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Abstract

Sports researchers and coaches currently have no practical tool that can accurately and rapidly

measure the 3D kinematics of swimmers. Established motion capture methods in biomechanics

are not well suited for underwater use, either because they i) are not accurate enough (like

depth-based systems, or the visual hull), ii) would impair the movement of swimmers (like

sensor- and marker-based systems), or iii) are too time consuming (like manual digitisation).

The ideal for swimming motion capture would be a markerless motion capture system that only

requires a few cameras. Such a system would automatically extract silhouettes and 2D joint

locations from the videos recorded by the cameras, and fit a generic 3D body model to these

constraints. The main challenge in developing such a system for swimming motion capture lies

in the development of algorithms for silhouette extraction and 2D pose detection (i.e., locali-

sation of joints in image coordinates), which need to perform well on images of swimmers—a

task that currently available algorithms fail. The aim of this PhD was the development of

such algorithms. Existing datasets do not contain images of swimmers, making it impossible

to train algorithms that would perform well in this domain. Therefore, during the PhD two

datasets of images of swimmers were constructed and hand-labelled: one, called Scylla, for

silhouette extraction (3,100 images); and one, called Charybdis, for 2D pose detection (8,000

images). Scylla and Charybdis are the first datasets developed specifically for training algo-

rithms to perform well on images of swimmers. Indeed, using these datasets, two algorithms

were developed during this PhD: FISHnet, for silhouette extraction; and POSEidon, for 2D

pose detection. The novelty of FISHnet (which outperformed state-of-the-art algorithms on

Scylla) lies in its ability to predict outputs at the same resolution as the inputs, allowing it

to reconstruct fine-grained silhouettes. The novelty of POSEidon lies in its unique structure,

which allows it to directly regress the x and y coordinates of joints without needing heatmaps.

POSEidon is almost as accurate as humans at locating the spinal joints of swimmers, which are

essential constraints onto which to fit 3D models. Using these two algorithms, researchers will,

in the future, be able to assemble a markerless motion capture system for swimming, which

will contribute to improving our understanding of swimming biomechanics, as well as providing

coaches a tool with which to monitor the technique of swimmers.
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adversarial learning In an adversarial learning scheme, a network (called a generator) learns
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nise the difference between real outputs and generated outputs. The training continues

until the generator can reliably ‘fool’ the discriminator. Then, the generator can be used

to produce new, realistic data. 17

architecture (referred to a neural network) The way in which the layers are arranged, in terms

of both the depth and the width of a neural network. 31

ASPP module A component of DeepLab, a state-of-the-art semantic segmentation algorithm.

It consists of parallel dilated convolutional layers with different dilation rates, and its func-

tion is to capture features at different resolutions. In FISHnet (the silhouette extraction

algorithm developed during this PhD), the ASPP module was re-purposed into the SRE

module. 42

batch normalisation A technique used to re-centre the weights of a neural network’s layer

by normalising them with respect to the mean standard deviation of the layer’s inputs.

109

bottleneck layer Technically a block and not a layer, it consists of the following layers: 1

x 1 convolution, n x n (typically n=3) convolution, 1 x 1 convolution. The purpose of

bottleneck layers is to reduce the number of filters (via the 1 x 1 convolutional layer)

before the computationally expensive 3 x 3 convolutional layer, and then restore the

number of filters via a second 1 x 1 convolutional layer. xix, 121

capacity (of a neural network) In theory, it indicates the complexity of the function that the

network can learn to approximate. In practice, it is often equated to the number of

xxii
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parameters of the network, and networks with more parameters are said to have more

capacity. 71

colour camouflaging A phenomenon that happens when an object and its background have

similar colours, making it difficult to distinguish the two and to identify their boundary.

xiii, 27

computer vision The field that studies how machines can gain a high-level understanding of

images and videos. 22

convolutional layers Layers of a neural network that apply small filters (usually 1 x 1, 3

x 3, or 5 x 5) to all parts of an image. Convolutional layers are more computationally

efficient than fully-connected layers and are indispensable for neural networks applied to

computer vision. 32

Convolutional Neural Networks (CNNs) A particular type of neural network which makes

use of (not necessarily only) convolutional layers. 27

cropping-resizing The process of cropping an image around the bounding box of the object

it features, and then re-sizing the cropped image to a desired resolution. 64

data augmentation The process of performing transformations on data to generate new

training examples. 69

data-generating process (in the context of training neural networks) The process that gen-

erated the labels that are fed to a neural network. For example, in the case of silhouette

extraction, the data-generating process is not the act of recording the images, but the act

of extracting the silhouettes from the images. 98

decoder A series of blocks of convolutional layers, each followed by an upsampling layer.

The purpose of decoders is to restore the spatial resolution of features that have been

condensed to low resolutions by an encoder. 31

Deep Learning Part of the broader field of machine learning, deep learning deals with neural

networks that are very deep (i.e. have many layers). 7
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depth (of a neural network) In neural networks, computational units are arranged in consec-

utive ‘layers’. The number of layers (or, sometimes, of blocks of layers) that are stacked

together defines the depth of the neural network. 113

Dice score A metric used to evaluate semantic segmentation algorithms; strongly related to

the Intersection over Union (IoU) metric. 106

dilated convolutional layers (also ‘atrous convolutional layers’) Convolutional layers in which

the filters are ‘dilated’ by adding zeros between the values of the filters. 32

dilation rate The number of zeros interposed between a dilated convolutional layer’s filters.

41
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criminative methods first extract the silhouette and/or 2D joints of a person from images

from one or more camera views, and then learn a direct 2D-to-3D mapping, without using

a pre-defined model. 14

encoder A series of blocks of convolutional layers, each followed by a pooling layer. The
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in semantic information. 31

encoder-decoder A type of neural network architecture in which an encoder first gradually
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output back to the original size of the input. 31

epochs The number of times a neural network sees the entire set of data on which it is trained.

122

fine-tuning (in the context of transfer learning) See ‘pre-trained’ and ‘transfer-learning’. 119

foreshortening (in art) The act of drawing or photographing objects or people to make them

(or parts of them) look smaller or larger than they are. 59

generative methods A category of image-based markerless motion capture systems, genera-

tive methods first extract the silhouette and/or 2D joints of a person from images from
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one or more camera views, and then iteratively fits a parametric model to these these

data points (which function as constraints). 13

GPU Graphics Processing Unit (i.e. a computer’s graphics card). GPUs allow operations to

be parallelised much more easily than on a CPU (i.e. a computer’s processor). Training

neural networks on GPUs (whose software was originally developed for video gaming) was

one of the factors most related to the recent success of deep learning, since deep models

are too big to be trained effectively on CPUs. 28

heatmaps (in the field of 2D pose detection) Given the 2D coordinates of a keypoint (i.e.

joint) in an image, a heatmap is an image in which a 2D Gaussian is centred on the

keypoint, and all other pixels are assigned values of zero. The resolution of a heatmap is

the same as (or slightly smaller than) the resolution of the original image. 67

in-the-wild images Images recorded outside of controlled laboratory settings (but not nec-

essarily outdoors). 15

IoU Intersection over Union: a metric used to evaluate semantic segmentation algorithms;

strongly related to the Dice score metric. 49

Keras with TensorFlow backend TensorFlow is a Python library for developing deep learn-

ing models. Keras is a Python library that acts as an interface to TensorFlow, to stream-

line some of the aspects of model development. Since Keras used to be an interface also

for Theano (another Python library for deep learning), it is customary to specify which

library was used ‘backend’ (i.e. behind) Keras’s interface for the development of a model.

122

keypoints (in the context of human motion capture) a synonym of ‘joints’ of the person being

recorded. 13

label (verb) The act of assigning a label to a piece of data. (noun) The value that neural

networks are expected to output for a given input. For example, if developing a neural

network to distinguish cats and dogs from pictures, we could assign a picture of a cat a

label of 1 and a picture of a dog a label of 0 (or vice versa). This would teach a neural

network to output 1 when it is given a picture of a cat as input, and 0 when the input is

a picture of a dog. 24
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layer (of a neural network) a number of computational ‘nodes’ (or neurons) that operate

together at a specific depth within a neural network. 31

loss function (of a neural network) The mathematical function that calculates the error be-

tween the network’s prediction for the current input and the expected output (i.e. the

labelled ground truth). 21

module (also ‘block’; of a neural network) A series of layers arranged in a particular way, so

as to impart to a section of a neural network a desired behaviour. 30

multi-scale (referred to the training of convolutional neural networks) An approach to training

neural networks for which the same input is shown to the network at multiple scales, to

allow the network to learn to distinguish features at multiple scales. 29

neural network Loosely based on biological neural networks, artificial neural networks are

computing systems that learn to extract patterns from data. 5

overfitting When a neural network performs better on the training set than on the test set,

it is said to ‘overfit’ (the training set). 30
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PCK Percent of Correct Keypoints: a metric used to evaluate 2D pose detection algorithms;

strongly related to the PCKh metric. 59

PCKh Percent of Correct Keypoints (head): a metric used to evaluate 2D pose detection

algorithms; strongly related to the PCK metric. 59

pooling layers Layers of a convolutional neural network that reduce the resolution of their

input. For example, max pooling layers are filters of size 2 x 2 that extract only the feature

with the highest value from every possible 2 x 2 patch of the input, thereby reducing the

resolution of the inputs by four times. 71
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SEB module A component in ExFuse, a state-of-the-art semantic segmentation algorithm.

Its function is to introduce more semantic content into the low-level features of ExFuse’s

encoder. In this thesis, a modified version of the SEB module is proposed. 120

semantic (as in semantic content/information) The features of a neural network are said to
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sum of multiple simpler parts’) information. For example, a layer that learns to recognise
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semantic content if they capture low-level (or ‘basic’) information. For example, a layer

that learns to detect edges in an image is said to have low semantic content. 31

semantic segmentation The task of performing silhouette extraction and assigning to the

extracted silhouette a label corresponding to the class of objects to which it belongs. 24
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object being reconstructed and to its outer surface. Therefore, the shape of a person could
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SRE module A component of FISHnet, the silhouette extraction algorithm developed during

this PhD. It is a modification of DeepLab’s ASPP module. 116

test data (also ‘test set’) Data used to test the performance of a model. These data are not
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when predicting outputs for test data. 58

to pad (referred to an image) To add pixels to one or both of its dimensions so that they

match a desired resolution. 105

training The process of feeding to a neural network inputs with corresponding labelled ground

truth outputs. The error between the network’s predicted output and the ground truth

outputs is calculated via the network’s loss function. The weights of the neural network’s

parameters are then modified to minimise the loss function. This process is repeated iter-

atively until the network’s parameters converge to values that minimise the loss function

for most of the inputs on which it was trained. 15

training data (also ‘training set’) Data used to train a neural network (see ‘training’). 15

transfer learning The act of pre-training a model on a large, generic dataset and then fine-

tuning it on a small, task-specific dataset. 29
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Chapter 1

Introduction

1.1 Problem Statement

The automatic extraction of kinematic data (e.g. joint angles and positions) in 3D from videos

of underwater swimmers is, with current methods for motion capture1, impractical at best,

and therefore such data are seldom extracted. However, such data, which when analysed over

a sequence of frames describe the movement patterns performed by the swimmer, would be

valuable for sports biomechanists and practitioners for three reasons. First, such data could

improve our theoretical understanding of swimming biomechanics, most of which currently

comes from 2D video analysis, which conveys incomplete or difficult to interpret information

about how the motion is performed. Being able to analyse in 3D the movements of swimmers

could improve our understanding of how differences in the technique (i.e. movement patterns)

of different swimmers relate to differences in their performance (i.e. race times); in other

words, it would enable researchers to define a more precise relationship between technique and

performance2. Second, 3D kinematic data could be used to compute kinetic parameters (joint

1The task of extracting the 3D joint angles and positions of a person executing a motor task is commonly
referred to as 3D motion capture.

2As emphasized by Lees [14], there is a clear—but often overlooked—distinction between technique and
performance: technique indicates how the movement is performed, while performance indicates a measurable
outcome of the athletic act. An example of technique, then, would be a baseball pitcher throwing the ball by
using a shoulder abduction angle more pronounced than average; an example of performance would be how fast
the ball was moving as it left the pitcher’s hand.

1



2 Chapter 1. Introduction

forces and moments) using complex algorithms, which, without strong prior constraints such

as a complete kinematic model as the starting point for the analysis, may be too complex to

be computed [15]. And third, it would give coaches a 3D visualisation tool that they could use

to evaluate the technique of their athletes after a race or during practice: The coaches, who

currently evaluate their athletes on the basis mainly of simple parameters such as stroke count

and frequency (thus evaluating performance, rather than technique), would be able to observe

the actual movement of their swimmers from different angles and identify flaws in technique.

Moreover, the coaches would be able to look at the 3D graphics generated and directly draw

conclusions based on their assumptions of what correct technique ought to look like, instead of

having to inspect the technical and difficult to parse graphs and tables which are the output of

most commercial motion capture systems.

The above considerations can be summarised in a single statement: having access to 3D

kinematic data would help improve the performance of elite swimmers — a task which, as the

gap between elite swimmers shrinks every year3, becomes more difficult. By definition, elite

athletes are at, or close to, their full genetic potential, and their diet and training regimens

are meticulously planned out and executed; so what margin is there to improve performance

even further? The theoretical answer is simple: either reduce drag4, or increase propulsion.

The practical answer is not obvious, since little is known about which 3D movement patterns

minimize drag or increase propulsion.

Having established that analysing 3D kinematic data is so valuable, it is legitimate to

wonder why such data, which have been available for decades for most other sports [16–19],

are currently not readily available for swimming. In reality, it is possible to obtain them, by

recording videos from synchronised cameras and, for each frame of each camera, clicking on the

points that correspond to the joint centres, the 3D coordinates of which are then reconstructed

using trigonometry (more on this in Section 2.2). This method, however, is prohibitively time

consuming, and as such it is seldom used by researchers, and even less frequently by coaches5.

3For example, in the 50 m freestyle final of the Rio 2016 Olympic Games the time difference between Gold
and Bronze was only 0.09 seconds, down from the 0.25 seconds that it was in the London 2012 Olympic Games.

4In this thesis, the word drag will be used to indicate the concept of active drag.
5A survey by Mooney et al. [20] revealed that, as of 2016, only 3.9% of the coaches in the USA swimming

program used 3D video-based systems daily, while 54.2% of them reported never having used such systems.
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Furthermore, as will be shown in Section 2.2, the motion capture systems (e.g. marker-based

systems like Vicon, sensor-based systems like Xsens, or depth-based systems like Microsoft’s

Kinect 1 and 2) used in the analysis of other sports for the automatic extraction of 3D joint

angles and positions are not well suited to swimming motion capture.

As will be discussed in Section 2.2, the ideal system for the motion capture of swimmers

would be a markerless system that consisted only of a few cameras, from whose recorded videos

two types of information would be extracted: the contour (also known as the silhouette) of

the swimmer, and the locations of the swimmer’s joints (referred to as 2D joints) in camera

coordinates. Then, the silhouettes and 2D joints would be fed to an algorithm capable of re-

constructing the 3D object (i.e. the swimmer) that generated those silhouettes and 2D joints.

For land-based applications, such systems (which can be broadly categorised as ‘image-based

markerless motion capture systems’) have been shown to be accurate enough for biomechanics

research [21, 22], but none of them have been successfully applied to swimming6. In this type

of system, the silhouettes and 2D joints need to be extracted automatically, or the system

would be as impractical as the ‘traditional’ systems for motion capture described in Section

2.2. However, the automatic extraction of silhouettes and 2D joints from images of underwater

swimmers is challenging and has not been achieved yet: algorithms that automatically extract

such information from images are susceptible to changes in lighting and background, and such

changes are frequent and abundant in footage of underwater swimmers. The presence of bub-

bles adds an additional layer of complexity, as they often occlude parts of the swimmer, making

it difficult to identify the boundary between the swimmer and the background, or the locations

of joints. As shown in Chapters 5 and 7, even state-of-the-art algorithms cannot accurately

extract silhouettes and 2D joints from images of underwater swimmers. Therefore, the first re-

quirement for the development of an efficient tool for the automatic, markerless motion capture

of swimmers is the development of algorithms that can accurately extract the silhouette and

2D joints of a swimmer from an image.

6Ceseracciu et al. were the only authors who attempted to use such a system for the motion capture of
swimmers, but they obtained unsatisfactory results [23].
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1.2 Aim and Objectives

The aim of this PhD was to develop two algorithms that would perform well on images of

underwater swimmers: one for silhouette extraction, and one for 2D pose detection (i.e. local-

isation of 2D joints in an image). Due to the complexity of the problem, the analysis focused

on two fundamental skills in competitive swimming: underwater7 butterfly kicking and the

breaststroke pull-out. Furthermore, the algorithms were designed to work on one frame at a

time, to reduce computational requirements8. To reach this aim, the following objectives were

set:

1. Review the literature on 3D motion capture systems, to ensure that a markerless system

based on silhouettes and 2D joints is the best candidate for swimming motion capture;

2. Develop a dataset (dataset A) of swimmer-silhouette image pairs, where the first image

would be an image of an underwater swimmer and the second would be a hand-traced

silhouette of the swimmer;

3. Use dataset A to develop and train a silhouette extraction algorithm, which would learn

to automatically segment the silhouettes9 of swimmers from previously unseen images;

4. Create a dataset (dataset B) for 2D pose detection: for each image, a list of the 2D

coordinates of each joint would be hand-labeled;

5. Use dataset B to train a pose detection algorithm, which would learn to automatically

detect the joints of swimmers from previously unseen images;

1.3 Outcomes of the PhD

This PhD had the following tangible outcomes:

7Choosing to analyse movements that happen entirely underwater simplifies the task considerably, since the
motion is only in one medium.

8Processing HD images using neural networks requires graphics cards with large memories. With the hard-
ware available during this PhD, it was not feasible to train models that learned to predict results for series of
frames. The potential benefits of such an approach are described in Section 8.1

9See the Glossary entry for ‘silhouette extraction’.
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1. A literature review that brings together topics from fields that are often treated in isola-

tion: motion capture systems, silhouette extraction, and 2D pose detection. For each of

these topics, the review provides not only a summary of the best current practices, but

also a critique of the less explored areas of research, potential pitfalls, sources of error,

and potential new solutions, contextualising the analysis in light of an application of these

techniques to swimming motion capture.

2. The first qualitative analysis on the effect of silhouette accuracy on the accuracy of a

visual hull.

3. A dataset (Scylla) of HD images of underwater swimmers with corresponding hand-drawn

2D silhouette annotations. The dataset comprises about 3,000 images taken by cameras

at multiple angles, at different times of the day, showcasing 14 different swimmers; the

2D silhouette annotations were manually traced in PhotoShop.

4. A neural network (FISHnet) for accurate silhouette extraction on images of underwater

swimmers. FISHnet outperforms state-of-the-art silhouette extraction algorithms on the

Scylla dataset.

5. A dataset (Charybdis) of HD images of underwater swimmers, where for each image the

2D joint coordinates were annotated. The dataset comprises about 8,000 images taken

by cameras at multiple angles, at different times of the day, showcasing twenty swimmers

in two pools; the 2D joint coordinates were manually annotated using a bespoke tool.

6. A neural network (POSEidon) capable of performing accurate 2D pose detection on im-

ages of underwater swimmers.

1.4 Publications

Ascenso, G., Yap, M.H., Allen, T.B., Choppin, S.S. and Payton, C., 2020. A review of silhouette

extraction algorithms for use within visual hull pipelines. Computer Methods in Biomechanics

and Biomedical Engineering: Imaging & Visualization, pp.1-22.
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Ascenso, G., Yap, M.H., Allen, T.B., Choppin, S.S. and Payton, C., 2020. FISHnet: Learning

to Segment the Silhouettes of Swimmers. IEEE Access, 8, pp.178311-178321.

1.5 Conference Talks

Ascenso, G., Yap, M.H., Allen, T.B., Choppin, S.S. and Payton, C., 2020. Non-invasive motion

capture of swimmers. 12th International Conference on Methods and Techniques in Behavioural

Research 2018, Manchester, UK, June 2018. — Prize for ‘Best Presentation’ in the

‘Sports’ category.



Chapter 2

Literature Review and Background

Theory

2.1 Structure of this Chapter

As this PhD project, which addresses gaps in sports biomechanics using Deep Learning meth-

ods, is inherently interdisciplinary, the literature review covers several fields of research. In

particular, it discusses the limitations of existing methods for 3D motion capture; the charac-

teristics of 3D markerless motion capture systems, explaining how these systems work and how

to adapt them for underwater capture; and the characteristics of the state-of-the-art algorithms

for silhouette extraction and 2D pose detection.

This chapter will begin by delineating three criteria by which the validity1 of a motion

capture system can be assessed. In light of these criteria, established methods for motion

capture will be briefly reviewed (Section 2.2.2). The purpose of Section 2.2.2 is to provide

enough information about these methods and their limitations to justify why they would be

poor candidates for swimming motion capture. Due to the extent of the literature on each of

these topics, it would be impracticable (and off topic) to review them thoroughly in this chapter.

1The term ‘validity’ here refers to how well suited a motion capture system would be for frequent use for
underwater swimming motion capture—as a tool to assist coaches in monitoring the technique improvements
of their swimmers, or to enable researchers to better study swimming biomechanics.

7
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Further details on them (as well as rigorous, quantitative justifications for why they were not

adopted for this PhD) are provided in Appendices A to D. Similarly, it would be impracticable

to provide in this chapter a full description of all the technical deep learning terms that will be

used throughout the thesis. Rather, these terms are explained in the Glossary at the beginning

of this thesis.

Section 2.3 discusses how image-based markerless motion capture systems meet the three

criteria presented in Section 2.2.1, and introduces the two types of image-based systems: dis-

criminative, and generative. As will be discussed, both types function by first extracting from

images the silhouette and/or the 2D joints of the person recorded. Consequently, the fields

of silhouette extraction and 2D pose detection will be reviewed next, in Sections 2.4 and 2.5.

Those two sections will include detailed discussions regarding the datasets on which the algo-

rithms from those fields are trained. Discussing datasets in such detail serves two purposes.

First, since in deep learning it is common to tailor the design of an algorithm around the char-

acteristics of the datasets on which it will be tested, understanding the characteristics of the

datasets helps understand the differences between algorithms and their strengths and weak-

nesses. Second, as will be discussed in Section 3.4, existing datasets could not be used to train

the algorithms developed during this PhD because none of those datasets feature images of

swimmers. Therefore, one of the main challenges (and achievements) of this PhD was the con-

struction of two novel, swimming-specific datasets: one for silhouette extraction, and another

for 2D pose detection. To appreciate the reason why new datasets had to be developed, and

to understand the rationale behind how they were constructed, it is important to be aware of

how the ‘standard’ datasets were constructed.

2.2 3D Motion Capture in Swimming

2.2.1 Criteria for 3D Swimming Motion Capture

We can define three criteria by which to judge the validity of a motion capture system:
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1. Criterion 1: Speed. This indicates both that the computation of the parameters

of interest should be quick, and that the set up for each recording session should take

minimal time and effort. If the purpose of performing 3D kinematic analyses is to inform

the coaches on the technique of their athletes and to monitor how said technique changes

over time as a response to interventions, it is vital that it be possible to perform these

analyses routinely. Ideally, the parameters of interest should be computed in real time2.

2. Criterion 2: Non-invasiveness. The movements being recorded should be represen-

tative of the movements performed during competition. To this end, the athletes being

recorded must not have their movement restricted or altered. A corollary of this criterion

is that the equipment used for motion capture must not increase the drag of the swimmer.

3. Criterion 3: Accuracy. To improve the performance of swimmers who are close to the

peak of their potential, or to detect subtle differences in the performance of different swim-

mers, a 3D motion capture system needs to be sufficiently accurate to measure variations

of the smallest meaningful magnitude. Accuracy can be defined as the reconstruction

error (in mm) of the position of the joint centres in space or as the reconstruction error

(in °) of the orientation of their axes of rotation. The threshold for ‘acceptable accuracy’

varies depending on the joint being analysed (intuitively, joints with lower range of motion

will be affected more severely by even small errors) and on the purpose of the analysis.

For example, to determine if a cricket bowler’s elbow exceeds the 15° of flexion allowed

by the International Cricket Council, the accuracy of a motion capture system must be

within 1-2° [24], but to estimate the angular velocity of knee extension of a football player

kicking a ball, which can be as high as 1715°/s, errors of up to 5° of knee flexion will not

influence greatly the results [25]. It seems more prudent, then, to set a threshold not

for the orientation errors of the axes of the joint centres, but for their position in space,

which is a parameter that affects all types of joints and analyses equally. In this sense,

some authors have suggested that the threshold should be set to 5 mm [26–28].

2A survey conducted in 2016 revealed that the main feature swimming coaches look for in a 3D motion capture
system is the ability to output results within a few hours of a recording session (or, preferably, immediately
after) [20].
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As discussed briefly in the following section and at length in Appendices A to D, no existing

method for motion capture is guaranteed to have error measures below 5 mm. Therefore,

whereas for the first two criteria a motion capture system can be said to either violate or

respect them, for the third criterion it is more appropriate to speak in relative terms—for

example, in terms of how accurate a system is compared to the most accurate system available.

Therefore, the ideal motion capture system for studying swimming biomechanics would need

to meet the first two criteria, while having higher accuracy than any other systems that meet

the first two criteria.

2.2.2 Consideration of Traditional Methods

Traditional methods for motion capture can be classified into four categories: marker-based

systems, sensor-based systems, manual digitisation, and depth-camera systems. The first three

violate either Criterion 1 (speed) or 2 (non-invasiveness), or both:

• Marker-based systems3 (also called ‘optoelectronic stereophotogrammetry systems’, or

OSSs) like Vicon (Oxford, UK) and Qualysis (Gothenburg, Sweden) are considered to be

the gold standard for human motion capture. Indeed, a common procedure to benchmark

a motion capture system is to compare it against an OSS [29–31]. OSSs consist of cameras

(typically 3-20) and spherical markers (which are automatically tracked by the cameras)

of variable dimension (3-25 mm) that are attached to the skin or clothes of a person,

on bony landmarks from whose position it is possible to reconstruct—using standard

formulas and anthropometric measurements—the position of the joint centres [32]. Even

though OSSs are the most accurate systems available, errors of up to 7-20 mm have been

reported for them, mainly because markers could be misplaced or could move relative

to the bony landmarks they are supposed to represent [33, 34]. For swimming motion

capture, cameras would either need to be waterproof or they would need to be placed

underwater in special waterproof housings, a task which takes about four hours for an

eight-camera system. Furthermore, if several markers need to be attached to a person

3More details on these systems are provided in Appendix A.
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in a way that will prevent them from detaching when the person is in motion, the setup

time may increase substantially. Therefore, marker-based systems might violate Criterion

1, depending on the number of cameras and markers required. Furthermore, spherical

markers increase the passive drag of the swimmer by almost 8%4, violating Criterion

3. An additional downside of marker-based systems is their cost: Oqus (produced by

Qualysis), the only available marker-based motion capture system for underwater use,

costs over £100,000.

• Sensor-based systems5 involve attaching inertial measurement units (IMUs) to a per-

son6. The electronic components of each IMU record (or transmit to a receiver) the

position and orientation in space of the IMU, and if enough IMUs are used, joint angles

and positions can be calculated. However, like the markers of marker-based systems,

IMUs can be misplaced or they can move while the person is in motion, and they increase

drag during swimming—by up to 23%7. Furthermore, the accuracy of IMUs degrades

over time, meaning they might need to be re-calibrated during long sessions [35,36]. The

main advantage of sensor-based systems over marker-based systems is that they only re-

quire sensors to be fitted to the athlete, rather than the setup and calibration of cameras.

Sensor-based systems, therefore, respect Criterion 1 but violate Criterion 2. The accuracy

of sensor-based systems is typically comparable to that of marker-based systems [37].

• Manual digitisation8 consists of a human operator (or a software, which often has to

be assisted by a human operator) digitising (i.e. clicking on) the joints of a person in an

image; in practice, tape markers attached to the skin of the person are digitised instead,

since they are easier to identify than bony landmarks. Manual digitisation is often used

to perform analyses of 2D kinematics, but if the cameras are calibrated and at least two

cameras see each joint in each frame, the 3D position of the point can be reconstructed

via stereophotogrammetry—which is the same working mechanism behind OSSs, with the

difference that OSSs require the presence of spherical markers. Therefore, manual digiti-

4This value is derived analytically in Appendix A.
5More details on these systems are provided in Appendix B.
6In some sensor-based systems, like Xsen’s MVN Link, the IMUs are embedded in a Lycra suit.
7This value is derived analytically in Appendix B.
8More details on these systems are provided in Appendix C.
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sation is a non-invasive technique, and respects Criterion 2. However, manual digitisation

severely violates Criterion 1: to manually digitise one trial of 200 m freestyle swimming

recorded by four cameras, it would take an experienced user about 27 hours [38].

• Depth-camera systems9 are the only ‘traditional’ motion capture systems that do not

violate either Criterion 1 or 2. Depth cameras (such as Microsoft’s Kinect 1 and 2, or

the PMD CamBoard pico flexx) are able to measure the depth—which is to say, the 3D

shape—of the objects in their field of view by emitting near-infrared light, recording its

reflection off objects, and measuring the depth of the objects based either on the time it

took for the light to come back to the camera, or on the amount of distortion with which

the light came back to the camera. Depth-camera systems do not require any markers or

sensors, and therefore they are inherently non-invasive. Furthermore, they output results

in real time (though these results often need to be post-processed to make them more

accurate). However, depth cameras are prone to errors: from the accuracy of the depth

sensors degrading over time due to overheating [13]; to ‘flying pixels’, which are erroneous

depth estimates that occur close to discontinuities in depth [13,39,40]; to distortions due

to ambient light [41]; to systematic errors (of up to 4 cm) for objects that are two or more

metres from the camera [13]. This last source of error in particular makes depth cameras

unsuitable for underwater use: since water has a higher absorbance than air, the light

emitted by the camera would be attenuated more than it would in air. This means that a

depth camera10 placed underwater would need to be within two metres of the swimmer,

making it impractical.

It can be concluded that the motion capture systems that are routinely employed for the

analysis of land-based sports are not well-suited to the motion capture of swimmers. In the fol-

lowing section, an alternative to these systems is discussed: image-based (as opposed to depth-

based) automatic markerless motion capture systems. Once again, the discussion will revolve

around the three criteria presented at the beginning of this chapter: speed, non-invasiveness,

9More details on these systems are provided in Appendix D.
10This conclusion applies to the Kinect 1 and 2, which are the two most commonly used depth cameras in

biomechanics. Whether they also extend to more modern devices, such as the Azure Kinect, remains unclear,
as these devices have not been tested yet for underwater motion capture.
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and accuracy.

2.3 Image-based Markerless Motion Capture

Humans do not need markers, inertial sensors, or a near-infrared projector to estimate the depth

of the points in an image: they can do it innately, just by looking at the image. Image-based

markerless motion capture systems try to accomplish the same feat: only using calibrated video

cameras, they are able to reconstruct the 3D coordinates of a given number of keypoints11 of

one or more objects [32]. These methods can be classified based on two criteria [32,42]: the type

of reconstruction algorithm they use, which leads to the distinction between discriminative (or

regression-based) and generative (or model-based) methods12; and the number of camera views

they use for each frame, which leads to the distinction between monocular methods (which

estimate 3D pose from one image) and multi-view methods (which use multiple images from

synchronised cameras). It is useful, at this point, to distinguish two key terms that will be

used throughout this thesis: shape, and pose. In the context of 3D markerless motion capture,

shape refers to the dimensions of the object being reconstructed and to its outer surface [21].

Therefore, the shape of a person could be described by their anthropometric measurements (i.e.

height, length and width of segments, etc.) and silhouette. Pose, on the other hand, refers to

the position in space of the centres of rotation of the person’s joints [21]. The term ‘3D pose

estimation’ is therefore equivalent to the terms ‘full-body 3D motion capture’ and ‘3D joints’.

Finally, it is important to acknowledge the fully-operational commercial systems for image-

based markerless motion capture; for example, Openstage 2 (Organic Motion, NY), DARI

(Motion Platform, version 3.2-Denali from Scientific Analytics Inc., Kansas City, KS, USA),

and SIMI Shape (SIMI Reality Motion Systems, Unterschleißheim, Germany). Because these

systems usually come with many cameras (16 for Openstage 2 [43], 18 for DARI [44]) which

11In the context of human motion capture, ‘keypoints’ is synonym to ‘joints’.
12The terms ‘discriminative’ and ‘generative’ are explained in the next sections. In short: discriminative

methods extract some information (i.e. silhouettes and/or 2D joints) from an image and use it to directly
estimate the 3D pose of the person; generative methods first extract information from images, and then deform
an articulated, generic 3D model to match it [32].
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would be impractical to set up in a swimming pool, and because these systems have not been

validated sufficiently, they will not be reviewed here.

2.3.1 Discriminative Methods

Discriminative methods learn a direct 2D-to-3D mapping: they take one (or more) image(s) of

an object as input, and they apply to this input transformations that allows them to estimate

the 3D shape and pose of the object. Because a direct mapping of this kind is hard to learn,

discriminative methods first transform the input image into ‘intermediate’ inputs (meaning

they extract some kind of information from the images) and then use the intermediate inputs

to estimate the 3D pose of the person. There are two kinds of intermediate inputs that modern

discriminative methods typically extract from images: the silhouette (or contour) of the person,

which needs to be segmented (or ‘separated’) from the background [32]; and the 2D pose of the

person (i.e. the locations of the joint centres in image coordinates), which is either estimated by

the method itself or given as ground truth by the dataset (as is the case with the Human3.6M

dataset) [32]. Arnab et al. [45], the authors of a recent discriminative method, have argued that

2D pose is sufficient an input for 3D pose estimation. However, they base this statement on the

findings of Kanazawa et al. [46], who two years before had provided evidence that generative

methods (described in the next section) do not strictly require the use of silhouettes. For Arnab

et al. to extend the same conclusions to discriminative methods may be inappropriate, since

the transformations learned by discriminative and generative methods are, as we shall see, quite

different. Indeed, Huang et al. [47] found that adding silhouettes to 2D joints as the inputs to

their discriminative method increased its accuracy, on average across all joints, by 7.7 mm [47].

Nevertheless, silhouettes are sometimes difficult to obtain. The data of both HumanEva-II and

Human3.6M, the two most popular datasets on which discriminative algorithms are trained and

tested, were collected in highly controlled laboratories, with white walls for backgrounds [48,49].

Under such ideal conditions, where the background is monochromatic, static, and uniformly

lit, extracting the silhouette of an object that contrasts with the background is a trivial task:

a picture of the background is captured before the subject is against it, and this reference
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image is subtracted from the image with the subject present; the only pixels that will have

changed will be the ones that correspond to the person, which is thus segmented13. In-the-wild

images do not tend to have stable backgrounds, which means their reference frame would often

be corrupted by the presence of dynamic background objects (the waving grass in a field, or

the turbulent water of a swimming pool); shadows that appear once the person enters the

scene; or sporadic or gradual changes in lighting. It is because silhouette extraction is so

difficult to perform for in-the-wild images that some authors, like Arnab et al. [45], choose not

to use silhouettes as inputs to their discriminative 3D reconstruction methods. Although the

Human3.6M dataset provides ground truth silhouettes, those authors argue that if silhouettes

are used for training, they should always be labelled for the method to work [45,50]. One of the

key contributions of this thesis, discussed in Chapter 5, is the development of a novel silhouette

extraction algorithm that should enable future researchers to use silhouettes in their pipelines

without being concerned about the difficulty of obtaining them.

Discriminative methods, once considered less accurate than generative ones [32], now achieve

state-of-the-art results on both HumanEva-II and Human3.6M. They are also faster than gener-

ative methods (as explained in Section 2.3.2) and more robust against occlusions [32]. However,

a major downside of discriminative methods is that they require a lot of training data. This

problem was one of the main concerns of the authors of the Human3.6M dataset [49], who

set out to build the largest, most varied dataset in the field of 3D pose estimation. And in-

deed, Human3.6M, with its 3.6 million images, is large enough to make it difficult even for

the most advanced methods to achieve high performance on the test set. But large as it may

be, Human3.6M is still representative more of ideal conditions than of realistic ones, and some

authors [1,2,51] wishing to develop methods for in-the-wild 3D reconstruction have elected not

to use the training data provided by Human3.6M, and instead to use only its test data, as a

validation tool for their algorithms. These authors argue that using Human3.6M for training

would mean having access to ground truth 3D pose data, which cannot realistically be obtained

13The algorithm just described is known as basic background subtraction, and it will be discussed in more
detail in Section 2.4.1.1



16 Chapter 2. Literature Review and Background Theory

for in-the-wild images14. A paradox seems to have emerged: discriminative methods require

large amounts of data to be trained, but if they are to generalise well to in-the-wild images,

they cannot use the large datasets that are available15. Where is the training data to be found,

then, if 3D pose data for in-the-wild images cannot be assumed to be available? A solution to

this seeming paradox was proposed by Drover et al. [1]. Their method, schematised in Figure

2.1, feeds 2D pose data to a neural network (which they call a ‘generator’16) that estimates the

depth of the joint centres, thus estimating 3D pose. The estimated 3D pose is then rotated by

Figure 2.1: Sketch of the approach proposed by Drover et al. [1] (Image adapted from [1])

a random angle, and projected onto a new, random image. What this process achieves is to

generate a new image (as if an additional camera had been used) and to project onto it a new

set of 2D joint positions. The projected 2D joint positions are then evaluated by a second neural

network (which Drover et al. call a ‘discriminator’17), which has access to a database of real 2D

pose data, and which therefore can tell if the projected 2D pose data fall within the distribution

of valid 2D poses (i.e. if they look realistic). If the projected 2D pose looks dissimilar to known

2D pose data, it must mean that the 3D object that produced it was not a realistic 3D object.

14This argument is similar to the one raised by Arnab et al. [45] regarding the use of silhouettes as inputs for
discriminative methods. The difference is that it is always possible (albeit slow to the point of being impractical)
to label silhouettes by hand, but to obtain ground-truth 3D data special equipment (which would likely cost
over £100,000) is required.

15Though some authors have expressed concerns relative to the use of laboratory-built datasets, many others
continue using HumanEva-II and Human3.6M for training [52–60], and some even augment them with syntehtic
data [61], which is likely to lower the generalisability of the method even further [50].

16In deep learning, the term ‘generator’ usually refers to a component of Generative Adversarial Networks
(GANs), which are slightly different from the network developed by Drover et al.: whereas the generator of
Drover et al.’s model receives 2D pose as inputs, the generators of GANs usually receive as input random noise,
out of which they are asked to extract meaningful information.

17The discriminator of Drover et al.’s model functions almost exactly like the generator of a GAN.
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Figure 2.2: Sketch of the approach proposed by Chen et al. [2] (Image adapted from [2])

Finally, this information is used to adjust the first network (the generator) so that at its next

iteration it produces more realistic 3D data. This adversarial learning scheme allows Drover et

al. to skip altogether the use of 3D ground truths, instead relying entirely on 2D pose data.

