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VirtElect: A Peer-to-Peer Trading Platform for
Local Energy Transactions

Olamide Jogunola, Yakubu Tsado, Bamidele Adebisi and Mohammad Hammoudeh

Abstract—An average UK electricity bill is made up of at
least 60% service charge, with approximately 22% related to
network characteristics including distance charge. This makes
distance and network constraints important factors in matching
prosumers on any peer-to-peer energy trading platform as
assessed in this paper. To realise that, A platform - V irtElect,
based on a double auction market is developed to support the
matching interaction between prosumers. Case studies based
on real microgrid data are used to verify the performance of
the platform in demonstrating the potential of local energy
consumption. Results show that it is possible to balance local
energy generation and consumption, with little or no interaction
with the utility grid. We also show that local energy trading is not
only beneficial to the environment but also leads to a significant
amount of cost savings of up to 45%, depending on the number
of participants and their ratios on the platform.

Index Terms—Peer-to-peer energy trading, local energy con-
sumption, distance constraints, utility maximisation, network
constraints, auction-based market.

I. INTRODUCTION

Peer-to-peer energy trading and sharing (P2P-ETS) platform
can provide a market mechanism facilitating mutually benefi-
cial energy transactions between traditional energy consumers
that have become ’prosumers’ who can both generate and
consume their energy. P2P-ETS platform can be implemented
to enable the exchange of information and energy among
energy traders of different sizes, including prosumers, resi-
dential houses, or local distribution networks [1]–[3]. Besides,
the platform can assists the system operators to monitor and
control the energy integration to the distribution network, for
instance, balancing energy supplies and demands.

As such, several pilot energy transaction projects and
platforms are currently being trialed in several countries.
These include the Piclo in the UK [4], Vandebron in the
Netherlands [5], SonnenCommunity in Germany [6], and the
Brooklyn microgrid in the US [7]. Some of these projects
fit into four P2P-ETS platform models [8]; the retail supplier
platform, vendor platform, community microgrid platform, and
blockchain platform models.

The Piclo and Vandebron projects utilise online platforms
that allow prosumers to select and track the source of the
energy they buy. They are representative examples of the retail
supplier platform model as they allow suppliers to benefit
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by gaining a better awareness of their customers and also
obtain more value from their distributed energy resources
(DER) [1]. SonnenCommunity project is similar to Piclo and
Vandebron but with more utilisation of storage systems for
battery owners [6]. SonnenCommunity is an example of the
vendor platform model that allows the exchange of energy
between producers and consumers where the owner of the
platform gets a commission for every sale. The Brooklyn P2P-
ETS platform is a network of Brooklyn residents and busi-
ness owners to allow social factor inclusion by encouraging
generous prosumers with surplus energy to donate energy to
low-income households [9]. The Brooklyn microgrid uses a
blockchain model to provide secure decentralised protocols
for managing and executing transactions through its smart con-
tracts, thereby classified as a community and the blockchain
P2P-ETS platform models.

However, the type of trading rules and controls defined by
these platforms have a significant influence on the decisions
made by the prosumers. Setting preferences and autonomy to
decide the terms of trade are also additional incentives for
participating in P2P-ETS platforms [10]. Similarly, to aid in lo-
cal energy consumption thereby reducing the carbon footprint,
distance as a function of the physical location of prosumers
is an important factor in matching prosumers on any energy
trading platform. For instance, at least 20% of an electricity
bill is network cost including distance charge [11]. Besides,
other P2P constraints such as price and product divisibility,
implementability and network constraints consisting of voltage
variation and line losses should be jointly integrated into
the energy trading models and platforms as these constraints
have their impact on the economic and environmental benefit
derived by the grid, prosumers or the community at large.

Compared with the existing P2P-ETS platform designs and
models, that considered one or two constraints, the main
contributions of this work can be summarised as follows:
• a P2P-ETS platform to support the matching interaction

between energy traders is presented. The platform is
designed for an implementable hybrid market within the
current distribution network integrating diverse solutions
for different technical aspects of P2P markets to improve
the economic benefit of the prosumers by maximising
their social welfare and unitary benefit;

• as environmental emission is mostly determined by the
distance energy travels from producers to consumers,
as well as a factor in determining the amount paid for
energy consumption, distance and network constraints
violation charges are implemented on the platform to
encourage energy trading with closest neighbours. This
highlighted the benefits of local energy consumption to
the community and environment;
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• an evaluation of the platform was carried out to show the
extent to which the P2P-ETS can benefit prosumers in
the network. This is achieved by varying their ratios to
determine the optimal mix for maximum benefit.

The remaining sections are as follows. A literature review
of P2P energy trading models is discussed in Section II. The
development of the energy trading platform ’V irtElect’ is
introduced in Section III, the market bids and matching algo-
rithm is presented in Section IV. The performance evaluation
of the platform is discussed in Section V. Section VI concludes
the paper and discusses future work.

II. REVIEW OF P2P ENERGY TRADING MODELS

Recently, the development of a market framework has been
the focus on P2P-ETS where buyers and sellers cooperate
to determine the ultimate energy trading contracts [12]–[14].
This development has been shown to reduce battery capacity
and energy losses [15]. The related effort focused on the
computational properties of the negotiation algorithms [16],
the optimised scheduling of energy storage system (ESS) using
automated negotiations [17], multi-commodity optimisation of
energy traders’ resources [18] and prosumers’ behavioural pat-
terns based on their bidding strategies. Other market clearing
algorithms include the use of distributed optimisation meth-
ods [19], consensus-based optimisation [20], dual-based prices
like alternating direction method of multipliers (ADMM) [21],
reinforcement learning [22] and double-auction for matching
prosumers in the market.

