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Abstract: Biochar obtained from the oxygen-deficient thermochemical processing of organic wastes
is considered to be an effective reinforcing agent in biocomposite development. In the present
research, biocomposite film was prepared using sugarcane bagasse pyrolyzed biochar and polyvinyl
alcohol (PVA), and its electrical and mechanical properties were assessed. The biocomposite films
were produced by varying content (5 wt.%, 8 wt.% and 12 wt.%) of the biochar produced at 400 ◦C,
600 ◦C, 800 ◦C and 1000 ◦C and characterized using X-Ray diffraction, scanning electron microscope,
Fourier transform infrared spectroscopy. The experimental findings revealed that biochar produced
at a higher pyrolyzing temperature could significantly improve the electrical conductance of the
biocomposite film. A maximum electrical conductance of 7.67 × 10−2 S was observed for 12 wt.%
addition of biochar produced at 1000 ◦C. A trend of improvement in the electrical properties of
the biocomposite films suggested a threshold wt.% of the biochar needed to make a continuous
conductive network across the biocomposite film. Rapid degradation of tensile strength was observed
with an increasing level of biochar dosage. The lowest tensile strength 3.12 MPa was recorded for the
film with 12 wt.% of biochar produced at 800 ◦C. Pyrolyzing temperature showed a minor impact
on the mechanical strength of the biocomposite. The prepared biocomposites could be used as
an electrically conductive layer in electronic devices.

Keywords: sugarcane bagasse; pyrolysis; biochar; PVA; biocomposite film; electrical conductance

1. Introduction

Judicious dumping of biomass or organic waste is necessary to avoid undesired cli-
mate change that causes large scale natural imbalance [1,2]. Organic waste generates
environmentally harmful greenhouse gases (GHG) [3]. The use of synthetic products
or petrochemicals in thermochemical treatment is just adding harmful gases in the air
every day [4]. The conversion of organic waste into value-added products through ther-
mochemical treatment like pyrolysis can be regarded as an effective way of mitigating
pollution caused by these wastes with an opportunity to save and conserve energy [5].
Pyrolyzing conditions, e.g., temperature, heating rate, media, etc., are the controlling
parameters that influence the ultimate properties of biochar. A slower heating rate and
longer duration of thermal treatment were suggested to obtain biochar with turbostratically
stacked graphene sheet [6]. Being a renewable and sustainable material, and with low
production cost, biochar shows promise as a reinforcing material as well in agricultural
applications [2]. Tunable properties, such as porosity and surface functionality, of the
biochar make it a potential candidate for designing materials in energy storage, cataly-
sis, pollutant removal, and CO2 capture applications. Besides, the high thermal stability
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and porous honeycomb structure of the biochar favor the fabrication of composites with
improved properties [7].

The need for reinforced composite materials has increased noticeably, and so the
biochar-based composites as well. Graphene, carbon nanotubes (CNT), carbon fiber, and
carbon black are mostly used as the carbonaceous reinforcing and conductive fillers in
polymer composites development [7,8]. Petrochemical-based carbonaceous materials pro-
duction is a tedious job, and it is not economically and environmentally viable. Globally,
research on the exploration of renewable carbon resources is ongoing to obtain feedstock is
cost-effective, environmentally friendly, and is abundant in nature. Recently, numerous
studies on the successful incorporation of biochar in different polymer matrixes have been
reported [9–11]. Biochar is considered preferentially because of having a large surface area,
porous structure, and high content of carbon that facilitates physical bonding with the poly-
mer matrix [7]. Biochar is more advantageous than the natural fibers as the filler in polymer
composites since the properties of biochar can be altered by modifying the pyrolysis condi-
tions for achieving the hydrophobic nature in biochar and to obtain greater compatibility
with the polymer matrix than the hydrophilic natural fibers [7]. In general, carbonaceous
fillers are better than the metal fillers in modifying the thermal, mechanical, electrical, and
finally chemical corrosion resistance properties of the polymer [10,12]. Incorporating these
properties would make the designed composites applicable for the electronics industry [7].
Giorcelli et al. successfully used high temperature annealed electrically conductive biochar
to develop energy conservative piezoresistive composite materials [13]. Some distinctive
features of the fillers and matrix determine the end properties of the composites. For in-
stance, filler dispersion and formation of a continuous conductive network with a threshold
amount of the filler determine electrical conductivity of the final composites [14].

