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Abstract
Kv1.3 is a voltage-gated K+-selective channel with roles in immunity, insulin-sensitivity, neuro-
nal excitability and olfaction. Despite being one of the largest ionic conductances of the 
platelet surface membrane, its contribution to platelet function is poorly understood. Here 
we show that Kv1.3-deficient platelets display enhanced ADP-evoked platelet aggregation and 
secretion, and an increased surface expression of platelet integrin αIIb. In contrast, platelet 
adhesion and thrombus formation in vitro under arterial shear conditions on surfaces coated 
with collagen were reduced for samples from Kv1.3−/- compared to wild type mice. Use of 
collagen-mimetic peptides revealed a specific defect in the engagement with α2β1. Kv1.3−/- 

platelets developed significantly fewer, and shorter, filopodia than wild type platelets during 
adhesion to collagen fibrils. Kv1.3−/- mice displayed no significant difference in thrombus 
formation within cremaster muscle arterioles using a laser-induced injury model, thus other 
pro-thrombotic pathways compensate in vivo for the adhesion defect observed in vitro. This 
may include the increased platelet counts of Kv1.3−/- mice, due in part to a prolonged lifespan. 
The ability of Kv1.3 to modulate integrin-dependent platelet adhesion has important implica-
tions for understanding its contribution to normal physiological platelet function in addition to 
its reported roles in auto-immune diseases and thromboinflammatory models of stroke.

Introduction

Kv1.3 is a ubiquitously-expressed voltage-gated K+ channel with 
recognized roles in several physiological responses, including 
T cell activation, olfaction, and peripheral insulin sensitivity [1– 
3]. Furthermore, Kv1.3 inhibition has been proposed as 
a treatment for auto-immune diseases, obesity, neuroinflammation 
and other conditions [4–6]. In addition to its cell surface expres-
sion, this transmembrane protein is also located in the outer 
mitochondrial membrane where it has been linked to regulation 
of apoptosis and may therefore be a target for the treatment of 
cancer [7,8].

Voltage-gated potassium-selective channels displaying rapid 
activation and slow inactivation typical of Kv1.3 were first 
observed via patch clamp recordings in mammalian platelets by 
Maruyama[9]. Experiments in human platelets and murine mega-
karyocytes later demonstrated that these channels, encoded by 

KCNA3, are responsible for setting the resting membrane poten-
tial of approximately −50 to −60 mV [10–12]. Subsequent 
reports using megakaryocytes from other mammalian species 
further support these conclusions [13–15]. Kv1.3−/- mice demon-
strate that loss of the channel reduces platelet agonist-evoked Ca2 

+ responses and increases the circulating platelet count [11,16]. 
However, major questions remain regarding the overall impact of 
Kv1.3 on platelet responses and the underlying mechanisms. 
Using Kv1.3-deficient mice and a range of in vitro and in vivo 
assays, we have explored the contribution of this voltage-gated 
channel to platelet function and lifespan. A key finding is that 
Kv1.3 contributes to collagen-dependent adhesion and motility 
through interaction with the integrin α2β1. This advances our 
understanding of how Kv1.3 can contribute to function in plate-
lets and other cell types, particularly within the immune system.

Methods

Reagents and Antibodies

Antibodies for analysis of platelet surface antigens included 
FITC-conjugated rat anti-mouse GPIbα (CD42b, Xia.G5), 
GPIbβ (CD42c, Xia.C3), GPV (CD42d, Gon.C2) and rat anti- 
mouse isotype control (P190-1) from Emfret Analytics 
(Eibelstadt, Germany). Antibodies against integrin chains were 
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FITC-conjugated α2 (CD49b, Ha 1/29), αIIb (CD41, MWReg30), 
β1 (CD29, Ha2/5), β3 (CD61, 2 C9.G2) and isotype controls from 
BD Biosciences (Wokingham, UK). Platelet α-granule secretion 
was measured using anti-P-selectin-FITC (CD62P, Wug.E9) and 
IgG isotype control, (Emfret Analytics). Horm collagen (type 
I fibrils from equine tendon) was obtained from Alere 
(Stockport, Cheshire, UK) and the collagen peptides CRP-XL: 
crosslinked GCO(GPO)10GCOG-amide, VWF-III:  
GPC(GPP5)GPRGQOGVMGFO(GPP)5GPC-amide, and 
GFOGER: GPC(GPP5)GFOGER(GPP5)GPC-amide, were from 
CambCol Laboratories (Ely, Cambs, UK). Fibrinogen, 3,3ʹ dihex-
yloxacarbocyanine iodide (DiOC6), prostaglandin E (PGE1), apyr-
ase (type VII), ADP, and hirudin were all purchased from Sigma- 
Aldrich (Dorset, UK). FM®1-43 lipophilic styryl dye was from 
Molecular Probes (Life Technologies, Paisley, UK) and Phe-Pro- 
Arg-chloromethylketone (PPACK) from Hematologic 
Technologies Incorporated (Vermont, USA). DyLight® 649- 
conjugated anti-GPIbβ antibody (Emfret Analytics) was used for 
in vivo thrombus formation experiments.