In the double-auction market, sellers and buyers report their
reservation prices and bids for the efficient operation of the
market. This technique has been reported in the literature
to achieve the objective of balancing local generation and
demand, improves prosumers engagement, and offloading de-
mands at peak time [23]–[27]. For instance, a blockchain-
based distributed double auction trade mechanism for energy
trading platform is presented in [27] using a co-simulation
to interface the energy trading platform and the distribution
network layer. This is to assess the impact of P2P trading on
the distribution network. Their result suggests that a moderate
level of P2P trade does not have significant impacts on network
operational performance. Similarly, [28] adopted a sensitivity
analysis methodology for the same objective as well as to
guarantee energy exchange that does not violate network
constraints. A consortium blockchain-based double auction
mechanism is proposed in [23] for protecting privacy while
trading energy. Also, an iterative double auction mechanism
is proposed to solve the electricity pricing and traded quantity
in balancing local energy generation and supply. The result
showed that the double auction mechanism achieves social
welfare maximisation while preserving the privacy of the
peers. A similar objective is achieved in [25] for an optimal
bidding strategy using a double auction among residential
houses. Specifically, utilising the responsive household appli-
ances and ESS, day-ahead and intraday energy management
models for residential houses are established for an hour-ahead
intraday energy transaction. The authors concluded that the
residential demand response schemes and intraday P2P-ETS

are effective in managing the uncertainties of load demand and
renewable generation.

To reduce peak demand and improve users’ participation in
local energy trading, the authors of [24] and [26] investigated a
data-driven prediction-integration model and Nash bargaining
model respectively in their designs of double auction mecha-
nisms. Particularly, [26] designed an incentive mechanism for
their energy sharing model to ensure fair benefits to DERS’
owners based on their contributions using Pennsylvania-New
Jersey-Maryland’s capacity market multi-auction structure.
Furthermore, Utilising the Rubinstein alternating offers pro-
tocol, [29] proposed a bilateral negotiation framework for
energy trading in different periods throughout the day. With
the use of different negotiation concession algorithms, the
prosumers were able to increase their revenue and reduce their
costs. These studies, however, did not integrate distance and
divisibility constraints between the trading entities to assess
their impact on the achieved objectives.

In contrast, the work in [20] proposes multi-bilateral trading
with product differentiation based on consumer preferences,
i.e., distance. Their results suggest an increased trading cost
and a reduction in the maximum power that flows through
prosumers on different buses compared to a case without prod-
uct differentiation. Similarly, [30] proposed a stable matching
mechanism and a continuous double auction-based mechanism
for P2P trading while accounting for the electrical distance to
prioritise trading between peers. The work in [31] proposes
exogenous cost allocation including zonal fees and electrical
distance fees for cost recovery for the system operator. The
exogenous parameter is modelled as an additional cost that
might restrict the participation of traders in the market.

While these theoretical studies [20], [30], [31] assess dis-
tance as a product differentiation parameter for a decentralised
market, here we are assessing its impact in a hybrid market
implemented in an energy trading platform. Against this
background, this paper advances the current state-of-the-art by
considering the distance and network constraints as a major
factor in matching peers for energy trading. In addition, to
increase profit maximisation, the quantity of energy supplied
and demanded can be divided and satisfied by one or more
prosumers. This energy and price divisibility feature enables
the sale/purchase of different quantities at different prices,
offering more control and increase savings. These two factors
are achieved by developing a P2P-ETS platform to support
the pairing interaction among energy traders. Comparative
analysis of this study and other P2P-ETS models is presented
in Table I.

III. THE PROPOSED P2P-ETS PLATFORM DESIGN

To enable information exchange among prosumers and to
facilitate the monitoring of the distribution network by the
utility operators, a P2P-ETS platform is actively needed that
incorporates a variety of energy traders. Fig. 1 illustrates
interactions on the proposed platform - V irtElect, while the
following subsections discuss the platform in detail.
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TABLE I: Comparative analysis of representative models of P2P energy trading with this study

P2P-ETS
models

Ref. Year Objective P2P-ETS constraints

Distance Divisibility Network
constraints

Hybrid
market

Platform

Constrained
optimisation

[12] 2020 A decentralized P2P energy trading scheme
for electricity markets with high penetration
of DERs

×
√ √

× ×

[32] 2020 A hybrid energy trading scheme for different
markets to incorporate prosumers’ prefer-
ences

× ×
√ √

×

[31] 2019 An exogenous cost allocation framework in-
cluding zonal fees and electrical distance
fees in P2P electricity market.

√
×

√
× ×

[33] 2021 A distributed pricing strategy for P2P trans-
active energy systems considering physical
network constraints.

√ √ √
× ×

[20] 2019 A multi-bilateral economic dispatch and
trading with product differentiation based on
consumer preferences

√ √
× × ×

Game theory [34] 2019 A game-theoretic coalition framework to
incentivise prosumers’ participation in P2P
energy trading

√
×

√
× ×

[1] 2018 A P2P energy trading platform for a grid-
connected low voltage microgrid with trad-
ing simulated using game theory.

