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Multi-commodity Optimisation of Peer-to-Peer
Energy Trading Resources in Smart Grid

Olamide Jogunola, Bamidele Adebisi Senior Member, IEEE, Kelvin Anoh, Augustine Ikpehai, Member, IEEE,
Mohammad Hammoudeh, Senior Member, IEEE, and Georgina Harris

Abstract—Utility maximisation is a major priority of energy
prosumers participating in peer-to-peer energy trading and
sharing (P2P-ETS). However, as more distributed energy
resources integrate with the distribution network, the impact of
link communication becomes significant and should therefore be
considered. This paper presents a multi-commodity formulation
that allows dual-optimisation of energy and communication
resources in P2P-ETS. While the proposed technique minimises
energy generation cost and communication delay on one hand,
it also maximises the global utility of prosumers with fair
resource allocation on the other hand. We evaluate the algorithm
in a variety of realistic conditions including time-varying
communication network with delay and lossy links. The results
show that convergence is achieved in a fewer number of
time-steps than previously proposed algorithms. It is further
observed that the entities with a higher willingness to trade
energy acquire more utility satisfaction than others.

Index Terms—Distributed algorithm, social welfare, P2P-ETS,
multi-commodity networks, economic dispatch, packet loss,
peer-to-peer energy trading, DDG.

NOMENCLATURE

ατ Step size at time τ .
k̄i,j Message signal delay on link (i, j).
λi,j Incremental cost per unit energy generated and

transffered using link (i, j).
L Lagrangian multiplier.
M Set of Virtual microgrids.
W Social welfare.
ω Weight associated with the fairness parameter of

prosumer.
σ Fairness parameter associated with a prosumer.
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D Total energy demand in the network.
di Energy demand of each prosumer in the network.
E Set of network links (i, j) connecting the prosumers.
fi,j Signal loss probability on the link (i, j).
g(τ) (Sub)gradient to Lagrange dual problem λ(τ).
G(t) Time-varying network graph.
gi(qi) Conjugate convex function.
K Messages from different peers in the network.
li,j Lower bounds of energy flow capacity on link i, j.
nc Number of energy consumers.
np Number of energy generators.
ui,j Upper bounds of energy flow capacity on link i, j.
V Interconnected nodes representing the prosumers.
w(·) Dual function.
xi Power generation of prosumer np.
xmaxi Upper bound of power generation of prosumer np.
xmini Lower bound of power generation of prosumer np.
Ci(.) Energy generation cost function of prosumer np.
U(xi) Utility of commodity xi.

I. INTRODUCTION

S INCE the past decade, advances in technology have been
driving the rise of distributed energy resources (DERs)

at the community level [1]–[4]. These DERs create a chain
of independent energy producers and consumers that coexist
with different energy generating capacities and demands [1].
The existence of these prosumers could result in power grid
instability and unreliability if their energy supply and/or
demand requirements are not properly coordinated. A common
approach to energy coordination and control is utilising
distributed control algorithm to eliminate the single point of
failure in centralised control systems [5], [6].

Distributed algorithms have been proposed in the literature
for energy coordination [7] and in peer-to-peer (P2P) energy
trading [5], [8]. In these algorithms, each prosumer keeps a
local approximate value of its energy profile and in most cases,
communicates this estimated value directly to its connected
neighbour. The energy profiles of all the prosumers converge
to an optimal value over a communication network [9]. In a
previous study [8], and a survey conducted in [10], the authors
assumed a perfect communication link between these energy
prosumers, and thus ignored the typical communication issues
in real networks.

In practical P2P networks with digital capabilities,
end-to-end transaction may be affected by several
communication-related factors including topology, jitters,
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latency, reliability and attenuation due to weather, physical
environment or contingencies on the link and the number
of P2P prosumers in the network. Other factors include link
capacity, number of nodes, and message size [11], [12].
This has been exemplified using a distributed consensus
algorithm [13] that fails to converge in the presence of
prolonged communication delays. Some recent works
considered the impact of the imperfect communication
links on optimal dispatch of energy among DERs [9],
[14]–[17]. The performance metrics considered include
communication delay [14], [15], time-varying topologies
[16], time-varying directed network with delays [17], and
unreliable communication links subject to packet drops
[9]. While these studies considered, one or two network
constraints of imperfect communication links, a typical
economic dispatch problem (EDP) should encompass more,
to incorporate the diverse generation mix of DERs in the
power grid.

In a distributed EDP involving several DERs, the underlying
communication network has a huge effect on the ability of
the prosumers to reach a consensus on the optimality of
their energy demand and generation cost. Thus, maximising
the economic benefits of P2P energy trading and sharing
(P2P-ETS) while respecting sustainability and environmental
obligations is crucial to incentivise prosumers’ participation
in P2P-ETS market. Here, P2P-ETS is a collective term
to indicate P2P energy interaction which could include
energy trading, energy sharing, energy exchange, etc. This
paper aims to solve the EDP among distributed DERs over
realistic imperfect communication links. Furthermore, the
utility derived based on the optimal distributed EDP is
assessed. In this case, we consider fairness in the allocation
of network resources to ensure balanced energy network.

This work employs the multi-commodity network flow
(MCF) technique [18], [19], for optimising the distributed flow
of resources in a network. This is because MCF optimisation
offers the opportunity to consider the communication links
whilst solving the optimisation tasks for energy trading. For
instance, MCF optimisation provides insight into both the
communication and the energy transfer between prosumers,
which can be modelled simultaneously. The suitability of MCF
for dynamic energy management has recently been assessed by
[20] and applied to the smart grid in [21]–[23]. Their results
show faster convergence of the algorithm and robustness to
delay and packet loss in delay-sensitive networks like smart
energy systems.

