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Abstract  

Anthropogenic noise affects humans and wildlife globally. Birds, in particular are 

susceptible to its effects, because of their reliance on acoustic communication for survival 

and reproduction.  Decades of research show that singers adapt their songs to noisy 

conditions, but much less is known about how impaired communication affects receivers, 

and how it affects sexual selection and fitness. Anthropogenic noise has been shown to 

reduce breeding success. However, not many studies have simultaneously investigated the 

effects of noise on settlement, population structure and breeding success at different stages 

of the breeding cycle. We know even less about the effects of noise on large geographical 

scales that transcend the population level.  

This thesis aims to understand the effects of noise on the breeding success and 

communication of European birds. Specifically, in order to investigate the effects of noise 

on nest site selection together with its effects on breeding success, I studied a population of 

blue tits exposed to a gradient of road traffic noise. To understand the scale of the problem, 

I developed a methodology to combine citizen-science breeding data with government noise 

maps, and I tested this approach across two countries and eleven bird species. At the 

population level, I found that noise affected reproductive success, with negative impacts on 

nestling body condition and survival. Despite these effects, blue tits were more likely to 

breed in noisier nest sites, although these were also more likely to be occupied by first year 

breeders. I found that negative effects were not restricted to one population, but they were 

also evident at a countrywide level and on multiple species, with the most significant impact 

at the nestling stage.  

In order to investigate a factor that might play a role in affecting breeding success, I used a 

playback experiments to test the assessment of performance of a territorial song under 

different ambient noise conditions. I found behavioural evidence that noise may affect the 

assessment of structural differences in signal quality of conspecifics, thus altering territory 

defence and, by inference, leading to suboptimal mate choice. This thesis concludes that 

the effects of noise on birds are significant even in species common in noisy areas, and that 

presence of a species should not be interpreted as a lack of effects. 
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1. ANTHROPOGENIC NOISE AND OVERVIEW OF ITS EFFECTS  

The negative impact of anthropogenic noise on wildlife is  an urgent conservation priority 

(Francis and Barber, 2013). While noise can originate from natural biotic sources (such as 

heterospecific and conspecific calls) and abiotic sources (such as wind and rain), the 

magnitude and extent of noise generated by humans have no rivals in the natural world. 

Sources of human-generated noise include transportation systems and industrial activities 

such as resource extraction, military bases, and windfarms (Ellis, 2011). Depending on the 

source, noise can vary in its amplitude, frequency profile, and spatial and temporal patterns 

(McGregor et al., 2013). Most types of anthropogenic noise concentrate their energy 

towards low frequencies (<250 Hz), which can propagate over long distances with relatively 

little energy loss (Wang and Pereira, 2005). The temporal patterns of noise are also 

important, as animal behaviours often happen at specific times of the day. Rush hour traffic 

often coincides with the dawn chorus of bird song, an important time for birds in terms of 

mate attraction and territorial defence. While industrial activities can be problematic 

because of the intensity and continuity of the noise that they generate, they also tend to 

be more localised in the landscape (Blickley and Patricelli, 2010). In contrast, transportation 

systems are amongst the most pervasive sources of anthropogenic noise across all habitats, 

as they include roads and vehicular traffic, airports and airplanes, railways, ships, and off-

road vehicles. 

In Europe 65% of the human population is exposed to noise levels exceeding 55 dB(A) 

(Chepesiuk, 2005), while across the United States 88% of the land experiences elevated 

sound levels of anthropogenic origin (Mennitt et al., 2013). Roads networks are rapidly 

increasing in their extent, and they are the most widespread source of anthropogenic noise. 

In the 33 member countries of the European Environment Agency, it has been estimated 

that road traffic alone is responsible for affecting over 100 million people with harmful 

noise levels (European Environment Agency 2018), while in the continental US, 83% of the 

land area is within c. 1 km of a road (Ritters and Wickham, 2003). The human population is 

expected to reach between 8 and 10.5 billion by 2050; as population and urbanisation 

grow, so will the extent of anthropogenic noise (United Nations, 2019).  



Chapter 1. Introduction  

 

3 
 

Anthropogenic noise has created novel acoustic conditions that have no precedents in 

evolutionary history. Noise has been shown to be harmful for humans, with severe 

psychological and physiological consequences, such as sleep disturbance, higher risks of 

cardiovascular diseases, tinnitus, and cognitive impairments in children (Babisch 2005; 

Recio et al. 2016; WHO 2011). Similarly, noise constitutes a threat to other animals (Barber 

et al., 2010), and especially birds, which rely on vocal communication for their survival and 

reproduction. Acoustic communication plays a vital role in the life of many  species, as 

vocalisations are essential to attract mates, deter rivals, or signalling the presence of 

predators (Bradbury and Vehrencamp, 1998). As communication is only effective when 

signals are propagated and broadcasted efficiently (Lohr et al., 2003), any disturbance in 

the transmission or the reception of acoustic signals will likely have fitness costs for both 

the senders and receivers.   

Where animals have been exposed to natural noise patterns over many generations, 

populations have managed to adjust to noise disturbance to increase communication 

efficiency (Nemeth and Brumm, 2010). In areas with high levels of natural noise (e.g. from 

waterfalls or other animals) birds use a variety of strategies to avoid signal masking (the 

phenomenon that occurs when the perception of a biologically relevant vocalisation is 

affected by the presence of another sound; Ortega, 2012). These include adjustments in 

song timing, song structure, and performance (Brumm and Todt, 2002). Similar adaptive 

processes seem to have happened as a response of anthropogenic noise in birds that 

inhabit urbanised noisy environments. Studies have demonstrated that, in order to avoid 

masking traffic noise, a number of bird species shift song frequencies, duration, amplitude, 

and timing of singing (Rheindt, 2003; Slabbekoorn and Peet, 2003; Nemeth and Brumm, 

2010). These adjustments denote adaptive responses to the evolutionary novel habitat 

represented by noisy environments, and probably depend upon both behavioural (learning 

process and plasticity of singing behaviour) and micro-evolutionary modifications (Brumm, 

2006a). Indeed, while genetic differentiation may account for population specific 

differences, several studies have identified culturally learned differences in signal 

structures that reduce the impact of masking by noise as a mechanism of acoustic 

adaptation to anthropogenic noise (e.g. Moseley et al., 2018), which likely takes place over 



Chapter 1. Introduction  

 

4 
 

multiple generations (see Luther and Baptista, 2010 longitudinal study over a 30 year time 

gap). 

However, anthropogenic habitat change and noise have generated unique environmental 

pressures in a short amount of time from an evolutionary  perspective, and these  changes 

in signal structure might not be efficient (Rabin and Greene, 2002) in evolutionary  terms. 

Song adjustments in urban habitats may lead to trade-offs between natural selection, 

which determines signal adaptations, and sexual selection for “attractive” signals 

(Slabbekoorn and Ripmeester, 2008). On the other hand, some bird species, might simply 

not be able to adapt their signals to improve communication in noisy areas and will 

therefore avoid them, or pay the consequences of impaired communication (Rheindt, 

2003). Noise might also contribute to the creation of population sinks in habitats otherwise 

suitable for feeding or nesting, with significant consequences on population viability 

(Schmidt et al., 2014).  

Noise can have an impact on birds through several complex and non-mutually exclusive 

processes, which might ultimately result in declines of fitness and survival of the individuals 

or population affected. The same response can be induced via multifactorial and 

interconnected mechanisms (Figure 1). For instance, reductions in parental provisioning 

may be driven by a combination of stress, increased predatory perception, altered time 

budgets, and acoustic masking of begging calls (Quinn et al., 2006; Blickley, Word, et al., 

2012; Leonard et al., 2015). Increased predatory perception can then feed back into this  

loop by causing increases in stress levels (Kight and Swaddle, 2011).  

Here I review the literature on how birds respond to anthropogenic noise, with a particular 

focus on its effects that on the reproductive success and on the vocal communication of 

birds.  
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Figure 1 A simplified conceptual map of the effects of anthropogenic noise on fitness, communication, physiology, and 
abundance, and on how they interlink with each other. Adapted from Francis and Barber, 2013. 

2. EFFECTS ON DISTRIBUTION, ABUNDANCE, AND STRUCTURE 

A large amount of the evidence for the impact of anthropogenic noise comes from studies 

on density, abundance, and species diversity of avian populations and communities. 

Research on the abundance of birds near motorways has led to the conclusion that noise 

is a major factor explaining declines in populations near roads (Reijnen et al., 1996; Forman 

et al., 2002; Rheindt, 2003; Peris and Pescador, 2004; Parris and Schneider, 2009). Recent 

work has focused on detangling the effects of noise from other forms of disturbance 

associated with anthropogenic infrastructures and activities (such as visual disturbance, 

collisions, chemical pollution, and edge effects), and on providing evidence that noise alone 

can alter breeding distribution and species richness. Studies carried out around natural gas 

extraction sites have been the first to isolate the effect of noise, by comparing sites close 

to active gas compressor stations to sites where these were turned off (Ortega and Francis, 

2012). Noise generated by these stations appears to be the main factor responsible for 

changes in songbird breeding distribution and species richness, as well as pairing success 

and age structure (Habib et al., 2007; Bayne et al., 2008). In fact, birds may perceive noisy 

territories as being of lesser quality, hence less experienced and/or younger birds might 

end up breeding in noisier territories where they experience less competition from socially 
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dominant individuals (Reijnen and Foppen, 1991; Habib et al., 2007). Recently, a series of 

“phantom road” studies, consisting of an array of loudspeakers broadcasting road noise 

into a road-less landscape, have allowed to entirely isolate the effects of noise from other 

effects. These experiments showed a decline of bird abundance by over one-quarter, and 

almost complete avoidance by some species (McClure et al., 2013). The same experimental 

set up also showed changes in age composition (McClure et al., 2017).  

3. DIRECT MEASURES OF FITNESS 

Changes in species abundance or composition only provide a limited understanding of how 

noise can affect bird populations and communities. Measuring these changes alone can be 

misleading because high or normal levels of abundance do not necessarily translate into 

high fitness (Halfwerk and Slabbekoorn, 2014). Drawing conclusions on whether noise has 

a negative impact on a population based only on presence of individuals is problematic, 

because individuals may not have alternative areas to occupy, or might not be choosing 

habitats effectively. For example, individuals that were found living around the phantom 

road experienced a decrease in their overall body condition (Ware et al., 2015), suggesting 

that species that persist and might appear to be adapted to living in noisy areas, might still 

experience negative effects.  

Noise has the potential to decrease fitness, both through acting as a direct physiological 

stressor, or by masking important vocalizations and leading to behavioural alterations 

(Francis and Barber, 2013). Studies looking at direct measures of fitness show that noise 

has the potential to affect breeding success at different stages of the reproduction, such as 

egg laying, incubation, hatching, and fledging. For example, great tits (Parus major) have 

been shown to produce fewer eggs and fledge fewer young when nesting in areas affected 

by high levels of traffic noise compared to quieter areas (Halfwerk, et al., 2011), and ash-

throated flycatcher (Myiarchus cinerascens) nests exposed to noise have higher rates of 

abandonment at the incubation stage, and therefore lower reproductive success 

(Mulholland et al., 2018). House sparrows (Passer domesticus) breeding in noisy conditions 

have fewer hatchlings, with lower body mass, that ultimately result in fewer recruits than 

their conspecifics breeding in quiet sites (Schroeder et al., 2012). Eastern bluebirds (Sialia 

sialis) also show lower hatching rates and fledging success when breeding in noisy sites. 
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Finally, chestnut-collared longspur (Calcarius ornatus) nesting in proximity to noisy roads 

produce fewer fledglings, and typically fail or produce only one fledgling when within 50 

meter from a road (Ng et al., 2019).  

Currently, all studies on the effects of anthropogenic noise on avian breeding are based on 

a single or a couple of populations. So far, studies looking at multiple populations on a large  

geographical scale have focused on change in the vocal behaviour (eg. Slabbekoorn and 

den Boer-Visser, 2006; Mockford and Marshall, 2009; Gil et al., 2015) and in the abundance 

(eg. Patón et al., 2012) of birds at sites exposed to noise, demonstrating that changes 

observed are widespread amongst populations. Larger scale studies covering wide 

geographical areas offer a more generalised understanding of this phenomenon than single 

population studies. In order to be able to draw conclusions over large geographical ranges, 

studies on the impact on noise on breeding performance are therefore necessary.   

While there is growing evidence that the negative effects of noise on reproductive success 

affect a wide variety of species (Halfwerk and Slabbekoorn, 2014), different species may 

differ greatly in their mechanisms of physiological stress response (Hofer and East, 1998), 

hearing abilities (Ryals et al., 1999; Dooling et al., 2000), vocal traits, and diets (Francis, 

2015). For this reason, and because of how species interact within a community (Francis et 

al., 2009), the response to anthropogenic noise can vary significantly between species. Only 

a few studies so far have investigated the effects of noise on fitness by focusing on more 

than one species, and they found that noise can have a negative effect on some species but 

not on others  (Kleist et al., 2018b; Mulholland et al., 2018), or that it may even facilitate 

reproductive success, as a result of the disruption of predator-prey interactions (Francis et 

al., 2009; Francis, Paritsis, et al., 2011). As the relationship between anthropogenic noise 

and breeding performance is likely to vary greatly amongst different species, multi-species 

studies are therefore necessary in order to provide a wider picture on the effect of this 

pollutant.  
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4. PHYSIOLOGICAL AND PHYSICAL CHANGES  

Exposure to noise pollution can increase physiological stress levels (Kight and Swaddle, 

2011), which allows animals to cope with this stressor, but has potential negative effects 

over time. In vertebrates, stress is responsible for the activation of the hypothalamic-

pituitary-adrenal (HPA) axis, which results in an increased  secretion of glucocorticoid 

hormones (in birds, corticosterone) (Wingfield et al., 1998). This, in the short term, may 

improve the survival of an individual by releasing energy, but in the long term can increase 

oxidative stress and inhibit growth and immune function (Kight and Swaddle, 2011), and 

result in other negative consequences (Kriengwatana et al., 2013), such as elevated heart 

rate and decreased body condition (Ortega, 2012).  

While  correlations between noise exposure and glucocorticoid stress responses have been 

shown in a wide number of species (e.g. Tempel and Gutiérrez, 2003; Cyr et al., 2007; 

Blickley, Word, et al., 2012; Crino et al., 2013), the effects of noise on stress response are 

complex, and studies investigating their links have produced very mixed evidence. Indeed, 

depending on a multitude of factors (such as  species, context, life history stage, and type 

of noise exposure) different studies both in adult birds and nestlings have found that the 

direction and the extent of the association between corticosterone levels and noise 

exposure can vary substantially, or have found no association at all. In some species, 

elevated noise levels have been associated with elevated corticosteroid concentrations, 

which can be interpreted as an indication of stress, and might negatively affect fitness 

(Bonier et al., 2009). For example, this has been found in greater sage-grouses 

(Centrocercus urophasianus) exposed to experimental industrial noise (Blickley, 

Blackwood, et al., 2012), or urban house wrens (Troglodytes aedon) exposed to traffic noise 

(Davies et al., 2017). In some other species, however, chronically stressed birds might 

respond to acute stressors with hypocorticism (Rich and Romero, 2005), via a reduced 

synthesis of hormones from the HPA-axis and/or enhanced sensitivity to negative feedback 

of corticosterone (Fries et al., 2005). For instance, Kleist et al. (2018) found that chronic 

noise exposure to gas compressor depressed baseline corticosterone levels of breeding 

females of western bluebird (Siala mexicana). Similar negative correlations have also been 

found in adults of European blackbirds (Turdus merula) (Partecke et al., 2006), northern 

cardinals (Cardinalis cardinalis) (Wright and Fokidis, 2016), and breeding zebra finches 
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(Taeniopygia guttata) (Zollinger et al., 2019). Lastly, some studies have found no impact of 

chronic anthropogenic noise exposure on baseline corticosterone levels (Potvin and 

MacDougall-Shackleton, 2015b; Angelier et al., 2016; Davies et al., 2017). 

The identification of the processes behind stress response and anthropogenic noise is 

further complicated by the fact that, to date, most studies have been conducted in the field 

(but see Potvin and MacDougall-Shackleton, 2015; Zollinger et al., 2019), where other 

factors such as chemical and light pollution (Isaksson, 2010; Swaddle et al., 2015; Dominoni 

et al., 2016), habitat structure (Nemeth and Brumm, 2010), avian community density and 

composition (McKinney, 2006), and food availability (e.g. Biard et al., 2017) might also play 

a role. Moreover, noise might be directly responsible for alterations in the baseline 

corticosterone levels through acute exposure, or it might act indirectly as a physiological 

stressor through alterations in the interaction between birds and their environment 

(reviewed in Kight and Swaddle, 2011), in particular when noise frequencies overlap with 

auditory environmental cues, leading to reduced detection and discrimination of key 

acoustic signals, and therefore causing  birds to experience a state of unpredictability (Rich 

and Romero, 2005). Noise levels might act indirectly as a physiological stressor because of 

increased predatory risk perception (Quinn et al., 2006) and/or reduced foraging 

opportunities (Schaub et al., 2009; Ware et al., 2015).  Similarly, noise induced 

environmental uncertainty in both parents and chicks might cause chronic activation of the 

HPA axis and affect both glucocorticoids and fitness (LaManna and Martin, 2016).  Whether 

through a direct pathway or through impairment of other behaviours, chronic stress can 

ultimately  translate into less energy to invest in the eggs and the offspring (Angelier et al., 

2009; Spée et al., 2011; Thierry et al., 2013), leading to slower body size and impaired  

development in the chicks (Saino et al., 2005), and ultimately affecting reproductive 

success (Blickley and Patricelli, 2010).  

Alteration of telomere dynamics is yet another pathway through which noise has been 

shown to have direct physiological effects on bird. Telomeres are made of repetitive 

sequences of non-coding DNA at the ends of chromosomes, protecting them from loss of 

genetic information (Monaghan and Haussmann, 2006), and their length is positively 

related to survival in free-living birds  (Haussmann et al., 2005). Telomeres have been found 

to shorten in response to  increases in baseline corticosterone (Haussmann et al., 2012), 
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and to early post-natal stress exposure (Herborn et al., 2014). Urban environments (Salmón 

et al., 2016) and traffic noise exposure (Meillère et al., 2015) have been shown to decrease 

telomere length in juvenile songbirds, and anthropogenic noise alone has been found to 

increase telomere loss (Dorado-Correa et al., 2018).  

5. EFFECTS ON COMMUNICATION  

One of the main effects of noise is the disruption of vocal communication through acoustic 

masking (Dooling and Blumenrath, 2014). By decreasing signal to noise ratio, background 

noise makes signals harder to detect, discriminate and recognise for the receiver 

(Brenowitz, 1982; Dooling and Blumenrath, 2014). Bird song plays a central role on inter- 

and intrasexual selection and on social integration, and it therefore is vital for reproductive 

success (Catchpole and Slater, 2008). Other kinds of vocalisations (such as alarm, begging, 

fight, and food calls), are also crucial for breeding and survival (Marler, 2004a). Any 

decrease in the active space of signals could therefore reduce the fitness of individuals, and 

ultimately result in population declines. 

5.1 SONG PERFORMANCE 

In birds, songs are accurate indicators of individuals quality (Gil and Gahr, 2002), and, in 

many species, song performance has been shown to affect territorial defence and female 

mate choice (Searcy and Yaksukawa, 1996; Nowicki and Searcy, 2004; Catchpole and Slater, 

2008). In order for songs to be accurate indicators of quality, their production must involve 

some costs, which ensures that they are honest signals (Johnstone and Grafen, 1993). 

Indeed, even the simple production of songs can be costly in terms of time and energy 

(Oberweger and Goller, 2001), and therefore the ability of an individual to produce more 

songs than another might be a cue of its quality or the quality of its territory (Greig-Smith, 

1982; Radesater and Jakobsson, 1989). Across different species, other quantitative metrics 

of an individual’s vocal performance that have been shown to affect female choice include 

the ability to sing longer songs or sing often, and the size and complexity of a male’s vocal 

repertoire (Alatalo et al., 1990; Marcel et al., 1991; Kempenaers et al., 1997), as this might 

be constrained by developmental costs associated with brain growth and song learning 

(Nowicki et al., 2002).  On the other hand, quality metrics that could potentially serve as an 
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indicator of male condition involve the ability to sing physically demanding songs (Vallet 

and Kreutzer, 1995; Vallet et al., 1998; Drǎgǎnoiu et al., 2002), or to accurately copy song 

models (Nowicki et al., 1998; Holveck et al., 2008). For instance, female canaries (Serinus 

canaria) are more responsive to songs including syllable types that require more complex 

motor patterns for their production (Vallet and Kreutzer, 1995; Vallet et al., 1998). Another 

indicator of vocal performance that has started getting attention since the last decade, is 

song consistency (reviewed in Botero and de Kort, 2011). This song feature is defined as 

the acoustic similarity between renditions of a given song type or syllable type within a 

song (Byers, 2007; Botero et al., 2009; de Kort, E. R.B. Eldermire, et al., 2009), and has been 

related to the singer’s fitness in a large number of studies (e.g. Botero et al., 2009; de Kort 

et al., 2009; Rivera-Gutierrez et al., 2010, 2011; Wegrzyn et al., 2010; Moseley et al., 2018; 

Phillips and Derryberry, 2018). 

5.2 THE SENDER’S PERSPECTIVE 

Some birds in noisy environments are able to adjust their songs in order to lessen the 

detrimental impact of masking noise (Brumm and Zollinger, 2013), and species that have 

the capacity to adjust their signal are more prone to adjust to urbanisation and survive in 

noisy environments (Slabbekoorn, 2013).  Much of the research on the effects of 

anthropogenic noise on the vocal communication of birds has been focusing on the 

behavioural adjustments and adaptations of the sender.  

One way of intensifying the detectability of a vocal signal is to increase the amplitude at 

which they are broadcast. The involuntary elevation of voice amplitude in response to 

increases in background noise levels,  a response known as the Lombard effect (Junqua et 

al., 1999), has been observed in birds (reviewed in Brumm and Zollinger, 2013). This 

phenomenon appears to be taxonomically widespread among birds, and has been 

demonstrated with psychoacoustic experiments in soundproof laboratory settings for a 

number of different vocal signals, such as songs and begging calls, and in a wide range of 

taxa (e.g. Cynx et al., 1998; Manabe et al., 1998; Oberweger and Goller, 2001; Brumm and 

Todt, 2002; Leonard and Horn, 2008; Templeton et al., 2016). While measuring amplitude 

changes in the field is complex (Zollinger and Brumm, 2015), studies on natural population 

show that birds occupying loud environments also modify the amplitude of their songs 
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(Wood and Yezerinac, 2006). For example, not only nightingales (Luscinia megarhynchos) 

sing at higher frequencies, they also adjust their amplitude to different levels of noise 

depending on peaks in anthropogenic noise (Brumm, 2004). Birds in the wild also adjust 

the amplitude of other signals, such as alarm calls. For example, noisy miners (Manorina 

melanocephala) living in areas with heavy traffic noise call louder than individuals at 

quieter locations  (Lowry et al., 2012). In addition to simply increasing the amplitude of a 

vocalisation, some birds may raise the amplitude of their songs through a selective use of 

songs from their repertoire which are louder or contain louder elements, (Nemeth and 

Brumm, 2010; Nemeth et al., 2013), a phenomenon which has also been linked to 

adjustments in peak frequency. 

Indeed, another way to improve the signal-to-noise ratio of acoustic signals is to increase 

their frequency, resulting in masking release, a change that is thought to be an adaptive 

response to the typically low-frequency anthropogenic noise (but see Nemeth et al., 2013). 

This phenomenon has been observed in a number of species, such as for example song 

sparrows (Melospiza melodia) (Wood and Yezerinac, 2006), great tits (Mockford and 

Marshall, 2009), European blackbirds (Nemeth and Brumm, 2010), and black-capped 

chickadees (Goodwin and Podos, 2013). While some species are able to increase the 

frequency of individual notes within a song (Bermúdez-Cuamatzin et al., 2011), others, such 

as  great tits, sing at higher minimum frequency by switching to song types with higher 

frequency elements (Halfwerk and Slabbekoorn, 2009). However, an experimental study 

on great tits has recently hinted that the link between noise and pitch shifts might not be 

as straight forward as previously assumed (Zollinger et al., 2017); these laboratory-reared 

birds did not show any frequency shifts during song ontogeny or as a result of individual 

adult plasticity, suggesting that other factors other than noise might be involved in the 

vocal divergence amongst urban and forest populations, or that this divergence might be 

the result of slower, population-wide changes over several generation. 

The temporal structure of vocalisations can also be adapted in response to noise. By 

increasing the repetition and duration of signals, birds might improve their detectability 

(Fernández-Juricic et al., 2005; Warren et al., 2006; Proppe et al., 2011). Males of vermilion 

flycatcher (Pyrocephalus rubinus) occupying territories with higher noise levels produce 

longer songs, whereas males in quieter places sing both long and short songs (Ríos-Chelén 
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and Garcia, 2007). Other studies suggest that another strategy might be singing shorter, 

faster songs.  For instance, free-living house finches (Carpodacus mexicanus), significantly 

reduce the number of notes in noisy areas (Fernández-Juricic et al., 2005). Likewise, this 

has also been found in great tits (Slabbekoorn and den Boer-Visser, 2006) and black-capped 

chickadees (Poecile atricapillus) (Proppe et al., 2011).  

Rather than adjusting the acoustic signal, birds might change the timing or location  of their 

vocalisations in order to ease or prevent the effects of masking noise (Mathevon et al., 

2005; Halfwerk et al., 2012; Nordt and Klenke, 2013; Dominoni et al., 2016).  Indeed, the 

levels of urban noise follow strong and predictable patterns during the day and are reduced 

overnight when human activities decline. Species that would normally be diurnal may 

therefore adjust the time at which they vocalise to minimise interference. For instance, 

European robins (Erithacus rubecula) are more likely to sing at night when noise levels are 

lower (Fuller et al., 2007), and in European blackbirds (Turdus merula) the start of the down 

chorus depends on traffic noise and light levels (Nordt and Klenke, 2013). Recently, the 

duration and the onset time of the down chorus has been linked to airport noise (Dominoni 

et al., 2016), and the dawn chorus of 21 species across 39 different populations has been 

analysed to discover that birds advance its timing in order avoid anthropogenic acoustic 

interference from airport noise (Gil et al., 2015).  

Adjustments in the length, timing, amplitude, and frequency of vocalisations in response 

to anthropogenic noise can be energetically costly (Gillooly and Ophir, 2010; Oberweger 

and Goller, 2001; but see Zollinger et al., 2011), and may require physiological capacities 

and a vocal plasticity which some species might not possess (Bradbury & Vehrencamp 

2011; Templeton et al. 2016). There is a large variation in the extent to which urban species 

can adjust the frequencies of their songs (Hu and Cardoso, 2010), and birds with vocal 

frequencies that can be masked by low frequency noise have been shown to avoid noisy 

areas (Goodwin and Shriver, 2010; Proppe et al., 2013). In fact, the detrimental impacts of 

anthropogenic noise on bird breeding density and reproductive seem particularly common 

in species with low-pitched vocalisations (Francis et al., 2009; Halfwerk, Holleman, et al., 

2011). Additionally, even if birds modify their vocal behaviour in response to noise, these 

adjustments are not a guarantee for success in noisy areas (Moiron et al., 2015). Alterations 

in vocal performance are not always sufficient to avoid acoustic masking (Schmidt et al., 
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2014) or, when they do produce benefits in terms of signal detection, they might be lose in 

terms of signal quality (Ríos-Chelén, 2009; Huet des Aunay et al., 2013).  

5.3 THE RECEIVER’S PERSPECTIVE  

For acoustic communication to be effective, vocal signals have to be transmitted efficiently 

by the sender, while also being detected and interpreted successfully by the receiver 

(McGregor et al., 2013). Masking by anthropogenic noise has the potential to impair the 

detection and the assessment of vocal signals (Lohr et al., 2003), and to alter the response 

of the receiver. However, the behaviour of the receiver in noise is comparatively 

understudied in comparison to that of the sender, and most of our understanding on the 

effects of anthropogenic noise on the receiver’s side of acoustic communication comes 

from psychoacoustic studies carried out in laboratory settings. Lohr et al. (2003) showed 

that noise affects both the detection and the discrimination of vocal signals in zebra finches 

(Taeniopygia guttata) and budgerigars (Melopsittacus undulatus), and that thresholds for 

detection and discrimination vary with the spectral shape of noise. Similarly, studies on 

great tits show that noisy conditions increase the detection threshold of vocal signals by up 

to 18 dB, and that high-frequency songs in urban noise are more easily detected and 

discriminated than low-frequency ones (Pohl et al., 2009, 2012). 

In the field, the effect of ambient noise on the ability of the receiver to detect and assess 

signals has only recently started to be investigated. Although there are few field-based 

experiments in this field, research suggests that receivers also adjust their behaviour to 

improve communication in noisy conditions. For example, males of white-crowned 

sparrows (Zonotrichia leucophrys) tend to approach more closely to songs as noise 

increases (Phillips and Derryberry, 2018), something that might be interpreted as increased 

aggression in response to urban noise, or as an adaptation in order to assess vocal 

performance traits that would otherwise be masked by noise. Changes in song post in 

response to noise have been seen in blackcaps (Sylvia atricapilla), which alter perch height 

to improve communication (Mathevon et al., 2005). Birds may also adjust their vocal 

behaviour. European robins exposed to playbacks masked by noise change the complexity 

and pitch of their songs (McMullen et al., 2014), possibly sacrificing the quality of their 

signals in order to increase detection (Zwart et al., 2016). Noise might also weaken the 
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territorial response to a potential intruder by increasing the latency to respond to a 

playback of their songs (Kleist et al., 2016).  

