to detect variation within a burst of EMG intensity or variation across 319 

multiple cycles in cyclic-continuous EMG intensities. The EnHL instead quantified unordered 320 

variation between burst and quiescent durations of a cycle. Additionally, we found persistent 321 

structure at timescales longer than one cycle in cyclic-discrete average EMG intensities, pedal 322 

forces, and cycle durations. Thus, information was shared across consecutive pedal cycles. 323 

 324 

 325 



Cyclic-continuous EMG intensities: variation within a burst of EMG intensity 326 

The cyclic nature of the continuous signals strongly dominated the persistence of structure, despite 327 

filtering to dampen the cycle frequency. We created a set of square waves with varied burst 328 

duration, quiescent duration, and burst intensity to mimic EMG intensity signals with intra-burst 329 

fluctuations removed (Figure 1). All square waves with variable intensity, time, or both displayed 330 

similar EnHL to the EnHL from the EMG intensity signals (square waves 2-5) despite lacking 331 

fluctuations within each burst of intensity. This indicates EnHL analysis does not resolve 332 

fluctuations within a burst of EMG intensity in cyclic-continuous EMG signals.  333 

 334 

Why might it be that the EnHL cannot resolve fluctuations within a burst of EMG intensity? A 335 

signal that repetitively bursts on and off will contain many more frequencies than the cycle 336 

frequency. After filtering to dampen the cycle frequency, structure will remain in the time series, 337 

evident as periods of quiescence and periods of excitation. The difference between a point in the 338 

quiescent period and a point in the excitation period will be large, while the difference between 339 

two points within a quiescent period (or two points within an excitation period) will be much 340 

smaller. Points within quiescent or excitation periods will thus be more likely to match throughout 341 

the signal, which will contribute to a decreased SEn (i.e. indicating greater regularity in the signal). 342 

Points between quiescent and excitation periods will instead contribute to increase the SEn. As the 343 

signal is progressively reshaped, more transitions will develop between the quiescent and 344 

excitation periods. Thus, the SEn of the signal will progressively increase. The transition of this 345 

progression from low to high SEn is measured by the EnHL, explaining why EnHL reflects the 346 

bursting parameters of EMG in previous work (6,8,14). It is important to remember that the EnHL 347 

does not tell us the moment structure disappears but rather the half-life of the time it takes structure 348 



to decay throughout the reshaping process. At the highest SEn, transitions between the quiescent 349 

and excitation periods will appear most random. If quiescent and excitation periods are longer, the 350 

signal will require more reshaping scales to decay towards random order. The physiological 351 

interpretation of the value we obtain for the EnHL in cyclic-continuous EMG signals is that it is 352 

related to the duration of the burst and rest periods.  353 

 354 

Cyclic-continuous EMG intensities: variation between the burst and quiescent period within 355 

a cycle and variation at timescales longer than one cycle 356 

The EnHL of square wave 1 was significantly different than the EnHL of the EMG intensities 357 

(Table 2). Square wave 1 was constructed with a constant burst duration and quiescent duration. 358 

This square wave still contained some variation within a cycle due to the repetitive pattern of 359 

excitation and quiescence. However, this square wave lacked variation across multiple cycles, as 360 

the pattern in each cycle was identical. Variation in the burst and quiescent period across multiple 361 

cycles is reflected by the EnHL because square wave 1 had different EnHL from all of the other 362 

square waves and from the EMG intensities. Variations in the burst and quiescent durations can 363 

also be measured as variation in the cycle durations and duty cycles. Previous work found the 364 

EnHL reflects differences in the average duty cycle of EMG signals collected during different 365 

mechanical demands (6). Here we find the EnHL reflects the variation in duty cycle and cycle 366 

duration over time across multiple cycles.  367 

 368 

Although the EnHL of cyclic-continuous EMG intensity reflects variation in the burst and 369 

quiescent period of a signal, it does not reflect the order of these variations. When we randomized 370 

the burst order of the variable intensity and time square waves (square wave 5), the EnHL did not 371 



change. This could mean one of two things: one, the EnHL of cyclic-continuous EMG intensity 372 

does not reflect variations at timescales longer than one cycle; or two, there was no structure in the 373 

original order of these variations. The second of these propositions seems unlikely, as we found 374 

structure in the cyclic-discrete EMG signals of average intensity. All variation in the cyclic-375 

discrete average EMG intensities is present at timescales longer than one cycle. Structure in the 376 

cyclic-continuous EMG intensities at timescales longer than one cycle must have contributed to 377 

the structure we found at these timescales in the cyclic-discrete average EMG intensities as these 378 

were derived from the continuous signals. Therefore, we suggest that any structure present at 379 

longer timescales cannot be quantified by the EnHL of cyclic continuous EMG signals. Although 380 

the EnHL was developed to account for fluctuations across multiple timescales, if signals are cyclic 381 

these timescales may be limited and depend on the discrete or continuous nature of the analyzed 382 

signals. 383 

 384 

The interpretation of persistent and non-random structure in the EMG intensities differs in some 385 

aspects from our previous work. It was proposed that the EnHL could reflect information contained 386 

within a burst of intensity, as the values for EnHL are shorter than the duration of a burst (6,8). 387 