Animals and Murine Blood Sampling

The generation of Kv1.3-deficient mice has been described pre-
viously[17]. These were backcrossed against C57BL/6 (Charles 
River, UK) and Kv1.3−/- mice confirmed by genotyping 
(Figure 1). C57BL/6 mice matched for age and sex were pur-
chased from Charles River, UK to represent wild-type (WT) 
controls. Experiments were carried out using mice of mixed 
gender. Blood was collected from the inferior vena cava of term-
inally isoflurane-anesthetised mice into 40 µM PPACK for whole 
blood in vitro studies of platelet adhesion under conditions of 
arterial flow, or acid citrate dextrose (ACD; 85 mM trisodium 
citrate, 78 mM citric acid and 111 mM glucose) for all assays 
using washed platelets (described below). All procedures were 
carried out in accordance with local and Home Office guidelines 
and approved Institutonal Animal Welfare Ethics Review Boards.

Preparation of Washed Platelets

Whole blood drawn into ACD was centrifuged at 300 g, 3 min-
utes, the platelet-rich plasma (PRP) removed and re-centrifuged at 
200 g, 2 minutes to pellet remaining red blood cells. The platelet 

Figure 1. Platelet aggregation and secretion in wild type and Kv1.3−/- mice. (A,D) Representative traces of platelet aggregation in response to (A) 
1 µM ADP, and (D) 10 µg/mL CRP-XL (black line, C57BL/6 WT and gray line, Kv1.3−/- (note that the WT and Kv1.3−/- aggregation traces completely 
overlap in D). (B, E) Mean percent peak aggregation of washed murine platelets in response to ADP (1 and 10 μM, B) and CRP-XL (1 and 10 μg/mL, 
E) is shown for WT (blue) and Kv1.3−/- (red) mice (mean ± SEM, n = 5). (C, F) Platelet dense granule secretion measured by analysis of ATP release 
in response to ADP (1 and 10 μM, C) and CRP-XL (1 and 10 μg/mL, F). Values are the mean ± SEM, n = 5; *P < .05, **P < .01, ns = not significant. 
(G) Representative gel showing the genotyping of C57BL/6 WT, heterozygous, and Kv1.3−/- mice. WT display 337-bp WT band only, Kv1.3−/- display 
the 495-bp neomycin band only, and heterozygous mice display both bands. The numbers across the bottom of the lanes denote individual samples and 
controls: bp = base pairs, M = molecular marker, lanes numbered 1–6 contain samples from Kv1.3−/- mice, followed by control samples from wild 
type (WT), heterozygous (HET) and Kv1.3−/- (KO) mice; BLK = PCR negative control, and M = molecular marker.
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suspension was supplemented with PGE1 (100 ng/mL) and apyr-
ase (0.32 U/mL), and centrifuged at 1000 g, 10 minutes. The 
platelet pellet was washed in normal platelet saline (NPS: 
145 mM NaCl, 5 mM KCl, 1 mM MgCl2, 10 mM D-glucose, 
10 mM HEPES ~3.5 mM NaOH, pH 7.35) supplemented with 
100 ng/mL PGE1 and apyrase (0.32 U/mL), and following cen-
trifugation at 1000 g, was resuspended to original volume in NPS, 
and platelets adjusted to a concentration of 4 x 108/mL.

Flow Cytometric Analysis of Platelet Surface Glycoproteins

Flow cytometry was used to measure the density of platelet sur-
face glycoproteins. Washed platelets were diluted in NPS (1:10) 
and incubated for 15 minutes at room temperature with antibody 
or isotype control as per the manufacturer’s protocol. Platelet 
suspensions were diluted a further 1:10 in 0.2% formylsaline 
and analyzed by flow cytometer (BD Facscanto II; BD 
Biosciences, Wokingham, UK), gating the platelet population 
initially by size (Forward Scatter, FSC) and granularity (Side 
Scatter, SSC), followed by detection of mean fluorescent intensity 
of each surface antigen. All flow cytometry data was analyzed 
using Kaluza software (Beckman Coulter). Note that the values 
are reported as arbitrary fluorescence units since the signal 
depends upon the instrument gain and sensitivity.