Decreased or delayed detections have also been observed for other vocal signals other than 

songs. For example, great tits fail to perceive alarm calls when exposed to traffic noise 

(Templeton et al., 2016). In tree swallows (Tachycineta bicolor) parent-offspring 

communication is altered, as nestling fail to perceive contact and feeding calls by the 

parents (Leonard and Horn, 2012), and parents fail to perceive begging calls by the nestlings 

(Leonard et al., 2015). As shown in the experiments carried out in laboratory conditions, 

the process of hearing does not simply stop at the detection of a signal (Knudsen and 

Gentner, 2010), but indeed involves at least two more processes. These processes consist 

in what Dooling and Blumenrath (2014) identify as discrimination (which in humans is 

defined as the ability to tell one voice from another), and recognition (defined as the ability 

to understand what is being said). Discrimination of a signal requires a higher signal-to-

noise ratio than detection, and for recognition the signal-to-noise ratio must be even higher 

(Lohr et al., 2003; Freyaldenhoven et al., 2006). This means that a detectable signal might 

still be unintelligible because of masking noise. Most of the research conducted in the field 

so far, has only been focusing on the detection of vocal signals on the functional 

consequences of song adjustments when birds are exposed to noise. As signal 

discrimination and recognition are processes that allow to decode the information 

enclosed in such signals, and to assess their quality and content, more field research is 

necessary to understand how failure of the receiver to discriminate and recognise signal 

takes place, and to highlight the consequences of such failures in a natural context. 

The section below highlights some of the fitness costs that might take place when changes 

in vocal behaviour are only adaptive in terms of detection but not of vocal selection, and it 

draws attention to the consequences that might take place when birds fail to detect, assess, 

and decode vocal signals appropriately. 

5.4 WHEN COMMUNICATION GOES WRONG: IMPACTS ON REPRODUCTIVE SUCCESS 

RELATED TO SIGNAL MASKING 

Any failure in the transmission and the reception of acoustic communication might 

ultimately result in decreased chances of survival and reproductive success, by affecting 
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aspects related to intra- and intersexual communication, or other forms of communication 

among intra- and inter-specifics, such as parent-offspring interactions, food calls, and alarm 

calls. 

In songbirds, females can tell apart individuals based on their songs, and they recognise the 

songs of their mates and show preferences for certain aspects of it, such as higher rates, 

larger repertoires and larger frequency bandwidths (Wasserman and Cigliano, 1991; 

Buchanan and Catchpole, 1997; Luther et al., 2015). The masking of signals important for 

mate attraction has been shown to have a negative impact on reproductive success by 

eroding pair preferences in  zebra finches (Swaddle and Page, 2007), albeit in individuals of 

the same species exposed to levels of noise more similar to roads, extrapair paternity was 

not affected by traffic noise (Zollinger et al., 2019). Moreover, alterations in vocalisations 

to avoid signal masking might reduce the effectiveness of the signal transmitted and have 

significant consequences in pairing and breeding. For instance, in species where females 

prefer males that sing at lower frequencies, higher pitched songs might improve signal 

transmission but decrease their attractiveness, as shown in song sparrows (Melospiza 

melodia) and great tits (Wood and Yezerinac, 2006; Halfwerk, Bot, et al., 2011). Similarly, 

in species where females choose males based on their repertoire size, if males reduce their 

repertoire  to exclude songs that would be less audible in noise, this could reduce their 

attractiveness (Ríos-Chelén, 2009).  

Trade-offs can also occur during competition between males, as vocal inputs are used for 

conspecific recognition, and to assess the signaller’s motivation to fight or its physical 

condition (Catchpole and Slater, 2008). By affecting the ability to deter a rival, or the 

perception of song characteristics that give information on the level of aggressiveness or 

threat, anthropogenic noise could cause fewer mating opportunities and impair territorial 

defence (Mockford and Marshall, 2009). In European robins, the presence of wind turbine 

noise reduces their use of low-frequency elements in response to simulated territorial 

intrusions (Zwart et al., 2016), which corresponds to a weaker  defence signal. As specific 

singing behaviours are hypothesised to be threatening, males that change their 

vocalisations to avoid urban noise might be interpreted as less threatening, unless there is 

a corresponding shift in the interpretation of the signal (Patricelli and Blickley, 2006). For 

example, white-crowned sparrows (Zonotrichia leucophrys nuttalli) increase the minimum 
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frequency of their song in response to noise. However, the receivers perceive these songs 

as low performance and respond less intensely to these compromised signal (Luther et al., 

2015).  

The masking effect of noise on song has the potential to affect breeding success through 

impairing the perception of song quality, or modifications to songs that make them less 

preferred by females or less effective for obtaining or maintaining a territory. Females are 

known to breed later, allocate less energy to the eggs, or provide less maternal care to the 

chicks when breeding with males that they perceive to be of lower quality (Halfwerk, 

Holleman, et al., 2011), and males will experience reduced pairing success and breeding 

opportunities. 

Not only songs, but also other vocalisations are crucial for the reproductive success and 

survival of birds (Chan and Blumstein, 2011).  For example, noise has been shown to impair 

parent offspring-communication (Leonard and Horn, 2012; McIntyre et al., 2014; Lucass 

and Eens, 2016), which in turn might cause reduced parental care and provisioning, and 

has been linked to nest failure at the nestling stage (Schroeder et al., 2012). Nestlings use 

begging calls to attract their parents’ attention and signal their needs, and parents use 

them to assess which nestling to feed (Wright and Leonard, 2002). When begging for food 

in noisy conditions, nestlings may need to call louder to elicit the desired response from 

their parents, thereby increasing the energetic cost of obtaining food and potentially 

decreasing fitness (Leonard and Horn, 2005). Nestlings of tree swallows (Tachycineta 

bicolor) exposed to playbacks of white noise change the frequency structure of their calls 

(Leonard and Horn, 2008). Yet, when exposed to noise, parents reduce  their provisioning 

rate, and nestlings fail to respond to their parents arrival (Leonard and Horn, 2012; Lucass 

and Eens, 2016). House sparrows reduce provisioning frequency in the presence of noise 

because of two potential mechanisms: chick begging not being audible or being less 

audible, or chicks failing to notice their parents’ arrival at the nest, resulting in them not 

begging for food (Schroeder et al., 2012). This was directly associated with lower fledging 

mass and lower fledging and recruitment success. 

The detection of anti-predator signals might also be compromised or delayed by the 

presence of noise. This has been shown both amongst adults and between adult and 
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nestlings. In adults of starlings (Sturnus vulgaris), the perception of alarm calls is impaired 

by the presence of a wide spectrum masking noise (Mahjoub et al., 2015). Nestlings 

exposed to anthropogenic noise, also fail to respond appropriately to mobbing alarm calls, 

such as shown in tree swallows (McIntyre et al., 2014) and great tits (Templeton et al., 

2016), and are therefore more likely to be exposed to potential predators. In response to 

the increased predation risk in noise, species have been shown to spend more time being 

vigilant, which translates into less energy to devote to their eggs and offspring (Angelier et 

al., 2009; Spée et al., 2011). Missed detections of alarm calls might also affect non 

conspecifics (Grade and Sieving, 2016), as species often eavesdrop on the alarm calls of 

others to monitor the presence of potential predators (Magrath et al., 2015). Alarm calls 

are not just used to warn of the presence of predators, but they also convey information 

on the type of predators, depending on which birds might need to respond differently 

(Evans et al., 1993). While a complete failure to detect alarm calls carries obvious fitness 

consequences, inaccuracies in the discrimination of these vocal signals might still cause 

fatal errors by leading to incorrect behavioural responses through masking of subtle 

information about predator type or threat. Vice versa, for species that rely on their auditory 

system to detect prey, anthropogenic noise might decrease hunting success, such as shown 

in Northern saw-whet owls (Aegolius acadius), whose ability to catch prey is progressively 

affected in increasing noise and entirely compromised at noise levels above 61 dB(A) 

(Mason et al., 2016).  

6. OUTSTANDING QUESTIONS  

While it is increasingly clear that the omnipresence of noise is detrimental to wildlife, urban 

noise levels continue to increase in geographical spread, proportion of time exposed to 

high levels, and intensity (Berglund et al., 2000). The above examples illustrate the manner 

in which wild birds can modify their behaviour to successfully survive in noisy 

environments, but also how a complete or even only partial failure to do so can have 

important consequence for their fitness and survival, on both an individual and population 

level.  

More research is necessary to better understand the trade-offs associated with living and 

breeding in noisy areas, including among those species that might appear to be tolerant to 
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life in noisy or uban environments, as they breed and settle in close proximity to sources 

of anthropogenic noise (Francis et al., 2009). Indeed, while many studies focus on changes 

in the distribution of species exposed to noise, rarely do they simultaneously consider the 

reproductive success of the individuals  (Shannon et al., 2016). As the mere presence of 

individuals in noisy areas may not be a reflection of their fitness, more studies looking at 

breeding site selection, and how it correlates with breeding output are necessary to 

understand whether species settling in noisy environments are truly noise tolerant.  

To date, there is a paucity of large scale studies on the impact of noise on birds, and 

research on the effects on breeding performance is yet to include more than a single or a 

few populations. The large-scale studies that have been conducted focus on the impacts of 

noise on communcation or distribution (Blickley and Patricelli, 2010), but I am not aware 

of a study that has investigated the impact of noise on breeding success at a large 

geographic scale, particularly across multiple countries and species. Large scale life history 

data are available thanks to volunteer and citizen science programmes, and could be used 

to quantify impacts of noise on breeding. However, we lack a methodology to do this on a 

large scale.   

It is clear that behavioural flexibility acts as a crucial factor when understanding the ability 

of species to respond to challenging environmental conditions (Lowry et al., 2013). Species 

may differ in their capacity to correct for novel circumstances (Schlaepfer et al., 2002). 

Some types of adaptive response might be either physiologically impossible (such as in the 

case of frequency adjustments for some species) or have a fitness cost, thus precluding 

some species from noisy habitats, or degrading their chances of reproductive success 

(Barber et al., 2010).  Adjustments through plasticity may only mitigate the effect of 

environmental changes but not entirely compensate for them, or may only be adaptive for 

certain aspects but yet result in declines in fitness (Wright et al., 2007). Ultimately, a greater 

knowledge of how different species respond to noise pollution in terms of their fitness may 

be crucial to maintaining biodiversity and ecological stability in the growing number of 

landscapes disrupted by our artificial noise. 

Finally, birds rely on vocal communication to perform vital behaviours such as mate 

attraction, territorial and mate defence, parental provision, and defence from predators 
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(Bradbury and Vehrencamp, 1998; Catchpole and Slater, 2008). The impairment of vocal 

communication is one of the key features linked to declines in the reproductive success and 

overall survival of birds (Proppe et al., 2013). However, while the detection of vocal signals 

has received considerable attention, little is know about the effects of masking on the 

discrimination and identification of vocal signals. Indeed, birds are regularly exposed to 

noise levels below the threshold that would cause vocal signals to be completely masked 

(McKenna et al., 2016). It is therefore likely that negative effects of noise via masking of 

information contained in a signal (informational masking) might be far more extensive than 

the effects of noise caused by an impaired detection of vocal signals (Rosa et al., 2015). 

Informational masking, in fact, can take place well beyond the spatial extent at which noise 

amplitude is strong enough to only affect detection (Banbury et al., 2001). Consequently, 

more research is needed to evaluate this phenomenon not just in laboratory settings, but 

in an ecological relevant context.   

7. THESIS AIMS AND STRUCTURE  

This thesis has the following aims:  

1. To investigate nest-site selection, nest fidelity, and breeding success in a population 

of songbirds exposed to a gradient of traffic noise over multiple years. 

2. To develop a method to test the relationship between different stages of the 

breeding ecology of birds with the level of anthropogenic noise around major road 

networks on a large geographical scale. 

3. To apply the method to test the relationship between different stages of the 

breeding ecology with the level of anthropogenic noise around major road 

networks for 11 common bird species. 

4. To test if blue tits recognise fine structural song differences under a variety of 

ambient noise conditions.  

7.1 CHAPTER 2 - INFLUENCE OF NOISE ON NEST SITE SELECTION AND NESTING SUCCESS: A 

LOCAL POPULATION STUDY ON BLUE TITS 
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Chapter 2 addresses the first aim of this thesis by assessing nest-site selection, fidelity, and 

breeding performance of a common species of songbird. To that end, it uses long-term data 

from a population of blue tits breeding in nest-boxes exposed to a traffic noise gradient. 

The noise gradient provides an opportunity to examine the levels at which a response is 

initiated, and how the response changes with increasing noise levels. By looking at nest site 

selection across different noise levels while simultaneously exploring their relationship 

with breeding performance, this design can also reveal whether breeding site choice is 

reflected in breeding performance. 

7.2 CHAPTER 3 - USING LARGE-SCALE DATA TO QUANTIFY THE CONSEQUENCES OF 

ANTHROPOGENIC NOISE ON BREEDING SUCCESS 

Chapter 3 develops a method to investigate the impact of anthropogenic noise on breeding 

success of birds on a countrywide scale. This method is developed using noise data 

generated by European Environmental Agency (EEA) member countries, and breeding data 

from the British Trust for Ornithology’s Nest Record Scheme, and the Sovon Dutch Centre 

for Field Ornithology. 

7.3 CHAPTER 4 - IMPACT OF ANTHROPOGENIC NOISE ON BREEDING SUCCESS IN 11 

COMMON BIRD SPECIES 

Chapter 4 applies the method developed in the previous chapter to 11 different species of 

common European birds, and it tests the effects of anthropogenic noise on the breeding 

performance on a large, combined citizen science dataset from the UK and the 

Netherlands. This approach provides an effective method to compare the impact of 

anthropogenic noise on multiple species. It also allows estimating whether noise affects 

certain stages of the breeding cycle more than other, or which stages are more likely to be 

affected depending on species.   

7.4 CHAPTER  5 - NOISE IMPAIRS THE PERCEPTION OF THE FINE STRUCTURE OF BIRDSONG 

Chapter 5 uses an experimental playback design to investigate how noise at different 

amplitudes and frequency bands affects the assessment of acoustic signals in blue tits. Bird 

vocalisations contain subtle information in the acoustic structure that are used for quality 

assessment, and communication of this information may be impaired by noise, leading 
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birds to make poor decisions regarding appropriate investments in defence behaviour. This 

chapter characterises how accurate recognition of fine differences within a song might be 

a primary mechanism driving sensitivities to noise. 

7.5 CHAPTER 6 – CONCLUSIONS  

Chapter 6 provides overall conclusions and recommendations for future studies, and it 

highlights how this research might be important to inform ecological theory, conservation 

and management of human-generated noise pollution on avian species. 



Chapter 2. Influence of noise on nest site selection and nesting success: a local population study on blue tits 

 

23 
 

CHAPTER 2. 
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Abstract 

Anthropogenic noise is a rapidly expanding environmental pollutant, in particular because 

of the growth of transportation networks such as roads. Because of their reliance on 

acoustic communication for processes directly related to fitness, birds are particularly 

sensitive to the effects of noise exposure. Studies have found that noise can affect the 

chances of survival and the reproductive success of individuals, and that it can alter the 

abundance and structure of populations. However, some species or populations appear to 

successfully persist in noisy environments, and less is known about the impacts of noise on 

the breeding success of these. This study investigated how noise affected nest-site choice 

overall and over subsequent years to investigate whether younger birds are more likely to 

nest in noisy territories, and to assess the impact of noise on the breeding success of birds. 

To do so, I used long-term data from a population of blue tits (Cyanistes caeruleus) breeding 

in nest-boxes along a gradient of road traffic noise. I found that breeding success was 

reduced in noisier areas, particularly in terms of fledgling success and nestling body mass. 

Counterintuitively, noisy nest-boxes were more likely to be occupied by breeding pairs than 

quieter nest-boxes, although proportionally by younger birds. Nest-box fidelity over 

subsequent years decreased as noise levels increased, but there was no difference on 

whether birds would move to noisier or quieter nest-boxes. These results show that blue tits 

might not be using noise as a cue for nest-site selection, despite it having an impact on their 

breeding success. Noisy territories may therefore constitute an ecological trap for blue tits, 

and the presence of individuals in noisy territories might not necessarily reflect an absence 

of effects on fitness. 
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1. INTRODUCTION 

With ever increasing global human population (ONU, 2019), urbanisation, and growth of 

transportation networks and resource extraction, anthropogenic noise has become one of 

the most widespread and pervasive environmental pollutants (Barber et al., 2010). 

Transportation networks, and in particular roads, are ubiquitous components of human-

altered landscapes, and largely responsible for the prevalence of this pollutant on such a 

vast scale (Forman, 2000; Barber et al., 2010). Both individual and population level effects 

of roads have been documented in many taxa, including plants, mammals, reptiles, 

amphibians and birds (Fahrig and Rytwinski, 2009; Benítez-López et al., 2010; Holderegger 

and Di Giulio, 2010; Kight and Swaddle, 2011; Kociolek et al., 2011; Van Der Ree et al., 

2011). In particular, there is increasing evidence that road noise is a selection pressure that 

affects the ecology and evolution of many species (Francis et al., 2009; Swaddle et al., 2015; 

Wiley, 2017), and that noise alone, rather than physical structure of roads, can constitute 

a source of habitat degradation (McClure et al., 2013, 2017; Ware et al., 2015; Cinto Mejia 

et al., 2019).  

Birds are the most studied taxonomic group in terms of the impacts of anthropogenic noise, 

and in particular traffic noise. Human-generated alterations to the acoustic environment 

have been shown to reduce the quality and suitability of otherwise seemly good habitats 

for some bird species, and to decrease population density and cause changes in avian 

communities (Francis et al., 2009; Parris and Schneider, 2009; Francis, 2015), with potential 

cascading effects on entire ecosystems (Francis et al., 2012). A substantial amount of 

research has focused on the behavioural adjustments of birds in response to noise (Potvin, 

2017). In particular, some species alter their vocal behaviour in order to avoid masking of 

their vocal signals, by modifying features of their signals relative to amplitude and 

frequency, or changing timing and/or rate of delivery  (Patricelli and Blickley, 2006; Luther 

and Gentry, 2013). Despite these adaptations, birds that successfully persist in noisy areas 

might still be sensitive to the detrimental effects of noise.  

A large amount of research reports reductions in the density, abundance and diversity of 

species in response to high levels of anthropogenic noise (Reijnen et al., 1995; Bayne et al., 

2008; Francis et al., 2009). Declines in abundance and changes in population and 
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community structure are a clear measure of the impact of anthropogenic noise. However, 

the presence of a species in a noisy area cannot be used as a sole indicator that noise does 

not affect negatively that species or specific population.  Indeed, the individuals and species 

that persist in noisy areas do not always represent healthy populations or communities 

(Halfwerk and Slabbekoorn, 2014). For example, if individuals with better fitness avoid 

breeding in noisy areas (Halfwerk, Holleman, et al., 2011), noise might have an effect on 

the age structure of breeding populations. In willow warblers (Phylloscopus trochilus), first 

year birds are more likely to breed near roads (Reijnen and Foppen, 1994, 2006), and  male 

ovenbirds (Seiurus aurocapilla) exposed to chronic industry noise are relatively lower 

quality and younger than males that occupy quieter areas (Habib et al., 2007). While 

species declines in noisy areas are well documented, the impact of anthropogenic noise on 

nest site selection, especially over multiple seasons, is much less studied (but see Kleist et 

al., 2017), and the link between noise and demographic distribution of breeding individuals 

is poorly understood. Nest site selection is a critical component of habitat selection and is 

directly linked to reproductive success (Jones, 2001). For this reason, long-term studies that 

combine data on nest site selection with demographic and reproductive success data are 

fundamental to give a full picture of the effects of noise on breeding populations, and to 

understand how individuals respond to noise over time. 

Reduced reproductive success in birds exposed to anthropogenic noise has been observed 

in species where breeding population size does not appear to be affected, such as great tits 

(Parus major; Halfwerk et al., 2011), eastern bluebirds (Sialia sialis; Kight et al., 2012), 

house sparrows (Passer domesticus; Schroeder et al., 2012), and western bluebird (Sialia 

mexicana; Kleist et al., 2018). This is another example of the fact that presence or 

abundance of breeding individuals is not sufficient to assess fitness of populations exposed 

to noise, and that investigating the breeding performance of a population is necessary to 

assess the impact of noise on species that would otherwise appear to be tolerant to this 

pollutant. This is also important in order to pinpoint which life-history stages are most 

vulnerable to noise. Declines in breeding success might be taking place on only one or on 

multiple stages of the reproductive performance depending on which phases of the 

breeding performance are impacted by noise. Optimal mate choice may be affected 

because females may not be able to assess a male’s quality through song performance 
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because of acoustic masking (Halfwerk, Bot, et al., 2011). This may result in reduced 

parental investment and smaller clutches (Habib et al., 2007; Halfwerk and Slabbekoorn, 

2014). Anthropogenic noise might also alter stress levels (Crino et al., 2013; Kleist et al., 

2018) either acting as a direct stressor, or by altering the perception of predation risk 

(Quinn et al., 2006; Ware et al., 2015), which might result in altered incubation and 

provisioning. Masking of alarm calls or predators’ sound might also leave nestlings and 

parents more vulnerable to predators (McIntyre et al., 2014; Templeton et al., 2016) or 

result in a trade-off between feeding the nestlings or vigilance (Quinn et al., 2006). Noise 

might also interfere with parent-offspring communication (Leonard and Horn, 2012; 

Leonard et al., 2015; Lucass and Eens, 2016) and therefore affect feeding rate at the nest. 

Long-term field studies of monitored populations exposed to noise are fundamental to 

understand how anthropogenic noise acts on breeding success and nest site selection over 

multiple breeding seasons. Studying populations over multiple generations also allows to 

understand how nest-site selection relates to the demographics of the population, which 

is a critical component of habitat selection, and directly linked to reproductive success 

(Halfwerk et al., 2016; Kleist et al., 2017). The present study looks at reproductive success 

in order to investigate nest-site selection and breeding output of a population of blue tits 

(Cyanistes caeruleus) breeding in nest-boxes exposed to a natural gradient of traffic noise 

over multiple years. The first aim was to assess nest-site preference and age distribution of 

blue tits breeding along a noise gradient. A second aim was to quantify nest-site fidelity 

over subsequent breeding seasons, and to establish whether movement to different nest-

boxes in subsequent years could be linked to noise levels. Finally, this study aimed to 

underline any potential effects of traffic noise on the breeding performance of this 

population. By focusing on different phases of the breeding performance, it aimed to 

identify which stages are more susceptible to the damaging effects of noise, and to link 

them to the processes through which noise might affect reproductive success.  

2. METHODS 

2.1 STUDY SITE   



Chapter 2. Influence of noise on nest site selection and nesting success: a local population study on blue tits 

 

28 
 

The data used for this chapter are part of an ongoing project (Leech et al., 2001; M. C. 

Mainwaring and Hartley, 2008; Mainwaring et al., 2010; Deeming et al., 2012) on the 

nesting biology of a population of blue tits breeding in nest-boxes and located on Lancaster 

University campus, UK (Figure 1), and have not been personally collected by me. The study 

site comprises several woodland patches in which 111 wooden nest boxes have been 

installed as part of long-term study into the breeding biology of blue tits (Mainwaring and 

Hartley, 2016). The nest-boxes have an entrance hole of 25 mm in order to restrict access 

to other potentially competitive species, such as great tits (Parus major), and have been 

fitted with a metal plate around the entrance hole, and with galvanised wire mesh sheets 

on the external walls, in order to prevent predators of eggs and nestlings from gaining 

access (Mainwaring and Hartley, 2008). The areas where the nest-boxes are located consist 

largely of mixed deciduous woodland. Vegetation composition is roughly the same across 

the site, largely consisting of deciduous and mixed woods that primarily comprise sycamore 

(Acer pseudoplatanus) and common beech trees (Fagus sylvatica), and some coniferous 

trees interspersed throughout the study site, although they are more abundant in the 

woodland patch containing nest-boxes 88 to 92 (Mainwaring et al., 2011). Although some 

areas are more mature than others, the majority of the trees were planted when the 

University was established and are thus about 60 years old (Hartley, 2018 unpublished raw 

data). Two main roads and a railway line run on each side of the campus, and they generate 

a gradient of anthropogenic noise on the study site (Figure 2). The M6 motorway is located 

east of the campus, while the A6 and the railway line run parallel to the M6 west of the 

campus. 
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Figure 1 Study site at Lancaster University campus in north-west England. EDINA Digimap Ordnance Survey: Service OS 
VectorMap® Local; OS MasterMap Highways Network; OS TERRAIN® 50 topographic contours.  
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Figure 2 Map of sound levels for study site at Lancaster University, England, interpolated from point measurements at 
the nest-boxes.  
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2.2  BREEDING DATA 

Blue tit breeding data were collected between 2010 and 2018. The parameters used for 

this study were nest-box occupancy (whether a nest had been built in the nest-box or not), 

laying date, clutch size, number of fledglings, and pre-fledging mass (average weight of 

chicks for the brood when chicks are 15 days old). In total, the dataset used for the analysis 

consisted of 663 clutches produced by 310 different females. Data on nestling mass were 

only available for the years 2011 and 2015 to 2018 (Table 1). Although nest-box occupancy 

in all woodland patches is usually high, it varies from year to year, and not all nest-boxes 

are occupied each year (Mainwaring and Hartley, 2016). The majority of blue tits in the 

population are marked with a unique combination of three coloured bands and a metal 

ring, which allows for age estimation and individual identification. The birds form territories 

between late winter and early spring, and breed between April and June, producing a single 

brood each year. Regular nest-box checks took place each year from the beginning of April 

in order to establish the date on which the first egg was laid, assuming one egg being laid 

per day (Cramp and Perrins, 1993). Body mass (±0.1 g) measurements were taken on 15 

days old chicks with an electronic balance (Mainwaring et al., 2010). Finally, nests were 

checked at day 20 (± 1) to establish fledging success, defined as the number of fledged 

nestlings. 

Table 1 Number of clutches laid, first egg date (1 = 1 April), clutch size, number of fledglings, and average brood mass 
at 15 days for each breeding season sampled. Values are means and standard deviations.  

Breeding 

season 

No clutches Laying date Clutch size Fledglings Average mass (g) 

2010 
63 26.1  ± 5.92 9.97  ± 1.90 8.30  ± 2.27 

- 

2011 
83 18.8  ± 4.37 9.86  ± 1.54 6.58  ± 3.58 10.7 ± 0.912 

2012 
66 20.7  ± 7.65 9.74  ± 2.08 5.88  ± 3.85 

- 

2013 
57 36.2  ± 5.83 9.07  ± 2.03 6.42  ± 3.29 

- 

2014 
65 18.9  ± 7.09 9.63  ± 2.13 7.46  ± 3.76 

- 

2015 
78 28.0  ± 4.71 9.08  ± 2.02 4.24  ± 3.57 10.4 ± 0.995 

2016 
71 27.2  ± 5.26 9.13  ± 1.69 7.81  ± 2.35 10.4 ± 0.842 

2017 
77 22.4  ± 5.27 8.91  ± 1.87 5.75  ± 3.02 9.86 ± 1.28 

2018 
73 26.1  ± 4.03 8.97  ± 1.83 5.26  ± 3.41 10.4 ± 1.22 

2.3 NOISE MEASUREMENTS  
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Noise measurements were collected in 2016 by Andrew Wolfenden (Wolfenden, 2016 

unpublished), following a similar procedure to that adopted by Kleist et al. (2016). Sound 

amplitude levels were recorded from the top of each nest-box over five minutes, with the 

microphone pointing towards the nest-box entrance. Measurements were taken using a 

Tenma 72-947 data logging sound level meter (A-weighting, fast response, and 30–100 

dB(A) settings; accuracy ±1.4 dB(A) and were calculated as an Leq (equivalent continuous 

sound level). While the A-weighting scale is a human-centric (as it is based on equal 

loudness contours for human hearing) (Francis and Barber, 2013), it was chosen because 

auditory hearing curves for this species are not available, and because it provides a 

conservative estimate of bird hearing and is the best readily-available weighting for bird 

studies (Dooling and Popper, 2007). The sound measurements took place during the 

breeding season between 10:00 and 15:00 to avoid peaks in traffic, and only on days 

without rain or strong wind, since such atmospheric events might affect sound levels 

(Ovenden et al., 2009). It was assumed that sound levels did not change considerably over 

the nine-year period. Measurements of temporary sources of noise, such as machinery and 

human activities, were also avoided. 

2.4 ENVIRONMENTAL VARIABLES  

All breeding data were modelled including averages of the atmospheric conditions for the 

years considered, as these environmental variables have been shown to impact the 

breeding behaviour and reproductive output (Deeming et al., 2012; Bleu et al., 2017; Britt 

et al., 2017). Specifically, average mean temperature (maximum plus minimum value 

divided by two; °C) and rainfall (mm) for the months of April and May were considered. 

Local weather conditions were obtained from Lancaster University's Hazelrigg 

meteorological station, located within 1 km of the study area.  

Distance from the nearest main road (either the M6 or the A6) was initially considered for 

input into the models, in addition to the noise level. As such, the planar distance from the 

closest main road was calculated from all nest-boxes to the nearest point on the main road. 

Most nest-boxes were closer to the M6 motorway, with only 25 out of the 111 nest-boxes 

located closer to the A6 road. However, distance from road and noise level were very highly 
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correlated (r=-0.90, p<0.001) and so only noise was included in the models (Hair et al., 

2014).  

2.5 STATISTICAL ANALYSIS  

All analyses were conducted using R version 3.6.1 (R Core Team, 2019). Initial data 

exploration was carried out following the protocol described by Zuur et al. (2010). The 

presence of outliers was investigated, and correlation between predictors was assessed 

using multi-panel scatterplots, correlation tests, and variance inflation factors (VIF). For 

each life history trait, generalised linear mixed models (GLMM) were used to analyse the 

data using the package lme4 (Bates et al., 2015).  