The main contributions of this paper are summarised as:

• presentation of MCF approach that allows dual
optimisation of energy and communication resources in
P2P-ETS where prosumers work in consensus to meet
aggregate demand and maximise their utilities;

• although EDP was previously investigated in [9], [13],
[15], [17] without considering imperfect communication
links, the proposed algorithm offers faster convergence
under the imperfect communication links characterised
by delay, signal loss, and asynchronous communication.
These imperfections usually result in stringent impacts

on the optimal utility of energy prosumers due to stale
energy prices;

• in addition, we evaluate the optimisation of utility
satisfactions perceived by the prosumers when
considering such imperfect communication links in
the smart grid with interest on fair allocation of network
resources in terms of supply and demands.

In the remaining sections, the literature review is presented
in Section II. The problem formulation, MCF optimisation,
and utility maximisation among P2P energy traders are
presented in Section III. The simulation and results are
discussed in Section IV. Section V concludes and identifies
potential future work.

II. LITERATURE REVIEW

The performance limitation posed by centralised control
approaches for energy dispatch among DERs connected at
the edges of the power distribution network has birthed the
increasing proposals on distributed algorithms [9], [13], [15],
[17], [24] for energy control and P2P energy trading.

A P2P energy trading scheme is proposed in [25] using
a leader-follower Stackelberg game for the power system to
reduce its electricity demand during peak hours. For additional
control to reduce the curtailment of renewable generation,
[26] proposed a local energy market for distribution systems
integrating P2P energy trading with locational marginal
pricing. To increase user participation in P2P energy trading,
a game-theoretic design is proposed in [27] which shows
potential in attracting users to participate in the energy trading
for more carbon and cost reduction, through a proposal of a
bilateral contract in [28].

A Mixed Integer Linear Programming based predictive
design and a dispatch optimisation algorithm was proposed
in [29], while, [24] utilised a two-level incremental cost
consensus distributed algorithm to solve EDP in smart
grid. With the evolving digitisation of power network,
communication systems have become an integral component
of the smart grid. This poses the problems of stale energy
prices due to the commonly known problems of time delay
and packet losses from imperfect communication links. Thus,
the influence of time delays on the distributed algorithms was
investigated in [13] and [15]. The authors in [13] investigated
the influence of time delays over different types of information
exchanged among the DER units, and found that the consensus
algorithm either converged to an incorrect value or failed
to converge altogether. Further, [17] proposed a distributed
algorithm based on push-sum and gradient method to solve the
EDP among connected DER units over fixed and time-varying
network delays. On the other hand [9] proposed a robustified
extension of [17] using the same method but solving the
coordination problem over packet-dropping communication
links. Other efforts in reducing the communication delay in
DERs are found in [30], [31].

In maximising the social welfare of generators and
consumers, [32] propose an incremental welfare distributed
consensus algorithm, which was further extended in [33]
to incorporate transmission loss and directed communication
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topologies. In [34], a social welfare maximisation problem
using open control law to minimise generator and load
adjustment rates was addressed. In contrast, this study
presents the use of MCF optimisation technique in solving
EDP in smart grid considering the disjoint electrical and
communication variables. The results are then analysed for
maximising prosumer social welfare in a P2P energy trading
network.

III. PROBLEM FORMULATION

Consider an energy distribution network, for example, the
IEEE 5-bus system as shown in Fig. 1-A, to which distributed
energy generators are connected. In Fig. 1, the physical
network represents the physical connectivity of the energy
generators depicted as (G) in Fig. 1-A, to a distribution
network. The virtual network denotes a nodal representation
of the physical nodes to reflect communication among them.
Fig. 1 also illustrates the relationships between the assets
(physical energy network and virtual communication network)
and multi-commodity modelling (economic dispatch problem,
resource constraints, and social welfare of prosumers)
presented in this study. The energy trading assets are depicted
in Fig. 1-A while the energy multi-commodity resources model
that harnesses the asset representations and the constraints as
shown in Fig. 1-B.

To formalise the relationships, let the connectivity of the
prosumers be represented using a strongly connected graph
network, that models the pairwise relations between nodes and
links. The nodes are called the vertices and links connecting
the vertices are edges. In this model, the strongly connected
energy network is defined by graph G = (V,E) of V =
{1, 2, · · · , N} interconnected nodes, E ⊆ V × V set of
bidirectional links of any (np, nc) interconnected prosumers
and N is the number of prosumers in the network. Note
that P , {1, · · · , np} represents the set of energy generators
with index i ∈ P and C , {1, · · · , nc} is the set of
energy consumers with index j ∈ C. No energy prosumer
has the combined characteristics of generator and consumer
simultaneously at a given trading period, t, and thus P ∩ C =
�. It follows also that the set of all prosumers is V = P ∪ C
and the total number of energy prosumers is N , nc + np.
The goal of each prosumer is to optimise its energy output to
maximise its benefit and to collectively meet the total energy
demand in the network in a distributed way.