× ×
√

×
√

Blockchain

[27] 2020 P2P energy trading assessing the impact on
the distribution network

× ×
√

×
√

[35] 2020 A blockchain-based hybrid energy trading
market to reduce costs and peak to average
ratio of electricity

√
× ×

√
×

Auction theory
[28] 2019 P2P energy trading under network con-

straints
× ×

√
× ×

[29] 2020 An automated negotiation framework for en-
ergy trading

× ×
√

× ×

[30] 2021 Electrical-driven P2P energy trading
√

×
√

× ×
This study 2021 A double-auction trading platform for P2P-

ETS assessing the impact of distance includ-
ing violation to network constraints

√ √ √ √ √

Fig. 1: Interactions of prosumers on the proposed P2P-ETS.

A. P2P-ETS Trading Architecture

P2P-ETS systems can be organised in three fashions, a cen-
tralised, decentralised, and a hybrid of both [36]. V irtElect

utilises a centralised auction-based market clearing system that
is well suited for the current business structure in energy trad-
ing. The architecture can also be expanded to a decentralised or
a hierarchical/decentralised architecture to serve power indus-
tries where multiple communities coexist in a large utility area.
V irtElect is a python programming-based P2P-ETS platform
that manages local energy transactions in power networks. It
acts as the auctioneer with a central market clearing system by
only taking in data and providing an intelligent interface for
the prosumers, while communication among the prosumers is
decentralised. The energy consumption and generation of each
prosumer are recorded by their smart meters which serve as the
trading agent. The smart meters also facilitate communication
with the platform. The V irtElect supports P2P energy trading
in a grid-connected microgrid and it consists of consumers,
prosumers, and the distribution system operator (DSO), which
is also grouped as an energy prosumer on the platform. The
DSO is an integral part of the platform that delivers energy to
the appropriate prosumer, whilst ensuring network constraints
are not violated.
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The electricity grid is made up of the coexistence of multiple
communities distributed across different feeders in several
locations illustrated in Fig. 2. On the one hand, in a community
along the same feeder, trading and sharing within that region
will be among prosumers near one another. On the other hand,
trading and sharing between prosumers on different feeders
will attract more power losses as a result of long distance
travelled across substations and cable lines. The following are
some considerations that will be taken into account during P2P
energy transactions:
• Consumers with no DER can participate and are eligible

to only purchase energy.
• Prosumers with DER are eligible to purchase and sell

energy.
• The DSO can also buy or sell energy.
• Prosumers with no physical connection to the grid are

not eligible to participate in the transaction,
• Regulatory criteria such as minimum electricity capacity

and network constraints are integrated to avoid violation
or to assign charges as applicable.

Fig. 2: Local energy consumption, distance charge (adapted
from [36]).

B. The Platform (V irtElect) Functions

The profiling of each prosumer detailing their prefer-
ences including energy price, quantity, and location is stored
on V irtElect. V irtElect allows the prosumers to place orders
for day-ahead energy delivery or intraday trading, based on
flexibility and offer prices, with sellers able to respond with
when they are available and what services they can provide.
There are two predominant forms of intraday trading: discrete
auctions and continuous trading. Auction-based intraday mar-
kets are cleared at discrete times, while the continuous intraday
market is closer to real-time trading as it involves continuous
trading throughout the day. Both forms of intraday trading
can be adopted with the current methodology of the study by
changing the market clearing frequency. The bid information

submitted along with the distance constraints of the prosumers,
are all taken into consideration before the matching result
for the bids and offers is delivered. It is the responsibility
of the prosumers to ensure the orders submitted reflect their
energy profile needs as the market mechanism only utilises
the submitted orders for matching and trading purposes to
deter compromising their privacy. The mismatch between the
demand forecasting result and the actual demand values in
real-time is beyond the scope of this work. Sellers who have
some price flexibility will not have any visibility of the buyers’
price, so as not to influence their offer prices. Such a system
creates market drivers which can bring costs down. A P2P
order will contain the following:
• ProsumerID: A unique number assigned to each pro-

sumer.
• OrderID: A unique number assigned to each order placed

by prosumers.
• OrderAction: Buy or sell (bid or offer).
• OrderQuantity: Amount of energy (in kWh) to be traded.
• OrderPrice: Bid price or offer price.
• Prosumer role at time t: Indicates the role of a prosumer,

either a consumer or a producer at a particular time t.

C. Network Constraints
Energy transactions consider both the monetary transaction

and physical electrical power transport through the grid. As
a result of the integration of DER to the electrical power
network from multiple prosumers, the physical transportation
of electrical power is subject to physical network constraints
which must not be violated through extensive transactions in
the energy network. Studies on physical network constraints
and how it impacts energy transactions in the grid network
have been carried out. In [36], a platform that considers the
system’s ability to accommodate DER was implemented by
measuring the PV hosting capacity of an electrical power
system. They defined a violation as either overloading of
power lines and transformers or a voltage set point greater than
1.04 times the nominal voltage. The impact of the transaction
on voltage and network capacity was presented in [28] to
guarantee an exchange of energy that does not violate network
constraints. Other sample models that consider the effect of
network constraints like voltage variations, utilisation rate
of the lines for congestion control, and system losses, are
presented in [31], [37]–[40]. To evaluate the impact of these
constraints within this study, the following are defined.

