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Jianhua Li, Wu Yang, and Yasser D. Al-Otaibi

Abstract—Energy harvesting (EH) is a promising and critical
technology to mitigate the dilemma between the limited battery
capacity and the increasing energy consumption in the Internet of
everything. However, the current EH system suffers from energy-
information cross threats, facing the overlapping vulnerability of
energy deprivation and private information leakage. Although
some existing works touch on the security of energy and infor-
mation in EH, they treat these two issues independently, without
collaborative and intelligent protection cross the energy side and
information side. To address the above challenge, this paper
proposes a joint protection framework of energy security and
information privacy for EH with an incentive federated learning
approach. First, we design a federated learning-based malicious
energy user detection method according to energy status and
behaviors to provide energy security protection. Secondly, a
differential privacy-empowered information preservation scheme
is devised, where sensitive information is protected by the cus-
tomized demand-based noise. Thirdly, a non-cooperative game-
enabled incentive mechanism is established to encourage EH
nodes to participate in the joint energy-information protection
system. The proposed incentive mechanism derives the optimal
energy-information security strategy for EH nodes and achieves
a tradeoff between the protection of energy security and infor-
mation privacy. Evaluation results have verified the effectiveness
of our proposed joint protection mechanism.

Index Terms—Energy harvesting, joint protection, federated
learning, differential privacy, incentive mechanism.

I. INTRODUCTION

W ITH the ever-increasing huge amount of data and het-
erogeneous high-energy services, the dilemma between

the increasing energy consumption and the limited battery
capacity of wireless devices is intensifying [1]. Energy har-
vesting (EH) is a promising and critical technology to mitigate
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the bottleneck of energy limitation [2], [3]. EH allows wireless
devices to harvest energy from surroundings, store energy in
their own batteries, and transmit it to other low-power devices
[4]. However, the EH system confronts energy-information
cross threats, where the overlapping vulnerability of energy
deprivation and private information leakage compromises EH
security and sustainability. This security vulnerability does
huge harm to EH system, and even causes malicious accidents,
e.g. production accidents resulting from the energy exhaustion
of industrial equipment, and paralyzed energy infrastructure
due to the leakage of sensitive information.

Energy security and information privacy are both important
issues of EH and there are overlaps between them. On the
one hand, the energy security mechanism needs user data
to train models for malicious node detection. Thus, it is
inevitable to access and leak private information, e.g. energy
status and consumption habits of users. On the other hand,
the sensitive information leakage widens the attack surface of
energy attacks, may helping the adversary evade detections
and even destroy the system. Some works have been done to
mitigate energy and information security in EH. For energy
security, some admirable methods have been proposed, such
as a machine learning-based preservation in [5] and the
low-complexity taxation mechanism in [6]. For information
privacy, source location-preserving mechanisms and energy
consumption protection are studied [7], [8]. However, these
prior works treat energy security and information privacy
issues independently, ignoring the overlapping between them.
Our work aims to establish collaborative intelligent protection
across the energy side and information side, which is critically
important and urgently needed.

When designing smart approaches for energy-information
security, there still remain two challenges. 1) Insufficient
training data: the amount of data collected by a single EH
node is not enough to train an intelligent model for energy
security, which may lead to non-convergence or over-fitting.
An effective method to solve this issue is distributed machine
learning, which incorporates information from multiple dis-
tributed datasets. However, it is impractical for the classical
distributed machine learning in EH system because of the
following challenge, i.e. 2) Information privacy issues: Dis-
tributed learning methods may result in the exposure of EHs’
data to attackers, e.g. private information obtained by attackers
via analyzing the uploaded parameters [9], [10]. There remains
a blank in the design of joint protection of energy security and
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information privacy for EH. All these existing problems and
challenges of energy-information security motivate our work.

Federated learning (FL) is the mainstream of distributed
learning technologies, which incorporates data of multiple
nodes while avoiding direct data exposure to adversaries [11].
FL has arisen widespread attention in academia and industry,
and has a wide range of applications [12], [13]. Differential
privacy (DP) has strong capabilities of protecting privacy
without any background knowledge of the attackers [14]. DP
is widely utilized in various areas, e.g. location privacy pro-
tection on the Internet of Vehicles (IoV) and medical privacy
protection in the E-health system [15], [16]. Since the excellent
features of FL and DP, we design a joint protection mechanism
of energy security and information privacy by leveraging FL
and DP for EH in this paper. The scenario for the joint energy-
information protection is shown in Fig. 1, where EUs request
energy from the nearby ETs, and ETs transfer energy to EUs
while performing the privacy-preserving FL-enabled approach
to detect energy security attackers. The contributions of this
paper are summarized as follows:

• We propose a joint energy-information protection frame-
work for the EH, which enables secure and privacy-
preserving energy harvesting and transfer. In this frame-
work, a federated energy security protection scheme is
established to detect and process malicious energy users.

• To avoid privacy leakage of both ETs and EUs, a DP-
enabled information preservation scheme is proposed,
where a customized demand-based privacy preservation
approach is designed to perturb sensitive information of
EH nodes according to their privacy budget.

• We propose a non-cooperative game-based incentive
mechanism to encourage ETs to participate in our pro-
posed joint protection system. We derive the optimal
energy-information strategies for ETs and balance energy
security protection and information privacy preservation.