Chen et al. improved this idea by adding two new steps, schematised in Figure 2.2. Like in

Drover et al.’s method, Chen et al. first estimate the depth of the input 2D data using a neural

network (which they call the ‘lifting network’18). The resulting 3D object is then randomly

rotated and projected onto a new image frame, and the 2D pose data on the new image frame

is fed to a discriminator network (which they call ‘2D pose estimator’19); this produces the first

loss term that will be used to update the generator. At the same time, the projected 2D data

are fed also to the generator, which thus generates a new 3D object. This new 3D object is

compared to the original 3D object from the generated by the generator and then rotated, and

their difference constitutes the second loss term for the update of the generator. Finally, the

newly generated 3D object is subjected to the inverse of the rotation to which the original 3D

object was subjected. If all the components of the algorithm worked perfectly, this should give

back the original 3D object. If this was the case, then if this 3D object was projected back onto

the original image frame, the two sets of 2D pose data (one from the ground truth, and one

18This network is essentially identical to Drover et al.’s generator network; to make it easier to compare the
two methods, it will be called ‘generator’ here.

19This network is essentially identical to Drover et al.’s discriminator network; to make it easier to compare
the two methods, it will be called ‘discriminator’ here.



18 Chapter 2. Literature Review and Background Theory

from the final re-projection) should overlap perfectly. If they do not, their difference is used as

a third loss term for the generator. Chen et al.’s method, though more refined and advanced,

is not as accurate as Drover et al.’s method, which to date is the method with the highest

accuracy on Human3.6M (Drover et al.: 34.2 mm error per joint [1]; Chen et al.: 51 mm error

per joint [2]). It is unlikely that this is due to Drover et al.’s method being superior in theory.

Rather, it is likely that Drover et al.’s method used more advanced components, which, had

been arranged as in Chen et al.’s method, would have achieved accuracy even higher than 34.2

mm.

2.3.2 Generative Methods

Unlike discriminative methods, generative methods do not learn a direct 2D-to-3D mapping.

Instead, they reconstruct 3D objects by using parametric models. Parametric models [62–65]

are collections of thousands of 3D laser-scanned models (which include both shape and pose)

of people. Each model is condensed into a few parameters (hence the term ‘parametric model’)

using data reduction techniques like Principal Component Analysis (PCA) [66]. This way, to

a certain set of parameters corresponds a unique 3D model20: some of the parameters define

its shape, some its pose. Whereas discriminative methods learn to predict the exact 3D object

from which the input image(s) came, generative methods learn to predict the set of parameters

that will generate the model that would best match the input image(s). There are two ways

to check if a generated model matches an image. The simplest way [21] is to project the 3D

model back onto the image plane and then measure the overlap between its projection and

the original silhouette and/or 2D pose21. This approach is usually chosen if the object to be

reconstructed has a complex shape (like a human being’s), and if the method is monocular

(i.e. it only considers one camera view at a time) [67, 68]. If the algorithm is multi-view

(i.e. multiple cameras are used simultaneously), or if the shape to be reconstructed is simple,

20A clarification of terms is warranted here: the term parametric model refers to a collection of several
thousands of different 3D laser-scanned models. Therefore, if a set of parameters is specified the corresponding
3D model from within the parametric model can be identified.

21This approach is similar to one of the steps in Dover et al.’s pipeline (described in the previous section), with
two major differences: 1) the 3D model generated is confined to be one of several thousand available models;
2) the shape of the person is also reconstructed, whereas discriminative models typically only reconstruct pose.
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there is another approach to check if the generated model matches the image data [22, 69]. It

relies on the computation of what is known as the visual hull22 [70]. The visual hull of an

object is an approximation of its volume, and it is obtained by using the object’s silhouettes

extracted from multiple camera views; the more cameras are used, the better the visual hull

will approximate the true volume of the object (but in most real scenarios, the visual hull will

over-approximate the volume of the object). If the visual hull of an object can be reconstructed,

a parametric model can then be fit to it by iteratively23 changing the position of the model’s

joints to maximise the overlap between the model’s 3D shape and that of the visual hull [22].

Since the algorithm to reconstruct an object’s visual hull is relatively simple, it is the type

of image-based method that has been used the most in sports biomechanics—for example, to

study the tennis serve [71], [72], to perform gait analysis [69], to analyse the movement pattern

of gymnasts [22], and by Ceseracciu et al. to measure arm movements during front crawl

swimming [23]. However, for reasons that will be discussed in Chapter 3, Ceseracciu et al.

obtained unsatisfactory results.

Fitting a parametric model to intermediate inputs (or ‘constraints’, i.e. silhouettes and/or

2D pose) is susceptible to local minima. If the model is projected onto the image plane, there

could be multiple 3D poses that would be consistent with the same silhouette [73]. It is logical to

assume, however, that the probability of convergence on an erroneous local minimum decreases

as the number of cameras increases. Likewise, a visual hull reconstructed with more silhouettes

is a closer approximation of the object’s true volume, and thus there will be fewer local minima

for the 3D model to ‘find’ inside the visual hull; in other words, it is more likely that the 3D

model will reach the global minimum.

An aspect that is not discussed in the literature is how the type of parametric model used

affects the accuracy of a generative method, in spite of the fact that there is good evidence to

show that some parametric models are more accurate than others [63]. Logic dictates that the

more 3D models were used to construct a parametric model, the more generalisable it will be.

Therefore, the SMPL model [64], which comprises almost 4,000 3D models, should be superior

22Since the visual hull constituted a large part of this PhD project, a separate section (Section 3) has been
dedicated to it; more details on this method can be found there.

23The iteration algorithm most commonly used is the Iterative Closest Point algorithm.
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to the SCAPE model [65], which was built using the shapes of 37 people and the poses of a

single person positioned in 60 different ways. This assumption seems to be corroborated by

the fact that the SCAPE model (published in 2005) has been replaced almost ubiquitously by

the SMPL model (published in 2015) in recent studies [46, 47, 55, 74, 75]. More recent and less

well-known than SMPL, the Adam model [63] seems to be quite promising, since its authors

claim that it is 2.95% more accurate than SMPL. This may be because Adam uses a more

sophisticated technique to model hands and faces [63], thus resulting in a better approximation

of the shape of the people it models. However, more accurate hands and faces are not a concern

for markerless motion capture, and therefore, from the point of view of this specific application,

SMPL and Adam may be equally viable.

There is a subset of generative methods that foregoes parametric models entirely. These

methods use a laser-scanned 3D model (which only contains shape information) of the person

who is the subject of the study, rig the model with a 3D skeleton (which gives pose informa-

tion) and fit the 3D model to the silhouettes/visual hull [22, 62, 76] extracted from images of

the person, recorded by multiple cameras: by deforming the 3D model to match the visual

hull/silhouettes, the pose (which is defined by the skeleton rigged to the 3D shape model)

is also optimised. These methods create subject-specific models and may therefore be more

accurate24; furthermore, they do not require any learning, since they do not need to predict

the parameters of a parametric model. These methods have two major drawbacks, though.

First, before each motion capture session with a new participant a laser-scanned 3D model

of that person is required. Second, whereas the 3D models generated by a parametric model

learn pose and shape together, if a laser-scanned 3D model is used, a 3D skeleton needs to

be designed by hand and then rigged to the 3D model by following hand-designed rules. For

example, Corazza et al. [62] fixed a 14-joint skeleton to person-specific laser-scanned models by

taking the anthropometric measurements of each participant and using them to locate the joint

centres according to the guidelines specified by Andriacchi et al. [77]; the joint centres were

then anchored to the surface pixels in their immediate vicinity, so that if the shape of the 3D

model were deformed to match a visual hull/silhouette, the joint centres would stay in the same

24Though this has not been investigated in the literature, it is reasonable to assume that a person-specific
model would have better shape than a generic 3D model learned statistically by a parametric model.
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position relative to the body segments of the model. Using a parametric model removes the

need to design a 3D skeleton and attach it to the laser-scanned 3D shape, and may therefore

be a more convenient choice, especially given the lack of evidence that subject-specific models

are more accurate than parametric ones.

Regardless of what type of model (parametric or subject-specific) and what type of inter-

mediate inputs (silhouettes and/or 2D pose) are used, once the overlap between model and

intermediate inputs has been measured, the model is re-parameterised to make it consistent

with the intermediate inputs; in mathematical terms, an optimisation algorithm attempts to

find the configuration of the model that will give a loss function between the model and the

intermediate inputs that is below a given threshold. The most commonly used optimisation

algorithm for this task is the Iterative Closest Point (ICP) algorithm [22].

This section has led to the following conclusions:

• Intuitively, subject-specific generative methods should be the most accurate. However,

there is a lack of evidence for this being the case. Furthermore, the requirement for an

easily accessible laser-scanner and for a hand-designed 3D skeleton may make methods

that rely on subject-specific models impractical.

• In the absence of a laser-scanner, generative methods that use parametric models have

proved to be quite accurate, but only if multiple camera views are available.

• Discriminative methods are currently the most accurate markerless 3D pose reconstruc-

tion methods, but most of them are trained on 3D ground truth data that cannot be

considered to be accurate or generalisable.

• Regardless of what method is used, it seems that silhouettes are the features that are

most commonly extracted from images in order to perform markerless motion capture.

However, it is difficult (sometimes prohibitively so) to extract silhouettes from in-the-wild

images.

• Using a combination of 2D pose and silhouettes as intermediate inputs for generative

models seems to lead to better accuracy.
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Given that silhouettes and 2D pose seem to be so important for markerless motion capture and

that they are so difficult to extract, the next sections are dedicated to a thorough review of the

best silhouette extraction and 2D pose detection algorithms available in the literature.

According to the No Free Lunch (NFL) theorem [78], all machine learning algorithms

perform equally poorly when averaged over all possible cost functions. In other words, there

does not exist a learning algorithm that can learn to solve all possible tasks better than by

guessing at random. The NFL theorem implies that learning algorithms must be designed to

solve one specific task, and trained on data specific to that task. The more we deviate an

algorithm’s design or the training data from the domain in which the algorithm is intended to

operate, the less accurate we should expect the algorithm to be. For example, an algorithm

trained to recognise types of birds from images would not be able to recognise types of elephants

unless it was also trained on images of elephants25.

For the purposes of this PhD, the NFL theorem implies that the algorithms described in

Sections 2.4 and 2.5 could not be used off-the-shelf, because none of them were trained on im-

ages of swimmers. Figure 2.3 shows an example of this: even DeepLab v3+, the most advanced

algorithm for silhouette extraction available to date, performs poorly on images of swimmers.

Furthermore, we should expect that algorithms designed for general-purpose silhouette extrac-

tion and 2D pose detection would have design choices that make them sub-optimal for use on

images of underwater swimmers. For example, most off-the-shelf computer vision algorithms

operate on small RGB images (typically 256 x 256 pixels), while the cameras available for this

PhD were greyscale cameras with a resolution of 2048 x 900 pixels. Therefore, given that the

goal of this PhD was to lay the foundations for an image-based markerless system for under-

water swimming motion capture, it was likely easier to develop new algorithms for 2D pose

detection and silhouette extraction than it was to adapt existing ones to this specific domain.

Therefore, the purpose of reviewing algorithms for silhouette extraction and 2D pose detection

in Sections 2.4 and 2.5 is not just to provide a background on these topics, but also to gain

insights into how to develop new such algorithms in a way that would be appropriate for the

25We can, however, train a model for a given task by giving it examples from that domain, and then re-train
the same model for a (slightly) different task by giving it examples from the new domain; this practice is called
transfer-learning and is a highly active area of research [79–84].
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Figure 2.3: DeepLab v3+ is the most sophisticated algorithm for silhouette extraction available to
date. However, even it does not perform well on images that come from a domain on which it was not
trained—for examples, on images of underwater swimmers. (Image created by the author)

intended application.

2.4 Silhouette Extraction

(Sections 2.4.1 and 2.4.2 were published in revised form in the following Computer Methods in

Biomechanics and Biomedical Engineering: Imaging & Visualization paper: [85].)

The computer vision literature offers hundreds of algorithms that enable the automatic

extraction of accurate silhouettes. These algorithms can be grouped into three categories:
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background subtraction, semantic segmentation, and multi-view segmentation. Multi-view seg-

mentation algorithms will not be reviewed here, since they are a niche field that has never been

used to obtain silhouettes for markerless motion capture systems. However, the state-of-the-art

on multi-view segmentation algorithms was reviewed in one of the papers published during this

PhD: [85].

Each category of algorithms has specific datasets used to test the algorithms and metrics

used to evaluate their performance. In other words, algorithms that belong to different cat-

egories are tested on different datasets, with different metrics. This is because each category

of algorithms is typically devoted to a specific task for which specialised datasets have been

developed and for which the evaluation criteria are task-specific. For example, background sub-

traction algorithms are often used for surveillance-camera applications [86–88], while semantic

segmentation algorithms not only detect the silhouette of the object in the image, but also

label it as belonging to one of several possible classes (car, human, cat, dog, etc.) [89]. For the

purposes of image-based markerless motion capture, any algorithm that extracts an accurate

two-dimensional silhouette from an image would be applicable [70]. Nevertheless, the diversity

of datasets and metrics used to evaluate methods that belong to different categories makes it

difficult to identify the optimal method for the task at hand. Therefore, the main goal of this

section is to clarify which silhouette extraction algorithms would be most suited for use within

an image-based markerless motion capture system.

Within each category of silhouette extraction methods there are hundreds of algorithms.

A detailed analysis of all of them would be prohibitively long and is therefore beyond the

scope of this section. Instead, what this section endeavours to do is to give an outline of

each category of algorithms in terms of what their intended application is, what the most

popular and best-performing methods within the category are, what datasets they are tested

on, and what metrics are used to evaluate their performance. The choice to limit the analysis

to a select few algorithms is reinforced by the fact that modern silhouette extraction methods

significantly outperform traditional ones under all metrics, as discussed later. Consequently,

only the algorithms that achieve the best results on the datasets of their respective category

will be discussed here. Review papers whose scope is limited to listing and discussing all the
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algorithms, old and new, present within an individual category of algorithms already exist; for

more details on a particular category, the reader is invited to refer to the corresponding reviews,

which will be highlighted throughout this section.

2.4.1 Background Subtraction

2.4.1.1 Overview

Background subtraction algorithms seek to separate the moving objects (the foreground) present

in an image from the static parts of an image (the background) [90,91]. Their main application

is within intelligent video surveillance tasks like the automatic tracking of objects within a

scene or their recognition (i.e. assigning them a class label), both of which are typically applied

to videos recorded from surveillance cameras placed on roads [92], at airports [93], or within

buildings [86, 87, 94]. Background subtraction algorithms are developed to meet the specific

challenges of this field of computer vision, such as gradual changes in the intensity of the light-

ing of the scene, insertion in the scene of new background objects (a man carries a bag and then

leaves it on the floor: should the bag be treated as background or as foreground?), and dynamic

background objects such as waving trees or water rippling in a lake [90, 95]. Furthermore, the

algorithms need to be able to model any generic object, the shape and size of which may vary

considerably: from an airplane, to a person, to a bike, to a cat. Also, because background

subtraction is typically only the first step within a complex computer vision pipeline (like that

of an image-based markerless motion capture system), its computation should happen in real

time or close to it, meaning that researchers often have to balance a trade-off between speed

of execution and accuracy [90]. If a background subtraction algorithm is to be used within a

markerless motion capture system, the object it needs to segment is not generic: all humans

have similar shapes and sizes, and using this a priori knowledge would allow a simpler model

for the background to be used [96]; this, in turn, would speed up the training and inference of

the algorithm.

The most basic way to perform background subtraction is to take a reference image in which



26 Chapter 2. Literature Review and Background Theory

the object of interest does not appear and subtract its pixel values from the pixel values of the

image from which the silhouette is to be extracted. If the difference in intensity between the

pixels of the two images is greater than an arbitrary threshold fixed a priori, the pixel is labelled

as foreground; otherwise, it is labelled as background26. Under strictly controlled laboratory

conditions where the background is completely stable, the assumption of being able to obtain

a clean reference frame unobstructed from the object of interest is easily met. In real-life

conditions, however, the reference frame may not be obtainable, or it may be corrupted by the

presence of dynamic objects in the background (e.g. trees or moving water) or by the presence

of shadows that appear once the object of interest is inserted in the scene. Furthermore, if the

object and the background have similar colours (a phenomenon known as colour camouflaging),

basic background detection will fail completely or, at best, cause numerous false negatives [90].

For these reasons, and as shown in Fig. 2.4, basic background subtraction is not adequate for

use within markerless motion capture systems, in which variations of the background are, if

not expected, at the very least probable.

26Throughout this thesis, this technique will be referred to as ‘basic background subtraction’.
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Figure 2.4: A) background initialisation frame; B) foreground object inserted into the scene; C) result
of basic background subtraction. The amount of noise present in the output due to the dynamic back-
ground and the appearance of a shadow, coupled with false negatives caused by colour camouflaging,
would translate into a noisy, inaccurate 2D-to-3D pipeline. (Image created by the author)

2.4.1.2 State of The Art

Traditional background subtraction algorithms define and update complex background mod-

els, and then classify pixels by using hand-crafted features and simple equations. Conversely,

algorithms based on deep learning do not define nor update a background model, and instead

allow the network to learn its own parameters by feeding it several labelled examples of back-

ground/foreground pixels. In other words, methods based on deep learning do not compare

each pixel to a background model designed by hand: they learn to classify pixels based on

examples of previously classified pixels they have seen.

A particular type of deep-learning-based algorithm, Convolutional Neural Networks (CNNs)

excel at tasks in computer vision [97–99], in part because they are translation invariant, which
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means that objects in new examples are recognised even if they appear in a different loca-

tion than in past examples [100]; this is an important feature when dealing with dynamic

backgrounds and moving objects [100]. Furthermore, the convolution operation can be easily

parallelised on a GPU, making it quick to train CNNs [100]. The following sections present

the most accurate CNN-based background subtraction algorithms described in the literature.

The intent of these sections is not to include every CNN-based background subtraction algo-

rithm in existence, but rather to highlight the top-performing ones that could be used in a

state-of-the-art 2D-to-3D pipeline. The accuracy of each algorithm is discussed in detail in

Section 2.4.1.3.

Cascade MSCNN The Cascade Multi-Scale Convolutional Neural Network algorithm, de-

veloped by Wang et al. [100], is scene-specific, meaning that the network has to be re-trained

for each video being analysed. Although this training strategy makes it cumbersome to run

Cascade MSCNN on multiple new videos, it enables the algorithm to exploit the high redun-

dancy present in frames that come from the same video, thus reducing the number of training

examples required: whereas image classification networks are shown tens of thousands of images

during training, Cascade MSCNN only requires about 200. The N = 200 training examples

are selected at random from the video and they are manually labelled by an experienced user,

who labels each pixel as either foreground or background.

Figure 2.5: Cascaded structure of Cascade MSCNN. (Image created by the author)

CNNs were built specifically as a tool for image classification. To adapt them for background

subtraction, the intent of which is to label each pixel within an image, many authors use small
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patches (around 30x30 pixels) centred around the pixel to be classified, which are extracted from

the image and fed to the CNN for classification. The CNN gives a label to the entire patch,

and that label is attributed to the pixel in the centre of the patch [101]. This patch-based

approach allows very fine-grained accuracy, but it misses global information that is important

to segment large objects [102]. Imagine that a large cat (appearing on the image with size

300x300 pixels, for example) were to be segmented from the background. A 30x30-pixels patch

at the centre of the cat would not be enough to tell whether those pixels belonged to the

cat or not, because context and a point of reference are absent (all pixels in the patch would

have similar colour properties). To address this issue, the Cascade MSCNN algorithm adopts

a multi-scale approach: it resizes the original image twice, and these 3 images (size = 1,

size = 0.75, and size = 0.5 of the original) are fed to the network separately, thus obtaining 3

separate predictions which are later averaged to produce a single output.

Because CNNs process each pixel independently, they often produce isolated false positives

and false negatives [100]. To address this issue, the authors of Cascade MSCNN implemented

a cascaded CNN model (illustrated in Fig. 2.5): the first part of the network, CNN-1, makes

an initial prediction which is then fed, along with the original input image, to the second

part of the network, CNN-2. This cascaded approach ensures that the predicted foreground

mask is locally consistent (in other words, the number of isolated false positives and false

negatives is reduced) without using post-processing tools like conditional random fields (CRF),

which several authors have used in the past [103,104] but which slow down training due to its

computational complexity [100]. Because both CNN-1 and CNN-2 have millions of parameters

to train but only 200 images for training, they were pre-trained on a generic dataset [105] for

transfer learning purposes. Then, during training, the weights of CNN-1 were fixed, and only

the weights of CNN-2 were allowed to learn.

3D-Net 3D-Net [49] was designed to incorporate into the evaluation of an image the infor-

mation shared with temporally adjacent frames. During training, the network is shown the

frame being analysed as well as the nine frames preceding it27. The temporal information

27Only the ground truth for the frame being analysed is provided to the network during training.
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present in this sequence of consecutive frames is progressively encoded into denser and denser

3D convolutional modules (2D for space, 1D for time; see Fig. 2.6), until a prediction is made

at the end of the last convolutional module. The redundancy present in temporally adjacent

frames is leveraged to intentionally introduce bias into the system, much like Cascade MSCNN

sought to exploit the redundancy present in multiple frames that came from the same video.

Because 3D-Net is trained on the entire dataset being analysed, the overfitting effect of the

bias introduced into the system is alleviated, and the network can generalise to new videos

without requiring further training. The concept of incorporating temporal information in the

pixel classification task of a neural network is similar to the idea of updating the background

in traditional algorithms. In this sense, 3D-net is the only deep-learning algorithm that was

explicitly designed to adapt to changes in the background. However, videos recorded with a

low frequency represent an issue for 3D-net, because if the latency between consecutive frames

is too large, the assumption of temporal contiguity between frames, on which the model is

based, does not hold. Noticeably, the authors of 3D-Net do not mention any pre-training or

weight initialisation strategies, which are universally recognised as powerful tools to boost the

accuracy of CNNs [97,106–109].

Figure 2.6: Architecture of 3D-Net. Ten consecutive frames are used for the prediction of just the
last one of them. CRP-1 to CRP-3 are 3D convolutional modules, whereas CRP-4 and CR and 2D
convolutional modules. The kernel size of each upsampling layer (US-1, US-2, US-3, US-4) is different,
granting the network multi-scale spatial resolution. (Image adapted from [49])
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BScGAN BScGAN (Background Subtraction conditional Generative Adversarial Network)

was the first conditional Generative Adversarial Network (cGAN) [110] developed for back-

ground subtraction. A cGAN consists of two connected networks, called generator and dis-

criminator. The generator learns to produce an output given an input modified by random

noise28. The output of the generator is then fed to the discriminator, which has access to a

database of real examples, to which it compares the output of the generator to determine how

realistic it is. In other words, the challenge of the generator is to produce an output that is

as different from random noise and as close to a realistic output as possible; the challenge of

the discriminator is to determine if the output of the generator is fake or real. In the case of

BScGAN, the real input shown to the generator during training consists of two images: one

with the foreground object present, one with the foreground object absent (i.e. true background

image). The real output shown to the discriminator is a hand-labelled mask of the object in the

real input image. During testing, only the generator part of the network is active; therefore, the

processing time of BScGAN is faster than that of Cascade MSCNN, since fewer components

are active in BScGAN than are active in Cascade MSCNN. The processing time of BScGAN is

further reduced by using entire images for testing instead of dividing them into patches.

Internally, the generator of BScGAN has an encoder-decoder29 structure where both mod-

ules have the same architecture (based on U-net30 [111]) but reversed layer ordering. The

internal architecture of the discriminator of BScGAN is a simple series of four convolutional

and four downsampling layers.

FgSegNet In 2018, Lim and Keles published three papers on three different iterations of their

background subtraction algorithm, FgSegNet [102,112,113]; to date, these 3 algorithms occupy

28The distinction between a GAN and a cGAN is that the generator in a GAN is only shown random noise
during the first stages of training, whereas the generator of a cGan is trained by using the random noise to
modify a real input example.

29In an encoder-decoder network, the encoder module gradually reduces the spatial dimension and captures
higher semantic information, while the decoder module gradually recovers the spatial information and brings the
output back to the original size of the input. This kind of network is explained in more detail in Section 2.4.2.2.

30U-Net (see Figure 5.2) was designed as a biomedical image segmentation algorithm, and is an example of
an encoder-decoder network (see Glossary). The name U-Net derives from the fact that its decoder has the
same number and size of convolutional layers as its encoder, and thus the two blocks are symmetric, forming a
U-like shape: first the encoder progressively lowers the resolution of the input, then the decoder progressively
restores it.
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the top three positions of the leaderboard of the ChangeDetection.net dataset described in

Section 2.4.1.3 [114]. Similarly to Cascade MSCNN [100], all iterations of FgSegNet are scene-

specific. The strategy used to select the N training frames from a video is identical to that of

Cascade MSCNN, but, in addition, the N frames are randomly shuffled to avoid introducing

excessive bias into the system by feeding it adjacent frames.

The first iteration of FgSegNet [102] achieves multi-scale spatial resolution by using as input

three copies of the same image, re-scaled using Gaussian filtering [115]. The three images are

then fed to a triplet of CNNs which share weights to reduce the number of training parameters.

The backbone of all three CNNs is taken from the VGG-16 network [116], an object recognition

network that can be adapted to background subtraction by replacing its fully connected layers

with convolutional layers31. The outputs of the triplet of CNNs are then fed to a decoder which

makes the final prediction in the same resolution as the input image.

In the second iteration of FgSegNet, called FgSegNet S [112], the triplet of CNNs is replaced

by a single-input encoder-decoder structure. Multi-scale spatial resolution is achieved by placing

a Feature Pooling Module (FPM) at the end of the encoder. Within the FPM, parallel dilated

convolutional layers32 with different dilation rates allow the network to incorporate spatial

information from multiple scales without re-scaling the image prior to training.

FgSegNet v2 [113], the third iteration of FgSegNet, maintained the structure of FgSegNet S

but modified the FPM module and the decoder. The updated decoder had a significant impact

(+ 1-2%) on accuracy when the number N of training examples was low (25-50), but its

impact was negligible (< 0.01%) for N = 200, which was the configuration that gave the

highest accuracy. The impact of the modified FPM module cannot be evinced directly from

the original paper of FgSegNet v2.

In typical images for background subtraction, the ratio of background pixels to foreground

pixels is in the order of 100:1, 1000:1, or even 10000:1 [112,113]. In supervised learning, having

an imbalanced number of training examples for different class categories causes problematic

31For more details on this, please refer to [89].
32Dilated convolutions are described in detail in Section 2.4.2.2.



2.4. Silhouette Extraction 33

bias during classification [99, 117]; such bias makes it harder for the network to generalise to

new data [102]. FgSegNet deals with the issue of the imbalanced data classes by penalising

the loss more if a foreground pixel is classified as a background pixel than the contrary. In

other words, the rare class (foreground) is given a larger weight than the dominating class

(background) when computing the loss function. The weights for the two classes are derived on

a frame-by-frame basis by considering the foreground/background pixel ratio for that specific

frame.

2.4.1.3 Datasets

In 2014, a review paper by Bouwmans [90] on methods for background subtraction reported

nine ‘traditional’ datasets (like the Wallflower [95] dataset) and eight ‘recent’ datasets. Since

then, the ChangeDetection 2014 (CDnet2014) [114] and Background Models Challenge 2012

(BMC) [118] datasets, both of which appeared in Bouwmans’ ‘recent’ category, have established

themselves as the benchmark background subtraction datasets on which new algorithms are

tested.

CDnet2014 contains 53 video sequences (for a total of over 11,000 frames) divided into 11

categories which reflect specific challenging scenarios: Baseline33, Dynamic Background, Night,

Shadows, etc. The videos were obtained using different cameras which had different resolution,

frame rate, and compression parameters. Therefore, the resolution of the frames in CDnet2014

ranges from 320 x 240 to 720 x 576 pixels. However, because most of the images are of size 320

x 240, some authors [96,100] resize all images to this resolution before training their networks.

The ground truths made available for testing algorithms on CDnet2014 (see Fig. 2.7 for an

example) were segmented manually by human operators under the following guidelines:

• A pixel should be labelled as foreground only if it is not part of the background;

• Foreground objects are people, animals, vehicles, or man-made objects;

33The baseline category contains a mixture of mild challenges that belong to the other categories, and therefore
is the easiest category for algorithms to analyse.
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• A moving object that suddenly stops (i.e. an abandoned bag) should be detected as

foreground for a short period before being considered as background;

• Reflections and spotlight halos are not considered as foreground;

• Hard shadows should be manually labelled in order to enable the comparison of algorithms

based on their robustness to shadows.

Figure 2.7: On the left: example of an image in CDnet2014. On the right: labelled ground truth for
the image on the left.

Another popular dataset for background subtraction, the BMC dataset [118] is comprised of 20

synthetic videos rendered with the SiVIC simulator [119] and of nine real videos acquired by

static surveillance cameras. The 20 synthetic videos concern two urban scenes (a roundabout

and a street) under different conditions, such as bad weather, artificially added noise, or dynamic

background. Though the BMC dataset is still used in the literature today [120], CDnet2014

is by far the most commonly used dataset. In particular, the BScGAN algorithm is the only

algorithm of the ones discussed in Section 2.4.1.2 that reported results on the BMC dataset.

Therefore, the BMC dataset is not included in Section 2.4.1.5, where methods are compared.

FgSegNet S and FgSegNet v2 were also tested on the SBI2015 dataset [121] and on the

UCSD dataset [122]. The SBI2015 dataset, which was originally designed as a benchmark for

background initialisation algorithms, contains 14 videos with ground truth labels for each frame;

of the modern background subtraction algorithms listed in Section 2.4.1.2, only FgSegNet S,

FgSegNet v2, and Cascade MSCNN were tested on the SBI2015 dataset. The UCSD dataset

contains 18 videos (with ground truth labels) which showcase highly dynamic backgrounds,

and therefore it constitutes an excellent tool for gauging the effectiveness of a background
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subtraction algorithm in a complex environment such as those encountered during the recording

of human movement activities. The only modern algorithms that were tested on the UCSD

dataset were FgSegNet S and FgSegNet v2. Therefore, similarly to BMC, this dataset is not

considered in Section 2.4.1.5.

2.4.1.4 Metrics

The CDnet2014 framework includes 7 metrics to measure the accuracy of background subtrac-

tion algorithms [114]. These are Specificity, False Positive Rate (FPR), False Negative Rate

(FNR), Percentage of Wrong Classification (PWC ), Precision, Recall, and F-measure:

Specificity =
TN

TN + TP
(2.1)

FPR =
FP

FP + TN
(2.2)

FNR =
FN

TP + FN
(2.3)

PWC =
FN + FP

TP + FN + FP + TN
(2.4)

Precision =
TP

TP + FP
(2.5)

Recall =
TP

TP + FN
(2.6)

F −measure = 2
Precision ·Recall
Precision+Recall

(2.7)
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Recall is the ability of a model to find all the relevant cases (called True Positives, or TP)

within a dataset, while Precision is a measure of how many of the cases labelled as relevant

actually were relevant. An algorithm is considered accurate if it achieves high recall without

sacrificing precision. The F-measure is a weighted harmonic mean of precision and recall, and

as such it allows to express the accuracy of a model with a single parameter, thus enabling an

immediate comparison between algorithms. For this reason, the F-measure is the most widely

reported parameter of accuracy for background segmentation algorithms. However, since it

does not incorporate true negatives in its computation, it is sensitive to imbalanced data,

and background subtraction ground truths are inherently imbalanced, as mentioned in Section

2.4.1.2. Such an imbalance between the two classes is particularly problematic for deep learning

methods, which suffer from bias when trained on heavily imbalanced data. For this reason, Lim

and Keles [102], developers of FgSegNet, have used, along with the metrics of CDnet2014, the

Matthews Correlation Coefficient (MCC). The MCC metric is defined as:

MCC =
TP ·TN − FP ·FN√

(TP + FN)(TP + FP )(TN + FP )(TN + FN)
(2.8)

where FP , FN , TN and TP denote the number of False Positives, False Negatives, True

Negatives, and True Positives, respectively. The use of the MCC metric for imbalanced data

was proposed by Boughorbel et al. [123]. Unlike the F-measure, which assumes values in the

interval [0,1], the MCC takes values in the interval [−1, 1], with 1 = complete agreement, −1

= complete disagreement, and 0 = no correlation between the prediction and the ground truth.

Although the use of the MCC in background subtraction has been limited to only a few studies

[102,112], it is likely that with the growing popularity of deep learning methods it will also gain

popularity.

Vacavant et al. [118], authors of the BMC dataset, advocate the use of the Peak Signal to

Noise Ratio (PSNR) metric, defined as:

PSNR =
1

n

n∑
1−i

(
10 log10

m∑m
j=1 ||Si(j)−Gi(j)||2

)
(2.9)
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where Si(j) and Gi(j) are the jth pixels of image i (of size m) in the sequences S and G,

respectively. Vacavant et al. also propose the use of what they call ‘application quality metrics’:

the Structural Similarity (SSIM) [124] and D-score [125] metrics. The D-score evaluates the

localisation of the errors (i.e. where on the image the false positives are located), whereas the

SSIM is a perception-based metric that measures the perceived change in structural information

in an image [124]. To date, no other researchers have used these metrics for background

subtraction.

Wang et al. [100] suggest two metrics (FPED = False Positive Error Distance, and FNED

= False Negative Error Distance) to quantify how far from the nearest foreground object the

wrongly classified pixels are. Both of these metrics are conceptually similar to the D-score used

by Vacant et al. and, similarly to the D-score, both of them are unused in the background

subtraction literature.

Finally, authors often report the computational speed of their method [96,100,102,112,113],

expressed in terms of training time or frames per second (FPS). This metric is fundamental

in the field of intelligent video surveillance, where real-time computation is often necessary.

Therefore, in this field it is sometimes necessary to sacrifice accuracy for speed of execution.

2.4.1.5 Evaluation of Methods

Algorithm Average F-Measure Average Recall Average Precision Average PWC FPS(320x240) Average MCC
Cascade MSCNN 0.9209 0.9506 0.8997 0.4052 12.5 (GPU) 0.9274

3D-Net 0.9507 0.9609 0.9499 0.2650 - -
FgSegNet 0.9770 0.9836 0.9758 0.0559 17.99 (GPU) 0.9863

FgSegNet S 0.9804 0.9896 0.9751 0.0461 21 (GPU) -
FgSegNet v2 0.9847 0.9891 0.9823 0.0402 23 (GPU) -

BScGAN 0.9339 0.9476 0.9232 0.3281 400 (GPU)/10 (CPU) -

Table 2.1: Results of Background Subtraction Algorithms Tested on CDNET2014

Table 2.1 compares the accuracy of the algorithms presented in Section 2.4.1.2, in terms of

the metrics discussed in Section 2.4.1.4, on the CDnet2014 dataset. Since they are not part of

the CDnet2014 challenge, the FPED, FNED, and D-score metrics were omitted from Table 2.1;

the MCC metric, due to its relevance for deep-learning-based methods, was included, although

most authors do not report this metric. The results in Table 2.1 were collected by reviewing
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the actual papers and by browsing the online leaderboard for CDnet201434. The CDnet2014

leaderboard was particularly useful for determining the processing speed of the algorithms,

which not all authors reported in their papers.

Table 2.1 shows that FgSegNet v2 is the most accurate method under all metrics considered,

except for the MCC which was not reported by the authors and is not one of the metrics

available on the CDnet2014 website. However, the processing speed of FgSegNet v2 is far

slower than that of BScGAN, which is orders of magnitude faster than any other method

reported in Table 2.1.

2.4.2 Semantic Segmentation

2.4.2.1 Overview

Garcia-Garcia et al. [89] defined semantic segmentation as the task of ‘assigning each pixel

in an image to an object class’. A more precise definition is given by Thoma [126], who

defines semantic segmentation as ‘the task of clustering together parts of images which belong

to the same object class’. Zhu et al. [127] give yet another definition, arguing that semantic

segmentation is the task of ‘dividing a natural image into some non-overlapped meaningful

regions’. Using a clear vocabulary is essential in order to avoid confusion of terms. For instance,

the meaning of the terms ‘object’ and ‘meaningful’ in Zhu et al.’s definition is subjective: if told

to segment the ‘meaningful’ parts of the ‘objects’ in an image, different people will most likely

segment different things [128]. This means that, if the definition of what is to be segmented is

not clear, semantic segmentation is an ill-posed problem. To clarify the terminology used in the

rest of this section, I propose the following categorisation of semantic segmentation algorithms

(following [126]), based on four criteria:

• Operation state (interactive vs passive). Examples of interactive algorithms are the seg-

mentation tools present in Adobe Photoshop and MATLAB [98], which require the user

to click on the background to mark it or to provide a coarse initial segmentation which

34http://changedetection.net/
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the algorithm will then refine [126]. Passive algorithms, on the other hand, do not allow

manipulation of the input image;

• Allowed classes (multiple vs binary). Most algorithms fix a priori the number of classes

that will be segmented, which can be multiple (cat, house, car, person, etc) or binary

(e.g. foreground vs background; cat vs non-cat). In this sense, by taking the definition

of semantic segmentation of Garcia-Garcia et al. [89] reported above, background sub-

traction could be interpreted as a sub-category of semantic segmentation in which only

the foreground and background classes exist. However, as pointed out by Zhu et al. [127]

and Thoma [126], semantic segmentation clusters together groups of pixels, thus nulli-

fying the issue of isolated false positives/negatives found in background subtraction (see

Section 2.4.1.2) and distinguishing the two fields;

• Type of input data (greyscale vs coloured; 2D vs 3D data; including vs excluding depth

data);

• Degree of supervision (unsupervised vs weakly-supervised vs fully-supervised). Unsuper-

vised methods do not have access to a label or ground truth during training, whereas

fully-supervised algorithms have at their disposal a ground truth for each image to be

segmented [127]. Weakly-supervised methods use partial or coarse annotations, and as

such often belong to the ‘interactive’ operation state category.

Recent semantic segmentation research is focused on the multi-class category, because it has

more widespread applications [89, 129]. Nevertheless, multi-class algorithms can easily be re-

trained for a binary classification problem such as the one encountered during the first step of

a 2D-to-3D pipeline (i.e. segmenting the foreground, class1, from the background, class0). For

this reason, this section of the review will not be restricted to binary classification algorithms.

However, because 3D data and depth data cannot be integrated into an image-based markerless

motion capture system, algorithms that deal with such data will not be analysed here.
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2.4.2.2 State of the Art

Traditional approaches to semantic segmentation relied heavily on domain knowledge to build

an algorithm with domain-specific features [126], colour being the feature used most com-

monly [126, 127]. Although no colour space has been proven to be superior to all others in all

contexts [130], RGB is often chosen due to its simplicity and support by programming lan-

guages; occasionally, the HIS colour space is chosen due to its property of being invariant to

illumination [131–134]. An example of domain-specific features are the ‘poselets’ introduced

by Bourdev and Malik [135] for human pose estimation. Poselets are manually-added extra

keypoints such as ‘left shoulder’ or ‘right shoulder’ which aid in the task of detecting the poses

of people in a scene [136,137].