This information would come from motor unit firing and recruitment patterns. However, here we 388 

show the information reflected by the EnHL comes from the EMG burst parameters, rather than 389 

the motor unit firing and recruitment parameters. It was additionally thought that the EnHL of 390 

cyclic-continuous EMG intensities could reflect the persistence of one pedal cycle’s influence on 391 

subsequent cycles, due to a conserved order of datapoints across multiple cycles (8). We now show 392 

the EnHL is unable to evaluate this persistence. We recommend using the EnHL on cyclic-discrete 393 

signals if information related to the organization of multiple cycles is required. It was additionally 394 



proposed that the EnHL indicates the number of solutions used by the motor control system to 395 

perform a task (14). Our results support this interpretation as the EnHL tended to decrease with 396 

greater variation included in the square waves. In future work, it would be interesting to discover 397 

if these solutions are structured throughout time. This could be analyzed using cyclic-discrete 398 

signals. 399 

 400 

Cyclic-discrete signals: variation at timescales longer than one cycle 401 

The EnHL analysis revealed non-random persistent structure in the average EMG intensities, 402 

average effective pedal forces, and cycle durations. As these discrete signals lack variation within 403 

a cycle, the structure observed here resulted from ordered variation across multiple cycles. Because 404 

the EnHL reveals the influence of past data points on future data points (12), we have shown that 405 

a memory of the previous cycle persists in the generation of subsequent cycles for our discrete 406 

signals.  407 

 408 

Fluctuations in average EMG intensity reflect adjustments to muscle excitation from cycle to 409 

cycle. The EnHL revealed that this cycle-to-cycle influence (or predictability) decays by half 410 

within 2.25 to 5.60 cycles (for the LG and RF respectively). The influence of previous cycles on 411 

the current state of the EMG may stem from feedback collected in each cycle that is subsequently 412 

used to plan future cycles. If this occurred recursively, the influence of a cycle in the past would 413 

persist for multiple cycles into the future. For example, EMG intensity may show a tendency to 414 

decrease after a cycle with higher average EMG intensity to maintain the imposed power 415 

constraint. Although the EnHL cannot evaluate whether a cycle will tend to increase or decrease 416 

following a higher than average value, techniques such as detrended fluctuation analysis (24) could 417 



be applied in future work. This is the first study to observe a cycle-to-cycle influence in EMG 418 

signals. Previous work (6,8,13,14) investigated signals derived from cyclic-continuous EMG, 419 

which were unable to quantify structure at timescales longer than one cycle in this study. 420 

 421 

Structure in the fluctuations of EMG may influence motor output during cycling. Here we find the 422 

average pedal forces and cycle durations were also structured and decayed at similar rates to the 423 

average EMG intensities. This indicates information was shared between consecutive cycles for 424 

the pedal forces and durations. Characteristics of the structure in these signals could be influenced 425 

by passive mechanics of the lower limb. Indeed, relationships between consecutive stride times 426 

have been explained by a passive dynamic walking model with minimal neural feedback (5). A 427 

simple mechanical model may also be able to explain the information sharing we observed 428 

between pedal durations. However, characteristics of the structure in the forces and durations of 429 

consecutive cycles could also be influenced by active control signals through fluctuations in the 430 

EMG. If so, the adjustment of excitation in each cycle may fine-tune the forces required to 431 

complete each pedal cycle within a timing goal. More research is needed to determine the extent 432 

to which fluctuations in the muscle excitation are reflected in the movements of the limb. For 433 

example, analysis approaches such as mutual information can reveal if information in one variable 434 

is contained within another variable, and this has been analyzed between neural spike timing and 435 

wing torque signals in hawkmoths (25). Putney and co-workers (25) showed that spike timing had 436 

a larger influence on wing torque than spike count. In the future, such analysis approaches might 437 

be used to determine the difference in influence of EMG signals from several muscles on the 438 

structure of pedal forces. 439 

 440 



Structure decayed with a similar rate across all of the cyclic-discrete variables, on average with an 441 

