Zong, J, Li, S, Zhang, D, Han, G, Mu, X, Bashir, AK and Rodrigues, JJPC (2020) Smart user pairing for massive MIMO enabled industrial IoT communications. In: IEEE Conference on Computer Communications Workshops, 06 July 2020 - 09 July 2020, Toronto, ON, Canada.

Downloaded from: https://e-space.mmu.ac.uk/628388/

Version: Accepted Version

Publisher: IEEE

DOI: https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162967

Please cite the published version
Smart User Pairing for Massive MIMO Enabled Industrial IoT Communications

Jingjie Zong*, Shuangzhi Li*, Di Zhang*, Gangtao Han*, Xiaomin Mu*, Ali Kashif Bashir** and Joel J. P. C. Rodrigues †‡ (Fellow, IEEE)

*Zhengzhou University, China
**Manchester Metropolitan University, Manchester, U.K.
††Federal University of Piauí (UFPI), Teresina-PI, Brazil
†‡Instituto de Telecomunicações, Portugal

e-mail: zongjingjiecn@163.com; {ielsz, iegthan, iexamnu}@zzu.edu.cn;
{dr.di.zhang, dr.alikashif.b, joeljr}@ieee.org

Abstract—In this paper, we concern the uplink of an industrial Internet of Things (IIoT) communication system, in which multiple single-antenna users timely upload data to a receiver having a large number of antennas over Rayleigh fading channels. To satisfy the stringent requirement of latency in the channel estimation phase of this system, we first use a phase-shift keying (PSK) modulation division scheme for each pair of users. Specifically, the absolutely additively uniquely decomposable constellation pair (AAUDCP) is allocated for two random users. With the same pilot sequence, it proves the modulated PSK symbols can be uniquely identified when the number of receiver antennas goes to infinity in a noise-free case. In a noise case, to improve the reliability of this system, we propose a smart user pairing algorithm with low complexity by maximizing the minimum signal to interference plus noise ratio at the receiver for all pairs of users. Finally, the computer simulations show that the proposed scheme can improve the system’s error performance effectively.

Index Terms—massive MIMO, IIoT, PSK modulation division, smart user pairing.

I. INTRODUCTION

5G wireless communication network is expected to achieve significant improvements in several key performance indicators [1], of which ultra-reliable low-latency communication (URLLC) is being used by many emerging IIoT services (telemedicine operations, automatic drive, etc.). How to satisfy the two seemingly contradictory technical requirements in wireless communication systems, i.e., ultra-reliability and low latency [2], has attracted lots of researchers’ attention [3]. Among the potential schemes, exploiting diversity resources is considered to be a feasible solution [4], [5].

In wireless communication systems, diversity resources mainly include space diversity [6], frequency diversity [7] and time diversity [8]. Considering the stringent requirements for latency and bandwidth in IoT applications, the time diversity and frequency diversity gain may be limited, making spatial diversity a solution [9]. Massive MIMO techniques can reduce transmission delays by improving spectral efficiency and improve the reliability by exploiting the large spatial diversity gain. So massive MIMO is considered as a potential enabling technique for URLLC [10]. However, the main feature of URLLC is the transmission of short data packets [5], [11], [12], the use of pilot sequences will reduce spectral efficiency. So the number of available orthogonal pilot sequences is limited, resulting in pilot contamination, which is one of the bottlenecks of the performance of massive MIMO systems.

Some works have been done for mitigating the pilot contamination of massive MIMO systems. The time-shifted pilot transmission scheme in [13] mitigates the inter-cell pilot contamination by asynchronous transmission among users with the correlated pilot but causes the mutual interferences between data and pilot. Pilot contamination precoding [14] mitigates the pilot interference by the joint processing of multi-cell but this method results in the decrease of spectral efficiency due to signaling overhead required by information exchange. The greedy pilot assignment algorithm [15] can mitigate the pilot contamination by using the statistical channel covariance information but the computation complexity is too high.

All the above pilot allocation schemes assign the pilot sequences to users randomly without considering the difference of channel quality. On the contrary, according to the difference of pilot sequences’ interference and users’ channel quality, [16] proposed a smart pilot assignment scheme that assigns pilots in a sequential way. However, this scheme is aimed at the achievable capacity of the channel for traditional long data packets.