As was the case for background subtraction, the field of semantic segmentation was rev-

olutionised by the advent of Deep Learning, and in particular of Fully Convolutional Neural

Networks (FCNs, which are a particular kind of CNN): a glance at the most popular semantic

segmentation datasets [138, 139] will reveal that almost the entirety of the new research in

semantic segmentation adopts networks based on the FNC architecture. For this reason, and

because traditional semantic segmentation algorithms are not used in the 2D-to-3D literature

like traditional background subtraction algorithms were, this review will omit the analysis of

traditional methods for semantic segmentation; for a review of this category of algorithms,

please refer to [126,127].

CNNs applied to semantic segmentation face two challenges: 1) because their structure was

originally designed for the task of image classification, they lose feature resolution at each layer

(in other words, deeper layers learn highly complex features but forget the global information,

which is essential in semantic segmentation because of the requirement for the segmentation

to be locally and globally consistent); 2) objects may exist at multiple scales, thus requiring

the network to have both large and small fields of view. Both of these challenges have been

addressed extensively by the algorithms discussed in this section.

Including in the following analysis every algorithm that uses CNNs for semantic segmenta-
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tion would not be pertinent to the objective of this section, which is to describe state-of-the-art

silhouette extraction methods that may be used in 2D-to-3D pipelines. As was the case for

Section 2.4.1.2, then, this section focuses on the top-performing methods in this category of

algorithms. The algorithms discussed in this section were chosen by looking at those with an

Average Precision (described in Section 2.4.2.4) on the PASCAL VOC 2012 dataset [138] (de-

scribed in Section 2.4.2.3) of at least 90% in the ‘person’ category. Although the threshold of

90% was chosen arbitrarily, it allowed me to single out the top ten algorithms for the semantic

segmentation of humans.

DeepLab Iterations of DeepLab, an algorithm developed by researchers at Google, have

been at the top of semantic segmentation leaderboards for years [89, 129, 138]. One of the

main features of DeepLab is its use of dilated convolutions to solve the issue of the loss of

feature resolution in the deep layers of CNNs. Dilated convolutions (also known as ‘atrous’

convolutions, from the French a trous, with holes), expand the resolution of the filter in the

convolutional layer according to a parameter called dilation rate; in practice, this process fills

with zeros the empty elements of a dilated filter (see Fig. 2.8). Dilated convolutions allow to

control the resolution at which features are computed within the network, and to scale their

resolution multiple times without having to learn new parameters like in an encoder-decoder

structure. For a two-dimensional signal, for each location i on the output feature map y and a

convolution filter w, a dilated convolution is applied over the input feature map x as follows:

y[i] =
∑
k

x[i+ r · k] ·w[k] (2.10)

where the dilation rate d determines the stride with which the input signal is sampled. During

training, DeepLab uses patches cropped from the original image. Because of the dilated convo-

lutions present in DeepLab, a large crop size is required to avoid that filter weights with large

dilation rates be applied to the zero-padded region (i.e. the empty space within the dilated

filter).

DeepLabv3 was introduced in 2017 [140] and has undergone several iterations since. Its
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backbone is ResNet-101 [99], a network for image recognition pre-trained on the ImageNet

dataset [141]. In DeepLabv3, the last blocks of ResNet are re-purposed using Atrous Spatial

Pyramid Pooling (ASPP). First proposed by [142] (and similar to the FPM module of FgSeg-

Net v2), the ASPP module consists of four cascaded dilated convolutional layers with different

dilation rates that allows DeepLab to capture multi-scale information at the level of the fea-

tures learned by the network [140], instead of at the level of the input features (like in Cascade

MSCNN). In two separate experiments, DeepLabv3 was pre-trained on the MS-COCO dataset

[110] and on the JFT-300M dataset35 [114]; both pre-training regimens noticeably improved

the performance of DeepLabv3 [3], as we discuss in Section 2.4.2.5.

Figure 2.8: Dilated convolutions allow the network to obtain varying spatial resolution by changing
the dilation rate (D). The number of parameters to learn (in this figure, 9, one for each coloured
square) does not change, since the empty elements within the filter are filled with zeros. (Image
adapted from [3])

DeepLabv3+ [143] further improved upon DeepLab3 by implementing an encoder-decoder

structure that uses DeepLab3 as the encoder module and a simple series of upsampling layers

and convolutional layers as the decoder module. Furthermore, it reduced the computational

complexity of the algorithm by adopting depthwise separable convolutions: the standard convo-

lution operation is factorised into a depthwise convolution, which performs a spatial convolution

independently for each input channel, and a point-wise convolution, which combines the output

from the depthwise convolution step. DeepLabv3+ further improved upon DeepLab3 by adopt-

ing the more powerful Xception [144, 145], instead of ResNet-101, as the backbone network.

Furthermore, it was pre-trained on ImageNet and JFT-300M in two separate instances.

35The version of DeepLab3 pre-trained on the JFT-300M dataset takes the name of ‘DeepLab3-JFT’, while
the version of DeepLab3 pre-trained on the MS-COCO dataset simply takes the name of ‘DeepLabv3’.
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Figure 2.9: Architecture of the MSCI network. On the left, a traditional convolutional neural network
structure encodes features into layers of progressively smaller reception fields. Each pair of adjacent
layers is connected ‘horizontally’ using bi-directional connections, which progressively incorporate
information from different receptive fields into the final prediction (to the right). (Image adapted
from [4])

MSCI In order to capture the multi-scale information present in the data, the MSCI algo-

rithm [4] combines the outputs of pairs of adjacent layers, as shown in Fig. 2.9. Whereas in

most multi-scale architectures the information flows in a unidirectional fashion, in MSCI the

connections are bi-directional, with long short-term memory (LSTM) chains connecting feature

maps of different resolutions. These intertwined connections are present both horizontally and

vertically in the network structure (illustrated in Fig. 2.9), granting exceptional integration

of the different levels of information present at each layer. Using the structured edge detec-

tion toolbox [146], MSCI divides the input image and each subsequent feature map into sets

of non-overlapping regions called super-pixels. The neurons that correspond to neighbouring

super-pixels are densely connected with bi-directional LSTM connections, thus allowing great

local consistency to the segmentation. MSCI uses ResNet-152 [64] as its backbone network and

the model is pre-trained on the MS-COCO dataset [139] following [147,148].

ExFuse Networks that use an encoder-decoder architecture gradually fuse the information

from the bottom layers, which is low-level36 but high-resolution, with the information from the

top layers, which is high-level but low-resolution. It is the case, for example, of U-Net [111],

which was adopted by several authors as the backbone network for their semantic segmentation

algorithm [147,149–151]. Zhang et al., authors of ExFuse [11], argue that fusing ‘pure’ low-level

36Information is progressively encoded as the layers get deeper. Therefore, the first layers will contain in-
formation that is scarcely encoded, and which is consequently defined as low-level. An example of a low-level
feature is an edge map of the original image, which requires little encoding to obtain.
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and high-level features is inefficient and leads to inaccurate results, and propose to introduce

more semantic information in low-level features and more spatial information in high-level

features, thus increasing the content overlap between distant layers that will be fused together.

They introduce more semantic information into low-level features using three strategies:

• they rearrange the layers of the backbone network (ResNeXt 101 [152]) to be more evenly

distributed instead of being clumped up in the deep blocks;

• they use auxiliary supervision at the early stages of the encoder, a practice inspired by

Deeply Supervised Learning [153,154];

• they do not fuse layers in a binary fashion as in U-Net [111]; instead, before being fused

with its high-level counterpart, each low-level layer is combined with the ones directly

above it using a novel module called ‘semantic embedding branch’, the purpose of which

is to embed more semantic information into low-level features before they are fused with

high-level features.

They introduce more spatial information into high-level features using two strategies: 1) they

use auxiliary supervision on the first deconvolutional module of the decoder; furthermore, the

original deconvolution of the module is replaced with Sub-Pixel Upsample [155], which en-

larges the feature map just by reshaping the spatial dimensions; 2) they introduce the ‘Densely

Adjacent Prediction’ mechanism, which enables feature points of the decoder to estimate the

semantic information of adjacent points; the final segmentation for each point is obtained by

averaging all the associated scores.

DPC Instead of relying on human expertise a neural network, Chen et al. [156], the authors of

the Dense Prediction Cell (DPC) method, constructed a space of possible network architectures

and used an optimisation tool [157] to select the most optimal architecture within the space.

They populated the space with most of the state-of-the-art semantic segmentation algorithms,

such as [140, 142, 145, 148]. As the optimisation tool selects random architectures from within
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the search space to evaluate them, the selected architecture has to be trained. However, train-

ing large networks for semantic segmentation is a time-consuming task, and iterating through

a search space of several architectures would be prohibitively expensive in terms of computa-

tional time. Therefore, the authors developed a proxy task on which to train the candidate

architectures. The objective of a proxy task is to provide the candidate architecture a task

that is quick to evaluate and that gives an output that is easily relatable to the large-scale

task [156]. To achieve this goal, the authors employed, as a proxy task, a smaller network

backbone and cached the feature maps produced by the network backbone on the training set,

and then directly build DPC on top of it. The optimisation tool is then run on the architecture

search space using the proxy task; after optimisation has ended, the selected architecture is

tested on the large-scale task.

2.4.2.3 Datasets

The dataset most referenced in recent semantic segmentation research is undoubtedly the

PASCAL VOC 2012 dataset [138]. The PASCAL Visual Object Classes (VOC) project ran

challenges evaluating performance on object class recognition algorithms from 2005 to 2012,

each year developing a new or modified dataset; starting from 2007, a semantic segmentation

challenge was added. The 2012 dataset consists of 28,952 images split into 50% for training-

validation (with public ground truths) and 50% for testing (with private ground truths); of

these 28,952 images, only 9,993 are labelled for segmentation (see Fig. 2.10 for an example of

an image in PASCAL VOC 2012). For each image in the dataset, the bare-minimum label

consists of bounding boxes that surround objects that belong to one of the following twenty-

one categories: person, bird, cat, cow, dog, horse, sheep, aeroplane, bicycle, boat, bus, car,

motorbike, train, bottle, chair, dining table, potted plant, sofa, tv/monitor, and background.

All human labellers (the number of which is not shared by PASCAL VOC) were provided with

the same guidelines for the segmentation of the ground truths:

• labelled pixels MUST be the object; pixels outside a 5-pixel border area MUST be back-

ground. Border pixels can be either;
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• pixels which are mixed (e.g. due to transparency, motion blur or the presence of a border)

should be considered to belong to the object whose colour contributes most to the mix;

• aim to capture thin structures where possible, within the accuracy constraints. Structures

of roughly one-pixel thickness can be ignored e.g. wires, rigging, whiskers;

• if a number of small objects are occluding an object (e.g. cutlery/silverware on a dining

table), they can be considered part of that object. The exception is if they are sticking

out of the object (e.g. candles) where they should be truncated at the object boundary.

PASCAL VOC also provides a public leaderboard that reports the accuracy of the methods

submitted to the website. The size of the images in PASCAL VOC 2012 varies but is generally

within 500 x 500 pixels.

Figure 2.10: Example of an image (left) and corresponding label (right) from the PASCAL VOC
2012 dataset. [http://host.robots.ox.ac.uk/pascal/VOC/]

The Microsoft Common Objects in Context (MS-COCO) dataset [139] is also widely refer-

enced in the semantic segmentation community. For the object segmentation task, MS-COCO

includes over 200,000 images (all of which are fully annotated) split into 80 categories. How-

ever, MS-COCO focuses on instance segmentation37 rather than on semantic segmentation. In

instance segmentation, all objects in the image that belong to different instances of the same

object class must be labelled separately (see Fig. 2.11 for an example). Therefore, the methods

37This section focuses on methods for silhouette extraction that can be applied to markerless motion capture.
Because such a silhouette extraction algorithm would only have to deal with a single object in the image (i.e. the
human subject being recorded), instance segmentation algorithms, which focus on the segmentation of multiple
objects of the same class, were not considered in this review.
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reported in Section 2.4.2.2, which are semantic segmentation algorithms, were never tested on

MS-COCO. Nevertheless, most of the algorithms in Section 2.4.2.2 use MS-COCO to pre-train

their network, under the assumption that a network pre-trained on a large dataset like MS-

COCO will perform better than a randomly pre-trained network [89]. The size of the images

in MS-COCO varies but is generally within 640x640 pixels.

Figure 2.11: Example of an image in MS-COCO with superimposed ground truth. Each instance of
an object class is labelled separately. For example, each person in this image is segmented using a
different colour. [https://cocodataset.org/#home]

Another popular dataset in the semantic segmentation literature is the Cityscapes dataset

[158], which focuses on urban scenes. The dataset consists of 5,000 fully-labelled images and

20,000 coarsely-labelled images (see Fig. 2.12 for an example) extracted from videos shot in

50 different cities during daytime. The labels are divided into 30 classes, including ‘person’

and ‘rider’ to distinguish pedestrians from people on vehicles. The images in Cityscapes are

considerably larger than those in other popular datasets, with a mean resolution of 2040 x 1016

pixels.

Finally, some semantic segmentation algorithms (like MSCI) are tested on scene-labelling

datasets like NYUDv2 [159], PASCAL-Context [160], and SUN-RGBD [161]; MS-COCO also

has a scene labelling challenge. Unlike the object-centric PASCAL VOC, these datasets focus
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on the segmentation of scenery and ‘stuff’ like grass, sky, and wall. Because this application

does not match the one on which this review focuses, these datasets will not be discussed here.

Figure 2.12: Top: example of a finely-labelled image in Cityscapes. Bottom: examples of a coarsely-
labelled image in Cityscapes. [https://www.cityscapes-dataset.com/]

2.4.2.4 Metrics

The concepts of recall and precision were introduced in Section 2.4.1.4. In background sub-

traction, these metrics are often combined into a single metric, the F-measure; in semantic

segmentation, they are used to calculate a metric called average precision (AP). Let us assume

that a segmentation model has a confidence threshold T on its predictions: the model gives a

certain label to a pixel if its confidence in the label exceeds T. To this model score threshold

correspond a value of recall and a value of precision. The Average Precision summarises the

shape of the precision-recall curve obtained by varying the threshold of the model so that eleven
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equally-spaced recall levels are obtained (r = [0, 0.1, 0.2, ..., 1]). In other words, the AP is the

mean precision at a set of eleven equally spaced recall levels:

AP =
1

11

∑
r∈{0,0.1,...,1}

pinterpolated(r) (2.11)

The precision at each recall level r is interpolated by taking the maximum precision mea-

sured for a method for which the corresponding recall exceeds r:

pinterpolated(r) = max
r̃:r̃≥r

p(r̃) (2.12)

where p(r̃) is the measured precision at recall r̃. This metric penalises methods which detect

only a fraction of examples with high precision, since it forces the algorithm to have precision

at all levels of recall [109]. But how is the threshold T set, and what does it represent? In the

case of PASCAL VOC 2012, T corresponds to an Intersection over Union (IoU ) value greater

than 0.5 [138]. The IoU metric measures how well the ground truth object overlaps the object

predicted by the model:

IoU =
Area of intersection

Area of union
=

TP + TN

TP + TN + FP + FN
(2.13)

In the PASCAL VOC 2012 dataset, the metric reported is AP at IoU > 0.5; in other words,

a prediction is considered positive if IoU > 0.5, and this threshold allows to calculate eleven

values of recall with corresponding values of precision, which in turn allow to calculate the AP.

In the MS-COCO dataset, the metric used is the meanAP (mAP): the AP is averaged over

10 values of IoU, providing a much stronger metric that rewards methods that are better at

precise localisation [162].

The Cityscapes dataset does not use AP as its main metric and focuses on IoU instead.

However, since the IoU metric is known to be biased toward object instances that cover a

large image area [158], Cityscapes also introduces a metric called instance-level IoU (iIoU ).
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iIoU is computed exactly as in equation 18, but TP and FN are computed by weighting the

contribution of each pixel by the ratio of the class’ average instance size over the size of the

respective ground truth instance. Because this metric only pertains to cases where multiple

instances of the same object class are present in an image (a condition that will never occur in

human motion capture scenarios), the iIoU metric is not be considered further in this review.

2.4.2.5 Evaluation of Methods

Table 2.2 compares the accuracy of the algorithms presented in Section 2.4.2.2, in terms of

the metrics discussed in Section 2.4.2.4, on the PASCAL VOC 2012 dataset. Results on the

MS-COCO datasets are not reported in this section because MS-COCO deals with instance seg-

mentation, which is not pertinent to the focus of this section. Similarly, because the Cityscapes

dataset focuses on urban traffic scenes, results of methods tested on this dataset are not reported

in this section.

The results reported in Table 2.2 correspond to the AP values of each method at IoU > 0.5.

The rightmost column reports the AP values for the ‘person’ category, while the centre column

reports the AP values averaged across all twenty categories of PASCAL VOC 2012. Table 2.2

shows how the top ten algorithms for semantic segmentation evaluated on PASCAL VOC 2012

are very close to each other in terms of AP in the ‘person’ category. Nevertheless, the more

recent versions of DeepLab, in particular DeepLabv3+ JFT [143] and DeepLabv3+ AASPP

(still unpublished), are the most accurate semantic segmentation methods available to date.

Out of all background subtraction and semantic segmentation algorithms, FgSegNet v2,

DeepLabv3+, MSCI, and ExFuse are the most promising candidates for use within a markerless

motion capture pipeline. However, FgSegNet requires to manually label 200 frames for each

new videos to be analysed, making it unsuitable for frequent use within a markerless motion

capture system.
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Table 2.2: Results of Semantic Segmentation Algorithms Tested on PASCAL VOC 2012

AP (%)
Algorithms mean person
DeepLabv3 85.7 92.1

DeepLabv3-JFT 86.9 92.3
DeepLabv3+ 87.8 92.8

DeepLabv3+ JFT 89.0 93.8
DeepLabv3+ AASPP (unpublished) 88.5 93

MSCI 88.0 92.8
ExFuse 87.9 92.3
DPC 87.9 92.5

SRC-B-MachineLearningLab (unpublished) 88.5 92.9
DFN (unpublished) 86.2 91.7

2.5 2D Pose Detection

2.5.1 Overview

As Bulat et al. [163] remark, two-dimensional articulated human pose estimation (commonly

referred to as ‘2D pose detection’ or ‘2D pose estimation’) is a computer vision problem ‘of

extraordinary difficulty’; as this section will show, when the images on which 2D pose detection

is to be done are of swimmers, this ‘extraordinary difficulty’ is alleviated in some ways and

exacerbated in others.

Let us repeat here the definition of 2D pose detection, so that we may understand how

it differs from the process of manual digitisation presented in Section 2.2.2. The term ‘2D

pose detection’ refers to the process of (manually or automatically) identifying in image space

the two-dimensional coordinates of a certain number of joint centres of one or more people.

The difference between manual digitisation and 2D pose detection should therefore be clear:

when manually digitising an image, a person (or machine) has to locate the position of markers

that are attached to the skin of the person; conversely, 2D pose detection is concerned with

digitising the actual joint centres. Given that the markers used for manual digitisation are

placed on landmarks close to the joints they are related to, in some cases 2D pose detection

and manual digitisation would involve digitising the same points. For example, in a sagittal

view of a person, the marker of the left knee, which would be placed on the lateral epicondyle,
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would be in line with the knee joint centre and the two points (the marker and the joint centre)

would coincide. For any camera angle that is not exactly sagittal, the points digitised by 2D

pose detection and manual digitisation are not the same (though they likely will be close to

one another).

Compared to manual digitisation, 2D pose detection is harder: whereas in manual digi-

tisation the operator has to identify a marker placed on the surface of a person, in 2D pose

detection the operator has to use prior knowledge of human anatomy to, given landmarks that

may not be fully visible, infer the position of the joint centre. In other words, manual digitisa-

tion is a matter of localising two-dimensional points (the markers) in a two-dimensional plane

(the image), whereas 2D pose detection is a matter of inferring the two-dimensional projections

of hidden three-dimensional points (the joint centres) given the operator’s knowledge of human

anatomy. Once the 2D joints have been digitised via 2D pose detection or manual digitisation,

they can be used for two purposes: by themselves, as parameters to perform a 2D kinematic

analysis; or as inputs for a 2D-to-3D pipeline. For this second application, the joints digitised

via 2D pose detection have a clear advantage: they can be used directly as inputs to the 2D-

to-3D pipeline. The same is not true of joints digitised using manual digitisation, for which an

intermediate step—converting the digitised marker coordinates into joint coordinates using an

ad hoc anatomical model—has to be taken38.

From the definition of 2D pose estimation the main challenge of this task becomes evident:

inferring from two-dimensional cues the projection of a three-dimensional point that is not

visible. Though not discussed in the literature, it is intuitive to think that, unlike in silhouette

extraction, the difficulty of this task also depends on the angle (α) at which the person is relative

to the camera. For an exactly sagittal view (α = ±90◦), 2D pose detection almost coincides

with manual digitisation and can be performed accurately by identifying easily-recognisable

bony landmarks; the only challenge (which can be more or less significant depending on the

pose of the person) is that, intuitively, sagittal views are more prone to occlusions (see Figure

2.13). For an exactly frontal view (α = 0◦), 2D pose detection is greatly simplified: not only are

38The way this intermediate step is performed is at the core of the difference between manual digitisation
methods (for which the conversion has to be modelled by the user) and OSSs (for which the conversion is
hard-coded into the software).
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Figure 2.13: The same 3D model viewed from a sagittal and a frontal view. In the sagittal view, most
of the joints on the left side of the model are occluded. It is easy to imagine that, had we extended
the left arm and leg of the model in the sagittal view, some of the joints would no longer be occluded.
This indicates how, in the sagittal view, occlusions are a function of the pose adopted by the person.
(Image created by the author)

occlusions rarer in a frontal view, but there also are more cues available to estimate the joint

centres’ positions. Going back to the example of the knee, identifying its joint centre is even

simpler in a frontal view because we have access to twice as many cues: not only the lateral,

but also the medial epicondyle; the knee joint centre can then be estimated as the mid point of

the imaginary line that connects these two points. Due to perspective, this imaginary line gets

progressively more difficult to mentally visualise for α→ ±45◦, especially if only one landmark

is visible. The second greatest challenge of 2D pose detection is the fact that, depending on the

pose of the person, some joints may be entirely occluded. Occlusions are particularly difficult

to deal with for learning algorithms, which to learn have to rely on labels provided by humans.

If the labels are highly variable (because occluded joints are difficult to estimate reliably even

for humans), the feedback given to the learning model is unreliable and potentially harmful.

As we will see, some authors have designed their models to explicitly limit the harm caused by

occlusions.
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Bulat et al. [163] identify other sources of difficulty for 2D pose detection: the considerable

variability of human appearance (i.e differences in body shape, but potentially also the presence

and variability of clothing); the large number of feasible human poses; and, potentially, the

presence of multiple people in close proximity to one another. This last point does not apply

to the intended application of this PhD, since markerless motion capture is performed on a

single person at a time. Similarly, by focusing on the underwater fly kick and breaststroke,

the space of possible poses is significantly reduced. Furthermore, swimmers wear minimal,

tight-fitting clothing. This last aspect makes 2D pose detection easier when done on images

of swimmers, for two reasons: the standardised clothing one can expect swimmers to wear

reduces the variability of human appearance, meaning that a learning algorithm will require

less data to be trained; and, since the clothing swimmers do wear is skin-tight, it makes bony

landmarks more visible, thus making it simpler for human operators to label the ground truth

joints, providing the learning model with much more reliable feedback. However, dealing with

images of swimmers also introduces unique challenges. As discussed in Section 2.4, the unstable

background and lighting and the presence bubbles are sources of variability that are hard to

model. Furthermore, though this PhD circumscribes the space of all possible human poses

to just those adopted during the underwater fly kick and breaststroke, it can be argued that

these poses are more prone than average to occlusions—in particular for the underwater fly

kick, throughout which the limbs are kept in contact with one another and easily may cause

occlusions (see Figure 2.14).

The challenges of 2D pose detection discussed above make manual 2D pose detection a

difficult, time consuming task. Furthermore, it arguably is even more subjective a task than

manual digitisation, since different labellers may have different levels of knowledge of human

anatomy and a different skill in estimating perspective. It is therefore impractical, in the optics

of developing a markerless motion capture system, to perform 2D pose detection manually as

an intermediary step: it would be so time consuming as to defeat the purpose. Section 2.5.2 will

describe the datasets (and metrics) on which 2D pose detection algorithms are benchmarked,

as this will help understand the design choices of some of the algorithms that will be discussed.

Next, Section 2.5.2 will give a concise overview of the characteristics of the most effective
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Figure 2.14: Example of how the poses assumed by swimmers may be prone to occlusions. As we
said, occlusions are more common in views that are close to sagittal, such as the one shown here. This
is especially true if opposing limbs (e.g. left and right leg) are kept in line with each other sagittally,
which is the prevalent pose of underwater swimming. (Image created by the author)

algorithms. As in Section 2.4, only algorithms that currently define the state of the art will be

discussed39.

2.5.2 Datasets and Metrics

There are two datasets on which new models for 2D pose detection are usually benchmarked:

the MPII Human Pose dataset [165], and the Leeds Sports Pose (LSP) dataset [166]40. The

MPII dataset contains 24,984 images (17,770 used for training, 7,214 for testing) of over 40,000

total people; the resolution of the images ranges between 480 x 272 and 1080 x 1920 pixels. Each

image was extracted from a YouTube video and assigned an ‘activity label’—such as ‘walking’,

‘pushing car’, and the oddly specific ‘carpentry, outside house, installing rain gutters’—out of

410 possible categories. Each image comes with a series of annotations for each person in the

39For a more thorough review that describes how the field of 2D pose detection has evolved over the past
couple of decades, please refer to [164].

40Older datasets that are no longer used by researchers (like the Buffy Stickmen [167] and FLIC [168] datasets)
and datasets that are only mentioned by a small minority of authors (like the Keypoints section of the MS COCO
dataset [139]) will not be presented here.
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image:

• the activity label;

• the x and y coordinates of the following 16 joints: left and right ankles, knees, hips,

wrists, elbows, and shoulders; pelvis; thorax; upper neck; head top;

• for each joint, a Boolean variable is visible, which is 0 if the joint is in the image but not

visible and 1 if it is;

• the coordinates of a bounding box that tightly encloses the head of the person41;

• a bounding box that ‘sufficiently separates’ (a term that is not explained nor quantified

by the authors of the datasets) individuals.

The images were labelled using Amazon Mechanical Turk (AMT; http://www.mturk.com),

a service through which the annotation of large datasets can be outsourced to a collection of

separate individuals (who can be screened before the outsourcing). The annotation tool that

was given to the people recruited through AMT to label the images in MPII was an extension

of the one described in [169], in which the user is simply instructed on how to use the tool,

but not where to label. In other words, there is no guarantee that the labellers were familiar

enough with the anatomy of the human body to accurately label the joints. This potential

lack of accuracy pales in comparison to the lack of accuracy caused by the fact that people

in almost all of the images are fully clothed. Though the presence of clothes greatly increases

the variability of the dataset, it also inevitably introduces errors during the labelling process:

an image like the one in Figure 2.15, which is one of the images in MPII, cannot be labelled

with the level of accuracy required for algorithms that deal with human motion capture, and

therefore is a poor example on which to train a learning algorithm.

41The use of this bounding box will become clear when we will discuss the metric used to evaluate algorithms
on MPII.
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Figure 2.15: Example of an image in the MPII dataset. [http://human-pose.mpi-
inf.mpg.de/#download]

The main strength of the the MPII dataset is the high number of images it contains,

which allows it to represent many different poses. The Leeds Sports Pose (LSP) dataset has

substantially fewer imagees—2,000 in total, split into 1,000 for training and 1,000 for testing

(resolution between 525 x 254 and 1024 x 1024 pixels). Such a number of training examples

is likely too low for a learning algorithm to reach an acceptable level of generalisability. The

only advantage of the LSP dataset over MPII is that all the people in the images of LSP wear

sports clothing, which for the most part fits more tightly than average, or at least reveals some

of the joints (see Figure 2.16). This means that the labelling of the images in LSP—though

not described by the authors—was likely more accurate, as the joints are easier to see.

The joints labelled in the LSP dataset are the left and right ankles, knees, hips, wrists,

elbows, and shoulders; the neck; and the top of the head, for a total of 14 joints. Unlike in

MPII, the images in LSP do not come with any bounding boxes. This is relevant, because the

presence of a bounding box may help a learning algorithm: if the images are cropped around the

bounding box before being fed to the algorithm (as is often done [6,7,170–173]), the algorithm
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Figure 2.16: Example of an image in the LSP dataset. [https://sam.johnson.io/research/lsp.html]

is allowed to ignore a substantial part of the background, thus artificially impeding it from

potentially making mistakes by labelling those background pixels as joints. This being said,

even though the LSP dataset does not provide bounding boxes, researchers are still free to—as

a pre-processing step—use an algorithm to draw their own bounding box and then crop the

image around it; the authors of the LSP dataset themselves adopted this strategy when testing

their own algorithm on their dataset [166].

The MPII and LSP datasets use two different metrics42. The LSP dataset uses the Percent-

age of Correct Parts (PCP) metric. To calculate this metric, first the joint coordinates must

be converted into segment lengths using the formula [166]:

Segment length = (|xproximal joint − xdistal joint|, |yproximal joint − ydistal joint|) (2.14)

42In computer vision it is standard procedure to make public only the training data of a given dataset, but
not the test data. If authors want to validate their algorithms on the dataset, they then need to submit their
algorithm to the server on which the test data is hosted, which is where the evaluation is performed. Therefore,
the authors cannot freely choose with which metric to validate their algorithms: the metric used will be the one
that the creators of the dataset chose and implemented on the evaluation server.
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For example, to calculate the ‘Left Lower Leg’ segment, the proximal joint would be the

left knee and the distal joint would be the left ankle. The PCP metric then calculates the

percentage of body segments (across the entire test set) that fall within 50% of the length of

the ground truth segments. This metric has the advantage that the accuracy of any given

joint is not evaluated in a void, but in relation to a joint that is anatomically related to it;

it makes sense to evaluate how accurate the localisation of the left knee is with relation to

the localisation of the left ankle. However, as Yang et al. [174] point out, the PCP metric is

sensitive to the amount of foreshortening of a limb43, and so can be too loose a measure in some

cases and too strict a measure in others. For example, in the bottom image of Figure 2.17, a

mistake in the length of the right arm would weigh less than a mistake on the left arm: given

that the right arm appears to be longer and that the tolerance to calculate the PCP metric is

50% of the length of the segment, the right arm would have more tolerance than the left. Also,

the PCP metric does not penalise false positives. This gives an unfair advantage to approaches

that predict a large number of candidates, as shown by Yang et al. [174].

The metric used in the MPII dataset is a modified version of the Percentage of Correct

Keypoints (PCK) metric. The PCK metric, introduced by Yang et al. [174] to address the

shortcomings of the PCP metric, classifies a predicted joint as correct if it falls within α ∗

max(h;w) pixels of the ground truth joint, where h and w are the height and width of the

bounding box that encloses the person, and α is a tunable parameter, usually set to 0.1 or

0.2 [174]; for α = 0.1, we would write the metric’s name as ‘PCK@0.1’. The PCK metric

has two advantages over the PCP metric: it is scaled to the size of the bounding box, and

therefore it has the same meaning regardless of the size at which the person appears in the

image; and it eliminates the problem of foreshortening by calculating the percentage of correct

joints, not segments. The MPII dataset uses a modification of the PCK metric, called PCKh

(where the ‘h’ stands for ‘head’). When calculating the PCKh metric, α is set to 0.5 (and the

metric is then written as ‘PCKh@0.5’) and the bounding box considered is not the one that

encloses the full person, but the one that encloses the head. In their paper, the authors of the

MPII dataset justify the choice of this bounding box by stating: ‘We choose to use head size

43In art, ‘foreshortening’ is the act of drawing or photographing objects or people to make them (or parts of
them) look smaller or larger than they are (see Figure 2.17).
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Figure 2.17: Two examples of foreshortening. In the drawing (top image), the right arm of the
swimmer is made to appear much longer than the left arm, to convey the angle at which the swimmer
is relative to the plane on which she is drawn. The same effect is noticeable—albeit to a lesser
extent—in the bottom image. (Image created by the author)

because we would like to make the metric articulation independent’ [165]. My interpretation

of this statement is that the authors of MPII wanted to choose a bounding box that was not

as generic and large as the one that encloses the full person, but that was also not related to a

body part that is very prone to foreshortening (like the arms and the legs), given that the shape

of the head is similar when viewed from different angles. A more robust (but unmentioned by

the authors of MPII) reason for why PCKh@0.5 should be preferred over PCK@0.1 is that it is

a stricter metric. To justify this statement, we are going to use the anthropometric measures

collected by Plagenhoef et al. [175], who estimated that the head represents ∼ 6% of the total

height of a person, the neck ∼ 4.7%, and the trunk (from the base of the neck to the pelvis) ∼

29.5%. Consider now the case of an image of a person standing up straight (see Figure 2.18).

Since in this case the height of the bounding box is roughly equal to the height of the person,

PCK@0.1 is equivalent to considering 10% of the height of the person as the threshold to count

the number of correctly classified joints. On the other hand, PCKh@0.5 considers 50% of the
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Figure 2.18: In an image of an upright person, the height of the bounding box that tightly sur-
rounds the person is roughly equatable to the height of the person. Therefore, the height of the head
represents, in this case, roughly 6% of the height of the bounding box. (Image created by the author)

length of the bounding box of the head; since the head constitutes 6% of the height of the

person, PCKh@0.5 is equivalent to considering 3% of the height of the box as the threshold.

In other words, in the case of Figure 2.18 PCKh@0.5 is 3.3 times more strict a metric than

PCK@0.1. Consider now Figure 2.19. Here, the height of the box is roughly equal to the sum

of the lengths of the head, neck, and torso segments. Given that the torso constitutes 29.5%

of the height of a person, the head 6%, and the neck 4.7%, we can calculate the height of the

head relative to the box as:

Head% of box =
100

trunk% of person

head% of person
+

head% of person

head% of person
+

neck% of person

head% of person

=
100

29.5
6

+ 1 + 4.7
6

' 14.9% (2.15)

Therefore, in this case PCKh@0.5 is equivalent to considering 7.47% of the height of the box as

the threshold; in this case, PCKh@0.5 is 1.4 times more strict a metric than PCK@0.1. From
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Figure 2.19: In this image, the height of the bounding box coincides not with the height of the person,
but with the sum of the length of the trunk, neck, and head segments. In this case, as calculated in
Equation 2.15, the head represents roughly 14.9% of the height of the bounding box. (Image created
by the author)

these two examples we can infer that the taller the bounding box surrounding the person, the

stricter (and therefore better) PCKh@0.5 is than PCK@0.1. Therefore, Figure 2.20 represents

the upper bound for the advantage of PCKh@0.5 over PCK@0.1 (since there are no bounding

boxes that can be taller than a person standing upright with arms overhead, assuming that

the bounding box always tightly surround the person). To quantify this upper bound, we first

need to calculate the height of the bounding box (normalised to the height of the person).

If we consider that the length of the arm-forearm-hand segment is 38.85% of the height of a

person [175], and if we assume that it starts at the same height as the base of the neck, we can

estimate the height of the box (normalised to the height of the person) to be:

Heightbox = heightperson − heightneck+head + lengtharm = 1− 0.1075 + 0.3885 = 1.28 (2.16)

Since we normalised this value to the height of the person, we can now estimate that the height

of the head (which is 6% of the height of the person) is 6/1.28 = 4.69% of the height of the

bounding box. In this case, then, PCKh@0.5 is equivalent to considering 2.35% of the height

of the bounding box. Therefore, PCKh@0.5 is, at most, about four times more strict a metric
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Figure 2.20: In this case, as calculated in Equation 2.16, the box is 1.28 times the height of the
person, making the head represent 4.69% of the height of the box. (Image created by the author)

than PCK@0.1.

The lower bound of the advantage of PCKh@0.5 over PCK@0.1 is harder to estimate. For

example, if the spine of the stick-man in Figure 2.19 were rounded or inclined, the contribution

of the height of the segments to the height of the box would be harder to calculate. Similarly,

for images that do not include a full person (such as Figure 2.15), the proportions may change

significantly. Nevertheless, we can safely conclude that, at least for images where the entire

person is visible, PCKh@0.5 will always be a stricter metric than PCK@0.1—up to about four

times stricter, for images in which the person is perfectly upright.

The following sections will describe how the state-of-the-art algorithms for 2D pose detec-

tion work. The goal of these sections is not to recount in detail all the advancements that

have been made in the field of 2D pose detection over the past few decades; such a survey can

already be found here: [164]. Rather, the discussion will focus on three aspects: the type of
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input that algorithms use; the type of labels they use and the type of output they produce; and

the architectural design choices that seem to be most effective for 2D pose detection. This last

point means that the following sections will not discuss every algorithm available for 2D pose

detection. The goal of these sections is to disentangle an algorithm’s position on a leaderboard

(which may be affected by the amount of hardware used or extra training data it had access

to) from the effectiveness of its architecture. For example, many papers have been published

that make slight changes to the Stacked Hourglass architecture (described in Section 2.5.5.1),

achieving slightly better results than it. Although relevant, these slight improvements only

indicate that the Stacked Hourglass model can be optimised even better, but they do not offer

new, standalone design ideas, and therefore will not be covered in the next sections.

2.5.3 Inputs

The MPII dataset comes with bounding boxes that tightly enclose each person in an image.

Most algorithms rely on the presence of said bounding boxes, around which they crop the image.

This leads to every cropped image having a different resolution, since most images would have

bounding boxes of different sizes. Because deep learning models expect all inputs to have the

same dimensions, the cropped images are then resized to the same desired resolution—usually

256 x 256 pixels [5,6,163,170–173,176,177]. If the desired resolution’s ratio is not the same as,

or a multiple/factor of, that of the cropped image, the process of resizing will distort the image

(see Figure 2.21).

Most authors employ this ‘cropping-resizing’ strategy without discussing whether it may be

harmful to distort the input images in such a way. Whereas cropping around the bounding box

does not alter the spatial characteristics of the subject, resizing the image to a different ratio

does. In Figure 2.21, the relationships between the position of the joints—and consequently

the lengths and proportions of the limbs—is not the same for the cropped image and for the

resized image. Of what consequence this might be, is not clear. However, these images are the

examples from which a model is expected to learn the relationship between joints well enough

to be able to detect them even in case of occlusions. Therefore, distorting the input images
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Figure 2.21: Most 2D pose detection algorithms first crop an input image around a given bounding
box, then resize the cropped image to fit a desired resolution. Unless the ratio of the desired resolution
is a multiple (or a factor) of the bounding box, this process will cause the image to be distorted. (Image
created by the author)

might make it harder for the model to learn realistic representations of human pose.