Aggregation and Secretion Studies

Turbidimetric measurement of platelet aggregation was performed 
using a model 400 lumi-aggregometer (Chronolog, Manchester, 
UK). Washed platelet suspensions were stirred for 3 minutes at 
37°C, then fibrinogen (100 µg/mL), calcium chloride (2 mM) and 
agonist added (ADP or CRP-XL), and platelet aggregation 
recorded for 2 minutes. In parallel, ATP secretion from dense 
granules was measured using the CHRONO-LUME® luciferin; 
luciferase assay according to the manufacturer’s guidelines.

Whole Blood Perfusion Experiments

Whole blood was collected into 40 µM PPACK, and platelets 
loaded with 1 μM  
DiOC6for 20 minutes. Blood was perfused over coverslips coated 
with collagen (100 µg/mL), collagen peptide (100 µg/mL) or fibri-
nogen (200 µg/mL) at a shear rate of 1800 s−1 for collagen and 
collagen peptides, and 800 s−1 for fibrinogen. Thrombi were imaged 
by collection of a z-series of images acquired with an Olympus 
FV1000 confocal microscope at 3 separate fields per coverslip and 
analyzed in Image-J v1.49 (National Institutes of Health). Percent 
surface coverage, mean thrombus height and mean thrombus 
volume was calculated as described previously[18]. For study of 
platelet morphology, images of immobilized platelets were recorded 
at 30 minutes, and analyzed using Image-J.

Platelet Motility Studies

Washed platelets were incubated with FM®1-43 (5 µM) and 
exposed to collagen-coated coverslips for 30 minutes in the 
absence of flow, and platelet movement and adhesion recorded 
in real-time on an Olympus FV1000 confocal microscope (excita-
tion of FM®1-43 at 488 nm and emission at 550–650 nm). All 
experiments used a 60x oil immersion lens (UPLSAPO 60x, NA 
1.35). The Image-J Manual Tracking plug-in was used to track the 
movement of platelets from each genotype as they attached and 
responded to the collagen fibers.

In Vivo Thrombus Formation

Thrombosis was measured in mouse cremaster arterioles as described 
previously[19]. Briefly, under general anesthesia the cremaster mus-
cle was exteriorized and connective tissue removed. DyLight® 649- 
conjugated anti-GPIbβ antibody (0.2 µg/g mouse weight) was intro-
duced into the carotid artery via a cannula. Injury to the vessel wall 
was made with a MicroPoint ablation laser (Andor Technology, 
Belfast, UK) and thrombus formation recorded using a digital camera 
with a charge-coupled device (C9300, Hamamatsu Photonics, 
Welwyn Garden City, UK). Data were analyzed using SlideBook 6 
software (Intelligent Imaging Innovations, Denver, USA).

Platelet Survival

To determine platelet lifespan, 500 µg of biotin (EZ-link Sulfo 
NHS-SS-biotin, Thermo Scientific, Paisley, UK) was injected into 
the tail vein on Day 1. On each subsequent day, 50 µl of blood 
was collected by tail bleed into ACD. Following centrifugation at 
125 g for 10 minutes, PRP was incubated with 20 µl streptavidin- 
APC (BD Biosciences) for 40 minutes at room temperature in the 
dark. The sample was washed with NPS and centrifuged for 
6 minutes at 860 g, and the platelet pellet resuspended in 0.2% 
formylsaline for analysis by flow cytometry.

Statistical Analysis

All data and statistical analysis were performed using GraphPad Prism 
6 (GraphPad Software, Inc, California, USA). Data are presented as 
mean ± SEM. For parametric data, comparison between 2 groups was 
performed using the Student t test and significance indicated as not 
significant (ns), *P ≤ .05, **P ≤ .01 and ***P ≤ .001.

Results

Expression of Platelet Surface Glycoproteins

Deletion of Kv1.3 had no effect on expression of platelet surface 
glycoproteins GPIbα, GPIbβ, GPV, and integrin subunits α2, β1 and 
β3 (Table I). In contrast, integrin αIIb was expressed at higher levels 
on platelets from Kv1.3−/- compared to WT mice (P < .001). Since 
the αIIb chain forms part of the αIIbβ3 integrin complex, the main 
receptor for fibrinogen, we tested for possible differences in func-
tional responses in which this major platelet adhesion ligand plays 
a key role, including aggregation, secretion and thrombus formation.

Kv1.3−/- Platelets Exhibit Enhanced ADP-evoked Aggregation 
and Secretion

Absence of Kv1.3 was shown to promote platelet aggregation and 
secretion following P2Y receptor activation with ADP, but not 

Table I. Platelet surface glycoprotein expression in WT and Kv1.3−/- 

mice.