Nest-box occupancy rates were analysed using a GLMM (binomial error distribution, logit-

link function) with occupancy as dependent variable (0=empty or 1=occupied), noise levels 

measured at the nest-box as a fixed effect, and year and nest-box ID as a mixed effects to 

account respectively for yearly differences in number of breeders and for repeated 

measures. A logistic regression approach was also used to analyse age distribution 

(yearling=1, older=0) across the noise gradients, with sex as a predictor in order to control 

for differences between sexes. Site loyalty and movement to quieter or noisier nests were 

measured for individuals that were identified over breeding events in subsequent years. 

Each pair of subsequent years was treated as a separate unit and analysed using a binomial 

GLMM, with noise levels, age, sex, and number of fledglings as fixed effects, and nest-box 

ID as a mixed effect to account for repeated measures.   

Finally, to analyse breeding performance a set of generalised linear mixed models (GLMM) 

was built for each variable (Bolker et al., 2009). Models for clutch size and nestling mass 

used a Gaussian distribution, while models for number of fledglings and laying date used a 

Poisson distribution. Nest-box ID and breeding year were always included as random 

factors. The package segmented  (Muggeo, 2017) was used to conduct further analysis and 

estimate breakpoints in the regression model. Depending on the model, other reproductive 

traits were included as explanatory variables (Wilkin et al., 2006). Laying date was included 

in all models to account for time of the breeding event and to control for the correlation 

between laying date and other breeding variables. For the number of fledglings clutch size 

was included in the model. Clutch size was also included in the fledging mass model, as it 
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is known to have an effect on fledging mass (Wilkin et al., 2006; Halfwerk, Holleman, et al., 

2011).  

3. RESULTS 

3.1 NEST BOX OCCUPANCY  

Noise level was a significant predictor of nest-box occupancy, with the probability of blue 

tits breeding in a nest-box increasing slightly as noise level increased (p = 0.026, Table 2a). 

Noise level was also a significant predictor of distribution by age, with the likelihood of 

yearling presence increasing with higher values of noise, irrespective of sex (Table 2b).  

Table 2 Generalized linear mixed model (GLMM; binomial errors with logit link) investigating the relationship between 
sound level measured at the nest-box and nest-box occupancy, with a) year as a mixed effect, and b) year and Nest-
box ID as mixed effects. Significant effects are in bold.  

a) Nest-box Occupancy Predictors Estimates Std. Error CI z-value p 

N=1016 (Intercept) -0.559 0.57 0.19 – 1.76 -0.97 0.331 

 Noise 0.019 0.01 1.00 – 1.04 2.23 0.026 

b) Age Distribution Predictors Estimates Std. Error CI z-value p 

N=892 (Intercept) -1.624 0.71 0.05 – 0.79 -2.29 0.022 

 Noise 0.022 0.01 1.00 – 1.04 2.09 0.036 

 Sex (male) 0.159 0.14 0.89 – 1.55 1.13 0.259 
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3.2 NEST-BOX FIDELITY  

Out of 331 consecutive breeding events for individuals that bred in nest-boxes for at least 

two consecutive years, 56.2% moved to a different nest and 43.8% stayed in the same nest-

box the consecutive year. Regardless of sex, age (yearling or older) or number of chicks 

fledged in year 1 of the two consequential years, noise was a significant predictor of nest-

box fidelity, with higher probability of movement as noise increased (p=0.003) (Table 3a). 

However, there was no difference in the proportion of birds moving to a quieter nest or a 

noisier one (Χ2= 2.667, df = 1, p=0.103), with 55.6% moving to a quieter nest-box and 44.4% 

moving to a noisier one (216 breeding events). Further analysis also showed no evidence 

for noise being a significant predictor of whether blue tits would move to a quieter or a 

noisier nest-box (Table 3b).  

Table 3 Generalized linear mixed model (GLMM; binomial errors with logit link) investigating the relationship between 
sound level measured at the nest-box and a) nest site fidelity (where stay=0 and move=1), and b) movement to either 
a quieter or a noisier nest site (where quieter=0 and noisier=1). Significant effects are in bold. 

a) Nest-box Fidelity Predictors Estimates std. Error CI z-value p 

N=352 (Intercept) -5.39657 2.19 0.00 – 0.33 -2.46 0.014 

 Noise 0.10306 0.03 1.04 – 1.19 3.02 0.003 

 Age(yearling) 0.21656 0.32 0.67 – 2.31 0.68 0.495 

 Sex(male) -0.45106 0.30 0.35 – 1.16 -1.48 0.138 

 No. Fledglings -0.04920 0.06 0.84 – 1.07 -0.81 0.420 

b) Lower or Higher 

Noise Level 
Predictors Estimates std. Error CI z-value p 

N=211 (Intercept) 3.21007 2.48 0.19 – 3195.08 1.29 0.195 

 Noise -0.04335 0.04 0.89 – 1.03 -1.18 0.236 

 Age(yearling) -0.06315 0.42 0.41 – 2.13 -0.15 0.880 

 Sex(male) -0.29780 0.40 0.34 – 1.63 -0.74 0.458 

 No. Fledglings -0.02566 0.08 0.83 – 1.15 -0.31 0.756 

3.3 BREEDING PERFORMANCE  

Noise had a negative effect on fledgling mass at 15 days, which declined in nest-boxes 

exposed to higher noise levels. While the GLMM on the number of fledglings did not show 

noise to be a significant predictor of fledgling success, further graphical investigation 

suggested that both number of fledglings and fledgling mass started declining at a 

threshold located above 70 dB(A) (Figure 3). In particular, for number of fledglings the 

breakpoint for the full regression model was estimated to be at a noise level of 74.12 ±0.74 

(SE) dB(A). Reanalysing the data including only the nest-boxes for which noise levels were 
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above 70 dB(A), resulted in noise being a strong negative predictor for the number of 

fledglings (Table 4).  

Laying date had a strong effect on clutch size as well as the number of fledglings and 

nestling mass, with birds that started laying  later having lower number of offspring and 

lower offspring mass (Table 4). In addition, average temperature was a significant negative 

predictor of clutch size and laying date, and average rainfall was a strong negative predictor 

of number fledglings. Noise level was not a significant predictor for clutch size and first egg 

date (Table 4). 

Table 4 Generalized linear mixed model (GLMM) investigating the relation between sound level measured at the nest-
box and a) Clutch size, b) Laying date, c) Number of fledglings and d) Average mass of nestlings at day 15. Significant 
effects are in bold. 

 Predictors* Estimates std. Error CI t-value p 

Clutch Size (Intercept) 9.38 0.17 9.05 – 9.71 56.29 <0.001 

 Noise 0.1 0.08 -0.06 – 0.26 -1.25 0.219 

N=633 Laying Date -1.08 0.09 -1.25 – -0.91 -12.39 <0.001 

 Average Temp. -0.49 0.16 -0.82 – -0.17 -3.01 0.003 

 Average Rainfall -0.17 0.16 -0.49 – 0.14 -1.09 0.281 

Laying Date (Intercept) 3.184 0.05 21.96 – 26.54 65.84 <0.001 

 Noise -0.006 0.01 0.97 – 1.02 0.56 0.576 

N=667 Average Temp. -0.135 0.05 0.80 – 0.96 -2.87 0.004 

 Average Rainfall -0.055 0.05 0.86 – 1.04 -1.11 0.266 

Number Fledglings (Intercept) 1.797 0.04 5.54 – 6.57 41.14 <0.001 

 Noise 0.007 0.02 0.97 – 1.05 0.34 0.737 

N=581 Laying Date -0.138 0.03 0.83 – 0.92 -5.19 <0.001 

 Average Rainfall -0.152 0.04 0.79 – 0.93 -3.61 <0.001 

 Average Temp. -0.059 0.04 0.87 – 1.03 -1.36 0.175 

 Clutch Size 0.166 0.02 1.13 – 1.23 7.86 <0.001 

Number Fledglings   (Intercept) 1.819 0.05 5.60 – 6.79 36.97 <0.001 

>70 dB(A) Noise -0.109 0.03 0.85 – 0.95 -3.65 <0.001 

 Laying Date -0.122 0.04 0.82 – 0.95 -3.36 0.001 

N=240 Average Rainfall -0.100 0.05 0.82 – 0.99 -2.12 0.034 

 Average Temp. -0.045 0.05 0.87 – 1.06 -0.89 0.374 

 Clutch Size 0.161 0.03 1.10 – 1.25 5.02 <0.001 

Average Mass (Intercept) 10.374 0.19 10.00 – 10.73 55.58 <0.001 

 Noise -0.150 0.06 0.02 – 0.25 2.21 0.027 

N=231 Laying Date -0.560 0.08 -0.69 – -0.38 -6.82 <0.001 

 Average Rainfall 0.280 0.2 -0.19 – 0.61 1.04 0.3 

 Average Temp. -0.120 0.2 -0.53 – 0.27 -0.66 0.51 

 Clutch Size -0.279 0.06 -0.41 – -0.16 -4.37 <0.001 

*all fixed effects are scaled 
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Figure 3 Relationship between the (A) number of fledglings and Noise Level and  (B) number of fledglings at Noise  Level 
> 70 dB(A).  A LOESS smoother was added to aid visual interpretation. 

4. DISCUSSION  

This long-term study tested nest site choice, nest site fidelity, and breeding performance 

at different breeding stages along an existing gradient of anthropogenic noise. 

Counterintuitively, blue tits were more likely to breed in nest-boxes exposed to higher 

noise levels, and this was especially prevalent in first year breeders. Nevertheless, breeding 

success was lower in locations exposed to higher noise levels, which was evidenced by 

lower nestling body mass and smaller number of fledglings. Blue tits were more likely to 

move in subsequent breeding seasons if they bred in noisy locations, but they did not move 

to quieter areas.   

4.1 NOISE HAS A NEGATIVE IMPACT ON NESTLING MASS AND FLEDGLING SUCCESS 

A negative effect of anthropogenic noise was only detected in the late stages of 

reproductive cycle, and especially above 70 dB(A). In some other species, negative 

responses have been reported even at levels below 50 dB (reviewed in Shannon et al., 

2015), and therefore well below the threshold  detected in this study. However, it is not 

surprising that blue tits, which have been shown to persist in noisy environments (Rheindt, 

2003), would only start experiencing negative effects at high noise levels. The finding that 
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nestlings are particularly vulnerable to anthropogenic noise lends support to a number of 

studies. In a study on birds exposed to noise from gas field compressors, the species that 

was more likely to nest in the noisiest sites, western bluebird (Sialia mexicana), was also 

the only one to experience reduced hatching success and body condition (Kleist et al., 

2018). Interestingly, the results of the current study share a number of similarities with  

Kleist et al. (2018), which also observed a non-linear effect of noise on feather growth and 

body size, which only started showing a decline at levels above ~70dB(F) (Leq, dB un-

weighted measurements). Kight et al. (2012) found reduced number of fledglings in a 

population of Eastern bluebirds (Sialia sialis) exposed to noise, while Schroeder et al. (2012) 

found that both fledgling success and mass were negatively associated with noise in a 

population of house sparrows (Passer domesticus).  

One explanation for the negative impact of noise on nestlings is the impaired chick 

development hypothesis (Kight and Swaddle, 2011; Schroeder et al., 2012), and in 

particular the possibility that noise might mask acoustic communication between offspring 

and parents, and therefore result in reduced provisioning frequency (Leonard and Horn, 

2008, 2012; McIntyre et al., 2014; Leonard et al., 2015). Indeed, impaired parent-offspring 

communication has been specifically shown in blue tits (Lucass and Eens, 2016). 

Experimentally introduced highway noise increased the chances of “missed detections” by 

the chicks, which failed to beg once the parents arrived at the nest, resulting in a decreased 

rate of parental provisioning. The link between increasing noise levels and poorer nestling 

condition and fledgling success found in the current study might therefore be the result of 

an interference with feeding effort, caused by compromised parent-offspring 

communication. Noise might also affect predator-prey interactions in a number of ways 

that could leave nestlings more vulnerable to predators. For example, noise might break 

down communication of predation risk between parents and offspring and leave nestlings 

vulnerable to predators (McIntyre et al., 2014), or generally affect the detection of anti-

predation signals (Zhou et al., 2019) or the presence of predators by parents (Quinn et al., 

2006; Huet des Aunay et al., 2013; but see Pettinga et al., 2016). On the other hand, noise 

might mask nestling begging calls and thus reduce detection by predators (Mason et al., 

2016). 
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4.2 NEST-SITE PREFERENCE INCREASES WHILE NEST-SITE FIDELITY DECREASES WITH NOISE  

Blue tits showed a preference for breeding in noisier nest-boxes. While this finding might 

initially appear counterintuitive, it is consistent with previous experimental studies that 

have found noisy nest-boxes to be more likely to be occupied (Halfwerk et al., 2016), and 

observational studies that found blue tits to be more abundant where traffic noise was at 

its highest (Rheindt, 2003). One of the most plausible explanations for this result is that 

blue tits are more likely to breed in noisier areas where they experience reduced 

interspecific competition. In Halfwerk et al.'s (2016) work, this was explained by the fact 

that blue tits, which had to compete with great tits for access to nest boxes, were being 

forced out of quieter nest-boxes and had to settle for the remaining noisy ones. While in 

the present study the nest-boxes were designed so that only blue tits could access the nest-

box, blue tits are also known to compete with great tits over access to food resources 

(Dhondt and Eyckerman, 1980; Halfwerk and Slabbekoorn, 2009). The reduced abundance 

of less noise-tolerant species that compete over food resources might therefore be 

responsible for their preference for noisier sites. Another hypothesis is that blue tits might 

prefer noisier habitats because potential predators, such as spotted woodpecker 

(Dendrocopos major) and sparrowhawk (Accipiter nisus), might be absent or reduced in 

numbers in noisy areas (Rheindt, 2003). Species such as blue tits might therefore benefit 

from reduced predatory risk in noisy areas, where predators are less abundant (Francis et 

al., 2009; Francis, Ortega, et al., 2011a). While it has been shown that abundance of 

woodpecker decreases by 76% in areas with greater traffic noise (Rheindt, 2003), surveys 

would be required to confirm such changes in community composition at this site.  

First year blue tits were more likely to breed in noisy territories. Noise has indeed been 

shown to alter the local age structure within species that do not otherwise appear to be 

affected by noise in terms of abundance (McClure et al. 2017). Studies on noise-impacted 

areas often found younger birds to be more abundant than more experienced ones in 

noisier areas (Reijnen and Foppen, 1991; Habib et al., 2007), and more common at noisy 

stopover migration sites (McClure et al., 2017). One explanation for these findings is that 

younger, lower quality birds have to settle for noisy habitats that are perceived as more 

disturbed. However, when looked in combination with the patterns of nest site fidelity and 

the breeding data, the results of the present study suggest that this explanation might not 
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be true for blue tits. In fact, while nest site fidelity decreased with increasing noise levels, 

blue tits did not show a preference for moving to quieter territories rather than noisier 

ones. Moreover, laying date and clutch size did not appear to be affected by noise. Both 

laying date and clutch size have been shown to be related to true or perceived territory  

and mate quality (Pearson and Lack, 1992; Joly and Marmignon, 1996). Females adjust their 

parental investment by laying fewer eggs or breeding later when breeding with lower 

quality males or in lowered quality territories (Halfwerk, Bot, et al., 2011). While noise was 

found to be a significant predictor of age distribution, it is therefore unlikely that this was 

due to individuals’ territorial perception.  

4.3 A MISMATCH BETWEEN CHOICE OF BREEDING HABITAT AND BREEDING SUCCESS 

Nest site selection is an important component of the individual fitness of birds, as the 

choice of nest site can have an impact on the chances to maximise the breeding output.  

Cues directly related to habitats, such as habitat structure, are known to be used to assess 

habitat quality in order to inform nest site selection (Chalfoun and Schmidt, 2012), as the 

choice of breeding site will ultimately affect reproductive output. Birds also use their 

individual breeding performance (Winkler et al., 2004; Citta and Lindberg, 2007) and public 

information, such as fledgling quantity and quality, in order to choose breeding site (Parejo 

et al., 2007).  

The results of this study suggest that anthropogenic noise might not be a primary factor for 

blue tits when deciding on their breeding location. Their inability to judge territory quality 

reliably when confronted with anthropogenic noise is most markedly supported by the 

mismatch between territory occupancy and reproductive success. Blue tits appeared to be 

more inclined to breed in noisier territories. However, in these territories they were also 

more likely to experience reduced reproductive success. Following a non-optimal breeding 

attempt, blue tits might be using their individual reproductive success to assess nest-site 

quality and decide whether to breed at the same site or not. Nevertheless, if blue tits do 

not identify noise as the cause of their lowered reproductive success, they might still move 

to equally noisy or even noisier territories. The reason for this might be that this species 

has not yet evolved to recognise noise as a negative cue when assessing habitat quality, 

and therefore falls into an anthropogenically-induced ecological trap (Schlaepfer et al., 
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2002). Indeed, this term originates specifically to describe a situation in which the choice 

of nesting habitat might lead a bird to nest failure because of a recent anthropogenic 

change in the environment that disrupted the normal cue-habitat quality correlation (Gates 

and Gysel, 1978). It has long been recognised that sudden environmental alterations driven 

by anthropogenic change might result in the responses of individuals no longer being 

adaptive (Schlaepfer et al., 2002). Anthropogenic noise has emerged swiftly on a global 

scale, and has only recently started to grow in its intensity and extent (Francis et al., 2009). 

While birds have developed  strategies to respond to natural sources of environmental 

noise (Slabbekoorn and Smith, 2002), anthropogenic noise is often louder, more common 

and frequent, and has a different frequency spectrum than natural sources of ambient 

sounds (McKenna et al., 2016). It is therefore likely that birds might not yet have evolved 

an appropriate adaptive response to this novel evolutionary pressure. Given the relatively 

rapid increase in anthropogenic noise and its spectral and temporal differences in 

comparison to natural noise, organisms may not perceive it as an indicator of poor habitat 

quality and instead rely on other cues to evaluate habitat quality.  

However, in drawing conclusions on the association between breeding success, choice of 

nesting site, and anthropogenic noise levels at the nest, it is not possible to rule out other 

unmeasured factors that might have played a role. While the study site is homogenous in 

terms of vegetation and comprises mostly mixed, deciduous woodland, local differences 

may be important. Some of the more mature woodland areas (between boxes 20 and 42) 

have higher numbers of oak trees Quercus spp., which are favoured by blue tit (Perrins, 

1979). However, some areas which appear to comprise comparatively young vegetation, 

such as the area between box 4 and 12, had a high level of occupancy. Ground surveys 

measuring habitat characteristics could be included to account for what could potentially 

be a significant factor (Wilkin et al., 2006). Moreover, blue tits may choose to breed in 

natural cavities even when there is a surplus of boxes (Perrins, 1979), so nest-box 

occupancy may not entirely reflect true breeding densities. 

Furthermore, traffic collisions or other forms of pollution linked to roads, including 

chemical contamination and artificial light emissions, might have been responsible for 

some of the negative effects seen on the fitness of this population (Isaksson, 2018). In birds, 

light pollution is often associated with changes in biological rhythms, which can ultimately 
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affect breeding behaviours and fitness (Dominoni et al., 2013, 2014; Dominoni and 

Partecke, 2015). Indeed, blue tits  exposed to artificial light during the night have for 

example been shown to lay eggs earlier than individuals living in darker areas (Kempenaers 

et al., 2010), something that might have indirectly effected the clutch size of this 

population. Small, insectivorous birds such as blue tits might also be particularly vulnerable 

to increased levels of bioaccumulation of heavy metals because of their metabolic rate and 

diet, as shown in many common bird species (eg. Swaileh and Sansur, 2006; Hofer et al., 

2010; Isaksson, 2010; Bichet et al., 2013). Young individuals are likely to be even more 

sensible to chemical pollution, and suffer from higher mortality, and decreased body mass 

and condition (Janssens et al., 2003; Turzańska-Pietras et al., 2018).  

Further work, accounting for these other factors that might covary with noise, but also for 

vegetation structure and habitat type, food availability, presence of predators, and extra-

specific competition (Maícas et al., 2012), would help understand what might be driving 

species to fall into this ecological trap, while also teasing apart the effects of noise pollution 

from those of other forms of pollution associated with noise.  

4.4 CONCLUSIONS 

This study provides evidence that, when choosing breeding sites, blue tits do not avoid 

settling in territories with high levels of anthropogenic noise. This could  be one  of the 

causes leading to an impaired reproductive success of species that appear to be well 

adjusted to breeding in noisy environments. This study shows that, while blue tits were 

more likely to breed in noisy sites, their breeding success was compromised in terms of 

pre-fledgling nestling mass and fledgling success. The present findings also highlight 

evidence for which stages of the breeding cycle might be more vulnerable to noise, and 

they give valuable evidence for informed mitigation and management strategies in human-

altered landscapes. If even species that persist in noisy environments are sensitive to noise 

during the period between hatching and fledgling, simple surveys to measure abundance 

of breeding birds will not be sufficient to monitor bird populations for noise management 

purposes. Moreover, if the phenomenon observed in this study is common in other species, 

it might be one of the mechanisms behind the decline in species whose decline has been 

directly linked to decreases in breeding success (Leech et al., 2004). While this study found 
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that traffic noise played a negative role in the reproductive success of this population, we 

are yet to know what the scale of this problem is, and there is a need for studies assessing 

the effects of anthropogenic noise on a much larger spatial scale and on a much larger 

number of species. Noise pollution is rapidly increasing throughout much of the World. 

Expanding our understanding of how species respond to this novel selection pressure and 

which life history stages are more susceptible may be critical to maintaining healthy 

ecological communities.
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Abstract 

Anthropogenic noise is a widespread and pervasive environmental pollutant that affects 

behaviours crucial for the fitness of animals, and that has been directly linked to declines 

in the reproductive success of birds. However, research so far has only been population-

specific, and no studies have yet explored the effects of noise on reproduction at a 

countrywide and non-population-dependent scale. I aimed to develop a large-scale 

approach to test the relationship between the breeding performance of birds 

and the intensity of anthropogenic noise around major road networks, which could be used 

and integrated over different datasets.  This was achieved by combining traffic noise 

soundscape data with two large citizen science datasets  on the reproductive output of blue 

tits (Cyanistes caeruleus), obtained from the British Trust for Ornithology (BTO) in the 

United Kingdom, and the Dutch Centre for Field Ornithology (Sovon) in the Netherlands.  

Applying the same method on different datasets and on different types of traffic noise data 

delivered analogous results.  In this chapter, I show that the impact of noise on birds’ 

reproduction is not restricted to population-specific conditions, and I deliver a method that 

can be applied to multiple datasets across different countries. This method allows to 

combine datasets in order to provide a much-needed international overview of the impacts 

of large-scale patterns in the breeding behaviour of birds exposed to noise.   
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1. INTRODUCTION  

The alteration of ecosystems caused by human activities is one of the greatest threats to 

global biodiversity (Hooper et al., 2012). In particular, human-generated noise is a growing 

source of habitat fragmentation and alteration, and a major driver behind the 

environmental impacts of roads and other transportation systems (Summers et al., 2011). 

This environmental pollutant is related to human population density, and is therefore 

predicted to become more widespread as human populations increase (Ortega, 2012). 

Transportation systems, energy development, and motorised recreation are major 

contributors to modern ambient sound levels (Warren et al., 2006). While urban and 

suburban areas are noisier than less developed areas, with the expansion of transportation 

networks (Farina, 2013) the problem has spread to rural and remote areas, and even 

protected natural areas are now being exposed to noise pollution (Barber et al., 2011). 

Addressing the impact of these growing sources of anthropogenic disturbance on wildlife 

is therefore of vital importance.  

Birds can function as sensitive ecological indicators of environmental change and pollution, 

and especially noise pollution, due to their reliance on acoustic communication for vital 

processes related to individual and population fitness (eg. Kight et al., 2012; Schroeder et 

al., 2012; Davies et al., 2017; Halfwerk et al., 2018; Injaian et al., 2018). In the last two 

decades, a considerable number of studies have addressed the impact of anthropogenic 

noise on birds (Radford et al., 2011; Shannon et al., 2016). While species might persist in 

urban and noisy areas (Farina, 2017), the cumulative effects of anthropogenic noise can 

include population declines, and contribute to local extinctions in urban environments 

(Blickley and Patricelli, 2010; Shannon et al., 2016), especially in species that are already 

experiencing habitat degradation due to other factors, and will avoid noisy areas, which 

would otherwise be suitable habitats (Potvin, 2017). In particular, noise affects bird 

distribution, reducing species richness and abundance (Bayne et al., 2008; Francis, Ortega, 

et al., 2011b, 2011c; Halfwerk et al., 2016; Perillo et al., 2017), and changing community 

and population structure (Habib et al., 2007; Francis et al., 2009; Proppe et al., 2013; 

McClure et al., 2017).  
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In order to provide appropriate conservation plans and to identify actions to recover 

declining populations, it is therefore of vital importance to monitor and to understand the 

demographic processes behind changes in population abundance (Aebischer et al., 2000), 

and in particular to investigate crucial life stages, such as breeding. One of the main ways 

noise affects birds is through its impact on breeding success (Injaian et al., 2018). Noise 

driven changes in reproductive success have been shown in terms of egg production, 

incubation, brooding strategies, and nest abandonment, and have been linked to the 

masking effect of noise on signals used to alert conspecifics of predators, defend territories, 

attract a mate, or hear and respond to chicks’ begging calls (Halfwerk et al. 2011; Kight et 

al. 2012; Ortega 2012).  

Prior to nesting, masking of acoustic signals could compromise the ability of competing 

males and of potential mates to assess male quality (Halfwerk, Holleman, et al., 2011; 

Chapter 5). During incubation and chick development, noise is associated with altered 

stress hormone levels in parents or offspring, likely due to an impairment on predation risk 

perception via masking or distraction (Crino et al., 2013; Kleist et al., 2018). Furthermore, 

increased vigilance and anti-predator behaviour, coupled with a decreased foraging 

efficiency due to noise, have been observed in both captive and free-living birds  (Quinn et 

al., 2006; Ware et al., 2015; McClure et al., 2017; Evans et al., 2018). Throughout the 

nestling stage, noise can also inhibit parent-offspring communication by interfering with 

begging calls and  detection of the parents by the chicks (Leonard and Horn, 2012; Lucass 

and Eens, 2016), although whether this is directly linked to changes in reproductive success 

remains to be confirmed. Finally, birds may settle non-randomly across environments with 

different levels of anthropogenic noise, such that individuals in good condition occupy 

quiet environments and less experienced or less fit individuals are forced into noisy 

territories (Habib et al., 2007).  

Although there is evidence linking noise to a decline in the breeding success and overall 

fitness of birds (Kight et al., 2012; Schroeder et al., 2012; Read et al., 2014; Potvin and 

MacDougall-Shackleton, 2015b; Injaian et al., 2018; Kleist et al., 2018; Mulholland et al., 

2018; Zollinger et al., 2019), currently only a few studies have attempted to explore the 

effects of noise on a large spatial scale (Shannon et al., 2016).  The effect of noise on 

songbird abundance and occurrence has been examined at a multi-country scale in four 
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studies, by  using large-scale datasets to determine whether vocal frequency or particular 

life history traits were associated to presence or abundance in urbanised areas (Hu and 

Cardoso, 2009; Cardoso, 2014; Francis, 2015; Moiron et al., 2015).  However,  the effects 

of noise on breeding performance have so far only been researched on single populations 

or by comparing a few populations (Halfwerk and Slabbekoorn, 2014). Large-scale patterns 

of breeding performance in noisy habitats, important for a better understanding of the 

cumulative effects of noise exposure, are not well understood, and the effects of noise on 

breeding performance have yet to be assessed in a way where they can be disentangled 

from population-specific factors. Additionally, studies on breeding success that investigate 

a gradient of noise exposure rather than quiet versus noisy treatments are rare, and again 

limited to single populations (Francis, Paritsis, et al., 2011; Halfwerk, Holleman, et al., 2011; 

Schroeder et al., 2012).  

The purpose of this study was to develop a large-scale method to test the relationship 

between different stages in the breeding ecology of birds (for hypotheses see Table 1) with 

the level of anthropogenic noise around major road networks. The main aims were to be 

able to apply and to be able to integrate this method across other bird-monitoring datasets 

and different maps of soundscape, in order to provide an easily accessible and fast 

approach for assessing the effects of noise on an international scale. For this reason, the 

method was initially developed by combining traffic noise data (modelled as part of the EU 

Environmental Noise Directive 2002/49/EC) with a large citizen science dataset on 

reproductive output of blue tits (Cyanistes caeruleus) obtained from the British Trust for 

Ornithology (BTO) in the UK. It was then further applied and tested to breeding data 

obtained from Sovon Bird Research in the Netherlands. The results were then compared in 

order to exclude the possibility that systematic differences in the way breeding data were 

collected or in the way the noise data were modelled might prevent working with one 

unified dataset.
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Table 1 Hypotheses and predicted effect of noise for variables included in models. 

Breeding variable Predicted effect Rationale Supporting Evidence  

Laying days Delayed laying 
(accompanied by 
reduced clutch 
size) 

Parental investment is lower in noisy areas. 
Noisy territories are (or are perceived as) lower 
quality/are held by lower quality males. 

Laying date is primarily determined by conditions at the 
breeding sites (Joly and Marmignon, 1996). If males or 
territories in noisier areas are (or are perceived) as lower 
quality, females adjust their parental investment (Halfwerk, 
Holleman, et al., 2011; Potvin and MacDougall-Shackleton, 
2015b). 