Motivated by this fact, by using fewer pilot sequences and PSK modulation division, a smart user pairing transmission scheme is proposed for massive MIMO uplink systems, to
cope with the pilot allocation problem in IIoT services. The main contributions of this paper are summarized as follows.

1) In the proposed scheme, each pair of users can use the same pilot sequence. Compared with the traditional random pilot allocation scheme system, the proposed scheme can reduce the pilot overhead.

2) The concept of AAUDCP is formally introduced. The PSK modulation division scheme based on AAUDCP is proposed. When the number of receiver antennas goes to infinity, the modulated PSK symbols can be uniquely identified in a noise-free case.

3) In a noisy and finite number of antennas case, the relationship between the average symbol error rate (SER) with the large-scale fading coefficients is investigated. Based on this, we proposed a smart user pairing scheme with low complexity. Theoretical analysis proves that the scheme is denoted by \(A \), the diagonalized form of \(A \) is denoted by \(\Phi \), the Hermitian transpose of \(A \) is denoted by \(A^H \), and the diagonal of \(A \) is denoted by \(\text{diag}(A) \).

II. PSK MODULATION DIVISION SCHEME FOR MASSIVE MIMO ENABLED IIoT UPLINK SYSTEM

In this paper, we concern the uplink of an IIoT communication system, in which \(N \) single-antenna users timely upload data to a receiver having \(M (M \gg N) \) antennas over Rayleigh fading channels. In this system, \(N \) users are assumed to be exactly synchronous and are divided into \(K = N/2 \) pairs with 2 users in each pair, where \(N \) is assumed to be an even number. There are \(K \) orthogonal pilot sequences \(\Phi_k, k = 1, 2, \cdots, K \), and \(\Phi_i \) is a \(K \times 1 \) vector. Hence \(\Phi_i^H \Phi_j = 1 \) while \(i = j \), and \(\Phi_i^H \Phi_j = 0 \) while \(i \neq j \). Both of the two users in the \(k \)-th pair adopt the same pilot \(\Phi_k \) to partially estimate the channels. The equivalent baseband channel model for \(T \geq K + 1 \) time slots is

\[
\mathbf{Z} = \mathbf{H} \mathbf{S} + \mathbf{N},
\]

where \(\mathbf{Z} \) is the \(M \times T \) received signal matrix. The \(M \times N \) channel matrix from \(N \) users to the BS is \(\mathbf{H} = \mathbf{H}\mathbf{D}^T \) with \(\mathbf{D} = \text{diag}(\beta_1, \beta_2, \cdots, \beta_K) \) and \(\mathbf{H} = [\mathbf{h}_1, \mathbf{h}_2, \mathbf{h}_3, \cdots, \mathbf{h}_K] \). In this paper, we consider a Rayleigh block fading channel model. Specifically, \(\mathbf{h}_{ki} \sim \mathcal{CN}(0, \mathbf{I}_{M}) \), \(k = 1, 2, \cdots, K, \ i = 1, 2; \beta_{ki} \) is the corresponding large-scale fading coefficient, it is assumed known to all users and the BS. \(\mathbf{N} \) is the \(M \times T \) noise matrix arising at BS with each entry following the circularly symmetric complex Gaussian distribution with zero mean and variance \(\sigma^2 \), and is assumed known to the BS.

\[
\mathbf{S} = \begin{bmatrix}
\phi_1 \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_{(T-K)} \\
\phi_2 \mathbf{Y}_1 & \mathbf{Y}_2 & \cdots & \mathbf{Y}_{(T-K)} \\
\phi_3 \mathbf{Z}_1 & \mathbf{Z}_2 & \cdots & \mathbf{Z}_{(T-K)} \\
\cdots & \cdots & \cdots & \cdots \\
\phi_{K} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_{(T-K)}
\end{bmatrix},
\]

where \(x_{kt} \in \mathcal{X}_k, \ y_{kt} \in \mathcal{Y}_k, \ k = 1, 2, \cdots, K, \ t = 1, \cdots, T - K \). \(\mathbf{X}_{kt} \) and \(\mathbf{Y}_{kt} \) are taken from two PSK constellations \(\mathcal{X}_k \) and \(\mathcal{Y}_k \) respectively, they will be design in the next section.