The remainder of this paper is organized as follows. Section
II discusses the related work. Section III proposes the energy-
information threat model and protection framework. In Section
IV, the joint protection mechanism of energy security and
information privacy is established. The non-cooperative game-
based incentive mechanism is proposed in Section V. Section
VI discusses the security analysis and empirical study. The
conclusion of this paper is presented in Section VII.

II. RELATED WORK

A. Energy Harvesting for Sustainable Communication

Energy harvesting technology has obtained widespread at-
tention recently and been applied in embedded wireless de-
vices for sustainable communication [17]–[20]. Specifically,
Saleem et al. in [17] study the EH-aided device-to-device
communication in cellular networks, where an EH and gain-
enabled resource allocation algorithm is proposed to optimize
sum rate. In [18], Ercan et al. investigate radio frequency en-
ergy harvesting and transfer architecture for the efficient com-
munication of the Internet of Things (IoT). The authors in [19]
propose a peer-to-peer energy-knowledge trading framework,
where EH technique is utilized to provide stable power edge
intelligence for high efficiency. The authors in [20] design an
EH-based edge computing and offloading framework, enabling
the performance of energy-limited devices.

Although these works investigate the EH for sustainable
communication, they mainly focus on energy capture, trans-
mission, and allocation. The study on the security and privacy
of energy harvesting and cooperation is few. Some researching
works investigate the energy attack and information security
[7], [21]. Specifically, Tedeschi et al. [7] investigate the vulner-
abilities of EH networks including attack models, data security
schemes, and physical-layer countermeasures. The authors in
[21] focus on the security and privacy challenges in the energy
harvesting and trading market, where blockchain is used to
establish a secure energy trading system. Our work differs
from the previous studies in that we consider both energy
security and information privacy of EH jointly to design a
more secure EH system rather than investigate them separately.

B. Federated Learning and Privacy Protection

As a promising technology of distributed machine learning,
FL aggregates local data and computing resources while avoid-
ing direct private information exposure [22], which has been
applied in energy and power areas. In [23], a distributed energy
management mechanism is established for smart homes, which
is empowered by federated reinforcement learning methods.
The authors in [24] propose an FL-enabled energy demand
prediction method for vehicle networks. Only a few works
exploit the FL on energy security, e.g. the FL-based electricity
consumer characteristics identification approach in [25] which
can be utilized to detect abnormal energy users. However, this
research applies principal component analysis (PCA) to protect
information privacy, which may result in an inevitable decline
in accuracy and efficiency. Besides, the focus of [25] is energy
characteristics analysis. The FL on energy security and privacy
preservation has not been thoroughly explored.

Differential privacy is the advanced technology to prevent
leakage of private information with solid mathematical foun-
dations. DP has been utilized in multiple fields to preserving
privacy, e.g. private information protection in industrial IoT
[26] and genomic data privacy preservation [27]. Some works
focus on the application of DP in machine learning. In [28],
the authors apply DP to the distributed machine learning and
quantify the model value. The authors in [29] investigate the
DP-enabled federated learning mechanism, which designs the



3

algorithm and analyzes the performance. Although FL and DP
technologies have been well studied, the combination of them
for energy-information joint preservation still remains blank.
In our work, we will establish a protection model for energy
and information security simultaneously.

III. ENERGY-INFORMATION THREAT MODEL AND JOINT
PROTECTION FRAMEWORK

A. Threat Model

Potential threats in EH system of this paper come from
attacks against energy security and information privacy. For
energy security attacks, the adversaries are the malicious-but-
covert EUs who try to deprive the energy of ETs by sending
numerous malicious but legitimate energy demands to ETs.
The energy security attackers can be malicious but legitimate
EUs or hackers breaking the EH system. These attackers
claim low-energy status and request excessive energy from the
nearby ET even though they have sufficient power. The energy
attackers counterfeit the energy demands by increasing the
amounts of requesting energy randomly before sending them
to the ET nodes. The energy security attack exhausts the ETs’
energy, resulting in the denial of service in EH. The reliability
and functionality of the EH system are severely damaged.

The information privacy leakage threat occurs in the con-
struction of the intelligent energy security protection model.
To detect malicious EUs and maintain energy security, energy
data of EHs are collected and utilized to train the energy secu-
rity protection model. The information adversaries are located
at the server, who are honest but curious, e.g. the disgruntled
administrators or hackers with illegitimate access. The honest-
but-curious server performs the EH system protocols honestly
but tries to deduce the private information of EHs during the
distributed training process. This information privacy threat
results in potential data loss of ETs, and has bad influences
on the reputation of the joint energy-information protection
system. Thereby, the participation and enthusiasm of EHs
are greatly reduced, affecting the energy security negatively.
Note that, we consider the ETs are trusted nodes as they are
generators and collectors of data, and owners of energy.

B. Framework of the Proposed Joint Protection Mechanism

The framework of the proposed joint energy and information
preservation mechanism is shown in Fig. 2, which consists of
three planes listed as follows:

1) Energy User Plane: This plane includes numerous wire-
less devices with limited energy, e.g. smartphones, unmanned
aerial vehicles (UAV), and industrial devices. To deal with
the increasing data traffic and provide heterogeneous services,
EUs request, harvest, and store the energy from ETs. However,
some malicious EUs may pretend their energy is low and
constantly request energy supplies to exhaust power of ETs.