1) Voltage Variations: a transaction that causes voltage
variation in the network will not be allowed to proceed. To
detect voltage variation issues, we use the relationship between
the power injection and the bus voltages to determine the
voltage sensitivity coefficients (VSC) as presented in [28],
[41]. Using the Nodal admittance matrix Y that describe
the linear power system with N buses, the relationship is
expressed as (1)

Si = Vi
∑
j∈N

YijVj i ∈ N (1)

where V is the vector of voltage magnitudes of the nodes
i, j ∈ {1, · · · ,K}, K

⋃
N . Obtaining the partial derivative of
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the voltages of (1) with respect to the active power Pk of a
bus k ∈ N gives

S{i=k} =
δVi
δPk

∑
j∈N

YijVj + Vi
∑
j∈N

Yij
δVj
δPk

(2)

A unique solution exist in (2) to compute the partial derivatives

of
δVi
δPk

and
δVj
δPk

. Once they are obtained, the partial derivative

of the voltage magnitude can be obtained via

δ|Vi|
δPk

=
1

|Vi|
Re(Vj

δVi
δPk

) (3)

Thus, the changes in the bus voltages based on power changes
can be determined using (3).

2) Utilisation Rate: line congestion control can be deter-
mined through the line utilisation rate. In estimating the line
utilisation rate to assign a charge to the prosumer responsible
for using the physical network, a power transfer distribution
factor (PTDF) is utilised [28]. PTDF captures the variation in
power flow at the buses, reflecting power injection at a bus
and withdrawal at another bus. Using the derivative of power
injection shift factor (ISF) of [28], the PTDF for a branch
(k, l) with respect to power injection and withdrawal at nodes
i and j is determined through (4)

φijkl = φikl − φ
j
kl (4)

where φikl and φjkl are the power injections at i and power
withdrawal at j for branch (k, l).

3) System Losses: to associate the losses resulting from the
bilateral exchange of energy, a bilateral exchange coefficient
(BEC) [28], [42] can be used as expressed in

BECij =
δPloss
δPi

− δPloss
δPj

(5)

where
δPloss
δPi

and
δPloss
δPj

are the loss sensitivities to power

injection and withdrawal at i and j respectively defined in (6).

δPloss
δPk

= 2RE

[
V TG

δV

δPk

]
(6)

Here,
δV

δPk
is obtained from (2) and G is the conductance

matrix. Equation (6) is termed the loss sensitivity factor (LSF)
[43].

Thus, to assess the impact of P2P energy trading on the
distribution network operation, the network constraints defined
are used. For instance, using the VSC, any transaction violat-
ing the voltage variation will not be allowed to proceed. With
PTDF, line utilisation rate can be determined, and subsequent
charges assigned to the prosumers using the lines to avoid line
congestion. Also, the BEC can calculate the system losses as a
result of bilateral exchange, charging the prosumer responsible
for the loss. The integration of the constraints is implemented
within the trading distance charge discussed in section III-D.

D. Trading Distance Charge

Buyers and sellers in the community are grouped based
on their location on the feeder as shown in Fig. 2. When a
matched buyer and seller are on the same feeder, i.e. feeder A,
their transaction proceeds without a distance charge. However,
if the buyer and the seller are located on different feeders, i.e.,
feeders A and B, their transaction attracts a distance charge.
The distance charge is implemented such that the further the
transacting prosumers are away from each other, the more the
distance charge they pay. A preset multiplier determined by
the distance between the feeders is applied to the electricity
charge. This multiplier is 1 when buyer and seller are on the
same feeder. This will encourage trading between prosumers
nearby or the same community and also account for losses that
can be incurred during cross feeder transactions. To calculate
the distance between a buyer and a seller in two different
feeders, we use the Euclidean distance presented in [44] for
feeder-to-feeder distance calculation expressed in (7)

d(ai, bj) =

√√√√ 1

H

H∑
h=1

(aih − bjh)2 (7)

where ai and bj represent the buyer on feeder A and a seller
on feeder B respectively. h ∈ H are the different network
constraint features including voltage variations, network util-
isation and system losses defined in section III-C that could
impact distribution network during energy transaction.

The distance charge between the seller and the buyer is
calculated in (8) as,

dch = 1 + (d · C) (8)

where C is a constant vector charged per every kW of trans-
acted energy between the buyer and the seller. An example
is demonstrated in Fig. 2, with a cross feeder charge C
of 0.002p/kWh. If prosumer i on feeder A and prosumer j
on feeder B are trading energy with an assumed distance
of 500m apart, the distance charge will be given as 1 +
(0.002× d(500m)) = 2p/kWh.

Thus, similar to [28], a third-party entity like DSO validates
each matched bid and offer to determine if any network
constraint features will be violated. If the constraints will
be violated, in case of voltage violation, the trade will not
proceed; in case of line utilisation and losses, the charges
are incorporated within the distance charge assigned to the
trade violating the constraints. This process ensures that energy
traders tend to prefer to exchange energy with the closest party
to deter excess charge due to network violations resulting from
losses and line utilisation.