Clutch size Reduced clutch Parental investment is lower in noisy areas. 
Noisy territories are lower quality/are held by lower 
quality males. 

Non-random nest site choice, so that less experienced or less fit 
individuals are forced into noisy territories (Habib et al., 2007). 

Brood size Reduced brood Parental investment is lower in noisy areas. 
Anthropogenic noise is a physiological stressor for 
parents.  

Females with elevated stress levels may produce low quality 
offspring (Saino et al., 2005). Increased stress levels in females 
because of increased predatory risk perception (Quinn et al., 
2006) and/or reduced foraging opportunities (Schaub et al., 
2009; Ware et al., 2015) translating into less energy to invest in 
their eggs. 

Failure at egg stage Increased failure 
rate 

Parental investment is lower in noisy areas. Noisy 
territories are (or are perceived as) lower quality/are held 
by lower quality individuals. Anthropogenic noise is a 
physiological stressor for parents.  

Parents with elevated stress levels show reduced incubation 
and/or increase nest abandonment (Strasser and Heath, 2013; 
Thierry et al., 2013). 

Failure at chick stage Increased failure 
rate 

Anthropogenic noise is a physiological stressor for 
parents. High levels of background noise mask parent-
offspring communication. High levels of background 
noise mask predator sounds. 

Masking of parental-offspring communication by noise resulting 
in reduced feeding rates by parents (Schroeder et al., 2012; Ng 
et al., 2019) or parental alarm calls. Parents with elevated stress 
levels may decrease nestling feeding rates (Angelier et al., 
2009). 
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2. METHODS  

This study was initially developed for the British Trust for Ornithology’s (BTO) data on 

11309 reproductive events over 11 subsequent years (2006-2017) (Figure 1; Appendix B 

Table  2). It was then later replicated on 1118 breeding events for the Sovon Dutch Centre 

for Field Ornithology data, across the same time-period (Appendix Table 2). Blue tits have 

the highest number of records of all species in the BTO data and the second highest in the 

Sovon data. These data, together with territorial noise levels for areas adjacent to major 

roads, were used to quantify the relationship between reproductive success and traffic 

noise. Reproductive success was analysed at different stages using the following variables: 

laying date, clutch size, brood size, and nest failure at the egg and nestling stage.  Records 

were selected for each of the variables depending on accuracy of data (see below for 

further explanation), and this resulted in smaller effective sample sizes. 

2.1  STUDY SPECIES 

Blue tits are an excellent model species because they breed readily in nest boxes, which 

makes their reproductive performance particularly easy to track. Blue tits are widespread 

across Europe, both in rural and urban habitats (Cramp and Perrins, 1993). They can be 

commonly found in areas affected by anthropogenic noise, such as alongside motorways 

and in cities (Solonen and Hildén, 2014; Vaugoyeau et al., 2016). The conservation status 

of blue tits is globally classified as least concern (BirdLife International, 2019). 

2.2 BTO’S NEST RECORD SCHEME 

The British Trust for Ornithology’s (BTO) Nest Record Scheme (NRS) offers the opportunity 

to study large-scale effects on breeding performance across the UK. The main aim of the 

NRS is to annually monitor the breeding performance of over 80 species of birds, 

interpreting changes and undertaking studies of rare or declining species, in order to inform 

conservation and management policies (Baillie, 2008). Across the UK, circa 30000 records 

are submitted to the NRS each year. Volunteers collect and record the progress of 

individual nests (Greenwood, 2009), providing a number of parameters for each nest: 

location, year, habitat type, dates of each visit, numbers of eggs and/or chicks, and 

standardised codes to describe the development of nests (Crick et al., 2003).  
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Figure 1 Location of breeding data on the nests of blue tits (Cyanistes caeruleus) and extent of road network considered 
for this study. 

2.3 BREEDING DATA  

The NRS data were analysed using the following parameters: first egg date, clutch size, 

brood size, and nest failure rates at the egg and nestling stage. Acronyms for the 

corresponding parameters as used in the NRS are provided in brackets below. 
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2.3.1 LAYING DATE 

The laying date parameter used for the analysis was the first egg date (feg), calculated as 

the mid-point between the minimum estimated first egg date (minfeg) and maximum 

estimated first egg date (maxfeg). Records were only included in the analysis if they allowed 

a precise estimate of first egg date, and the interval between minimum and maximum 

possible first egg date did not exceed 10 days. The laying date was encoded such that day 

1 was equivalent to 1 January. 

2.3.2 CLUTCH SIZE 

Clutch size (maxclu) was defined as the maximum number of eggs found in a nest. Entries 

were discarded whenever this parameter had a smaller value than the maximum nest 

content (maxco), which includes the chick stage, as this suggested that the clutch was not 

complete at the time of the maximum egg count and egg laying was still in progress after 

the last recorded visit. Records were also discarded if a nest had only been visited only once 

or if observations began after egg hatching. Finally, records where the maximum clutch size 

was zero, or larger than the maximum clutch size observed for blue tits (16 eggs) (Nur, 

1986), were also discarded.  

2.3.3 BROOD SIZE 

Brood size (maxyng) was defined as the maximum number of young found in nests that 

had progressed from the egg stage. Nests where this value was smaller than one and larger 

than 16 were omitted from the analysis (following Halfwerk et al., 2010 protocol). 
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2.3.4 NEST FAILURE 

Whether a nest fails or succeeds is a key variable in demographic studies of birds. However, 

estimating nest success requires particular techniques in order to handle the incomplete 

nature of data collected through the Nest Record Scheme. Failure rates were therefore 

estimated using Shaffer’s adaptation (Shaffer, 2004) of the Mayfield method (Mayfield, 

1961, 1975). The Mayfield method can be applied to any nest visited at least twice, and it 

allows to correct for problems arising from nests that were not observed to an outcome. 

Omitting these records would cause failure rates to be too high because, while all nests 

that failed at early stages are more likely to be included, nests that might have been 

successful but were not observed throughout the whole nesting period would be excluded. 

On the other hand, simply including nests with an unknown outcome would overestimate 

success.  

Mayfield developed an ad hoc estimator of nesting success that overcomes the bias 

associated with estimates of apparent nesting success. His approach calculates the daily 

survival probability for only the days during which nests were under observation (the nest-

days). To calculate the daily nest failure rate, the number of nests that fail during the 

observation period are added, and then divided by the total nest-days over which 

observations were taken.  

𝐷𝑎𝑖𝑙𝑦 𝑛𝑒𝑠𝑡 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑟𝑎𝑡𝑒 𝑚 =  
No. of failures

nest days
 

In this equations, No. of failures refers to the sum of all the nests that are known to have 

failed, while nest days is the total number of days during which the nests were observed 

active and hence were susceptible to failure (“exposure” days) (Crick et al., 2003).  

For this chapter, following Shaffer’s approach to Mayfield method (Shaffer, 2004), success 

or failure of the nests were modelled as a binary variable in a logistic-exposure regression 

model. 
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2.4 NOISE LEVELS  

2.4.1 DEFRA NOISE MAPS  

The Defra (Department for Environment Food & Rural Affairs) noise maps identify the main 

sources of environmental noise (Large Urban Areas, Major Airports, Major Railways and 

Major Roads), and are generated as part of the strategic noise mapping undertaken to meet 

the requirements of the EU Environmental Noise Directive (END) 2002/49/EC (European 

Parliament and Council of the European Union, 2002). The aim of the Environmental Noise 

Directive is to manage the impact of environmental noise (Defra, 2018). This requires, on a 

5-year cycle, the creation of strategic noise maps estimating the levels of exposure to 

environmental noise, followed by the preparation of relevant action plans based on the 

noise maps and on public consultations.  

Data are available for England and Wales as a geospatial vector data. For this study, data 

produced for Round 3 on Major Roads and Agglomerations was utilised. These datasets 

cover roads with more than 3 million vehicle passages per year, and local roads within 

agglomerations with a population of more than 100,000.  

The noise values for the maps are calculated by using computer-modelling techniques. Such 

values are based on traffic flow data, road type, and vehicle type data, and account for 3D 

environmental data, which affect the spread of noise. These include digital ground model 

data (defining the profile and height of the terrain), building data (defining the position and 

height of buildings), bridge data (describing the location and height of bridges supporting 

relevant sources), noise barrier data (defining location and height of noise barriers), and 

finally ground cover data (defining whether the ground over which noise propagates is 

acoustically absorbent or reflective) (Defra, 2015). The maps quantify sound at a receptor 

height of 4 m above ground on a 10- meter grid, which is then used to produce polygons 

that identify sound level calculated in 5-decibel A-weighted noise classes or contour bands: 

75.0+ dB, 70.0-74.9 dB, 65.0-69.9 dB, 60.0-64.9 dB, 55.0-59.9 dB.   

Noise levels are calculated as annual averages described using the metric Equivalent 

Average Sound Levels (LEQ), over a specific time-period. The Equivalent Average Sound 

Levels, also called noise indicators, are based on the scale LAeq, described as the equivalent 
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sound level that, if maintained, would cause the same sound energy to be received as the 

actual sound over the same period (Abbott and Nelson, 2002). Based on what periods of 

time the Equivalent Average Sound Levels are calculated for, the maps can be available as: 

- Lden: the average sound level over a whole day, with a penalty of 10 dB(A) for night-time 

noise (23.00-7.00) and an additional penalty of 5 dB(A) for evening noise (i.e., 19.00-23.00).  

- Lnight: the average sound level for the 8-hour period from 23.00 to 07.00.  

- LAeq16: the average sound level for the 16-hour period from 07.00 to 23.00.  

The average sound level for the 16-hour period from 07.00 to 23.00 (LAeq16) was 

considered the most representative in order to estimate the effects of noise levels in blue 

tit territories, as it gave the closest approximation of the active hours of passerine birds, 

such as blue tits, during the breeding period (Lees, 1948; Fitzpatrick, 1997). However, 

country-specific legislation regulates which noise metrics are to be produced, and some EU 

countries (such as the Netherlands) only generate Lnight and Lden noise distribution maps.  

As this study was designed to develop a method that could be applied on a multinational 

scale, the same BTO’s breeding data was tested under the two noise long-term average 

indicators Lden and LAeq16, and results were compared in order to assess whether using 

two different noise indicators would deliver equivalent results. Energy-based noise metrics 

are often highly correlated (Brink et al., 2018). This was also confirmed by selecting 1000 

random nest points and testing for correlation between the noise scores derived from the 

two noise indicators considered. 

2.4.2 TERRITORIAL NOISE LEVELS AND SCORING METHODOLOGY  

Nest locations and noise maps were imported in ArcMap 10.3.1 (Environmental Systems 

Resource Institute 2012). All maps were projected into an equal area projection (Transverse 

Mercator, GCS_OSGB_1936). 

Locations for each single nest are described as either a 4-figure grid reference (which 

identifies a 1-km square) or a 6-figure grid reference (which identifies a point to the nearest 

100 m), based on the Ordnance Survey National Grid system. In order to include nest 
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records for which locations are described as a 4-figure grid reference, nests were mapped 

inside the OSGB British National Grid for 1 km square, and noise exposure levels were 

calculated at a 1 km square definition (Figure 2). While noise at the nest is important (see 

studies on nest boxes Halfwerk et al., 2016; Mulholland et al., 2018), noise present across 

the territory also plays a significant role on behaviours linked to breeding success, and has 

been shown to have a stronger effect than noise at the nest site on nest box occupancy 

(Kleist et al., 2017). This is especially true when considering that acoustic communication 

is involved in processes that take place outside of the nest box, such as prey detection 

(foraging behaviour), vigilance (predator detection) (Shannon et al., 2014), and mate 

selection (Ríos-Chelén, 2009).  

 

Figure 2 Example of NRS data nest locations within OSGB British National Grid squares that overlap with Defra noise 
maps. 

Only nests located within squares that overlapped with the noise maps were selected, and 

each square was assigned an evaluation score, based on the following procedure. For each 

square, I calculated in square meters the surface area of each of the five noise classes, and 
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of the areas that did not fall into the noise maps. Then, in order to  account for the 

correlation between the intensity of noise and the severity of its impact (Francis and 

Barber, 2013), I applied a  Simple Additive Weighting method (SAW). This method is also 

known as a weighted linear combination or scoring method. It is a simple and the most 

often used method for multi-attribute decision technique, and it is based on the weighted 

average using arithmetic mean (Abdullah and Adawiyah, 2014). To apply the SAW method, 

each noise band was assigned an increasing value, or weight, based on the average noise 

level for each noise band (see Table 2).  Finally, the evaluation score was calculated by 

multiplying the square meters occupied by each noise band with the weight assigned to 

the noise bands, and then summing the products. An analogous method has been utilised 

before by Ciach and Fröhlich (2017) in order to evaluate a noise emission parameter from 

maps of road noise emission. 

Table 2 Weights assigned to each noise class based on Simple Addictive Weighting method (SAW). 

Criterion Noise band Criterion Weight 
   

Noise Class 

<55.0- dB 52.45 

55.0-59.9 dB 55.45 

60.0-64.9 dB 62.45 

65.0-69.9 dB 67.45 

70.0-74.9 dB 72.45 

>=75.0 dB 77.45 

2.5 OTHER FACTORS INFLUENCING BREEDING PERFORMANCE 

An initial set of biologically relevant predictors other than territorial noise exposure were 

selected, as they have the potential to affect the breeding performance. These included 

year, laying date, latitude, habitat type, and regional seasonal conditions (rainfall and mean 

temperatures).   

2.5.1 YEAR 

Year was included as a random effect in all analyses to control for long-term trends and 

changes in productivity (Winter et al., 2005). For example, rising ambient temperatures as 

a consequence of climate change have resulted in earlier egg laying in a number of birds 

species in the United Kingdom (Crick et al., 1997).  



Chapter 3. Using large-scale data to quantify the consequences of anthropogenic noise on breeding success. 

 

58 
 

2.5.2 LAYING DATE  

Laying date was included to control for seasonal variations in clutch size. The clutch size of 

single-brooded species generally declines as the season advances, while multi-brooded 

species usually show a mid-season peak in clutch size (Crick et al., 1993). In Britain, blue tits 

are single brooded species (Perrins, 1979), therefore this variable was included to control 

for clutch size declines as the season progressed. Including this predictor also allowed to 

control for potential age-specific variations in clutch size related to the parents, as it is 

common for younger and less experienced birds to lay smaller clutches and later in the 

season (Sæther, 1990). 

2.5.3 LATITUDE  

For some bird species, including blue tits, latitude is correlated with laying date (Evans, 

Leech, et al., 2009; Mainwaring et al., 2012) and  clutch size (Sanz, 1998). Birds (and in 

particular passerines) show a striking trend towards an increase in clutch size as latitude 

increases (Jetz et al., 2008). To account for this, coordinates for latitude of the nest 

locations were included in the models.  

2.5.4 HABITAT TYPE 

The models used to calculate noise levels in the Defra noise maps correct for sound 

transmission differences between different habitat types. Nevertheless, the suitability of a 

particular habitat can affect the reproductive performance and population dynamics of 

each species, as well as the dispersion of individuals within a species' range (Alerstam et 

al., 1982; Okes et al., 2008; Evans, Newson, et al., 2009), and habitat has been shown to 

influence laying dates in tits (Dhondt et al., 1984). Including habitat types is important when 

measuring the effects of human activity on bird populations, and it was therefore included 

as an explanatory variable in the current analysis. Using data from the Nest Record Scheme, 

the habitat types surrounding each nest were derived by simplifying the hierarchical coding 

system developed by the BTO, which provides a non-technical description of bird-habitats 

(Crick, 1992). In order to account for rare habitat types, this categorical variable was 

reduced to 3 main types: i) woodland, habitats dominated by trees generally greater than 

5 m tall; ii) urban and suburban, habitats consisting of densely urbanised areas and town 
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centres, including urbanised areas directly adjacent to rural ones or containing large 

gardens, municipal parks, or recreational areas; iii) open habitats, including any open 

habitat not classified as woodland or urban/suburban, such as scrubland, grassland, 

marshland, farmland, rural, and wetland and coastal habitats (see Appendix Table 3 for 

conversion of BTO categories). 

2.5.5 SPRING TEMPERATURES AND RAINFALL  

The timing of reproduction in birds is determined by day length (Dawson et al., 2001) and 

temperature (Visser et al., 2009). The effects of temperature on food availability, energetic 

costs and physiological state, are important determinants of reproductive success (Mares 

et al., 2017). Changes in rainfall patterns also have the potential to affect breeding 

phenology through delays in the start of breeding during wet springs, or the reproductive 

output through alterations in foraging patterns and energetic demands (Öberg et al., 2015), 

resulting in reduced juvenile growth rates and increased offspring mortality (Arlettaz et al., 

2010). Spring temperature and rainfall data were therefore used in this study in order to 

account for these effects. These data were obtained from the British Atmospheric Data 

Centre, using the ‘Met Office – Historic station data’ dataset based on the nearest available  

meteorological stations to each of the nest sites (mean ± SD distance between nests and 

nearest meteorological station 44.30 km ± 30.30 km) (Met Office, 2018). Spring 

temperatures were calculated as an average of the minimum and maximum temperatures 

recorded for the months of March, April, and May. Rainfall was calculated as the average 

of the same three months.   

2.6 METHOD APPLICATION 

In order to test whether the method developed for the BTO’s Nest Records Scheme could 

be applied and integrated over similar datasets, the approach developed on the BTO’s Nest 

Record Scheme was employed on breeding data of the same species obtained from the 

Sovon’s Nest Record Scheme in the Netherlands. This programme is coordinated by the 

Sovon Dutch Centre for Field Ornithology in collaboration with Statistics Netherlands 

(Versluijs et al., 2016). The Dutch Nest Record Scheme citizen science programme, 

established to monitor reproductive parameters of breeding birds, has been set-up to be 

easily comparable to its British equivalent (Crick et al., 2003). It was therefore possible to 
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apply to same methods of selection and modelling to this data. Environmental factors such 

as habitat type and latitude were available as part of the nest records, while weather data 

for the Netherlands were acquired from the Royal Netherlands Meteorological Institute 

(KNMI) historical monthly time series (KNMI, 2019). The noise score was calculated using 

noise maps obtained from the executive agency of the Ministry of Infrastructure and Water 

Management, Rijkswaterstaat. The noise maps are made in the context of the EU 

Environmental Noise Directive (END) (European Parliament and Council of the European 

Union, 2002). Since 2014, European environmental agencies follow the same CNOSSOS-EU 

(Common Noise Assessment Method for Europe) guidelines, resulting in a common noise 

assessment methodology.  Because of these similarities, the same procedure used to score 

territorial noise levels explained in section 2.4.2 of this chapter could be applied to calculate 

noise scores. 

2.7 STATISTICAL ANALYSIS  

All analyses were performed using R version 3.5.2 (R Core Team, 2018). Data exploration 

was applied following Zuur et al. (2010) protocol. The presence of outliers was investigated 

using boxplots, while collinearity was assessed using scatterplots, Pearson correlation 

coefficients, and variance inflation factors (VIF). In case of collinearity among predictors, 

terms with an absolute r greater than 0.5 were not included in the same model (Appendix 

B Figure 2). All continuous variables fitted as fixed terms were scaled by subtracting the 

mean of all data points from each individual data point, and dividing those points by the 

standard deviation of all points. This was done in order to allow the direct comparison of 

their corresponding estimated effect sizes, and to facilitate the interpretation of the effects 

of variables involved in interactions (Hilbe, 2015). All responses were modelled using the 

package lme4  (Bates et al., 2015). The breeding variables were fitted against the selected 

predictors by using generalised linear mixed models (GLMM), with year as a random 

intercept term to account for repeated measures. For the continuous breeding variables 

(clutch size, brood size, first egg date), GLMMs with a Poisson error distribution and a log 

link function were applied. Daily nest failure rates at the incubation and the nestling stage 

were estimated using Shaffer's (2004) logistic exposure method, an adaptation of the 

Mayfield method. The response variable consisted in nest fate (0: success, i.e., at least one 

chick fledged; 1: failure, i.e., no chicks fledged) for the nests where at least one egg was 
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laid.  Failure or success were estimated with a GLMM with binomial errors and a custom 

logit-link function adjusted for exposure days (Bolker, 2014). Model validation was applied 

to each model to verify the underlying assumptions. Specifically, residuals versus fitted 

values were plotted in order to assess homogeneity of variance, and residuals versus each 

covariate were plotted to investigate model misfit. Finally, likelihood ratio tests, comparing 

likelihood for models that included noise score with null models where the latter had been 

removed, were used for statistical inference. In order to test whether the same approach 

would deliver analogous results, all sets of data were analysed separately. 

3. RESULTS  

3.1  BTO’S NEST RECORD SCHEME   

Statistical significance of likelihood ratio tests, estimates, and p-values for the GLMM were 

analogous between the models where the noise score was calculated on noise maps based 

on the long-term average noise indicator LAeq16 and those based on the noise indicator 

Lden (Figure 3; Table 3). Noise scores assigned based on the two noise indicators also 

showed a high correlation for 1000 randomly selected nests (Pearson r= 0.991, p<0.001).  

As models based on noise indicator LAeq16 and Lden were highly comparable, model 

outputs reported below are derived from the models where noise scores were obtained 

from the noise indicator LAeq16, for model outputs based on noise indicator Lden see 

Appendix B Table 4. Significant changes in breeding performance with increasing levels of 

territorial noise were detected for all the measures of breeding performance except clutch 

size and brood size (Table 3). Territorial noise was a significant predictor of nest failure rate 

at the egg stage (EFR) (χ2(1)= 8.443, p<0.001), with more nests surviving with higher noise 

levels (estimate -0.084 ± 0.03). The territorial noise was also a significant predictor of nest 

failure rates at the nestling stage (NFR) (χ2(1)= 11.079, p<0.001). At this stage, however, 

more nests failed as noise levels increased 0.077 ± 0.022.Territorial noise had no effect on 

clutch size (χ2(1)= 0.0022, p=0.96) or brood size (χ2(1)= 2.30, p=0.13). The noise score did 

however have an effect on first egg date (χ2(1)= 11.79, p<0.001) lowering the average value 

by 0.14 days ± 0.006 (standard errors) (see Table 4 for full estimate parameters).  
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Figure 3 Estimates with standard errors for the noise score parameter for models on clutch size, brood size, laying date, 
failure at the egg stage, and failure at the nestling stage, for BTO dataset (where noise score is derived from noise 
indicator Lden or LAeq16), and for Sovon dataset (where noise score is derived from noise indicator Lden). Estimates 
show direction and significance of the effect. Significance of marginal tests (Wald test) is indicated as * for p ≤ 0.05, ** 
for p ≤ 0.01, *** for p ≤ 0.001.  
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Table 3 Statistical significance of likelihood ratio tests comparing the models without noise score as a factor (null) to 
the models with Noise score as a factor (full) where noise score were derived from the noise indicator LAeq16 and 
noise indicator Lden.  

BTO data 

Noise 
indicator 

Breeding 
variable 

  Df AIC logLink deviance χ2 p-value 

Leq16 
Clutch Size 

Noise score + Latitude + 
Habitat + FED + Rainfall + 

Min temp 

Null 8 14933 -7458.3 14917   

Full 9 14935 -7458.3 14917 0.018 0.894 

Brood Size 
Noise score + Latitude + 

Habitat + FED + Rainfall + 
Min temp 

Null 8 34436 -17210 34420   

Full 9 34436 -17209 34418 1.911 0.167 

First Egg 
Date 

Noise score +  Habitat + 
Mean Temp + Rainfall 

Null 7 38009 -18998 37995   

Full 8 37995 -18990 37979 15.67 < 0.001 

Egg Failure 
Rate 

Noise score + Habitat + 
Latitude + FED + Rainfall + 

Min temp 

Null 8 1582.7 -783.37 1566.7   

Full 9 1577.1 -779.56 1559.1 7.610 0.006 

Nestling 
Failure 

Rate 

Noise score + Habitat + 
Latitude + FED + Rainfall + 

Min Temp 

Null 8 3224.6 -1604.3 3208.6   

Full 9 3215.6 -1598.8 3197.6 10.988 < 0.001 

Lden 
Clutch Size 

Noise score + Latitude + 
Habitat + FED + Rainfall + 

Min temp 

null 8 19746 -9864.9 19730   

full 9 19748 -9864.8 19730 0.155 0.6933 

Brood Size 
Noise score + Latitude + 

Habitat + FED + Rainfall + 
Min temp 

null 8 38234 -19109 38218   

full 9 38236 -19109 38218 0.448 0.5034 

First Egg 
Date 

Noise score +  Habitat + 
Mean Temp + Rainfall 

null 7 40547 -20266 40533   

full 8 40535 -20260 40519 13.586 < 0.001 

Egg Failure 
Rate 

Noise score + Habitat + 
Latitude + FED + Rainfall + 

Min temp 

null 8 1782.7 -882.35 1764.7   

full 9 1785.3 -884.67 1769.3 4.634 0.031 

Nestling 
Failure 

Rate 

Noise score + Habitat + 
Latitude + FED + Rainfall + 

Min temp 

null 8 3455.2 -1719.6 3439.2   

full 9 3448.9 -1715.5 3430.9 8.266 0.004 
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Table 4 Estimated regression parameters, standard errors, z values, and p-values for Poisson GLMMs on continuous 
breeding variables clutch size, brood size, and first egg date and binomial GLMMs on daily nest failure rate at the egg 
stage and at the nestling stage. Noise score was derived from the noise indicator LAeq16. Significance of marginal tests 
(Wald test) is indicated as * for p ≤ 0.05, ** for p ≤ 0.01, *** for p ≤ 0.001. 

BTO data 

Breeding Variable n Predictor* Estimate Std. Error z value p-value  

Clutch size 3378 (Intercept) 2.172 0.016 132.539 < 0.001 *** 
  Noise score 0.001 0.006 0.134 0.894  
  Latitude 0.022 0.007 2.978 0.003 ** 
  Open habitat -0.018 0.014 -1.321 0.186  
  Urban habitat -0.078 0.017 -4.619 < 0.001 *** 
  Laying date -0.129 0.008 -16.867 < 0.001 *** 
  Rainfall -0.004 0.009 -0.417 0.677  

  Min temp -0.011 0.011 -1.006 0.314  

Brood size 7445 (Intercept) 2.006 0.022 89.097 < 0.001 *** 
  Noise score -0.006 0.004 -1.379 0.168  

  Latitude -0.035 0.010 -3.644 < 0.001 *** 
  Open habitat -0.189 0.013 -13.973 < 0.001 *** 
  Urban habitat 0.013 0.005 2.425 0.015 * 
  Laying date -0.139 0.006 -24.382 < 0.001 *** 
  Rainfall -0.007 0.007 -1.037 0.300  

  Min temp -0.007 0.008 -0.965 0.3344  

First Egg Date 5268 (Intercept) 3.229 0.040 80.516 < 0.0001 *** 

  Noise score -0.011 0.003 -3.941 < 0.001 *** 
  Latitude 0.068 0.003 20.546 < 0.001 *** 
  Open habitat 0.031 0.006 4.921 < 0.001 *** 
  Urban habitat -0.023 0.008 -2.907 0.004 ** 
  Rainfall 0.056 0.004 12.928 < 0.001 *** 
  Min temp -0.013 0.005 -2.738 0.006 ** 

Egg Failure Rate 6542 (Intercept) 1.202 0.072 16.749 < 0.001 *** 

  Noise score -0.081 0.030 -2.687 0.007 ** 

  Open habitat -0.202 0.066 -3.060 0.002 ** 

  Urban habitat -0.137 0.083 -1.657 0.097 . 

  Latitude -0.066 0.0338 -1.945 0.052 . 

  Laying date 0.111 0.034 3.246 0.001 ** 

  Rainfall 0.056 0.041 1.388 0.165  

  Min temp -0.040 0.045 -0.894 0.372  

Nestling Failure Rate 4186 (Intercept) 1.590 0.064 25.000 < 0.001 *** 

  Noise score 0.077 0.023 3.288 < 0.001 ** 

  Open habitat 0.415 0.052 8.011 < 0.001 *** 

  Urban habitat 0.330 0.064 5.139 < 0.001 *** 

  Latitude -0.100 0.028 -3.517 < 0.001 *** 

  Laying date 0.109 0.028 3.877 < 0.001 *** 

  Rainfall 0.077 0.034 2.278 0.023 * 

  Min temp 0.003 0.039 0.066 0.948  

*All fixed effects are scaled        
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3.2 DUTCH NEST RECORD SCHEME  

Analysis of the Dutch Nest record scheme showed similar result compared to the British 

data, territorial noise influenced breeding performance (Table 5). Territorial noise had no 

effect on clutch size (χ2(1)= 1.42, p=0.23) or brood size (χ2(1)= 2.13, p=0.14). The noise score 

did however have an effect on first egg date (χ2(1)= 12.68, p<0.001, bringing it forward 

increasing the average value by -0.014 days ± 0.004 (SE) (see Table 6 for full estimate 

parameters).  

Territorial noise had a weak positive effect on nest failure rate at the egg stage (χ2(1)= 5.09, 

p=0.024) with more nests surviving with higher noise levels (estimate 0.16 ± 0.07). The 

territorial noise score also had an effect on nest failure rates at the nestling stage (χ2(1)= 

14.01, p<0.001). At the nestling stage, the effect of noise was strongly negative, increasing 

failure rate by 0.29 ± 0.08.  

Table 5 Statistical significance of likelihood ratio tests comparing the models without Noise score as a factor (null) to 
the models with Noise score as a factor (full). 