2) FL and DP Empowered Energy Transmitter Plane: The
energy transmitter plane consists of ETs with capacities of
energy supply and joint energy-information security protec-
tion. The energy supply includes energy harvesting, energy
storage, and energy transfer. ETs can harvest energy from the
surrounding environment (e.g. solar, wind, or power from the
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Fig. 2. Framework of the proposed joint preservation mechanism for both
energy security and information privacy.

grid), store the captured energy to their batteries, and transmit
the energy to EUs on demand. Joint protection of energy
security and information privacy is implemented based on the
FL-based malicious energy user detection scheme and the DP-
enabled privacy-preserving scheme.

3) Server Plane: The management of the FL model is
implemented in this plane. With powerful computing and
storage capacity, the server plane has the potential to conduct
the following functions: verifying the legality and integrity of
the uploaded FL models from ETs, performing a secure model
aggregation over these local models without leaking privacy
information, and distributing the updated model to the ETs.

The proposed framework implements energy transmission
under the joint protection of energy security and information
privacy. The EU node that expects energy supply should first
transmit energy demand to its nearby ET node. The ET verifies
the legality of the EU. If the EU is regarded as valid, the
corresponding components of ET parse and analyze the energy
request, and then transfer energy to the EU over the control of
its microcontroller. For energy security, an FL-enabled energy
security scheme is proposed, where a designed malicious EU
nodes detection method is performed periodically based on
EUs’ behaviors and energy status. If an EU is detected as
malicious, its energy behavior will be forbidden, e.g. energy
requesting and harvesting behaviors. Moreover, the privacy
of information in our proposed scheme is guaranteed by DP
technology when training, aggregating, and distributing the
federated energy security detection model.

IV. JOINT PROTECTION OF ENERGY SECURITY AND
INFORMATION PRIVACY

A joint protection mechanism for energy and information
security is proposed in this section. We design the FL-enabled
energy security protection scheme and a DP-based information
privacy preservation scheme for EH system. To ease reading,
the list of the major notations is summarized in Table I.
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TABLE I
MAJOR NOTATIONS AND DESCRIPTIONS

Notations Descriptions

Dk The dataset owned by the k-th ET node
P(t) The set of ETs participating in the t-th round training
w(t) Weights of FL models of the t-th round training
T (t)
k , T

′(t)
k Two adjacent training datasets of the ET k at round t

g
(t)
k , g̃(t)

k Local gradient and perturbed gradient of ET k at round t
l(·) The loss function of the local training
C The threshold to bound local gradients
ε
(t)
k Privacy budget of the k-th ET at the round t

∆f
T(t)
k
k , ∆f

T(t)
k

D Sensitivity of ET k in model uploading and distribution
Mk The privacy mechanism for the k-th ET
SMk

The possible output set of the privacy mechanism Mk

L(0, λkId) The complex Laplace distribution
V

(t)
k Evaluated value of the trained model of ET k at round t
U

(t)
k Energy utility of the ET k at round t

Qt Budget for the t-th round FL model training
S(t)
k∈Pt Strategy space of the k-th ET at round t

s∗(t) The optimal strategy for all ETs at round t

A. Federated Energy Security Protection Scheme

To protect the energy security of the EH system and mitigate
the isolated data issue, we propose the FL-enabled energy
security protection scheme. The details of the proposed scheme
are presented as follows:

1) Registering in the proposed system: ET and EU nodes
willing to participate in the federated energy security protec-
tion scheme should first register in the system to obtain legal
identities, including public keys, private keys, certificates, and
some initial stakes, i.e. (Pi,Ki, Ci, Si).

2) Model training of the federated malicious energy user
detection : ETs who intend to do training tasks download the
initial model from the server. Then, energy security protection
model training is performed by ETs based on all or part of
their local dataset. To avoid sensitive information leakage, ETs
perturb the trained local FL models with controllable DP-based
noise. After that, ETs sign the privacy-preserving trained FL
model with their private key and upload them to the server.
The server collects these uploads, verify the validity of their
signatures, and aggregates the valid FL models.

3) Energy security detection and protection: The server
distributes the updated energy security model to each partici-
pant and rewards them based on the quality of their uploaded
models. ET nodes decide whether EUs in their range are
malicious based on EUs’ history energy behaviors and current
energy status. If one EU is judged as malicious, a certain
amount of its stakes will be deduced. Once the EU’s stakes are
lower than a preset threshold, its behavior will be restricted,
e.g. its energy requests will not be responded to by the ETs.

The federated malicious energy user detection is the crit-
ical part of our proposed energy security protection scheme.
We suppose the total number of ET nodes in the proposed
federated scheme is N and there are T training rounds in
total. For the round t ∈ {1, 2, · · · , T}, Kt(Kt ≤ N) ET
nodes participate in the training, which is represented as

P(t) = {p(t)
1 , p

(t)
2 , · · · , p(t)

Kt
}. The dataset of the k-th ET in

P(t) is denoted as Dk, k = 1, 2, · · · ,Kt. Each sample si of
the dataset includes energy features of ETs and EUs. To have
a comprehensive understanding of EH nodes, the designed
energy features consist of instant and relative features. The
instant energy features reflect the instant status of energy har-
vesting, store, and transfer, including total energy harvesting of
the ET e

(i)
TH, total energy transferring of the ET e

(i)
TT , current

energy status of the ET e
(i)
S , energy transferred to the EU

e
(i)
TU, and current status of the EU e

(i)
SU. The relative features

designed in our scheme are the ratios calculated based on
the observed instant features, namely energy transfer to har-
vesting ratio e

(i)
TU/e

(i)
TH, energy transfer ratio e

(i)
TU/e

(i)
TT , energy

storage ratio e
(i)
SU/e

(i)
S , and energy delivery ratio e

(i)
TT/e

(i)
TH.