Remark: The proposed scheme can reduce the pilot overhead by using the same pilot for each pair of users.

III. SMART USER PAIRING SCHEME

In this section, we investigate the signal detection problem and the user pairing problem. The pilot assignment for a three-user system, in which three users are assumed to be exactly synchronous and are divided into \(K = 3/2 \) pairs with 2 users in each pair, where \(N = 3 \) is assumed to be an even number. There are \(K \) orthogonal pilot sequences \(\phi_k, k = 1, 2, \cdots, K, \) and \(\phi_i \) is a \(K \times 1 \) vector. Hence \(\phi_i^H \phi_j = 1 \) while \(i = j \), and \(\phi_i^H \phi_j = 0 \) while \(i \neq j \). Both of the two users in the \(k \)-th pair adopt the same pilot \(\phi_k \) to partially estimate the channels. The corresponding baseband channel model for \(T \geq K + 1 \) time slots is

\[
\hat{\mathbf{Z}} = \mathbf{H} \hat{\mathbf{S}} + \mathbf{N},
\]

where \(\mathbf{H} = \mathbf{H}\mathbf{D}^T \) with \(\mathbf{D} = \text{diag}(\beta_1, \beta_2, \cdots, \beta_K) \) and \(\mathbf{H} = [\mathbf{h}_1, \mathbf{h}_2, \mathbf{h}_3, \cdots, \mathbf{h}_K] \). In this paper, we consider a Rayleigh block fading channel model. Specifically, \(\mathbf{h}_{ki} \sim \mathcal{CN}(0, \mathbf{I}_{M}) \), \(k = 1, 2, \cdots, K, \ i = 1, 2; \beta_{ki} \) is the corresponding large-scale fading coefficient, it is assumed known to all users and the BS. \(\mathbf{N} \) is the \(M \times T \) noise matrix arising at BS with each entry following the circularly symmetric complex Gaussian distribution with zero mean and variance \(\sigma^2 \), and is assumed known to the BS.

\[
\mathbf{S} = \begin{bmatrix}
\phi_1 \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_{(T-K)} \\
\phi_2 \mathbf{Y}_1 & \mathbf{Y}_2 & \cdots & \mathbf{Y}_{(T-K)} \\
\phi_3 \mathbf{Z}_1 & \mathbf{Z}_2 & \cdots & \mathbf{Z}_{(T-K)} \\
\cdots & \cdots & \cdots & \cdots \\
\phi_{K} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_{(T-K)}
\end{bmatrix},
\]

where \(x_{kt} \in \mathcal{X}_k, \ y_{kt} \in \mathcal{Y}_k, \ k = 1, 2, \cdots, K, \ t = 1, \cdots, T - K \). \(\mathbf{X}_{kt} \) and \(\mathbf{Y}_{kt} \) are taken from two PSK constellations \(\mathcal{X}_k \) and \(\mathcal{Y}_k \) respectively, they will be design in the next section.
\[
\frac{1}{M}z_{K+1}^T h_k^* = \frac{1}{M}((h_{k1} + h_{k2}) + \tilde{N}\phi_k)^H \left(\sum_{j=1}^{K} (h_{j1}x_{jt} + h_{j2}y_{jt}) + n_t \right) \\
= \frac{1}{M} |h_{k1}|^2 x_{kt} + \frac{1}{M} |h_{k2}|^2 y_{kt} + \frac{1}{M} (h_{k2}^H h_{k1}) x_{kt} + \frac{1}{M} (h_{k1}^H h_{k2} y_{kt}) \\
+ \frac{1}{M} (h_{k1} + h_{k2})^H \sum_{j=1,j \neq k}^{K} (h_{j1}x_{jt} + h_{j2}y_{jt}) + \frac{1}{M} (h_{k1} + h_{k2})^H n_t \\
+ \frac{1}{M} (\tilde{N}\phi_k)^H \sum_{j=1}^{K} (h_{j1}x_{jt} + h_{j2}y_{jt}) + \frac{1}{M} (\tilde{N}\phi_k)^H n_t. \\
\]

Therefore, the signal detection problem is eventually reduced to such a problem: Under what condition, are \(x_{kt} \) and \(y_{kt} \) able to be uniquely identified from \(g_{kt} \)? This motivates us to introduce the following concept proposed in our previous work [17].