WT mice 
(MFI)

Kv1.3−/- mice 
(MFI) P

GPIbβ 14.48 ± 0.78 13.23 ± 0.95 .324
GPIbα 5.26 ± 0.51 4.39 ± 0.41 .202
GPV 2.16 ± 0.18 1.96 ± 0.24 .504
α2 0.95 ± 0.03 0.95 ± 0.01 .894
β1 6.36 ± 0.19 6.45 ± 0.38 .844
αIIb 4.82 ± 0.25 6.98 ± 0.44 <.001
β3 4.48 ± 0.12 4.63 ± 0.13 .438

Values minus the isotype control are given as the mean ± SEM. (n = 6– 
10). 

MFI, mean fluorescent intensity (arbitrary units). 
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stimulation of GPVI with the collagen peptide, CRP-XL. Platelets 
from Kv1.3−/- mice displayed an elevated peak aggregation level 
in response to 1 µM ADP (P = .0395; Figure 1A, B), and 
significantly increased secretion of ATP from dense granules at 
1 and 10 μM ADP (P = .0193; and P = .0204, respectively; 
Figure 1C). In contrast, aggregation and dense granule secretion 
were not significantly affected by loss of Kv1.3 in response to 
CRP-XL at either 1 μg/mL or 10 μg/mL (Figure 1D–F).

Adhesion to Fibrinogen and Collagen under Flow Conditions

Platelet adhesion to immobilized fibrinogen was not significantly 
different following perfusion of blood extracted from Kv1.3−/- 

compared to WT mice (P = .1209; Figure 2A, B). In contrast, 
flow-dependent platelet adhesion to fibrillar collagen was reduced 
in Kv1.3-deficient platelets (P = .0154; Figure 2C, D). Platelet 
adhesion to collagen under conditions of high/elevated shear is 
dependent initially on the transient engagement of the platelet 
GPIb complex with immobilized VWF, which facilitates subse-
quent direct interaction of platelet collagen receptors α2β1 and 

GPVI with the collagen fibrils, enabling firm adhesion to take 
place [20,21]. Under conditions of shear in vitro, platelets per-
fused over surfaces coated with VWF alone exhibit a rolling 
across the surface with only brief transient attachment[22]. 
Therefore we used the triple-helical collagen mimetic peptide, 
VWF-III, which contains the VWF-A3 binding motif that binds 
to collagen III, in combination with either the α2β1–specific pep-
tide, GFOGER, or the GPVI-specific peptide, CRP-XL to inves-
tigate the contribution of Kv1.3 to platelet adhesion via the two 
collagen receptors under flow conditions. Platelets from Kv1.3−/- 

mice had lower surface coverage on coverslips coated with VWF- 
III + GFOGER compared to platelets from WT mice (P = .0239; 
Figure 2E, F). In contrast, platelet surface coverage on coverslips 
coated with VWF-III + CRP-XL was not significantly different 
between the two genotypes (P = .2235; Figure 2G, H).

Morphology of Platelets Adhering to Collagen Peptides

Adherent platelets were classified into four morphological cate-
gories representing different stages of platelet adhesion and 

Figure 2. Absence of Kv1.3 reduces integrin α2β1-dependent platelet adhesion to collagen. DiOC6-labeled platelets in whole blood from WT or 
Kv1.3−/- mice were perfused over fibrinogen (200 µg/mL) at a shear rate of 800 s−1 and collagen (100 µg/mL) at 1800 s−1. After 3 minutes of perfusion 
the coverslips were washed with normal platelet saline, and the images recorded and quantified as described in ‘Methods.’ Representative images (top 
panel) show platelet adhesion to fibrinogen (Figure 2A) and collagen (Figure 2C). Statistical analysis shows the percent of platelet surface adhesion 
(mean ± SEM) on fibrinogen (Figure 2B) and collagen (Figure 2D); (n = 5 for fibrinogen and 4 for collagen). DiOC6-labeled platelets in whole blood 
from WT or Kv1.3−/- mice were also perfused at a shear rate of 1800 s−1 over coverslips coated with synthetic triple-helical peptides specific for the 
platelet collagen receptors integrin α2β1 (GFOGER, 100 µg/mL) and GPVI (CRP-XL, 100 µg/mL). Representative images (lower panel) show platelet 
adhesion to (E) peptides VWF-III and GFOGER, and (G) peptides VWF-III and CRP-XL. Scale bar = 20 µm. Statistical analysis shows the 
mean percent of platelet surface adhesion to (F) VWF-III and GFOGER (n = 5), and (H) VWF-III and CRP-XL (n = 5). (WT, blue; Kv1.3−/-, red). 
*P < .05, ns = not significant.
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activation[23]. Platelets that were rounded and without any pro-
trusions, were classified as ‘round.’ Following initial adhesion, 
platelets begin to form protrusions to secure adhesion to the 
collagen fibrils, and these platelets were classified as ‘filopodia.’ 
Eventually, cytoskeletal remodeling allows actin fibers to fill 
between the filopodia, and platelets in this category were labeled 
as ‘ruffled’; and finally, depending on the matrix surface, platelets 
spread forming the typical ‘fried egg’ appearance.