These relative features are more robust against the dynamic
environment of the EH system. The designed instant and
relative energy features reflect the status and behaviors of EH
nodes in multiple dimensions, which can be utilized to detect
malicious EUs who perform abnormal energy requests.

At the beginning of each round t, ETs download the initial
weights w(t) ∈ Rd from the server and initialize their network
with these weights. For the k-th ET in P(t) at round t, training
data T (t)

k is selected from its collected dataset Dk, i.e. T (t)
k ⊆

Dk. The ET trains the detection model based on T (t)
k and w(t),

and obtains the local gradient as follows:

g
(t)
k =

1

|T (t)
k |

|T (t)
k |∑
i=1

g
(t)
k,i =

1

|T (t)
k |

|T (t)
k |∑
i=1

∇wl(w
(t), si), (1)

where l(·) is the loss function, and |T (t)
k | is the size of the

selected dataset T (t)
k . During the local model training, clipping

technology is used to bound gradients g(t)
k,i with threshold value

C, that is, ‖g(t)
k,i‖ ≤ C.

After training the malicious energy user detection model
locally, ETs can perturb their models via DP technology, which
will be discussed in detail in subsection IV-B. The perturbed
detection models are uploaded to the server. The server verifies
the signature of the gradients packet and aggregates the valid
gradients to update model weights. The aggregated model
parameter of the t-th round is expressed as follows:

w(t+1) = w(t) − αt
∑Kt

k=1
pkg

(t)
k , (2)

where αt is the learning rate of round t. pk is the weight
coefficient of the k-th ET for model training, and pk = 0 if
the gradients of k-th ET are not verified. After the model
aggregation, the server distributes the updated model to each
legally participating ET to detect malicious energy consump-
tion, thereby protecting energy security.

B. DP-based Information Privacy Preservation

Although the proposed federated energy security protection
scheme mitigates the isolated data problem, adversaries can
extract sensitive information of the participated ETs via ana-
lyzing the uploaded model parameters [9], [10]. The datasets
of ETs include their own energy status and energy data from
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other ETs and EUs, which are privacy-sensitive and profit-
sensitive. With the excellent characters of privacy preservation,
DP is utilized to perturb the model parameters before upload-
ing to the server, thereby realizing information preservation.

For the k-th ET in P(t) and its privacy budget ε(t)k at round
t, the privacy mechanism Mk satisfies ε(t)k -DP for any two
adjacent datasets T (t)

k and T
′(t)
k ⊆ Dk, any SMk

⊆ Sk (the
possible output set of Mk), if

Pr[MT
(t)
k

k (g
(t)
k ) ∈ SMk

] ≤ eε
(t)
k ·Pr[MT

′(t)
k

k (g
(t)
k ) ∈ SMk

]. (3)

The DP protection mechanism with smaller budget privacy in-
troduces more noise and provides stronger protection, whereas
model availability is reduced. Since the local gradients of FL
model are numerical data, the most common popular method
to obtain ε

(t)
k -DP is adding Laplace noise which has been

utilized in multiple applications [30]. The perturbed local
gradient of the k-th ET at round t is expressed as follows:

g̃
(t)
k =MT

(t)
k

k (g
(t)
k ) = f(g

(t)
k ) + n = g

(t)
k + n, (4)

where n ∼ L(0, λkId) is the Laplace noise component. Id is
the d× d identity matrix. λk = ∆fk

εk
and ∆fk is the sensitive

function of f which is expressed as

∆f
T (t)
k

k = max
T (t)
k ,T

′(t)
k

‖ 1

|T (t)
k |

∑|T (t)
k |

i=1
∇wl(w

(t), si)

− 1

|T
′(t)
k |

∑|T
′(t)
k |

i=1
∇wl(w

(t), si)‖ =
2C

|T (t)
k |

,

(5)

where the two adjacent datasets T (t)
k and T

′(t)
k ⊆ Dk have the

same size but only one sample is different. The sensitivity
∆f
T (t)
k

k in model uploading is only related to the clipping
threshold C and the training dataset |T (t)

k |. As the size of the
training dataset increases, the sensitivity decreases inversely.

After adding the DP noise, the k-th ET uploads the per-
turbed gradients g̃

(t)
k to the server with its signature. We

suppose the datasets {D1,D2, · · · ,DKt} of Kt ETs in P(t)

are disjoint and D(t) = D1 ∪ D2 ∪ · · · ∪ DKt . Based on the
parallel composition of DP [31], if the privacy mechanism
Mk satisfies ε(t)k -DP for k = 1, 2, · · · ,Kt, the global privacy
mechanism of all updated models satisfies max (ε

(t)
k )-DP and

∆fD
(t)

= max(∆f
T (t)
k

k ).
With the ε(t)k -DP mechanism, the aggregation of the updated

models in (2) can be represented as w(t+1) = w(t) −
αt

∑Kt
k=1 pkg̃

(t)
k by replacing g

(t)
k with g̃

(t)
k . We discuss the

privacy preservation for the k-th ET in the distribution of
the updated model to all participants. Let fT

(t)
k

D = w(t) −
αt

∑Kt
k=1 pkg̃

(t)
k , and its sensitivity can be expressed as

∆f
T (t)
k

D = max
T (t)
k ,T

′(t)
k

‖fT
(t)
k

D − fT
′(t)
k

D ‖

= max
T (t)
k ,T

′(t)
k

‖αtpk(g̃
(t)
k [s

′(t)
k ]− g̃

(t)
k [s

(t)
k ])‖

= αtpk∆f
T (t)
k

k =
2αtpkC

|T (t)
k |

.