However, if the images are to be cropped around the bounding boxes, resizing them to a

common resolution is a mandatory step, as deep learning models need batches of data of uniform

shape. The question, therefore, is whether the benefits of cropping around the bounding box

outweigh the potential harm of distorting the image by resizing it. The most obvious benefit

of the cropping-resizing strategy is that, in most cases, it drastically reduces the size of the

inputs to the network. For the images of MPII, which have a mean resolution of 771 x 1330

pixels, cropping-resizing to 256 x 256 would correspond to a 15-fold decrease in size, which is

very significant for the purposes of training a deep learning model. For HD images like the

one in Figure 2.21, which is of a resolution not uncommon for biomechanics research [178],

cropping-resizing to 256 x 256 pixels would correspond to a 28-fold decrease in size. Let us

consider the case of an image with resolution 900 x 2048 pixels and a bounding box of resolution

256 x 256—our desired resolution. By cropping around the bounding box, we would be giving

our model the 3.56% of the image that actually contains useful information, and discarding the

96.44% that is just background. This means that cropping-resizing not only makes training

faster by giving the network smaller inputs; it also makes training more efficient, as a substantial

amount of useless information is eliminated. Let us now imagine a second 900 x 2048 pixels
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image, with a bounding box of 512 x 512 pixels. By cropping-resizing to 256 x 256 pixels we

would eliminate the 85.78% of the image that was useless background, but also 50% of the

informative pixels contained in the bounding box. An obvious solution would be to crop-resize

such HD images to a resolution higher than 256 x 256—for instance, 512 x 512. Though the

computational cost of processing the cropped-resized inputs would double, it is likely that more

information would be retained, since it would be less likely that the resolution of the bounding

box was much higher than the target resolution of 512 x 512. Ultimately, therefore, the choice

of target resolution should be made with two things in mind: the hardware available (the more

memory on the GPU(s), the higher the target resolution should be); and the average size of the

bounding boxes in the dataset (the larger the bounding boxes, the higher the target resolution

should be—ideally, as large as the mean bounding box resolution). However, choosing the

target resolution based on the mean resolution of the bounding boxes in the dataset implies

that the dataset is static (i.e. the number of images in it does not change over time) and that

we can measure the mean of its bounding boxes before choosing the target resolution. This

condition would always be met during training and testing, since during these phases the data

that our model sees are static and have been labelled beforehand. However, if we want to apply

our model to new, unlabelled data, we would not know a priori the average size of the new

bounding boxes. Therefore, the best course of action might be as follows:

1. Find (or build) a dataset that is representative of the desired task, both in terms of image

resolution and contents of the images. For example, for the purposes of markerless motion

capture of swimmers one would need a dataset that features HD images of swimmers

underwater;

2. If the dataset does not come with bounding boxes, label them (manually or using an

off-the-shelf tool);

3. Calculate the mean resolution of the bounding boxes in the dataset (let us call this variable

mean box res);

4. For images that have bounding box resolutions > mean box res, resize the image (main-

taining the aspect ratio) so that their bounding box resolution becomes < mean box res);
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5. Crop-resize all images using mean box res as the target resolution;

6. Train the model;

7. When new data are fed to the model for inference, use an off-the-shelf algorithm to

identify bounding boxes, then crop-resize all images using the mean box res that was

estimated during training; if enough data were used for training, this value should still

be representative of bounding boxes found in new, similar data.

Following these steps would reduce the computational cost of training, while reducing the

amount of information lost due to cropping and the amount of distortion due to resizing.

2.5.4 Labels and Outputs

The joint annotations for the images in the MPII and LSP datasets come in the form of (xj, yj)

pairs, where xj and yj are the coordinates of joint j in a given image. Most authors convert these

annotations into heatmaps: separately for each joint, they create a 2D Gaussian distribution

(described by the equation below) centered around the point (xj, yj):

g(x, y) =
1

2πσ2
exp(−x

2 + y2

2σ2
) (2.17)

where σ is the standard deviation (in pixels; this value is usually set to 1 [6, 172]) of the

distribution. If N joints were labelled, this would lead to the generation of N heatmaps, one

per joint, each with the same resolution as the input image. In each heatmap, the value of each

point represents the probability that it is the original label (xj, yj). By centring the Gaussian

on (xj, yj), the value of the point (xj, yj) is set to 1, whereas the points around it assume values

p ∈ [0, 1) that decrease according to Equation 2.17; specifically, points that are 2σ pixels away

from (xj, yj) will have a value of approximately 0.05. These N heatmaps can then be put

together in the same image for better visualisation, as in Figure 2.22. A neural network trained

with heatmaps as labels will learn to produce heatmaps as its output. These outputs are then
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converted back into the format (xj, yj) either by taking the highest value inside each heatmap,

or by using a second neural network to learn the mapping from heatmaps to (xj, yj) pairs [163].

Figure 2.22: Given an input image (left) and a set of joint annotations (xj , yj), one heatmap per joint
can be obtained by creating a 2D Gaussian centred at (xj , yj). In the image on the right, all heatmaps
appear in the same image to make their visualisation easier; normally, however, the N heatmaps would
be processed separately by a neural network. (Image created by the author)

Tompson et al. [179] are often accredited as the first authors to use heatmaps as labels

instead of pure (x, y) pairs [5, 170, 172]. In their paper, Tompson et al. justify their use of

heatmaps with the following statement: ‘the mapping from input RGB image to XY location

adds unnecessary learning complexity which weakens generalization. [...] Since the network

is forced to produce a single output for a given regression input [i.e. an (xj, yj) pair ], the

network does not have enough degrees of freedom in the output representation to afford small

errors which we believe leads to over-training (since small outliers will contribute to a large

error in XY)’. As I will endeavour to demonstrate in the following paragraphs, this explanation

is incomplete. After Tompson et al.’s seminal paper, most authors adopted heatmaps as the

default labels with which to train their models, but never pursued any explanation of why

heatmaps should be used—nor, indeed, how. This lack of a strong theoretical understanding

of the benefits of heatmaps has led to their being used inefficiently.
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What Tompson et al. failed to state explicitly is that heatmaps work particularly well as

ground truths for 2D pose detection because they encode in the label a prior belief that the

label may be inaccurate. If we were absolutely certain that all of our labels were accurate, we

would want the model to be penalised even for ‘small errors’. But because the labels in most 2D

pose detection datasets are inherently unreliable (since the process of labelling is complicated

by the presence of clothing, occlusions, and foreshortening), modelling this uncertainty by

using heatmaps allows the neural network to not be punished for incorrect predictions that it

might have learned from noisy labels. In other words, using heatmaps relaxes the strictness

of supervision44, allowing the model to learn a more general representation of 2D pose instead

of overfitting labels that may be noisy to begin with. This concept can be rephrased using a

terminology more akin to the one used by Tompson et al.: using heatmaps is a special form

of data augmentation that lets low-confidence labels be used, labels that allow the model to

circumvent our uncertainty in the original binary labels.

With this new rationale for the use of heatmaps, we are better equipped to discuss what

is the most appropriate use of heatmaps as labels for 2D pose detection algorithms. Let us

begin by considering the case of Rafi et al. [170], who, instead of generating heatmaps by using

2D Gaussians, set to one the values of all pixels in a circle with a radius of eight pixels and

centred on (xj, yj); all the pixels outside the circle were set to zero. Although this approach

still succeeds at augmenting the labels—thus alleviating the strictness of supervision—using

a flat-valued circle centred at (xj, yj) is likely too extreme a measure: it gives freedom to

the model to be incorrect by eight pixels, with no penalty. The elegance behind the use of

a heatmap is that if the model’s guess is within 2σ from (xj, yj), the algorithm is penalised

less than normal but it still receives feedback that allows it to improve (i.e., its loss function is

greater than zero). Bulat et al. [163] propose a modification of Rafi et al.’s use of heatmaps.

First, for each joint they set to one the values of all the pixels inside a circle of radius r = 10 and

centred on (xj, yj); these heatmaps are then used as inputs to train a neural network, which

learns to output similar heatmaps. The outputs of this neural network are then used as inputs

for a second neural network, whose labels are again heatmaps, but this time generated using

44Machine learning models are said to be ‘supervised’ when the examples they are trained on have associated
labels.
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a Gaussian with σ = 5. This approach is strictly superior to the one adopted by Rafi et al.,

because the high degree of uncertainty encoded in the first stage of the model is mitigated by

the second stage, which refines the uncertainty by modelling it as a Gaussian distribution. This

brings us to an important consideration: how to set the value σ of the Gaussian distribution.

In Tompson et al.’s paper, σ was set to 1.5 pixels; in Rafi et al.’s, it was set to 5; in several other

papers it is set to 1 [5,6,172]; in many others, a value for σ is not specified [171,173,180–183].

Figure 2.23 offers a visualisation of the effect of different values of σ. Essentially, the greater

the value of σ, the less confident we are about the original labels (xj, yj) and the less strict the

supervision will be.

Figure 2.23: As we increase σ, the area of non-zero pixels increases. The images in this figure have a
resolution of 50 x 50 pixels but were smoothed using a filter to make them easier to interpret. (Image
created by the author)

What motivates authors to choose any given value of σ? Bulat et al. [163] justify their

choice of σ = 5 by stating that that value was found empirically; the same justification is

given by Belagiannis et al. [184], who, however, reached a value of 1.3 instead. Empirical fine-

tuning of parameters is at the core of deep learning, and should not be discouraged. However,

something is missing from this approach. As stated earlier, the greater the value of σ, the less

confident we are about the original labels. By fixing σ to one value for all joints of all images,

we are stating that we have the same amount of uncertainty for all joints of all images. This

is clearly not true. Crucially, it is not true because of the presence in most images of occluded

joints, the labelling of which must inevitably have been less reliable than that of visible joints.

I would argue, then, that the heatmaps for occluded joints should be created by using a value

of σ greater than that used for creating heatmaps of visible joints. The two values could then

be fine-tuned empirically, perhaps starting with σoccluded = 5 and σvisible = 1. This approach is

only viable when training on datasets that provide a is visible label for each joint, like MPII.
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2.5.5 Effective Architectural Designs

2.5.5.1 The ‘Stacked Hourglass’ Architecture

The publication of the Stacked Hourglass algorithm [5] was as important for the field of 2D pose

detection as that of the U-Net algorithm [111] was for the field of biomedical image segmen-

tation45. Indeed, the Stacked Hourglass algorithm is the de facto baseline model for 2D pose

detection: it is often used as an intermediary step in complex pipelines that require automatic

2D pose detection (such as 2D-to-3D algorithms [21,54,57]), and many newer algorithms for 2D

pose detection are essentially modified Stacked Hourglass networks [6–8, 185, 186]. The basic

module of the Stacked Hourglass network is an encoder-decoder pair (see Figure 2.24): in the

encoder, a series of convolutional and pooling layers encode the input image into progressively

higher-level features, which have progressively lower resolution and higher semantic content;

then, the features of the deepest layer of the encoder are upsampled (or ‘decoded’) some num-

ber of times, so as to restore the original shape of the image46. The features of the decoder

are, therefore, the highest-level features of the encoder, upsampled once at each layer of the

decoder. Because in the Stacked Hourglass network the encoder reaches very low resolutions

and the decoder is a perfectly symmetrical copy of the encoder, an encoder-decoder pair takes

the name of ‘hourglass module’. Several hourglass modules can then be stacked together in

series, feeding the output of the decoder of hourglass Hi−1 to the encoder of hourglass Hi. The

highest-resolution features of each hourglass are subjected to intermediate supervision (i.e. they

produce heatmaps to which a loss function can be applied) and are connected to one another

via skip connections.

Why is the Stacked Hourglass design effective? In particular, it is interesting to consider

why it is more effective to stack hourglass modules than to use a single one, as in a U-Net

network. The most obvious answer is that by stacking multiple hourglasses we increase the

capacity of the model. A model’s capacity is a measure of the complexity of the functions that

45Interestingly, the two algorithms were published within 12 months of one another and share striking similar-
ity in their architecture. In fact, the Stacked Hourglass model could effectively be renamed to ‘Stacked U-Net’,
as the ‘hourglass module’ has almost the same architecture as a U-Net with ResNet [98] as its backbone.

46The process of first encoding and then decoding information within a network is sometimes referred to as
‘top-down, bottom-up inference’ [5, 8].
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Figure 2.24: Architecture of the Stacked Hourglass network. (Image adapted from [5]) Note that a
single encoder-decoder couple would form a structure almost identical to U-Net.

the model can learn [187], and it can be roughly estimated using the number of parameters

of the model: larger models with more parameters tend to have higher capacity47. If the

effectiveness of the Stacked Hourglass model was entirely attributable to an increase in the

number of parameters with respect to a model like U-Net, it would mean that a simple way to

generate a better model would be to stack more and more hourglass modules, as many as the

hardware allowed. But the same could be said about almost any model: more computational

power (in the sense of number of parameters) would almost always lead to better results,

as per Sutton’s Bitter Lesson [189]. In the original Stacked Hourglass paper, Newell et al.

address this concern by comparing three Stacked Hourglass models with the same number of

parameters but different numbers of hourglass modules: two, four, or eight (see Figure 2.25).

The results of their experiment show a modest but relevant improvement as more hourglass

modules are used: on the MPII dataset, the two-stack, four-stack, and eight-stack models

reach PCKh of, respectively, 87.4%, 87.8%, and 88.1%. Furthermore, halfway through each

network the corresponding PCKh values of the intermediate predictions were 84.6%, 86.5%,

and 87.1%. These results demonstrate that the accuracy of the Stacked Hourglass network

is not entirely attributable to increased capacity, and that the repetition of several hourglass

modules also plays an important role. In particular, it demonstrates that stacking several

hourglass modules and forcing them to produce intermediate heatmaps allows the model to

develop a high-level understanding of the output early on in the network. This is particularly

47This measure of capacity is quite informal and not always accurate, as the capacity of a model depends on
factors other than the number of parameters—for example, it depends on how these parameters are connected.
A more mathematically rigorous measure of capacity is the Vapnik—Chervonenkis (VC) dimension [188], which
however can only provide a loose lower bound on the generalization error of the model [187].
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Figure 2.25: From top to bottom: a two-, four-, and eight-stack Hourglass network. The number of
parameters is the same for each network. This is achieved by doubling the number of layers in each
hourglass module every time the number of stacks is halved. For example, the four-stack model has
twice as many layers per module as the eight-stack model. (Image adapted from [5])

important for 2D pose detection, in which the output is structured: the relationship between

the position of the joints is deterministic, not casual (except, perhaps, for Cirque du Soleil

contortionists). In other words, having information about where a joint is (the left elbow, for

example) can help us restrict the space of possible locations for a related joint (like the left

wrist) to ones that are anatomically feasible. Therefore, the ability of the Stacked Hourglass

model to learn a high-level representation of human pose early on in the network allows it

to reuse this high-level information in all subsequent modules, which progressively refine it

using the constraints learned from the previous modules. This is achieved by two key design

choices found in the architecture of the Stacked Hourglass: the presence of several stages of

deep supervision, which allow the generation of intermediate heatmaps; and the repetition of
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identical blocks (the hourglass modules), which ensures that the intermediate heatmaps all have

the same resolution, which in turn means that subsequent modules have to learn more refined

representations while maintaining the same resolution.

2.5.5.2 Structured Output Priors

By progressively refining representations learned early on, the Stacked Hourglass model is able

to learn some form of structure in its output. However, the structure of the output is not learned

explicitly and cannot be easily defined. For example, we do not know what kind of structured

output is learned after four stacks of hourglass modules, or five, nor how it differs from that

learned after seven stacks. Instead, the network is left to learn its own function from the data.

A different approach consists in explicitly guiding the network towards a structured output, in

which there is a relationship between the position of connected joints; in statistical terms, we

would say that we are forcing on the model a prior belief that the output function should be

structured in a specific way. In early works on 2D pose detection [135, 167, 168, 174, 190–193],

the strength of this prior was excessive: it forced the output to follow a rigid structure, in which

the relationship between joints followed strict anatomical or statistically learned mathematical

functions. In modern computer vision approaches, forcing such a strong prior on a model is

seen as bad practice [189]: since our understanding of a computer vision problem could be

flawed or incomplete, we want to avoid forcing it on a model, and instead allow it to explore

all possibilities just by looking at the data. However, this ‘dogma’ of modern computer vision

approaches is more pertinent to some applications than to others. For example, in object

detection, it is exceptionally difficult to manually engineer features that encode our prior belief

of what a dog or a cat or a boat ought to look like, and it is quite possible that we would

not be able to capture all the nuances of those categories and may thus hamper the learning

of our model. In the case of 2D pose detection, however, there are ways of enforcing very

weak priors that can nonetheless restrict the space of possible poses. For example, the model

of Gkioxari et al. [182] predicts joint locations sequentially: the prediction of each joint is

dependent on all previously predicted joints. Mathematically, let Y = {Yj}N−1j=0 be the the N

joints to be detected, given an input image X and the labels (xj, yj) for each joint j. The
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model of Gkioxari et al. tries to learn the following probability distribution:

P (Y = y |X) = P (Y0 = y0 |X) ΠN−1
j=0 P (Yj = yj |X, y0, y1, ..., yj−1) (2.18)

This type of prior is ‘weak’ because it only tells the model that there should be a relationship

between the joints and it tells it the direction in which the relationship should be expressed

(i.e. joint Yj has information useful for predicting joint Yj+1, but not necessarily for predicting

joint Yj−1); it does not tell the model what kind of relationship it should learn, something the

model can still learn freely from the data. The model of Gkioxari et al. achieved 85.0% PCKh

on MPII, which is substantially lower than the 90.9% achieved by Stacked Hourglass. However,

the comparison is not fair: the novelty of Gkioxari et al.’s work is in the way they represent the

output, but the architecture they used is much smaller than that used in Stacked Hourglass.

In fact, Gkioxari et al.’s model has fewer parameters than a single hourglass module.

A better way to understand if explicitly enforcing a structured output is beneficial is by

analysing the work of Tang et al. [6]. In their paper, Tang et al. propose to use an eight-

stack hourglass network with a branching output. The number of branches corresponds to the

number of groups into which joints can be divided based on their relationship with one another.

For example, using our understanding of human anatomy we could split the 16 joints labelled in

MPII into six groups: (1) head top, upper neck, thorax; (2) left wrist, left elbow, left shoulder;

(3) right wrist, right elbow, right shoulder; (4) left knee, left ankle; (5) right knee, right ankle;

(6) left hip, right hip, and pelvis. With this grouping, the network would have six separate

branches, each predicting the three joints associated with that group. Another way to group

the joints is by calculating their mutual information, which is expressed by the equation:

I(lm, ln) =
∑
lm∈L

∑
lm∈L

p(lm, ln)log

(
p(lm, ln)

p(lm), p(ln)

)
(2.19)

The mutual information of two random variables lm and ln quantifies the amount of infor-
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mation that is obtained about one variable by observing the other48. Using the joints labelled

in the MPII dataset, Tang et al. computed the table in Figure 2.26. They then performed

spectral clustering [194] on the data in the table to split the joints into arbitrarily large clusters

of associated joints. For example, by forcing the spectral clustering to divide the joints into six

clusters (the elements of which showed higher mutual information with one another than with

the elements of any other group), Tang et al. found the following grouping: (1) head top, upper

neck; (2) thorax, left shoulder, right shoulder; (3) left wrist, left elbow; (4) right wrist, right

elbow; (5) left ankle, right ankle, left knee, right knee; (6) left hip, pelvis, and right hip. The

fact that the grouping found using mutual information is different from the one found using our

intuition is a reminder of the fact that enforcing hand-crafted priors onto deep learning models

can be dangerous: we might force the model to learn patterns that are not those naturally

found in the data. The advantage of using mutual information and spectral clustering is that it

allows to enforce the same strength of prior (the model is still forced to predict outputs divided

into six groups), but instead of using a prior derived from our intuition, it allows us to derive

one from the data, which means that it will be much more objective. Indeed, Tang et al. found

that the grouping strategy based on mutual information always outperformed the hand-crafted

grouping strategy under different numbers of clusters.

The comparison with the Stacked Hourglass network is much more direct this time, since

the main difference between the two is in how their output is structured. Since Tang et al.’s

model outperforms Stacked Hourglass by 1.8% PCKh, we can safely conclude that enforcing

a weak prior on the model in the form of a structured output is beneficial for 2D pose detec-

tion, as it confines the model to exploring solutions that are compatible with the enforced prior.

2.5.5.3 Parallel Stacking

In the Stacked Hourglass network, the hourglass modules are stacked in series (see Figure 2.24).

This means that in each hourglass module the information is first encoded down to very low

48 Unlike Pearson’s correlation coefficient, mutual information can capture non-linear associations between
variables, making it more suitable for the purposes of training a neural network [6].
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Figure 2.26: Mutual information between each pair of joints, as calculated by Tang et al. [6] using
the labels in the MPII dataset. All values are normalised to the range [0, 1]. (Image adapted from [6])

resolutions, and then must be restored to the original input resolution. An alternative approach,

proposed by Sun et al. [7], is to stack modules in parallel rather than in series (see Figure 2.27).

The blocks in Figure 2.27 are residual blocks, the same ones used to build the encoder of an

hourglass module. Given their arrangement in parallel, however, a decoder is not necessary: the

information is processed simultaneously across different levels of resolution, and fused together

through multi-level skip connections. This parallelisation strategy is reminiscent of the success

of Convolutional Networks over Fully Connected Networks, success which showed that parallel

processing of information is much more efficient than in-series processing. In this case, too,

parallelisation proved to be effective: Sun et al.’s model, which has fewer parameters than an

eight-stack Hourglass network, outperforms it by 1.4% PCKh on MPII.

An even more remarkable improvement over Stacked Hourglass was achieved by Su et

al. [8], who also use parallelisation in their architecture, though in a simpler way. Instead of
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Figure 2.27: Architecture of the model proposed by Sun et al. [7]. At each parallel branching, the
resolution of the feature maps is halved and the number of their filters doubled, as would happen in
the encoder of an hourglass module. (Image adapted from [7])

completely re-structuring Stacked Hourglass, they stack in parallel—rather than in series—

several hourglass modules (see Figure 2.28). The key difference between Su et al.’s architecture

and that of a Stacked Hourglass is that in Su et al.’s network each module has access to the

output of the previous module as well as to the original input. Therefore, this architecture is

not entirely in parallel and not entirely in series, but a combination of the two: the connection

in series is given by the fact that the output of a module is given as input to the next; the

connection in parallel is given by the fact that all modules have access to the original input.

Su et al.’s algorithm achieved a remarkable 93.9% PCKh on MPII, 3% higher than Stacked

Hourglass. However, at least 1.5% PCKh (as visible from the graphs found in Su et al.’s paper)

is attributable to the fact that, before testing on MPII, they trained the model on the MPII

training set but also on the HSSK dataset. Since the results published by most other researchers

are obtained by training models exclusively on MPII, it is not correct to compare Su et al.’s

algorithm to others. Nevertheless, given that Su et al. attribute roughly 1.5% PCKh to their

training on the HSSK dataset, their adjusted result (92.4%) with training only on MPII would

still be a marked improvement over Stacked Hourglass.
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Figure 2.28: Architecture of the model proposed by Su et al. [8]. Here, N hourglass modules are
stacked in parallel rather than in series. (Image adapted from [8])

2.5.5.4 Adversarial Augmentation

Data augmentation is one of the most commonly used strategies to reduce the generalisation

error of a neural network [187]. It consists in performing certain types of transformations on

all the images in a dataset, thus generating new data samples. For example, every image

could be flipped vertically and horizontally, thus creating a dataset with three times as many

images as it originally had. In 2D pose detection, the transformations typically performed

are left-right flipping, colour jittering, random rotation, and random scaling—which essentially

means that the image is zoomed in or out by a certain amount, and then resized to the desired

resolution [5, 7, 170, 176, 185, 195]. For transformations that require randomisation (rotation,

colour jittering, and scaling), an upper and lower bound are given (for rotations, these might

be -30°and +30°), and samples are then drawn from a Gaussian distribution thusly bounded.

Rafi et al. [170] found that using narrower bounds (for example, -5°and +5°of rotation instead

of -30°and +30°) led to a very significant drop in performance when they tested their algorithm

on the FLIC dataset [168], thus illustrating the importance of data augmentation for 2D pose

detection algorithms.
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Nevertheless, traditional data augmentation schemes are fundamentally flawed, for two

reasons. First, they are disentangled from the optimisation of the algorithm: they are used

as a pre-processing step, they do not change dynamically during the training of the network.

Since we cannot use the entire Gaussian distribution of augmentations (the computational

cost of doing so would be unmanageable), we have to select random samples from it, but the

random samples we select might not be the ones that would have helped the training of the

algorithm the most. Because there is no communication between the data augmentation phase

and the training phase, we do not have any guide for sampling the data augmentation better

than random selection. Second, by sampling the transformations from Gaussian distributions,

traditional data augmentation schemes tend to include very few (if any) examples from the

long-tailed portion of the Gaussian distribution, which may be a useful region to explore—for

instance, it would make the algorithm more robust against outliers in the data. In the specific

case of 2D pose detection, traditional data augmentation schemes also have a third limitation:

they do not address the problem of occlusions, which is one of the key challenges of this task.

Ideally, we would want a data augmentation scheme that made 2D pose detection algorithms

more robust against occlusions. An attempt at such an augmentation scheme was offered by Ke

et al. [172], who, as a data augmentation technique, cropped parts of the background of images

and placed them—in the same image—on top of visible joints, thus artificially occluding them

(see Figure 2.29). The purpose of this was to make the algorithm more robust to occlusions

by artificially creating more in the data. Furthermore, they cropped patches in which joints

appear, and pasted them in the background of the same image, labelling the pasted pixels

as background. The purpose of this second patch was to make the algorithm ignore portions

of the background that may look like people. This approach has two limitations. First, the

patches used come from the same image, meaning the added variance is limited. Second, the

patch containing a joint and placed in the background is not realistic: only a few of its pixels

contain information relative to the joint, and a model that would have learned a structured

output would not find such a patch difficult to classify as background, as all the pixels around

it are disconnected from it. Nevertheless, Ke et al. trained a modified version of the Stacked

Hourglass network using this data augmentation scheme and achieved 92.1% PCKh on MPII—a
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1.2% improvement over Stacked Hourglass.

Figure 2.29: In this image, the right joint was artificially occluded by using a patch of pixels coming
from the background. Furthermore, a patch from a different image containing the pixels around a
joint (in this case, an elbow) was added to the background and labelled as such. The purpose of the
first patch is to make the algorithm more robust to occlusions by artificially creating more in the data;
the purpose of the second patch is to make the algorithm ignore portions of the background that may
look like people. (Image created by the author)

The idea of addressing occlusions via data augmentation was taken further by Bin et al.

[195], who structured it as an adversarial learning scheme. First, they used an algorithm to

segment body parts from images in the LIP dataset [196]. This allowed them to collect a large

database of realistic body parts. Their goal was then to paste these segmented body parts onto

the images of MPII and LSP to create more occlusions and more difficult training examples

(see Figure 2.30). This approach would already be an improvement over the method of Ke

et al., since the patches added to the images come from different images (thus increasing the

variability added by the augmentation) and are realistic, full body segments (and thus are

harder for the network to classify as background). However, the true innovation of Bin et al.’s

augmentation scheme lies in the way the augmentation is done. Instead of randomly sampling

from the database of segmented body parts and randomly assigning the samples to input images,

they devise an adversarial learning scheme. First, they take a pre-trained 2D pose detection
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Figure 2.30: An example of the type of occlusions generated by the data augmentation scheme
proposed by Bin et al. (Image created by the author)

network [7]; let us call this network the discriminator. Then, they build a simple network that,

given an image, can paste in a random position a segmented body part sampled randomly from

the database; let us call this network the generator. The output of the generator is then fed into

the discriminator, which predicts the joint locations for the augmented image. If the predictions

are correct, it means that the augmentation sampled by the generator was not effective, and the

generator is discouraged from producing similar augmentations. If the predictions are incorrect,

it means that the augmentation sampled by the generator was effective, and the generator is

encouraged to produce more outputs of that kind; at the same time, the discriminator, which

failed on this example, can learn from it and improve its performance. Using this adversarial

scheme allowed Bin et al. to sample types of augmentation that directly target occlusions and

that directly target the weaknesses of the baseline network. In other words, the sampling is

not at random from a distribution that may or may not be useful for the generalisation of the

network; it dynamically changes as the discriminator improves, addressing exactly the areas

that it is weak in. This data augmentation scheme allowed Bin et al. to reach 94.1% PCKh

on MPII, which as of October 2020 grants them the top position on the MPII leaderboard

(http://human-pose.mpi-inf.mpg.de/#results). This result is particularly significant because it
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represents a 1.8% improvement over the baseline model they used as a discriminator—which,

coincidentally, was Su et al.’s algorithm (described in Section 2.5.5.3), which already was a

state-of-the-art algorithm without Bin et al.’s augmentation scheme.

2.6 Conclusions

This chapter started by introducing the three criteria by which the validity of a motion capture

system can be assessed: speed (the systems must be quick to set up and results should be

outputted within a few hours of the recording session); non-invasiveness (athletes must not have

their movement restricted in any way); accuracy (the system must accurately identify the 3D

location of the joint centres). From a brief review on the literature on motion capture systems

(which is presented in more detail in Appendices A to D), it emerged that all ‘traditional’

methods have at least one flaw that makes them sub-optimal for use in swimming research and

as a monitoring and feedback tool:

• Marker-based systems (also known as OSSs) like Vicon or Qualisys arguably respect the

first criterion (though setup times may be high), but violate the second (the presence of

markers substantially increases drag and may restrict movement);

• Sensor-based systems respect the first criterion (though setup times may be high if several

sensors need to be used), but violate the second (the presence of sensors substantially

increases drag and may restrict movement);

• Manual digitisation respects the second criterion (it is a completely non-invasive tech-

nique) but does not respect the first (the computation of parameters is too slow to be

practical);

• Depth-based systems are the least accurate systems, and the setup they require would be

impractical for swimming motion capture.

It was then concluded that the best solution for swimming motion capture would be an

image-based markerless motion capture system—specifically, a generative image-based system,
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since discriminative methods require large amounts of labelled 3D data, which is not readily

available. Evidence shows that for generative methods to perform optimally, two types of

‘intermediate information’ need to be extracted from images: the silhouette of the person, and

the locations of their joints in camera coordinates (i.e. the ‘2D joints’ or ‘2D pose’). Due to the

No Free Lunch Theorem, existing algorithms for silhouette extraction and 2D pose detection

perform poorly on images of swimmers, because during training they were never shown such

images. Therefore, to develop an image-based markerless system for swimming motion capture,

it is necessary to first develop algorithms well-suited to perform silhouette extraction and 2D

pose detection on images of swimmers.

Consequently, the fields of silhouette extraction and 2D pose detection were reviewed next,

with two goals: to describe the datasets on which these algorithms are usually trained; and to

describe the most effective features of the top-performing algorithms in these two fields. From

the description of datasets, the main observation that can be made is that even the largest and

most popular datasets available (PASCAL VOC for silhouette extraction and MPII for 2D pose

detection) do not contain images of swimmers. This means that swimming-specific datasets had

to be developed during this PhD to train the algorithms that were to be developed. From the

description of the state-of-the-art algorithms, it emerged that Convolutional Neural Networks

(CNNs) are at the core of all modern algorithms for silhouette extraction and 2D pose detection,

indicating that the algorithms to be developed in this PhD likely would need to also be based

on CNNs. In particular, encoder-decoder architectures are at the top of the leaderboards of

both fields of research (ExFuse and DeepLab for semantic segmentation; Stacked Hourglass and

its derivatives for 2D pose detection).

However, in Section 2.3.2 was described a generative method for image-based markerless

motion capture that only requires silhouettes as inputs: the visual hull. The visual hull has

two key advantages over other generative systems: it is relatively easy to implement, and it

does not require 2D joints as inputs. If such a system could be used for swimming motion

capture, then, the only requirements for it would be a dataset and an algorithm for silhouette

extraction (and not also ones for 2D pose detection). Therefore, the next chapter discusses the

visual hull in more detail, to understand why it was ultimately deemed unsuitable for swimming
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motion capture and discarded in favour of generative methods that also require 2D joints to be

labelled.



Chapter 3

Preliminary Research: The Visual Hull

3.1 Introduction

The concept of the visual hull was introduced by Laurentini in 1994 [70]. The visual hull is an

approximation of the volume of an object: its volume will at least equal that of the object, but

in most cases it will be greater. To compute the visual hull of an object, multiple calibrated

cameras pointed towards the object are needed. On each camera plane, the object appears as

a two-dimensional surface bounded by a silhouette. Let us consider the case when only one

camera is used. If we know the position of the camera in a global coordinate system (information

which we obtain by calibrating the cameras) and the position of the object’s silhouette in camera

coordinates, we can imagine to connect the camera’s projection centre with all the points along

the silhouette. If then we extend these rays towards infinity, we define a cone within which the

object must lie (see Figure 3.1). If the process is repeated for multiple calibrated cameras, the

intersection of the cones—all of which represent simultaneous constraints for where the object

can lie—yields an approximation of the volume of the object; this approximation is known as

the visual hull of the object. In biomechanics, the visual hull has been used to study the tennis

serve [71], [72]; to perform gait analysis [69]; to analyse the movement pattern of gymnasts [22];

and by Ceseracciu et al. to measure arm movements during front crawl swimming [23]. The

results of Ceseracciu et al. were unsatisfactory: the least accurate joint of their model was the

86
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Figure 3.1: Illustration of how the visual hull of an object is obtained. Suppose there are three
cameras (C1, C2, and C3) evenly distributed, at a fixed distance, around the object (a cube, in this
case) to be reconstructed. What each camera sees is the two-dimensional shape (here colour-coded
in blue, red, and green) of the object from a particular angle, separated from the background (here
colour-coded in dark grey) by its contour (here colour-coded in black). If, for each camera, imaginary
rays were to connect the origin of the camera (C1, C2, or C3) with each point along the silhouette
of the object, a three-dimensional cone would be formed, within which the original object lies. By
intersecting the cones defined by each camera view, the visual hull is obtained. (Image created by the
author)

shoulder joint, which deviated from the ground truth by a mean of 155 mm, while the most

accurate joint was the wrist, which deviated from the ground truth by a mean of about 56 mm.

One of the sources of error for Ceseracciu et al.’s model was certainly the fact that it used a

mixture of Gaussian method [197] for silhouette extraction. As discussed in Section 2.4.1.1,

such an algorithm cannot deal well with the highly complex and ever-changing background of

a swimming pool, and is likely to give poor, noisy silhouettes.

The extent to which the accuracy of the extracted silhouettes influences that of the recon-

structed visual hull has not been quantified. Grauman et al. [198] and Gall et al. [199] have

suggested that a small segmentation error in even one camera view could have a significant

effect on the reconstructed visual hull. Though the authors did not quantify this ‘significant

effect’, it seems intuitive that higher-quality silhouettes would give higher-quality visual hulls.
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When constructing a visual hull, a 3D point is determined to be part of the visual hull if and

only if its projection lies within the silhouette on all camera views; therefore, one noisy silhou-

ette could spoil the quality of the entire visual hull [200]. In the example in Figure 3.2, however,

even if S1 had been perfect the accuracy of the reconstructed visual hull would have been poor.

As will be discussed in the following paragraphs, the accuracy of a visual hull depends not only

on the accuracy of the silhouettes, but also on the number of cameras and their placement

relative to the object. Most research on the visual hull is conducted in controlled laboratories,

Figure 3.2: In this image, the silhouette (S1) extracted by camera C1 is inaccurate: it contains a hole
in the middle. This inaccuracy is translated into an inaccuracy in the reconstructed visual hull (in
orange). (Image created by the author)

allowing researchers to place a uniform, monochromatic, stable background behind the object

to be reconstructed. This kind of background makes it possible to use basic background sub-

traction methods (see Section 2.4.1.1) to extract the silhouettes of the object [201,202]. Indeed,

silhouette extraction is so trivial under such controlled conditions that several authors who have

published papers on the visual hull did not even mention the silhouette extraction method used

in their studies [203–205]. However, the background found in images of underwater swimmers
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cannot be controlled; instead, it is unstable, making basic background subtraction algorithms

perform poorly (see Figure 3.3). This suggests that if a visual hull (or any other generative

method that relies on silhouettes) of swimmers has to be reconstructed, a sophisticated method

for silhouette extraction must be used.

Figure 3.3: A: reference image used to initialise background subtraction (see Section 2.4.1.1). B:
image containing a swimmer whose silhouette is to be extracted. C: silhouette extracted by hand. D:
silhouette extracted using background subtraction. (Image created by the author)

3.2 Experiments on the Impact of Silhouette Accuracy

on Visual Hull Accuracy

To provide a qualitative answer to the question of how silhouette accuracy impacts visual hull

accuracy, I performed an experiment on the TempleRing dataset1, which contains 47 images

of a plaster reproduction of the ‘Tempio dei Dioscuri’ temple. Each image in the dataset was

taken by the same camera, which was placed away from the object and then rotated around the

object’s vertical axis, for a total of 47 unique camera positions (each separately calibrated) that

defined a circle around the object. I chose to perform experiments on the TempleRing dataset

for two reasons: it contains many camera views, which, as will be discussed later in this section,

is important when reconstructing visual hulls; and the background of the images is almost

1https://vision.middlebury.edu/mview/data
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uniformly black, which makes silhouette extraction easier. This simple type of background

allowed the reconstruction of a ‘baseline’ visual hull (using the algorithm described in [206]),

one for which it is guaranteed that the silhouettes used were as accurate as possible. I then

performed tests in which I deviated from the baseline by artificially altering the silhouettes

so that they included a varying amount of random error. To achieve this, I applied to each

silhouette (separately) a certain number of masks of size 10 x 10 pixels. Each mask was placed

over a random patch of the silhouette, making sure that no two masks overlapped and that

the distribution of masks was not the same for all silhouettes, so as to model only random—

not systematic—silhouette inaccuracies. Each mask changed the values of the pixels of the

silhouette it covered: if a pixel covered by a mask was originally labelled as background, the

mask would label it as belonging to the silhouette; if it was originally labelled as belonging

to the silhouette, the mask would label it as background (see Figure 3.4). Therefore, each

Figure 3.4: Left: original image. Middle: silhouette (considered to be as accurate as possible). Right:
20 binary masks (10 x 10 pixels large) were applied randomly to the silhouette and to the background,
changing the accuracy of the silhouette’s segmentation by about 0.1%. (Image created by the author)

mask represents a randomly generated error in the segmentation of the silhouette. The size of

the masks was chosen so that they represented errors that, while small enough to reasonably

occur in reality, were not so small that they might be viewed as Gaussian noise. The focus

of the experiment was to understand how visual hull accuracy varied as the quality of the

silhouettes was lowered. For example, given that the images in the TempleRing dataset have

a resolution of 480 x 640 pixels, using twenty masks of size 10 x 10 would result in about a
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0.1% decrease in silhouette accuracy. Would the visual hull reconstructed with these slightly

worse silhouettes also be slightly worse? What if the decrease in silhouette accuracy was 1%,

or 10%? The qualitative results of this experiment are reported in Figure 3.5, which shows that

Figure 3.5: Qualitative interpretation of the effect of silhouette accuracy on visual hull accuracy.
The top left image is one of the images in the TempleRing dataset. Every other image was obtained
by reconstructing a visual hull from the TempleRing dataset using silhouettes that were altered by a
percentage indicated by the number reported next to each image. (Image created by the author)

for silhouette errors up to 1% there is no substantial change in visual hull accuracy. However,

for silhouette errors between 2.5% and 5% the reconstructed visual hull is noticeably worse,

and for silhouette errors of 10% the reconstructed visual hull is poor. In Figure 3.3, images C

and D differ by 75% (meaning 75% of the their pixels have opposite labels); even when cropped

around the swimmer (which removes most of the noise in image D while not altering the quality

of image C), the two images differ by 54%. This experiment thus provides qualitative results

that strongly suggest that: 1) silhouette accuracy plays an important role in determining the

accuracy of the reconstructed visual hull; in particular, silhouettes containing errors above 2.5%

might give visual hulls that are too inaccurate; 2) background subtraction performed on images

of swimmers can cause errors in the silhouettes above 2.5%, meaning that this algorithm cannot

be used to obtain the silhouettes for the reconstruction of a visual hull.
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3.3 Other Factors Impacting Visual Hull Accuracy

Silhouette accuracy is not the only factor that contributes to the accuracy of a visual hull.