A. Communication Network

The power network is overlayed by a communication
network that conveys energy trading messages as shown in
Fig. 1-A. Let the communication network be represented as a
time-varying graph G(t) = (V,E(t)) with E(t) links, where
each set of links changes over time, based on the state of
the communication link at a time, t. A directed link from
prosumer np to prosumer nc is denoted by (i, j) ∈ E(t). Each
directed link (i, j) ∈ E(t) is characterised by its upper bounds
of energy trading messages through the links, ui,j , delay, k̄ij ,
and signal loss probability, fi,j on links connecting np to nc.

B. Energy Generation and Demand

For tractable solutions, we assume that the prosumers
are virtually clustered using communication systems into
M number of virtual microgrids (VMG) [35]. In this
case, we are interested in minimising energy generation
costs and maximising social benefits within the VMG for
prosumers. This problem can be approached by minimising
the total aggregate energy cost and assuming small clusters
of energy generators. Through clustering, energy demand can
be matched with a supplier within an mth VMG in a local
energy P2P trading fashion [36]. Let M = {1, 2, · · · ,M}
be the set of virtual microgrids such that m ∈ M. Thus,
during the tth trading interval, there exists Em(t) set of links
in the mth VMG. Each VMG is thus characterised by np ∈ P
energy generators and each producing xi(t), i ∈ np units of
energy. Other motivations for clustering the prosumers are
to reduce non-commodity charges, for optimal node density
and reducing energy trading cost [35], [36]. The generation
cost minimisation problem during t ∈ Iij trading interval is
formulated as

min
{xi}

∑
t∈Iij

∑
i∈np

Cixi(t), (i, j) ∈ Em(t),m ∈M (1a)

subject to :
∑
t∈Iij

∑
i∈np

xi(t) ≤ Dm(t), (i, j) ∈ Em(t),m ∈M

(1b)
xi ≥ 0, ∀i = 1, · · · , np (1c)

where Ci(·) is the cost function of prosumer i ∈ np for
generating xi units of energy. It is assumed that the cost
function follows a convex function model for tractability.
The model in (1b) implies that the total energy generated
within a cluster m must satisfy the total energy demanded for
energy conservation to hold. Henceforth, we shall focus on a
single market period of one hour in the P2P energy market
similar to [37] as the single-period problem can be extended
to a multi-period problem with temporally coupled constraints.
The solution for the single market period demonstrates the
performance of the proposed method in a more explicit manner
[37]. In that case, we shall be dropping the notation t in (1).
C. Energy as a Multi-commodity Flow Problem

The most basic MCF problem can be represented as

min
{xij,k}

∑
k∈K

∑
(i,j)∈Em

Cij,k(xij,k), m ∈M (2)

where xij,k is the flow of commodity k on the link between
the nodes (np, nc), whilst the objective function Cij,k(xij,k)
is the cost of flow in the links, which is convex monotonically
increasing function [20]. The decision variables in this model
are energy flows xij,k which must follow flow conversation
criterion for the power network to be balanced, i.e., the flow
entering the node must be equal to the flow leaving the node.
In addition, energy flows through the links are limited by lower
and upper bounds, which translates to the maximum energy
that can flow through the link at a time. For consistency,
throughout the rest of this paper, the term commodity
represents message flows from the different prosumers in the
network which is a communication parameter.
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Fig. 1: A: IEEE 5-bus system of energy generators showing the physical and communication connectivities; B: Schematic of
the multi-commodity modelling - economic dispatch and social welfare maximisation problems.

Without loss of generality, the EDP can be represented as
an MCF optimisation of the form

min
{xij,k}

∑
k∈K

∑
(i,j)∈Em

Cij,k(xij,k), m ∈M (3a)

subject to :
∑
k∈K

∑
(i,j)∈Em

xij,k ≤ Dm, m ∈M (3b)

lij,k ≤ xij,k ≤ uij,k, ∀(i, j) ∈ Em, m ∈M (3c)
xij,k ≥ 0, ∀k ∈ K, ∀(i, j) ∈ Em, m ∈M (3d)

xminij,k ≤ dij ≤ xmaxij,k , ∀ dij ∈ D, (i, j) ∈ Em (3e)

where dij is the demand at each bus, such that∑
(i,j)∈Em

dij = D. Constraints (3b) is the conservation of
energy flow constraint, (3c) is the upper and lower bounds
of flows in the links, which must not exceed the capacity of
the link and (3d) represents non-negativity constraints, i.e, a
generating unit must generate energy xi, satisfying the lower
and upper bounds of their generation capacity (3e).
D. Dual Lagrange Problem for EDP

To solve the minimisation over variable xij,k problem of
(3a), this section first presents its dual problem, followed
by the derivation of the distributed (sub)gradient algorithm.
The Lagrangian function for relaxing the flow conservation
constraints of problem (3a) is

L(x, λ) =
∑
k∈K

∑
(i,j)∈Em

Cij,k(xij,k)−
∑
k∈K

λij,kD

+
∑
k∈K

∑
(i,j)∈Em

λij,kxij,k (4a)

subject to : xij,k ≥ 0, ∀k ∈ K, m ∈M (4b)
lij,k ≤ xij,k ≤ uij,k, ∀(i, j) ∈ Em, m ∈M (4c)

xminij,k ≤ dij ≤ xmaxij,k , ∀dij ∈ D, (i, j) ∈ Em (4d)

where λij ≥ 0 represents the Lagrange multiplier, the
incremental cost associated with the energy flow constraint.
This is usually an optimal parameter that ensures the constraint

conditions are not violated. Constraints (4b) - (4d), (4a) is
summarised as

L(x, λ) =
∑
k∈K

∑
(i,j)∈Em

Cij,k(xij,k)−
∑
k∈K

∑
(i,j)∈Em

λij,kD

+
∑
k∈K

∑
(i,j)∈Em

λij,kxij,k (5a)