Sovon data 

Breeding 

variable  

  
Df AIC logLink deviance χ2 p-value 

Clutch Size 
Noise score + Latitude + 

Habitat + FED + Rainfall + Min 

temp  

Null 8 4168.3 -2076.1 4152.3   

Full 9 4170.3 -2076.1 4152.3 0.005 0.941 

Brood Size 
Noise score + Latitude + 

Habitat + FED + Rainfall + Min 

temp  

Null 8 3041.7 -1512.8 3025.7   

Full  9 3043.7 -1512.8 3025.7 0.020 0.887 

First Egg 

Date 

Noise score +  Habitat + Mean 

Temp + Rainfall  

Null  7 6972.6 -3479.3 6958.6   

Full  8 6962 -3473 6946 12.687 <0.001 

Egg Failure 

Rate 

Noise score + Habitat + 

Latitude + FED + rains + Min 

temp 

Null  8 502.35 -243.18 486.35   

Full  9 499.25 -240.63 481.25 5.098 0.024 

Nestling 

Failure Rate  

Noise score + Habitat + 

Latitude + FED + Rainfall + Min 

temp 

Null  8 255.72 -119.86 239.72   

Full 9 242.73 -112.36 224.73 14.994 <0.001 
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Table 6 Estimated regression parameters, standard errors, z values, and p-values for Poisson GLMMs on continuous 
breeding variable clutch size, brood size, and first egg date and binomial GLMMs on daily nest failure rate at the egg 
stage (EFR) and at the nestling stage (NFR). 

Sovon data 

Breeding Variable n Predictor* Estimate Std. Error z value p-value  

Clutch size 908 (Intercept) 2.162 0.013 165.628 < 2e-16 *** 

  Noise score 0.003 0.005 0.541 0.589  

  Latitude -0.007 0.006 -1.073 0.283  

  Open habitat -0.031 0.012 -2.564 0.010 * 

  Urban habitat -0.066 0.015 -4.332 < 0.001 *** 

  First egg date -0.061 0.006 -9.297 < 2e-16 *** 

  Rainfall -0.015 0.007 -2.046 0.041 * 

  Min temp -0.009 0.008 -1.028 0.304  

Brood size 650 (Intercept) 2.192 0.024 91.686 < 0.001 *** 

  Noise score -0.002 0.016 -0.142 0.887  

  Latitude 0.009 0.017 0.537 0.591  

  Open habitat 0.057 0.041 1.377 0.168  

  Urban habitat -0.056 0.081 -0.692 0.489  

  Laying date -0.170 0.019 -8.879 < 0.001 *** 

  Rainfall -0.012 0.021 -0.565 0.572  

  Min temp -0.083 0.024 -3.529 < 0.001 *** 

First Egg Date 993 (Intercept) 4.666 0.012 393.840 < 0.001 *** 

  Noise score 0.014 0.004 3.585 < 0.001 *** 

  Latitude -0.004 0.004 -0.992 0.321  

  Open habitat 0.001 0.010 0.025 0.980  

  Urban habitat 0.001 0.015 0.058 0.953  

  Rainfall -0.024 0.008 -3.047 0.002 ** 

  Min temp 0.014 0.007 1.928 0.054 . 

Egg Failure Rate 958 (Intercept) 1.178 0.219 5.373 < 0.001 *** 

  Noise score -0.158 0.071 -2.219 0.026 * 

  Latitude 0.029 0.091 0.320 0.749  

  Other habitat 0.328 0.177 1.846 0.065 . 

  Urban habitat -0.547 0.484 -1.130 0.258  

  First egg date 0.274 0.070 3.939 < 0.001 *** 

  Rainfall -0.241 0.138 -1.750 0.080 . 

  Min temp 0.452 0.191 2.374 0.018 * 

Nestling Failure Rate 678 (Intercept) 1.654 0.420 3.936 < 0.001 *** 

  Noise score 0.300 0.074 4.070 < 0.001 *** 

  Latitude 0.555 0.201 2.760 0.006 ** 

  Other habitat 0.279 0.381 0.732 0.464  

  Urban habitat -0.160 0.086 -1.853 0.064 . 

  First egg date 0.038 0.085 0.445 0.656  

  Rainfall 0.032 0.089 0.366 0.714  

  Min temp -0.154 0.094 -1.643 0.100  

*All fixed effects are scaled        
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4. DISCUSSION  

This chapter presents an approach to the analysis of large-scale bird breeding data, in order 

to quantify variations in reproductive performance and relate them to environmental 

factors of anthropogenic origin such as noise. While there are other large-scale multi-

country studies looking at the impact of human-generated environmental alteration on 

birds (Cardoso, 2014; Francis, 2015; Hu and Cardoso, 2009; Moiron et al., 2015), this 

method focuses on the use of large citizen science datasets, and specifically on  direct 

indicators of breeding performance rather than vocal traits or other life history traits. This 

approach delivered comparable outputs when applied to different noise indicator metrics, 

and it was further validated on breeding data originating from a different bird-monitoring 

scheme in the Netherlands. Environmental noise was found to affect failure rates at crucial 

stages of the breeding cycle of blue tits, and this result was replicated on the same breeding 

dataset for the UK over two noise maps based on different equivalent sound pressure 

levels, and on a geographically separate breeding dataset for the Netherlands. The findings 

from all datasets show similar patterns in terms of failure rates at the incubation stage and 

at the nestling stage. At the incubation stage, failure rates significantly decreased in 

increasing noise, suggesting that, at the early stages of their reproductive cycle, breeding 

in noisier territories might be advantageous for blue tits. However, after hatching, failure 

rates of the nestlings increased as territorial noise score increased, meaning that, at a later 

stage, noise might play a negative role on their fitness.  

4.1 A NOVEL APPROACH TO INVESTIGATING THE EFFECTS OF NOISE ON LARGE SCALE 

ECOLOGICAL DATA  

This study reports on a novel method to address a substantial gap in large spatial scale 

published data on the effects of anthropogenic noise on birds’ breeding success. Volunteer-

based monitoring programmes such as the BTO’s or the Sovon’s Nest Record Schemes are 

powerful tools to provide an insight into the effects of anthropogenic change at large 

spatial scales, and they can be applied across a range of species. More importantly, this 

approach has the potential to be extended to other countries with comparable nest record 

schemes, and to any available large-scale data of environmental factors of anthropogenic 

disturbance. Similar breeding data are in fact collected in North America, Australia, New 
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Zealand, and several other European countries (Spina, 1999; Gregory et al., 2005; Saracco 

et al., 2008; Cooper et al., 2015).  Spatially extensive, long-term monitoring schemes 

through citizen science, are becoming increasingly valuable for monitoring the impact of 

environmental change and for their potential conservation applications, especially when 

used in conjunction with large-scale data of environmental anthropogenic pollutants, such 

as noise.  

Although programmes such as Nest Record Scheme are invaluable for the volume of data 

collected, there are inevitable trade-offs between such scale and the accuracy and 

resolution of information available. The main sources of possible bias is characterised by 

seasonal variation in the timing and the proportion of nests found, caused by changes in 

search effort and nest detectability (Crick et al., 2003), which might have played a role in 

affecting the results in terms of laying date. Finer quality in the spatial resolution of the 

data could provide a smaller margin of error for the estimated levels of noise exposure, and 

would allow to measure distance from the road, helping to control for some of the factors 

associated with roads, such as traffic collisions, and atmospheric and light pollution 

(Kociolek et al., 2011). On this account, it is important to mention that experimental 

evidence in the field has repeatedly concluded that noise alone has can have negative 

consequences on birds’ fitness (McClure et al., 2017; Cinto Mejia et al., 2019). While the 

method developed in this chapter does not provide causational evidence on the effects of 

noise, it provides an effective and immediate instrument to assess anthropogenic impact 

on a scale that would otherwise not be possible to achieve. The findings of this study largely 

mirror experimental evidence, and they provide suggestive data that the extent of the 

effects previously observed experimentally both in field and laboratory conditions are 

taking place on a much larger scale than any other study has been able to achieve.  

4.2 HIGHER FAILURE RATES AT THE NESTLING STAGE  

In blue tits, increasing territorial noise scores corresponded to higher rates of failure at the 

nestling stage. These results support the hypothesis that noise might reduce breeding 

success by impairing the development of the nestlings. Indeed, noise might lead to poor 

chick development, and affect blue tits only at a later stage of their breeding performance 

by means of at least four potential pathways. Firstly, it is possible that noise might induce 
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psychological stress in the chicks, which in return might lead to reduced growth rates (Cyr 

et al., 2007; Crino et al., 2013; Kleist et al., 2018). The other possibilities are related to the 

acoustic masking effects of noise. In particular, begging calls indicate the nestling’s needs, 

and parents use them to select which nestling to feed (Wright and Leonard, 2002), meaning 

any masking of this type of communication would result in parents reducing their 

provisioning rates, therefore increasing the chances of nest failure at this stage. In some 

species, noise has indeed been shown to cause chick begging calls to be less audible 

(Schroeder et al., 2012; Naguib et al., 2013; Lucass and Eens, 2016; Kleist et al., 2018).  In 

other species, noise has been linked to failure of the chicks to notice their parents arrival 

at the nest, resulting in them not begging for food (Leonard and Horn, 2008, 2012; Lucass 

and Eens, 2016). Another possibility is that noise might hamper auditory cue detection of 

potential predators or alarm calls (McIntyre et al., 2014; Templeton et al., 2016), therefore 

playing a role as a component of the trade-off between vigilance and feeding (Quinn et al., 

2006), or resulting increased predation risk (Antze and Koper, 2018).  

4.3 LOWER FAILURE RATES AT THE EGG STAGE  

Territorial noise levels were however correlated with lower rates of nest failure at the egg 

stage. Noise has been shown to affect embryonic development in some species (Potvin and 

MacDougall-Shackleton, 2015b), possibly through a trade-off between incubating and 

increased vigilance. Studies on other species, however, have led to contradictory results, 

suggesting that hatching success in relation to noise exposure might be species-dependent 

or related to other local conditions. Kleist et al., 2018a reported that only one of three 

species exposed to noise from gas fields showed a negative association with noise at the 

incubation stage, while another showed a trend towards positive effects. Similarly, ash 

throated flycatchers (Myiarchus cinerascens), but not western bluebirds (Sialia mexicana)  

showed higher rates of nest abandonment at the incubation stage when exposed to 

ambient sound (Mulholland et al., 2018). A possible explanation for the results found in 

this study is that higher quality, more experienced blue tits might be more likely to breed 

in noisier territories because of reduced number of predators or heterospecific competition 

(Halfwerk et al., 2016) over nesting sites, roosting sites, and food resources (Dhondt and 

Eyckerman, 1980; Kempenaers and Dhondt, 1991). This would in turn decrease the chances 
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of nest failure at the egg stage (Slagsvold and Lifjeld, 1990), while still leaving the nests 

exposed to potential negative consequences of noise at later stages of their reproduction.  

4.4 NO EVIDENCE FOR NOISE PLAYING A ROLE ON THE QUALITY OF THE BREEDER OR THE 

TERRITORY  

This study did not show any evidence that low quality blue tits might end up occupying 

noisier territories. Indeed, if noisier territories are lower quality or are held by lower quality 

individuals, clutch size should decrease in increasing noise and laying date should be 

delayed (Huet des Aunay et al., 2017). Clutch size, however, did not change across different 

territorial noise conditions, suggesting that, in blue tits, it is unlikely that low quality or less 

experienced individuals are being relegated to noisier territories by more competitive ones 

(Habib et al., 2007). Apart from few exceptions (Halfwerk, Holleman, et al., 2011; Huet des 

Aunay et al., 2017), previous studies have also not been able to find any conclusive 

relationship between noise levels and clutch size (Kight et al., 2012; Schroeder et al., 2012; 

Halfwerk et al., 2016; Mulholland et al., 2018).  

First egg date showed opposite patterns across the two datasets, although the level of 

variation for this variable was minimal for both the BTO’s and the Sovon’s data. As 

mentioned above, it is highly plausible that biases might be arising from the accuracy with 

which this variable is obtained.  It is also possible that laying date might instead be 

influenced by other anthropogenic factors associated with roads, such as artificial night 

light (Lambrechts et al., 1997; Kempenaers et al., 2010), and it may not be a reliable 

measure of the effects of noise on breeding performance. Indeed, this breeding variable 

has only been included as a fitness measure in two previous field studies (Halfwerk, 

Holleman, et al., 2011; Schroeder et al., 2012), both of which found no links with 

anthropogenic noise.  

Brood size also did not change with increasing noise exposure levels. These results are 

consistent with the literature, where brood size does not appear to be a breeding measure 

significantly affected by noise (Kight et al., 2012; Angelier et al., 2016; Halfwerk et al., 2016). 

If noise were a physiological stressor for parents, they would reduce their parental 

investment and  their breeding attempts would show higher levels of embryo mortality 

(Thierry et al., 2013), resulting in smaller broods. Contrarily, the results of this study suggest 
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that noise induced stress does not play a role at this stage of the breeding performance of 

blue tits, which is further indicated by the lack of an effect of noise on clutch size, and a 

decrease in nest failure rates at the egg stage. 

4.5 HABITAT SUITABILITY MIGHT DECREASE AT THE NESTLING STAGE 

To summarise, this study finds evidence for the hypothesis that failure rates at the nestling 

stage increase at higher noise levels, but no evidence for negative effects on earlier stages 

of breeding. The findings support the possibility that, at the incubation stage, breeding in 

noisier territories might constitute an advantage for blue tits. These results parallel what 

found in the population study carried out for Chapter 2, giving further support to fact that 

the changes that have so far been observed in single populations reflect a much bigger and 

widespread issue.  

Two possible hypotheses could explain what might be happening to blue tits breeding in 

noisier environments: one is of an ecological trap with initial preference for poor-quality 

habitats, and the other is of an equal preference ecological trap. The first explanation is 

that noisier territories are initially more attractive because of reduced hetero-specific 

competition (Halfwerk et al., 2016). Blue tits might be preferentially choosing noisier 

territories, but eventually suffer reproductive costs at a later stage of their breeding 

performance. While this hypothesis is supported by the lower rate of egg failure in 

territories with higher noise levels, if noisier territories were initially perceived as 

attractive, this would also reflect in a larger clutch size for individuals settling there, which 

was not the case for this study. The second and more conservative hypothesis of an equal-

preference ecological trap (Robertson and Hutto, 2006) is more likely to be accurate. In this 

case, blue tits settle non-preferentially across noisier, lower quality habitats compared to 

quiet, higher quality habitats. This is also suggested by the fact that clutch size, which in tits 

are affected by fitness parameters of females (Slagsvold and Lifjeld, 1990), did not vary in 

increasing noise.  While a lower level of competition might initially play a role in decreasing 

failure rates at the incubation stage, the suitability of the habitat for reproduction is 

decreased at the nestling stage, possibly when noise starts playing a role in parent-offspring 

communication.  
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4.6 CONCLUSIONS  

The proposed method provides the first multi-country study to correlate breeding 

parameters and intensity of exposure to road traffic noise, providing a large-scale 

indication that noise affects breeding performance of an urban dweller such as the blue tit. 

Similar or even worse effects are likely to be taking places in other species, even more so 

in species that have already been identified as noise sensitive. As anthropogenic noise 

penetrates even the most remote locations (Ortega, 2012) and secluded areas (Barton and 

Holmes, 2007; Barber et al., 2011), expanding our understanding the relationship between 

this environmental pollutant and  reproductive success in as many as possible species 

becomes increasingly important. This study provides a valuable method for monitoring and 

managing the impact of environmental pollutants by using spatially extensive, long-term 

monitoring schemes in conjunction with large-scale data of anthropogenic pollutants such 

as noise. In particular, the method tested in this chapter has the potential to be adapted to 

generate predictive models on the impact of noise, and potentially other urban pollutants, 

on birds’ fitness but also distribution, and especially to be used a quick assessment tool to 

predict the impact of road infrastructure development projects.  
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Abstract 

Anthropogenic noise is a pervasive environmental pollutant that affects behaviours crucial 

for the fitness of animals. Noise has been associated to declines in the breeding 

performance of birds, but our understanding of species-specific responses is still limited, and 

mostly restricted to a local-population level. Studies encompassing a wide variety of species 

and at a large spatial scale are thus necessary to reflect patterns over large geographical 

ranges and taxa. In this study, I merged breeding data from the Nest Record Schemes of 

two separate countries, the UK and the Netherlands, and applied the approach developed 

in Chapter 3 in order to study the reproductive output of 11 common breeding European 

species. Results show complex, species- and stage-specific relationships between noise and 

breeding performance. The nestling phase emerges as particularly vulnerable, as most of 

the species negatively affected experienced increased failure at this stage. This study 

highlights the importance of considering the stage of breeding when studying the effects of 

noise on birds. By transcending population level, this study shows that the effects of 

anthropogenic noise encompass much larger scale than ever shown before, and it highlights 

an even more pressing need for the implementation of noise mitigation measures around 

roads. 
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1.  INTRODUCTION 

Noise generated by human activities has seen a dramatic increase over recent decades as 

a result of population growth, urbanisation, and increase of resource extraction and 

transportation networks. While railways, air traffic, and industry are major sources of noise, 

the most widespread source of noise pollution in both urban and non-urban areas is road 

traffic. In the European Union, 100 million people are estimated to be exposed to annual 

average noise levels above 55 dB(A) (European Environment Agency, 2018), a level at which 

some negative responses begin to appear in both humans and wildlife (Babisch, 2003; 

Dooling and Popper, 2007; Jarup et al., 2008; Kight and Swaddle, 2011). 

Anthropogenic noise is a prominent force affecting the ecology and evolution of different 

species (Slabbekoorn and Ripmeester, 2008; Francis et al., 2009; Kight and Swaddle, 2011; 

Shannon et al., 2016), and birds have been shown to be particularly sensitive to its effects, 

possibly because of their reliance on vocal communication (Slabbekoorn and Ripmeester, 

2008). Research has shown that traffic noise may alter habitat use and cause changes in 

abundance and density of birds (Reijnen et al., 1996; Rheindt, 2003; Peris and Pescador, 

2004; McClure et al., 2013). Noise may also interfere with acoustic communication 

(Brumm, 2006a; Patricelli and Blickley, 2006; Barber et al., 2010; Brumm and Zollinger, 

2013), and trigger physiological stress responses such as elevated plasma glucocorticoids, 

leading to depressed immune function and increased oxidative stress (reviewed in Kight 

and Swaddle, 2011).  

Each of these negative effects may ultimately result in fitness costs for the individuals 

affected. There are several ways through which noise can decrease reproductive success, 

related to shifts in habitat use, communication, behaviour, and physiological response.  

Alterations in reproductive success might be taking place through changes in age and 

fitness structure of the populations, with less experiences birds occupying noisier 

territories and being less successful in attracting mates (eg. Habib et al., 2007). Another 

possibility is that noise might interfere with acoustic signals related to sexual selection (eg. 

Habib et al., 2007; Huet des Aunay et al., 2013; Kleist et al., 2016; Phillips & Derryberry, 

2018; Swaddle & Page, 2007), or with parent-offspring communication (eg. Leonard & 

Horn, 2012; Lucass & Eens, 2016; McIntyre et al., 2014). Noise might also  alter other 
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behavioural aspects such as vigilance levels (Evans et al., 2018) and time allocation 

(Meillere et al., 2015; Ware et al., 2015), or interfere with sounds playing a role in predator-

prey interactions (Antze and Koper, 2018). Moreover, noise might  affect breeding through 

physiological stress (Crino et al., 2013; Potvin and MacDougall-Shackleton, 2015a; Injaian 

et al., 2018, 2019; Zollinger et al., 2019). While high corticosterone levels might help 

parents cope with stressors (Bonier et al., 2011), maternal stress has been linked to smaller 

fledglings and slower plumage development (Saino et al., 2005). High levels of 

corticosterone in parents have also been shown to affect the amount of time parents spent 

incubating eggs (Spée et al., 2011), to increase the chances of nest abandonment (Thierry 

et al., 2013), and to reduce feeding rates (Angelier et al., 2009).  

Studies on the behavioural and physiological changes triggered by noise are fundamental 

to understand the mechanisms through which noise affects the fitness of birds. However, 

unambiguous evidence on the fitness costs of noise can only be supported by directly 

addressing the effects of noise on reproductive success. Research on this topic has only 

recently been growing in numbers, giving evidence that the behavioural and physiological 

responses to noise exposure in birds might ultimately result in decreased fitness (Halfwerk, 

Holleman, et al., 2011; Potvin and MacDougall-Shackleton, 2015b; Halfwerk et al., 2016; 

Huet des Aunay et al., 2017; Injaian et al., 2018). Evidence from correlational field studies 

comparing noisy and less noisy sites suggest that noise might affect reproductive success 

in some species. High levels of environmental noise have been related to  smaller  clutch 

and brood size in great tits (Parus major) (Halfwerk, Holleman, et al., 2011), reduced 

productivity in Eastern bluebirds (Sialia sialis) (Kight et al., 2012), reduced hatching success 

in Western bluebirds (Sialia mexicana) (Kleist et al., 2018), higher rates of abandonment at 

the incubation stage in ash-throated flycatchers (Myiarchus cinerascens) (Mulholland et al., 

2018), and smaller clutches and delayed egg-laying date in tree swallows (Tachycineta 

bicolor) (Injaian et al., 2018). 

Negative effects of noise on breeding performance have been observed in species from 

diverse ecological and taxonomic groups, suggesting that noise has the potential to impact 

a wide variety of species. However, the susceptibility and response to elevated noise levels 

is likely to have interspecific differences, depending on variation in, for example, 

mechanisms of physiological stress response (Hofer and East, 1998), hearing ability (Ryals 
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et al., 1999; Dooling et al., 2000), vocal traits, and diets (Francis, 2015). Direct comparisons 

of species in response to the same noise sources are therefore necessary in order to 

facilitate a comprehensive understanding of the impacts of anthropogenic noise on 

multiple species.  To date, however, only few studies have approached the impact of noise 

on the reproductive performance of birds by looking at multiple species. Such studies found 

noise to have a negative effect on some species but not on others  (Kleist et al., 2018b; 

Mulholland et al., 2018), and that noise may even facilitate reproductive success as a result 

of the disruption of predator-prey interactions (Francis et al., 2009; Francis, Paritsis, et al., 

2011).  

Additionally, not many studies have investigated the effects of anthropogenic noise at 

larger spatial scales, despite these having the potential to offer a more complete and 

general understanding on the impact of noise than single population studies. So far, 

multiple population studies have focussed on how noise affects the vocal behaviour of birds 

and their abundance (Slabbekoorn and den Boer-Visser, 2006; Mockford and Marshall, 

2009; Patón et al., 2012), but not on the impacts on breeding performance. In order to 

demonstrate that the changes observed through single population studies and controlled 

experiments actually reflect wider patterns over large geographical ranges, large-scale 

studies that encompass a wide variety of species and that transcend the population scale 

are thus necessary.  

The aim of this study was to relate the breeding ecology of birds to the intensity of road 

traffic noise at a large geographical scale. This was achieved by analysing the breeding 

performance of 11 common European bird species in relation to the level of territorial noise 

experienced. The hypothesis tested was that higher levels of territorial noise would have a 

negative impact on the reproductive output of the species considered. This study further 

investigated whether noise affected some stages of the breeding cycle more than others. 

Depending on which processes might be at play, it was also expected that noise would 

affect some stages of the reproductive performance, while being neutral or even positive 

for others. These hypotheses were tested on a large, combined dataset originating from 

two large citizen science programmes, the British Trust for Ornithology’s (BTO) Nest Record 

Scheme in the United Kingdom, and the Sovon’s Nest Record Scheme in the Netherlands.  
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2. METHODS  

2.1    STUDY SPECIES 

The relationship between variation in the breeding performance and levels of territorial 

noise generated by roads was investigated for 11 resident avian breeders (McInerny et al., 

2018) that can be found along motorways: stock dove Columba oenas, barn owl Tyto alba,  

tawny owl Strix aluco,  kestrel Falco tinnunculus, blue tit Cyanistes caeruleus, great tit Parus 

major, starling Sturnus vulgaris, blackbird Turdus merula, song thrush Turdus philomelos, 

house sparrow Passer domesticus, and tree sparrow Passer montanus. These species were 

selected based on the number of record available in the databases. In addition, they 

encompass a variety of breeding ecology, preferred habitats, population statuses, and diets 

(Table 1).   

Blue tit and great tit had the highest number of nesting events available from the Nest 

Record Schemes. Both are small insectivorous, hole-nesting birds that are known to breed 

readily in noisy urban areas and along motorways and roads (Reijnen et al., 1995), and have 

been extensively studied in the context of anthropogenic noise (eg. Ciach and Fröhlich, 

2017; Corsini et al., 2017; Halfwerk et al., 2011a; Halfwerk and Slabbekoorn, 2009; Klett-

Mingo et al., 2016; Lucass and Eens, 2016; Mockford and Marshall, 2009; Naguib et al., 

2013; Pohl et al., 2012, 2009; Salmón et al., 2016; Silva et al., 2014; Templeton et al., 2016; 

Wiacek et al., 2015). Great tits have been shown to have reduced clutch size and number 

of fledglings in locations with high traffic noise (Halfwerk, Holleman, et al., 2011), although 

experimental evidence does seem to show that noise alone does not affect the breeding 

performance of this species (Halfwerk et al., 2016).  

Tree sparrow and house sparrow are two closely related species with similar habitats and 

diets (Summers-Smith, 1998a, 1998b). While both species are of least concern globally, 

their European populations have declined by over 20% since the 1970s (Summers-Smith, 

2003; Staneva and Burfield, 2017). Experimental evidence shows that house sparrows 

reduce parental provisioning (Schroeder et al., 2012) and increase  vigilance (Meillere et 

al., 2015) in a noisy environment, but there is no conclusive evidence for a clear effect on 

their reproductive performance (Meillere et al., 2015; Angelier et al., 2016). Tree sparrows 
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show a decline in density (Ciach and Fröhlich, 2017) and an increase in corticosterone levels 

(Zhang et al., 2011) with increasing urbanisation, but no studies have directly looked at 

noise effects on their fitness.  

Blackbird and song thrush are related species that regularly inhabit urban areas. While for 

both species there is currently no information on their breeding success in relation to traffic 

noise, it has been show that both song thrushes and blackbirds breed in lower densities in 

close proximity to main roads (Reijnen et al., 1995; Rheindt, 2003).  Blackbirds, however, 

have been shown to adapt to urbanisation by changing their breeding strategies. In 

particular, urban blackbirds have a smaller clutch size, longer nestling periods, and slower 

growth of chicks than their woodland counterparts, but  a higher number of fledglings in 

human-populated habitats, where they likely benefit from lower rates of predation (Ibáñez-

Álamo and Soler, 2010). European populations of starling have also been declining 

(Peterjohn, 2006; Staneva and Burfield, 2017); however, this species has been observed to 

occur in higher numbers at noise levels where other species  show declines (González-

Oreja, 2017).  

Stock dove is found in urbanised, and therefore potentially noisy, areas, however its 

numbers decline in proximity to densely built-up areas (Mörtberg and Wallentinus, 2000).  

Stock doves are among those species that vocalise at lower frequencies, which are more 

likely to overlap with anthropogenic noise. Such species have been shown to avoid noisy 

areas more than species that vocalise at higher frequencies (Cardoso, 2014; Francis, 2015; 

although see also Moiron et al., 2015);  the reduced ability of doves to modify their signals 

(Patricelli and Blickley, 2006; Guo et al., 2016) might make them even more vulnerable to 

the effects of anthropogenic noise (Ríos-Chelén et al., 2012).  

Three species of raptors were also considered in the analysis. Eurasian kestrel is a fairly 

common and adaptable diurnal raptor known for settling and breeding in noisy urban 

areas, where it has however been observed to experience reduced breeding performance 

(Sumasgutner et al., 2014). Barn owl and tawny owl are nocturnal raptors that hunt using 

auditory cues. Consequently, their hunting efficiency might be reduced with increasing 

noise levels (Knudsen and Konishi, 1979; Siemers and Schaub, 2011; Mason et al., 2016).  

While there are no studies directly linking anthropogenic noise to the breeding 
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performance of these two species, the probability of occurrence of tawny owl in urban 

areas has been shown to be determined by the availability of basic breeding habitat and 

ambient noise intensity (Fröhlich and Ciach, 2018). 

Table 1 European population status, main habitat and months included for weather averages based on average first 
clutch for each species chosen for breeding performance analysis. 

English Name Scientific name 
European 

population 
status* 

Average 
first clutch 

laid 
Main habitat 

Months for 
weather 
averages 

Stock dove Columba oenas Favourable 4 Jun rural April-July 

Barn owl Tyto alba Depleted 6 May woodland April-May 

Tawny owl Strix aluco Favourable 23 Mar woodland March-April 

Kestrel Falco tinnunculus Declining 1 May rural April-May 

Blue tit Cyanistes caeruleus Favourable 26 Apr woodland, urban, 
rural 

March-May 

Great tit Parus major Favourable 26 Apr woodland, urban, 
rural 

March-May 

Starling Sturnus vulgaris Declining 19 Apr rural April-May 

Blackbird Turdus merula Favourable 22 Apr woodland, urban, 
rural 

April-June 

Song Thrush Turdus philomelos Favourable 21 Apr rural April-June 

House sparrow Passer domesticus Declining 14 May rural April-July 

Tree sparrow Passer montanus Depleted 17 May rural April-May 

*according to BirdLife International (Staneva and Burfield, 2017) 

2.2   ENVIRONMENTAL VARIABLES 

The relationship between territorial noise levels and breeding performance was analysed 

using five breeding variables: clutch size, brood size, laying date, and failure rates for the 

whole nest at the egg and nestling stages. Breeding data in the UK were derived from the 

Nest Record Scheme (British Trust for Ornithology) and in the Netherlands from Dutch Nest 

Record Scheme (Sovon Dutch Centre for Field Ornithology, in collaboration with Statistics 

Netherlands). Both are volunteer-based programmes for monitoring reproductive 

parameters and nest success of breeding birds, that collect data on the location, habitat, 

laying date, and content of the nests at each visit, together with evidence for success or 

failure (see Chapter 3 and Crick et al., 2003 for more detailed description).   