(6)
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where s
(t)
k and s

′(t)
k are the different samples of T (t)

k and

T
′(t)
k . The sensitivity ∆f

T (t)
k

D during the model distribution is

proportional to ∆f
T (t)
k

k by factor αtpk, which is consistent
with the aggregation operation of the updated models. Note
that, adding DP noise in the gradients of the training model
is equivalent to adopting regularization, which can avoid the
overfitting of models. Thus, the DP-empowered information
privacy preservation in model training is feasible.

V. PROPOSED INCENTIVE MECHANISM

The non-cooperative game-enabled incentive mechanism is
proposed in this section. The designed incentive mechanism
plays a critical role in the joint protection of energy security
and information privacy in the following aspects. First, ET
nodes are selfish and unwilling to share their learning resource
(e.g. data, computing, and communication resource) without
proper profits. The proposed incentive mechanism encourages
the participation of ETs in the federated model training via
rewards. Secondly, in the proposed joint protection scheme,
some ETs may choose to upload low-quality trained models
under the consideration of data privacy or computing resource.
The proposed incentive mechanism derives the optimal train-
ing strategy for all ETs, which simulates high-quality learning
behaviors of ETs. As shown in Fig. 3, the proposed incentive
mechanism calculates the optimal data and privacy strategy
based on the model value and energy utility. Under the guid-
ance of the optimal strategy, ETs allocate corresponding data
resources for model training and add proper-level noise before
uploading the models. The server aggregates and distributes
the updated models for the joint energy-information security.

A. Model Evaluation and Energy Utility

The value of the uploaded privacy-preserving energy secu-
rity detection models is evaluated by the server. We define
the model value function with consideration of the following
two aspects. On the one hand, the value of the model is
related to the dataset size adopted for model training. More
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samples in the training dataset lead to the higher quality of the
trained model (e.g. accuracy). On the other hand, the value of
the model is negatively correlated with the magnitude of the
DP noise added by ETs. As the added noise increases, the
reliability of the model decrease. Base on the above analysis
and the marginal utility diminishing principle in economics,
we define the evaluation function of the trained model as

V
(t)
k = 1− e−λ·|T

(t)
k |

γ1 ·(ε(t)k )γ2 , (7)

where λ, γ1, γ2 > 0 are coefficients of model evaluation. The
evaluation function in (7) reflects that model value increases
strictly with the rising dataset size |T (t)

k | and privacy budget
ε
(t)
k . Besides, the defined evaluation function normalizes the

model value into [0, 1]. If and only if the dataset size |T (t)
k | or

the privacy budget ε(t)k vanishes, model value tends to zero.
Then, we define the energy utility of each ET participating

in the federated model training and there are two things
taking into consideration: 1) The reward from the server.
ETs who upload verified models can obtain rewards from
the server according to the evaluated model values. For the
privacy-preserving malicious energy user detection model,
the total budget is Q and the budget for each round is
(Q1, Q2, · · · , QT ). The reward of the k-th ET in round t is
expressed as QtV

(t)
k /

∑Kt
i=1 V

(t)
i . 2) The cost of ETs. ETs’ cost

consists of two parts, i.e. data cost and privacy cost. The data
cost is used by ETs to collect energy status and purchase data
from other EH nodes, which is related to the dataset size. The
privacy cost is paid for the information privacy leakage risks.
Therefore, we design the energy utility of ETs as follows:

U
(t)
k = Qt ·

V
(t)
k∑Kt

i=1 V
(t)
i

− β1 · |T (t)
k | − β2 · ε(t)k

=
Qt · (1−e−λ·|T

(t)
k |

γ1 ·(ε(t)k )γ2 )∑Kt
i=1 1−e−λ·|T

(t)
i |γ1 ·(ε

(t)
i )γ2

−β1|T (t)
k |−β2ε

(t)
k ,

(8)

where β1 and β2 are coefficients of the data and privacy cost,
respectively.

B. Optimal Strategy in Non-Cooperative Game

All ETs participating in the model training are supposed to
be independent and complete for the reward budget Qt non-
cooperatively. The goal of the ETs participating in the training
of the detection model is to maximize their own energy
utility. For k ∈ {1, 2, · · · ,Kt}, the optimization problem is
formulated as follows:

max
|T (t)
k |,ε

(t)
k

U
(t)
k (|T (t)

k |, ε
(t)
k ), (9)

s.t. |Tk|min ≤ |T (t)
k | ≤ |Tk|max, (9a)

εmin
k ≤ ε(t)k ≤ ε

max
k , (9b)

Umin
k ≤ U (t)

k . (9c)

In (9), the object of the optimization problem is to maximize
the energy utility of the ET subject to the training dataset size
|T (t)
k | and the privacy budget ε(t)k . Constraint (9a) describes the

range of training dataset size. Constraint (9b) is the limitation

of the privacy budget. Constraint (9c) guarantees the minimum
energy utility of ETs.