Following perfusion over the collagen peptides VWF-III and 
GFOGER a trend toward fewer Kv1.3−/- platelets reaching the 
ruffled stage was observed, although this failed to reach signifi-
cance (P = .0519; Figure 3A), and there was no difference in the 
percentage of platelets at each stage of platelet adhesion following 
perfusion over VWF-III and CRP-XL (Figure 3D). Interestingly, 
despite a similar number of platelets extending filopodia for the 
two genotypes, deletion of Kv1.3 resulted in a significant reduc-
tion in the number of filopodia (P = .0377) and also filopodia 
length (P = .003) for platelets adhered to VWF-III and GFOGER 
(Figure 3C). Representative images for platelets attached to 
VWF-III and GFOGER are shown in Figure 3B and for VWF- 
III and CRP-XL in Figure 3E.

Motile Responses of Platelets Adhering to Collagen

To further assess the effect of the altered morphology of Kv1.3−/- 

platelets during integrin α2β1-dependent platelet adhesion, the 
motile responses of WT and Kv1.3−/- platelets were tracked dur-
ing adhesion to fibrillar collagen under static conditions. The 
tracked trajectories of individual Kv1.3−/- platelets traveled over 
a wider area than WT platelets (Figure 4A). Observation of video 
recordings of WT and Kv1.3−/- platelet movement supported 
these findings of an altered Kv1.3−/- platelet motile response to 
collagen. During initial attachment to collagen, platelets are able 
to extend long filopodia toward the collagen fibrils (Supplemental 
video 1). We observed that WT platelets (Supplemental video 2), 
rapidly extrude filopodia and pull on the collagen fibers to firmly 
adhere. In contrast, Kv1.3-deficient platelets displayed a loss of 
directional persistence, with fewer long filopodia and reduced 
pulling on collagen fibers (Supplemental video 3).

In Vitro Thrombus Formation on Collagen

The above experiments demonstrate that deletion of platelet Kv1.3 
results in diminished responses involving integrin α2β1, such as 
adhesion to collagen, but that αIIbβ3-dependent functions, such as 
aggregation, are not reduced. This suggests that Kv1.3−/- platelets 

Figure 3. Kv1.3-deficient platelets form fewer and shorter filopodia during integrin α2β1-dependent adhesion. Platelet morphology following 
perfusion over collagen peptides at a shear rate of 1800 s−1, was classified as ‘round’ (round platelet with no protrusions), ‘filopodia’ (protrusions 
securing collagen fibrils), ‘ruffled’ (lamellipodia formation), and ‘spread’ (flattened or fried egg appearance). Distribution of platelet morphology 
following perfusion of WT and Kv1.3−/- platelets over (A) VWF-III and GFOGER (100 µg/mL each peptide), and (D) VWF-III and CRP-XL (100 µg/ 
mL each peptide). Data is expressed as the mean percent of platelets in each category (n = 5). Representative images of WT and Kv1.3−/- platelet 
morphology on each peptide surface (B) VWF-III and GFOGER, and (E) VWF-III and CRP-XL. Scale bar = 10 µm. (C, F) Data shows the filopodia 
number per platelet (based on 50 platelets per treatment group), and filopodia length (µm)(based on length of 100 filopodia per treatment group) of WT 
and Kv1.3−/-platelets adhered to (C) VWF-III and GFOGER, and (F) VWF-III and CRP-XL. *P < .05, ***P < .005.
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should be able to aggregate and form thrombi where platelet attach-
ment to collagen has been successful. Following platelet perfusion 
over collagen at a shear rate of 1800 s−1, Kv1.3-deficient platelets 
that did successfully adhere to collagen fibrils were able to form 
thrombi, but with significantly reduced height (P = .0254; 
Figure 5A), and volume (P = .0254; Figure 5B). The difference 
between thrombi formed by WT and Kv1.3−/- platelets on fibrillar 
collagen can also be seen in the side elevation of z-stack fluorescent 
images in Figure 5C.

Characterization of Platelet Function in Vivo: Thrombus 
Formation

To investigate whether the altered in vitro responses of Kv1.3−/- 

platelets translate into a change in function within the circulation, 
we studied thombus formation in the cremaster muscle arterioles 
of anaesthetised male mice using the laser-induced injury model 
[24–26]. The profile of median thrombus fluorescence (n = 20 
thrombi in five WT mice and 25 thrombi in five Kv1.3−/- mice) 
through the 500 second duration of thrombus growth and regres-
sion in Kv1.3-deficient mice was not significantly different from 
thrombi formed in WT mice (Figure 5E). Consistent with this, 
maximum thrombus fluorescence was not altered (Figure 5D).