=
∑
k∈K

∑
(i,j)∈Em

Cij,k(xij,k)−
∑
k∈K

∑
(i,j)∈Em

λij,kdij,k

+
∑
k∈K

∑
(i,j)∈Em

λij,kxij,k, m ∈M (5b)

where
∑

(i,j)∈Em
dij,k = D, k ∈ K. Notice that the model

discussed is peculiar to energy trading and may include energy
sharing when producers do not charge peers. The model (5a)
can further be summarised in terms of the energy flows, thus:

L(x, λ) =
∑
k∈K

C̄ij,k(xij,k) +
∑
k∈K

λij,kx̄ij,k−
∑
k∈K

λij,kd̄ij,k,

m ∈M (6)

where C̄ij,k(·) =
∑

(i,j)∈Em
Cij,k(·), x̄ij,k =

∑
(i,j)∈Em

xij,k
and d̄ij,k =

∑
(i,j)∈Em

dij,k. The argument that minimises the
Lagrangian given in (6) by following a dual decomposition
formulation and can be expressed as

x?ij,k = arg min
xij,k∈(4b),(4c),(4d)

L(x, λ) s.t. λij,k ≥ 0, k ∈ K.

(7)

When Cij,k(·) is strictly convex, the cost function can be
investigated for the optimum (minimum) value.

The dual objective function w(·) can be shown to enable
each energy generator in the network to participate in solving
the distributed optimisation of the energy traded in the
network. This is quite scalable and efficient and also could
improve the trust level in the system. Besides, the energy
trading information of each energy prosumer is private and
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thus the optimisation problem cannot be solved centrally
because the central agent cannot access the private energy
information. Thus, the dual objective function is expressed as:

w(λij,k) = min
xij,k≥0

L(x, λij,k)

= min
xij,k≥0

∑
k∈K

C̄ij,k(xij,k) +
∑
k∈K

λij,kx̄ij,k −
∑
k∈K

λij,kd̄ij,k

=
∑
k∈K

min
xij≥0

(
C̄ij,k(xij,k) + λi,j x̄ij,k − λ̄ij,kdij,k

)
(8)

Clearly, (8) shows a fully k ∈ K distributed problems that
each energy generator i participates in solving. Estimating the
optimal dual solution in terms of the Lagrange of the dual
function problem as

w?(λ?ij,k) = max
λij,k≥0

w(λij,k) (9)

the optimal pricing information, λ?ij,k is required to establish
the best energy unit, x?ij,k, transferred by the generator unit to
the demand unit. This can be realised through an update of the
pricing information in an iterative fashion which is presented
in the next section (III-E).

E. Distributed Dual-Gradient (DDG) Algorithm for EDP

Problem (9) is solved using the (sub)gradient method.
The (sub)gradient method is a generalisation of the gradient
descent, using the iterations

λij,k(τ + 1) = [λij,k(τ)− ατg(τ)]
+
, k ∈ K, (i, j) ∈ Em

(10)

where ατ is the step size at time τ , and g(τ) is a (sub)gradient
to w(λij,k) at λij,k(τ). Note that [s]+ = max(s, 0).

Assumption A: Since the cost function within the dual
objective function is strictly convex, then the dual function
w(λij,k) is continuously differentiable [38].

The (sub)gradient, g(τ) is realised by taking the first
derivative of (8) and setting the result equal to zero as follows

g(τ) =
∂w(λij,k)

∂λij,k
= 0⇒−

(∑
k∈K

d̄ij,k −
∑
k∈K

x̄ij,k

)
= 0.

(11)

Substituting (11) into (10), a (sub)gradient update of (9) along
each dual variable is obtained and expressed as

λ
(τ+1)
ij,k =

[
λ

(τ
ij,k)− ατ (

∑
k∈K

x̄ij,k −
∑
k∈K

d̄ij,k)

]+

, (i, j) ∈ Em.

(12)

As can be seen in (12), when the demand is greater than
the supply, the generators will increase the price of the
excess demand energy units by ατ . For example, when∑

(i,j)∈Em
dij,k >

∑
(i,j)∈Em

xij,k, the second term in
(12) will be greater than zero which leads to the [s]+ =
max(s, 0) > 0. The dual variables are updated bi-directionally
and synchronously at discrete time τ = {0, 1, · · · ,∞},
and only neighbours can communicate. For instance, each
generating unit will wait a random time before transmitting the
next update of its generated output. At every time step, there is

an upper bound on the optimal value of the Lagrange function
(4a), which is obtained by evaluating the dual objective
function (9). Each link computes its (sub)gradient coordinate
using the generator flow variable xij,k. To reduce excess
overheads and delay that could result in assigning additional
scalar variables to the estimate of each generator unit at each
iteration as seen in [9], the information communicated among
the generators is completely distributed and limited to the
incremental cost λij,k. The novelty in this update is that each
generator ensures it uses the price as an indicator function to
generate the required energy that satisfies the network demand.
Each generator utilises the λij,k to update its generation output
xij,k at kth flow. It is worth noting that the model (12) reduces
to a consensus problem when all the incremental costs λij,k
are identically equal to zero, (e.g. [39]).