It is easy to see from Figures 3.1 and 3.2 how the number of cameras available, as well as

their position relative to the object, greatly influences the accuracy of the reconstruction.

Mündermann et al. are the only authors to date to have investigated the effect of camera

number and position on the accuracy of the reconstruction of visual hulls of humans, and

the results of their study are often cited as guidelines for determining how many cameras

to use and where to place them when reconstructing visual hulls in biomechanics [22, 23].

In particular, Mündermann et al.’s study provided a lower bound (eight) for the number of

cameras needed to obtain acceptable results, and an upper bound (16) above which using more

cameras does not result in a meaningful increase in visual hull accuracy. The lower bound

is of particular importance, because it defines the bare minimum equipment that researchers

must use if they wish to reconstruct visual hulls. As an example of the consequences of using

fewer than eight cameras, Mündermann et al. estimated that the volume of the visual hull of

a person reconstructed using only four cameras is about 1.2 times larger than the true volume

of the person (even if using highly accurate silhouettes). Equipped with these guidelines, we

can now identify a second source of error in Ceseracciu et al.’s study on the reconstruction of

visual hulls of swimmers: they only used six cameras, thus likely overestimating the volume of

the swimmers’ arms.

Having to use 8-16 cameras infringes criterion 1—speed—from Section 2.2.1. It takes four

to six hours to set up eight cameras underwater, between placing the cameras in waterproof

housings, mounting them on tripods, finding the best location for each camera (potentially de-

pending on the length of the cables), carefully putting them underwater at the desired depth,

focusing them, and calibrating them. Furthermore, unlike for land-based laboratories in which

cameras might only need to set up once and re-calibrated before each use, it is not possible to

leave cameras permanently in a public swimming pool, meaning the system would need to be

set up and dismantled each time it was to be used. Furthermore, a 16-camera system (which

ultimately is the recommendation given by Mündermann et al.) would be costly: given that
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during the course of this PhD only eight cameras were available and that each camera + water-

proof housing costs roughly £2,5002, buying enough equipment to satisfy the recommendations

of Mündermann et al. would have cost over £20,000.

Another aspect analysed by Mündermann et al. was how to arrange the cameras around

a person to obtain the most accurate visual hull possible. Their results showed that the best

camera arrangements are a hemisphere or circle centered around the person (with a hemisphere

leading to slightly better results for # cameras > 16). However, all their tests were conducted

with the participants standing upright. Therefore, when they refer to a ‘circular’ arrangement

of cameras they mean that the cameras are to be placed in a circle that lies on a plane parallel to

the transverse plane of the person’s body. If such an arrangement was to be used to reconstruct

the visual hulls of swimmers (who are not upright, but horizontal), the cameras would need to

be arranged in a ‘Ferris wheel’ fashion, which would be impossible due to the limited depth of

swimming pools (most pools in the UK are no deeper than 2 metres). A hemisphere arrangement

of cameras would similarly be impossible to set up in a swimming pool, leading to the conclusion

that the only camera arrangements possible in a swimming pool would be sub-optimal for the

reconstruction of visual hulls of swimmers.

One aspect related to the most optimal arrangement of cameras that Mündermann et al.

did not investigate is the relationship between visual hull accuracy and distance between the

cameras and the object. Intuitively, the further the cameras are from the object, the more the

rays connecting the camera to the object’s silhouette become tangential to the silhouette; the

more tangential the rays are to the silhouette, the less ‘exogenous’ volume is included in the cone

defined by the rays, which is the constraint used to define the visual hull. As was discussed

when describing the flaws of depth-based markerless systems, a direct relationship between

the accuracy of the reconstruction and the distance between the camera and the object can

be problematic for sports motion capture, and in particular for swimming. Since the cameras

would be static and the swimmer would swim through the capture volume, during the movement

the distance between the swimmer and each camera would vary, and in particular it would vary

2The price refers to the high-resolution cameras used during this PhD. Cheaper cameras could be bought,
lowering the overall cost of such a system by an amount that would depend on the type of cameras bought.
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Figure 3.6: This example seems to—at least qualitatively—confirm my theory that the distance
between the cameras and the object influences the accuracy of the visual hull. (Image created by the
author)

in a different way for each camera. This means that the accuracy of the reconstructed visual

hull would not be stable over the duration of the motion of the swimmer.

Another weakness of the visual hull is that it struggles to reconstruct concave parts of

objects, as shown in Figure 3.7. This weakness is likely to have been another source of error for

Ceseracciu et al.’s model, which focused on the arm. Indeed, the shoulder (the arm joint most

prone to creating concave areas) was the most inaccurate joint in Ceseracciu et al.’s model.

This weakness in dealing with concave areas is greatly mitigated by having access to more

viewpoints, explaining why having more cameras leads to more accurate visual hulls. It also

explains why Mündermann et al. found that arranging cameras in a hemisphere is slightly

better than arranging them in a circle, since having cameras on multiple planes increases the

chances that at least one of them would be perpendicular to a concave area that was invisible

to all others.

So far we have assumed that the visual hull itself is used as an estimation of the shape

and pose of an object. Indeed, for most inanimate objects this is usually the case [206–209].
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Figure 3.7: In this 2D example, the cameras are co-planar with the object (a simple V shape) and
are therefore incapable of reconstructing the cavity within it; the resulting visual hull is a gross
overestimation of the true volume of the object. No matter where on the 2D plane outside of the
object new cameras are put, the cavity will not be detected. However, if we imagine placing a camera
perpendicular to the 2D plane on which the object lies, the cavity would be detected perfectly. (Image
created by the author)

However, as mentioned in Section 2.3.2, when visual hulls are used to reconstruct the shape

and pose of a person they can be used in conjunction with a parametric model. In fact, it is

only in conjunction with a parametric model that the visual hull becomes a truly generative

method. Recall that in Section 2.3.2 generative methods were defined as fitting a generic,

articulated model to certain constraints. The visual hull can be used as one such constraint:

we can iteratively scale a parametric model and change its pose so that it fits tightly inside a

reconstructed visual hull. This was the pipeline used by Corazza et al. [22], whose algorithm

is, to date, one of the most accurate for markerless motion capture. However, for swimming

motion capture the visual hull would need to be reconstructed with fewer than eight cameras

(Corazza et al. used eight) placed in a sub-optimal arrangement (Corazza et al. used a circle

arrangement). This means that the reconstructed visual hull would likely be less accurate

than the ones reconstructed by Corazza et al. (who also had a perfectly monochromatic and

stable background), and therefore it would be a looser constraint. This in turn means that



96 Chapter 3. Preliminary Research: The Visual Hull

the optimisation algorithm needed to fit a parametric model to it might not be able to reach a

global optimum.

3.4 Conclusions and Departure From the Visual Hull

Given the limitations of the visual hull and the difficulty in using it as a constraint for a

generative method, it is not surprising that the most recent literature on 2D-to-3D models has

shifted from using visual hulls as constraints to using the location of 2D joints. Indeed, this

type of constraint allows for a more streamlined optimisation: the 3D joints of the parametric

model can be projected onto the plane of each camera and ‘anchored’ to the 2D joints, quickly

defining the correct pose of the person; then, the silhouette from each camera can be used to

fine-tune the model and give it the correct shape. This type of generative model does not rely

on the number of cameras available as strongly as does a generative model that uses the visual

hull as a constraint: having access to the ground truth location of each joint in each camera

plane is a much stronger constraint than a visual hull, and therefore it is possible to solve the

optimisation algorithm with fewer data points (i.e. cameras). For this reason, the best option

for swimming motion capture is an image-based generative method that uses silhouettes and 2D

joint labels as constraints to optimise a parametric model. Such an algorithm consists of four

parts: a silhouette extraction algorithm; a 2D pose detection algorithm; a parametric model;

and an optimisation algorithm that is able to adapt the parametric model to the silhouettes and

2D joints. When developing such a generative algorithm for use in swimming motion capture,

the greatest challenge lies in the development of the silhouette extraction and 2D pose detection

algorithms. Parametric models like SMPL [64] can be downloaded for free3, and optimisation

algorithms, while complex, are not influenced by the nature of the input images: as long as the

silhouettes and 2D joints are accurate, an optimisation algorithm performs equally well on any

kind of image, regardless of background, lighting, pose, and any other factor. The same is not

true for silhouette extraction and 2D pose detection algorithms: since they would need to be

based on neural networks (which vastly outperform non-learning algorithms), these algorithms

3https://smpl.is.tue.mpg.de/
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would need to be trained on large datasets of images of swimmers, and they would need to

be optimised to this domain. For instance, most silhouette extraction and 2D pose detection

algorithms expect RGB images as inputs, but the cameras that were available for this PhD

project were greyscale. Therefore, I decided to make the development of a silhouette extraction

algorithm and of a 2D pose detection algorithm that would work well on images of swimmers

the main focus of this PhD, leaving to future research the implementation of an optimisation

algorithm that fits a parametric model to these constraints.



Chapter 4

Construction of Scylla, a Dataset of

Images of Swimmers for Silhouette

Extraction

4.1 Preliminary Considerations

There are three factors to consider when constructing a dataset for training deep learning

models: 1) exactly what the contents of the images should be; 2) how many images are needed;

and 3) how the images are going to be labelled; this last factor will be discussed in Section 4.3.

Factor 1 may seem trivial (for example, one might address it simply by saying ‘the Scylla dataset

needs to contain images of underwater swimmers’), but care needs to be taken that the images

gathered fully describe the data-generating process1 that algorithms are supposed to model. In

particular, it is important that the dataset contains examples of all the types of variation in

the data that an algorithm is expected to learn to distinguish (which is a re-formulation of the

NFL theorem discussed in Section 2.3.2). For example, if a dataset was built using images of

swimmers recorded only at night, algorithms trained on the dataset would struggle to perform

1In the case of the Scylla dataset, the data-generating process is the act of extracting the silhouette of a
swimmer given an image as input.
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well when shown images taken during the day. This is an example of dataset bias2 [211], which

is a phenomenon that may happen without the authors of the dataset realising it (as illustrated

by the ‘Neural Network Tank’ urban legend3). Section 4.2 will describe what steps I took to

ensure that the Scylla dataset contained minimal bias.

Factor 2 is also difficult to address: there is no way to know a priori how much data a

neural network will need to reach a given target for a given metric—not only because neural

networks use different metrics depending on their intended application, but also because power

analysis tools [212] used for simpler models do not apply to the complex (and often ‘black-box’)

functions that neural networks learn [187]. Some authors [9,10] have proposed that researchers

should perform an ‘inverse power analysis’ (IPA) by training their algorithms on increasing

amounts of data and testing them on a separate, previously acquired test set. If the results of

these tests are plotted (with the amount of training data on the x axis and the performance of

the algorithm on the test set on the y axis, as in Figure 4.1) and a plateau is observed, the x

value corresponding to the onset of the plateau represents the amount of data that are necessary

for the algorithm to perform adequately; any data in excess of that amount will not provide

substantial benefits. If a plateau is not observed, it means that the algorithm needs to be

trained on more data to reach optimal performance. Researchers can then continue to perform

IPA until a plateau is reached. Unlike power analysis, therefore, IPA does not provide an a

priori estimate of the sample size required to achieve a certain performance, but it does provide

a way to estimate if the amount of data available is sufficient for the algorithm to perform

optimally, and, more importantly, to estimate whether gathering more training data is likely to

increase the performance of the algorithm substantially. In the example of Figure 4.1, if only

4,096 training examples had been gathered and used to perform IPA, and the performance of

the model was sill unsatisfactory, the IPA graph would show that gathering more training data

would likely not be as beneficial as changing the design of the algorithm.

2An example—very pertinent to current events—of the danger of dataset bias is the recent scandal concerning
facial recognition algorithms (some of which were used by US police departments) which failed to recognise the
faces of Black, Middle Eastern, and Latino people more often than those of Caucasian people [210]. This does
not mean that those algorithms are inherently discriminatory against people of those races: it likely means that
the dataset was biased towards Caucasian people—for example, because it had more examples of Caucasian
people than of any other race.

3https://www.gwern.net/Tanks
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Figure 4.1: To perform the ‘Inverse Power Analysis’ method proposed by [9] and [10], an algo-
rithm needs to be tested on increasingly large amounts of data, and its performance plotted—for
each test—against the amount of data used. Note that the x axis is in powers of two (as in-
dicated by [9]), so the plateau is much flatter than it appears to be. (Image created by the
author)

However, IPA has two main limitations. First, it relies on the assumption that a test set is

available prior to the analysis, which means that IPA cannot provide an answer to the question

of how large the test set should be. A näıve answer could be ‘as large as the available resources

allow it to be’, but how can we decide how many resources we can allocate to collecting and

labelling the test set if we have no idea how large a training set we will need? Therefore, IPA

only solves half the problem: after it has been established how much test data is needed (using

some other heuristic), and all the test data and at least some training data have been collected

and labelled, IPA can give an estimate of how much more training data will be needed. The

second limitation of IPA is that it needs to be repeated every time the algorithm is changed,

since different algorithms have different requirements in terms of the amount of training data

needed to reach optimal performance. This creates a bottleneck in the development of the

algorithm: each time a new version of the algorithm is developed, further development needs to

be halted until IPA has been repeated. This bottleneck can be crippling if it takes a long time
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to perform IPA—which, especially for large (in terms of the number of parameters they have)

models trained on large amounts of data, is often the case. For example, training the FISHnet

algorithm (which is not particularly large, at 28 million parameters) described in Chapter 5 on

the full training set of the Scylla dataset (which is relatively small) takes about 24 hours; since

IPA involves training an algorithm multiple times using increasing amounts of data, performing

IPA on FISHnet may take several days.

Nevertheless, IPA should not be discarded altogether: if an algorithm has undergone several

stages of development and is still not performing as desired, IPA can inform researchers of

whether this is due to a lack of training data, information which could save time that otherwise

might have been spent fruitlessly debugging or fine-tuning the model. However, IPA cannot be

used as a tool to decide how much data will need to be gathered before any of them are available,

and how to split them between training and test sets (though the general guidelines for deep

learning models are that test sets should comprise 10-20% of the total data available [187]).

The best heuristic available is to consider the size of existing datasets in the same field, as well

as the general opinion of the research community on whether those datasets are appropriate

for the task, or if they are used just because better options are not available.

For silhouette extraction, the most established datasets are PASCAL VOC, which contains

almost 10,000 images with labels for segmentation, and MS COCO, which contains 200,000

images with labels for segmentation (see Section 2.4.2.3). Given that PASCAL VOC is used

as much as (if not more than) MS COCO, it is reasonable to assume that about 10,000 images

are sufficient to train semantic segmentation algorithms that generalise well. In other words,

PASCAL VOC likely describes the true data-generating process well enough for researchers to

assume that algorithms that perform well on its test set should perform well on never-before-

seen images. It might seem fair to say, then, that the Scylla dataset needs to contain about

10,000 images to make algorithms trained on it generalise as well as those trained on PASCAL

VOC. However, the data-generating process that PASCAL VOC attempts to describe is the

extraction of silhouettes of 20 types of objects (many of which could be present in the image

at the same time) from RGB images, while Scylla needs to describe a simpler data-generating

process: the extraction of silhouettes of one class of objects (only one of whom would be in any
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given image) from greyscale images. Therefore, the number of images needed to capture the

variability of the data-generating process that PASCAL attempts to model is greater than that

needed to capture the variability of the data-generating process that Scylla needs to model.

This means that Scylla likely needs fewer than 10,000 images to fully describe its target data-

generating process. Therefore, I estimated that roughly 3,000 images (between the training

set and the test set) would be sufficient for algorithms trained on Scylla to generalise well.

This estimate was reached also considering the time and financial constraints of this project,

since, as will be discussed in Section 4.3, labelling the silhouettes of large images of swimmers

is time-consuming.

4.2 How the Data were Gathered

To construct the Scylla dataset I had at my disposal a collection of about 400 videos recorded

before this PhD for a different project; these videos will be referred to as ‘The Collection’. The

videos in The Collection feature 14 highly trained (5+ years experience) adult swimmers (five

female, nine male). The videos were recorded on three separate days in the Olympic-length

swimming pool in Loughborough. To record the videos, either a one-, four-, or eight-camera

setup was used; all cameras were greyscale. All recording sessions lasted several hours, meaning

the lighting conditions changed during the session. Swimmers were recorded (one at a time)

performing either underwater butterfly kicking or the breaststroke pull-out; in most cases, the

same swimmer performed both motions several times.

Since from each video several hundred frames could be extracted, there is no doubt that

The Collection could provide the 3,000 images that I estimated should be in the Scylla dataset.

However, factor 1 described in Section 4.1 remains to be addressed: are the videos in The

Collection descriptive enough of underwater swimming to avoid dataset bias? To answer this

question, we need to identify the main sources of variability against which we would want

algorithms to be invariant, and determine to what extent they are represented in The Collection.

As humans, we would group the sources of variability of the videos in The Collection in two
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categories:

• Demographic variability; this relates to factors such as the age, height, or weight of

participants.

• Recording variability; this relates to the conditions in which the images were recorded,

such as the position of the camera relative to the swimmer, the shutter speed of the

camera, its exposure, etc.

However, from the perspective of a neural network, sources of variability are classified into these

two categories:

• If the pixel values of two labels (i.e. silhouettes) are not identical, the corresponding two

images are treated as two separate, unique training examples, regardless of whether they

feature the same person; I call this type of variability ‘Different Image, Different Label’

(DIDL) variability;

• If the pixel values of two labels are identical, but the pixel values of the corresponding

two images are not, the two images are treated as two separate, unique training examples,

regardless of whether they feature the same person; I call this type of variability ‘Different

Image, Same Label’ (DISL) variability.

The only aspect of demographic variability that could meaningfully impact DISL variability is

skin tone: there is no other demographic factor that could cause two images to have the same

labels but different pixel values. In this regard, The Collection can be said to be biased towards

Caucasian swimmers, since all 14 swimmers featured in its videos are Caucasian. Given that

there currently are no elite swimmers in the UK who are non-Caucasian, addressing this type

of dataset bias of The Collection by recording videos of people with dark skin tones was not

feasible within the scope of this PhD. This source of bias should be addressed by future work,

by recording (and labelling) videos of swimmers with dark skin tones.

Recording variability clearly has a greater impact on DISL variability: depending on how,

where, and when the cameras were set up (as well as what cameras were used), the images
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might be more or less in focus, bright, or distorted by motion blur—all conditions that would

affect the pixels of the image but not those of the label. Recording variability also explains a

greater portion of DIDL variability than does demographic variability, especially in the context

of elite swimming. If we used the same camera (with the same settings) to capture an image

of two swimmers standing in the same position at the same distance from the camera, the

two silhouettes extracted from the images would differ due to the differences in body shape of

the two swimmers. The main source of DIDL variability would be a difference in the height

of the two swimmers: though we would not expect two elite, able-bodied swimmers to have

wildly different body shapes, their different heights would lead to silhouettes of different sizes.

However, a similar size-related variability could be achieved by changing the distance of the

swimmer from the camera. Indeed, recording variability enables greater variations of the shape

and size of silhouettes than demographic variability: from the same swimmer we could get

images whose silhouettes vary a lot, simply by placing the camera at different angles and

distances, or by making the swimmer assume different poses.

Therefore, we can conclude that recording variability, more than demographic variability,

is what needs to maximised in the Scylla dataset. Because the videos in The Collection were

recorded under varied conditions, one would expect the recording variability, and consequently

both DIDL and DISL variabilities, to be high. However, DIDL variability might be lowered by

the process of extracting still frames (of which only 3,000 were needed for the Scylla dataset)

from the videos of The Collection (which, together, contain tens of thousands of frames): if

N consecutive frames were extracted from a video, they would share too much information

with one another and reduce the total amount of DIDL variability in the dataset. Likewise,

if one frame every N was extracted, bias might inadvertently be introduced into the dataset:

since swimming is a cyclic motion, it is possible that extracting one frame every N could

accidentally ‘synchronise’ the extraction of the frames with a movement cycle, thus extracting

frames of swimmers who are always in similar positions. Therefore, I decided to extract from

each video a number of frames that varied semi-randomly: at least ten frames per video were

extracted, and a gap of at least X frames was kept between any two consecutive frames (where

X was randomly assigned a new value between 10 and 30 whenever a frame was extracted).
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This scheme led to the extraction of over 5,000 frames from The Collection. Of these, several

hundreds had to be discarded due to sub-par image quality (in most cases due to blurring, or

excessive turbulence of the water) or to the presence of multiple swimmers in the same image

(for example, because a swimmer would stay at one end of the pool while another performed

a trial). After removing all such frames, 3,100 HD greyscale images of underwater swimmers

remained. Of these 3,100 images, 2,793 had a resolution of 2048 x 900 pixels, and 307 had

a resolution of 1920 x 1080 pixels. To make all images have the same resolution (which is a

requirement of deep learning models), instead of resizing the images I decided to pad them with

black pixels until they had a resolution of 2048 x 1088 pixels. Resizing images would cause

distortions which would also be present in the silhouettes. Since this type of distortion is absent

in nature, algorithms should not be invariant to it. Padding images, on the other hand, does

not alter the label in any way, and is therefore likely to be a better option. Finally, the reason

I padded the images to the specific resolution of 2048 x 1088 is that this resolution does not

require extensive padding of the images, but still makes both axes divisible by two at least six

times. This is a property that makes training neural networks easier4, since most of them have

components that halve the dimensions of the input up to about six times. Finally, the images

were split into two sets: 2,635 for training, and 465 for testing. Swimmers who appeared in the

test images did not also appear in the training images.

4.3 How the Data were Labelled

To label the images in the Scyllla dataset, an expert PhotoShop user5 was employed to manually

trace all 3,100 images using PhotoShop. The guidelines given to the labeller were as follows:

• Pay close attention to the face, which often is masked by bubbles;

• Do not pay extra attention to finer details like the nose and the fingers, since they con-

tribute very little to the overall shape and size of the silhouette; this is not to say that

4This is a property mainly of convolutional neural networks, which are the types that are used for computer
vision problems.

5This person, who is an architect by profession, has eight years of experience using PhotoShop.
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details should be overlooked;

• When in doubt regarding where the contour of the silhouette lies, it is preferable to

overestimate it than to underestimate it6;

• After having labelled an image, superimpose the silhouette to the image to verify that

there are no gross mistakes.

The labelling process lasted four months, with a typical time per image of about six minutes.

All silhouettes were then visually inspected, and images whose silhouettes were insufficiently

accurate were sent back to be labelled again. Figure 4.2 shows an example of an image and

segmented silhouette from the Scylla dataset.

Figure 4.2: On the left: an image from the Scylla dataset. On the right: the corresponding
silhouette, traced by hand by the labeller. (Image created by the author)

To quantify the inter-operator reliability of humans (against which to compare the per-

formance of future algorithms) in this labelling task, two more expert PhotoShop users were

employed to label ten of the images that had been labelled by the first operator. The perfor-

mance of the labellers (in pairs) were then compared by calculating the mean Dice score (which

is another name for the F-score described in Section 2.4.1.4) of the silhouettes they traced. The

Dice score was chosen because it is easy to interpret: it is a harmonic mean of precision and

recall, and it takes values from 0 to 1, with 1 indicating that two silhouettes overlap completely

and 0 indicating that two silhouettes do not overlap. The results of this analysis are reported

in Table 4.1.
6Since the silhouettes are going to be used as constraints for a generative model, it is preferable for the

constraint to be looser than stricter, since too strict a constraint might make it impossible for the optimisation
algorithm to converge.
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Table 4.1: Inter-operator Reliability of Silhouette Extraction by Humans

Labeller ID Dice score

1 and 2 0.9422

1 and 3 0.9372

2 and 3 0.9509

These results justify the choice to depart from the visual hull: since even humans incur at

least a 5% error when labelling the silhouettes of underwater swimmers, the resulting visual

hull would almost certainly be quite poor (see Figure 3.5).

4.4 Conclusions

It is difficult to estimate a priori how many images are needed to construct a dataset for deep

learning algorithms. Though some authors suggest the use of Inverted Power Analysis to es-

timate the number of training images needed for a specific algorithm to perform adequately,

this tool is time consuming and only addresses half the issue, since it cannot give any estimate

of how large the test set should be. The best heuristic available for determining the required

size of a dataset, then, is to look at the size of established datasets that address a similar

data-generating process. For the case of the Scylla dataset, this means looking at the most

commonly used datasets for silhouette extraction, MS COCO and PASCAL VOC. Given that

these datasets attempt to describe a data-generating process that contains much more variabil-

ity than would need to be described by Scylla, I estimated that about 3,000 images would be

sufficient to train a deep learning algorithm to segment the silhouettes of underwater swimmers.

From the videos of The Collection, I extracted 3,100 frames, ensuring that the interval at

which successive frames were extracted from a video did not introduce bias. All 3,100 images

were then labelled by hand by an expert PhotoShop user. The results of the experiment on

human reliability, reported in Table 4.1 testify to the difficulty of the task. The following section

will describe how the Scylla dataset was used to train a novel silhouette extraction algorithm,

FISHnet.



Chapter 5

Development of FISHnet, a Silhouette

Extraction Algorithm for Images of

Swimmers

(Sections 5.3 and 5.4 were published in revised form in the following IEEE Access paper: [213].)

5.1 Initial Development on the Carvana Dataset

To be able to start developing an algorithm while the images of Scylla were being labelled,

I decided to adopt the Kaggle Carvana dataset as a proxy for Scylla. The Kaggle Carvana

dataset consists of 105,152 images (split into 5,088 for training and 100,064 for testing) of cars,

and was built as part of a public competition (hosted on Kaggle, where the dataset can be

downloaded1). Though its images feature cars and not swimmers, the Kaggle Carvana dataset

has characteristics that make it a suitable proxy for Scylla:

• Like Scylla, it is focused entirely on the segmentation of one class of object. Therefore,

algorithms do not need to spend capacity learning to distinguish different types of objects;

1https://www.kaggle.com/c/carvana-image-masking-challenge
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• In any given image, only one car appears, and the car is always fully visible. This simplifies

the function that neural networks need to learn, since they will not need to spend capacity

learning partial segmentations (i.e. segmentations of objects that are only partially in

the image) or segmentations of overlapping objects;

• The resolution of the images is 1280 x 1918. Cityscapes [158] is the only other public

dataset for silhouette extraction that has images with resolution over 640 x 640.

• The ground truth images were labelled more accurately than those in either PASCAL

VOC or MS COCO; an example of this is shown in Figure 5.1;

• The test set is large enough to guarantee protection against overfitting;

• Since it was part of a Kaggle competition with a cash prize of $25,000, the dataset comes

with a leaderboard that was likely quite competitive, making it an excellent reference

against which to compare the performance of the algorithms developed.

Figure 5.1: Example of the quality of annotation in the Kaggle Carvana, MS COCO, and
PASCAL VOC datasets.

To establish a baseline from which to develop FISHnet, I decided to re-implement U-

Net [111] and train it on the Kaggle Carvana dataset. U-Net is easy to implement by hand,

since its architecture is so simple. Originally developed for biomedical image segmentation,

U-Net (Figure 5.2 consists of an encoder composed of a series of blocks made of convolutional,

batch normalisation, and max pooling layers, followed by a symmetrical decoder in which the

max pooling layers are replaced by bilinear upsampling layers. Each block in the encoder is then

connected to the corresponding block in the decoder via skip connections. The symmetry of



110Chapter 5. Development of FISHnet, a Silhouette Extraction Algorithm for Images of Swimmers

Figure 5.2: Architecture of U-Net

U-Net allows it to output predictions at the same resolution as the inputs, a feature which many

silhouette extraction algorithms do not have. For example, DeepLabv3+ outputs predictions

that are 16 times smaller than the inputs2. Since the final evaluation is performed on the

full-sized test images, having the network output predictions of the same size as the input is

likely to be an advantage. A second advantage of U-Net is that it can easily be scaled to be

deeper or shallower by modifying the input resolution and adding more blocks to the encoder

and to the decoder. For example, U-Net 128 is a U-Net network with 128 x 128 inputs and

four blocks in the encoder and decoder. To make the network deeper, the input can easily be

changed to be 256 x 256 and use five blocks in the encoder and decoder; this network would

take the name of ‘U-Net 256’.

To establish a baseline, then, U-Net 128, 256, 512, and 1024 were trained and tested on the

Kaggle Carvana dataset. Since the largest batch size with which U-Net 1024 could be trained

on the GPU available was two, all U-Nets were trained with this batch size, to standardise the

results. For a loss function, the weighted Dice loss (proposed by [214], who won the Kaggle

Carvana competition) was used. The weighted Dice loss is calculated as:

Weighted Dice Loss = BCE + 1−Weighted Dice (5.1)

2Very deep models like DeepLabv3+ cannot be trained with full-sized outputs because either they would not
fit in most GPUs or they would take too long to train.
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where the Weighted Dice score is obtained by giving pixels along the contour of the silhouette

a weight three times larger than is given to pixels deep within the silhouette; and BCE is the

per-pixel binary cross-entropy loss function [187], which is calculated as:

Binary Cross-Entropy =
1

N

N∑
i=1

yi · log(ŷi) + (1− yi) · log(1− ŷi) (5.2)

where N is the number of samples, yi the ground truth for the ith sample, and ŷi the prediction

for the ith sample.

Table 5.1: Dice Score of Various U-Nets on the Kaggle Carvana Dataset

Model Dice score

U-Net 128 0.9895

U-Net 256 0.9927

U-Net 512 0.9951

U-Net 1024 0.9960

Table 5.1 shows that even U-Net 128 achieved a Dice score over 0.983 (even though it would

place 502nd on the Kaggle Carvana leaderboard). This indicates that the number of images in

the training set was adequate, or a model as small as U-Net 128 would have overfit. It also

indicates that the complexity of the data-generating process that the dataset describes is low,

or a model as small as U-Net 128 would have had a lower Dice score on both the training and

the testing set. Nevertheless, U-Net 1024, the deepest baseline model tested, would place 337th

on the Kaggle Carvana leaderboard, indicating that there is room for improvement.

Taking U-Net 1024 as a baseline, modules from state-of-the-art semantic segmentation

algorithms were added to it—starting with the Atrous Spatial Pooling Pyramid (ASPP) module,

which is one of the defining modules of DeepLab [140, 142]. DeepLab’s ASPP module, which

is placed towards the end of DeepLab’s encoder, consists of a variable number of convolutional

layers (stacked in parallel) with increasing dilation rates (d). By stacking these layers in

3Could this result already be considered sufficient for the application? Potentially, but there is no obvious
answer this question, as the literature suggests no thresholds of acceptable accuracy. Nevertheless, given that
in Chapter 3 it was shown how 2D-to-3D rely on the silhouettes being extremely accurate, it is fair to suggest
that silhouette extraction accuracy should be as high as possible with the hardware available.
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parallel, the ASPP module grants the encoder a variable receptive field and enables it to

identify objects at different resolutions. For example, adding a convolutional layer with d = 2

doubles the receptive field of the encoder, while using d = 4 grants it four times as large a

receptive field; by using both in parallel, the encoder can decide which one to use depending on

the situation. I implemented the ASPP module within U-Net 1024 by placing six convolutional

layers with increasing dilation rate (2, 4, 8, 16, 32, 64) after the bottom block of the encoder,

and obtained a Dice score of 0.9970—a 0.1% improvement over the baseline. To investigate

whether the structure of the ASPP module—rather than the additional capacity it introduces—

was responsible for this improvement, a version of U-Net 1024 with an ASPP module in which

all the convolutional layers had the same dilation rate (which was set to 16) was also tested.

This modified ASPP module still allows the bottom layers of the encoder to recover some spatial

resolution, but it does not allow them to recover different resolutions simultaneously, which is

the main purpose of the ASPP module. On Kaggle Carvana’s test data, U-Net 1024 with a

modified ASPP module achieved a Dice score of 0.9968—0.02% worse than the score obtained by

using the original ASPP module. This result indicates that the main contribution of the original

ASPP module to U-Net 1024’s performance was not the ability to recover different resolutions

simultaneously, but the increased capacity that comes with adding the dilated convolutional

layers. This is not a surprising result. In DeepLab, in which the output resolution is 16 times

smaller than that of the input, the function of the ASPP module is critical: it allows DeepLab

to ‘pretend’ to have a larger output resolution than it actually has. In U-Net, this feature is

not needed, since the output resolution is already the same as the input resolution.

Improving the connectivity between different parts of convolutional neural networks has

been found to be beneficial on most computer vision tasks, and is the reason for the success

of ResNet [98] and DenseNet [12], two of the most popular architectures in deep learning4.

The rationale behind improving intra-network connectivity is that the more interconnected the

network, the more freely information can be shared between different parts of the network. In

encoder-decoder networks like U-Net, this feature is essential. The max pooling layers of the

encoder encode the image into progressively higher-level features, which have progressively lower

4As of the time of writing, the two papers that introduced ResNet and DenseNet have been cited, combined,
in 76,162 published papers.
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resolution and higher semantic content; then, the features of the deepest layer of the encoder

are upsampled (or ‘decoded’) until their resolution matches the resolution of the input. The

features of the decoder are, therefore, the highest-level features of the encoder, upsampled once

at each layer of the decoder. As the upsampling operation does not restore spatial resolution, the

features of the decoder lack spatial resolution at all depths. The purpose of the skip connections

in encoder-decoder networks, then, is to pass some of the spatial resolution information present

in low-level features of the encoder to the high-level features of the decoder. For example,

the features at depth D = 0 of the encoder (maximum spatial resolution, minimum semantic

meaning) are connected with the features at depth D = 0 of the decoder (minimum spatial

resolution, maximum semantic meaning), which is the layer most responsible for the final

segmentation and which, therefore, is most in need of fine-grained spatial resolution.

The authors of ExFuse found that if more semantic information is embedded in the low-level

features and more spatial resolution is embedded in the high-level features, the effectiveness of

the skip connection is magnified. The rationale is that if the two blocks contain incompatible

information (both in terms of semantic content and spatial resolution), passing information

between them is difficult and the weights of the skip connection might decay [11]. As ExFuse

is, along with DeepLab, one of the most innovative and high-performing algorithms for semantic

segmentation available, I decided to implement some of its intuition into my own network. To

embed more semantic information into the low-level features of the encoder, the authors of

ExFuse use three strategies:

• They re-arrange the layers of their encoder—which is either ResNet50 or ResNeXt101,

both of which have blocks with a varying number of convolutional layers; this solution is

not applicable to U-Net 1024, since U-Net 1024 uses blocks with a constant distribution

of convolutional layers;

• They introduce intermediate losses after each block of the encoder. This strategy has

been shown to be beneficial for very deep models (> 100 layers) such as ResNet and

DenseNet, but some authors have shown that they are ineffective for neural networks

with under 100 layers (U-net 1024 has 96) [152,215,216];
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• They introduce a new module, called Semantic Embedding Branch (SEB), shown in

Figure 5.3. The SEB module adds to each skip connection an additional connection from

each block of the encoder below the current block. For example, if a skip connection is

being performed between blocks of the encoder and decoder at depth D, the outputs of

the blocks of the encoder at depth D − 1, D − 2, D − 3, etc., are fused to the output of

the block of the encoder at depth D before being skip-connected with the block at depth

D of the decoder.

Figure 5.3: The SEB module from ExFuse. The ‘×’ sign represents element-wise multiplication.
If multiple high-level feature maps are present, they are all multiplied together (element-wise).
(Image created by the author)

To embed more spatial resolution into the high-level features of the decoder, they use two

strategies:

• They upsample the deepest block on the encoder until it has the same resolution as the

inputs, and then apply an intermediate loss to it. According to the ablation study they

performed, this additional loss increased the IoU (which is a metric related to the Dice

score and which also goes from 0 to 1) of their algorithm on PASCAL VOC by 0.5%,

which is considered a substantial improvement. However, the exchange of information

between the deepest block of the encoder and this heavily upsampled loss is as difficult as
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that between the encoder and decoder blocks at depth 0. If the authors of ExFuse argue

that this type of exchange of information is not optimal and needs to be modified, I would

argue that the same logic applies to this intermediate loss that they propose. Therefore,

I believe that the addition of this loss, like the addition of the other intermediate losses

that ExFuse uses in the encoder, might have contributed to performance simply because

it made the optimisation of their very deep network easier, not because it introduced

more spatial resolution in the high-level features of the encoder;

• They modify the way in which the network outputs predictions by adopting a mechanism

they call ‘Densely Adjacent Prediction’ (DAP). Regular decoders output a feature map

in which each point assumes a value between 0 and 1, which is the probability that that

pixel belongs to the background or to the foreground. Therefore, each point of the feature

map is responsible for the prediction of the value of just one pixel of the input image.

The DAP mechanism makes each point of the feature map also predict the values of its

neighbouring pixels. This leads to every pixel having multiple predicted values, which are

then averaged to obtain one value per pixel. The downside of the DAP mechanism is that

it multiplies the number of feature channels of the output by a number equal to the size

of the ‘neighbourhood’ that each point of the output is responsible for. In the original

implementation of ExFuse, this meant that adding the DAP mechanism increased the size

of the output feature map by nine times. Due to hardware restrictions, it was impossible

for me to embed the DAP mechanism in U-Net 1024.

The SEB module, then, was the only part of ExFuse that could be implemented in U-Net

1024 that I thought would improve its performance. After re-training the network, U-Net 1024

with the SEB module achieved a Dice score of 0.9963. This indicates that the SEB module is

effective, but not as effective as it was in ExFuse.

Next, DeepLab’s ASPP module was re-purposed to align it with ExFuse’s goal of strength-

ening the skip connections. In the original implementation of the ASPP module within U-Net

1024, it was placed after the bottom block of the encoder, where the features have the lowest

resolution and the highest semantic content. In DeepLab this is a sensible placement for the
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ASPP module, but, as indicated by the results reported earlier in this section, it is not in U-

Net. What ExFuse shows is that in a U-Net architecture it is insufficient to increase the spatial

resolution of the high-level features; the spatial resolution needs to be increased at the right

point of the network—specifically, at a place that will improve the quality of the skip connec-

tions between the encoder and the decoder. This can be achieved by placing the ASPP module

not at the bottom of the encoder, but at the top of the decoder, before the skip connection

with the top block of the encoder. At this depth (D = 0), the features of the encoder have

maximal spatial resolution and minimal semantic content, while the features of the decoder

have minimal spatial resolution and maximal semantic content. Therefore, adding the ASPP

module before the skip connection allows the top block of the decoder to increase its spatial

resolution, making it easier for it to communicate with the top block of the encoder via skip

connection.