Platelet Size and Platelet Lifespan

Kv1.3-deficient mice display elevated platelet counts, but no 
change in megakaryocyte development within the marrow[11]. 
To explore whether an altered lifespan could account for this 
phenotype, we measured platelet clearance in Kv1.3−/- and WT 
mice using an in vivo biotinylation approach[27]. The percent 
biotinylated platelets was significantly elevated above that mea-
sured in the platelet population from WT mice at 72 hours 
(P = .006) and at 96 hours (P = .0452) post biotin injection 
(Figure 6A), suggesting that an enhanced lifespan may contribute 

to the greater platelet count observed in Kv1.3−/- mice. Kv1.3−/- 

platelets were no different in size (P = .1979; Figure 6B), or 
granularity (P = .198; Figure 6C), as determined by Forward and 
Side Scatter using flow cytometry.

Discussion

Kv1.3 plays a crucial role in maintaining the resting membrane 
potential in platelets [10,11], regulating entry of the key second 
messenger Ca2+; however, its contribution to hemostasis and 
thrombosis is less clear. The present study provides new evidence 
that loss of Kv1.3 in murine platelets modulates a number of 
platelet responses, particularly collagen-evoked adhesion and 
motile responses through a mechanism dependent on integrin α2 
β1.

Platelet adhesion and thrombus formation relies on two key 
integrins, namely α2β1 which binds to collagen, and αIIbβ3 which 
binds several ligands including fibrinogen, fibronectin, Von 
Willebrand factor (VWF), and fibrin[28]. Our studies of murine 
platelet adhesion under conditions of arterial shear demonstrate 
that adhesion to fibrillar collagen, where α2β1 is an important 
adhesive receptor, is significantly impaired following deletion of 
Kv1.3. In contrast, loss of Kv1.3 had no effect on αIIbβ3- 
dependent platelet binding to immobilized fibrinogen. This spe-
cific role for Kv1.3 in α2β1-mediated adhesion was further 
demonstrated in experiments using combinations of triple- 
helical collagen-specific peptides. Kv1.3−/- platelet adherence 
was significantly reduced compared to those from WT mice 
when perfused over surfaces coated with a combination of VWF- 
III, a peptide which contains the VWF-A3 collagen binding motif, 
and the integrin α2β1-specific peptide, GFOGER. In contrast, no 
phenotypic difference was observed between adhesion of WT and 
Kv1.3−/- platelets perfused over surfaces coated with VWF-III 
combined with the GPVI-specific collagen peptide, CRP-XL. 
This is consistent with experiments using human platelets, 
where Pugh and colleagues used integrin-specific peptides of 
differing affinity to show that α2β1 enhances the rate of recruit-
ment of platelets to a collagenous surface[29].

Exposure to collagen induces marked changes in platelet mor-
phology. Initial events involve the extension of filopodial protru-
sions which allow attachment to collagen fibers, followed by 
formation of actin-rich lamellipodia and eventual transformation 
to the typical ‘fried egg’ appearance during platelet spreading 
[23,30]. Mutations that affect the molecular mechanisms and 
protein interactions of cytosketeletal reorganization during plate-
let shape change impair the ability of platelets to adhere and form 
a thrombus [31–34]. Our studies of DiOC6-loaded platelets 
demonstrate that in the absence of Kv1.3−/-, fewer platelets pro-
gress to form lamellipodia (ruffled appearance) on α2β1- 
dependent surfaces coated with VWF-III/GFOGER; furthermore, 
Kv1.3−/- platelets exhibited shorter and fewer filopodia compared 
to WT controls. Video recordings under static conditions show 
that WT platelets extend long filopodia toward collagen fibers, 
pulling the fibers upon initial attachment, before spreading 
(Supplementary video 1 and 2), whereas platelets lacking Kv1.3 
are less able to facilitate attachment (Supplementary video 3). 
Subsequent tracking of the trajectories of individual platelet 
movement under the same conditions further demonstrated that 
Kv1.3−/- platelet haptotaxis toward collagen is less efficient, with 
platelets traveling over a wider area, appearing to have less ability 
to ‘sense’ the collagen or maintain directional persistence toward 
it. This is consistent with weaker integrin-dependent adhesion 
permitting greater motility, as shown in HT1080 fibrosarcoma 
haptotaxis experiments[35]. Interestingly, blockade or reduced 
expression of Kv1.3 also impairs migration of T-lymphocytes 
[36,37], and alters detection of electrical fields in neutrophils 