F. Modeling the Communication Delay and Signal Loss

One of the ways to measure the robustness of an
algorithm is its ability to converge in the presence of
faults which could result from out of sequence delivery
or loss of signalling messages. In a consensus network
where all peers are minimising their objectives to achieve
a collective goal, the higher the transmission delay in such
a network, the longer it takes for the peers to reach the
desired agreement. Communication delay is prevalent in
distributed networks, we therefore observe the robustness of
DDG when the communication network is subjected to high
signalling/transmission delay. In a realistic scenario, there is
always a communication delay, k̄i,j(τ), on the communication
link (i, j) in sending a message from prosumer, np, to
prosumer, nc. Similarly, there exists an end-to-end time delay,
τ + k̄i,j(τ), to receive a response from prosumer, nc, by
prosumer, np [40]. The impact of high signalling delay would
result in using an outdated link cost in the gradient iteration,
which would generate algorithm oscillations without reaching
an optimal solution. The gradient update of (12) becomes

λ
(τ+k̄i,j(τ)+1)
ij,k =λ(τ+k̄ij(τ))
ij,k − ατ

 ∑
(i,j)∈Em

xij,k −
∑

(i,j)∈Em

dij,k

+

,

∀(i, j) ∈ Em, m ∈M. (13)

It has been shown in [40] that introduction of communication
delay would not affect the convergence speed of the algorithm
but would result in convergence to a larger neighbourhood of
the optimal value. However, the choice of step size determines
the algorithm convergence. In this study, a constant step size
is used which has been shown to converge to optimal value
when the objective function is differentiable [41] [42].

Similarly, a probabilistic approach [9] is employed to model
the signal loss on the communication link. A communication
between prosumer np and nc is said to be successful when the
information sent by np is received by nc without loss and in
real-time. However, due to signal loss on the link (i, j) ∈ E,
a failure vector fi,j(τ) is introduced, where fi(τ) = 1 if the
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communication from prosumer i at iteration τ is received, 0
otherwise. Thus w(λτ ) in (8) now becomes[ ∑

(i,j)∈Em

fifj

[∑
k∈K

min
xij≥0

C̄ij,k(xij,k)− C̄ji,k(xji,k)

+λij,k

[
(xij,k − dij,k)− (xji,k − dji,k)

]]]+

∀(i, j) ∈ Em, m ∈M. (14)

G. Resource Allocation for P2P-ETS

The energy market of prosumers is further considered for
fairness allocation of communication resources. The weighted
general fairness utility model is given by:

U(x∗i ) = ωi
x∗ 1−σ
i

1− σ
, i ∈ np, m ∈M (15)

where σ is the fairness parameter and ωi is the weight
associated with the utility of prosumer i, x∗i represents the
optimal energy resources obtained from solving the EDP
problem using MCF in the foregoing discussion. As in [36], it
can be shown that the utility model follows weighted concave
function of the energy resources expressed as

U(x∗i ) = ωi ln(x∗i ), ∀i ∈ np, m ∈M. (16)

Suppose that x∗i = 0,∀i ∈ np, then ln(x∗i ) = −∞. To
overcome this problem, a constant θi ≥ 1 is introduced so
that the utility becomes U(x∗i ) = ωi ln(x∗i + θi), i ∈ np. Our
interest is to maximise the resources allocated to a prosumer
over a finite link capacity. This is approached by maximising
the utility of each actor subject to a capacity constraint and
considering the optimisation variable as the energy resources
traded over the link. In that case, the optimisation problem
becomes:

max
{x∗i }i∈np

∑
i∈np

Ui(x
∗
i )

subject to :
∑
i:`∈i

x∗i ≤ c` ∀` ∈ np

x∗i ≥ 0, i ∈ Em, m ∈M. (17)

where c` is the capacity of link `. Fig. 2 demonstrates the
utility function of six prosumers in a network with different
weights, wi (assigned weight in the bracket). The graph shows
that the utility increases for varying increasing weights of the
energy traders. Physically, the weights may be interpreted to
willingness to trade energy with other peers. Producers with a
higher willingness to trade energy achieve higher utility than
other prosumers with little or no willingness.

H. Optimal Resource Allocation

Invariably, if the utility is proportional to willingness, higher
energy flow will be experienced in the network, thus resources
must be fairly and optimally allocated to each prosumer so as
not to starve other prosumers in the network. Throughout this
study, we consider fairness parameter σ = 1 as shown in (15).
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Fig. 2: Relationship between the utility function and varying
weights of the peers.

Next, we consider realising the optimal resources that can be
allocated to the link i ∈ np, m ∈ M considering capacity
c`,∀` ∈ Em. By taking the Lagrangian of (17), we express

F(x, η) =
∑
i∈np

Ui(x
∗
i )− (

∑
i∈np

x∗i ηi −
∑
i∈np

ηic`), ` ∈ Em

(18)

where x = (x1, x2, · · · , np), η = (η1, η2, · · · , np). By taking
the first derivative of (18) with respect to xi and setting the
result equal to zero, the following is derived:

∂F(x∗i , ηi)

δx∗i
= 0⇒

∑
i∈np

ωi
x∗i + θi

−
∑
i∈np

ηi = 0

⇒
∑
i∈np

x∗∗i =

∑
i∈np

ωi −
∑
i∈np

ηiθi∑
i∈np

ηi

⇒x∗∗i =
ωi − ηiθi

ηi
∀i ∈ np, m ∈M. (19)

From (19), the optimal resource allocation x∗∗i ∀i ∈ np, m ∈
M depends on the congestion price ηi and the number of
actors on the link. For example, to reduce the resource flow on
the link due to actor i, implies increasing the congestion price
ηi. Similarly, to increase the resource flow due to prosumer i
implies reducing the network congestion price ηi. In addition,
from (19), increasing the congestion price will be useful in
controlling congestion in the network as a lower amount of
data will be sent by each actor over the link `.