The optimization problem in (9) is not only related to the
strategy of the k-th ET, but also has a relationship to the
decisions of other participants. Thus, it is can be modeled
as a non-cooperative game G(t) =< P(t), S

(t)

k∈P(t) , U
(t)

k∈P(t) >,
where S(t)

k∈P(t) is the strategy space of ETs and

S
(t)

k∈P(t) = {s(t)
k = (|T (t)

k |, ε
(t)
k ) |

|Tk|min≤|T (t)
k |≤|Tk|max, ε

min
k ≤ε

(t)
k ≤ε

max
k ,∀k∈P(t)}.

(10)

Our goal is to find the optimal strategy for all ETs s∗(t) =

(s
∗(t)
1 , s

∗(t)
2 , · · · , s∗(t)Kt

), which is defined as Nash equilibrium
(NE). In NE, the strategy of each ET k is the best response
to other ETs’ choice, i.e. U (t)

k (s
∗(t)
k , S

∗(t)
−k ) ≥ U

(t)
k (s

(t)
k , S

∗(t)
−k ),

where S∗(t)−k is the best strategies of other ETs except k.
To solve the optimization problem in (9) for each ET, we

should prove the unique existence of NE in the formulated
problem first. The expression of (9) is continuous, and its
gradient ∇U (t)

k and Hessian matrix H(U
(t)
k ) are expressed as:

∇U (t)
k =

∂U
(t)
k

∂s
(t)
k

= (
∂U

(t)
k

∂|T (t)
k |

,
∂U

(t)
k

∂ε
(t)
k

)

=(
Qt · V(t)

−k

(V(t)
P )2

·
∂V

(t)
k

∂|T (t)
k |
− β1,

Qt · V(t)
−k

(V(t)
P )2

·
∂V

(t)
k

∂ε
(t)
k

− β2),

(11)

where ∂V
(t)
k

∂|T (t)
k
|

= λγ1|T (t)
k |

(γ1−1)(ε
(t)
k )γ2e−λ|T

(t)
k
|γ1 (ε

(t)
k

)γ2 and
∂V

(t)
k

∂ε
(t)
k

= λγ2|T (t)
k |

γ1(ε
(t)
k )(γ2−1)e−λ|T

(t)
k
|γ1 (ε

(t)
k

)γ2 , V(t)
P =∑

i∈P(t) V
(t)
i is the sum of the model values of all ETs, and

V(t)
−k =

∑
i∈P(t),i6=−kV

(t)
i indicates the sum of model values

except for the k-th ET.

H(U
(t)
k ) = a[
∂2V

(t)
k

∂2|T (t)
k
|
V(t)
P −2(

∂V
(t)
k

∂|T (t)
k
|
)2] a[

∂2V
(t)
k

∂|T (t)
k
|∂ε(t)
k

V(t)
P −2

∂V
(t)
k

∂|T (t)
k
|

∂V
(t)
k

∂ε
(t)
k

]

a[
∂2V

(t)
k

∂ε
(t)
k
∂|T (t)

k
|
V(t)
P −2

∂V
(t)
k

∂ε
(t)
k

∂V
(t)
k

∂|T (t)
k
|
] a[

∂2V
(t)
k

∂2ε
(t)
k

V(t)
P −2(

∂V
(t)
k

∂ε
(t)
k

)2]

 ,

(12)

where ∂2V
(t)
k

∂2|T (t)
k
|

=
∂V

(t)
k

∂|T (t)
k
|
( γ1−1

|T (t)
k
|
− λγ1|T (t)

k |
(γ1−1)(ε

(t)
k )γ2),

∂2V
(t)
k

∂|T (t)
k
|∂ε(t)

k

=
∂2V

(t)
k

∂ε
(t)
k
∂|T (t)

k
|

=
∂V

(t)
k

∂|T (t)
k
|
( γ2

ε
(t)
k

− λγ2|T (t)
k |

γ1(ε
(t)
k )(γ2−1)),

∂2V
(t)
k

∂2ε
(t)
k

=
∂V

(t)
k

∂ε
(t)
k

( γ2−1
ε
(t)
k

−λγ2|T (t)
k |

γ1(ε
(t)
k )(γ2−1)), and a =

QtV
(t)
−k

(V(t)
P )3

.
The Hessian matrix in (12) is a real symmetric matrix.
Moreover, its first-order leading principle minor |H1(U

(t)
k )| < 0

and the second-order leading principle minor |H2(U
(t)
k )| > 0.

Thus, H(U
(t)
k ) is a negative definite matrix. Therefore, U (t)

k is a
strictly concave function with respect to the strategy s

(t)
k . The

formulated problem in (9) is the convex optimization problem.
The strategy of ETs S(t)

k∈Pt is limited by the bound of |T (t)
k |

and ε(t)k , which is a nonempty and convex subset of Rn×Rn.
Thus, there is a unique NE in this formulated problem.