Nest record data were analysed in terms of clutch size (the maximum number of eggs found 

in a nest), brood size (the maximum number of young found in a nest), laying date, and 

daily nest failure rates at the egg and nestling stage. Data on clutch size was rejected when 

the maximum content was larger than the maximum number of eggs, suggesting clutches 

might not have be complete at the time of recording. Brood size comprises the maximum 
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number of chicks found in a nest at any time after hatching, and it is therefore likely to 

overestimate the actual number of fledglings, but it does give a good estimate of number 

of hatchlings. Laying date was calculated as an average between the earliest and the latest 

possible laying date, based on information on clutch size and the age or stage of the nest 

contents on each visit (Crick et al., 2003). For multi-brooded species, the data did not allow 

to establish whether nests found were a first or a second or third brood. Laying date was 

therefore only used as a breeding parameter for single brooded species. Finally, daily nest 

failure rates at the egg and nestling stage were estimated as the ratio of total number of 

failures to the total number of days during which a nest was observed for the stage 

considered (exposure days). This was based on Shaffer's (2012) adaptation of the Mayfield 

method (Mayfield, 1961). For a more detailed description of breeding variables, see 

Chapter 3.  

Decision about inclusion of data points in the analysis differed between breeding 

parameters, and it depended on systematic errors and on the number and timing of visits 

in each breeding stage. For instance, nest records on clutch size had to be omitted if there 

was evidence that laying was still in progress on the last visit, or the number of eggs 

recorded was not within the range for each specific species.  Therefore, not all breeding 

parameters could be derived from the raw data in equal number for each nest, and, as a 

result, sample sizes differ between breeding parameters. In the UK, the barn owl is listed 

under Schedule 1 of the Wildlife & Countryside Act (1981), so details for nest locations on 

this species were not freely accessible. Therefore, data for this species came exclusively 

from the Dutch Nest Record Scheme. This meant that for barn owl data was only sufficient 

to perform analysis on the clutch size, brood size, and laying date.  

In order to avoid the confounding effects of long-term changes in breeding performance 

(Crick et al., 1997; Siriwardena et al., 2000), but also to reduce the effect  of major changes 

in the noise levels modelled for road traffic, the time span of the data analysed was 

restricted to the 11-year period between 2006 and 2017. The territorial noise parameter 

was determined from the maps of exposure to environmental noise from major roads, 

produced by the Department for Environment, Food and Rural Affairs (Defra) in the UK and 

the Rijkswaterstaat in the Netherlands. Both maps have been developed as part of the EU 

Noise Directive 2002/49/EC (END) and, since 2014, follow the same CNOSSOS-EU (Common 
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Noise Assessment Method for Europe) guidelines. For this study, I used noise maps 

modelled in 2017 based on the equivalent noise level Lden (day-evening-night noise level), 

an A-weighted, equivalent noise level over a whole day, but with a penalty of +10 dB(A) for 

night-time noise (22.00-07.00) and +5 dB(A) for evening noise (19.00-23.00). The maps 

show the noise level in the form of a vector layer, expressed in 5 classes of sound intensity 

(dB(A)): 75.0+ dB, 70.0-74.9 dB, 65.0-69.9 dB, 60.0-64.9 dB, 55.0-59.9 dB.  

Using ArcGIS, nests were mapped within a 1 km square of each country’s respective 

national grid. For each 1 km square containing a nest and overlapping with the noise maps, 

each area identified by a noise class was weighted by the average dB(A) levels of the 

corresponding noise class, and the sum of the values was used to assign a score of noise to 

each square. This value was then associated to any nest located within that square, giving 

a measure of territorial noise levels (Noise score).  

A set of control variables likely to affect the breeding performance of the study species was 

selected. These included mean minimum temperatures and rainfall during the breeding 

period (this varied with species, see Table 1), latitude, year, laying date, and habitat. Year 

(modelled as a mixed effect) and latitude were included to account for temporal and spatial 

variations in breeding phenology. Spring temperature and rainfall data were used to 

account for their influence on the success rate and timing of breeding. Laying date can 

indeed be delayed by temperature (Visser et al., 2009) or rainfall patterns (Öberg et al., 

2015). Temperature and rainfall might also play a role on food availability, energetic costs, 

and physiological state, and they are important determinants of reproductive success 

(Mares et al., 2017) resulting in  reduced juvenile growth rates and increased offspring 

mortality (eg. Arlettaz et al., 2010; Mainwaring and Hartley, 2016; Mares et al., 2017; Öberg 

et al., 2015). Temperature and rainfall data were obtained from meteorological data based 

on the nearest available stations to each of the nest sites (mean±SD distance between nests 

and meteorological stations 43.50 km ± 10.30 km for the UK, and 27.58 ± 12.35 km for the 

Netherlands). They were calculated as averages during the breeding months, defined as 

the months comprising at least 90% of the breeding events included in the analysis. 

Weather data for the UK were obtained from the British Atmospheric Data Centre, using 

the ‘Met Office – Historic station data’ dataset (Met Office, 2018), while data for the 
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Netherlands were obtained from the Royal Netherlands Meteorological Institute (KNMI) 

historical monthly time series (KNMI, 2019).  

Laying date was introduced as a control variable for seasonal variations in clutch size and 

brood size (Crick et al., 1993). For several species included in this study, breeding 

performance varies over the breeding season (Perrins and McCleery, 1989; Feare, 1996; 

Summers-Smith, 1998b; Korpimäki et al., 2006; Gosler and Clement, 2007; Snow, 2008), so 

laying date was also included in the analysis of nest failure rates in order to control for time 

of the occurrence of the breeding event. Habitat (classified as either woodland, urban, or 

open) was assigned to species for which the nests were distributed approximately equally 

between habitats (blue tit, great tit, and blackbird). For all the other species, the majority 

of nests included in the analysis were recorded in a single habitat (Table 1), and habitat 

type was excluded from the model. 

2.3 STATISTICAL ANALYSIS  

All analyses were performed using R version 3.6.0 (R Core Team, 2019). Data exploration 

was applied following the Zuur et al. (2010) protocol. The presence of outliers was 

investigated using boxplots and Cleveland dot plots, while collinearity was assessed using 

scatterplots, Pearson correlation coefficients, and variance inflation factors (VIF). In case of 

collinearity among predictors, terms with an absolute r greater than 0.5 and VIF value 

exceeding 3.0, were not included in the same model. In order to allow the direct 

comparison of their corresponding estimated effect sizes, and to facilitate the 

interpretation of the effects of variables involved in interactions (Hilbe, 2015), all 

continuous variables were scaled before inclusion in the models as fixed factors.  

The breeding performance of each species was analysed separately for each breeding 

variable. The breeding variables were fitted against the selected predictors by using 

generalised linear mixed models (GLMM), with year as a random intercept term. First egg 

date was analysed using  GLMMs with a Poisson error distribution and a log link function, 

using the package lme4  (Bates et al., 2015). The same function was used for clutch size and 

brood size models in species where these followed a Poisson distribution. Other species 

where clutch and brood size followed a strongly skewed distribution that did not fit a 

Poisson regression, were analysed using quasi-Poisson GLMM models with the package 
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MASS (Venables and Ripley, 2002).  Daily nest failure rates at the incubation and the 

nestling stage were estimated using a logistic exposure method, Shaffer’s variation of the 

Mayfield method (Mayfield, 1961, 1975; Shaffer, 2004), where complete failure or success 

were estimated using a binomial distribution (where failure=1 and success=0) with custom 

logit-link function adjusted for exposure days (Bolker, 2014). During the analysis, all models 

were kept whole, and non-informative parameters were not dropped. Polynomial or 

interaction terms were not included in these models because this would have given rise to 

increased problems of model interpretation. Tables describing the output of each model 

for each species were generated using the package sjPlot (Lüdecke, 2019). In the figures 

summarising the effect of Noise Score for each breeding variable (Figure 1. to Figure 5.), 

the estimates and standard errors of each model were standardised to facilitate visual  

comparison across species. This was done by dividing them by the standard deviation (SD) 

of Noise Score in each species’ dataset and then multiply them by the SD of Noise Score of 

the dataset including all species. 

3. RESULTS  

3.1  CLUTCH SIZE 

Increasing levels of territorial noise had a significant effect on the clutch size in three out 

of the eleven species considered (Figure 1, Table 2; see Appendix C Table  for full estimate 

parameters). Clutch size decreased with increasing levels of territorial noise in house 

sparrow (p=0.001), but it increased in blue tit (p=0.022) and common starling (p=0.021). In 

all remaining species, there was no significant increase or decrease in the number of eggs 

in relation to noise. Laying date was a significant predictor of clutch size in all species except 

stock dove and starling, and, in single brooded species, nests initiated earlier in the season 

tended to have larger clutch sizes.  

3.2  BROOD SIZE 

Noise score was a significant predictor for brood size in three of the eleven species (Figure 

2; see Appendix C Table ) for full estimate parameters). Brood size decreased with 

increasing noise score for kestrel (p=0.017), but it increased for starling (p<0.001) and tree 
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sparrow (p=0.021). In blue tits, an increase in noise score resulted in a marginally non-

significant trend (p=0.071) of decreasing number of chicks in the nest.  

3.3 LAYING DATE 

As it was not possible to separate first broods from second or third broods, statistical 

analysis of the breeding variable laying date was only meaningful for four species of single 

or mostly single brooded birds: blue tit, great tit, kestrel, and tawny owl. Noise was a 

significant predictor for only one species, great tit, where egg laying took place earlier in 

territories with increasing noise score (p=0.032) (Figure 3; see Appendix C Table  for full 

estimate parameters). Kestrel and tawny owl showed marginally non-significant trends for 

earlier first egg date with increasing noise score (kestrel, p=0.064; tawny owl, p=0.08), 

while no effect was detected for blue tits.  

3.4 FAILURE RATES EGG STAGE 

Increasing levels of territorial noise had a significant influence on nest failure rate at the 

egg stage in five of the eleven species (Figure 4; see Appendix C Table ). In blue tit (p<0.001), 

great tit (p=0.002), starling (p=0.003), and tawny owl (p=0.025) the likelihood of a nest 

failing at the egg stage decreased with increasing noise scores. For tree sparrow, the 

likelihood of nest failure at the egg stage increased with increasing noise score (p<0.001). 

3.5 FAILURE RATES NESTLING STAGE 

There was a significant effect of noise on nest failure rate at the nestling stage in five of the 

eleven species (Figure 5; see Appendix C Table ). Blue tits (p=<0.001), starlings (p=0.048), 

stock doves (p=0.002), and kestrels (p<0.001) showed a higher likelihood of nest failure at 

the nestling stage with increasing noise scores in their territories. In contrast, the likelihood 

of nest failure at the nestling stage for tree sparrows decreased as territorial noise 

increased (p<0.001). 
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Table 2 Summary of effects of noise score for each species on each of the breeding variables. Signs + and - symbolise the direction of the effect caused by increasing noise score. 
For clutch size and brood size, + means an increase in number of eggs and chick found in the nest, and - means a decrease. For laying date, the sign + means later laying date and 
the sign - earlier laying date.  For nest failure rates at the egg and nestling stage + means increased failure and – decreased failure. no means no significant effect was detected.  

 clutch size brood size laying date 

failure rate 

egg stage 

failure rate 

nestling stage 

Species effect sample size effect sample size effect sample size Effect sample size effect sample size 

Stock dove no 422 no 950 Not available No 324 + 193 

Barn owl no 155 no 56 Not available Not available Not available 

Tawny Owl no 174 no 468 no 267 - 123 no 238 

Kestrel  no 195 - 802 no 800 No 443 + 392 

Blue tit + 4496 - 8955 no 6716 - 8319 + 5585 

Great tit no 4359 no 4359 - 5112 - 7258 no 4103 

Starling + 117 + 532 Not available - 216 + 257 

Blackbird no 1498 no 1883 Not available No 1594 no 1343 

Song Thrush no 426 no 404 Not available No 383 no 295 

House sparrow - 289 no 517 Not available No 329 no 371 

Tree sparrow  no 1066 + 1328 Not available + 1204 - 672 
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Figure 1 Estimates with standard errors (SE) for Noise Score for models on clutch size, showing 
direction and significance of the effect. Significance of marginal tests (Wald test) for the Noise 
Score parameter is indicated as * for p ≤ 0.05, ** for p ≤ 0.01, *** for p ≤ 0.001. Estimates and 
SE have been standardised to facilitate comparison between species.  

 

Figure 2 Estimates with standard errors (SE) for Noise Score for models on brood size, showing 
direction and significance of the effect. Significance of marginal tests (Wald test) for the Noise 
Score parameter is indicated as * for p ≤ 0.05, ** for p ≤ 0.01, *** for p ≤ 0.001. Estimates and 
SE have been standardised to facilitate comparison between species.  
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Figure 3 Estimates with standard errors (SE) for Noise Score for models on laying date, showing 
direction and significance of the effect. Significance of marginal tests (Wald test) for the Noise 
Score parameter is indicated as * for p ≤ 0.05, ** for p ≤ 0.01, *** for p ≤ 0.001. Estimates and 
SE have been standardised to facilitate comparison between species. 

 

Figure 4 Estimates with standard errors (SE) for Noise Score for models on nest failure rate at 
the egg stage, showing direction and significance of the effect. Significance of marginal tests 
(Wald test) for the Noise Score parameter is indicated as * for p ≤ 0.05, ** for p ≤ 0.01, *** for 
p ≤ 0.001. Estimates and SE have been standardised to facilitate comparison between species.  
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Figure 5 Estimates with standard errors for Noise Score for models on nest failure rate at the 
nestling stage, showing direction and significance of the effect. Significance of marginal tests 
(Wald test) for the Noise Score parameter is indicated as * for p ≤ 0.05, ** for p ≤ 0.01, *** for 
p ≤ 0.001. Estimates and SE have been standardised to facilitate comparison between species.  
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4. DISCUSSION  

4.1  THE EFFECTS OF NOISE DEPEND ON SPECIES AND BREEDING VARIABLES. 

Of the eleven species whose reproductive success was analysed for this study, six exhibited 

negative effects in response to higher levels of territorial noise on at least one stage of their 

breeding cycle. Negative effects of traffic noise were found across all breeding parameters 

except laying date, but the most common negative effects were detected at the nestling 

stage, as four species experienced increased failures at higher levels of traffic noise. 

4.2  THE NESTLING STAGE IS THE MOST VULNERABLE TO FAILURE  

Nest failure at the nestling stage emerged as particularly vulnerable in relation to territorial 

noise, as four species with quite different phylogeny, vocal behaviour, and diets (blue tit; 

starling; stock dove; kestrel) experienced increased failure rates with increasing levels of 

territorial noise. Indeed, previous studies have found the post-hatching stages of the 

reproductive performance of birds to be vulnerable to anthropogenic noise. For example, 

noise has been associated with reductions in productivity in eastern bluebird (Sialia sialis) 

(Kight et al., 2012), impaired chick development in house sparrows (Schroeder et al., 2012), 

and reduced body condition in chicks of white-crowned sparrow (Zonotrichia leucophrys 

oriantha) (Crino et al., 2013). Noise has also been shown to affect nestling physiology, by 

altering corticosterone stress levels (Crino et al., 2013; Mulholland et al., 2018; Injaian et 

al., 2019), reducing immune response (Raap et al., 2017), and decreasing telomere length 

(Meillère et al., 2015; Salmón et al., 2016, 2017; Dorado-Correa et al., 2018).  

The increased rates of failure at the nestling stage observed in the present study could be 

arising from alterations on different aspects of the biology of the birds. However, reduced 

parental care and provisioning rate is the most likely process behind the failures observed 

in blue tit, starling, kestrel, and stock dove. Reduced parental care might be taking place 

through alteration of behavioural time budgets in the parents because of increased 

vigilance (Quinn et al., 2006), or through alterations in parent-offspring communication 

through acoustic masking (McIntyre et al., 2014). Noise has been shown to increase missed 

detections of parent’s arrival by the chicks (Leonard and Horn, 2012), and to affect the 

perception of begging calls, therefore decreasing food provisioning rates by the parent 
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(Schroeder et al., 2012). Masking might also be responsible for impaired communication of 

alarm calls, leaving nests more vulnerable to predation (Barber et al., 2010). Stock dove 

and kestrel were not negatively affected in the earlier stages of their breeding cycle, while 

blue tit and starling showed lower egg failure with increasing noise levels. The negative 

effects of anthropogenic noise on these species are therefore more likely the result of 

events taking place post hatching, rather than the result of pre-laying and pre-hatching 

noise-induced stress in the parents or of demographic patterns. In fact, if that had been the 

case, the earlier stages of the breeding cycle would likely have been negatively affected as 

well.  

Remarkably, increased failure at the nestling stage was found in species that have all been 

shown to breed in heavily urbanised or noisy areas (Stone, 2000; Sumasgutner et al., 2014). 

It is therefore possible that the fact that these species might be less likely to avoid noisy 

environments might be the reason why they are ultimately affected negatively at the 

nestling stage, when noise plays a role in affecting communication of vital vocal signals 

between offspring and parents. Direct evidence of impaired parent-offspring 

communication in high levels of traffic noise has indeed been found in blue tits, which show 

an increase in missed detections of parent arrival by the chicks, and a decrease in parental 

provisioning (Lucass and Eens, 2016).  

4.3  OTHER BREEDING STAGES CAN ALSO BE VULNERABLE 

Higher levels of noise exposure had deleterious consequences on all other breeding 

variables except laying date, suggesting that, depending on species, breeding performance 

can be adversely affected at all stages. Negative effects on other breeding variables, 

however, were much rarer and only associated with single species. Only house sparrows 

showed a decrease in clutch size with increasing anthropogenic noise levels. In this species, 

there is evidence for a decrease in telomere length (Meillère et al., 2015) and a decrease 

in the metabolic rate of nestlings exposed to noise (Brischoux et al., 2017), suggesting a 

direct effect of noise exposure, rather than an indirect effect through the quality of 

parental care. In these experimental studies, however, house sparrows were not able to 

choose quiet nesting sites, which might have otherwise resolved in noise avoidance or in a 

non-random distribution of individuals. Noise can change the age structure of populations, 
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resulting in younger and inexperienced birds breeding in noisier territories (McClure et al., 

2017). The finding that house sparrow laid smaller clutches in increasing noise levels might 

therefore mean that noisy territories are occupied by less experienced or less fit individuals, 

which are more likely to lay fewer eggs (Habib et al., 2007).  

Negative effects of noise on brood size were only found in kestrels. Smaller broods have 

been associated with lower parental investment, but also to anthropogenic noise being a 

physiological stressor for parents (Saino et al., 2005; Ware et al., 2015), resulting in less 

energy being invested in the offspring.  In kestrels, noise was also associated with increased 

failures at the nestling stage, suggesting that nutritional stress, possibly deriving from 

disruptions in communication, could be the most likely mechanism behind the negative 

effects seen for this species.  

Increases in failures at the egg stage were only detected in tree sparrows. Given that the 

same species showed larger clutch size and decreased nest failure at the nestling stage, this 

seems like a rather contradictory result.  Higher rates of failure at the egg stage caused by 

noise might be linked to pre-zygotic mechanisms related to parental quality, connected 

with the hypothesis that lower reproductive success might result from female investments 

being lower in response to actual or perceived male quality via male song performance 

(Halfwerk and Slabbekoorn, 2014). It is also possible that noisy territories might occur in 

concomitance with high levels of chemical pollutants such as heavy metals, which might 

affect male behaviour and fertility (Gorissen et al., 2005; Jackson et al., 2011). In captive 

breeding birds, nest failures at the egg stage have been linked to incubation failure 

(Birkhead et al., 2008), or might be due to poor egg quality, which is related to female 

condition and investment (Hayward and Wingfield, 2004; Krištofík et al., 2014). The specific 

results for this species, with clutch size being positively associated with increasing 

territorial noise scores, suggest that it is unlikely that male quality and consequent female 

investment played a role in increasing the rates of failure at the egg stage. Studies on free 

living populations suggest that failure at the egg stage might also be linked to reduced 

incubation effort and/or increased nest abandonment triggered by noise-induced higher 

stress levels in the parents (Spée et al., 2011; Thierry et al., 2013), or a trade-off between 

incubation and increased vigilance in noisy areas (Quinn et al., 2006; Meillere et al., 2015). 

This could indeed be a possibility for tree sparrows. As each breeding stage could involve 
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different mechanisms through which traffic noise may have an effect, it is also likely for 

each breeding stage to have different noise thresholds, and to respond to changes in noise 

amplitude and frequency in a different way.  

4.4  NOISE MIGHT HAVE A POSITIVE EFFECT THROUGH REDUCED COMPETITION AND 

PREDATION RISK 

Tree sparrow was not the only species that showed a correlation between breeding in 

noisier areas and higher success for some of the breeding variables. Positive effects of noise 

on breeding success were also observed in blue tits, starlings, and tawny owl, although for 

these species the effects mainly took place at the egg stage. This is not the first study to 

conclude that breeding birds might benefit from noise: spotted towhees (Pipilo maculatus), 

chipping sparrows (Spizella passerina) (Francis et al., 2009), and grey flycatcher (Empidonax 

wrightii) (Francis, Paritsis, et al., 2011) show increases in nest success with increased noise 

amplitudes, while nestlings of mountain white-crowned sparrows (Zonotrichia leucophrys 

oriantha) exposed to traffic noise have lower glucocorticoid levels and improved condition 

(Crino et al., 2013).  

A large number of studies suggests that noise from roads may exclude some species from 

otherwise suitable areas (Reijnen et al., 1995; Forman et al., 2002; Rheindt, 2003; Francis, 

Ortega, et al., 2011b), while simultaneously  playing a positive role for noise-tolerant 

species through reduced competition for food and nesting sites, and reduced predation risk 

(Francis, Paritsis, et al., 2011; Halfwerk et al., 2016). It is also possible that road structure, 

rather than noise, might have a positive effect by providing foraging habitat, song-posts, 

and perching spots for hunting activities (reviewed in Morelli et al., 2014). Yet, the same 

species might also suffer detrimental effects of road noise on their reproductive output, 

through the potential negative effects on parental care mentioned above. As breeding birds 

may benefit from noise while also experiencing harmful effects, quantifying the impact of 

noise on populations and communities becomes a particularly complex task. Further work 

is needed in order to assess how and if noise affects breeding habitat assessment and 

choice in relation to other environmental cues, and on how the interaction between 

anthropogenic noise and the abundance of competitors, prey, and predators might affect 

the breeding performance of birds.  
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4.5  UNAFFECTED SPECIES OR UNDETECTED EFFECTS? 

For some of the species considered (barn owl, blackbird, and song thrush) there was no 

evidence for an effect of traffic noise on their breeding success. This is somewhat 

surprisingly for blackbird and song thrush, as these are two highly vocal species for which 

noise has been associated to change in vocal behaviour (Mendes et al., 2011). However, 

for barn owl, the sample size was as small as 56 breeding events for brood size, so caution 

should be applied in interpreting a lack of detectable effect in the models as an actual lack 

of effect.  

While previous experimental studies have found a lack of effect on the reproductive output 

and chicks of some noise-tolerant species (Meillere et al., 2015; Angelier et al., 2016; 

Halfwerk et al., 2016; Casasole et al., 2017), it is also possible that some effects might still 

be taking place on aspects of the breeding performance that this correlative study could 

not measure. For example, Injaian et al., 2018 found that anthropogenic noise affected 

parental behaviour, body condition, and oxidative stress in nestlings of tree swallows 

(Tachycineta bicolor), but ultimately found no effect on fledging success. The data used for 

this study does not allow any consideration on nestling condition, on fledging success, or 

on post fledging survival, which have been shown to be negatively associated with 

anthropogenic noise in a number of species (Kight et al., 2012; Schroeder et al., 2012; Crino 

et al., 2013).  

It is also possible that unaffected species might be entirely absent from noisier areas, and 

that the breeding events recorded largely took place in relatively quiet territories. Vice 

versa, in species particularly sensitive to noise, territories classified with a low score might 

have already been above the threshold at which negative effects would take place, and 

therefore a lack of effect might simply have reflected a negative effect on the entire 

population breeding around roads. For example, a series of experiments replicating the 

soundscape of a highway while controlling for other road effects, showed that even a noise 

level considered moderate (~55 dB(A), 24Leq at 50 meters) was enough to alter the 

distribution (McClure et al., 2013), age structure (McClure et al., 2017), and body condition 

of birds (Ware et al., 2015).  

4.6  CONCLUSIONS  
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This is the first large-scale study that, using citizen-data, shows a complex, species-specific 

relationship between intensity of anthropogenic noise and breeding performance. The 

underlying mechanisms for the relationships between breeding history and intensity of 

traffic noise remain to be determined; however, by looking at which stages of the breeding 

cycle are most affected, it is possible to infer hypotheses on how traffic noise might play a 

role in affecting reproduction. The prevalence of negative effects on the nestling stage 

suggests this period might be particularly vulnerable to the negative impacts of 

anthropogenic noise. Birds depend on acoustic communication for both their reproduction 

and their survival (Catchpole and Slater, 2008), and the potential of urban noise to 

acoustically mask parent–offspring communication might be one of the leading causes for 

some of the negative effects observed.  

This chapter highlights the importance of considering the stage of breeding when studying 

the effects of noise on birds, as species that might appear not to be affected by noise when 

looking at a specific stage might be experiencing negative effects on another. By 

transcending individual and population level, this study gives evidence for the fact that the 

ecological effects of anthropogenic noise exposure extend over a much larger scale than 

ever shown before, and it highlights an even more pressing need for the implementation 

of noise mitigation measures around roads.  



Chapter 5. Noise impairs the perception of the fine structure of birdsong.  

 

96 
 

CHAPTER 5. 
NOISE IMPAIRS THE PERCEPTION OF THE FINE 

STRUCTURE OF BIRDSONG 
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Abstract  

Bird song can have extremely complex acoustic structures, details of which may convey a 

variety of information, including pertinent information about the signaller’s quality. 

Perception of these details may affect decisions made by receivers in territorial defence and 

mate choice. The fine structure of songs makes birds susceptible to masking by background 

noise, and whether the message that they convey is perceived or not may have major 

consequences for their reproductive success. This chapter uses a series of playback 

experiments to test whether song consistency, a performance trait conveyed in the fine 

structure of song and important in sexual selection, is perceived under different noise 

conditions.  I found that blue tits (Cyanistes caeruleus) are affected in the assessment, but 

not in the detection of conspecific song stimuli under noisy conditions, depending on noise 

level and frequency range. In particular, high-level white noise and high-frequency noise 

that overlapped with the spectrum of the songs were responsible for degrading song 

assessment, which instead took place when no background noise was added to the 

playbacks, and in low-level and low-frequency background noise. This study shows that one 

of the processes through which noise affects birds might be the masking of the fine 

structure of songs. The consequent loss of information conveyed in the fine 

structure can lead to decreased fitness, highlighting the importance of further 

understanding the effects of noise on communication from a receiver’s perspective. 
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1. INTRODUCTION  

Anthropogenic noise is an invisible source of habitat degradation that has become  

increasingly pervasive and detrimental for wildlife (Francis and Barber, 2013), and that is 

mainly produced by transportation systems, industrial plants, resource extraction, and 

urban development (Ellis, 2011).  In particular, transportation networks (such as airports, 

roads and railways) are widespread sources of noise across many habitats, and  traffic noise  

has become a significant selection pressure on acoustic communication in birds occupying 

noisy territories (Slabbekoorn and Ripmeester, 2008). While animals have evolved to 

communicate in the presence of natural noise, this novel source of acoustic pollution differs 

from natural noise in  temporal, spectral and amplitude patterns (Barber et al., 2010), and 

may therefore make adaptive responses problematic or impossible. 

Acoustic communication plays a vital role in mediating many aspects of the life of animals 

related to survival and reproductive success (reviewed in Bradbury and Vehrencamp, 

1998). In particular, birds rely on complex, species-specific songs for vital behaviours such 

as territorial defence and mate attraction (Catchpole and Slater, 2008). Birds also use 

vocalisations for parent-offspring communication (Kilner and Johnstone, 1997), 

communication with flock members (Ritchison, 1983), and for warning other individual of 

predators (Marler, 2004b). Reliance on acoustic communication for these crucial 

behaviours renders birds vulnerable to any disruption of efficient transmission and clear 

perception of acoustic information. One of the main mechanisms through which ambient 

noise affects communication is through acoustic masking. This phenomenon occurs when 

the perception of a signal is altered by the presence of background noise, and can be 

defined as the impairment of detection and discrimination of sounds by other sounds 

(Kleist et al., 2016). 

Because of the fundamental functions of vocal signals in birds, any interference in the 

transmission of vocalisations can have fitness costs. These include increased risk of 

predation when the detection of alarm calls is impaired (Francis et al., 2009; Lowry et al., 

2012), and decreased breeding success when parent–offspring or parent–parent 

communication is disturbed (Leonard and Horn, 2008; Halfwerk et al., 2012). Ambient noise 

may for example mask the sender's signal when females are choosing a mate, leading to 
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suboptimal mate choice and lower reproductive success (Halfwerk, Holleman, et al., 2011). 

Birds also use songs to signal their fighting ability and motivation to attack in the context 

of territorial and mate defence (Lambrechts and Dhondt, 1986). Subtle acoustic variation 

may mediate aggressive interactions and prevent physical conflicts, risk of injuries, and 

waste of energy (Smith and Price, 1973; McGregor, 2000). Any deterioration in the 

recognition of such signals might mean that males are no longer able to efficiently deter 

competitors and avoid costly physical conflicts, with fitness consequences for both the 

owner of the territory and the intruder. 