A biocomposite is a material composed of two or more distinct constituent materials
(one being naturally derived) which are combined to yield a new material with improved
performance over individual constituent materials. A frequently studied biocomposite
is natural-fiber-reinforced biopolymer composite. The reinforcing component is natural
fiber or cellulose extracts combined with a bioplastic matrix. The application of biochar in
fabricating biocomposites could promote the sustainable management of environmental
waste. Recently, biochar has been used extensively due to its distinct properties mentioned
earlier [15]. A large number of studies on biochar based biocomposite were conducted using
various polymers with manifold thermal, mechanical, and electrical properties in some
prominent works. For example, Poly (lactic acid), Poly (ethylene-alt-maleic anhydride)
with microwave assisted biochar by Khui [16], polylactic acid with biochar nanoparticle by
Sobhan et al. [17], polylactic acid with activated biochar by Sobhan et al. [18], epoxy with
Bael shells and arhar stalk biochar by Minugu et al. [19], polyvinyl alcohol with corn straw
derived biochar along with silver nano particle by Zhao et al. [20], polyesters with rice
husk pyrolyzed biochar by Richard et al. [9], polyamides with biochar by Huber et al. [21],
styrene-butadiene rubber (SBR) with maple wood waste derived biochar by Peterson and
Kim [22], poly (vinyl alcohol) with wood biochar (PVA) by Nan et al. [6], epoxy with
three types of biochar (plastic waste biochar, wood shavings biochar, and pine cone char)
by Ahmetli et al. [23], poly (trimethylene terephthalate) (PTT) with lignin carbonized
biochar by Myllytie et al. [24], polypropylene with pine wood biochar by Das et al. [10,11],
poly (trimethylene terephthalate/poly (lactic acid) (PTT/PLA) blend with Miscanthus-
based biochar by Nagarajan et al. [25], polyurethane with carbon nanotube and graphite
oxide particles by Gaidukovs et al. [26], and ethylene vinyl acetate copolymer composite
filled with carbon nanotubes to investigate electrical and mechanical characteristics by
Gaidukovs et al. [27]. Povilas et al. [28] investigated thermal and dielectric properties of
the composites prepared with carbon and Fe3O4 nanoparticles and layered ethylene vinyl
acetate. Minugu et al. used three different loading levels (2 wt.%, 4 wt.%, and 6 wt.%) of
biochar and maximum tensile strength found for the composite with 4 wt.% biochar [19].
A further increase of biochar to 6 wt.% decreased the strength because of poor interfacial
bonding between the polymer matrix and biochar. Nan et al. reported that a composite of
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polyvinyl alcohol (PVA) with wood-based biochar of 2 wt.% and 10 wt.% exhibited electrical
properties similar to those of PVA with graphene and carbon nanotubes [6]. They also found
that the tensile strength decreased with the rise of the biochar loading level and a threshold
amount of biochar was required to obtain an electrically conductive biocomposite.

Being a low cost, non-toxic, and water-soluble polymer, polyvinyl alcohol or PVA
is commonly used for carbon-based composite fabrication. Having a hydroxyl group,
it can form a strong interfacial bond with numerous reinforcing materials. PVA based
carbonaceous composites have superior electrical and comparable thermal properties.
However, these composites have some drawbacks, e.g., filler stacking or high preparation
cost and complexity in processing [29]. High moisture sensitivity of PVA based composites
is a major challenge as this influences the electrical properties. Some chemical changes or
use of certain coating materials to reduce the moisture uptake are suggested to overcome
the issue [30].

A large quantity of sugarcane bagasse (SB) is produced in Bangladesh every year.
Bagasse is mostly used as fuel, and unfortunately, most is left untreated as waste, creating
environmental issues. A small amount is used for animal feed and domestic fuel. Utilization
of this huge amount of biowaste can be a solution to waste management by converting
them into emerging raw material for many purposes [31]. Sugarcane bagasse contains
a significant amount of cellulose and lignin that are mainly responsible for producing good
quality biochar through pyrolysis [32].