Definition 1: A pair of constellation \(\mathcal{U} \) and \(\mathcal{V} \) is said to form an absolutely (uniformly) additively uniquely decomposable constellation pair (AAUCP) if for any given \(a > 0 \) and \(b > 0 \), there exists \(u \in \mathcal{U} \) and \(v \in \mathcal{V} \) such that \(au + bv = a\tilde{u} + b\tilde{v} \), then, we have \(u = \tilde{u}, v = \tilde{v} \).

Therefore, if a pair of constellations \(\mathcal{X}_k \) and \(\mathcal{Y}_k \) constitutes an AAUCP, then, \(x_{kt} \) and \(y_{kt} \) can be uniquely identified from \(g_{kt} \). The following proposition provides us with a method for the systematic design of such a constellation pair using two PSK constellations.

Proposition 1: Let \(\mathcal{X}_k = \{ e^{j2\pi\frac{m}{K}} \}_{m=0}^{2^r-1} \) and \(\mathcal{Y}_k = \{ e^{j2\pi\frac{m}{K}} \}_{m=0}^{2^r-1} \). Then, such a pair of PSK constellations \(\mathcal{X}_k \) and \(\mathcal{Y}_k \) constitutes an AAUCP.

This has been proven in our previous work [18]. In this paper, the transmitted symbols \(x_{kt} \) and \(y_{kt} \) are randomly chosen from \(\mathcal{X}_k \) and \(\mathcal{Y}_k \) respectively and they are independent of each other.

B. Analysis of SINR

\[
I_1 = \frac{2\beta_{k1}\beta_{k2}}{M}; \\
I_2 = \frac{1}{M}(\beta_{k1} + \beta_{k2}) \sum_{j=1,j \neq k}^{K} (\beta_{j1} + \beta_{j2}); \\
I_3 = \frac{\sigma^2}{M}(\beta_{k1} + \beta_{k2}); \\
I_4 = \frac{\sigma^2}{M} \sum_{j=1}^{K} (\beta_{j1} + \beta_{j2}); \\
I_5 = \frac{\sigma^4}{M}. \\
\]

In the practical scenarios, the number of BS antennas is always finite. Therefore, there will be interference and noise when detecting signals. The received signal can be expressed as (6), in which \(\Xi_1 + \Xi_2 + \Xi_3 + \Xi_4 + \Xi_5 \) represents the interference plus noise. Assuming the transmitted signals have unit power, the expectation of the power of \(\Xi_i \) in (6) noted as \(I_i = E(|\Xi_i|^2) \) can be calculated as (7).

Then, the uplink SINR of the \(i \)-th user in the \(k \)-th pair \((u_{ki}) \) can be calculated as

\[
SINR_{ki} = \frac{\beta_{ki}^2}{I_1 + I_2 + I_3 + I_4 + I_5}. \\
\]

It is clear that thermal noise and small-scale fading effects could be averaged out as \(M \) grows to infinity. However, the average uplink capacity is limited by pilot contamination and cannot be improved by the increase of data transmission power. By analyzing the SINR of each user, we find that the user pairing scheme will significantly affect the SINR of users. Therefore, we investigate the user pairing algorithm in the following aiming to improve the signal detection performance of the BS.

There are totally \(n = \prod_{k=0}^{K-1} (N-k)/(N-k！) \) different user pairing results. Then orthogonal pilots are allocated to each pair of users. In the traditional pilot allocation scheme, pilots are allocated to users randomly. Since the users with severe pilot contamination are the performance bottleneck of massive MIMO systems. Consequently, we aim to maximize the minimum uplink SINR of all \(N \) users, which can be formulated as the following

\[
Q : \max_{\{\psi_{ki}\}_{k \in K}} \min_{i \in [N]} SINR_{ki}, \\
\]

where \(\{\psi_{s}, s = 1, \cdots, n\} \) represents all possible \(n \) kinds of user pairing results of \(N \) users, such as \(\psi_s = \{u_{11}^s, u_{12}^s; u_{21}^s, u_{22}^s; \cdots; u_{K1}^s, u_{K2}^s\} \) is the \(s \)-th user pairing scheme.