From this idea, I designed the Spatial Resolution Enhancer (SRE) module. The SRE module

consists of a variable number of parallel dilated convolutional layers, incapsulated in a 1 x 1

convolutional bottleneck (see Figure 5.4)5 (see Figure 5.4). How many dilated convolutional

layers the SRE should contain—and what their dilation rate should be—depends on the depth

at which the skip connection takes place. If the skip connection takes place between the deepest

layer of the encoder and that of the decoder (in the case of U-Net 1024, the deepest possible

skip connection is performed at D = 4), the features of the encoder do not contain much more

spatial information than those of the decoder. Therefore, only a little spatial resolution needs

to be injected into the features of the decoder for the skip connection to be effective. Therefore,

the SRE module at this depth does not need to be as large as the ASPP module of DeepLabv3+.

Conversely, at D = 2 the features of the encoder have much higher spatial resolution than the

features of the decoder, which means that the SRE module at D = 2 will need to embed more

spatial resolution than the SRE module at D = 4. This leads to the formulation of a variable

5The main purpose of a 1 x 1 convolutional layer is to adjust the number of filters of a layer. Given that each
layer in a CNN has dimensions n x m x num filters, the dimension of a layer (and therefore its computational
expense) can be lowered by convolving it with a 1 x 1 convolutional layer that has a lower number of filters. For
example, an input layer of shape n x m x 1024 can be convolved with a layer of shape 1 x 1 x 512 to halve its
number of filters, making it less computationally expensive. After the 1 x 1 convolution, the heavy processing
(i.e. the dilated convolutions) can be performed using fewer parameters. Finally, the dimension of the output
is restored by applying a second 1 x 1 convolution. This type of structure, in which a a component of a network
that is expensive is preceded and followed by 1 x 1 convolutional layers, is called a ”bottleneck”.
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structure for the SRE module, summarised in Table 5.2.

Table 5.2: Dilation rates and number of layers of the SRE modules at each depth of the decoder

Depth Number of Layers Dilation Rates

4 1 4

3 2 4, 8

2 3 4, 8, 16

1 4 4, 8, 16, 32

Figure 5.4: The SRE module takes as input a layer yD of the decoder (after upsampling),
reduces its number of filters using a 1 x 1 convolutional layer, and passes it through one to four
dilated convolutions in parallel. The outputs of the dilated convolutions are concatenated and
fed to a 1 x 1 convolutional layer, which restores the number of channels of the output. In this
figure, the outline of most dilated convolutional layers is dashed because those layers will only
be active at certain depths (see Table 5.2). (Image created by the author)

The variable complexity of the SRE module allows it to embed an amount of spatial in-

formation proportional to the expected spatial information of the features of the block of the

encoder to which it will be connected. U-Net 1024 with the SRE module attached (but not

ExFuse’s SEB module) achieved a Dice score of 0.9972, which would place 17th on the Kaggle

Carvana leaderboard.

It was at this stage of the development of the algorithm that the Scylla dataset became
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available. Therefore, instead of trying to gain positions on the Kaggle Carvana leaderboard6, I

decided to continue developing the algorithm on Scylla.

5.2 Moving Development to the Scylla Dataset

To continue on Scylla the development of the algorithm, a baseline had to be re-established by

training and testing U-Net 128, 256, 512, and 1024 on Scylla (see Table 5.3). I chose to keep

the Dice score as the evaluation metric, to make it easier to compare results on Scylla with the

previous results on the Kaggle Carvana dataset.

Table 5.3: Dice Score of Various U-Nets on the Scylla Dataset

Model Dice score

U-Net 128 0.8727

U-Net 256 0.9374

U-Net 512 0.9540

U-Net 1024 0.9609

Two observations can be made regarding the results in Table 5.3. First, whereas on the

Kaggle Carvana dataset the gap between U-Net 128 and U-Net 1024 was 0.65%, on Scylla this

gap is 8.82%. This indicates that model depth is more correlated with high performance on

Scylla than it is on Kaggle Carvana, which means that there is more complexity in the Scylla

dataset than there is in the Kaggle Carvana dataset. The added complexity almost certainly

comes from the fact that in the images in the Kaggle Carvana dataset the object of interest

(the car) was located in the centre of the image. This simplifies the learning process, because

even networks as small as U-Net 128 will quickly learn that the pixels at the centre of the

image cannot belong to the background and that those towards the edges cannot belong to

6The team that placed first on the Kaggle Carvana leaderboard used over 15 GPUs to train 49 slightly
different models, which they then averaged to obtain the final prediction. Furthermore, they heavily pre-
processed the training images—for example, by completely re-labelling some of them. Both of these practices
(pre-processing training data and model averaging) are discouraged in academic practices [187], but are allowed
in public competitions. Indeed, all the teams who placed in the top 15 of the Kaggle Carvana leaderboard
and who shared their solution used some kind of pre-processing and much more computational power than
was available during this PhD. Therefore, continuing to fine-tune models on the Kaggle Carvana dataset was
unlikely to improve my standing on the leaderboard unless more GPUs became available.
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the foreground. Second, while on the Kaggle Carvana dataset U-Net 1024 already achieved a

near-perfect Dice score, on Scylla there is more room for improvement, likely meaning that the

capacity of the model needs to be increased.

To increase the capacity of U-Net 1024, VGG16 [116] was used as an encoder. The structure

of VGG16 is almost identical to that of a basic U-Net’s encoder, with the exception of added

convolutional layers after the first two blocks. Using VGG16 as the encoder for U-Net 1024 has

the additional benefit that it is possible to download a version of VGG16 that was pre-trained

on ImageNet (a large object classification dataset). This means that the weights of the encoder

would be already initialised to better-than-random values, and therefore it is likely that they

would converge to better results. Indeed, this was the case: U-Net 1024 with a pre-trained

VGG16 as encoder (a model that will be referred to as ‘VGG16 U-Net 1024’) achieved a Dice

score of 0.9701 on Scylla. Encouraged by the apparent benefits of using pre-trained models, I

decided to train VGG16 U-Net 1024 on the Kaggle Carvana dataset to initialise its weights for

the task of semantic segmentation, and then re-train it on Scylla. This test led to a decrease

in performance: VGG16 U-Net 1024 pre-trained on Kaggle Carvana achieved a Dice score of

0.9679 on Scylla. It is possible that the negative impact of the pre-training on the Kaggle

Carvana dataset was due to an improperly calibrated transfer learning procedure (i.e. pre-

training on one dataset and then re-training on a different one). When a model is trained

on a dataset to initialise its weights and then it is re-trained (or ‘fine-tuned’) on a different

dataset, during the fine-tuning stage the learning rate should be set to values much lower than

those used during the pre-training. Otherwise, the large gradients that the network receives

in the early stages of fine-tuning would wipe away the values to which the weights had been

initialised. For the same reason, during the early stages of fine-tuning most of the weights of the

network are frozen, and then they are progressively unfrozen the more the network is trained;

this means that fine-tuning a network might take multiple iterations of the training process.

However, there is no guideline that says to what value the learning rate should be set during

fine-tuning, or how many layers should be frozen, or when they should be unfrozen. Therefore,

it is possible that the way I implemented transfer learning was not optimal and had to be

adjusted. It is also possible, however, that the weights learned on Kaggle were not beneficial
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for the purposes of training VGG16 U-Net 1024 on Scylla. After all, the shapes of cars are

different from those of humans, even though the task of identifying their contour is essentially

the same. The only way to solve this ambiguity was to spend time fine-tuning VGG16 U-Net

1024 from Kaggle Carvana to Scylla. Since this might have led to this pre-training strategy

being discarded anyway (since there were no guarantees that it would work), I decided not to

pursue this strategy further, and instead concentrated on improving the performance of the

algorithm by modifying its architecture.

The next set of experiments involved testing the SEB and SRE modules on Scylla, to

confirm the results obtained on the Kaggle Carvana dataset. First, VGG16 U-Net 1024 was

trained using just the SEB module, and it achieved a Dice score of 0.9709. Motivated by the

results in Table 5.3, which showed that the baseline models were too shallow for the Scylla

dataset, I decided to modify the SEB module. The function of the SEB module is to introduce

more semantic meaning to the low-level features of the encoder before they are fused with the

high-level features of the decoder. However, its original structure (see Figure 5.3) does not add

much capacity to the model, given that it only introduces one non-linearity in the form of a

3 x 3 convolutional layer. Therefore, I modified the SEB module (see Figure 5.5) by adding a

second 3 x 3 convolutional layer and encapsulating the two 3 x 3 convolutional layers inside a

ResNet-like bottleneck (i.e. two 1 x 1 convolutional layers), the purpose of which is to reduce

the number of filters before the expensive 3 x 3 convolutions and restore it after; this way,

adding a second 3 x 3 convolutional layer does not cause the number of parameters to increase.

VGG16 U-Net 1024 with the modified SEB module achieved a Dice score of 0.9711—a marginal

improvement over the original SEB module.

Finally, I added the SRE module to VGG16 U-Net 1024, achieving a Dice score on Scylla

of 0.9712. The reason for the marginal increase in performance attributable to the SRE mod-

ule is unclear. In particular, it is unclear why it was more effective on the Kaggle Carvana

dataset than on the Scylla dataset. Nevertheless, it did improve performance, and therefore

was included into the final version of my algorithm, which I called ‘FISHnet’. The following

section will summarise the architecture of FISHnet, as well as give the implementation details

required to reproduce the experiments.
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Figure 5.5: The modified SEB module; compared with the SEB module proposed by the authors
of ExFuse [11], the modified SEB module adds one more 3 x 3 convolutional layers, and places
the two 3 x 3 convolutional layers inside a bottleneck layer made of two 1 x 1 convolutional
layers. (Image created by the author)

5.3 Final Architecture of FISHnet, and Implementation

Details

FISHnet uses a U-Net-like architecture in which the encoder consists of VGG16 (pre-trained on

ImageNet) and the decoder of a simple series of bilinear upsampling and convolutional layers.

The main novelty of FISHnet’s architecture lies in the structure of the skip connections that

link the blocks of the encoder to the corresponding blocks of the decoder. Figure 5.6 shows the

difference between the skip connections in a normal U-Net and those in FISHnet. In particular,

the skip connections in FISHnet contain two modules: a modified version of ExFuse’s Semantic
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Figure 5.6: Left: skip connections in a normal U-Net; the output of the encoder at depth
D is copied and concatenated with the first layer of the decoder at depth D. Right: skip
connections in FISHnet; the yellow block represents the modified SEB module, while the pink
blocks represent SRE modules. (Image created by the author)

Embedding Branch (SEB) module, and a re-purposed version of DeepLab’s Atrous Spatial

Pooling Pyramid (ASPP) module. The function of the SEB module is to encode more semantic

information in the high-level features of the encoder and to increase the overall capacity of the

model without increasing the number of its parameters (which I achieved by using ResNet-like

bottleneck layers). The function of the SRE module is to encode more spatial resolution in

the high-level (and therefore low-resolution) features of the decoder. The addition of these two

modules allows blocks of the encoder and blocks of the decoder to communicate more easily,

since they share similar semantic content at a similar resolution.

During training, early stopping was used, meaning training was forced to to stop once the

validation loss had not decreased by at least 0.0001 for five consecutive epochs. Due to the

limited memory available, during training all input images were resized to 1024 x 1024 (using

padding when necessary) and the batch size was set to two. The following data augmentation

techniques were used: horizontal flip, random re-scale, random rotation. The loss used was

the Weighted Dice loss (see Equation 5.1). The optimiser used was RMSprop with an initial

learning rate of 0.001. FISHnet was implemented using Keras with TensorFlow backend. All

training and testing was done on an Nvidia Titan X GPU.
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Table 5.4: Results on the Scylla Dataset

Network Dice score

U-Net 128 0.8727

U-Net 256 0.9374

U-Net 512 0.9399

U-Net 1024 0.9609

DeepLabv3+ 0.9510

FISHnet 0.9712

Figure 5.7: Comparison of the algorithms considered in this paper on a sample image from the
Scylla dataset. All images were cropped around the figure of the swimmer, to make the fine
details of each image more visible.

5.4 Evaluation: FISHnet and State-of-the-Art Algorithms

on Scylla

To evaluate FISHnet, DeepLabv3+ was also trained on the Scylla dataset, using DeepLab’s

official source code7; as there is no source code available for ExFuse, it could not be implemented.

Table 5.4 reports the test Dice score for DeepLabv3+, FISHnet, and the U-Net architectures

that were tested. Figure 5.7 also reports the output of the algorithms reported in Table 5.4

when tested on a sample image from Scylla’s test data, so that the differences between the

algorithms’ performance can be visualised.

The fact that DeepLabv3+ achieved a lower Dice score than both FISHnet and U-Net 1024

goes against my intuition that the reason U-Net 1024 performed more poorly on Scylla than on

the Kaggle Carvana dataset was that Scylla requires models with greater capacity. At least, it

indicates that additional capacity alone is insufficient to increase performance on Scylla, since

7https://github.com/tensorflow/models/tree/master/research/deeplab
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DeepLabv3+ is a deeper, more complex model than both U-Net 1024 and FISHnet. This result

led me to a different interpretation of why larger U-Nets performed better than smaller ones.

Namely, I believe that the larger the input (and therefore output) resolution of a network, the

more accurate its predictions will be. Intuitively, this seems like a reasonable assumption: if a

network outputs a silhouette with a resolution lower than 2048 x 1088 (which is the resolution

of the images in Scylla), this output needs to be upsampled to 2048 x 1088 before it can be

tested against the ground truth present in the Scylla dataset. If the output resolution is below

2048 x 1088, details along the contour of the silhouette will be lost during the upsampling

process, resulting in lower-resolution silhouettes. Figure 5.7 visually confirms this intuition:

the silhouette of U-Net 1024 has more detail than the silhouette of U-Net 128, and a smoother

contour. As the output resolution moves closer to 2048 x 1088, more details of the silhouette

will be preserved. Since DeepLabv3+ outputs images at a resolution that is 8 to 16 times

(depending on the implementation) smaller than the input image, its accuracy is hampered

when the test images are as large as those of Scylla. It is unsurprising, then, that DeepLabv3+,

which is a deeper and more complex model than FISHnet and U-Net 1024, does not outperform

either despite having a more complex and deep architecture.

However, even if increasing capacity is not the most optimal way to increase performance

on Scylla, it is still surprising to see that the modified SEB module and the SRE module had

only a marginal impact on performance. One interpretation of this result is that the SRE and

the modified SEB modules do not actually improve the effectiveness of the skip connections as

intended. However, the original SEB module on FISHnet also has a marginal contribution to

overall performance (0.08%), whereas in ExFuse it had a contribution almost ten times as large

(0.7%) [11]. Therefore, there must be another explanation for why all additional modules that

are attached to FISHnet only have marginal effects. I believe the explanation could be found in

the amount of training data available. The optimal capacity of a neural network depends on the

complexity of the task at hand and on the amount of training data available [187]—which, in the

case of the Scylla dataset, is only 2,635 images. This could mean that FISHnet reaches optimal

capacity roughly at baseline, and that adding capacity to the model (by introducing the SRE

and modified SEB modules) past that point results in overfitting. Since overfitting is mitigated
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Figure 5.8: Results of the Inverse Power Analysis (IPA) performed on FISHnet, using from
20% to 100% of the training data available in Scylla.

by using early stopping (i.e. stopping training when the validation loss stops improving), all

variants of FISHnet converge to similar values because the added capacity of the more complex

models is not allowed to be trained. To test this theory, FISHnet was re-trained without early

stopping, and observed that convergence took 59 epochs (compared to 26 with early stopping)

and reached a train dice of 0.9740 (compared to 0.9715 with early stopping). Furthermore, the

test dice without early stopping was 0.9687 (compared to 0.9712 with early stopping). This

finding suggests that FISHnet has enough capacity to achieve higher dice scores, but is gated

by the limited data available to it for training. In other words, if it expresses its full capacity

it suffers from overfitting.

To further assess whether FISHnet incurs into overfitting because Scylla’s training set is too

small, an Inverse Power Analysis (IPA) was performed by training FISHnet on progressively

larger portions of Scylla’s training set and recording the test Dice score after each training

cycle. What an IPA graph can be used for is estimating if the training data that were used

were sufficient, or if they were so few as to cause the algorithm to overfit. The results of

this analysis are shown in Figure 5.8. Though the curve does seem to plateau between 65
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and 85% training data, it also shows an unexpected upward trend starting from 85% training

data, indicating that the flatness of the plateau might have been exaggerated by the sparsity

of the data points. However, the same reasoning can be applied also to the points responsible

for the late upward trend. Therefore, Figure 5.8 is inconclusive with regards to the amount of

overfitting into which FISHnet incurs. To provide a clearer answer, a second IPA was performed,

in which on the vertical axis is reported not the test Dice, but the difference between the train

Dice and the test Dice, which is the definition of overfitting [187]. Figure 5.9 shows a trend

Figure 5.9: Results of the modified IPA performed on FISHnet.

almost identical to the one in Figure 5.8, in terms of the amount of overfitting present: for low

amounts of training data FISHnet overfits badly; as more training data are used, the amount

of overfitting decreases and eventually plateaus; but then, the downward trend resumes quite

sharply. This confirms that Scylla could benefit from having more training images.

Two more observations, related to each other, can be made from the graphs in Figures 5.8

and 5.9. First, while optimal performance requires more training data than were available, even

a small fraction of Scylla’s training set is enough to train models to almost 95% Dice score.

A possible explanation for this is that there is insufficient variability in the data; therefore,

a small number of training examples are enough to cover most of the variability present in
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the dataset and achieve high Dice scores. However, this explanation is incompatible with the

upward trend observed in Figure 5.8. Second, though the graph in Figure 5.9 shows that using

all the training data causes ten times less overfitting than using 20%, the scale of the values on

the vertical axis is small. A possible explanation for this is that the test set is too similar to the

training set. This would explain the small scale of the values on the vertical axis in Figure 5.9,

but not that the test Dice of FISHnet trained with only 20% data is already high. Therefore,

it is unclear whether the images in Scylla have enough variability. However, it is likely that

Scylla would benefit from having more test data, as well as more varied data.

Finally, Figure 5.10 shows three examples of images on which FISHnet performed partic-

ularly poorly. The failure on image A of Figure 5.10 can be attributed to the presence of a

Figure 5.10: Three examples of FISHnet network making noticeable segmentation errors. The
outputs of DeepLabv3 and U-Net 1024 are also reported here to understand if the images on
which FISHnet failed were inherently difficult.

background object (a floating pole) that, because it was in front of the head of the swimmer,

was segmented as belonging to it. The mistake is repeated by DeepLabv3, but, unexplainably,

not by U-Net 1024. The pole is also visible in image B of Figure 5.10, but in this case it was

not segmented as part of the swimmer’s silhouette, likely because in that image the pole colour

is inconsistent with any part of the swimmer, whereas in image A the pole was of the same

colour as the swimmer’s cap, with which it was juxtaposed.

The reason for FISHnet’s failure on image B of Figure 5.10 is not as easily diagnosed,

though it is clear that this image must have some feature that makes it difficult, as all algo-
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rithms performed poorly on it. In this image, the colour camouflaging between the swimmer

and the background is pronounced. Indeed, even a human might struggle to detect the outline

of the legs. However, many of the images in the Scylla dataset have a similar degree of colour

camouflaging—for example, though to a lesser degree, image A in Figure 5.10. Another possible

explanation for why this image was challenging is the presence of bubbles around the legs (the

area where the grossest segmentation mistakes were made): the algorithms might have learned

from the training data to ignore bubbles, and therefore in this image ignore much of the legs.

The negative effect of bubbles is somewhat confirmed by image C of Figure 5.10, in which all

algorithms fail to correctly segment the left shank and right foot of the swimmer—the areas

most enveloped by bubbles. However, the effect of bubbles on this image was less drastic than

in image B. It could be concluded, then, that the reason all algorithms performed poorly on

image B was the combination of bubbles and colour camouflaging. Since these two conditions

overlap rarely in the images of the Scylla dataset, FISHnet commits few gross mistakes. The

main source of error for the silhouette extraction of swimmers, then, is not to be found in easily

observable mistakes as the ones shown in Figure 5.10, but in small-scale errors that occur along

the contour of all silhouettes. Because FISHnet and U-Net 1024 should reconstruct the most

accurate outlines (since their output resolution is the closest to the resolution of the images in

the Scylla dataset), and since it was just established that accuracy along the contour is likely

to be indicative of overall performance on the test set of the Scylla dataset, one would expect

in theory that FISHnet and U-Net 1024 should outperform the other algorithms; this result

is confirmed empirically by the results reported in Table 5.4. In other words, I attribute the

margin of FISHnet over DeepLabv3+, U-Net 512, and U-Net 128 to it outputting smoother sil-

houettes, which in turn is a consequence of the higher output resolution on which FISHnet and

U-Net 1024 operate. What accounts for FISHnet’s advantage over U-Net 1024 is the presence

of the SEB and SRE modules (to a minor extent) and the fact that FISHnet uses a pre-trained

VGG16 as an encoder (to a greater extent).
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5.5 Conclusions

The results reported in this chapter indicate that the Scylla dataset would likely benefit from

having more (and more varied) training and test data. In particular, the size of Scylla did

not allow the unique modules of FISHnet (the SRE and modified SEB modules) to express

their full potential without making the network overfit. Nevertheless, these additions to U-

Net 1024 did improve performance over the baseline network. However, a much bigger impact

on performance is attributable to the choice of using a pre-trained encoder, VGG16. This

conclusion agrees with the current theoretical understanding of neural network training [187].

The main advantage of FISHnet over DeepLabv3+ seems to be that FISHnet outputs pre-

diction at higher resolution than DeepLabv3+. This allows FISHnet to predict silhouettes with

smoother, more detailed contours, at the cost of not having as much capacity as DeepLabv3+—

a cost which, given that FISHnet already overfits on Scylla, is negligible. Therefore, whereas

much of the incorrectly classified pixels of DeepLabv3+ and small U-Net models (like U-net 128

and 256) are due to low-resolution contours, the main sources of error for FISHnet are images

in which the silhouette is particularly difficult to separate from nearby bubbles or objects, or

images in which colour camouflaging is particularly pronounced.

Having developed an algorithm for silhouette extraction that outperforms the state-of-the-

art on the Scylla dataset, the next step towards the realisation of the aim of this PhD was to

build a dataset (described in Chapter 6) on which to train a 2D pose detection algorithm (the

development of which is described in Chapter 7).



Chapter 6

Construction of Charybdis, a Dataset

of Images of Swimmers for 2D Pose

Detection

6.1 Preliminary Considerations

From the development and evaluation of FISHnet it emerged that the Scylla dataset probably

had too few images, especially in the test set. As discussed in Section 4.1, there are no precise

heuristics for determining a priori how many training and test examples a dataset will need.

Therefore, Scylla being too small does not necessarily mean that Charybdis should have more

images than Scylla, because the two datasets model two different data-generating processes,

one of which may be more complex (and therefore require more images) than the other. Never-

theless, it is likely that the task of 2D pose detection requires more training images than that of

silhouette extraction, as one image labelled for 2D pose detection provides less supervision than

one labelled for silhouette extraction1. This intuition appears to be confirmed by the fact that

1The more pixels of an image are labelled, the more a neural network can learn from that image. In an image
labelled for 2D pose detection, usually 14-15 pixels are labelled (though this number can be increased by using
heatmaps, as discussed in Section 2.5.4); in an image labelled for silhouette extraction, (potentially hundreds
of) thousands of pixels are labelled.

130



6.2. How the Data were Gathered 131

MPII, the most popular dataset for 2D pose detection, has 25,000 images, making it 2.5 times

larger than PASCAL VOC, the most popular dataset for silhouette extraction. However, it is

unlikely that Charybdis should contain as many images as MPII, since there is more variability

in MPII than there needs to be in Charybdis (see Section 2.5.2). This is the same reasoning

that was used to justify why Scylla should have fewer images than PASCAL VOC. Given that it

was ultimately found that Scylla did not contain enough images, it is possible that this reason-

ing is not valid, and therefore that the Charybdis dataset should contain about 25,000 images.

This conclusion seems unlikely: MPII undoubtedly contains more variability than is needed in

Charybdis, and therefore Charybdis certainly needs fewer images than 25,000—but how many

fewer? Given that the second most common dataset for 2D pose detection, the Leeds Sports

Pose dataset, contains only 2,000 images, and taking into consideration the time available dur-

ing the PhD to gather and label data, I estimated that about 8,000 images would be sufficient

for the Charybdis dataset—provided that they be more variable than the images in Scylla, and

that enough of them be allocated to the test set. To increase the variability of the images of

The Collection, new videos of underwater swimmers were recorded, at the Manchester Aquatics

Centre. This data acquisition session is described in the following section.

6.2 How the Data were Gathered

Seven participants were recruited for the data acquisition session at the Manchester Aquatics

centre. Of these, four were highly trained swimmers (5+ years of practice). All swimmers

wore tight-fitting swimwear. Unfortunately, all swimmers were males, potentially introducing a

source of dataset bias, which will need to be corrected (by recording videos of female swimmers)

in future work.

Each swimmer performed two trials of underwater breaststroke; the four experienced swim-

mers also performed two trials of underwater butterfly kick. The swimmers were recorded with

an eight-camera system, set up fully underwater (see Figure 6.1). The cameras used were POI

(GigE) Mako G-223B cameras (Allied Vision Technologies GmbH, Stemmer Imaging, Surrey,
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Figure 6.1: Camera setup used to record videos at the Manchester Aquatics Centre. (Image
created by the author)

UK), and they were placed in Nautilus IP68-rated waterproof housings (Autovimation GmbH,

Baden Württemberg, Germany). The recording software used was Gecko GigE Video Recorder

v1.9.4, (Vision Experts Ltd, Surrey, England). The cameras were placed asymmetrically to

avoid cameras on opposite sides of the pool recording specular images, which would reduce

the benefit of using multiple cameras. For the same purpose, cameras were placed at various

depths below the water surface, ranging from 0.5 to 1.5 m. The cameras were calibrated using

the custom-made 3D frame shown in Figure 6.2, which has 42 control points. Though for the

purposes of building the Charybdis dataset it was unnecessary to calibrate the cameras, these

videos might be used in future research to perform 2D-to-3D inference, for which having cal-

ibrated cameras is required. For the same reason, the cameras were synchronised by flashing

an LED light (visible by all cameras) moments after the cameras started recording. In total,

setting up the equipment and calibrating the cameras took about five hours.

From the videos recorded, 2,113 images were extracted, using the methodology described
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Figure 6.2: Custom-made 3D frame used to calibrate the cameras.

in Section 4.2. To these 2,113 images were added 6,000 images extracted from the videos in

The Collection, giving a total of 8,113 images. The images were then split into a training

set of 6,485 images (of which 20% came from the Manchester recording session) and a test

set of 1,628 images (of which 50% came from the Manchester recording session), for an 80-20

train-test split. Compared to Scylla, therefore, Charybdis has images from one more swimming

pool (two instead of one), it has a higher percentage of test data (20% instead of 15%), and it

features more swimmers (21 instead of 14).

6.3 How the Data were Labelled

The first thing to decide when labelling images for a 2D pose detection dataset is what joints

to label. Within the scope of this PhD2, the purpose of Charybdis is to train an algorithm

to automatically detect a certain number of joints of swimmers, joints that would then be

used as constraints on which to fit a parametric model—most likely SMPL, the most popular

parametric model available. Therefore, it is reasonable to label in the images of Charybdis the

same joints that a SMPL model expects (see Figure 6.3). However, the ‘joints’ of a SMPL model

do not necessarily correspond to anatomical joints. Rather, they are keypoints onto which the

2Outside of the scope of this PhD, the Charybdis dataset could be used to train algorithms for 2D pose
detection disentangled from 2D-to-3D inference. In this scenario, the joints to be labelled might be different.
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Figure 6.3: Joints of the SMPL parametric model. (Image created by the author)

model—which is a 3D mesh—is anchored and around which the parts of the model are rotated

and translated. These ‘joints’ are derived statistically as the points that produce the most

realistic (but not necessarily anatomically correct) model poses. Therefore, ‘joints’ like number

13 or 14 in Figure 6.3 do not correspond to any particular joint (though they probably are

related to the scapulae). Therefore, they cannot be identified by any bony landmarks, making

it hard to label them reliably. Similarly, ‘joints’ 22 and 23 lack a clear definition: do they

refer to the tip of a finger? If so, which one? Or do they refer to the outer-most point of the

hands, meaning if the hands were curled into fists, they would be labelled on the outer-most

knuckles? The same questions apply to ‘joints’ 10 and 11. However, SMPL does not require

all joints to be labelled (though the optimisation algorithm will converge faster if more joints

are labelled). For this reason (and to reduce the time spent labelling), I decided to label only
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Figure 6.4: The joints labelled in the Charybdis dataset are a subset of the joints of a SMPL
model. In this image, the joints of SMPL that are not labelled in Charybdis are greyed out.
(Image created by the author)

the joints of SMPL that I consider essential (see Figure 6.4), in terms of the strength of the

constraint they would impose on the optimisation of a SMPL model. These joints are the left

and right ankles, knees, hips, shoulders, elbows, and wrists; the ‘belly button’ (defined in the

next paragraph and visible in Figure 6.4); the sternum; and the neck, for a total of 15 joints3.

This list of joints is similar to that of the joints labelled in the MPII and LSP datasets, with

the difference that in Charybdis the top of the head is not labelled but the ‘belly button’ is.

This decision was motivated by the fact that having an additional constraint (i.e. labelled

joint) along the spine benefits the early stages of the optimisation algorithm that fits a SMPL

model to the constraints. Since SMPL models are not constrained to anatomical poses, only

3In SMPL, the joints listed have such a strong relationship to anatomical joints as to make unimportant the
distinction between anatomical joints and model joints. For example, joint 4 of a SMPL model (see Figure 6.3)
can be interpreted as being the actual knee of the model, placed in its anatomical position.
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labelling two joints along the spine (neck and sternum) might cause the model to ‘fold onto

itself’4. Therefore, adding more constraints along the spine allows the optimisation algorithm

to quickly converge towards configurations of the 3D model that are anatomically sound.

As discussed in Section 2.5.1, the points to be labelled for 2D pose detection are not the

superficial bony landmarks that would be labelled for manual digitisation systems. Rather,

they are the true centres of rotation of the joints. Through consultation with a physician, the

following guidelines were established to locate in an image the joints shown in Figure 6.4:

• Ankles: midpoint between the two malleoli;

• Knees: midpoint between the two epicondyles;

• Hips: if in flexion/extension, at the intersection between the line that vertically bisects the

femur and the line that passes through the pelvis and about which the flexion/extension

is observed; if neutral, 2 cm proximal to the greater trochanter;

• Shoulders (glenohumeral joints): if the acromion is visible, 2 cm below the acromion; if

the acromion is hidden, in the centre of the deltoid muscle;

• Elbows: midpoint between the two epicondyles;

• Wrists: midpoint between the two styloid processes;

• ‘Belly button’: on the line that vertically bisects the torso, just below the belly button;

• Sternum: on the line that vertically bisects the torso, at the height of the sternum;

• Neck: on the line that vertically bisects the torso, at the base of the neck.

Therefore, while the location of the joints does not coincide with the location of the superficial

bony landmarks, it is inferred from their location. In the videos of The Collection, whose original

purpose was to be used for manual digitisation, tape markers were applied to most of the bony

4This phenomenon can be seen in commercially available marklerless motion capture systems that fit 3D
models to 2D joints, such as SIMI Shape: from my experience with the software, I have noticed that if not
enough joints are labelled along the spine, the 3D model will often fold onto itself, making further optimisation
slow and potentially divergent.
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landmarks listed above. The presence of these markers makes it easier for human labellers

to estimate the location of 3D joint centres, but learning algorithms could also leverage this

‘assistance’ and fail on images of swimmers without tape markers on their skin. In the videos

recorded in Manchester, no tape markers were used, making the images extracted from those

videos harder for neural networks to learn from. Therefore, it is essential that the test set of

Charybdis be split into 50% images from The Collection and 50% from the Manchester recording

session, so that learning algorithms would be penalised for over-reliance on the presence of tape

markers, and instead learn to rely on the actual bony landmarks (on which there may be a tape

marker).

To ensure that the joints were labelled in a format that would be convenient as input for a

neural network, I developed a labelling tool using PyQt5, Python’s binding of the Qt toolkit.

The labelling tool consists of a Graphic User Interface (GUI) (shown in Figure 6.5) from which

images can be loaded and saved. The tool only functions in full-screen resolution, and requires

a monitor with a resolution of at least 1920 x 1080. To select a joint to label, users can either

Figure 6.5: The labelling tool consists of a simple GUI shown here and of a list of buttons that
users can press to select which joint to label. (Image created by the author)

click on the corresponding tab at the bottom of the GUI, or they can cycle through the list of
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joints by pressing the W and S keys on their keyboard. Once a joint is selected, users can click

on a point in the image, and the coordinates of that point are saved under the name of the joint

selected. The coordinates saved are in the reference system of the image, which most Python

packages (including PyQt5) define as having origin in the top-left corner of the image, with the

x axis going from left to right and the y axis going from top to bottom. Joints can be labelled in

two ways: with a left mouse click for joints that are visible, and with a right click for occluded

joints. After a joint has been labelled, a green (for visible joints) or yellow (for occluded joints)

dot appears around the pixel that was clicked on, to allow users to judge whether the joint was

labelled in the correct position. If it was not, the joint can be re-labelled an indefinite number

of times, without needing to re-start the entire process. Furthermore, users have the option

to visualise on screen all the joints that have been labelled for the current image, with lines

connecting related joints (see Figure 6.6). This functionality is beneficial during the labelling

Figure 6.6: Users can press CTRL + H to show/hide all the joints that have been labelled
for the current image. The links that appear between joints can be useful to more accurately
estimate the position of occluded joints. (Image created by the author)

process, as it can guide users to better estimate the location of occluded joints. For example, in

Figure 6.6 the right shoulder is occluded, but its position can be estimated fairly accurately by
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visualising the links between the other joints: Since the arms of the swimmer in this image are

parallel, one would expect the elbow-shoulder segment of the right arm to be parallel to—and

of proportional length, depending on the perspective—the elbow-shoulder segment of the left

arm. Therefore, even though the right shoulder is occluded, it can be labelled at the point

that satisfies these assumptions. After all joints have been labelled, the results are saved in a

.csv file (one per image) with 15 rows (one per joint) and four columns: one for the name of

the joint; two for the x and y coordinates of the joint; and one with a binary value indicating

whether the joint was visible (‘visible’ = 1) or occluded (‘visible’ = 0).

To assist in labelling the 8,000 images of Charybdis, a biomechanics MSc student was

recruited. This second labeller was given an overview of the task of 2D pose detection, as

well as an explanation of how building the Charybdis dataset fit into the grander scheme of

the PhD. She was then given the labelling guidelines listed above, as well as a guided tutorial

on how to use the labelling tool. A further guideline was established regarding how to label

occluded joints. Namely, only joints whose position cannot be estimated reasonably well should

be labelled as occluded (‘visibility’ = 0, i.e. right mouse click); joints that are not fully visible

but whose position is obvious should be labelled as visible. For example, in Figure 6.5 the right

ankle is not fully visible, as the two landmarks used to identify its location (the two malleoli) are

occluded. However, its location can still be estimated reliably, and therefore this joint should

be labelled as visible: if humans can locate it reliably from context, we would like algorithms

to learn to do the same.

After all 8,000 images had been labelled (which took about 3 months), both operators la-

belled the same set of 100 images five times, to estimate human reliability on 2D pose detection.

To calculate this estimate, it would be appropriate to use a metric that is familiar to researchers

in 2D pose detection, like the PCK@0.1 metric—or, ideally, the PCKh@0.5 metric described

in Section 2.5.2, which is the metric used to evaluate models on the MPII dataset5. However,

computing the PCK metric requires that the bounding box that encloses the full person be

5As a reminder, the Percentage of Correct Keypoints (PCK) metric measures the percentage of predicted
keypoints (i.e. joints) whose distance from their respective ground truth joints is smaller than a certain threshold.
For PCK@0.1, this threshold is calculated as 0.1 times the largest dimension (in pixels) of the bounding box
that tightly encloses the full body of the person. For PCKh@0.5, the threshold is calculated as 0.5 times the
largest dimension (in pixels) of the bounding box that tightly encloses the head of the person.
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labelled; for the PCKh metric, the bounding box that encloses the head of the person needs to

be labelled instead. Since no bounding boxes were labelled for the images of Charybdis (as this

task would have almost doubled the time required to label the Charybdis dataset), I devised

the following strategy to derive a metric comparable to PCKh@0.5.

For a given image, and given the x and y coordinates of all labelled joints, the tightest

bounding box possible that encloses all the labelled joints is the box that horizontally goes from

xmin to xmax and vertically goes from ymin to ymax (see Figure 6.7). However, this bounding

Figure 6.7: Example of how to obtain the tightest bounding box possible. The reference frame
considered here is the one that most Python packages use: the origin of the system is in the
top-left corner of the image, the x axis points to the right, and the y axis points downward.
(Image created by the author)

box is tighter (by an amount that cannot be calculated6) than the bounding boxes used to

calculate PCK or PCKh, since those boxes enclose not just the joints, but also the full body of

the person (in the case of PCK). I found empirically that if the tightest bounding box possible

is extended by 50 pixels in all four directions, the resulting box, on average, encloses the entire

swimmer (see Figure 6.8). The advantage of such a bounding box is that it does not require

any explicit labelling, as it is derived trivially from the joint labels7. Given such a bounding

6This amount cannot be calculated because it is not clear how the bounding boxes used in MPII were
obtained.

7Though convenient, this strategy to acquire bounding boxes does require that the joints be labelled, and
therefore could not be used on new, unlabelled data. Future research should seek to develop an algorithm to
automatically detect the bounding boxes of swimmers in new, unlabelled images.
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Figure 6.8: If the tightest bounding box possible is expanded by 50 pixels in all directions,
for most images in the Charybdis dataset the resulting bounding box will fully enclose the
swimmer. (Image created by the author)

box, it is possible to calculate PCK, but not PCKh. However, as discussed in Section 2.5.2,

there is a relationship between PCK and PCKh. Given the examples discussed in Section 2.5.2,

this relationship can be formalised mathematically as8:

PCK@ 0.025 ≤ PCKh@ 0.5 ≤ PCK@ 0.08 (6.1)

Where on this spectrum PCKh lies depends on the pose of the person in the image: for images in

which the largest dimension of the bounding box exceeds the height of the person9, PCKh@0.5

will be closer to PCK@0.025; for images in which the largest dimension of the bounding box is

shorter than the height of the person, PCK@0.5 will be closer to PCK@0.0810. In the images of

Charybdis, the swimmers more often than not are in a fully outstretched position, with arms

overhead. For such images, the largest dimension of the bounding box would exceed the height

of the person, meaning if I wanted to use a PCK@α metric that was comparable to PCKh@0.5,

I would need to use α = 0.025. However, in most of the images of Charybdis, the swimmers are

at an angle relative to the camera; therefore, even if the swimmer is in an outstretched position

8The upper bound of 0.08 was estimated using the example shown in Figure 2.19. In reality, this upper
bound could be even closer to 1, for body configurations in which the spine is flexed.

9‘Height of the person’ here refers to the vertical distance (in pixels) between the feet and the head of a
person, as calculated from a perfectly sagittal or frontal view.