According to the authors’ best knowledge, no study so far has reported investigating
the properties of polyvinyl alcohol biocomposites reinforced with SB pyrolyzed biochar. In
the present research, sugarcane bagasse pyrolyzed biochar reinforced PVA biocomposite
films were produced and characterized. Biochar was characterized by proximate analysis,
X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) and scanning
electron microscopy (SEM), and the biocomposite films were characterized by, SEM, FTIR,
impedance analysis (IA), and tensile testing.

2. Materials and Methods
2.1. Preparation and Characterization of SB Pyrolyzed Biochar

Clean and dry sugarcane bagasse collected from the local area was pyrolyzed with-
out delignifying the bagasse in a stainless-steel container by electric muffle furnace at
four different temperatures (400, 600, 800, and 1000 ◦C) with a heating rate of 10 ◦C/min
for one hour to produce good quality biochar (Figure 1). After cooling down to room tem-
perature, biochar was ground to powder form, sieved, and then kept in closed containers,
labeled as BC400, BC600, BC800, and BC1000, where BC stands for biochar and numbers
indicate the pyrolyzing temperatures. The biochar produced at different temperatures
was used for preparing the biocomposite film. No compositional (cellulose, hemicellulose,
sugar etc.) characterization was conducted for the biochar. Syn-gas and bio-oil were not
stored as those were not the focus of the present research.

Proximate analysis of the prepared biochar was carried out following ASTM standard
D1762-84. The crystallographic structure was revealed through X-ray diffraction (XRD)
(2θ = 20◦ to 80◦ and scanning rate 0.5◦/min), Model-EMMA, GBC Corporation, Australia.
Surface morphology and functional groups are investigated through the SEM (Model:
EVO18 with gold coat facilities at an acquisition voltage of 20 kV).

2.2. Preparation and Characterization of Biocomposite Films

Polyvinyl alcohol (PVA)from Merk, Germany was used in the present research and
collected from the local market. Its molecular weight and density were 145,000 and
1.19 g/cm3 respectively. A clear and viscous solution of 10 wt.% PVA was prepared by
stirring distilled water and PVA mixture at 80 ◦C for four hours. A schematic diagram
covering the preparation of the biocomposite films and their characterization techniques is
presented in Figure 2.
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Two types of sample were prepared by varying the temperature and biochar loading
level. Biocomposite films with 5 wt.% biochar produced at four different pyrolyzing
temperatures (BC400, BC600, BC800, and BC1000) were prepared to observe the influence
of pyrolyzing temperature. As the possibility of graphite formation starts after 800 ◦C, only
two types of biochar (BC800, and BC1000) were selected with higher level of dosage (8 wt.%
and 12 wt.%). For each sample film, biochar was added with 20 mL PVA solution and
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stirred for 30 min at room temperature. This solution was allowed to set, and films were
cast on celluloid sheets. Dried biocomposite films with a thickness of 0.25 mm were peeled
out after 24 h and stored in an airtight container for characterization. The biocomposite
films are designated as shown in Table 1.

Table 1. Biocomposite film samples with identification code and biochar content.

Biocomposite Film ID Biochar Content (wt.%)

Pure PVA No biochar

5BC400-PVA 5 BC400
5BC600-PVA 5 BC600

5BC800-PVA 5
BC8008BC800-PVA 8

12BC800-PVA 12

5BC1000-PVA 5
BC10008BC1000-PVA 8

12BC1000-PVA 12

The surface morphology and functional group of pure PVA and biocomposite films
were studied with SEM and FTIR respectively. The electrical property (Conductance,
Siemens) of biocomposite films was tested with an impedance analyzer (model: 6500B), at
100 Hz at room temperature. The tensile property of the biocomposite films were charac-
terized using an Instron 3380 Series Universal Testing Machine (UTM) having a capacity
of 50 kN. The dogbone shape sample dimension was 40 mm (length) × 10 mm (width) ×
0.25 mm (thickness) with 6.25 mm width at the gauge length zone. The cross-head speed
used during the test was 5 mm/min. Tests were repeated five times to obtain an average
value of each composite.