To solve the optimization problem \(Q \), we analyze the impact of the user pairing strategy on the SINR firstly. Without loss of generality, consider the two users of the \(k \)-th pair.

Proposition 2: For the user \(u_{ki} \), the signal-to-interference-plus-noise-ratio \(SINR_{ki} \) is monotonically increasing with the large-scale fading coefficient \(\beta_{ki} \).
The proof of Proposition 1 is as follows. For simplicity, let
\[
\Gamma = \sum_{k=1}^{K} (\beta_{k1} + \beta_{k2}),
\]
then
\[
SINR_{k1} = \frac{\beta_{k1}^2}{I_1 + I_2 + I_3 + I_4 + I_5 + M\beta_{k1}^2} = \frac{\Gamma(\beta_{k1} + \beta_{k2}) - \beta_{k1}^2 - \beta_{k2}^2}{\Gamma^2},
\]
(10)

Let \(W \) represents the denominator of (10), then we can attain the partial derivative of \(SINR_{k1} \) to \(\beta_{k1} \) is
\[
\frac{\partial(SINR_{k1})}{\partial \beta_{k1}} = \frac{1}{W^2} \left(M\beta_{k1}^2 + M\sigma^2\beta_{k1}^2 + 2M\beta_{k1}(\Gamma - \beta_{k2}) + \sigma^2\beta_{k2} + 2\sigma^2 + 4\right).
\]
As \(\Gamma > \beta_{k2} \), so (11) is always greater than zero. Therefore, for \(\forall k,i \), the relationship between \(SINR_{k1} \) and its large-scale fading coefficient \(\beta_{k1} \) is monotonically increasing. The above derivation process is also applicable to the other user \(u_{k2} \) of the \(k \)-th pair, that is, the relationship between \(SINR_{k2} \) and its large-scale fading coefficient \(\beta_{k2} \) is monotonically increasing. The above is the proof of Proposition 1.

Proposition 3: When \(\forall \beta_i \in \{\beta_1, \ldots, \beta_N\} \leq \frac{\Gamma + \sigma^2}{2} \) is satisfied, the signal-to-interference-noise ratio of \(\forall u_k \) (\(SINR_{ki} \)) is monotonically decreasing with the large-scale fading coefficient of another user in the same pair \((\beta_{ki}) \), in which \(i^- = 2 \) when \(i = 1 \), and \(i^- = 1 \) when \(i = 2 \).

The proof of Proposition 2 is as follows. The partial derivative of \(SINR_{k1} \) in (10) to \(\beta_{k2} \) is
\[
\frac{\partial(SINR_{k1})}{\partial \beta_{k2}} = \frac{M\beta_{k1}^2(\Gamma - 2\beta_{k2} + \sigma^2)}{W^2},
\]
(12)
The extreme point of (12) is \(\beta_{k2} = \frac{\Gamma + \sigma^2}{2} \), when \(\beta_{k2} < \frac{\Gamma + \sigma^2}{2} \), \(SINR_{k1} \) is monotonically decreasing with \(\beta_{k2} \), as \(\Gamma = \sum_{i=1}^{N} (\beta_i) \), at most one \(\beta_i \) satisfies \(\beta_i > \frac{\Gamma + \sigma^2}{2} \), there is rarely the case when \(N \) is large, therefore, we can consider \(\forall \beta \in \{\beta_1, \ldots, \beta_N\} < \frac{\Gamma + \sigma^2}{2} \). Therefore, for \(\forall u_{k1} \), the relationship between \(SINR_{k1} \) and \(\beta_{k2} \) is monotonically decreasing.

The above derivation process is also applicable to the other user \(u_{k2} \) of the \(k \)-th pair, that is, the relationship between \(SINR_{k2} \) and \(\beta_{k1} \) is monotonically decreasing. The above is the proof of Proposition 2.