I. Social Welfare Maximisation

Using the foregoing utility function, this section introduces
a social welfare maximisation objective to improve on the
overall costs and maintain fairness for all generators and
demands. Let W represent the total social welfare comprising
of the energy generators Wi(.),∀i ∈ np and demand
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unitsWj(.), m ∈M, p̄ is the price of electricity.

max
{x∗i ,dj}

W =

[ ∑
i∈np

Wi(x
∗
i , p̄i) +

∑
j∈nc

Wj(dj , p̄j)

]
(20a)

subject to :
∑
i∈np

x∗i =
∑
j∈nc

dj (20b)

x∗ mini ≤ x∗i ≤ x∗ maxi , i ∈ np (20c)

dminj ≤ dj ≤ dmaxj , j ∈ nc. (20d)

Constraints (20b) is the conservation of energy flow constraint
while the operational constraints (20a) and (20d) represents the
lower and upper bounds of energy generation and consumption
respectively, which are further defined as follows:

1) Generator welfare: Let p̄ix
∗
i ,∀i ∈ np, m ∈ M

represent the revenue that generator i receives from
selling x∗i units of energy with selling price p̄i, then the
social welfare of the generator i can be expressed as:

Wi(x
∗
i , p̄i) = p̄ix

∗
i − Ci(x∗i ) (21)

where Ci(x
∗
i ) is the cost incurred by i to generate x∗i

units of energy earlier shown in (1b). We model the cost
as a convex quadratic function of the form:

Ci(x
∗
i ) =

1

2
aix
∗ 2
i + bix

∗
i + ci (22)

where ai ≥ 0, bi > 0 and ci = 1,∀i ∈ np, m ∈ M are
the cost parameters.

2) Consumer welfare: For the consumer side, social welfare
is the difference between the utility it derives and the cost
of procuring x∗j , j ∈ nc units of energy.

Wj(dj , p̄j) = Uj(dj)− p̄jx∗j , j ∈ nc (23)

where Uj(dj) is the utility function that defines the
amount of satisfaction that consumer j receives from
demanding dj units of energy and p̄j is the payment
made for dj . As shown in (16), the utility function
of the consumer is continuously differentiable and
non-decreasing.

Substituting (23) and (21) for the generator and consumer
welfare in (20a), respectively, the total social welfare of the
prosumer makes the optimisation problem to become

max
{x∗i ,dj}

W =
∑
j∈nc

Uj(dj)−
∑
i∈np

Ci(x
∗
i ) (24a)

subject to :
∑
i∈np

dj ≤
∑
j∈nc

x∗i (24b)

x∗ mini ≤ x∗i ≤ x∗ maxi , i ∈ np. (24c)

Notice that in (24a), the power balance criteria earlier defined
in (3b) enabled (

∑
i∈np

p̄ix
∗
i −
∑
j∈nc

p̄jdj) to be eliminated.
Due to the concave properties of (24a), the model in (24)
is a concave maximisation problem and can be solved using
convex programming techniques. By inspection, the model
terms in (24) are individually differentiable. Thus, we involve
the use of DDG-algorithm as in the foregoing discussion in
solving the welfare maximisation problem. This has also been
similarly applied in the literature [36], [43]. To achieve this,

we start by formulating the Lagrangian of problem (24) as
follows

J (dj , x
∗
i , ρi,j) =

∑
j∈nc

Uj(dj)−
∑
i∈np

Ci(x
∗
i )− ρi,j

( ∑
j∈nc

dj

−
∑
i∈np

x∗i

)
. (25)

where ρi,j represents the Lagrangian multiplier. In terms of
generators and consumers, problem (25) can be decomposed
and solved in a distributed fashion as follows

J (d, ρ) =
∑
j∈nc

Uj(dj)−
∑
j∈nc

djρi,j (26a)

J (x, ρ) =
∑
i∈np

ρi,jx
∗
i −

∑
i∈np

Ci(x
∗
i ) (26b)

by taking the first derivatives of (26a) and (26b) with respect
to dj and xi, and (25) with respect to ρi,j , respectively, and
setting the result equal to zero. In that case, the optimal flow
variables can be expressed as:

∂J (d, ρ)

∂d
= 0⇒ d∗j =

ωj − ρi,j
ρi,j

(27a)

∂J (x, ρ)

∂x
= 0⇒ x∗i =

ρi,j − bi
ai

(27b)

∂J
∂ρ

= 0⇒ ρi = −
∑
j∈nc

dj +
∑
i∈np

x∗i . (27c)

From (27a), the demand is inversely proportional to the price.
In other words, consumers will assess the prices of energy
to buy more at a low price or buy lesser energy units at
higher energy prices. From the generator side in (27b), they
are motivated to supply more, linearly, at higher prices and
vice versa. From (27c), the update price function is expressed
as

ρ(n+ 1) =

[
ρ(n)− αn

(∑
i∈np

x∗i −
∑
j∈nc

dj

)]+

. (28)

In (28), the energy producers assign an additional αn penalty
to the network fees at nth time-step if the total demand dj
exceeds the total supply x∗i in the network. However, lower
than the network fees will not be charged due to [·]+.