IV. MARKET BIDS AND MATCHING ALGORITHM

To develop a P2P-ETS platform, the characteristics of the
energy market are first considered. The market has three
features: (a) bids are placed at time t0 for a trading period t1;
(b) The trade proceeds after matching participants, and (c) par-
ticipants are informed about the value of the traded quantity.
The market follows pairwise meetings of participants utilising
a double auction market where each prosumer plays an active
role to provide bids or offers of their demand or supply.
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A. The Trading Period
In the existing electricity market, energy is bought and sold

in a 30 minutes interval. This structure of the market is based
on energy generation, consumption, and price that can vary
due to [45]:
• Environmental conditions: Since the energy generation

focus is on renewable sources, weather conditions affect
the generation output of PV panels as well as wind
turbines and other renewable sources. A market based
on PV panels might increase the trading period during
the winter season. Similarly, those based on wind turbines
might reduce the trading period during a season with high
winds.

• Time of day: The time of electricity usage also affects the
market trading period. In the traditional electricity billing,
off-peak period usage between 11 pm and 6 am attracts
less fee as compared to the peak period, between 4 pm
and 9 pm, attracting the highest fee [46]. In addition,
the time of the day electricity production for PV panels
is highest around noon, which calls for a period trading
market.

• Grid balancing: The grid must account for the peak and
off-peak electricity consumption periods, and the peak
and off-peak generation periods within the design of an
energy trading market to enable the balancing of supply
and demand.

This paper adopts period-based energy trading and a double
auction-based market method, with trading executed at t
period. Buyers and sellers submit bids (Table II) into the
market during each period t0 against the next trading period t1
for intraday energy delivery. An example of a trading period
is shown in Fig. 3.

Fig. 3: An illustration of the trading period on the P2P-ETS
platform.

The activities at tx are divided into four segments; submit
bid, open market, match a transaction, close market including
the settlement and market clearing. Once the market is opened
for energy trading, no more bids are submitted. The match
and transaction activities could proceed to several rounds
depending on the number of prosumers and the quantity of
demand left in the market before proceeding to settlement and
market clearing.

B. The Matching Phase
The orders submitted to the market are grouped into bids

and offer denoted by Nk̄ = {1, · · · , nk̄}, where k̄ = 1, 2,

denotes the type of group and type k̄(nk̄ ≥ 1). The dual nature
of a prosumer of being a consumer or a producer implies that
it can take up either of such roles at a given trading period t1,
submitting either bid or offer at t0.

TABLE II: Prosumers’ market bid structure

Qty. (kWh) Price (p/kWh) ID Role
3.6 14.3 0 Bids
1.8 12 1 Bids
2 14.3 2 Bids

4.2 13 3 Bids
10 14.3 4 Offer (Grid)
2 11 5 Offer
3 10 6 Offer

2.5 13 7 Offer
4.5 10 8 Offer
3 9 9 Offer

The bid price is the maximum price a consumer is willing to
pay for 1kWh of energy, while the offer price is the minimum
price a producer is willing to sell 1kWh of energy. For the
prosumer to transact, the bid price must be greater than or
equal to the offer price. When two prosumers from different
groups N1 and N2 are matched, they trade over the partition
or all of the quantity(ies) of energy associated with the match
at that period. For instance, at time t ∈ T , let i ∈ N1 and j ∈
N2 be the initially matched prosumers. If their preferences in
terms of quantity and price are matched, the prosumers leave
the market with the share of the unit price surplus as savings.
In the event of unmatched preferences, the algorithm proceeds
to the next round (see Fig. 3) where the remaining prosumers
in the market are paired with new prosumers until all bids and
offers during that trading period are satisfied. However, if any
offer remains during the current trading period, the offer is
moved to the next open market.

To assess the effect of trading distance, and to evaluate the
benefits of local energy consumption, the matching algorithm
is evaluated for two scenarios:

1) Matching based on price and quantity: In this scenario,
only the price and quantity of energy preference of
prosumers are considered in matching the bids and
offers. This reference scenario is mostly adopted in
the current electricity market system where choice over
price and/or source of energy is incorporated.

2) Matching including distance: To evaluate the effect of
distance on energy consumption, this scenario incorpo-
rated distance charge in the matching phase. As previ-
ously discussed that for electricity, transmission losses
and other associated costs are largely dependant on the
distance travelled making distance an important factor
in this work.

C. Matching and Social Welfare Maximisation

With a lot of offers and bids to match, the matching is
obtained by solving a market clearing optimisation problem
to determine the matched peers and their unitary benefits, i.e.
to maximise social welfare [47]. Social welfare is the region
where any buyer would pay at most what he was willing
to pay and any sellers would receive at minimum the price
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he was willing to sell for. In maximising the welfare of all
prosumers in the market, a primal-dual gradient method is
utilised in [12] using the first-order method. Result in [12]
were evaluated against other traditional distributed algorithms
including ADMM, interior point methods and centralised
approaches proving its efficiency.