C. Smart User Pairing Algorithm

In this subsection, based on Proposition 2 and Proposition 3, the smart user pairing algorithm is proposed to solve the optimization problem \(Q \). The most direct way to solve the optimization problem is the exhaustive search, which tries all possible pairing schemes and chooses the best one. However, the number of all pairing schemes is \(n = \prod_{k=0}^{N-2} (\frac{N-2k}{2})/(\frac{N}{2}) \), which leads to high computational complexity, especially when \(N \) is large. In this paper, the optimization problem \(Q \) is solved in a way with low complexity.

Arrange the large-scale fading coefficients of all users’ channels from small to large, \(0 < \beta_1 < \beta_2 < \cdots < \beta_N \). Let the user with the large-scale fading coefficient \(\beta_i \) be the \(u_i \). Then let \(u_{k1} \) and \(u_{k2} \) as \(u_{k1} \) and \(u_{k2} \) respectively. Assuming the proposed smart user pairing scheme is \(\psi_p \), it can be formulated as follows
\[
\psi_p = \{\{u_{k1}, u_{k2}\}, k = 1, 2, \ldots, K\} = \{\{u_{k1}-1, u_{k2}\}, k = 1, 2, \ldots, K\}.
\]

Apparently, the computational complexity of the proposed smart user pairing scheme comes from the sorting process, which is only \(O(N) \), it is negligible compared with \(n \) required by exhaustive search.

Next, we prove that the proposed smart user pairing scheme is one of the solutions to the optimization problem \(Q \). Assume that there is another pairing scheme \(\psi_q = \{\{u_{k1}', u_{k2}'\}, k = 1, 2, \cdots, K\} \), which has lower minimum uplink SINR of \(N \) users than \(\psi_p \), i.e.,
\[
\gamma_q = \min_{\forall k,i} SINR_{ki} > \gamma_p = \min_{\forall k,i} SINR_{ki}.
\]
(13)

Now we prove that such scheme \(\psi_q \) does not exist. For \(\psi_p \) scheme, \(\beta_1 \leq \beta_2 \), according to (8), for two users of any pair, there is \(SINR_{k1}^p \leq SINR_{k2}^p \), \(k = 1, 2, \cdots, K \). Assume that the user with the minimum uplink SINR in \(\psi_p \) scheme is in the \(t \)-th pair, i.e., \(\gamma_p = SINR_{k1}^p \), the large-scale fading coefficients of \(\{u_{t1}', u_{t2}'\} \) are \(\beta_{t1}, \beta_{t2} \). Then, according to the scheme \(\psi_q \), suppose that the user with large-scale fading coefficient \(\beta_{t1} \) is assigned to the \(t \)-th pairing \((1 \leq t \leq K) \) with the user whose large-scale fading coefficient is \(\beta_w \), i.e., the large-scale fading coefficients of \(\{u_{w1}, u_{w2}\} \) are \(\beta_{w1}, \beta_{w2} \). Comparing \(\beta_w \) with \(\beta_{t1} \), there will be two results:

1) \(\beta_w > \beta_{t1} \): According to Proposition 2, we have
\[
SINR_{t1}^q = SINR_{t2}^q \leq SINR_{t1}^p = SINR_{(\beta_{t1} - \beta_{t2})},
\]
so
\[
\gamma_q \leq SINR_{t1}^q \leq SINR_{t1}^p = \gamma_p,
\]
(14)
which contradicts the assumption in (13).

2) \(\beta_w < \beta_{t1} \): According to the order of
\(
0 < \beta_1 < \beta_2 < \cdots < \beta_N,
\)
it is clear that \(w \in \{1, 2, \cdots, 2t-2\} \). Since one user with a large-scale fading coefficient chosen from \(\{\beta_1, \beta_2, \cdots, \beta_{2t-2}\} \) has been assigned with the user whose large-scale fading coefficient is \(\beta_{t1} \), there must be a user with \(\beta_m(1 \leq m \leq 2t - 2) \) and a user with \(\beta_n(2t \leq n \leq N) \) are divided into a pair, i.e., \(\beta_{r1}, \beta_{r2} \in \{\beta_m, \beta_n\}(1 \leq r \leq K) \).