Figure 4. Kv1.3-deficient platelets lack directional persistence during 
adhesion to collagen via α2β1. The morphology and motile responses of 
murine platelets labelled with FM®1-43 lipophilic styryl dye (5 µM) 
were tracked during adhesion to collagen (100 µg/mL) under static con-
ditions. The plotting of co-ordinates tracked the trajectories of WT and 
Kv1.3-deficient platelets during platelet attachment to the collagen fibers. 
Platelet movement and direction is measured by displacement (µm) along 
the x and y axis. Data from 3 independent experiments.
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Figure 5. Absence of Kv1.3 reduces in vitro, but not in vivo, thrombus formation. DiOC6-loaded platelets from Kv1.3−/- mice were perfused over 
collagen-coated coverslips (100 µg/mL), and analyzed for (A) total thrombus volume (µm3) and (B) thrombus height (µm). Data shown is the mean ± 
SEM for thrombi formed by platelets from WT (blue) and Kv1.3−/- mice (red) (n = 4; *P < .05. (C) Representative side elevation of z-stack fluorescent 
images of thrombi formed on fibrillar collagen by platelets from WT (upper image) and Kv1.3−/- (lower image) mice. (D) Mean integrated 
fluorescence (arbitrary units), and (E) Plot of median fluorescence intensity (arbitrary units) over time (seconds), during in vivo thrombus formation 
following laser-induced injury in cremaster muscle arterioles of WT and Kv1.3−/- mice; (n = 20 thrombi in 5 WT mice and 25 thrombi in 5 Kv1.3−/- 

mice).

Figure 6. Platelets from Kv1.3−/- display a longer lifespan. (A) Assessment of platelet lifespan was carried out using in vivo biotinylation of murine 
platelets, recording the percent of biotinylated platelets isolated from WT and Kv1.3−/- mice over five days (n = 4 for each genotype). Flow cytometric 
analysis of (B) platelet size and (C) platelet granularity gating on forward scatter and side scatter of platelet populations isolated from WT and Kv1.3−/- 

mice (n = 8). Data shown is mean ±SEM. **P < .01, *P < .05, ns not significant.
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[38]. Voltage-gated sodium channels (Nav) have also been pro-
posed to contribute to cellular motility and migration in several 
types of immune cells including lymphocytes [39] and macro-
phages [40] and intracellularly localized Nav1.6 supports inva-
siveness of human breast cancer cells[41]. Sodium channel β 
subunits are crucial components of the mechanism whereby pore- 
forming α subunits Nav1.5 or 1.6 regulate adhesion and migration 
and there is evidence that Navβ1 can act independently as a cell 
adhesion molecule [42–44].

Thrombus formation by DiOC6-labeled Kv1.3−/- platelets is 
inhibited during perfusion over collagen-coated surfaces. Our 
results suggest that this may be due to a Kv1.3-associated con-
tribution to the formation of platelet filopodia and their mechan-
osensing ability to detect collagen fibrils in the 
microenvironment, rather than a defect in platelet aggregation. 
Surprisingly, however, we saw no difference in thrombus forma-
tion or thrombus size in cremaster muscle arterioles of WT or 
Kv1.3−/- mice following laser injury using an in vivo model that 
causes endothelial damage and collagen exposure[45]. A similar 
lack of arterial thrombosis phenotype in Kv1.3−/- mice has also 
recently been reported using alternative models of thrombosis 
which depend more upon activation by collagen than the laser 
injury model used in the present study [16]. Therefore, the lack of 
Kv1.3 iscompensated for in vivo by other pathways. The 
enhanced aggregation and secretion that we observed in vitro 
with ADP in Kv1.3−/- platelets may explain this compensation. 
We observed increased αIIb integrin expression on the surface, 
however β3 subunit expression was not altered. It is possible that 
the αIIb subunit is expressed on the surface independently of 
associated beta subunits; this is known to happen for other integ-
rin subunits [46]. In its monomeric form it would not contribute 
to enhanced aggregation unless it can combine with other beta 
subunits, which requires further study. Although Fan and colla-
gues [16] have observed an upregulation in expression of KCNQ4 
and other K+ channels in Kv1.3−/– platelets, we observed no 
direct evidence for such a change in our previous electrophysio-
logical recordngs [11]. It is known that that secondary activation 
of P2Y12 receptors by released ADP amplifies collagen-evoked 
platelet aggregation [47,48]. Thus, the enhanced ADP responses 
in Kv1.3-deficient platelets may contribute to the lack of signifi-
cant difference in collagen-evoked aggregation in standard stirred 
suspension. Given this argument, the reduced thrombus formation 
under arterial shear is somewhat unexpected. However, the altered 
motile responses to collagen may be the overriding determinant of 
whether the platelets initially attach and therefore can generate 
a thrombus.