Representing the set of consumers N1 as NB , set of
producers N2 as NS and set of offers from the prosumers
as LS = {Si, i = 1, · · · , NS}, with maximum offer quantity
of QGi at price PGi . Similarly, the set of bids from the
prosumers is denoted as LB = {Bi, i = 1, · · · , NB}, with
maximum bid quantity of QBi at price PBi . Thus, the social
welfare maximisation problem is expressed as:

maximise
{xS

i ,x
B
i }

[∑
i

PBi x
B
i −

∑
j

PSj x
S
j

]
(9a)

subject to :
∑
j

xSj −
∑
i

xBi = 0 (9b)

0 ≤ xBi ≤ QBi , i = 1, · · · , NB (9c)

0 ≤ xSj ≤ QSj , j = 1, · · · , NS (9d)

Equations (9c) and (9d) are the demand and supply levels to
optimise the social welfare of the consumers and producers
respectively. The solution x∗ to solving (9a) as a linear
program would only result in a list of matched bids and offers.
However, solving (9a) using the dual-Lagrange method gives
the complete market clearing. Here, complete market clearing
consists of the list of offers (supply and demand, and quantity
accepted), achieved through the primal solution and the price
at which the market is cleared achieved through the dual
solution. Thus, to solve (9a) using the Lagrange multiplier,
the following is derived.

maximise
λE ,{vBi },{vSj }

[
−
∑
j

vSj Q
S
j −

∑
i

vBi Q
B
i

]
(10a)

subject to : λE − vSj ≤ PSj , j = 1, · · · , NS (10b)

−λE − vBi ≤ −PBi , i = 1, · · · , NB (10c)

vSj ≥ 0, j = 1, · · · , NS , (10d)

vBi ≥ 0, i = 1, · · · , NB (10e)

where λ = λE is the Lagrange multiplier associated
with (9b) representing the equilibrium price and v =
[vS1 , · · · , vSNG

vB1 , · · · , vBNB
]T is the Lagrange multiplier as-

sociated with (9c) and (9d) respectively. The solution v∗

represents the unitary benefits for the various demand and
supply offers when the market is cleared at the equilibrium
price λ. the market mechanism is summarised in Algorithm 1.

V. EVALUATION AND RESULT ANALYSIS

To assess the performance of the algorithm and V irtElect,
the platform development is based on the python programming
language. A case of 10 prosumers is first evaluated based
on the market bid of Table II. The demand requirement of
consumers 0 − −3 is based on real energy demand data
from the ’PECAN street project’ [48]. This dataset is for

Algorithm 1: The market mechanism algorithm.

1 Function TransactionArray (addsale);
2 Input: order; bids; offers; quantities; distance charge
3 Output: sales amount; cost-savings
4 Open market
5 for each round do
6 for each bid i in orders do
7 for each offer j in orders do
8 Solve market clearing optimisation (10a)

for each matched i and j do
9 if DSO = Approved then

10 Distance = d(ai, bj)
11 end
12 distance charge = 1+ (0.002 * Distance

in meters)
13 (bid i, offer j) = (bid i, offer j) *

distance charge
14 end
15 if bid i ≥ offer j && j quantities ≥ i

quantities then
16 Calculate sales quantities
17 if bid i ≥ offer j && j quantities < i

quantities then
18 Transfer all j quantities to i
19 Transfer excess quantities of i to

next round
20 end
21 end
22 Calculate unitary benefits/cost-savings
23 Update addsale
24 end
25 end
26 Go to next round
27 end
28 Submit successful sales and return to open market

residential households and covers a variety of residential load
patterns such as lighting, washing machine, and air condition-
ing systems, etc., which are used at variable times. As with a
realistic power distribution system, the household profiles in
the data set vary because the residences’ consumption varies.
The average peak solar PV output is about 0.4kWh, the
load demand by residential households will determine which
household is willing to buy or sell energy. An instance of the
data is presented in Fig. 4.
Pload represents the energy consumption of the house, Pgrid is
the energy from the grid to balance the consumption,
while Psolar is the energy generated over 24 hours by the
solar PV panels installed on the household roof. Between
the hours of 0 : 00 − −9 : 00, the energy consumption for
the household is delivered from the grid. Between the hours
of 9 : 00 − −20 : 00, the generated solar energy increased
sufficiently so that the household energy is mostly delivered
by the solar panels, whilst the energy consumed during the
remaining hours of the day is delivered by the grid. The total
energy received from the grid is the energy submitted as a
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Fig. 4: An instance of a real energy profile of a house used
alongside other households in the cases considered.

bid to the market for P2P trade with other prosumers, i.e.,
consumer 0 profile. In addition, the advertised energy price for
the grid is based on the average electricity price for households
in the UK.

A. Scenario 1: Matching Based on Price and Quantity of
Energy

This section considers the initial matching of prosumers
on the platform based on their bid and offer prices as well
as quantity demanded and supplied. The result is analysed
based on energy demand and supply, and the cost saved by
the prosumers.

1) Energy Demand and Supply on V irtElect: Fig. 5 shows
an example of the matched pairs and the amount of energy
traded between each pair after a simulation run. It can be
observed that due to the divisibility of the demands, some
prosumers, i.e., producer 9, participated in 3 rounds with 3
different paired consumers (1, 3, and 7).

Fig. 5: A graph illustrating the paired prosumers and the
amount of energy traded between them.

Fig. 6 shows the result after energy has been traded. In the
first round, consumer 0 bought all its quantity demanded from
producer 8, consumer 1 from producer 9, and consumer 2 from
grid 4. Producer 5 sold all its energy surplus to consumer 7,
as producer 6 to consumer 3. In the second round, the
demand requirements of consumer 3 have not been met, thus,
consumer 3 is paired with producer 8. Producer 8 sold all its
remaining energy to consumer 3, while consumer 7 purchased

the remaining energy demands from producer 9. Further, the
market interactions proceed to round 3, where the remaining
demand requirements of consumer 3 are met by producer 9.
This shows that all the demands are met by the prosumers on
V irtElect.
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Fig. 6: An illustration of the energy traded between prosumers
and individual cost savings.