3. Results and Discussions
3.1. Biochar Analysis
3.1.1. SEM Analysis of Biochar

Scanning electron microscope (SEM) images of surface morphology of four types
of biochar in unsieved condition are shown in Figure 3. As the biochar was ground
properly, the particle size of the biochar was reduced to 2–10 µm. The biochar particle
size of approximately 15 µm was observed in some cases. The small size of the porous
structure (15–20 µm) in biochar at higher temperatures was also revealed from the SEM
analysis. A flake-like appearance was visible in both BC400 and BC600 biochar having
no porous structure. Biochar (BC800) produced at 800 ◦C exhibited a more visible porous
structure followed by the BC1000. All the biochar contained randomly distributed brittle
particles and no agglomeration or compressed form of biochar was seen. Small particle
size and porous structure increased the surface area of the biochar particles and made
it a suitable choice for composite development. The biochar exhibited less interaction
between the particles and tends to appear as an individual particle with broad particle
size distribution. The individual and broad particle size distribution of the biochar would
facilitate good dispersion in the PVA matrix. As reported by Ahmetli et al. [23], biochar
particles distributed well in the matrix and provided good interaction between the char and
the polymer matrix. No crack was found on the particle of biochar. Porous structure within
the biochar will not only increase the penetration of polymer matrix into the biochar, but
will also enhance the interlocking between the PVA matrix and the biochar, thus enhancing
the mechanical strength of the biocomposite.
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3.1.2. Proximate Analysis of Biochar

Table 2 represents proximate analysis of the biochar at different pyrolyzing temper-
atures. There is a noticeable reduction in biochar yield from 30.10 wt.% to 14.67 wt.%
with a rise in pyrolyzing temperature from 400 ◦C to 1000 ◦C. A similar trend reported
by Xie et al. [5] also indicated that a high content of hydrogen and oxygen in biochar was
obtained at lower pyrolyzing temperatures. However, an increase in moisture content
from 3.69% to 8.96%, ash content from 4.05% to 6.57%, and fixed carbon from 52.23% to
70.82% were recorded with the temperature rise from 400 ◦C to 1000 ◦C. On the other hand,
volatile materials decreased significantly due to the temperature rise in a similar manner.
These results agreed with the previous findings in literature [32–35]. Therefore, the biochar
obtained at pyrolyzing temperature of 1000 ◦C, when intense graphitization occurs, can be
a better choice for electronic device applications.

Table 2. Proximate analysis of biochar at different pyrolyzing temperatures.

Measured Parameters (wt.%)
Pyrolyzing Temperature (◦C)

400 600 800 1000

Moisture 3.69 5.38 12.33 16.96
Volatile materials 40.03 22.44 16.19 13.65

Ash content 4.05 5.15 6.33 6.57
Fixed carbon a 52.23 67.03 65.15 62.82
Biochar yield 30.10 20.15 17.51 14.67

a calculated by deduction.
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3.1.3. XRD Analysis of Biochar

X-ray diffraction patterns (Counts vs. 2θ) shown in Figure 4 demonstrated crystallite
features of the biochar. Peaks at ~24 ◦C and ~44.5 ◦C were characterized in the biochar
produced at different temperatures. The strong peak at ~44.5 ◦C indicated the formation
of a graphite-like structure in biochar at high temperatures (BC800 and BC1000) such as,
800 ◦C and 1000 ◦C (Figure 4c,d). However, for the biochar BC400 and BC600, the XRD
line went straight down without featuring any significant peak at around 24 ◦C. However,
for the BC800 and BC1000, the XRD pattern revealed a small peak at around 24 ◦C and
it was more intense for the BC1000. This finding indicated that 2θ peaks for graphite
crystal appeared at around 24 ◦C for (002) plane and 44.5 ◦C for (100) plane. The peak
from the (100) plane represented the graphite basal plane and that from the (002) plane
represented the plane perpendicular to the basal plane [36]. This graphite-like structure
was turbostratically stacked, the parallel orientation of carbon chain, and responsible for
the electrical conductivity of the biocomposite materials [7].
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3.2. Analysis of Biocomposite Films
3.2.1. Surface Characteristics of the Biocomposite Films