We previously reported increased platelet count in Kv1.3−/- 

mice which was not due to an altered frequency or size of bone 
marrow MKs[11]. Here we show that significantly higher num-
bers of biotinylated platelets remained in the circulation of 
Kv1.3−/- mice post-injection compared to WT. Platelet lifespan 
in the mouse is around 5 days, and is regulated by components of 
the intrinsic apoptotic pathway, whereby the pro-survival protein 
family member, Bcl-xL controls the activity of pro-apoptotic 
proteins Bak and Bax [49,50]. Studies in lymphocytes have iden-
tified Kv1.3 on the inner mitochondrial membrane[51], where it 
plays a role in the induction of apoptosis through its interaction 
with Bax [52,53]. Further study is needed to confirm the possible 
existence and potential contribution of mitoKv1.3 to platelet 
apoptosis, but it is possible that platelet apoptosis is impaired 
when Bax cannot interact with mitoKv1.3. This potential role for 
Kv1.3 in platelet production, and pro-survival phenotype in the 
absence of Kv1.3, may contribute to elevated levels of platelets in 
the circulation of the Kv1.3−/- mice. The recent study by Fan and 
colleagues [16] confirmed the increased platelet count phenotype 
of Kv1.3−/- mice. without a change in marrow megakaryopoiesis, 

and additionally demonstrated increased numbers of megakaryo-
cytes in the spleen. This organ is an alternative site of platelet 
production in the mouse as well as a site of platelet clearance, and 
thus may also contribute to the increased platelet count following 
Kv1.3 deletion. The elevated megakaryopoiesis and reduced 
clearance is likely to increase the number of reticulated platelets 
in the circulation, which are known to be more reactive than 
mature platelets [54,55], and this may partially explain the 
enhanced aggregation and secretory response to low concentra-
tions of ADP in Kv1.3−/- platelets. Although Fan and colleagues 
[16] concur with a lack of in vivo thrombus formation phenotype 
of Kv1.3−/- mice, they report that aggregation of platelets to 
several agonists in vitro, including thrombin and collagen, and 
high dose ADP (20 µM), are reduced by loss of channel function 
following either genetic deletion or application of a pore-blocking 
antibody (6E12#15)[16]. The difference between the two studies 
requires further investigation but may result from variability in 
the method of preparing platelets for in vitro studies.

The experiments reported here raise a number of key questions 
that we have not been able to investigate due to the impact of 
the COVID-19 pandemic on our laboratories. This challenge 
has been recognized by Journal editorial policies [56]andwe 
report here the completed aspects to the work which highlight 
the need for additional studies. Future experiments should 
investigate the mechanism responsible for enhanced ADP- 
evoked aggregation and secretion in Kv1.3−/- platelets and 
whether responses to other G-protein-coupled receptor agonists 
are affected. We also propose a pharmacological approach 
using blockers such as margatoxin and Pap-1. A key area to 
investigate is the mechanism by which Kv1.3 modulates integ-
rin function and motility; particularly important questions are 
whether channel opening is required and whether there is an 
involvement of the K+ channel regulatory proteins identified in 
our platelet ion channel transcriptome study[12]. The effect of 
Kv1.3 deletion on interactions with other adhesive substrates is 
worthwhile investigating, which would benefit from more 
advanced imaging approaches. Given the enhanced platelet 
lifespan and increased platelet number in Kv1.3-deficient 
mice, additional studies should also investigate the presence 
of mitoKv1.3 and its potential role in the platelet.

Although platelets are highly specialized for hemostasis, they 
also contribute to immune responses, often serving as a link 
between the hemostatic and inflammatory systems [57–60]. For 
example, they facilitate the phagocytic removal and sequestering 
of pathogens [61–63] and release antimicrobial agents and chemo-
kines [64,65]. Kv1.3 has a well established role in immune function, 
particularly in T-lymphocytes [66–68] and its overexpression is 
a common feature of chronic inflammatory diseases, contributing 
to the over-reaction of cellular immunity and subsequent cytokine 
storm [69,70]. Interestingly, in a study using the middle cerebral 
artery occlusion model, a model of ischemic stroke that involves the 
formation of occlusive platelet thrombi in response to combined 
thrombotic and inflammatory stimuli[71], the selective Kv1.3 
blocker Pap-1 dose-dependently reduced the infarct area in rodents, 
reducing microglial activation and improving neuronal survival[72]. 
In light of the present study and work by Fan and colleagues[16], it 
is worthwhile exploring the relative contribution of platelet Kv1.3 
to the etiology of immune disorders.

Key Points

● The voltage-gated K+ channel Kv1.3 enhances collagen-evoked 
platelet adhesion and thrombus formation through an α2β1 
integrin-dependent mechanism
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● Kv1.3-deficient platelets display reduced filopodia formation 
and greater motility during attachment to collagen fibres
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