(i) According to Proposition 2, due to \(\beta_{r1} \geq \beta_m \), \(\beta_{r2} \geq \beta_{r1} \), we can have
\[
SINR_{t1}^q = SINR_{(\beta_{r1}, \beta_{r2})} < SINR_{(\beta_{t1}, \beta_{t2})}.
\]
(ii) According to Proposition 3, due to \(\beta_{r2} \geq \beta_n > \beta_{r1} = \beta_{r2} \), we can have
\[
SINR_{(\beta_{t1}, \beta_{t2})} \leq SINR_{(\beta_{t1}, \beta_{t2})} = SINR_{t1}^p.
\]
As a result of (i) and (ii), we have
\[\gamma_q \leq \text{SINR} R_{r,1}^{\beta_{1}, \beta_{n}} \leq \text{SINR} R_{r,1}^{\beta}, \]
which contradicts the assumption in (13). This completes the proof.

It is concluded that the scheme \(\psi_p \) is one of the solutions to the optimization problem \(Q \). Note that there may be more than one optimal solution, for example, there are two users with the same channel quality, i.e., \(\beta_{n_1} = \beta_{n_2}, n_1 \neq n_2 \). However, the exchange of the two users makes no difference to the minimum uplink SINR.

IV. Simulation Results

In this section, computer simulation results are presented to show the performance of the proposed communication scheme. In simulations, the transmission period \(T \) is set to \(N/2 + 1 \) for clarity. The SNR is defined as the ratio of transmitting power of each user to the noise power at the BS.

First, we study the average symbol error rates (SERs) of the proposed scheme with different numbers of BS antennas in Fig. 1, in which \(N = 10, \beta_1, \cdots, \beta_{10} \) randomly selected from \(\{0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95\} \). It observes that the SERs of the proposed scheme exponentially decrease as \(M \) increases. This phenomenon is mainly because that the interference and noise exponentially descend. Also, the error performance of the system degrades with the modulation order increasing from 2 to 4. It is mainly because the larger the modulation order, the smaller the distance between the constellation points of \(X_k \) and \(Y_k \).

Fig. 2 studies the relationship between the SERs of the proposed scheme with the number of users. To compare fairly and avoid the channel quality difference caused by the number of users, the large-scale fading coefficients of all users are set to be a fixed value 0.8dB. It illustrates that when \(N \) is small, the proposed scheme has a better SER performance. However, the error performance decreases as \(N \) increases. This is mainly because the demodulation scheme highly depends on the gradual orthogonality between multi-user channels. With \(N \) increasing, the orthogonality will be destroyed. As a result, the interference between multiple users increases, which leads to poor SER performance.

Fig. 3 shows the minimum uplink SINR of different user pairing scheme. And the 4-th random scheme is \(\{0.5, 0.95\}, \{0.55, 0.9\}, \{0.6, 0.85\}, \{0.65, 0.8\}, \{0.7, 0.75\}\).
shown in Fig. 4, in which N becomes larger as error performance significantly. Besides, the performance gap in the proposed smart user pairing scheme improves the system’s performance compared to the traditional random pilot allocation scheme [19], we observe that the improvement in the proposed smart user pairing scheme is larger than that of the 4-th random scheme by about 0.5.

The impact of user pairing scheme on the average SERs is shown in Fig. 4, in which $N = 10$. Compared with the traditional random pilot allocation scheme [19], we observe that the proposed smart user pairing scheme improves the system’s error performance significantly. Besides, the performance gap becomes larger as M increases.

V. Conclusion

In this paper, we have considered the uplink of an IIoT communication system. For such systems, a smart user pairing scheme based on PSK modulation division has been proposed by carefully investigating the impact of the user pairing strategy on the SINR. The proposed scheme performs user pairing in a sequential way with low complexity, it can reduce the pilot overhead and mitigate the pilot contamination effectively. The computer simulation results have shown that the proposed scheme works well and the smart user pairing scheme can decrease the average SER significantly.

References