10The justification for this statement is discussed in Section 2.5.2.
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with arms overhead, it is possible, due to perspective, that the largest dimension of the resulting

bounding box be shorter than the height of the person. Therefore, I estimated that, for most

of the images in the Charybdis dataset, PCK@0.05 would approximate PCKh@0.5 reasonably

well. For this reason, I chose PCK@0.05 as the metric with which to evaluate the reliability of

human labellers.

The PCK@0.05 of each joint was computed separately for three levels of joint visibility:

‘visible’ (i.e. for a given joint of a given image, both labellers labelled the joint as ‘visible = 1’);

‘partly visible’ (i.e. for a given joint of a given image, one labeller labelled the joint as ‘visible =

1’ and the other labeller as ‘visible = 0’); ‘occluded’ (i.e. for a given joint of a given image, both

labellers labelled the joint as ‘visible = 0’). The ‘partly visible’ category may seem confusing: a

joint is either occluded or it is not. However, as explained earlier in this section, labellers were

instructed to label as visible joints whose bony landmarks were occluded but whose location

could be estimated from context. However, different people likely have a different perception

of where a joint that is not entirely visible could be (thus leading to them labelling different

points), or of how sure they are of its possible location (thus leading to them giving the joint a

discordant ‘visible’ label). Therefore, the ‘partly visible’ category captures those joints whose

location might be evinced from context, but whose corresponding bony landmarks are occluded.

The results of this analysis are reported in Table 6.111, along with the percentage at which

the three levels of visibility occurred for each joint. The last row of Table 6.1 confirms the

intuition that occluded12 joints cannot be labelled as reliably as visible joints. Interestingly,

the left hip, shoulder, elbow, and wrist have higher PCK@0.05 when they are occluded than

when they are visible; indeed, their PCK@0.05 when occluded is 1. This seeming contradiction

might be due to the different sample sizes of the visibility categories. For example, only 27% of

all left shoulders were occluded, while 57% of them were visible. Therefore, the ‘visible’ value

of PCK@0.05 for the left shoulder is a more robust statistic than the ‘occluded’ value. Also

interesting is that, while those joints (all of which are on the left side of the swimmers) are better

11The tables reported in most scientific papers on 2D pose detection, as well as the leaderboard on MPII’s
official website (http://human-pose.mpi-inf.mpg.de/#results), only feature the ‘Overall’ column shown in Table
6.1, thus not providing any information about the prevalence—and impact on accuracy—of occlusions.

12For the rest of this section, the word ‘occluded’ will refer to joints to which both labellers assigned a ‘visible’
value of 0.
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Table 6.1: Inter-operator Reliability of 2D Pose Detection by Humans

Visible Partly Visible Occluded Overall

Joint Name PCK@0.05 % PCK@0.05 % PCK@0.05 % PCK@0.05

Left ankle 100.0 72 99.28 26 41.67 2 98.48

Right ankle 99.74 72 98.47 25 87.50 3 99.05

Left knee 100.0 54 100.0 36 99.65 10 99.24

Right knee 99.66 57 98.66 28 98.72 15 99.24

Left hip 99.60 47 98.78 31 100.0 22 99.43

Right hip 99.61 49 99.08 20 99.36 31 99.43

Left shoulder 99.66 57 97.67 16 100.0 27 99.42

Right shoulder 99.64 54 94.55 10 96.86 36 98.10

Left elbow 99.43 67 96.15 10 100.0 23 99.24

Right elbow 100.0 65 98.59 15 91.23 20 97.90

Left wrist 99.42 98 100.0 1 100.0 1 99.43

Right wrist 99.38 92 92.86 3 61.54 5 97.33

‘Belly button’ - 0 100.0 1 87.98 99 88.00

Sternum - 0 100.0 1 93.13 99 93.14

Neck - 0 100.0 10 99.57 90 99.61

Overall 99.65 52 98.27 16 90.50 32 97.85

when occluded, the left ankle is worse when occluded. Indeed, occluded left ankles achieved

the lowest PCK value of all joints under all visibility categories. Though this result could once

again be explained by considering that the sample size was probably too small to make the

statistic meaningful (since only 2% of left ankles were occluded), it might be interesting to see

an example of an image for which the left ankle was labelled as occluded. Such an example is

shown in Figure 6.9. In this case, the location of the left ankle is difficult to estimate, since

neither the x nor the y coordinates of the joint are discernible from context.

Finally, Figure 6.10 illustrates the effect that the value of α in PCK@α has on the measure

of the overall reliability of human labellers (i.e. on the value in the bottom-right corner of

Table 6.1). This figure further illustrates that occluded joints cannot be labelled as accurately

as visible joints: as the value of α decreases, the reliability of visible joints barely changes, while

the reliability of occluded joints deteriorates almost exponentially.
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Figure 6.9: Example of an image for which the left ankle was labelled as ‘visible = 0’ by both
labellers. (Image created by the author)

6.4 Conclusions

Even after having observed that the Scylla dataset did not contain enough images, to determine

the ideal size of the Charybdis dataset I used the same heuristic used for Scylla: looking at

the most popular datasets in the field (in this case, MPII and LSP), considering the difference

in variability that these datasets are supposed to describe, and then estimating the number of

images that should be in the dataset. This led me to estimate that 8,000 images (split into

80% for training and 20% of testing) should be enough for the Charybdis dataset—provided

that they be more varied than the images in Scylla. To this end, a data capture session was

held in the Manchester Aquatics Centre. During this session, new videos were recorded. From

these videos, 2,113 images were extracted using the methodology described in Section 6.2. To

these, 6,000 images from The Collection were added, for a total of 8,113 images.

The images in Charybdis were labelled by myself and an MSc student, using a custom-made

labelling tool. The joints labelled were the ankles, knees, hips, shoulders, elbows, wrists, ‘belly

button’, sternum, and neck, for a total of 15 joints. Each joint was also given a label indicating

if the joint was visible (‘visible’ = 1) or occluded (‘visible’ = 0). Human reliability for 2D pose

detection was estimated using the PCK@0.05 metric, which, in theory, should be equivalent to
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Figure 6.10: PCK@α between the two labellers of the Charybdis dataset, for different values
of α, calculated for three categories of joint visibility.

the PCKh@@0.5 metric used to evaluate models on MPII. Separate values of PCK@0.05 were

computed for three categories of joint visibility: visible, partly visible, occluded. The results of

this analysis demonstrated that occluded joints are labelled less accurately than visible joints

for all values α of PCK@α.



Chapter 7

Development of POSEidon, a 2D Pose

Detection Algorithm for Images of

Swimmers

7.1 Input Shape and Data Augmentation

Before a model could be developed and trained on the Charybdis dataset, two questions had to

be addressed: what shape the inputs should have, and what kind of data augmentation should

be used. As discussed in Section 2.5.3, most 2D pose detection algorithms crop images around

the given bounding boxes, and then resize the cropped images to have a resolution of 256 x

256 pixels, thus almost invariably distorting the image (since the ratio of the bounding box

might have been different from 1:1). In Section 2.5.3, an alternative was proposed: to avoid

images being distorted, they could be resized to the mean resolution of the bounding boxes in

the dataset. For Charybdis, the mean resolution of the bounding boxes was about 256 x 512.

Therefore, all images in Charybdis were first cropped around the bounding boxes obtained as

described in Section 6.3, and then resized to have a resolution of 256 x 512 pixels.

For 2D pose detection, the types of data augmentation used most often are horizontal

146
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flipping, rotation, and scaling. Rafi et al. [170] were the only authors who quantified the

contribution of these data augmentation techniques to the performance of 2D pose detection

algorithms—a contribution which they estimated to be about 4% PCKh for their network.

However, since neural networks require inputs of a pre-determined, rectangular shape, rotating

or scaling images means that either parts of the images would be cut off, or the image would

need to be down-sampled to fit the desired resolution (see Figure 7.1); in both cases, informa-

tion would be lost. Therefore, rotation and scaling, though popular augmentation strategies,

Figure 7.1: Example of the two types of results of rotating an image while under the restriction
of maintaining a fixed resolution (in this case, 256 x 512 pixels): the image loses information
either because parts of it are cut off (left image) or because it is down-sampled (right image).
(Image created by the author)

are likely ineffective. However, just using horizontal flipping is unlikely to impact the perfor-

mance of a neural network. To this end, some researchers [172,195] have developed adversarial

augmentation techniques1 specifically for 2D pose detection—for example, by pasting random

body parts at random places in images. Bin et al. [195], who trained Stacked Hourglass us-

ing this data augmentation strategy, obtained 94.1% PCKh, which, as of the time of writing,

puts their model at the top of MPII’s leaderboard. However, as the database they used is not

publicly available and would be time consuming to obtain, it could not be used in this PhD.

Therefore, new ways to augment the images in Charybdis (other than horizontal flipping) had

to be devised.

The purpose of data augmentation is to expose algorithms to more variability than is

present in the training set of a given dataset, to make the algorithm learn a more generalisable

probability distribution. A simple way to understand how to perform data augmentation is to

1See Section 2.5.5.4 for more details.
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ask the question: ‘If we gathered new data under different conditions, how would we expect

the new data to differ from the data already gathered?’. If the sources of variability to be

expected in new data can be traced back to linear transformations (e.g. rotations, changes in

colour, etc), applying these transformations to the training data available is likely to increase

the performance of the model. Therefore, the best way to augment the images in Charybdis

is to apply transformations to them that might occur naturally in new images. As discussed

in Section 4.1, the main sources of variability for images of underwater swimmers relate to the

conditions under which the videos are captured: images could be more or less out of focus; the

subject being recorded might be blurred due to the camera having a low shutter speed; the

brightness of the image could vary because of several factors. Therefore, I decided to adopt

the following three data augmentation techniques (see Figure 7.2): motion blur (which could

be caused by an improperly set shutter speed); Gaussian blur, (which could be caused by

an improperly set camera focus); and altered brightness/contrast (which could be caused by

an improperly set camera aperture or shutter speed, but also by differences in lighting that

naturally occur across different swimming pools, or within the same swimming pool due to

changes in external lighting).

Figure 7.2: Examples of the types of swimming-specific data augmentation developed to train
2D pose detection algorithms on Charybdis. Each of these transformations is likely to be found
naturally when recording images of swimmers. (Images created by the author)
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Gaussian blur was implemented by convolving images with a Gaussian filter with a pa-

rameter σ ∈ [1, 10] (where higher values give more blur)2. Motion blur was implemented by

convolving images with a square filter of size ∈ [15, 30] (where higher values give more blur)

in which the middle row of pixels had a value of one and all others were zero. Brightness and

contrast were altered by adapting the code from a public code repository3. In this implemen-

tation (the details of which can be found in the introduction to the repository), there are two

ranges that determine the magnitude of the transformation: one for brightness (range: [100,

350], where lower values give darker images), and one for contrast (range: [100, 150], where

higher values give more contrast). Finally, horizontal flipping was also used. The probability

of performing each type of augmentation on a given training image was set to 50%, meaning

there was a 6.25% chance that all four augmentations be applied to a given image.

7.2 Model Development

In Section 2.5.4 it was discussed how heatmaps (see Fig 2.22) are used as labels in most modern

2D pose detection algorithms. However, using heatmaps requires models to output predictions

at resolutions as close as possible to the input resolution. This is because, as noted in Section

5.4, models whose outputs need to be up-sampled to match the resolution of the input tend

to perform worse than models whose outputs have the same resolution as the input, because

the down-sampling operation is non-reversible (meaning some information is lost that cannot

be recovered via up-sampling). For deep models, this can be too computationally expensive

to make training practical: even Stacked Hourglass [5], whose inputs have a resolution of 256

x 256 pixels (16 times smaller than the inputs used by FISHnet, and twice as small as the

crop-resized images in Charybdis), first has to lower the resolution of the input to 64 x 64

pixels to make training manageable. This means that the heatmaps outputted by Stacked

Hourglass (and by most of the algorithms described in Section 2.5.5, which derive from Stacked

2Data augmentation techniques are implemented as statistical distributions (usually a Gaussian or uniform
distribution) of the value that determines the magnitude of the transformation. For example, if rotation is used,
when an image is fed to a model it is first rotated by a random angle that is usually in the range [-35; 35] [170].

3https://www.life2coding.com/change-brightness-and-contrast-of-images-using-opencv-python/
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Hourglass) are 16 times smaller than the input, and need to be up-sampled when calculating

PCKh, likely leading to errors. Therefore, instead of using heatmaps, it might be preferable to

use a model that directly predicts the x and y coordinates of the joints (i.e. a regression model).

Whereas the outputs of Stacked Hourglass would have shape image height/4 x image width/4

x num joints, the outputs of a regression model would have shape num joints x 2. This type of

output has two advantages. First, since it allows models to be smaller (as they would not need to

compute the transformation from low resolution features to high resolution heatmaps) it makes

the training of the neural network faster, making it possible to test more architectures and to

fine-tune the hyperparameters of the model more precisely. Second, the coordinates predicted

by a regression model are in the reference system of the input image, which effectively means

they have the same ‘resolution’ as the input. Therefore, no information would be lost at any

stage of the prediction process. Because of these two reasons, I decided to develop a regression

model instead of a model that uses heatmaps as inputs. Though this choice differs from the

trend in the literature, it is also true that regression-based deep learning models have never

been compared to heatmap-based models; indeed, modern regression models have never even

been applied to 2D pose detection. Therefore, the assumption that heatmap-based models are

by default superior to regression models for this task may be misguided.

Regression models can be seen as being just the encoder part of encoder-decoder models like

U-Net: they condense large inputs (in this case, images) into small, semantically rich features

(in this case, of shape 15 x 2). One of the simplest (but complex enough to realistically be able

to perform well) regression models to implement is U-Net’s encoder, which is simply a series

of convolutional, batch normalisation, and average pooling layers. Therefore, it was the first

model that was trained on Charybdis4. In this early stage of model development, models were

trained only for 50 epochs: empirically, 50 epochs were found to be a good compromise between

training algorithms to near-optimal values and being able to quickly test several algorithms5.

After 50 epochs, and using the data augmentation techniques described in the previous section,

4This model was not expected to perform well on Charybdis. The rationale behind its implementation
was to begin with the simplest model possible, and progressively add complexity, to understand what kind of
algorithmic changes affected performance the most.

5In the initial stages of model development, it is beneficial to quickly test a wide range of architectures
and identify which ones work best; afterwards, the best-performing models can be fine-tuned to improve their
performance.
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U-Net’s encoder achieved a PCK@0.05 of 62.63% on the training set, and of 35.28% on the

test set6. These results indicate that U-Net’s encoder not only overfits badly, but also does not

have enough capacity to reach good performance on the training set.

The second algorithm tested was the encoder in Stacked Hourglass’s hourglass modules,

whose main difference from U-Net’s encoder is that it uses residual modules instead of simple

series of convolutional and batch normalisation layers. As expected, this more refined encoder

achieved higher performance than U-Net’s encoder, with a training PCK of 77.96% and a test

PCK of 54.39%. At this stage, the concept of stacking modules was introduced. However,

since the output of the model had to be of shape num joints x 2 (i.e. the shape at the end

of an encoder, whereas the shape at the end of a decoder is the same as the input), and since

the first stack was just an encoder, each stack after the first one had to be constructed as a

decoder-encoder pair (see Figure 7.3). This structure was used to train two-, three-, and four-

stack models (which will be referred to as ‘n-stack Truncated Hourglass models’7), the results

for which are reported in Table 7.1. As in the original implementation of Stacked Hourglass,

intermediate loss functions were added at the end of each stack, to make training faster and

less susceptible to vanishing gradients. For all models, and for each of their stacks, the loss

function used was Mean Squared Error, which is the loss function used in Stacked Hourglass

and in most other 2D pose detection algorithms.

Table 7.1: Results for Truncated Hourglass models with different numbers of stacks

Number of stacks Training PCK@0.05 (%) Test PCK@0.05 (%)

1 77.96 54.39

2 82.19 57.43

3 75.87 52.38

4 63.17 39.21

The results in Table 7.1 indicate that the performance of Truncated Stacked Hourglass

improves if a second stack is used, but deteriorates if further stacks are added. The cause of this

6For simplicity of notation, for the remainder of this chapter a model’s performance on the training and
test sets of Charybdis will be denoted as ‘training PCK’ and ’test PCK’, respectively. Likewise, these initial
tests did not differentiate between PCK values for visible and visible joints. Such a fine-grained analysis of the
performance of models was beyond the objective of this initial stage of algorithm development, which was to
quickly test several architectures.

7If the word Hourglass refers to a model, it is capitalised; if it refers to a module, it is not.
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Figure 7.3: Example of using three stacks to build a Stacked Hourglass model and a ‘Trun-
cated’ Stacked Hourglass model. Stacking encoders requires that each stack after the first be
constructed as a decoder-encoder pair, whereas in a normal Stacked Hourglass network each
stack is an encoder-decoder pair. For the ‘Truncated’ Stacked Hourglass, the tip of each encoder
has shape 15 x 2. (Image created by the author)

phenomenon cannot be overfitting caused by the extra capacity introduced by the additional

stacks, as the training PCK also deteriorates as more stacks are added. It is possible that, even

though intermediate losses were used, the gradients they provide are too weak to prevent the

gradients of later stacks from vanishing (which is a consequence of using a regression model

instead of a heatmap-based model). Whatever the reason for this behaviour, it is also interesting

to understand why adding a second stack improves performance. In Stacked Hourglass, adding

more stacks was beneficial because each stack further refined the prediction of the previous one.

The evidence that this was the mechanism by which adding stacks improved performance was

that the loss of a given stack i was always lower than the loss of stack i + 1. This behaviour

was observed also in the two-stack Truncated Stacked Hourglass model reported in Table 7.1,

for which, after 50 epochs, the loss of the first encoder was 578 and the loss of the second

encoder was 449. Therefore, adding stacks seems to have the same effect regardless of the type

of output used by the model.
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A limitation of using hourglass modules is that it was not possible to use pre-trained weights

for them, as a pre-trained model would have a structure (and supervision) different from that

needed for a regression-based model8. As discussed in Section 5.2, pre-training a model tends to

increase performance. Indeed, when developing FISHnet it was observed that the factor that

contributed to performance the most was using a pre-trained encoder (VGG16). Therefore,

re-implementing the Truncated Stacked Hourglass model using powerful pre-trained encoders

would likely improve the performance of the model. However, using pre-trained encoders would

mean losing the symmetry between encoders and decoders, which is one of the key features of

Stacked Hourglass. But is this feature needed in a regression-based model? The purpose

of having symmetrical encoders and decoders is to link (via skip connections) layers of the

encoder with layers of the decoder at the same depth. The purpose of these skip connections, as

discussed in Section 5.1, is to allow the decoder to restore the spatial resolution of its features.

In models that use heatmaps as outputs, this feature is essential, otherwise the model will

output inaccurate, low-resolution predictions. But in a regression-based model, the output has

no spatial resolution, and therefore spatial resolution does not need to be restored. Therefore,

for a regression-based model not only is it unnecessary for the encoder and the decoder to be

symmetrical, but it is also probably unnecessary to use decoders altogether9, since their function

is irrelevant for regression-based models. Therefore, instead of stacking pre-trained encoders

in ‘truncated hourglass’ fashion, they could be stacked as in Figure 7.4: the features at the

bottom of each encoder are up-sampled by a factor that gives them the same resolution as the

first layers of the next encoder, to which they are connected. This architecture is lighter than

that of a Truncated Hourglass, because no parameters are required to connect the encoders to

one another. Since the shape of this type of network no longer resembles a series of hourglasses,

the name ‘Cascaded Encoders’ will be used to refer to this type of network.

Three types of pre-trained encoder were tested as the encoders for one-, two-, and three-

stack Cascaded Encoders networks (for a total of nine models): ResNet50V2 [217], DenseNet201

[12], and EfficientNetB3 [218]10. Four-stack Cascaded Encoders networks could not be tested:

8This is the same reason why FISHnet could not be re-purposed for this task.
9This hypothesis will be tested later in this section.

10VGG16 was not tested because, when these tests were conducted, its performance had been surpassed by
the other encoders listed.
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Figure 7.4: Example of the architecture of a Cascaded Encoders network. (Image created by
the author)

their number of parameters is so high that the models would not have fit on the GPUs available

during this PhD11. As for the models tested previously, these models were trained using MSE

as the loss function and the data augmentation techniques described in the previous section,

and they were only allowed to train for 50 epochs. The results of these tests are reported in

Table 7.2.

Table 7.2: Results for Cascaded Encoders models with different numbers of stack

Encoder type Number of stacks Training PCK@0.05 (%) Test PCK@0.05 (%)

ResNet50V2
1 94.54 68.99

2 94.11 72.04

3 93.14 68.83

DenseNet201
1 95.76 71.63

2 94.74 75.32

3 92.33 65.41

EfficientNetB3
1 86.15 71.31

2 86.46 73.60

3 80.38 72.38

Two observations can be made regarding the results in Table 7.2. First, even for Cascaded

Encoders networks, two stacks give the best performance. Once again, this finding can be

11A four-stack Cascaded Encoders network with ResNet50V2 as the encoder would have 100 million parame-
ters, making it more than eight times larger than a four-stack Stacked Hourglass network. Even on a powerful
GPU, training a model so large would take several days.
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attributed to the idea that regression-based deep supervision (i.e. the addition of intermediate

losses after each encoder) likely does not provide a strong enough gradient to prevent it from

vanishing as it reaches the earlier stacks of a three-stack network. Second, for all configurations

tested except three-stack networks, DenseNet201 was the encoder that performed best. There-

fore, all subsequent tests were done using a two-stack Cascaded Encoders network in which

the two encoders were pre-trained DenseNet201 models (a model which will be referred to as

‘POSEidon’).

To test the hypothesis that decoders are unnecessary in a multi-stack regression model,

a two-stack Truncated Stacked Hourglass model was implemented using DenseNet201s as en-

coders and building decoders with the same layer arrangement of a DenseNet201 (but in which

the average pooling layers were replaced by upsampling layers). This model achieved a training

PCK of 94.27% and a test PCK of 71.81%—3.5% worse than the test PCK achieved by the

two-stack Cascaded DenseNet201s network. This result agrees with the hypothesis that de-

coders are unnecessary for regression models, but does not necessarily confirm it. Although the

decoders used to train the symmetrical two-stack Truncated Stacked Hourglass had a similar

structure to the encoders, only the encoders had pre-trained weights (since the decoders were

implemented by hand). Therefore, it is possible that, had the decoders been pre-trained as the

encoders were, using decoders might have improved performance. Nevertheless, the simpler

interpretation is that decoders are unnecessary for regression-based models.

7.3 Final Architecture of POSEidon, and Implementa-

tion Details

The final architecture of POSEidon (Figure 7.5) consists of two DenseNet201 networks stacked

in series12. The two networks are connected to each other by upsampling the bottom of the

first until it has the same resolution as the first layer of the second, to which it is then merged.

12The two DenseNet201 networks were not implemented by hand. Instead, TensorFlow was used to download
and instantiate them, using weights pre-trained on ImageNet.
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Figure 7.5: Final architecture of POSEidon, which consists of two DenseNet201 networks
stacked in series, and whose blocks are connected via skip connections. For the two DenseNet
networks represented here, the skip connections between blocks within the same network are not
represented to avoid confusion with the skip connections between blocks of the two networks.
For a full description of DenseNet201’s architecture, please refer to [12].

Because it is a regression-based model, POSEidon does not need a decoder between its two

encoders, thus saving parameters.

POSEidon was trained using the following data augmentation techniques: Gaussian blur

(σ ∈ [1, 10]), motion blur (kernel size ∈ [15, 30]), and altered brightness/contrast (αc ∈

[100, 150], αb ∈ [100, 350]); the values of each augmentation technique were sampled using a

uniform distribution. POSEidon was trained with a batch size of four and with early stopping,

meaning training was forced to stop once the validation loss had not decreased by at least

0.0001 for six consecutive epochs. The optimiser used was RMSprop with an initial learning

rate of 0.001, which was annealed by a factor of ten if the validation loss did not decrease for

five consecutive epochs. POSEidon was implemented using Keras with TensorFlow backend.

All training and testing was done on an Nvidia Titan X GPU.

7.4 Evaluation

To evauate the performance of POSEidon, it was re-trained on Charybdis until convergence

(which took 94 epochs). The results of this test are reported in Table 7.3, in which separate

values of PCK@0.05 are reported for visible and occluded joints. The performance of POSEidon
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improved only marginally when it was allowed to train until convergence, compared to when it

was allowed to train for only 50 epochs. This finding confirms the hypothesis that evaluating

models after training them for only 50 epochs did provide a good indication of the true per-

formance capacity of the models. One result in Table 7.3 that is surprising is that POSEidon

performs better on occluded joints than on visible ones. Indeed, by retrospectively calculating

the training and test PCK@0.05 for visible and occluded joints of all previously tested models,

it was found that all models performed better on occluded joints than on visible ones. A likely

explanation for this phenomenon is that one (or more) of the data augmentation techniques

used was not working as intended. To test this hypothesis, POSEidon was re-trained without

using any data augmentation. The results of this test (reported in Table 7.4) indicate that

indeed one or more of the data augmentation technique used were responsible for POSEidon

performing worse on visible joints than on occluded ones, and therefore performing worse over-

all. To test whether the problem resided in one of the three novel data augmentation techniques

implemented (Gaussian blur, motion blur, and altered brightness/contrast), POSEidon was re-

trained once using only horizontal flipping, and once using only the three novel augmentation

techniques. The results for this test (reported in Table 7.5) are surprising: they indicate that

horizontal flipping, not the novel augmentation techniques, is responsible for the decrease in

performance on visible joints. No explanation was found for this counter-intuitive result. A

second result from Table 7.5 that should be highlighted is the fact that using the three novel

augmentation techniques improved performance by 1.76% over the performance obtained with

no data augmentation (Table 7.4). This confirms the hypothesis that task-specific data aug-

mentation techniques are more beneficial than generic ones—perhaps even more so than what

the results in Table 7.5 suggest. The purpose of data augmentation is to teach an algorithm

how to output accurate predictions even for challenging images. However, most of the images

Table 7.3: Results for POSEidon on Charybdis

Visibility Training PCK@0.05 (%) Test PCK@0.05 (%)

Visible 98.28 76.35

Occluded 98.41 79.86

Overall 98.34 77.73
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Table 7.4: Results for POSEidon (no augmentation)

Visibility Training PCK@0.05 (%) Test PCK@0.05 (%)

Visible 99.01 81.88

Occluded 99.04 79.21

Overall 99.02 80.83

Table 7.5: Results for POSEidon with different augmentation strategies

Augmentation Visibility Training PCK@0.05 (%) Test PCK@0.05 (%)

Horizontal flipping
Visible 96.57 75.02

Occluded 97.27 79.91

Overall 96.86 76.94

Gaussian blur, motion blur,
altered brightness/contrast

Visible 99.18 83.18

Occluded 99.12 81.68

Overall 99.15 82.59

in the test set of Charybdis are quite ‘clean’—for instance, there is minimal blurring. There-

fore, the true benefit of using data augmentation does not emerge from the results in Table 7.5

because such sources of variability are not abundant in the test set of Charybdis (although they

might be in newly recorded data). To illustrate this point, I decided to augment the test set of

Charybdis using the same three task-specific techniques described in the previous section. Each

test image was augmented with at least one of the three techniques, and the probability that an

image would be augmented by all three was set to 12.5% (to maintain the same probability with

which the training data had been augmented). Two versions of POSEidon were then re-tested

on this augmented test set: the version that had been trained with no data augmentation, and

the version that had been trained with the three task-specific data augmentation techniques

(but without horizontal flipping). The results of this test, reported in Table 7.6, demonstrate

the true benefit of using these task-specific augmentation techniques: on the augmented test

set, POSEidon is about 20% more accurate if it is trained using data augmentation. As shown

in Figure 7.6, training POSEidon with these data augmentation techniques enables it to per-

form well even on images that would be challenging for humans to label. Therefore, POSEidon

would likely perform well under less ideal conditions than those under which the images in

Charybdis were recorded—for example, it would likely perform equally well on images recorded

by lower-quality cameras, and whose parameters are not tuned optimally. Furthermore, Figure
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Original test image

Augmented test image (Gaussian blur + lowered brightness)

POSEidon trained without augmentation

POSEidon trained with augmentation

Figure 7.6: Training POSEidon with task-specific data augmentation techniques makes it more
robust against variations in the data that can be found naturally in images of swimmers.
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Table 7.6: Results for POSEidon on augmented test data

Augmentation Visibility Test PCK@0.05 (%)

None
Visible 63.85

Occluded 59.62

Overall 61.28

Gaussian blur, motion blur,
altered brightness/contrast

Visible 82.15

Occluded 80.81

Overall 81.63

7.6 shows that not using these data augmentation methods to train POSEidon results in it

failing on challenging images.

Finally, Table 7.7 reports the per-joint PCK@0.05 of POSEidon (trained with data aug-

mentation and tested on the non-augmented test set of Charybdis). There are a few noticeable

differences between the per-joint accuracy of POSEidon and the per-joint inter-operator relia-

bility reported in Table 6.1. First, POSEidon performed worst on occluded right wrists, only

about 17% of which were correctly identified. Occluded right wrists were difficult to label also

for humans, who achieved 61% PCK@0.05 on them. Therefore, given that the labels for these

joint are unreliable and that right wrists are occluded in only about 6% of the images in the

training set of Charybdis, it is unsurprising that POSEidon could not learn well how to detect

these joints. More difficult to interpret are the low PCK values for the visible wrists and left

ankle—for which the gap between POSEidon and humans was about 24% on average. No ex-

planation for this behaviour could be found. Second, POSEidon performed best on the spinal

joints, which it located only about 4% less reliably than humans (whereas for the other joints

the mean gap between humans and POSEidon was about 18%). As discussed in Chapter 6.1,

the spinal joints are especially important when fitting a parametric model to 2D joints, as they

provide constraints with which the trunk can quickly be placed in the correct position. Once

the trunk has been positioned correctly, the orientation of the limbs can be estimated using

the constraints provided by the other joints and by the silhouettes. As POSEidon is about as

accurate as humans at identifying spinal joints, it could function well in a 2D-to-3D pipeline.
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Table 7.7: Per-joint PCK@0.05 of Poseidon on Charybdis

Visible Occluded Overall

Joint Name PCK@0.05 % PCK@0.05 % PCK@0.05

Left ankle 75.61 82 87.28 18 77.64

Right ankle 86.05 85 82.61 15 85.57

Left knee 80.58 66 87.50 34 82.92

Right knee 82.37 78 80.11 22 81.88

Left hip 85.97 37 88.75 63 87.71

Right hip 82.14 50 77.14 50 79.67

Left shoulder 86.13 65 83.63 35 85.26

Right shoulder 87.63 63 56.32 37 76.23

Left elbow 81.04 77 68.51 23 78.26

Right elbow 85.05 83 50.74 17 79.36

Left wrist 75.30 91 58.45 9 73.83

Right wrist 77.42 94 17.24 6 74.20

‘Belly button’ 90.79 4 88.14 96 88.27

Sternum 93.33 5 87.58 95 87.90

Neck 92.59 23 92.64 77 92.63

Overall 83.18 60 81.68 40 82.59

7.5 Conclusions

This chapter has shown that it is possible to use regression models for 2D pose detection. Such

models have two advantages over heatmap-based models: they do not require decoders (as

demonstrated by the results reported in this chapter), meaning more computational power can

be allocated to the encoders; and they function equally well on images of all sizes, since their

output does not need to have the same resolution as the input.

The algorithm developed, called POSEidon, was trained using a novel data augmentation

strategy, which sought to address sources of variability that might impact images of underwater

swimmers more meaningfully than by small rotations or translations. Using these novel data

augmentation techniques increased the performance of POSEidon by about 2% on the test set

of Charybdis. This effect was increased to 20% when POSEidon was tested on an artificially

augmented version of the test set of Charybdis, showing that training POSEidon with these
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novel data augmentation techniques makes it usable even on images recorded under sub-optimal

conditions. Furthermore, as POSEidon is about as accurate as humans at identifying spinal

joints, it could function well within a markerless motion capture system.



Chapter 8

Conclusions, Limitations, and Future

Work

To improve the performance of athletes close to their genetic potential, tools are needed for

studying their technique in fine-grained detail. Such tools are routinely used in many sports by

researchers (to study the aspects of technique most related to good performance) and coaches

(to closely monitor the progress of their athletes). However, currently no such tool can accu-

rately and conveniently extract the 3D kinematics (i.e. parameters that relate to technique)

of swimmers. When used to record the movements of swimmers, established motion capture

systems have limitations that make them impractical: sensor- and marker-based systems in-

crease the drag of the swimmer, thus reducing the validity of the analysis; depth-based systems

are too inaccurate and impractical for underwater use; and manual digitisation is too slow to

be practical. The best solution for swimming motion capture would be a markerless system

that only needs a few cameras. Such a system would first extract ‘intermediate’ information

(i.e. silhouettes and 2D joint locations) from the videos recorded by the cameras, and then

fit a generic 3D model to these constraints. One of the simplest systems of this kind is the

visual hull, which only requires the silhouettes of an object (from all available camera views) to

reconstruct its volume. However, as shown in Chapter 3, the visual hull relies on the silhouettes

extracted being near perfect, which is currently unachievable in a swimming pool. Furthermore,

163
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research on image-based markerless motion capture systems has shown that using a combina-

tion of silhouettes and 2D joints as constraints to which to fit a parametric model gives better

results than using only silhouettes.

Before this PhD it was not possible to automatically (and accurately) extract from images

the silhouettes and 2D joint locations of swimmers, as the algorithms available for these tasks

are trained using datasets that do not contain images of swimmers. One of the main outcomes of

this PhD was the construction of two datasets of images of swimmers: Scylla (3,100 images), to

train algorithms for silhouette extraction; and Charybdis (8,000 images), to train algorithms for

2D pose detection. These datasets were constructed with the aim of covering as many sources

of variability as possible, to allow algorithms trained on them to generalise well to new images.

The construction of the Scylla and Charybdis datasets (which corresponds to Objectives 2 and

4 of this PhD) enabled the development of new, swimming-specific algorithms for silhouette

extraction and 2D pose detection. Indeed, it is not optimal to simply re-train on Scylla and

Charybdis general-purpose, off-the-shelf algorithms. Such algorithms are designed to perform

well on general-purpose datasets, which typically have lower resolution images than those used

within a markerless motion capture system. Therefore, such algorithms are fundamentally

unsuited to perform well on Scylla and Charybdis. For example, the results reported in Section

5.4 showed that DeepLabv3+, the best-performing algorithm for general-purpose silhouette

extraction, outputs coarse silhouettes when trained on Scylla. This is because DeepLabv3+’s

output, which is 16 times smaller than its input, needs to be heavily upsampled, thus losing

information.

To address the limitations of existing methods, two new algorithms were developed dur-

ing this PhD: FISHnet, for silhouette extraction (Objective 3); and POSEidon, for 2D pose

detection (Objective 5). One of the defining (and novel) characteristics of FISHnet is that it

outputs silhouettes at a resolution of 1024 x 1024 pixels—16 times higher than DeepLabv3+.

This allows FISHnet to output more fine-grained silhouettes than DeepLabv3+, even though

FISHnet is a simpler, lighter model. FISHnet also includes two new modules (the modified

Semantic Embedding Branch and the Spatial Resolution Enhancer module), whose function

is to improve the network’s intra-connectivity. FISHnet performed as accurately on Scylla as
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humans, indicating that it could be used effectively within a markerless motion capture system.

POSEidon, the second algorithm developed during this PhD, is the first 2D pose detection

algorithm based on deep learning that directly regresses the x and y coordinates of joints,

rather than first outputting heatmaps. In other words, whereas most 2D pose detection algo-

rithms output predictions of shape img height x img width x num joints, POSEidon outputs

predictions of shape num joints x 2. This allows POSEidon to discard the network compo-

nents that are typically used to output high resolution predictions, enabling it to devote more

computational power to adopting complex pre-trained encoders, such as DenseNet201. A fur-

ther novelty in the way POSEidon was trained lies in the data augmentation techniques that

were used. Rather than using generic data augmentation techniques such as horizontal flipping

(which was found to actually be detrimental to POSEidon’s performance) or random rotations,

POSEidon was trained using bespoke, task-specific data augmentation techniques, which ran-

domly modified the images by adding to them Gaussian and motion blur, and altering their

brightness and contrast. The results in Section 7.4 showed that using these data augmenta-

tion techniques during training improved POSEidon’s performance by about 2% when tested

on ‘clean’ images, and by about 20% when tested on challenging images; this indicates that

task-specific data augmentation is much more effective than generic data augmentation. Im-

portantly, POSEidon is almost as accurate as humans at locating the spinal joints of swimmers.

Since these joints are particularly important constraints when fitting a 3D model to 2D joints,

it can be concluded that POSEidon would fit well within an image-based markerless motion

capture system.

8.1 Limitations and Future Work

The development of FISHnet and POSEidon has laid the foundations on which an accurate,

fast, automatic markerless motion capture system for underwater use can be developed. The

final step to obtain such a system is to design an algorithm that can fit a parametric model to

the constraints provided by FISHnet and POSEidon (i.e. silhouettes and 2D joints). A likely
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candidate for such an algorithm is the Iterative Closest Points (ICP) algorithm, which was used

in the past for similar tasks [22]. This work, which is left to future research, would likely need

to follow these steps:

1. Either use the videos recorded during this PhD, or record (and calibrate) new videos;

2. Use the calibration files of each camera to obtain the internal and external camera pa-

rameters (needed for the ICP algorithm);

3. Use FISHnet and POSEidon to extract silhouettes and 2D pose from each frame of each

video;

4. Use ICP to fit a parametric model to the silhouettes and 2D pose, one frame at a time.

The optimisation process should begin by relying more on the 2D joints (in particular

the spinal ones), which would allow to quickly position the 3D model in a roughly correct

pose. Then, the pose and shape of the 3D model could be refined by relying more on the

silhouettes;

5. Validate the system by using manual digitisation as a gold standard.

Furthermore, future research should address some of the limitations of Scylla, Charybdis,

FISHnet, and POSEidon that have been discussed throughout this thesis. In particular, al-

though Scylla and Charybdis were constructed to be as varied as possible, some sources of

variability could not be included—namely, neither dataset contains images of dark-skinned

swimmers; future research should supplement such images (along with corresponding labels).

Furthermore, during the development of FISHnet it was discovered that Scylla—and in partic-

ular its test set—might not be large enough for FISHnet to express its full capacity. Therefore,

future research should expand the Scylla dataset by gathering more images from as many swim-

ming pools and swimmers—and under as varied recording conditions—as possible, to add more

data to it and to increase its variability. This would likely improve FISHnet’s performance even

further, by enabling the SEB and SRE modules to express their full capacity.
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Similarly, researchers should take steps to improve POSEidon’s performance, which, though

likely high enough to perform well within a markerless motion capture system, is still about

10% below that of humans. One way in which POSEidon could be improved would be to adopt

more powerful encoders than DenseNet201, or to devise a novel way to perform intermediate

supervision, so that more than two stacks could be used without the gradients vanishing.

Futhermore, POSEidon requires a tool to automatically detect the bounding boxes of swimmers

from images—a tool that currently is unavailable. Therefore, before POSEidon can be used

within a markerless motion capture system, such a tool must be developed.