Since the determinant |H(U
(t)
k )| > 0, the Hessian matrix is

invertible. Therefore, Newton-Raphson iterative method can
be utilized to find the unique NE s∗(t) of our proposed game.
The detail of the Newton-Raphson iterative method is shown
in Algorithm 1. This non-cooperative game-based incentive
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Algorithm 1 Optimal strategies for energy security and infor-
mation privacy based on Newton-Raphson iterative method

Input: Qt, λ, P(t), Dk, |Tk|min, |Tk|max, εmin
k , εmax

k , Umin
k , ∀k

Output: s∗(t),U∗(t) = (U
(t)
1 , U

(t)
2 , · · · , U (t)

Kt
)

Initialization: Convergence threshold ζ, iterater i = 0

1: Initialize strategies: s(t)
1 =(s

(t)
1,1, s

(t)
1,2, · · · , s

(t)
1,Kt

)
2: repeat
3: i← i+ 1
4: for Each ET node k ∈ P(t) do
5: |T (t)

i,k | ← max(min(|T (t)
i,k |, |Tk|max), |Tk|min)

6: ε
(t)
i,k ← max(min(ε

(t)
i,k, ε

max
k ), εmin

k )

7: s
(t)
i,k ← (|T (t)

i,k |, ε
(t)
i,k)

8: end for
9: Calculate the energy utility of ETs U

(t)
i based on (8)

10: Calculate the gradients of each ET based on (11):
∇U (t)

i ← (∇U (t)
1 ,∇U (t)

2 , · · · ,∇U (t)
Kt

)
11: Calculate the Hessian matrix of each ET based on (12):

H
(t)
i ← (H

(t)
1 , H

(t)
2 , · · · , H(t)

Kt
)

12: Update the strategy of Kt ETs:
s

(t)
i+1 ← s

(t)
i − [H

(t)
i ]
−1
∇U (t)

i

13: until |s(t)
i+1−s

(t)
i | ≤ ζ and U

(t)
i > [Umin

1 , Umin
2 , · · · , Umin

k ]

14: s∗(t) ← s
(t)
i , U∗(t) ← U

(t)
i

mechanism gives the optimal strategies of all ETs and guides
them to select a suitable size of training dataset and privacy
budget. This incentive mechanism attracts ETs participating
in the construction of the joint energy-information protection
and strikes a balance between protecting energy security and
information privacy.

VI. SECURITY ANALYSIS AND EMPIRICAL STUDY

A. Security Analysis

The security with respect to joint energy-information pro-
tection is discussed and analyzed. The proposed mechanism
consists of three parties: ETs, EUs, and the server. Specifically,
the ETs are considered trusted in this paper, whereas EUs are
malicious-but-covert and the server is honest-but-curious.

For energy security, if an EU is compromised, its legitimate
identity will be stolen, including the certificate and private
key. The malicious EU uses the stolen legitimate identity to
send forged energy demands to the nearby ET. Since the
legal identity of the EU, these malicious demands cannot be
detected by signature verification. In our proposed mechanism,
this problem is addressed by the federated energy security
protection scheme to detect and remove malicious EUs.

For information privacy, if the server is compromised, the
uploaded information of ETs will be eavesdropped on by
the attacker to infer their privacy. This threat can be easily
addressed by adding some DP-based noise to preserve privacy.
Besides, some ETs may have little contribution to the federated
model but benefit more from others. For security fairness, the
proposed incentive mechanism allocates the reward budget to
ETs based on the value of their uploaded models. The ETs
contributing more training data and adding less noise are given
more rewards, which ensure fairness between ETs.
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Fig. 4. Convergence of the proposed mechanism: (a) Test loss of the energy
security protection schemes, (b) test loss of the protection schemes with DP.

B. Experiment Setup

Our experiments are deployed on the hardware with
3.40GHz Intel Core i7-6700 CPU, 16G RAM, and 2T disk.
The operating system is Linux Ubuntu 20.04 LTS and the
simulations are conducted on Python 3.8. The parameters of
the our experiments are set similarly to the previous studies
[20], [29], [32], which are presented as follows:

1) Energy harvesting parameters: There are 10 ETs and
100 EUs distributed uniformly in a cell with the radius of R =
100m. We suppose these nodes are static and each EU requests
and harvests energy from its nearest ET. The initial energy
of ETs and EUs obey uniform distributions U ∼ (50, 100)mJ
and U ∼ (25, 50)mJ, respectively. The amount of data that
EUs need to process per time slot is distributed uniformly
U ∼ (250, 350)kb and consume 0.01mJ to process 1kb data.
At each slot, the amount of energy that ETs harvest from the
environment distributes uniformly in [50, 100]mJ. Besides, the
energy transfer efficiency between ETs and EUs is set as 0.7.

2) Federated energy-information security parameters: The
dataset size of each ETs is 1500. The dataset for the per-
formance test has 10000 samples. The federated model we
applied for energy security is a multilayer feedforward neural
network with dimensions (9−30−20−2), which uses ReLU
function for hidden layers and Softmax for the output layer.

C. Simulation Results

1) Convergence of the Proposed Mechanism: The conver-
gence of our proposed federated energy security mechanism
over the different number of ETs Kt = {5, 10} is presented
in Fig. 4, which is compared with the baseline without FL.
From subfigure (a), we can see that along with the number of
aggregations (i.e. training rounds), the test loss of the proposed
schemes decreases and converges to a low value. Our proposed
schemes converge faster than the baseline. Specifically, the
proposed schemes with 5 and 10 ETs achieve low test loss
when the number of aggregations increases to 60, whereas the
baseline does not converge until the number of aggregations
reaches 80. Subfigure (b) shows the test loss of the energy
security protection schemes with DP, which demonstrates that
the proposed schemes with DP-enabled noise still converge
well although there are some fluctuations.