IV. NUMERICAL SIMULATION AND RESULT ANALYSIS

To evaluate the performance of the developed distributed
algorithm for EDP, simulations are performed using Java [19]
[44]. An instance of 5 prosumers adopted from study [9],
which uses an IEEE 5-bus system as in Fig.1 is considered for
comparison purposes. The generation cost function is set to a
value of ±20kWh of each generator’s demand. For instance,
each generator produces energy in the range of ±20kWh of
what it consumes serving as flow bounds for each unit. This
is because the objective is to optimise the generation output
of each generator to satisfy the aggregate energy demand in
the network. The 5 prosumers are connected by 16 links. A
set of energy demands (kWh) of d1 = 40, d2 = 30, d3 = 100,
d4 = 40, d5 = 90 are considered. The step size, α, is set to a
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constant value of 1 for most of the cases considered. This is
because, we have established in our previous study [22] that,
with a constant step size of 1, the network achieves lower
delay, and the algorithm converges faster.

A. DDG Algorithm: without communication delay

The ideal scenario, without communication delay, is the
most basic case study that exists in the literature. This is
used as a starting point for testing the robustness of the
proposed algorithm. The stability of an algorithm requiring
the algorithm to converge to a solution in a finite amount of
time is a desirable property used to measure the algorithm
performance and efficiency. The result is analysed based on
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Fig. 3: Results for the ideal case showing the convergence of
the generated energy and the incremental cost

the algorithm convergence time. For the ideal case without
communication delay, the result is as shown in Fig. 3, where
the upper plot shows the convergence of the incremental costs
(λij,k). The middle plot, also the generation plots, shows
the evolution of the energy generated from each prosumer.
The bottom plot shows the total generated energy and the
total energy demanded by the prosumers. The optimal energy
generated by each of the prosumers referred on the plots
as Gen1 to Gen5) xi, i ∈ M is x1 = 40kWh, x2 =
20kWh, x3 = 115kWh, x4 = 45kWh, x5 = 80kWh with a
total

∑5
i=1 = 300kWh. This shows that x1 generated its own

energy (note that the initial demand for generator 1 is 40kWh,
and the generated output is 40kWh), while other prosumers
generated below or above their energy demands to satisfy
the total demanded energy in the network (an aggregrate of
300kWh). The three plots, including the incremental costs,
λij,k, settle at around 14th time step, indicating about 4
communication steps (O(n) − 2) for each prosumer before
convergence.

Furthermore, from Fig. 3, it can be observed that at the
3rd time step, the total energy generated peaked (upper and

bottom plot of Fig. 3). This results in an increase in the
cost function (middle plot of Fig. 3). However, as the energy
generation output descended overtime to meet the demand,
the incremental cost equally descended to 0. The increased
cost before convergence can be interpreted as meaning that
additional storage space is required for the excess energy,
this increases the cost of generation. Thus the optimisation
algorithm works to minimise the cost by solving the EDP
problem when generated energy meets demand.
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Fig. 4: Scalability results showing the convergence of the cost
function for 5, 10, 15 and 30 prosumers respectively

To explore the scalability of the algorithm, this research
moves away from the norm of 4 prosumers [5] [8] and 5
prosumers [9]. Fig. 4 shows the convergence of the cost
function (generators) for 5, 10, 15, and 30 prosumers with
total demands set to 300kWh, 600kWh, 900kWh, and
1800kWh respectively. As expected, the networks with 5
prosumers converge faster than the network with 10, 15, and 30
prosumers. For instance, a network consisting of 15 prosumers
attains an optimal value of 900kWh at about the 25th time step
as compared to 22 prosumers that attain 1300kWh optimal
value at 42nd time step (Fig. 4). It is worth noting that
during the simulation, the computation time and the number
of iterations per time-step to reach the optimal value increases
with an increasing number of prosumers.

In [24], a two-level incremental cost consensus (ICC)
algorithm was proposed to solve the EDP in the smart grid.
A comparison test of the convergence time of the proposed
DDG algorithm to the ICC proposed in [24] is as shown in
Fig 5. It can be observed that the DDG converged faster than
the ICC. For instance, the total generation already matched
the total demand at the 14th time step for DDG, whereas,
the ICC converged at around 38th time step. The implication
of this is that, while both consensus algorithms solved the
EDP problem, DDG would be a better choice in a large scale
network.

B. Evaluating the Impact of Communication Delay
A communication delay of 10 time steps is adapted from

[17] with α = 1, and the result is as shown in Fig. 6.
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It can be observed that each of the variables ultimately
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Fig. 6: Results for a network with communication delay
showing fast convergence for the proposed DDG algorithm

converges to the optimal value as the ideal case, despite the
signalling delays, i.e., the convergence occurred at the 610th
time step. In comparison to the algorithm presented in [17],
DDG attains its optimal solutions faster (refer to Table I
for the convergence time analysis). It should also be noted
that each agent in the algorithm presented in [17] holds a
couple of variables that are updated and communicated at each
iteration thus, adding to the communication delay. Whereas, in
this study, the only communicated variable is the incremental
cost signifying when to increase or reduce generation to
meet the network demand. This significantly improves the
communication delay leading to faster convergence. Further,
Table I compares the contribution of the proposed algorithm
to the literature by detailing the cases considered and the
convergence time. Unlike the work that was completed in this

Description Ref. [17] Ref. [9] This study
Signal delay Yes Yes Yes
Communication signal loss No Yes Yes
Signal delay & signal loss No No Yes
Asynchronous communication No No Yes

Result for message delay case
Algorithm convergence time step > 900 - 610

Result for the probability of signal loss case
Algorithm convergence time step - > 45 18

TABLE I: Result comparison with related works.

paper and presented in Section IV-D, studies including [9]
[17] did not consider the cases of both signal loss and signal
delay simultaneously.