Much of the literature on communication in anthropogenic noise has focussed on the 

behavioural adjustments and adaptations of the sender, and on the importance of 

conveying vocal information less likely to be masked by anthropogenic noise. Several 

studies have shown that anthropogenic noise influences the distribution of species based 

on the frequency of their songs, where especially bird species that sing songs with lower 

frequencies, that are more likely to overlap with anthropogenic noise, avoid noisy habitats 

(Goodwin and Shriver, 2010; Francis, Ortega, et al., 2011b; Proppe et al., 2013; Francis, 

2015). Moreover, it is now well established that urban-dwelling birds are able to adjust the 

structure and performance of their singing behaviour, by which they compensate for high 

levels of anthropogenic noise (reviewed in Brumm and Zollinger, 2013).  For example, a 

number of bird species are able to shift song frequencies, duration, amplitude, and timing 

of singing (eg. Nemeth and Brumm, 2010; Rheindt, 2003; Slabbekoorn and Peet, 2003).  

In order to understand the effects of fluctuating ambient noise on acoustic communication, 

it is equally important to study the receiver’s ability to detect, discriminate and recognise 

different vocalisations under different noise conditions. Laboratory based studies have 

shown that, under urban noise conditions, detection thresholds increase by up to 18 dB 

and vary with the spectral shape between signal and experimental noise bands, (Lohr et 

al., 2003; Pohl et al., 2009). Thresholds for discrimination with low-frequency noise maskers 

were shown to be better when high-frequency elements were present in the signal (Pohl 

et al., 2012). Acoustic energy in or near the frequency range of the signal plays a greater 

role in raising the masked threshold of a signal than in spectral ranges far from the signal 

(see Dooling, Fay and Popper, 2000 for review). It is however important to mention that 

these laboratory studies did not seek to replicate realistically natural conditions of birds 
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exposed to real traffic noise, but rather focused on understanding the main principles 

behind it. Under field conditions, the ability of receivers to perceive vocal signals is highly 

variable, and depends on the spectral and temporal variations of traffic noise, but also on 

the type of habitat and vegetation, on the weather conditions, and on the behavioural 

changes that both signallers and receiver might implement in order to improve 

communication (reviewed in Dooling and Blumenrath, 2014). For example, traffic noise is 

not continuous (Klump, 1996), and some birds might take advantage of quieter windows to 

communicate (Brumm, 2006b; Arroyo-Solís et al., 2013; Dominoni et al., 2016), or 

comodulate their vocal signals to noise amplitude fluctuations.  

The effect of ambient noise on receivers has only began to be studied in the field in the last 

decade (eg. Phillips and Derryberry, 2018). Evidence that ambient noise levels affects the 

entire process of communication, and not just the behaviour of the sender, has come from 

field-based experiments in European robins (Erithacus rubecula), which have shown that 

the songs  in response to playbacks of conspecific songs decreased in complexity and 

increased in pitch in simulated traffic noise conditions (McMullen et al., 2014). Other field 

playbacks have shown that territorial defence behaviours in response to conspecifics’ songs 

are altered by noise from wind turbines (Zwart et al., 2016) and compressor sites (Kleist et 

al., 2016). 

While these studies support the hypothesis that receivers must modify their behaviour to 

adjust to noise, they only explore one aspect of masking, which is the detection of vocal 

signals. However, hearing is a more complex process than the simple detection of a sound. 

Birds do not only need to detect acoustic signals, but they also have to discern between 

signal senders (discrimination), and assess the quality of the signal (recognition) (Dooling 

and Blumenrath, 2014). Such processes come with different thresholds, which might mean 

that, even when songs are detected, the information they convey (such as the quality of 

the singer, its fighting ability, and its motivation) might be lost, as this information is often 

carried in subtle spectral and temporal characteristics of the song (Podos, 1997; Botero et 

al., 2009; de Kort, E. R.B. Eldermire, et al., 2009).  

Birds’ vocalisations may include a variety of simple and complex signals, which comprise of 

short notes and calls, but also long and elaborated songs (reviewed in Catchpole and Slater, 
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2008). Birds have the ability to perceive the complexity and fine details of these 

vocalisations, especially their own species-specific vocalisation (Lohr et al., 2003), and are 

sensitive to  fine-grained, multidimensional acoustic differences (Brown et al., 1988). 

Research shows that birds use vocal production as an honest signal of quality, in order to 

achieve a quick assessment of other individuals (Gil and Gahr, 2002). Indeed, vocal 

production requires fine and accurate coordination of the respiratory airflow, and 

modulation of their  syrinx and other vocal trait structures (Riede and Goller, 2010). Vocal 

displays are therefore subject to physical constraints, such as biomechanical limits 

occurring during their production or during song learning and development, so that their 

execution might be linked to information about the condition, quality,  and motivation of 

the signaller (reviewed in Podos et al., 2009). Different traits of birdsong might be subject 

to vocal constraints and function as indicators of vocal performance. For example, the 

production of larger and more complex song repertoires (Nowicki et al., 1998; S. et al., 

2002), the rate of vocal production (Geberzahn et al., 2010), and the ability to produce 

physically challenging signals, such as low-pitch songs (Geberzahn et al., 2009; Hall et al., 

2013), high amplitude songs (Brumm and Todt, 2004), or the consistency in performing 

recurring vocal elements (Botero et al., 2009; de Kort, E. R.B. Eldermire, et al., 2009) have 

all been identified as indicators of condition in birds (Nowicki et al., 1992, 1998; Gil and 

Gahr, 2002).  

One song trait that can function as an indicator of birds’ vocal performance is the ability to 

produce virtually identical repetitions of songs or song components, known as song 

consistency (Botero and de Kort, 2011). Song consistency has been shown to provide 

reliable information about the quality of a signaller, and can be correlated with males’ 

phenotypic quality and competitive abilities, such as body size, condition, or age (Gil and 

Gahr, 2002). This song performance trait has been linked to age (Lambrechts and Dhondt, 

1986; Botero et al., 2009; de Kort, E. R.B. Eldermire, et al., 2009; Rivera-Gutierrez et al., 

2010), social status (Christie et al., 2004; Botero et al., 2009), and better early-life 

conditions  in a number of species (Lambrechts, 1997; Nowicki et al., 1998; Holveck et al., 

2008). In white-crowned sparrows (Zonotrichia leucophrys), song consistency has also been 

shown to vary in response to infection from parasites, suggesting that, in some species, it 

might reflect variations in the physical and health conditions of the singer (Gilman et al., 
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2007). Evidence also suggests that consistency plays a role in sexual selection (Byers, 2007; 

Cramer et al., 2011) and that birds that sing with high consistency fare better in relation to 

reproductive success (Byers, 2007). It is likely that this song trait might be perceived and 

used by the receivers in sexual selection as an indicator of the quality of a conspecific. For 

example, male receivers of banded wrens (Thryophilus pleurostictus) and great tit (Parus 

major) respond differentially to playback stimuli that vary only in song consistency (de Kort, 

E. R.B. Eldermire, et al., 2009; Rivera-Gutierrez et al., 2011), and females of banded wrens 

prefer extra-pair mates with more consistent songs (Cramer et al., 2011).  

For this study, I focused on trill consistency, a song trait that has received particular 

attention in recent years (eg. Moseley et al., 2013; Phillips and Derryberry, 2018, 2017; 

reviewed in Podos et al., 2009; Botero and de Kort, 2011;). The trill of a song is a section 

consisting of rapidly repeated, almost identical short notes (Podos and Nowicki, 2004). 

Because the production of identical repetitive notes requires a precise coordination of 

vocal tract movement and airflow (Riede et al., 2006), trill performance is the result of a 

trade-off between how quickly a bird can repeat the trill notes and the frequency 

bandwidth of each note (Podos, 1997). Given that the assessment of the quality (a process 

hereby defined as recognition) of a trilled vocal signal would depend on the assessment of 

fine changes in the temporal and spectral structure or the trill, it is possible that this process 

might be particularly vulnerable to masking by noise.  

In the current study, I conducted two field experiments to test whether territorial blue tits 

(Cyanistes caeruleus) recognise differences in song consistency at different levels 

(Experiment 1) and different frequency bands (Experiment 2) of background noise. In 

experiment 1, the aim was to determine if blue tits recognise variations in trill consistency 

under natural, ambient noise conditions (referred to as no-noise) and two experimentally 

elevated levels of anthropogenic noise (referred to as low- and high-level noise). In 

experiment 2, the aim was to test if blue tits recognise variation in trill consistency with 

two different types of noise with the same bandwidth but energy at non-overlapping and 

overlapping frequencies (referred to as low- and high-frequency noise respectively).  

2. METHODS  
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2.1 STUDY SITE AND POPULATION 

The study was conducted over two breeding seasons in 2017 and 2018. Experiment 1 was 

conducted over both breeding seasons, while experiment 2 was conducted entirely over 

the 2018 breeding season. The subjects belonged to a nest-box breeding population within 

the grounds of Lancaster University, United Kingdom (54°0’ N, 02°7’ W). The site contains 

several woodland patches, in which 115 wooden nest boxes have been installed as part of 

ongoing research into the breeding biology of blue tits (Leech et al., 2001; M. C. Mainwaring 

and Hartley, 2008). The majority of blue tits in this population are colour ringed for 

individual identification. This allowed to avoid accidentally sampling the same individual 

twice for the same noise treatment. However, some individuals were sampled twice across 

different noise treatments.  

Blue tits are small passerines that readily nest in boxes when these are provided. Females 

select the site and build the nest, which usually consist of a base layer of moss and plant 

matter, and a nest cup lining materials such as grass, hair, and feathers (Britt et al., 2017).  

Male blue tits are facultatively polygynous (Kempenaers et al., 1997), and they reach their  

peak in singing activity shortly before and during the first few days of egg laying, which 

coincides with the fertile period of females (Poesel et al., 2001).  

Nest-boxes were visited at least once every 4 days from the beginning of April in order to 

establish when the first eggs were laid, assuming a laying rate of one egg per day (Cramp 

and Perrins, 1993; Mainwaring and Hartley, 2016). All experiments were conducted on 

territorial males whose nests were complete, or in which egg laying had started. This 

breeding phase corresponds to a period of high responsiveness towards conspecific song, 

as blue tits are more motivated to defend their territory and mates from potential 

intruders, in order to avoid extra pair copulations (Amrhein et al., 2008), which in this 

population occur at a rate of 11.7% of chicks, or 39.8% of broods (Leech et al., 2001). 

Experiments were only performed on individuals whose nest-boxes were located in 

relatively quiet areas, where the average noise levels measured were less than 55 dB(A). 

Ambient noise amplitude levels had been previously measured by Andrew Wolfenden 

(Wolfenden, 2016 unpublished) after the dawn chorus and between the hours of  7 and 8 

am. Measurements were taken from the top of the nest-boxes at each site using a Tenma 
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72-947 data logging sound level meter (A-weighting, fast response, and 30–100 dB settings; 

accuracy ±1.4 dB).  

2.2 STIMULI DESIGN 

In order to test whether blue tits recognise variation in song performance under different 

noise conditions, two sets of song stimuli varying in consistency were created: a control  

and a consistent set of songs. The stimuli were generated by using songs with a clear, high-

pitched trill or tremolo,  consisting of a quick repetition of short notes at a very rapid rate 

(Doutrelant et al., 2000; 1). The ability to repeat such trill notes with the minimum amount 

of variation is defined as trill consistency (de Kort, E. R.B. Eldermire, et al., 2009).   

In order to avoid pseudo-replication (Kroodsma et al., 2001), a total of 10 songs were 

selected from recordings of different males. These recordings were made in 2012 at the 

same site using a Marantz PMD661 professional solid-state recorder and a Sennheiser 

ME67 directional microphone (WAVE format, 44.1 kHz sampling rate, 16-bit amplitude 

encoding). Upon visual assessment of the spectrograms, songs were selected only from 

recordings with high signal to noise ratio, by using the software package Avisoft-SASLab Pro 

(5.2.09; R. Specht, Berlin). A high pass filter (lower cut-off frequency at 1.0 kHz) was applied 

to the trilled songs in order to eliminate low frequency background noise from the 

recordings.  

 

Figure 1 Spectrogram of song stimuli used in consistency experiments. Spectrogram was created in Avisoft (Avisoft 
Bioacoustics, Berlin, Germany) using the following parameters: fast Fourier transform 512, frequency resolution 8 Hz, 
Hamming window, overlap 8. 

 

A pair of song stimuli (treatment and control) was created by manipulating the same song, 

using Avisoft-SASLab Pro, in order to control for effects on responsiveness by any other 
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song variable (such as syllable type, song structure, broad frequency, and syntax). In this 

way, I also controlled for other variables that may influence territorial response strength, 

such as sound intensity, song rate, and song length (Kroodsma et al., 2001). In order to 

simulate the natural maximum sound intensity of vocalising blue tits, the output sound 

pressure level was adjusted for the stimuli to be broadcast at 64 dB(A) at 10 metres (Poesel 

et al., 2004), measured with a sound pressure level meter. All selected songs had three 

introductory notes followed by eight trill notes, and subsequent songs were separated by 

an interval of 1.8 to 2.0 seconds, which is within the range of natural songs recorded in 

2012.  

For the control song stimulus, trill consistency of the song was measured as the average 

spectral cross-correlation (SPCC) of individual trill notes (1) with the software Avisoft-

CORRELATOR. Only songs with a mean SPCC ≤ 0.8 (i.e., low consistency) were used as 

controls. The consistent song stimulus was generated using Avisoft-SASLab Pro (5.2.09; R. 

Specht, Berlin) by replacing all trill notes in the control song with its 3rd trill note at the 

same rate and the same number of times. This resulted in a consistent song stimulus with 

an SPCC of 1. To control for potential effects caused by this operation, the control stimulus 

was also manipulated by copying the trill notes of the original song and placing them back 

in the same order and rate. Similar stimulus design has been used before in playback 

experiments (Ríos-Chelén and Garcia, 2007; de Kort, E. R.B. Eldermire, et al., 2009; Rivera-

Gutierrez et al., 2011; Cramer, 2013; Reichert and Ronacher, 2015). 

2.3   PLAYBACK PROCEDURE 

The same playback procedure was applied for both experiment 1 and experiment 2. The 

song playback trials simulated territorial intrusions and were carried out at least 60 minutes 

after sunrise (between 0600 and 1200 hours DST) and at dusk (between 1800 and 2100 

hours DST), after locating focal individuals in proximity to their nest-boxes.  For each trial, 

the subject was exposed to both stimuli, the consistent songs and the control songs, using 

a FoxPro Fusion portable field speaker (FOXPRO Inc., Lewistown, Pennsylvania 17044, USA). 

This paired design controlled for individual differences in behaviour and other variables 

that may affect response strength, such as time of the day and atmospheric conditions. 

Subsequent trials were never conducted on a neighbouring territory. Trials were ended 
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whenever a subject was out of sight for longer than 30 seconds, and the same subject was 

not re-tested within 24 hours. 

The trials started with a pre-playback observation period of one minute. In the playbacks 

with background noise, this time was also used as a habituation phase during which the 

noise gradually increased, reaching its maximum amplitude by the time the first song 

stimulus started.  This pre-playback period was then followed by two consecutive sets of 

playbacks and post-playback observation periods (Figure 2). The first playback period 

consisted of one minute of either control or consistent songs, followed by a 2 and a half 

minutes post-playback observation period. After this time, the second playback period 

started, with either a set of control or consistent songs, depending on what type of song 

had been presented in the first playback period. In fact, to allow for testing of order effects, 

the order in which they were presented was alternated between subsequent trials. 

Through preliminary tests, it was established that the 2.5 minutes allocated for the 

observation period would also provide sufficient time for the behaviours elicited by the 

first playback to avoid carryover effects. This is within the range used in other similar 

playback studies in blue tits, e.g. 1 min (Bolton, 2007), 5 to 15 minutes (Poesel et al., 2006), 

10 min (Ríos-Chelén and Garcia, 2007).  

 
Figure 2 Experimental design of a song playback trial in paired design that included a pre-playback observation period, 
two stimulus presentation periods, followed by response observation periods. 

2.4 EXPERIMENT 1 – NOISE LEVEL EXPERIMENT  

Experiment 1 was carried out over the two breeding seasons 2017 and 2018. It consisted 

of a total of three sets of playbacks in different noise conditions: ambient noise (defined as 

no-noise), low-level noise, and high-level noise, to test for recognition of consistent and 

control song stimuli for three signal-to-noise ratios (Error! Reference source not found.3 

A). As explained in the playback procedure, for each noise condition, the response of 

individual birds was tested for both control and consistent stimuli. However, no same 



Chapter 5. Noise impairs the perception of the fine structure of birdsong.  

 

107 
 

individual was tested across the different noise conditions. For example, individuals tested 

under ambient noise condition were not tested under low-level or high-level noise.  

Ambient noise. The first set of playbacks presented the song stimuli (control and 

consistent) at normal ambient noise conditions, with no additional noise. 

The other two sets of playbacks presented the song stimuli in combination with a full 

spectrum (0 – 22 000 Hz) masking white noise (WAVE format, 44.1 kHz sampling rate, 16 

bit amplitude encoding), which was synthesised digitally using the software Audacity 

(Audacity Team, 2018). The stimuli playbacks were merged into a single track with the 

white noise. The choice of full spectrum white noise rather than a band-pass filtered noise, 

aimed at focusing exclusively on the effects of noise at different noise amplitudes excluding 

other potential factors. 

High-level noise. For the high-level noise, the root mean square of the masking noise was 

15 decibels lower than the maximum of the stimulus. This noise level was based on studies 

on speech recognition in humans, which have found that word recognition is best achieved 

at a signal to noise ratio (SNR) between 10 dB to 15 dB range (Rogers et al., 2003; 

Freyaldenhoven et al., 2006). The upper limit of SNR for speech recognition in humans was 

chosen because assessment of trill performance requires the ability to recognise fine 

spectral structural differences which go beyond speech recognition in humans (Dooling, 

2004).  

Low-level noise. For the low level noise playbacks, the root mean square of the noise was 

25 decibels lower than that of the stimulus, a value that in humans allows for comfortable 

speech recognition  (Cooper and Cutts, 1971).  

2.5 EXPERIMENT 2 – NOISE FREQUENCY BAND EXPERIMENT  

Experiment 2 consisted of two sets of playbacks in different noise conditions: high-

frequency noise and low-frequency noise, to test for recognition of consistent and control 

song stimuli with non-overlapping and overlapping noise spectra (Figure 3 B). For both sets, 

the background noise was set to 15 dB below the maximum sound level in the stimulus, 

which is the same level as for the high-level noise playbacks in Experiment 1. As for 

experiment 1, for each noise condition the response of individual birds was tested for both 
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control and consistent stimuli. No same individual was tested across the different noise 

conditions. 

High-frequency noise. For the high frequency noise playbacks, the background noise was 

created in order to overlap the spectral range of the signal. The minimum and maximum 

frequency for the trill notes of the songs were measured to generate a noise spectrum that 

overlapped the trill frequency distribution of the songs used as stimuli. The minimum 

frequency across all song trills was 3530 Hz, and the maximum frequency was 7750 Hz. A 

masking noise with a bandwidth of 3500 Hz was generated by band passing the white noise 

from experiment 1 between 3670 and 7170 Hz (roll-off of 6 dB per octave), using a TDT PF1 

module in Audacity software (Audacity Team, 2018). This particular frequency distribution 

was selected in order to allow for spectral overlapping of the trill while also keeping the 

same bandwidth for high and low frequency noise.  

Low-frequency noise. For the low frequency noise playbacks, the background noise was 

created in order to avoid overlap in the spectral range of the signal. The bandwidth for this 

masking noise was also 3500 Hz, but shifted towards lower frequencies. The white noise 

was band-passed between 0 and 3500 Hz (roll-off of 6 dB per octave), using a TDT PF1 

module. Because traffic noise is weighted towards lower frequencies (<1400 Hz) (Wood 

and Yezerinac, 2006), this bandwidth resembles the frequencies encountered in noisy 

traffic conditions. In mammals, noise energy concentrated in lower frequencies can still 

have masking effects on higher-frequency channels due to the upward spread of masking  

(Moore, 1997), while the reverse is less likely to be true (Lohr et al., 2003). By using low-

frequency noise, this experiment may help understanding the effect of traffic noise on 

avian acoustic communication. 
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Figure 3 Spectrogram and waveform of song stimuli and background noise used in A) Noise level experiment and B) 
Noise frequency experiment. Spectrograms were created in Avisoft using the following parameters: fast Fourier 
transform 512, frequency resolution 8 Hz, Hamming window, overlap 8. 

2.6 RESPONSE MEASURES TO PLAYBACK 

During each trial, vocal behaviour and spoken observations of other behaviours of the focal 

male were recorded (WAVE format, 44.1 kHz sampling rate, 16-bit amplitude encoding) 

using a Marantz (Longford, Middlesex, UK) PMD661 professional solid-state recorder 

connected to a Sennheiser ME67 (Wedemark, Lower Saxony, Germany) directional 

microphone. The following response parameters were measured: the number of songs, the 

time spent within a 5-meter radius from the speaker, the number of flights directed 

towards the speaker, and the response latency, measured as the time between the start of 

a stimulus and the first occurrence of a vocalisation or flight.  

2.7 STATISTICAL ANALYSIS  
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The behavioural response data were checked for having a normal distribution using a 

Shapiro-Wilk test. Because the data were not normally distributed, non-parametric tests 

were used for statistical analysis. To test whether the stimuli elicited a response regardless 

of noise condition in the playback, Wilcoxon signed-rank tests with continuity correction 

were used to compare the 60 seconds pre-playback period with the first 60 seconds of the 

first playback periods. Wilcoxon signed rank tests with continuity correction were used in 

order to examine differences in response to each of the playback treatments (consistent 

and control). The sequential Bonferroni correction (Rice, 1989) was used to correct for 

multiple testing across different behavioural response parameters. All test results reported 

reflect two-tailed tests and were performed using R (R Development Core Team, 2015).  

3. RESULTS 

3.1 EXPERIMENT 1– NOISE LEVEL EXPERIMENT  

In total, 65 individuals were tested for both consistent and control stimuli presented in 

alternating order. Of these individuals, 22 were tested in no-noise conditions, 22 in low-

level noise conditions, and 21 in high-level noise. No effect of order of exposure to stimuli 

was found on any of the response variables (number of songs: W = 436.5, n1 = n2 = 65, p = 

0.94; number of flights: W = 417, n1 = n2 = 65, p = 0.71; time spent within 5 m: W = 334, n1 

= n2 = 65, p = 0.34; response latency: W = 495, n1 = n2 = 65, p = 0.41).  

To establish whether the stimuli were detected in all background noise conditions, blue tit 

behaviour was compared between the pre-playback and the first minute of the first trial.  

Comparing the pre-playback to the first minute of the first trial period showed that, in all 

three levels of background noise, the stimuli elicited an increase in the three response 

measures (See  

Appendix D Table ; Figure 4). For no-noise conditions, the stimuli elicited an increase in the 

number of territorial songs (W = 169, n1 = n2 = 22, p < 0.001), the number of flights (W = 

190, n1 = n2 = 22, p < 0.001), and the time spent within a 5 m radius from the speaker (W = 

43, n1 = n2 = 22, p < 0.05).  Likewise, in the low-level noise condition the stimuli elicited an 

increase in the number of songs (W = 154, n1 = n2 = 22 p < 0.001); number of flights (W = 
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190, n1 = n2 = 22, p < 0.001); and time spent within a 5-meter radius (W = 21, n1 = n2 = 22 p 

< 0.05). For the high-level noise condition, the stimuli elicited an increase in the number of 

songs (W = 170, n1 = n2 = 21, p < 0.001); number of flights (W = 230, n1 = n2 = 21, p < 0.001); 

and time spent within a 5-meter radius (W = 54, n1 = n2 = 21, p < 0.05).  

When tested for recognition between songs with different levels of consistency, blue tits 

produced more songs in response to consistent than control stimuli under the no-noise 

condition (W = 181.5, N = 22, p < 0.05) and the low-level noise condition (W = 244, N = 22, 

p < 0.05), but not for the high-level noise conditions (W = 118, N = 21, p = 0.94).  No 

differences were observed in the other response parameters under any of the treatments 

(Figure 5; see Appendix D Table 2 for details of test statistics).  
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Figure 4 Comparison of (A) number of songs, (B) number of flights and (C) time within 5 m of playback speaker following 
playback of conspecific songs to blue tits (Cyanistes caeruleus) under different noise conditions, namely no-noise, low-
level and high-level noise. In all three levels of background noise, there are significant differences between the pre-
playback and the playback periods for all three response measures. * indicates a significant difference between pre 
playback and post playback period after sequential Bonferroni correction for multiple testing.  
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Figure 5 Comparison of (A) number of songs, (B) number of flights and (C) time within 5 m of playback speaker and (D) 
response latency in response to control and consistent conspecific songs to blue tits (Cyanistes caeruleus) under 
different noise conditions, namely no-noise, low-level and high-level noise. Blue tits produce more songs in response 
to consistent than control stimuli under the no-noise condition and the low-level noise condition (W = 244, N = 22, p < 
0.05), but not for the high-level noise conditions * indicates significant a difference between control and consistent 
stimuli after sequential Bonferroni correction for multiple testing. 

3.2 EXPERIMENT 2 – NOISE FREQUENCY BAND EXPERIMENT  

In total, 41 individuals were tested for both consistent and control stimuli. No effect of 

order was found on any of the response variables measured. Of the 41 individuals tested, 

20 were tested in high-frequency background noise, and 21 in low-frequency background 

noise conditions.  

Comparing the pre-playback to the first minute of the first trial period showed that, for 

both types of background noise, the stimuli elicited an increase in all three response 

measures recorded (Figure 6; Appendix D Table 3). For high-frequency conditions there was 

an increase in the number of territorial songs (W = 20, n1 = n2 = 20, p < 0.05), the number 

of flights (W = 6.5, n1 = n2 = 20, p < 0.001), and the time spent within a 5 m radius from the 

speaker (W = 3, n1 = n2 = 20, p < 0.05).  Likewise, under low- frequency conditions there 

was a significant increase in the number of songs (W = 34, n1 = n2 = 21, p < 0.05); number 

of flights (W = 16.5, n1 = n2 = 21, p < 0.001); and time spent within a 5-meter radius (W = 3, 

n1 = n2 = 21, p < 0.05).  
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Figure 6 Comparison of (A) number of songs, (B) number of flights and (C) time within 5 m of playback speaker following 
playback of conspecific songs to blue tits (Cyanistes caeruleus) under High frequency and low frequency noise 
conditions. In all three levels of background noise, there are significant differences between the pre-playback and the 
playback periods for all three response measures.  * indicates a significant difference between pre-playback and post-
playback period after sequential Bonferroni correction for multiple testing. 
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When tested for detection of acoustic variation between two songs with different levels of 

consistency, blue tits produced more songs in response to consistent than control stimuli 

under low frequency noise conditions (W = 190, N = 21, p < 0.05), but not under high 

frequency noise conditions (W = 113.5, N = 20, p = 0.23). No differences were observed in 

the other response parameters under any of the treatments (Figure 6; see Appendix D 

Table 4 for details of test statistics).  
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Figure 7 Comparison of (A) number of songs, (B) number of flights and (C) time within 5 m of playback speaker and (D) 
response latency in response to control and consistent conspecific songs to blue tits (Cyanistes caeruleus) under low-
frequency and high frequency noise conditions. Blue tits produce more songs in response to consistent than control 
stimuli under low frequency noise conditions but not under high frequency noise conditions. * indicates a significant 
difference between control and consistent stimuli after sequential Bonferroni correction for multiple testing. 

4.  DISCUSSION 

Blue tits are affected in the recognition, but not in the detection of conspecific song stimuli 

under noisy conditions, depending on noise level and frequency range. Since subtle spectral 

information in bird song plays a role in sexual selection, these results imply that 

anthropogenic noise may cause suboptimal decision making in blue tits. Blue tits sang more 

songs in response to consistent compared to control stimuli under no-noise, low-level 

noise, and low-frequency noise. This difference in behaviour was not found under high level 

and high frequency background noise. Both the level dependent and frequency dependent 

results, show that the impact is related to reduced audibility and not to other potential 

factors such as distraction, agitation, or anxiety.  

4.1 MASKING OF PERCEPTION IN THE FIELD 

The results of this study provide field-based evidence that background noise has the 

potential to affect the assessment of vocal performance by the receiver. Most research on 

the impact of background noise on songbird auditory perception has been conducted in 

controlled laboratory conditions by using operant conditioning techniques (Lohr et al., 

2003; Pohl et al., 2009, 2012). However, while this approach provides the best instrument 

to accurately measure detection and discrimination thresholds (Langemann et al., 1998; 
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Lohr et al., 2003; Pohl et al., 2012), the perception of vocal signals is deprived of its context, 

and therefore prevents accurate understanding of the ecological consequences of signal 

disruption. This study focuses on the effects of acoustic masking from experimentally 

introduced noise in a natural population, and thus provides an understanding of the 

biological relevance of noise-induced failure to recognise differences in vocal performance 

in a natural context.  

The results show detection of song in the presence of masking noise, but noise-dependent 

lack of song recognition. Blue tits responded to the stimuli under all treatments, showing 

that detection of the signal occurred under all noise conditions. Previous studies on song 

detection of natural vocalisations have shown that a signal to noise ratio (SNR) as little as 

3 dB is sufficient for detection in background noise (Brenowitz, 1982; Lohr et al., 2003). 

While actual SNRs for effective detections in the field are likely to be higher than values 

measured in laboratory conditions (Lohr et al., 2003), the noise levels in the current 

masking experiment were well below the recorded thresholds for signal detection.  