EnHL of 3.5 cycles. A similar decay in signal structure (3.3 strides) was reported for stride speed 442 

during treadmill walking in a study by Raffalt and Yentes (26). Our results for the EnHL are 443 

consistent with those for stride speed but are shorter than the EnHL for stride time (12.4 strides) 444 

reported by Raffalt and Yentes (26). Shorter EnHL in our study may be due to differences in task 445 

constraints. In our study, cycle duration was constrained with a metronome, whereas in the study 446 

by Raffalt and Yentes (26), stride speed was constrained by walking on a treadmill. Constraining 447 

the task may cause structure in the signal with the constrained parameter to decay faster, which 448 

would lower the EnHL. In our study, if the motor control system allowed extended influence of 449 

past on future cycles, participants may have progressively deviated from their power and cadence 450 

constraints. It is interesting that even in this constrained task, small fluctuations between cycles 451 

exhibited order and not random variation about an average value. By freeing task constraints, such 452 

as having participants cycle at their own pace, we may have observed longer EnHL and thus an 453 

extended cycle memory in the average EMG intensities and cycle durations. We observed large 454 

inter-individual differences in the EnHL of the average EMG intensities before excluding outliers, 455 

with the highest EnHL of 168.5 strides (See Supplementary Material). A study by Raffalt and 456 

Yentes also showed large inter-individual differences, with the highest EnHL of 48 strides (19). 457 

The factors leading to these extreme cases of persistent structure are unknown. Future work may 458 

wish to consider investigating the inter-individual differences that lead to long EnHL’s, with a 459 

larger sample size than used in this study.  460 

 461 

 462 

 463 



Future investigation for intra-burst structure in EMG 464 

We were not able to quantify fluctuations within a burst of EMG intensity with the EnHL of cyclic-465 

continuous EMG signals, as suggested might be possible in other work in EMG (6,8), or as 466 

suggested might be possible for fluctuations within each cycle in kinematic data (16). However, 467 

the EnHL represents a unique way to quantify the persistence of structure in continuous signals, 468 

as signals are progressively resampled until data points lose their associations with one another. 469 

EnHL analysis has successfully characterized moment to moment fluctuations in acyclic 470 

continuous centre of pressure signals collected during standing (27,28). It is possible that EnHL 471 

analysis of EMG intensities lacking quiescent periods could detect persistent structure within 472 

bursts of intensity, and this warrants further investigation. In EMG, structure within a burst of raw 473 

EMG was proposed to result from fluctuations in recruited motor units and fluctuations in motor 474 

unit firing statistics (6,8). These reflect continuous modulations to muscle excitation from the 475 

nervous system and are of great interest. In this work, we found evidence that muscle excitation is 476 

modified from cycle to cycle in a non-random way. Other work has shown that muscle excitation 477 

is organized into clusters of similar looking steps in a non-random way (29). This evidence implies 478 

that muscle excitation is regulated from step to step or from cycle to cycle, in spite of constant 479 

mechanical demands. Further investigation of the fluctuations within each burst of EMG intensity 480 

is necessary to discover the limits of this regulation. For example, is muscular excitation also 481 

regulated in a non-random way within a cycle? There is evidence to suggest that muscle excitation 482 

is indeed regulated within a cycle, at the Piper rhythm frequency. This rhythm results from the 483 

combined action of many motor units and can be observed within a burst of EMG intensity as 484 

alternating sub-bursts of motor unit excitation and rest at a frequency around 35-60 Hz (30). It was 485 

proposed that the brain modifies muscle excitation during a contraction using signals sent out at 486 



the Piper rhythm frequency (31). Indeed, changes to the Piper rhythm are observed with altered 487 

running speeds and while fatigued (31,32). It may be that muscular excitation is modified in 488 

packets of information, the length of one Piper period (17-29 ms). Fluctuations in muscle 489 

excitation that at first glance appear random, may in fact be purposeful–perhaps to optimize each 490 

moment for task adjustment, efficiency, or fatigue reduction. Further work is needed to test this 491 

proposition.  492 

 493 

Conclusions 494 

We manipulated EMG data collected during cycling to exclude variation at different timescales 495 

and explored how variation at different timescales is represented in the structure of EMG. 496 

Although cyclic-continuous EMG intensities contained variation within a burst of EMG intensity, 497 

this variation did not contribute to the EnHL. Although fluctuations at timescales longer than one 498 

cycle existed in the continuous-cyclic EMG intensities, the EnHL of these signals was not 499 

influenced by this variation. Instead, the EnHL of cyclic-continuous EMG intensities was largely 500 

influenced by unstructured variation between the burst and quiescent periods of a cycle. We 501 

additionally found persistent structure in the fluctuations of cyclic-discrete signals of average 502 

EMG intensities, average pedal forces, and cycle durations, thus for the first-time revealing 503 

information contained in the EMG at timescales longer than one cycle.  504 
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