2) Performance of the Joint Protection Mechanism: The
performance of the federated energy-information joint protec-
tion mechanism is evaluated from the following three aspects:
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Fig. 5. Experimental results of the federated energy security detection scheme: (a) Test accuracy rate over number of aggregations, (b) true positive rate over
number of aggregations, (c) false positive rate over number of aggregations.
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Fig. 6. Experimental results of the energy security detection with DP-enabled information privacy scheme: (a) Test accuracy rate over number of aggregations,
(b) true positive rate over number of aggregations, (c) false positive rate over number of aggregations.

• Test accuracy rate (TAR): Ratio of the number of EUs
accurately detected to the number of all EUs.

• True positive rate (TPR): Ratio between the amount of
detected true malicious EUs and all actual malicious EUs.

• False positive rate (FPR): Ratio between the amount of
detected false malicious EUs and all actual normal EUs.

We investigate the performance of the proposed federated
energy security scheme by comparing it with the conventional
rule-based method and the smart method without FL. As
shown in Fig. 5 (a), with the rising number of aggregations, the
TAR of our proposed scheme and the smart method without
FL increases and converges to a high value. Compared with
baselines, our proposed schemes achieve better performance
and more ETs lead to higher accuracy over a particular number
of aggregations. The performance of the TPR in Fig. 5 (b)
displays the same trends as Fig. 5 (a). Our proposed schemes
outperform the baselines in terms of TPR. As shown in
subfigure (c), the FPR of our schemes declines to near zero as
the number of aggregations increases, and schemes with more
ETs converge faster. Compared with the conventional rule-
based method, our proposed scheme can identify malicious
users intelligently in the complex and dynamic EH system.
Compared to the baseline without FL, our sheme utilizes FL
to overcome the isolated data issue, thereby enhancing the
detection model accuracy and energy security performance.

The performance of the proposed mechanism with informa-
tion privacy preservation is shown in Fig. 6, comparing our
scheme under various privacy budgets ε = {0.8, 1.0} with
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Fig. 7. Simulation results of the total amount of data used for model training.

the baseline scheme without DP. The TAR, TPR, and FPR
are presented in subfigures (a), (b), and (c) respectively. The
performance of the schemes with privacy preservation is a
little worse than that without DP. A smaller privacy budget
leads to more obvious fluctuation in terms of TAR, TPR, and
FPR. The results show that our proposed DP-enabled scheme
protects information privacy via adding noise to the gradients,
which is equivalent to the regularization operation in model
training without causing serious performance degradation.

We evaluate the performance of our proposed incentive
mechanism in Fig. 7 and 8, which are compared to the average
mechanism. The average mechanism performs the uniform
budget for all participated ET, i.e. Qt

Kt
= p · V (t)

k , where p
is the unit budget for the trained model. For the particular
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Fig. 8. Simulation results of sum of privacy budget for information privacy.

budget Qt, we investigate the amount of the dataset size and
privacy budget of all ETs for the federated energy security
model training. We fix one of the above two variables to the
optimal strategy value and evaluate the performance of another
one. As shown in Fig. 7, our proposed mechanism encourages
ETs to apply more data to the model training. On average,
the total amount of data in our proposed scheme is 7.90 and
8.83 times higher than that of the baseline when λ= 0.04
and λ=0.06, respectively. Although the total amount of data
in the average scheme is large when the number of ET is
small, it declines as the number of ETs increases. Figure 8
presents the sum of privacy budget of our proposed incentive
mechanism and the baseline without incentive. From these
simulation results, we can see that the sum of privacy budget
for information security in the proposed scheme is 7.00 and
7.90 times higher than that of the baseline when λ=0.04 and
λ=0.06, respectively. Without the incentive mechanism, the
sum of the privacy budget for information security decreases
along with the number of ET devices. This means the ETs
add more noise to the federated model, thereby leading to
low model accuracy and poor performance for energy security.
The experiments in Fig. 7 and Fig. 8 verify the effectiveness
of our proposed non-cooperative incentive mechanism, which
not only stimulates ETs to participant in the joint protection of
energy and information, but also encourages them to contribute
more data and add proper-level noise.

VII. CONCLUSION

In this paper, we proposed a joint protection mechanism
of energy security and information privacy for EH, which
integrates the FL and DP technologies to enhance system
energy security while guaranteeing information privacy of
EH nodes. In this proposed mechanism, we first discuss
the framework of the joint energy-information protection in-
cluding basic components and workflow. Next, we design
the FL-based malicious energy user detection approach for
energy security and devise a DP-enabled information privacy
preservation scheme. Furthermore, a non-cooperative game-
based incentive mechanism is proposed, which optimizes the
utility of each ET, encourages their participation, and balance
the joint energy-information security. Finally, experimental
results verify the effectiveness of our proposed joint protection
of energy security and information privacy for the EH. In the

future, it is interesting to consider the mobility of EH nodes,
e.g. the vehicle and UAV in the EH system. This demands
the new energy security and information privacy protection
mechanism accounting for the dynamic and adaptive.
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