2) Cost Savings by the Prosumers on V irtElect : The
economic benefit in terms of cost savings calculation is based
on the price difference of the matched partners that traded
energy. For instance, consumer 0’s 3.6kWh, with a maximum
buy price of 14.3p/kWh is supplied by producer 8 with a
minimum sale price of 10p/kWh. The difference in the price
equals 4.3p/kWh, which would be shared as savings for both
parties. Thus total savings of consumer 0 by buying 3.6kWh
of energy from the P2P platform is 7.74p. This experience
relates to other prosumers on V irtElect. However, the max-
imum and minimum bid and offer price for consumer 2 and
grid 4 is 14.3p/kWh, thus, both prosumers when paired did
not earn any savings. The cost savings is illustrated in Fig. 6.
In addition, it is worth noting that although the grid has the
highest amount of energy to sell in the market, it was only
able to sell just 2kWh of its 10kWh total energy. This is a
result of its minimum offer price, which is higher than most
of the consumers’ maximum bid price.

B. Scenario 2: Matching Based on Price, Quantity, and Dis-
tance

In this section, the effect of the distance charge is assessed
using the segmentation shown in Fig. 2, and mathematical
formulations of Section III-D.

The market bid is as shown in Table III, including the
location of each prosumer on the distribution feeder. The
results are presented based on the energy demanded and
supplied as well as the cost saved by the prosumers.

1) Energy Demand and Supply on V irtElect: Fig. 7
shows the result after energy has been traded. In the first
round, consumer 0 bought all of its demanded quantity from
producer 8, as consumer 1 from producer 9. Producer 5
sold all its energy surplus to consumer 7, as producer 6
to consumer 3. Interestingly, consumer 2 was paired with
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TABLE III: Market bid structure and cost savings for Scenario
2.

Prosumer Dist. C Feeder Savings
ID (p/kWh) Location (p)
0 2 A 15.48
1 4 B 27.0
2 2 A 3.71
3 4 B 62.4
4 6 C 0.0
5 4 B 8.0
6 2 A 48.0
7 4 B 16.5
8 2 A 29.88
9 2 A 39.21

grid 4, but no trade occurs between them as the far trading
distance resulted in extra charges. In the second round, the
demand requirements of consumer 3 were not met, thus,
consumer 3 was paired with producer 8. Producer 8 sold all its
remaining energy to consumer 3, while consumer 2’s demand
requirements were met by producer 9. Grid 4 was paired with
consumer 7, but no trade occurred between them as the far
trading distance resulted in extra charges. Further, the market
interaction proceeds to round 3, where the remaining demand
requirements of consumer 7 were met by producer 9.
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Fig. 7: An illustration of the energy traded between pairs and
individual cost savings.

2) Cost Savings by the Prosumers on V irtElect: Similarly,
using the cost savings calculations described in Section V-A2,
the economic benefit in terms of cost savings of consumer 0
by buying 3.6kWh of energy from producer 8 on V irtElect
is 15.48p. The cost savings for other prosumers are shown in
Table III and Fig. 7. However, the maximum and minimum
bid and offer price for consumer 2 and grid 4 is 14.3p/kWh,
but because they are located at different feeders when the
two were paired, no trade occurs. In addition, the grid was
paired with consumer 7 in the second round, however, no
trade occurs between them. Thus, the grid earned 0p savings
in this scenario. It can be observed that while consumer 2
did not earn any savings in the first scenario because of
the paired partner (grid), he earned a total savings of 3.71p
in this scenario, as a result of declining the grid offer and
subsequently being paired with a producer with a lower asking

price. These results show that consumers of local energy
consumption acquired more cost savings than prosumers that
do not trade energy locally.

3) Environmental Impact Analysis: While energy generated
from renewable is universally regarded as green energy, energy
transmission between consumer and producer might also result
in emission losses depending on their distance. This is called
transmission and distribution losses. To evaluate the environ-
mental benefit of P2P-ETS, we calculate the total emissions
equivalent to generating and consuming energy locally using
(11)

CO2 emissions = activity data× emission factor (11)

The emissions factor calculated by BEIS for electricity gen-
erated is 0.23314 kgCO2e, while for transmission and dis-
tribution losses is 0.02005 kgCO2e for the year 2020 [49].
The activity data is the equivalent of electricity consumption
and supply in this case. We evaluate the environmental benefit
of local energy generation and consumption in the case study
given in Table II. The total generation and demand in Table II
is 36.6 kWh resulting in a CO2 emissions reduction of 9.2668
kgCO2e. 92% of the reduced emissions are accustomed to
local energy generation and consumption. Factoring transmis-
sion distance into the study saves 8% of CO2 emissions.

C. Scenario 3: Impact of Ratio of Producers to Consumers on
V irtElect and Scalability Assessment

Additional assessment is carried out to evaluate the per-
formance and scalability of V irtElect to varying ratios of
producers/sellers to consumers/buyers. A range of represen-
tative values of demands, supplies, and prices are assigned
to the prosumers. For the buyers, the minimum offer price is
set between 11 − 14p/kWh, the quantity of energy demand
is set to 1 − 5kWh, while the sellers’ bid price is set
to 10 − 15p/kWh and the quantity of energy supplies is set
to 5 − 10kWh. Simulations were run for a different ratio
of sellers to buyers for 30 participants. Fig. 8 shows the
relationship between the total supply, demand, and cost savings
against varying ratios of prosumers.