SEM images of the biochar reinforced biocomposite films are presented in Figure 5,
where the pure PVA film was very clear, with no visible surface features. Small biochar
addition (5 wt.%) with the PVA matrix introduced surface roughness in the biocomposite
film and random particle distribution or agglomeration was also observed. The emergence
of severe particle agglomeration was noticed for a further gradual increase in biochar
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loading from 5 wt.% to 8 wt.% and to 12 wt.%. SEM images revealed insight of changing
mechanical strength remarkably. Biochar aggregation and distribution revealed by the SEM
images resulted in lower tensile strength (shown later) and higher electrical conductance.
The higher the biochar content, the higher the particle aggregation and stacking, and the
greater the deterioration of mechanical strength, as reported previously [6,8,37].

3.2.2. FTIR Analysis of the Biocomposite Films

The effect of biochar addition with the PVA matrix on the functional group is illus-
trated in Figure 6. The identical peak around 3300 cm−1 wavenumber revealed by pure
PVA film was almost invisible after the incorporation of the biochar. The effects of BC600
and BC1000 were more than that of the BC400 and BC800. The decrease in peak intensity
at approximately 2930 cm−1, 1400 cm−1, and 1080 cm−1 corresponding to –CH2- asym-
metric stretching, –CH2- bending stretching, and -C-O-H stretching vibration indicated
that biochar functional groups developed during pyrolysis could strongly interact with
these groups. This observation indicated that the biochar could form a chemical bond
with the PVA matrix during the biocomposite film formation, which indicated the good
compatibility between biochar and PVA [3,30,38]. The absence of intensity of peak for
–OH indicated lower moisture content in the biochar than that in the PVA and hydrogen
bond formation with –OH in the PVA and the oxygen containing group in the biochar. No
emergence of a new functional group was revealed from the FTIR data.
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3.2.3. Electrical Conductance of the Biocomposite Films

The electrical property of the biocomposite films was studied by measuring electrical
conductance (Siemens, S) using an impedance analyzer at room temperature. The results
of electrical conductance measurement are shown in Figures 7 and 8. Pure PVA showed
very low conductance value (1.86 × 10−7 S) indicating an insulator. The biocomposite films
with 5 wt.% of biochar (BC400, BC600, BC800) did not show any conductance, except the
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5BC1000-PVA film, which exhibited a significant improvement in electrical conductance
to 1.91 × 10−2 S (Figure 7). Further, 8 wt.% and 12 wt.% addition of BC800 generated
conductance of 3.63 × 10−8 S and 2.38 × 10−2 S respectively. This implied that a threshold
content of the biochar is necessary to form a conductive continuous network across the
biocomposite films. With the addition of 8 wt.% and 12 wt.% BC1000, the electrical
conductance increased approximately three and four times respectively as compared to
that of the 5BC1000-PVA film (Figure 8).
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Figure 7. Effect of biochar pyrolyzed at the different temperatures on electrical properties of biocom-
posite films.
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Figure 8. Effect of loading level of BC800 and BC1000 on electrical properties of biocomposite films.
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The presence of ash impurities and non-graphitic carbon that made a barrier to
form a continuous conductive network could be the cause behind the lower conductance
of biocomposite films, particularly at low biochar content obtained at low pyrolyzing
temperature [5,8]. The intensity of graphite formation increased with the rise of pyrolyz-
ing temperature [5]. The XRD pattern confirmed the formation of electrically conductive
graphitic carbon that contains delocalized pi-electrons and was responsible for the con-
duction of biocomposite films [7,8]. The incorporation of graphitic carbon rich biochar
that forms a conductive, continuous network of across the PVA film was the key reason to
make the biocomposite film electrically conductive [6]. Sobhan et al. reported improved
electrical conductance by increasing the biochar loading level [16]. The higher quantity
of graphitic carbon-based fillers, e.g., graphene, grapheme oxide, carbon nanotube, and
biochar, ensured the proper dispersion of electrically conductive graphitic carbon across
the polymer matrix [39–41].