Finally, researchers should explore the option of using multiple frames to improve the

performance of both models. Multiple frames could be used:

• as a post-processing step, to smooth out any inconsistencies in FISHnet and POSEidon’s

prediction of consecutive frames. This would have the effect of forcing the predictions to

follow a constraint of temporal consistency;

• directly during the training of FISHnet and POSEidon, feeding them, for example, n

frames at each training step (instead of one). This would directly embed in the models

a notion of temporal consistency between frames, likely resulting in improved results.

However, this procedure would require considerable computational power.

Finally, whereas the application of Scylla and Charybdis is limited to the domain of under-

water swimming, FISHnet and POSEidon have no such limitation. Indeed, they could function

well within markerless motion capture systems for other sports, provided that they be trained

on task-specific datasets, or as standalone algorithms for silhouette extraction and 2D pose

detection, if trained on large, generic datasets. The main feature of both FISHnet and POSEi-

don is that they can perform well even on large images, a feature which is useful universally.

Therefore, an additional route that future research could take is to adapt these algorithms to

domains different from underwater swimming.



Appendix A

Marker-based Systems

Formally known as optoelectronic1 stereophotogrammetric2 systems, or OSSs, marker-based

systems consist of a variable number of cameras (3-20) and of spherical markers of variable

dimension (3-25 mm) that are attached to the surface of the object whose motion is to be cap-

tured. In the most popular OSSs, the markers passively reflect infrared light emitted by a crown

of LEDs coaxial with the camera; the reflection is then detected by the optoelectronic sensors

inside the cameras; the position in space of the markers is then reconstructed automatically via

stereophotogrammetry by the software that comes with the OSS. For human motion capture,

the spherical markers are attached on anatomical landmarks from whose position it is possible

to reconstruct—using standard formulas and anthropometric measurements—the position of

the joint centres [32]. For example, to reconstruct the centre of an elbow joint one would place

a marker on either side of the elbow (specifically, on the lateral and medial epycondyles) and

connect the two markers via an imaginary line: the joint centre is estimated to be somewhere

on that line (intuitively, one could pick the middle of the line) [219]. For most OSSs, given the

position of the markers the estimation of the joint centres is done automatically by the software

that comes with the OSS, under the assumption that the markers be placed precisely on the

anatomical landmarks that the software expects.

1Optoelectronic sensors, which in this context indicate the sensors inside of special cameras, are sensors that
emit electrical impulses upon being hit by light.

2Stereophotogrammetry is the process of estimating the three-dimensional coordinates of points by using
measurements made in two or more photographic images taken simultaneously from different positions.
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The distinguishing feature of OSSs is that, at least in theory, they are extremely accurate:

the most recent study on the accuracy of Vicon (Oxford, UK), one of the most popular OSSs,

in reconstructing the 3D position of markers reported a Mean Average Error (MAE) of 0.15

mm and a standard deviation of 0.015 mm for markers placed on static objects, and a MAE of

0.2823-0.3543 mm and standard deviation of 0.1682-0.2439 mm for markers placed on objects

moving at <1 m/s or >3 m/s, respectively [220]. Because of their accuracy, OSSs are often used

for clinical and biomechanical research, both of which require extremely accurate measurements.

In the case of swimming, however, specialised equipment has to be used: The cameras need to

be waterproof or be placed in waterproof, transparent housings, and the markers need to be

made of a material that will reflect light well enough even underwater3. Of the major companies

that sell OSSs, Qualisys (Gothenburg, Sweden), with their Oqus line, is the only one that sells

hardware and software specifically designed for underwater motion capture, and a number of

studies have used this OSS for swimming biomechanics research [222–225]. For example, Olstad

et al. [222] used six Oqus cameras and 20 Qualisys markers to reconstruct the kinematics of

the legs during breaststroke kicking, while Lauer et al. [223] used ten Oqus cameras and twelve

Qualisys markers to reconstruct the kinematics of the arm during sculling. Unfortunately, no

study to date has validated the accuracy of Qualisys for underwater motion capture.

Though remarkably accurate, OSSs do have significant drawbacks. For instance, the accu-

racy of OSSs depends on the accurate placement of the markers on the anatomical landmarks

the software expects. The algorithms that use the position of the markers to reconstruct the

position of the joint centres assume that the markers be placed exactly on the anatomical

landmarks specified. Let us clarify this statement by using again the example of the elbow

joint centre. The software of the OSS has within it a biomechanical model which tells it that

the elbow joint centre is (for example) the midpoint between the lateral and the medial epy-

condyles, and it assumes that the two markers placed on the elbow correspond exactly to the

epycondyles; this is the case, for example, with Vicon’s model [226]. If, however, the markers

are placed even slightly askew of these landmarks, the software of the OSS will reconstruct

3Raghu et al. [221] recently found that markers covered in Safety of Life at Sea (SOLAS) Grade 3150–A
tape, which is made of 3MTM ScotchliteTM Reflective material, reflect infrared light well enough for it to be
picked up by cameras placed underwater or even above the water.
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the joint’s reference frame (i.e. the joint centre and the three axes of rotation that originate

from it) in a position and with an orientation that will be proportionally askew from its true

position and orientation. To locate the anatomical landmarks on which to place the markers,

the operator has to palpate the body of the subject and ‘feel’ the landmarks, a process which is

inherently prone to variability: It has been reported that the average intra-operator variability

in locating anatomical landmarks is 9.87 mm, while the average inter-operator variability is

16.73 mm [227]. Such variability, in turn, is responsible for variability in the orientation of the

axes of the reconstructed joint centres, which will deviate from their true position and orien-

tation: Della Croce et al. [228] reported an intra-operator variability in the orientation of the

axes of the joint centres of up to 4.7° (for the femur), and an inter-operator variability of up to

9.4° (for the tibia).

A second factor that affects the accuracy of OSSs is a phenomenon known as soft-tissue

artefacts [229]. The algorithms that use the position of the markers to reconstruct the position

of the joint centres assume that the human body behaves like a rigid body (i.e. that it is

not subject to deformations). In other words, the reconstruction algorithms assume that the

position of the markers relative to the underlying bony landmarks remain constant over time.

When a human moves, this assumption fails almost invariably, as the skin to which the markers

are attached moves slightly relative to the underlying bones (leading to the so called soft-

tissue artefacts, also known as skin artefacts). This problem has been thoroughly researched

[230–237], and a review paper by Leardini et al. [229] concluded that soft-tissue artefacts may

be responsible for errors in the estimation of the joint centres of up to 20 mm4. The same review

paper also reported that the magnitude of soft-tissue artefacts varies based on the motor task

being performed, on the person, and on the type of joint under analysis. For example, Benoit

et al. [33] reported an average error due to soft-tissue artefacts of 7.47 mm when estimating

the position of the knee joint centre, whereas, for the same joint but under different testing

conditions, Lafortune and Lake [34] reported errors of 20 mm. Although there exist analytical

methods to reduce the magnitude of soft-tissue artefacts [243–247], none of them are able to

4To estimate the magnitude of errors caused by soft-tissue artefacts, one of the most common techniques
involves inserting a metal pin into a bone and attaching a marker to the pin and one to the adjacent skin: the
relative movement between the two markers will indicate the magnitude of the soft-tissue artefact [34,238–242]
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remove the soft-tissue artefacts altogether, and none of them are universally consistent [229].

The cumulative effect of these two factors (marker misplacement and soft-tissue artefacts)

means that OSSs, which are extremely accurate in measuring the position of markers in space,

may nonetheless incur in considerable reconstruction errors, because the markers may not be

in the position that the biomechanical model of the software expects. It is hard to say whether

these errors are consistently above the 5 mm threshold that has been suggested for research on

biomechanics [26–28], but it is fair to say that the theoretical accuracy of OSSs can hardly ever

be achieved for human motion capture tasks. Nevertheless, OSSs remain the most accurate

systems available.

When OSSs are used for swimming motion capture they also present a third major draw-

back, which is not as relevant for the motion capture of other sports. Though the markers

that are attached to the skin of the swimmer do not necessarily impede movement5, they do

increase drag enough to affect performance, which consequently ceases to be representative of

race conditions. Let us estimate6 by how much drag is increased when markers are attached

to a swimmer. The drag D to which an object moving through water is subject is calculated

using the formula:

D =
1

2
ρCdAv

2 (A.1)

where ρ is the density of the medium in which the motion takes place (which for water is 997

kg m-3), Cd is the drag coefficient (which is fixed and depends on the geometry of the object),

A is the cross-sectional area (measured perpendicular to the direction of the flow), and v is the

swimming speed of the object relative to the fluid. To simplify equation A.1 we can express D

as a funcion of v : by doing so, all the terms on the right side of the equation become constants,

which can be grouped into a single constant K:

D

v2
=

1

2
ρCdA = K (A.2)

5In a study by Washino et al. [248], 14 elite swimmers performed a few trials of front crawl swimming while
wearing the full Qualisys marker set and reported no discomfort.

6The following analysis will be based on the assumption that the only type of drag present is passive drag,
which is the drag on the swimmers while holding a fixed position, e.g. gliding following a dive entry or push-off.
Outside of this simplification, each marker will have a different velocity through the water, and therefore a
separate calculation should be performed for each marker.
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Using equation A.2 and knowing that the markers sold by Qualisys for underwater capture

have a diameter of 19 mm and that the drag coefficient of a sphere7 is 0.47 [249], we can

calculate that, for a single marker i, Ki = 0.06642 kg/m; if a full Qualisys marker set is used

(25 markers), we obtain that the cumulative effect of the markers is to increase drag by Kmarkers

= 1.66 kg/m. To determine if an increase of this magnitude is significant, we need to know

the value of K for an average swimmer. The value of K for a human being who is swimming

at speed v is much more difficult to calculate than it is for a sphere, since for a swimmer

the value of A is not known a priori and is not constant: it changes based on the sex, body

composition, and anthropometric measures of the swimmer; more importantly, the value of A

changes significantly based on the type of stroke being performed and on the speed at which it

is performed. Different authors have reported different values for Aswimmer, ranging from 0.08

m2 [250] to 0.40 m2 [251]. The most complete work in this field, which is also the work that used

the most modern measuring equipment, is that of Gatta et al. [252]. Using a markerless OSS

to estimate the value of Aswimmer for each swimming stroke (front crawl, backstroke, butterfly,

breststroke; each stroke was swum at a speed of roughly 1.3 m/s), Gatta et al. came to the

formulation of the following values of Kswimmer:

Kswimmer(front crawl) = 30.0 kg/m

Kswimmer(backstroke) = 26.9 kg/m

Kswimmer(butterfly) = 28.5 kg/m

Kswimmer(breaststroke) = 37.5 kg/m

We can now use the following equation to calculate the effect that adding 25 spherical markers

would have on the drag of the swimmer:

Ktotal = Kswimmer +Kmarkers (A.3)

Using the value Kmarkers = 1.66 calculated above and taking as reference the values of Kswimmer

7Cd is actually not an absolute constant: it is inversely proportional to the Reynolds number, which deter-
mines if the flow is laminar (slow) or turbulent (fast). For turbulent flow (a condition which is taken for granted
when analysing the flow in the immediate vicinity of a swimming human being), the Cd of a sphere is 0.47.
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calculated by Gatta et al., we obtain:

Front crawl: Ktotal = 31.66 kg/m −→ 5.53% increase

Backstroke: Ktotal = 28.56 kg/m −→ 6.17% increase

Butterfly: Ktotal = 30.16 kg/m −→ 5.82% increase

Breaststroke: Ktotal = 39.16 kg/m −→ 4.43% increase

These results are lower than those reported by other authors. Since Kmarkers remains constant

(assuming a full marker set o 25 markers is used), the source of variability must reside in the way

different authors calculate Kswimmer. In particular, Washino et al. [248], who analysed the drag

caused by a full Qualisys marker set during front crawl swimming, used Kswimmer = 21.55 (as

suggested by Zamparo et al. [251]) and obtained Ktotal = 23.21, which would indicate that the

presence of the markers would increase drag by 7.7%. Differences in the estimation of Kswimmer

could be due to several factors: instrument errors, variability in the actual cross-sectional area

of the swimmers recruited for different studies, different level of mastery of technique, variability

in the speed of the swimmers (although the swimmers analysed by Washino et al. were the

fastest, at 1.75 m/s, so in theory they should have had a lower Kswimmer than those analysed

by Gatta et al., who swam at 1.3 m/s). Whatever the reason for these different results, the

question remains: is an increase in drag by 4.4-7.7% enough to impact the performance of

the swimmers, thus violating Criterion 2, non-invasiveness? According to Washino et al., the

answer is yes. In their study they correlated the 7.7% increase in drag to a clear decrease in

performance. Specifically, they reported that swimmers who wore the full marker set swam 3.3%

slower and had a 2.5% shorter stroke length. Finally, though this theory has not been tested,

it is reasonable to assume that the drag acting on the spherical markers would exacerbate the

issue of soft-tissue artefacts.
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Sensor-based Systems

The generic term ‘sensor-based motion capture system’ refers to the use of inertial measure-

ment units (IMUs) for motion capture. IMUs are self-contained electronic devices that give

information relative to their orientation in space. They are typically made up of three types of

sensor:

1. Gyroscopes. Gyroscopes are sensors that measure angular velocity. Because gyroscopes

are subject to a certain bias b and to a certain Gaussian measurement error η, the actual

angular velocity they measure is:

ω̃ = ω+ b+ ηgyro. (B.1)

where ω is the true angular velocity of the device. From ω̃, which is the measured

angular velocity, it is then possible to calculate the orientation of the device relative to

what are known as the ‘aircraft principal axes’ [253]: yaw, pitch, and roll (see Figure

B.1). If the orientation θ of the sensor at time t=0 is known1, the orientation at time t

can be reconstructed using the formula:

θ̃(t) = θ̃(t-1) + ω̃∆t+ ε (B.2)

1This can be accomplished by initialising the gyroscope before the data-capturing session.
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Figure B.1: Aircraft principal axes, used to describe the orientation of IMUs.

where ∆t is the time step to go from t-1 to t and ε is an approximation error2. Equation

B.2 needs to be calculated for each time step at which the gyroscope measures ω̃. This

means that the errors η and ε accumulate at each time step, leading to a phenomenon

known as drift [253]: after a few measurements, the orientation measured by the gyroscope

quickly diverges (drifts) from the true orientation of the device3.

2. Accelerometers. Accelerometers are sensors that measure linear acceleration. Because

accelerometers are subject to a certain Gaussian measurement error η, the actual linear

acceleration they measure is:

ã = aexternal + ηacc. (B.3)

where aexternal is the acceleration due to the sum of the external forces (including gravity)

acting on the sensor. If the position p of the sensor at time t=0 is known, the position

at time t can be reconstructed by integrating ã twice over time (a process known as dead

2Formula B.2 is obtained via Taylor expansion, which means that the result is subject to an error ε ∼ O(∆t).
3How quickly the two values diverge depends on the magnitude of η (which depends on the quality of the

sensor) and on the magnitude of ∆t: with higher sampling rates (i.e. low ∆t) the errors are accumulated faster,
but with lower sampling rates (i.e. high ∆t) the magnitude of the cumulative error ε, which scales with the
square of ∆t, is much greater.
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reckoning [254]), yielding:

p̃(t) = p̃(t-1) +

∫∫
ã dt (B.4)

However, because a double numerical integration is performed, the error associated with

dead reckoning grows quadratically with time (ε ∼ O(∆t2)), meaning that ã drifts from a

much faster than ω̃ drifts from ω in gyroscopes (since it was said earlier that gyroscopes

drift with ε ∼ O(∆t)). Without specialised algorithms to correct this drift, accelerometers

can hardly be used to measure the position in space of the IMU.

The true reason accelerometers are used in IMUs is that they can function as feedback

tools to correct the drift of θ̃ as estimated by the gyroscope. The signal produced by

the accelerometer (ã) can be used to calculate the orientation of the IMU relative to the

pitch and the roll axes (but not the yaw axis) using the following equations (in which roll

is denoted by x and pitch by y):

θ̃x = −atan2(ãy, sign(ãz) ·
√
ãx2 + ãz2) (B.5)

θ̃y = −atan2(−ãx, ãz) (B.6)

These estimates of θ̃x and θ̃x do not suffer from drift like they do when they are cal-

culated from ω̃, but they do suffer from a measurement error ηacc., which is typically

larger than ηgyro.. Although neither measurement is accurate enough on its own, their

combination (a technique called sensor fusion, which is usually done using a Kalman

filter) drastically increases the accuracy of the IMU’s estimation of θ. Nevertheless, it is

not currently possible to eliminate sensor drift completely, which means that the longer

the data capturing session lasts, the more severe the errors will be, unless the sensors are

recalibrated [32,255].

3. Magnetometers. Magnetometers are sensors that measure the intensity of magnetic

fields. The function of magnemeters in IMUs is to measure Earth’s magnetic field and

use its magnitude and direction as feedback tools to correct the yaw calculated by the

gyroscope, much like the function of accelerometers in IMUs is to correct pitch and roll.
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Earth’s magnetic field, however, is weak, and ferromagnetic objects near the IMU may

produce a magnetic field of comparable magnitude to Earth’s, making magnetometers

unreliable. For this reason, they are not always included in IMUs.

To measure 3D kinematics using IMUs, several of them need to be strapped or glued to the skin

or clothes of the person, in locations and orientations that correspond to specific body segments

(i.e. an IMU on the thigh, one on the shank, etc) [36, 256]. Each IMU would then give the

orientation (but not the position) of that body segment in time. To get to the joint angles,

the axes of the IMU need to be rotated to match the axes of the body segment to which the

IMU is attached, and then rotated to match the axes of the joint centre; this process is usually

performed by specialised software that comes with the IMU motion capture system. Because

the software bases its formulas on the assumption that the IMUs be placed exactly in very

specific locations, IMU-based motion capture is susceptible to misplacement errors. Whereas

the misplacement errors of OSSs are systematic (the marker may be in the wrong position, but it

will not move from that position), the misplacement errors of IMU-based systems can vary over

time, as the straps to which the IMUs are secured may shift along the body segment and not

come back to their original position (for example as a result of highly dynamic movements, or,

in the case of swimming, of the drag acting on the IMUs). This means that IMU-based motion

capture systems are susceptible to a sort of ‘misplacement error drift’, which can severely impact

the accuracy of the measurements. To avoid this, the straps need to be fastened quite tight

around the body segments, but this may cause discomfort for the person, or it could obstruct

the free movement of certain joints. Therefore, IMU-based motion capture violates Criterion 2

(non-invasiveness). This conclusion is substantiated by the fact that fastening several IMUs to

the swimmer, though it may not necessarily obstruct movement, will surely increase drag. The

exact amount by which drag is increased depends on the number of IMUs used and on their

size. The Xsens MTw Awinda (Xsens Technologies BV, Enschede, Netherlands) is the most

accurate IMU-based full-body 3D motion capture system on the market [29, 257], and as such

it will be used as a reference for the following calculations. It consists of 20 IMUs (of size 47

x 30 x 13 mm) which are not waterproof and would need to be placed inside plastic boxes or

bags to be used for underwater capture; for the purposes of this analysis, let us assume that the
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increment in IMU size caused by the presence of a waterproof plastic box would be negligible.

Equation A.2 can be used to find by how much the Xsens system would increase drag, but the

drag coefficient Cd and the area A perpendicular to the flow are not as easy to calculate for

an IMU as they were for a sphere, because the orientation of the IMU relative to the direction

of the flow is not constant as it is for a sphere. To simplify the calculations, we will assume

that the IMU is always oriented relative to the flow so that its face with the smallest area is

perpendicular to the flow. For such a configuration, and considering the presence of 20 Xsens

IMUs4 of size 47 x 30 x 13 mm, we obtain that KIMUs = 4.08 kg/m. Using Kswimmer = 23.21 as

suggested by Zamparo et al. [251], we obtain that using Xsens for underwater motion capture

would increase the drag of the swimmers by 23.21%, thus violating Criterion 2.

Apart from concerns about the invasiveness of IMUs, a more generic question could be

asked: can they even be used for underwater 3D motion capture? In theory, the answer is yes,

and indeed IMUs have been used quite extensively for swimming research. However, the vast

majority of studies that used IMUs for swimming biomechanics research used IMUs to measure

parameters related to performance, rather than to technique. Thus, a plethora of studies have

been published on the use of IMUs to measure stroke rate and stroke count [258–271], or to

identify the type of stroke being performed [272–280], or to measure the speed and acceleration

profiles of the swimmers [255,281–297], but only two studies have been published to date that

used IMUs to measure 3D joint angles of underwater swimmers: Seifert et al. [298] used 4

IMUs to measure knee and elbow angles of swimmers performing breaststroke, while Phillips

et al. [299] used 4 IMUs to measure knee and hip angles of swimmers performing the fly kick.

Phillips et al. compared their IMU-based system with manually-digitised knee and hip angles,

and found that the IMU-based system had small errors (0.1° mean) in the estimation of knee

angles, but larger errors (4.0° mean) in the estimation of hip angles. The 4.0° error reported

by Phillips et al. was obtained by using manually-digitised angles (which are susceptible to

human error) as the validation data; this means that the error from the true orientation of

the joint centre may have been much greater than 4.0°. Indeed, the accuracy of IMUs in

sports motion capture in general, which has been reported to range from 1.38° to 6.69° [300],

4This is the total number of IMUs that come with Xsens, and it’s the number of IMUs required for a full-body
analysis. For a more circumscribed analysis, fewer IMUs may be used.
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has never been validated using measurements of the true joint centre position (as measured

using bone pins, for example). Instead, IMU-based motion capture has always been validated

using either OSSs [35,36] (which are prone to skin-artefact and misplacement errors) or manual

digitisation [256] (which is prone to human error). Therefore, it is probable that the accuracy

of IMU-based motion capture systems has been overestimated.
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Manual Digitisation

If a point in space is seen by at least two cameras with non co-linear axes, its 3D coordinates

can be reconstructed using stereophotogrammetry, which works as follows. Let us assume that

we have two cameras, each recording an image in which appears a point of interest. The point,

whose coordinates in the global reference frame are expressed by the 3D variable X, has two sets

of 2D coordinates (one in each camera reference frame): x1 for camera 1, x2 for camera 2. To

express x1 and x2 in terms of the global reference frame—and thus obtain the 3D coordinates

of the point—the axes of each camera reference frame need to be rotated by a certain amount.

Therefore, we have that:

x1 = P1X; x2 = P2X (C.1)

where P1 and P2 express the rotation needed to get from the camera reference frames to the

global one; P1 and P2 are known if the cameras have been calibrated, using for example Direct

Linear Transformation [301]. The two equations above can be combined into:

AX = 0 (C.2)

which is an equation linear in X. If the camera parameters P1 and P2 are known, equation C.2

can be solved exactly for any point X that is seen by both cameras.

This method allows to reconstruct the 3D coordinates of human joints using nothing but
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images: provided that at least two cameras see the joint, an operator can digitise the joint (i.e.

mark it on the image, thus determining its 2D coordinates in camera space) and use equation

C.2 to reconstruct its 3D coordinates. This process can be repeated for all joints of interest,

over all recorded frames; and it can be done by hand (hence the term manual digitisation1), or

automatically, using software like SIMI Motion (SIMI, Unterschleissheim, Germany) and APAS

(Ariel Performance Analysis System, Ariel Dynamics, Inc., USA).

The working mechanism (stereophotogrammetry) behind this method is the same that is

behind OSSs, but three major differences exist between the two methods:

1. Manual digitisation does not require markers to be placed on the person whose movements

are to be recorded. This makes manual digitisation a completely non-invasive motion

capture method. Nevertheless, small circular tape markers are often attached to bony

landmarks—usually on the same positions that an OSS’s spherical markers would be—to

make it easier to identify the points (i.e. the joints) that need to be digitised [38]; if

using software for automatic digitisation, the presence of markers is mandatory, as they

provide the software with specific, easily recognisable points to follow from one frame to

the other. It has also been suggested that the presence of markers increases the accuracy

of manual digitisation as performed by a human operator [310]. The study in which

these conclusions were drawn was performed in a highly controlled laboratory, where the

lighting was excellent and the contrast between the markers and the skin and between the

person and the background was sharp. Under such ideal conditions, having skin markers

as a reference certainly does make manual digitisation easier and faster. As pointed out

by some authors, though, skin markers should only ever be used as guides [31, 311]: the

decision of where to digitise the joint in the 2D image should ultimately come from the

(supposed2) sound knowledge, on the part of the operator, of the muscolo-skeletal system

1In swimming, manual digitisation is the method for full-body 3D motion capture that has been used the
most [302–309].

2Bahamonde and Stevens [312] estimated that the joints digitised by ‘experienced’ operators are up to 10 mm
more accurate than those digitised by complete novices. However, the ‘experienced operators’ they recruited
for their study were undergraduates, who are unlikely to already have had enough training in anatomy and
biomechanics to be certain about their estimation of where the joint centres lie. Therefore, the true influence
of experience on the accuracy of manual digitisation is currently unknown, but it is likely significant.
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underlying the joint being digitised. This is because tape markers, like any other kind of

marker, are susceptible to misplacement and soft-tissue artefacts, and may therefore not

be indicative of the real position in space of the joint centre.

2. Whereas OSSs require cameras with optoelectronic sensors, manual digitisation can be

done with any type of camera. Normal cameras, however, are bound to operate in the

visible spectrum of light, meaning that any reflection on the skin of the person being

filmed and any change in the lighting conditions of the scene will likely make it harder,

sometimes impossible, to precisely identify the joint centres. Conversely, OSSs operate

in the infrared spectrum, which grants them more resistance against changes in lighting

conditions.

3. Every OSS commercially available comes with a software that performs stereophotogram-

metry automatically; the only input requested of the user is the occasional manual digi-

tisation of markers that may have been occluded during capture. This makes OSSs

extremely quick at calculating the 3D coordinates of the desired joint centres, which are

available to the operator minutes after the capture session has ended. Manual digitisation,

on the other hand, is incredibly time consuming: Magalhaes et al. [38] estimated that it

took Psycharis et al. [313] 27 hours to manually digitise 19 joints of a single swimmer

performing 200 m freestyle trials3. This estimation of the time required for manual digi-

tisation is conservative, since it does not take into account two factors: a) To provide a

measure of the intra-operator reliability of the data, at least one trial should be analysed

multiple times by the same operator; b) To provide a measure of repeatability, at least

one trial should be analysed also by a second operator [311]. Using automatic-digitisation

software speeds up the process considerably (according to Ceccon et al. [314], by at least

50%), but such software require a highly controlled environment, which a swimming pool

certainly is not. When the software is not confident in its prediction of where the joint is

in a particular frame, the user has to intervene and manually digitise the joint. Since the

turbulence, bubbles, and changing lighting conditions of underwater videos often cause

3Each trial consisted of 1620 frames, coming from 4 cameras; 10 swimmers were analysed during the study,
adding up to an estimated 270 hours of manual digitisation.
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the automatic-digitisation software to lose track of the joints, such software does not con-

stitute a significant-enough improvement over fully-manual digitisation to make them a

viable option.

We can conclude that manual digitisation respects Criterion 2 (non-invasiveness) but not

Criterion 1 (speed). Criterion 3 (accuracy) is harder to evaluate, because manual digitisation

has only ever been validated using OSSs as the ground truth [24,31,310,315]; in some occasions,

the accuracy of manual digitisation has been evaluated using automatic digitisation software as

the ground truth [38,312,316] without providing any measure of the accuracy of such software.

Further complicating matters is the fact that the studies that compared manual digitisation to

OSSs did so under highly controlled laboratory settings or by analysing simple, slow movements

that only occurred in one plane (for example, knee flexion [31]), all factors which make it easier

to perform manual digitisation. For instance, Elliott et al. [315] found that manual digitisation

is only 1.18° less accurate than an OSS when analysing a motion constrained to take place in

a single plane (elbow flexion), but that the error increases to 10° when analysing multi-planar

motions (elbow flexion + shoulder internal rotation). Therefore, when Hanley et al. [31] report

that manual digitisation is 1-8° less accurate than an OSS in estimating the knee flexion of

a person walking, they do not provide enough information regarding the accuracy of manual

digitisation for different tasks and under different experimental conditions. Similar critiques

can be raised regarding the validity of Wilson et al.’s study, often cited as a reference for

the validity of manual digitisation [312, 317–319]. In their study, Wilson et al. recorded the

oscillations of a T-shaped pendulum made of metal on which spherical markers were affixed;

the markers were then digitised manually and using automatic software. Since the dimensions

of the pendulum were known down to 1 µm, their experimental design allowed Wilson et al. to

exactly quantify the accuracy of manual and automatic digitisation (both of which were 1-2°

off the real measurements of the positions of the markers), but the simplifications it introduced

(planar motion, ideal contrast between markers and background, no soft-tissue artefacts, no

misplacement of markers) make it so their results are hardly generalisable to in-the-wild4 motion

4In computer vision, the term in-the-wild refers to images recorded under non-ideal conditions. All images
recorded for sports biomechanics purposes would be classified as in-the-wild images.
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capture.

Another element that affects the accuracy of manual digitisation is the order in which the

joints are digitised. There exist two possibilities: either the operator digitises all the joints

present in a frame and then moves on to the next frame (this method takes the name of frame

by frame, or FXF [312]); or he/she digitises a single joint across all frames, then repeats the

process for each joint (this method takes the name of points over frame, or POF [312]). The

POF method has a distinct advantage over the FXF method: it is more accurate. Using an

automatic digitisation software as the ground truth, Bahamonde and Stevens [312] calculated

that the POF method was between 1 and 6.7 mm more accurate, on average, than the FXF

method. Though Bahamonde and Stevens did not offer an explanation for their results, the

reason the POF method is more accurate than the FXF method may be that it is easier for

a person to follow a single joint from one frame to the next. Once the joint centre has been

identified, moving to the next frame will cause the joint to ‘move’ on the image by a certain

amount. If the original position of the joint is still fresh in the memory of the operator, the

movement of the joint can be followed precisely, and the operator can learn to predict where the

joint will be based on the previous positions that it has occupied and on the speed at which it

has been moving. Conversely, in the FXF method, the operator cannot reasonably hold in his

or her short memory the position of all joints from one frame to the next; in other words, when

the operator moves on to a new frame, he or she would have to identify the position of the joints

anew, thus increasing the probability of digitising the joint with a few pixels of variability from

one frame to the next. Though this error may seem trivial, Hanley et al. [31] have estimated

that errors of 1 pixel in the digitisation of a joint can lead to errors of 0.17° in the orientation

of its reconstructed axes. Whatever the reason may be for the superior accuracy of the POF

method, authors who use manual digitisation tend not to mention which method was used in

their study, perhaps out of a lack of knowledge of the existence of the POF, or of its superior

accuracy. Not knowing which manual digitisation method was used further complicates the

evaluation of the studies that compared manual digitisation to OSSs.
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Depth-based Systems

Depth cameras are cameras that are able to measure the depth—which is to say, the 3D shape—

of the objects in their field of view. An example of a depth camera is Microsoft’s Kinect:

Originally designed as a videogaming accessory, it has since become an important tool in many

aspects of scientific research [320–322], not the least biomechanics. For example, Schmitz et

al. [323] used a Kinect to study the biomechanics of the squat, while many studies have been

published regarding the application of the Kinect to gait analysis [324–329]. When used for

motion capture, depth cameras have important advantages over marker-based systems [32]:

they are highly portable; they are easy to use; they take only a couple of minutes to set up;

they provide data in real time; they are inexpensive; and they do not require the fixation of

external markers or sensors, thus eliminating the issue of soft-tissue artefacts. To understand

if depth cameras can be used for swimming motion capture, we will discuss here the two depth

cameras most commonly used in scientific research1, both of which are developed by Microsoft:

the Kinect 1 and the Kinect 2.

• Kinect 1. The first version of Microsoft’s Kinect was released in 2010. It consists of

an RGB camera, a near-infrared (NIR) projector, and a NIR camera (see Figure D.1).

1Other examples of depth cameras that have been used for scientific research are the PMD CamBoard pico
flexx [330,331] and Intel’s RealSense [332,333]. Microsoft’s Kinect, however, is far more popular [32,334]—not
necessarily because of its higher accuracy (in fact, the pico flexx has shown accuracy comparable to that of the
Kinect 2 [331]), but perhaps just because it is a more well-known, easily accessible brand.

185
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Figure D.1: Microsoft’s Kinect 1.

To measure the depth of objects in a scene, the projector casts onto the scene a known

pattern of NIR light2. The pattern will be distorted differently by surfaces that are at

different depths, and this distortion is observed by the NIR camera. Knowing the focal

length f of the camera and knowing what the original pattern was supposed to look like,

the Kinect 1 uses the following equation [41] to reconstruct the depth of each pixel:

d = bf/m (D.1)

where b = 7.5 cm is the distance between the NIR camera and the projector, and m,

which is called the disparity value3 [41], measures the distortion of the pattern that was

expected to be on that pixel. Applied to the whole image, equation D.1 yields a depth

map of the scene (see Figure D.2). There are several sources of error that affect the

accuracy of the Kinect 1’s depth maps:

– Multi-device interference. If multiple Kinect 1s are pointed at the same object,

the patterns projected onto it will overlap and will not be distinguishable enough to

calculate the disparity value m for each device [41].

2The Kinect 1 is also sometimes called KinectSL, where SL stands for structured light.
3As shown in Figure D.1, the NIR camera and projector of the Kinect 1 are displaced only horizontally.

Therefore, the disparity value of the Kinect 1 is one-dimensional, thus simplifying its computation.
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Figure D.2: Example of a depth map. Points closer to the camera (i.e. with lower depth, as calculated
using equation D.1) appear as lighter pixels; points farther from the camera appear as darker pixels.

– Ambient light. The presence of ambient light is another factor that can distort

the patterns projected by the Kinect 1 [41]. This makes the Kinect 1 unsuitable for

outdoor (and, likely, underwater) capture [41,335].

– Systematic distance errors. The accuracy with which the Kinect 1 can measure

the depth of an object decreases with the square of the distance between the cam-

era and the object; in other words, objects that are further from the camera are

reconstructed with less accuracy [336]. This source of error is negligible for objects

that are 1 metre or closer to the camera, but it can be as high as 4 cm per pixel for

objects that are 2 metres away from the camera [13].

To get from a depth map to an articulated body model, Kinect cameras use Software
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Development Kits (SDKs) provided by Microsoft. In the SDK for the Kinect 1, a random

decision forests algorithm [337] is used that compares the depth maps to a large training

set of synthetically-generated depth images of people in many different poses and of

different shapes [338], and estimates where each joint (20 in total) is.

• Kinect 2.The Kinect 2, released in 2014, also has three main components: an RGB

camera, a NIR projector, and a NIR camera (see Figure D.3). The depth map, however,

Figure D.3: Microsoft’s Kinect 2.

is computed using a different mechanism. Instead of a structured light pattern, the

projector of the Kinect 2 emits a beam of modulated4 NIR light, which is reflected by

whichever surface it hits and is then detected by the NIR camera. Having traveled a

certain distance, the beam of light, when detected by the NIR camera, will be shifted

in phase with respect to when it was emitted [41]. By measuring the amount of phase

shift that the incoming beam displays, it is possible to calculate the distance it has

traveled, which can then be halved to obtain the distance from the projector to the point

4This means that the frequency of the electromagnetic wave is known exactly and is unique [339].
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it illuminated (i.e. the ‘depth’ of the point). There are several sources of error that affect

the accuracy of the Kinect 2’s depth maps:

– Overheating. The Kinect 2, which emits a NIR ray instead of a sparse pattern,

requires more power than the Kinect 1 to produce a full depth map of its field of

view, and therefore it requires active cooling (performed via fan; in the Kinect 1, the

cooling is passive) to prevent the projector from overheating [13]. Nevertheless, the

heat generated by the projector is enough to introduce errors in the measurements.

These errors have been modelled by Wasenmüller and Stricker [13] (see Figure D.4)

and can, in theory, be corrected: if, before capture, the Kinect 2 is left to warm

up for 25 minutes, the offset caused by the overheated projector will plateau to a

certain value, which can be measured and removed.

Figure D.4: Red: true depth of the point on which the Kinect 2 is focused. Blue: depth measured
over time by the Kinect 2. The dip in the blue line around 16 minutes corresponds to the moment
the cooling fan of the Kinect 2 activates itself. (Image adapted from: [13])

– Flying pixels. Flying pixels are erroneous depth estimates that occur close to

discontinuities in depth (i.e. on the edges of objects) [13, 39, 40]. This phenomenon

only occurs for the Kinect 2 and is due to the way it measures depth. If a point

belongs to the edge of an object, the light that the camera of the Kinect 2 detects

upon having irradiated that point will be a mixture of the light that was reflected by

the point and the light reflected by the (much more distant) background [40]. This

effect creates the sparse erroneous depth estimates shown in Figure D.5.
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Figure D.5: Flying pixels caused by the Kinect 2 erroneously estimating that the pixels near the edge
of the two adjacent objects are at a depth that is halfway between the depth of the objects and that
of the background. (Image adapted from: [13])

– Systematic distance errors. Like the Kinect 1, the Kinect 2 is only accurate

at estimating the depth of objects that are at most 2 metres away from it [13].

Furthermore, the corners of the depth map produced by the Kinect 2 are highly

inaccurate (5 cm mean errors). The area of these corners of low accuracy increases

the farther the Kinect 2 is from the object, as shown in Figure D.6; for objects that

are 2 metres away from the Kinect 2, only a circular region with a radius of 300

pixels will have systematic errors lower than 2 cm per pixel [13].

The algorithm the Kinect 2 uses to turn the depth maps into articulated body models

has not entirely been made public, but it is speculated to be similar to the one used by

the Kinect 1 [336].

Having described in detail both devices, it is immediately clear how their sources of error (mainly

the systematic distance errors, and, for the Kinect 1, the vulnerability to ambient light) make

them unsuitable for the motion capture of swimming, since errors of 2-5 cm per point are

common for both devices [32, 336, 340]. Furthermore, because water has higher absorbance
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Figure D.6: The images above display the standard deviation in a Kinect 2’s measurement of the
depth of a wall placed at 0.7 metres (left), 1.4 metres (middle), and 2.1 metres (right) from the Kinect
2. (Image adapted from: [13])

than air, the light emitted by a NIR source would be attenuated more than it would be in

air [341]. This means that a Kinect 2 device placed underwater would need to be even closer

than 2 metres to the object it has to record, making it even more impractical for swimming

motion capture.
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[36] S. Fantozzi, A. Giovanardi, F. A. Magalhães, R. Di Michele, M. Cortesi, and G. Gatta,

“Assessment of three-dimensional joint kinematics of the upper limb during simulated

swimming using wearable inertial-magnetic measurement units,” Journal of sports sci-

ences, vol. 34, no. 11, pp. 1073–1080, 2016.

[37] K. Cahill-Rowley and J. Rose, “Temporal–spatial reach parameters derived from iner-

tial sensors: Comparison to 3d marker-based motion capture,” Journal of biomechanics,

vol. 52, pp. 11–16, 2017.

[38] F. A. Magalhaes, Z. Sawacha, R. Di Michele, M. Cortesi, G. Gatta, and S. Fantozzi,

“Effectiveness of an automatic tracking software in underwater motion analysis,” Journal

of sports science & medicine, vol. 12, no. 4, p. 660, 2013.
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