C. Impact of Communication Signal Loss

In this section, a case of an unreliable communication
network with a probability of message signalling loss on the
communication links is considered. Motivated by [9] and for
comparison purposes, the probability of loss was set to 0.1.
The results are as shown in Fig. 7. It can be observed that the
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Fig. 7: Results for a network with a probability of signal loss
showing fast convergence for the proposed DDG algorithm

signal loss probability has a negligible effect on the algorithm
convergence which shows a better performance, in terms of
convergence time to [9] (Table I). Comparing (Fig. 7) and
(Fig. 6), it can be observed that the convergence for the
delay is higher than that of a probability of loss. This could
result from the fact that the loss is modeled as a probability
function that could occur or otherwise, whereas, the delay is
a constant value with high significance. For instance, when
there are delays in the gradient updates, prosumers could
advertise stale energy prices. Similarly, if the energy flow data
is significantly delayed or lost or that bad data are detected, the
energy trading information (e.g. price) could be significantly
higher or lower than the prices advertised by the neighbours.
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In such a case, energy producers (or consumers) could resort
to state estimation which elongates the decision and agreement
periods.

D. Impact of Communication Delay and Signal Loss

Motivated by the success of the convergence on the
message with a probability of loss, a case where the
communication network is both affected by signalling delay
of 10 time steps and a probability of loss of 0.1 is
considered. Studies [9] and [17] only considered cases of
delay or packet loss and not both cases simultaneously.
However, the combined impact on the network is remarkably
different from the effect of each variable in isolation. As
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Fig. 8: Results for a network with both communication delay
and signal loss showing fast convergence for the proposed
DDG algorithm

shown in Fig. 8, the algorithm ultimately converges to
the optimal value as the ideal case. In addition, of all
the cases considered, the communication delay and signal
loss resulted in the highest communication link cost, which
is because the prosumers synchronously transmitted their
update after the communication delay, thereby oversubscribing
the communication links. This observation implies that the
proposed DDG algorithm is robust against signalling delay and
signal loss of the underlying communication link. However, a
significant level of signalling loss and delay might result in
algorithm oscillations without reaching convergence. One of
the future work of this paper would be to extend the model
by deriving the explicit relationship between delay, signal loss,
and algorithm stability.

It is worth noting that the robustness of the algorithm
resulted from the use of MCF optimisation, as it offers
an opportunity to consider the communication links whilst
solving the optimisation task. In addition, unreliable
communication mostly results from link utilisation and
congestion thus leading to signal drop and signal delay [22].

It can be noted, that by utilising the MCF optimisation, the
research has already set a limit to the maximum allowed traffic
based on the capacity of the link at the time, thus reducing the
probability of maximum utilisation and congestion, and thus
signal drop.

E. Numerical Example of Optimal Resource Allocation and
Social Welfare

Given a linear network shown in Fig. 9, utilising the utility
model and the optimisation problem of (17), with constraints
as shown. The results shown in Fig. 10 demonstrate the

Fig. 9: An example of a linear network topology for resource
allocation demonstration

optimal data flow rates under the σ-fairness condition, which
indicates that Prosumer 3 has the highest utility function.

Prosumer 1 Prosumer 2 Prosumer 3 Prosumer 4
0

0.02

0.04

0.06

0.08

0.1

0.12

U
ti

li
ty

 f
u
n
ct

io
n

Prosumers

0.0221

0.0438

0.0948

0.0693

Fig. 10: Optimal data flow rates under the σ-fairness condition
for the prosumers in the network

Solving for the optimal demand flow yields Fig. 11, which
shows that Prosumers 2, 3, and 4 have more social welfare
than Prosumer 1. In addition, Fig. 12 shows a typical run over
24 hour depicting the relationship with energy demands and
supply in the network. The results reflect a reduction in the
quantity of energy demanded when the supply is at the highest
price, obeying the law of demand and supply. However, the
ratio of producers to consumers in the network affects the price
paid for the energy bought or sold as shown in Fig 12. Take
for instance, at 40s, with 20 producers and 8 consumers, the
total supply is 2.2kwh and demand is 9kWh. Whereas with
10 producers and 20 consumers, the total supply is 3.6kWh,
and demand is 7kWh.
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Fig. 11: Optimal social welfare under the σ-fairness condition
for the prosumers in the network
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V. CONCLUSION

This paper presented a distributed dual-gradient
algorithm based on multi-commodity flow technique
and a dual-(sub)gradient method for the distributed economic
dispatch problem application. Specifically, we tested the
proposed algorithm with an unreliable communication
network by considering signal loss probability, message
delay, and asynchronous communication of prosumers.
The proposed techniques converges faster than previously
proposed algorithms which is a desired feature especially in a
large network connecting several distributed energy resources.
The model is further extended to realise the global utility
maximisation among market-based participants to improve
overall costs and maintain the fairness of all generators and
demands. Results showed a reduction in quantity demanded
when supply is at the highest price, but the price paid is

dependent on the ratio of producers to consumers in the
network. For instance, the lower the number of producers, the
higher the energy price, and the lower the energy demanded
by the consumers. In the future, we shall investigate the
flexibility of demands, time-variation, and other time-coupling
constraints of prosumers on the proposed model.
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