3.2.4. Tensile Strength of Biocomposite Films

Tensile tests were conducted to observe mechanical characteristics of the biocomposite
films. The effect of pyrolyzing temperatures and biochar loading levels on tensile strength
of the biocomposite films are shown in Figures 9 and 10, respectively. The biocomposites
with 5 wt.% biochar showed lower tensile strength as compared to that of the pure PVA.
The tensile strength of the biocomposite films increased gradually from 7.75 MPa for BC400,
to 8.33 MPa and 8.75 MPa for BC600 and BC800, respectively. Tensile strength then reduced
again to 5.82 MPa for BC1000. This implied the development of strong cross-linking and
adhesion between PVA matrix and biochar, which occurred because of various functional
groups, fibrous residue, and porosity present in biochar [42]. A uniform dispersion of
biochar and penetration of polymeric matrix into pores of biochar could provide high
tensile strength. However, in the case of 5BC1000-PVA, the porous structure of the biochar
provided some extension of facilities to form such strong cross-linking but could not
recover the loss of tensile strength due to high-temperature degradation of the fibrous and
functional groups.
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Figure 9. Effect of pyrolyzing temperature on the tensile strength of biocomposite films prepared
with 5 wt.% biochar.
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Figure 10. Effect of biochar loading level on the tensile strength of biocomposite films.

As seen in the FTIR data (Figure 6), the reduced peak intensity for the hydroxyl band
(-OH) indicated the presence of chemical interaction between the biochar and PVA, which
influenced the tensile strength of the biocomposite films. Particle size and distribution
were also responsible for this fall of the tensile strength of the biocomposite films [7]. The
particle loading level significantly influenced the mechanical strength of the biocomposite
films (Figure 10). Increasing biochar content in the BC800 from 5 wt.% to 8 wt.% and finally
12 wt.% reduced tensile strength from 8.75 MPa to 5.49MPa and 3.12 MPa respectively.
Higher biochar content might introduce flaws within the film, which could negatively
affect the tensile strength. A similar trend was also observed for the BC1000. In previous
research, the authors reported similar behavior of a composite prepared with brittle biochar
and a polymer matrix [7,8,23].

Infiltration of polymer matrix into the biochar pores (in the case of BC800 and BC1000)
may enhance the mechanical strength to some extent. However, in the case of BC1000,
the benefit from the pore structures was suppressed by the disadvantage of non-uniform
distribution and irregular shape of the biochar particles [6]. Poulose et al. explained
the degradation of tensile strength as the result of poor interfacial bonding between the
polymer and the biochar [7]. The particle distribution, dispersion, orientation, and aspect
ratio of the reinforcing materials, polymer matrix, and filler adhesion are the vital factors
that determine the ultimate properties of the biochar-based composites. Because of the
variation in size and shape, orientation, and distribution of biochar particles, the SEM
images of biocomposite films with the higher biochar loading levels showed random
clusters (particularly for the biocomposite films with BC800 and BC1000) that initiated
variation in tensile strength [6].

4. Conclusions and Future Work

The key findings of the present research recommended that biochar produced from
sugarcane bagasse at higher pyrolyzing temperature could significantly enhance the elec-
trical conductance of the biocomposite films. As evidenced in XRD and FTIR, graphitic
carbon having excellent electrical properties was developed in biochar produced during
pyrolysis at the higher temperatures (800 ◦C and 1000 ◦C). The minimum content of biochar
(5 wt.%) was required to make the composite film electrically conductive. Good interaction
between biochar and PVA matrix can improve mechanical properties to a certain extent
without recovering the overall loss of strength due to biochar addition. In future, sugarcane
bagasse-based biochar and PVA biocomposite film can be improvised by working out
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biochar properties, like chemical and physical surface functionality, purity (ash remov-
ing), and controlling particle size. This improvement may facilitate better matrix–filler
interaction and result in advanced composite characteristics with better electrical and
mechanical properties.

As the main focus of this work was the evaluation of electrical and mechanical proper-
ties of biocomposite films, the thermal study of the films is planned as an extension of this
work. In the present work, the electrical conductance measurement is carried out at room
temperature. In future, the measurement would be carried out at different temperatures to
evaluate the effects of temperatures on the electrical conductivity of the composite films.
Furthermore, other matrix materials such as polyvinyl chloride (PVC), which is easily
soluble in cyclohexanone, can be used for film preparation in the same way as PVA.
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