Fig. 8: A pie chart showing the relationship between the total
supply, demand, and savings for a different ratio of sellers to
buyers.

It can be observed that with a ratio of 80% of sellers
to 20% of buyers, the total supply increased with less demand,
compared to when there are 20% of sellers on the platform,
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as the total cost savings are a reflection of the volume of trade
that occurs on the V irtElect. With 80% sellers, the savings
is 16% compared to 20% sellers and 45% cost savings. This
result emphasises the importance of a P2P exchange of energy,
the more the local demand is met by the local supply, the
higher the community cost savings.
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Fig. 9: Relationship between the equilibrium price, quantity,
and the percentage welfare for a different ratio of prosumers.

Similarly, Fig. 9 shows the relationship between the equi-
librium price, quantity, and the percentage of the maximum
welfare against the ratio of prosumers on the platform. It can
be observed that for 80% of sellers, the average quantity traded
is 24kWh at an equilibrium price of 10p/kWh. However,
with 50% of sellers, the traded quantity increased to 30kWh
which reflects the increase in demand due to the increased
number of buyers. In addition, with more buyers on the
platform, 80%, the traded quantity, and the equilibrium price
increased to 43kWh and 11p/kWh respectively. This reflects
an economic market where an increase in demand and a
decrease in supply leads to an increase in the price of the
commodity. In addition, it can be observed from the plot that
the percentage welfare of the participants increases as the ratio
of buyers increases on the platform.

To further demonstrate the scalability of the energy market,
Fig. 10 and Fig. 11 show a particular run for 100 participants.
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Fig. 10: Impact of different ratios of prosumers to total cost
savings.
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Fig. 11: Impact of different ratios of buyers to sellers for an
increasing number of participants and total cost savings.

In Fig. 10, as the ratio of buyers increases against the ratio
of sellers, the cost savings increase. However, when the ratio
of buyers to sellers exceeds 66%, a decline in cost savings
is observed. Similarly, when the ratio of buyers to sellers ex-
ceeds 33%, a decline in cost savings was also observed. These
results further suggest that the role of prosumers on V irtElect
determines the cost savings. Such as fewer savings when there
are more sellers than buyers and vice versa. Finally, when
utilising the ratio of buyers to sellers for an increasing number
of participants, Fig. 11 shows an increase in cost savings.
This savings reflect when the buyer to seller ratio ranges
between 0% to 60% and declines when the ratio exceeds 60%.
This suggests that as the number of prosumers increases, local
demands are met, and cost savings increase. However, these
cost savings could decline with a disproportionate number of
consumers to producers.

To sum, V irtElect can easily be implemented and man-
aged. It has been demonstrated that it is economical for
consumers and prosumers in a decentralised energy paradigm
where the exchange of energy can be dynamically negotiated
to fit individual needs. Thus, reducing the dependency of the
central grid and enabling a more competitive environment.
This will incentivise further participation in the trading and
sharing of locally generated energy. Similarly, the economic
benefit to the DSO is realised by balancing local energy
generation and consumption through trading. This would assist
the grid during peak demand and deter the deployment of
generators or high infrastructure to balance and stabilise the
system, thus, reducing investment costs.

VI. CONCLUSION AND FUTURE WORK

This paper presented the design and implementation of a
P2P-ETS platform - V irtElect for local energy consumption
and trading. The paper commenced with a description of
the platform design that highlighted the interaction between
prosumers. Then, the market mechanism used on the platform
was discussed for the two used cases considered giving a
snapshot of the developed platform interface in the appendix.
Simulation results indicate that local energy trading is not only
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beneficial to the environment but also leads to a significant
amount of savings by the trading prosumers of up to 45%,
depending upon their number and ratio on the platform. Future
work will include testing the performance of the platform and
market mechanism incorporating more prosumers and func-
tions that will consider more matching resources, preferences
and objectives over an extended period. In addition, future
work will explore the use of distributed ledger technology to
develop smart contracts that can be used to manage trust and
transactions on V irtElect.

APPENDIX

V irtElect INTERFACE

This section shows the interface of the developed P2P-ETS
platform as shown in Figs. 12, 13, 14, and Fig. 15.

Fig. 12: P2P-ETS platform set-up with connected devices.

Fig. 13: Prosumers profiling on the P2P-ETS platform.

Fig. 12 shows the overall setup of the connected devices
representing prosumer smart meters on the P2P-ETS platform.
Fig. 13 shows the received energy profile of the prosumers.
This shows details of the energy generated, consumed, and
received from the grid as represented in Fig. 4. Similarly,
Fig. 14 shows the bid submitted to the market and the location
of the market participants. The submitted bid is as represented
in Tables II and III and the plot as shown in Fig. 7. Fig. 14
shows the energy transfer between those that trade, as well as
the links connecting them on the map.

Fig. 14: Market bid and the prosumers’ location on the P2P-
ETS platform.

Fig. 15: Energy transfer between prosumers and links connect-
ing trading pairs.
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