In no-noise and low-level noise conditions, blue tits exhibited a different response to the 

stimuli differing in consistency, showing the ability to discriminate between different levels 

of vocal performance. Blue tits gave stronger responses to high-consistency songs, by 

singing more in response to the consistent stimuli (Searcy and Beecher, 2009). The 

playbacks simulated a territorial intrusion, so the differential response can be interpreted 

as a difference in the focal individual’s perception of the simulated competitor’s ability and 

motivation. An intruder with a high-consistency song may pose a stronger threat than an 

individual with a low-consistency song, and it might therefore motivate blue tits to protect 

their territory and breeding mate. These results are consistent with those observed in 

earlier studies focusing on the importance of song consistency during male-male 

encounters in songbirds. For example, banded wrens also show a different vocal response 

to simulated intruders with different levels of consistency (de Kort, Erin R.B. Eldermire, et 

al., 2009), and great tits  respond more aggressively and approach more closely in response 

to more consistent songs (Rivera-Gutierrez et al., 2011). 
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4.2 MASKING OF RECOGNITION, BUT NOT DETECTION  

The results for playbacks complement earlier research that addressed detection and 

discrimination as a trade-off, and it show that noise has the potential to affect the 

assessment of vocal performance. This study shows that, at noise levels that allow for 

comfortable detection of an intruder’s vocal signal, the message carried in the fine acoustic 

structure of the signal (which allows the receiver to assess the quality of another individual) 

might still be lost. In the context of mate-choice, several studies have suggested that, in 

noisy conditions, there might be a shift in favour of detection of vocal signals rather than 

their discrimination. High-frequency songs are better audible in low-frequency noise, but 

low-frequency songs may be an honest signal of quality, and therefore high-quality males 

may become unable to distinguish themselves spectrally from competitors under noisy 

conditions (Ríos-Chelén, 2009; Halfwerk, Bot, et al., 2011; Huet des Aunay et al., 2013). In 

the context of male competition and territorial defence, increases in background noise 

levels also appear to affect behaviour through noise-dependent disruption of the acoustic 

signals reaching the receiver (McMullen et al., 2014; Kleist et al., 2016). In particular, a 

recent study on white-crowned sparrows (Zonotrichia leucophrys), suggests that ambient 

noise might affect the assessment of vocal traits related to individual performance, as this 

species had to approach the simulated intruders closer in the presence of noise (Phillips 

and Derryberry, 2018).  

4.3 MASKING AND NOT DISTRACTION? 

It has been suggested that it is possible that distraction from noise plays a role in causing 

changes in territorial behaviour, and combined with masking, may have an additive effect 

in degrading the recognition of the information conveyed within a signal (Chan et al., 2010). 

Nevertheless, results from the frequency band experiment suggest the possibility that 

masking could have been solely responsible for the failure to recognise differences in trill 

consistency in blue tits. For the same overall noise level, assessment of consistency only 

occurred in low-frequency masking noise without spectral overlap. One limitation to this 

interpretation is that high-frequency overlapping noise might have been more distracting 

than low-frequency noise. However, while masking occurs primarily when noise is at a 

similar acoustic frequency to that of the signal (Brumm and Slabbekoorn, 2005), distraction 
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can occur regardless of the acoustic frequency of noise (Francis and Barber, 2013). The 

results from this study on wild birds are consistent with laboratory masking studies, 

showing that noise energy overlapping the frequency region of a vocal signal has a much 

stronger effect in raising the masked thresholds for detection, discrimination and 

recognition, when compared to noise energy at spectral regions distant from the signal 

(Dooling and Blumenrath, 2014). Because masking ratios are highly variable among species, 

frequencies, and type of noise and signal (Dooling, 2004), it is difficult to compare these 

specific results of this study directly with laboratory studies. However, laboratory studies 

generally show a monotonic decline in the intensity of the response with increasing 

amplitude of overlapping white noise, up to a threshold past which birds no longer respond 

to a signal (Lohr et al., 2003; Dooling and Blumenrath, 2014). On the other hand, the degree 

of distraction is not necessarily related to the amplitude in the same way as signal masking 

and can be affected in a much different way by characteristics of noise such as its constancy 

in time and frequency (Naguib, 2013). For example, while fluctuating noise might facilitate 

signal detection and recognition during periods of lower noise amplitudes, the same 

fluctuations, when unpredictable, can instead be more distracting and take away attention 

from the signal (Talling et al., 1998; Purser and Radford, 2011).  

4.4 FREQUENCY SHIFTS MAY ALSO IMPROVE RECOGNITION 

These findings also support the observation that the shifts of vocal signals towards higher 

frequencies might be a strategy in order to avoid masking by anthropogenic noise, which is 

typically biased to low frequencies in the 0–3 kHz range (Wood and Yezerinac, 2006; 

Goodwin and Podos, 2013). Several observational and experimental studies have 

hypothesised that birds might deliberately increase the minimum frequency of their songs 

to avoid masking by low-frequency anthropogenic noise (reviewed in Brumm and 

Slabbekoorn, 2005; Gil and Brumm, 2013; Patricelli and Blickley, 2006; Ríos-Chelén, 2009). 

Studies have found that, under noisy conditions,  high pitched songs are indeed easier to 

detect and discriminate, and are more effective in triggering female responses (Halfwerk, 

Bot, et al., 2011; Pohl et al., 2012). However, whether the extent to which an increase in 

pitch is a response to noise or a by-product of singing at higher amplitudes in noise has 

been the subject of debate (Nemeth and Brumm, 2010; Cardoso and Atwell, 2011; Zollinger 

et al., 2012; Nemeth et al., 2013). Indeed, studies have found that, at least in some species, 
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frequency and amplitude are coupled in bird vocalisations, so that as vocal amplitude 

increases due to the Lombard effect, so does frequency (Amador et al., 2008; Amador and 

Margoliash, 2013; Beckers et al., 2003; but see Cardoso and Atwell, 2011; Zollinger et al., 

2017). It is also possible that, in the low-frequency noise typical of cities, higher pitched 

songs are simply more likely to be heard because of partial masking release, and therefore 

more likely to be learned and to be transmitted across generations (reviewed in Blickley 

and Patricelli, 2012). Whether a deliberate change in pitch, a coincidental by-product of 

higher amplitude, or the result of noise-related cultural or microevolutionary shifts, if 

recognition of vocal signals is mainly driven by frequency masking, frequency shifts towards 

higher pitched songs  may constitute an advantage not only in terms of detection, but also 

in terms of assessment of vocal performance by the receiver.  

When discussing potential implications of frequency-dependent masking, it is important to 

bear in mind that, while the frequency spectrum of most types of anthropogenic noise 

tends to be concentrated towards lower frequencies, it also encompasses frequencies that 

could overlap with vocalisations located at relatively high frequencies (Can et al., 2010). 

While it appears that only the high-frequency masking noise affected the ability to 

recognise differences in song consistency in blue tits, the background noise levels for this 

playback were well below the levels that birds living near busy roads might be exposed to. 

Birds exposed to high levels of anthropogenic noise might still encounter masking of 

recognition through the high frequency contained in traffic noise. A further field study using 

digitally synthesised noise with an acoustic spectrum designed to simulate traffic noise, 

such as that designed by Lohr et al. (2003), would be important in order to explore this 

aspect. Finally, another question that this study leaves unanswered is whether low 

frequency noise at a higher level than that used for this playback, might have masked 

recognition. In this study, birds were presented with playbacks in which the amplitude was 

regulated based on the A frequency weighting scale. While this filter provides an estimate 

of bird hearing (Dooling and Popper 2007), it was developed to approximate human 

loudness perception and may not have been the most appropriate for this species (Swaddle 

et al., 2015).  It is therefore possible that blue tits might not have perceived the low-

frequency noise used in this study as loudly as the high-frequency noise.  Moreover, 

because of the upward spread of masking, noise energy concentrated in lower frequencies 
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can have masking effects at higher-frequency channels (Kinsler et al., 1999). In future 

studies, it would be interesting to test the ability of birds to assess song quality at higher 

levels of low-frequency background noise.  

4.5 CONCLUSIONS 

In many birds species, song plays a vital role in processes directly related to their fitness, 

such as mate choice and territorial defence (reviewed in Collins, 2004). The complexity and 

the structural details of songs are what birds ultimately use to mediate sexual selection.  

Any alteration in the perception of songs can therefore lead to significant fitness 

consequences. This study shows that some of these fine structural details (trill consistency) 

can be masked by anthropogenic noise above certain levels with overlapping frequencies. 

Noise has therefore the potential to affect sexual selection, with potentially far-reaching 

consequences on the reproductive success and overall fitness of the individuals affected.  

The results of this study add to a growing body of evidence showing noise-induced changes 

in the behaviour of receivers in natural conditions, in the context of mate-choice (Halfwerk, 

Bot, et al., 2011; Halfwerk, Holleman, et al., 2011; Huet des Aunay et al., 2013), territorial 

defence (McMullen et al., 2014; Kleist et al., 2016; Phillips and Derryberry, 2018), and 

parent-offspring communication (Leonard et al., 2015; Lucass and Eens, 2016). This 

research highlights the importance of understanding the receiver’s role when studying the 

effects of noise pollution on wildlife, not just in its ability to detect signals, but also in more 

complex processes such as discrimination and recognition. 
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1. KEY FINDINGS AND THEIR IMPLICATIONS 

The primary aim of this thesis was to address some of the outstanding questions in our 

understanding of the effects of noise on birds’ reproductive success and communication. 

This is the first study to provide evidence on a large geographical scale and for a 

heterogeneous number of species that anthropogenic noise affects the reproductive 

performance of birds, and that the nestling stage is particularly susceptible to this 

pollutant. This thesis also gives experimental evidence that noise impairs the ability of birds 

to recognise fine structural differences in their songs, suggesting that anthropogenic noise 

affects processes of sexual selection and possibly reduces optimal mate choice, and 

therefore highlighting to importance of better understanding communication on the 

sender and the receiver’s side.  

1.1 A MISMATCH BETWEEN NEST STE SELECTION AND BREEDING PERFORMANCE    

The first aim was to investigate nest-site selection, nest-site fidelity, and breeding success 

in a population of songbirds exposed to traffic noise over multiple years. This was 

addressed in Chapter 2, which found that, although blue tits were more likely to breed in 

nest-boxes exposed to higher noise levels, the number and the body weight of chicks 

fledged declined at higher levels of noise exposure. Although blue tits’ nest site fidelity 

decreased in noisier areas, they did not move to quieter nest boxes, suggesting that 

relocating individuals did not use noise level for decisions about resettlement in 

subsequent years. These results highlight how there might be a mismatch between nest-

site choice and breeding performance. As anthropogenic noise constitutes a relatively 

novel environmental pressure, species might not have had sufficient time to evolve 

adaptive responses. Noise level may therefore not be used as an indicator of habitat 

quality, and instead blue tits may be relying on other environmental cues, such as foraging 

opportunities and presence of predators, to evaluate territory quality and select nest sites 

(Francis and Barber, 2013). If birds do not respond adaptively  to anthropogenic noise, by 

settling in noisy habitats that would otherwise appear to be suitable, they might end up 

being caught in an ecological trap, causing them to experience lower breeding success 

(Schlaepfer et al., 2002). 
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The presence and abundance of species are common metrics used for the environmental 

impact assessment of anthropogenic activities. While these measures are fundamental to 

assess the status of populations, the results of this thesis imply that simple surveying 

techniques might not be sufficient to measure the full spectrum of effects of such a novel 

environmental pollutant, and that they should therefore be accompanied by programmes 

monitoring direct measures of fitness.   

1.2 A WIDER LOOK AT THE CORRELATION BETWEEN NOISE AND BREEDING 

PERFORMANCE 

A second aim of this thesis was to develop a methodology to investigate the effects of 

traffic noise at a large geographical scale, in order to be able to apply it to a number of 

different breeding monitoring schemes and test the relationship between traffic noise and 

potential changes at various stages of breeding in different species. Chapter 3 established 

a valuable method to monitor the impact of noise pollution using data that, thanks to the 

efforts of volunteers on monitoring programmes, is available on a national scale for 

multiple countries. As anthropogenic noise exposure has emerged as an environmental 

priority for human health and wellbeing (Berglund et al., 2000), environmental agencies 

worldwide have been developing soundscape maps around major roads, airports, and 

railways. These can be implemented to assess the effects of anthropogenic noise not just 

in terms of changes in spatial distribution, but also in terms of fitness, and to provide a cost-

effective way to predict the impact of noise as urbanisation and transportation networks 

expand.  

Chapter 4 applies the method developed in Chapter 3 to increase our understanding of 

species-specific responses, providing results that help generalise the consequences of noise 

exposure on the reproductive success of birds. This chapter shows that negative effects of 

noise on breeding performance are common amongst different taxonomic groups and can 

be present at all the stages of reproduction monitored for this study. The nestling stage 

stands out as the most vulnerable, as it emerged that most of the species affected 

experienced negative effects in terms of fledgling success. Remarkably, the one common 

aspect shared by these taxonomically diverse species (namely blue tits, starlings, kestrels, 

and stock doves) is their persistence in noisy and heavily urbanised areas (Patón et al., 
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2012; Strasser and Heath, 2013; González-Oreja, 2017). This corresponds to the findings of 

Chapter 2 on blue tits, emphasising how species presence in noisy environments should 

not be confused with successful breeding and fitness in noisy conditions. As proposed in 

Chapter 2, this is likely taking place through alterations in parental care towards the chicks, 

whether in terms of food provisioning, number of visits, or time spent with the chicks. As 

anthropogenic noise can mask crucial vocalisations such as food, alarm, and begging calls, 

the impairment of parent-offspring communication might play a key role in causing 

breeding efforts to be more likely to fail as noise levels increase (McIntyre et al., 2014; 

Leonard et al., 2015). It is indeed possible that species defined as “noise-tolerant” because 

they are commonly found in noisier environments, might be the ones where the impact of 

noise on breeding is more likely to take place at the nestling stage, when communication 

between parents and their chicks is most important. In species that do avoid anthropogenic 

noise, any negative effects might instead occur at earlier stages, either via a non-random 

distribution of individuals, resulting in higher quality birds breeding in quieter areas, or 

alternatively through individuals that persist in noisier areas experiencing stress, or seeing 

their ability to defend territories and attract mates decreased (Halfwerk and Slabbekoorn, 

2014).  

The findings of this chapter emphasise the importance of considering all stages of breeding 

when assessing the consequences of noise on reproductive success.  What might appear as 

a species not vulnerable to noise when looking at one specific aspect of their breeding, 

might actually be experiencing negative effects at a different stage. Understanding what 

stages of reproduction are most susceptible to noise is therefore important to inform 

conservation, so that efforts to limit the effects on human-generated noise can be focused 

on times during which each specific species are most vulnerable.  

Moreover, the results of this thesis also suggest the need to understand the fitness 

implications of noise on a more diverse set of species. Unfortunately, current studies of the 

impacts of anthropogenic noise have focused on only a small subset of bird taxa. Because 

noise pollution is so pervasive, examining only a subset of families does not allow us to fully 

understand the effects of anthropogenic noise. Exploring a more diverse set of families with 

differing traits will allow for a more robust analysis in determining how traits contribute to 
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responses to anthropogenic noise. My results confirm the view that more data exploring 

the impacts of anthropogenic noise on a wider set of species is needed (Francis et al. 2012). 

1.3 A POTENTIAL MECHANISM AFFECTING REPRODUCTIVE SUCCESS 

The aim of Chapter 5 was to test if songbirds are able to recognise fine structural difference 

in the song of a conspecific under different noise conditions. This allowed to explore the 

effects of noise not only in term of detection, but also on the ability of birds to assess song 

quality, a process just as vital as detection in terms of territorial and mate defence and 

mate attraction. This chapter provides new field-based evidence that masking noise affects 

the receiver by impairing their assessment of a potential intruder’s vocal performance. It is 

therefore important to consider the fact that impairment of vocal communication can take 

place at noise levels where the detection of acoustic signals is possible while their 

assessment is difficult or even impossible (Dooling and Popper, 2007). Birds inhabiting 

noisy habitats are more likely to be exposed to noise levels that impair the assessment of 

songs and other vocalisations rather than their detection. It is therefore possible that 

masking of elements that allow signal assessment, rather than masking of their detection, 

is the main culpable for the decrease in survival and reproduction that have been linked to 

impairment of acoustic communication.  While the study in this thesis focused on song, 

similar processes might also be occurring for other vocal signals such as begging or alarm 

calls. Poor assessment of these signals might affect individual fitness as a result of 

decreased antipredator behaviour, poor flock cohesion, or reduced parental care 

(McGregor et al., 2013).  

1.4  COMBINED MEANING OF THE FINDINGS AND CONSERVATION IMPLICATIONS  

Although an ever-growing body of studies show negative effects of anthropogenic noise on 

bird fitness and reproductive success, this thesis wanted to pin down the scale of these 

effects. I developed a big data approach, informed by citizen science, to monitor any 

correlations between the intensity of traffic noise and the reproductive output of common 

European bird species. By looking at individuals in a natural population, I explored some of 

the potential processes driving the correlations between anthropogenic noise and changes 

in reproductive success. By simultaneously looking at nest site selection and reproductive 

success in a natural population exposed to a noise gradient, I aimed at getting a better 
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insight into what might happen to populations that settle in noisy habitats. For the same 

species and population, I also looked at how noise might affect the correct transmission of 

important vocal sexual signals.  

Together, the findings of the thesis suggest the presence of widespread negative effects on 

reproduction, which likely transcend differences in traits and which might even apply to 

species that, based on their presence in urban environments, have been identified as urban 

adapters or exploiters (Conole, 2014). I showed that a species typically found in urban and 

noisy habitats, the blue tit, might be experiencing a mismatch between the choice of 

nesting site and the fledging success and body mass of their fledglings. This indeed opens 

up the possibility that some species considered urban adapters might instead be in the 

presence of an ecological trap, whereas there is a discrepancy between the environmental 

cues they use to select habitats and the actual habitat quality (Schlaepfer et al., 2002). This 

is of particular concern, because in the presence of an ecological trap populations tend 

toward extinction, as animals abandon better quality habitats to settle in inferior ones 

(Battin, 2004). Finally, this thesis supports the possibility that the negative impact of noise 

on reproduction could be associated to its impact on communication. I show that, through 

masking, anthropogenic noise could be inhibiting the efficient assessment of vocal 

performance and therefore interfere with territorial and mate defence, and with mate 

selection (reviewed in Kight and Swaddle, 2011). While not tested in this thesis, other types 

of vocal communication essential for survival might also be impacted by noise, which can 

affect not only the detection but also the discrimination and recognition of vocal signals. 

For example, communication between parents and their offspring, essential to offspring 

survival (Lucass and Eens, 2016), might also be affected in similar ways to those tested in 

the last chapter of this thesis.  Linking the impairment of the correct assessment of vocal 

signals to reproduction and reproductive success is therefore fundamental for a deeper 

understanding of the downstream effects of anthropogenic noise. 

As decreased individual fitness may translate into severe consequences in terms of 

population viability (Francis and Barber, 2013), it becomes important to relate the adverse 

impacts of noise to conservation and noise management. The work of this thesis is relevant 

to policy makers and conservationists in their decisions about noise mitigating efforts 

related to environmental impact assessment. Legislation on wild birds in Europe already 
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prohibits the deliberate disturbance of breeding and rearing birds (EU Birds Directive; 

Council of the European Union, 2009). Given the spatial extent of the problem identified in 

this thesis, it would be essential to extend this legislation to specifically incorporate 

anthropogenic noise. Seasonal restrictions to traffic or other noise-generating human 

activities in locations where declining species are known to breed could greatly help 

mitigate the impacts of noise.  This study also gives some indicative threshold of sensitivity 

to noise. Noise levels above 70 dB(A) have significant impact on breeding success of blue 

tits, a species commonly found in noisy and urban environments. In species that are more 

sensitive this threshold is likely to be lower. Furthermore, at lower noise levels, difficulties 

in signal assessment arise, and communication between individual is affected, most likely 

with indirect effects on their fitness. 

1.5 CAN BIRDS TRULY ADAPT TO ANTHROPOGENIC NOISE? 

The results of this thesis suggest that the reproductive success of species that persist in 

noisy environment and that might display vocal adjustments in the presence of 

anthropogenic noise might nevertheless be affected. In this light, it is important to 

understand if their vocal adjustments truly are adaptive. Avian species have long been 

exposed to loud natural sounds caused by physical processes such as wind, rain, or other 

forms of moving water (e.g., streams, waterfalls, surf). Noise can also be the result of the 

vocalisations of other conspecifics or heterospecific, which might lead to an even greater 

acoustic overlap than that of noise from abiotic sources. Where birds have been exposed 

to similar noise patterns over multiple generations and existed in these noisy environments 

for a long time, populations have succeeded in adjusting to these natural physical 

constraints to increase communicative efficiency (Nemeth and Brumm, 2010). Birds use a 

variety of strategies to avoid signal masking in areas with high levels of natural noise, 

including adjustments in song timing, structure, and performance.  For instance, the large-

billed leaf warbler (Philloscopus magnirostris) (Martens and Geldudig, 1990) and the white-

throated dippers (Cinclus cinclus) (Brumm and Slabbekoorn, 2005) use particularly high 

frequencies well above those generated by the fast-running streams and torrents in their 

habitats. This is thought to be the result of these abiotic noise sources acting as a selection 

pressure and driving the evolution of their vocalisations. Although there are many other 

benefits to singing at dawn (reviewed in Catchpole & Slater, 2008), it has also been 
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observed that, in habitats where the occurrence  of rain and wind follow somehow 

predictable patterns, the singing activity of some species might be linked to these noise 

patterns (Henwood and Fabrick, 1979). Biotic sources of noise might constitute an even 

greater pressure on birds’ vocal communication, inducing them to adjust their songs and 

calls (Tobias et al., 2010), and to develop strategies to improve communication on both the 

signaller and the receiver end (eg. Aubin & Jouventin, 2002; Greenfield, 2005; Schmidt & 

Balakrishnan, 2014). 

Given the fact that birds have successfully adapted to cohabiting with non-human noise, it 

is possible that similar processes might be taking place as an adaptation to anthropogenic 

noise. As highlighted in the introduction to this thesis, changes in vocal signals in response 

to anthropogenic noise have been observed both as a result of individual plasticity and of 

microevolutionary changes (reviewed in Brumm & Zollinger, 2013). For example, many 

studies provide evidence for a link between song frequency use and anthropogenic noise 

(reviewed in Slabbekoorn, 2013). This could mean that singing at high frequencies, or at 

least reducing the use of low frequencies that are more likely to be masked by traffic noise, 

may provide signalling and fitness benefits in noisy urban areas. One compelling example 

of the adaptive value of song adjustment is the work of Halfwerk et al., 2011, which showed 

experimentally that, although low-frequency songs are preferred by females of great tits 

and are and linked to female fecundity, exposure to traffic noise impairs the effectiveness 

of low-frequency songs and favours higher-pitched songs. 

It is however important to be particularly careful when drawing conclusions on whether 

signal adjustments are indeed adaptations to anthropogenic noise. Firstly, the correlations 

between song characteristics and an increased signal to noise ratio observed in the field 

might not always be the result of an adaptation to human-generated noise.  For example, 

it has been demonstrated that increases in song frequency are less effective at reducing 

masking by anthropogenic noise than increases in amplitudes(Nemeth and Brumm, 2010). 

At least in some species, the higher frequencies observed in urban birdsong could be a 

physiological side-effect of singing louder (eg. Verzijden et al., 2010; Zollinger et al., 2017; 

but see Cardoso & Atwell, 2011) . Moreover, song adjustments in urban habitats may lead 

to trade-offs between natural selection, which determines signal adaptations, and sexual 

selection for attractive signals (Slabbekoorn and Ripmeester, 2008). Indeed, even when 
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vocal adjustments are efficient in decreasing signal-to-noise ratio, changes in these sexually 

selected traits might be associated with losses in vocal performance, and therefore the 

costs of song adjustments may outweigh their benefits. For example, males of white-

crowned sparrow (Zonotrichia leucophrys nuttalli) occupying louder territories increase the 

minimum frequency of their songs in response to anthropogenic noise by reducing the 

bandwidth of their trills. This results in lower performance songs (Luther et al., 2015; 

Phillips and Derryberry, 2018) and might negatively affects male-male interactions. In male 

house wrens (Troglodytes aedon) (Grabarczyk et al., 2018) only paired males increase their 

peak frequency in response to noisy playbacks while unpaired males do not, suggesting 

that unpaired males may sacrifice detectability for attractiveness, with a trade-off between 

vocal performance and transmission distance.   

Anthropogenic noise constitutes an very recent challenge on an evolutionary level, and, 

while it is true that some species might be more likely to tolerate noisy environments based 

on their vocal traits (eg. Cardoso et al., 2018; Hu & Cardoso, 2010; Rheindt, 2003), this does 

not necessarily mean that these species might thrive in noisy environments. Indeed, while 

birds do possess a wide range of strategies to mitigate the effects of anthropogenic noise, 

these adaptations most likely originate from adaptations to non-anthropogenic noise, and 

might fall short in the face of this novel environmental pollutant (McGregor et al., 2013). 

Urban, noisy environments pose a fundamentally different challenge than natural 

environments (Isaksson, 2018), as they keep changing as human populations expand and 

develop. Even when birds might adapt, or at least adjust, to living in urban environments, 

the constant alteration of these environments poses and ever-changing challenge to 

wildlife.  

2. MOVING FORWARD: CONSIDERATIONS FOR FUTURE RESEARCH 

The effective discrimination and detection of vocal signals other than songs (such as 

copulation, alarm, begging, contact, and alarm calls) is just as vital in determining the 

chances of survival and reproductive success of individuals. While not much research in the 

field has worked on teasing apart song assessment and detection, even less in known about 

this aspect when it comes to other important vocalisations (Ortega, 2012). Throughout this 

thesis, parent-offspring communication was often brought up as a possible explanation as 
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to why the nestling stage consistently emerged as particularly susceptible to anthropogenic 

noise exposure. While there is  evidence that detection of parental calls and begging calls 

is affected by noise (eg. McIntyre et al., 2014; Templeton et al., 2016), little is known about 

the consequences of alterations in the discrimination and recognition of these vocal signals. 

Differences in begging calls influence parental feeding decisions (Leonard and Horn, 2001), 

and alarm calls contain information about the type of threat (Evans et al., 1993), which 

might require different behavioural responses. Playback experiments testing not only 

detection, but also the assessment of the messages conveyed in these kinds of vocal signals 

would help highlight some of the additional mechanisms that play a role in determining 

fitness declines in noisy environments.  

Taken together, the results of the chapters on breeding success show an overall negative 

association between noise and breeding performance. However, while the design of this 

thesis allowed exploring the effects of noise over a large international scale, it is important 

to acknowledge the fact that it does not allow drawing definite conclusions about the 

causes of the negative relationships observed. In order to provide conclusive evidence on 

the causal relationship between anthropogenic noise and changes in breeding success, an 

experimental approach would be required.  A possible method would be to create a 

playback study with a design similar to the “phantom road” developed by McClure et al. 

(2013), which simulated traffic noise in an otherwise road-less landscape. The authors used 

this method in a series of studies to show that traffic noise alone could cause avoidance, 

changes in age structure, and changes in body conditions (McClure et al., 2013, 2017; Ware 

et al., 2015), but the same experimental design could be used to test the effects of traffic 

noise on nest-site choice and breeding over multiple generations.  

Another possible area of future research would be to use the same method developed in 

Chapter 3 to integrate other environmental pollutants (such as atmospheric and light 

pollution) that can exert a pressure on fitness, and that may have played a role in enhancing 

some of the changes observed in relation to noise. This would help to disentangle the 

effects of noise from those related to other environmental factors that might co-vary with 

noise. Light levels and atmospheric pollution are also being monitored and can be modelled 

in order to assess the extent of their impact on humans. This might open up possible 

interdisciplinary collaborations between GIS experts, environmental agencies, and 
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biologists. Integrating this information could also potentially generate a predictive 

instrument to calculate the impact of transportation networks before they are developed, 

and to contain their effects. Given that urbanisation is predicted to grow, such a model 

could be particularly useful to assist scientists, natural resource managers, industry, and 

policy makers to predict the potential outcomes of urban planning on biodiversity, and to 

promote sustainable growth as well as implementing meaningful thresholds and help 

mitigate the negative impact of urbanisation. 

2. CONCLUSIONS 

The results of this thesis address fundamental questions in behavioural ecology, and 

applied questions relevant to environmental impact assessment and government policy 

concerning noise pollution and conservation biology. Anthropogenic noise might cause 

birds to fall into ecological traps by choosing to breed in otherwise suitable habitats, 

leading to decreased breeding performance and degraded communication. Even species 

that might appear less sensitive to noise might experience negative consequences. It 

therefore becomes critical to assess the effects of noise beyond presence or absence, in 

the context of other measures of impacts such as reproductive success and changes in 

communication. By introducing a novel observational approach, and extending the 

experimental approach to aspects of acoustic communication that have yet to be fully 

understood, this thesis widens our understanding of what we know about the effects of 

noise exposure. As habitat loss and the effects of human-induced changes in climate 

currently threaten many species across the globe with an uncertain future, accurately 

understanding the effects of changes in the acoustic environment will increasingly become 

an essential element to guarantee habitat suitability for vulnerable populations and 

communities. 
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Appendix A 

 

Appendix A Figure 1 Correlation Matrix of predictors initially considered for GLMMs on breeding variables. On top are 
shown the correlation values. On bottom, the bivariate scatterplots, with a fitted line. P-values of the correlation test 
are given in the table below. 

 

Appendix A Table 1 Table of correlation coefficients and relative p-values of predictors initially considered for GLMMs 
on the breeding variables.  

 
Laying date Mean Temp Rainfall Road distance Noise 

Laying date 
 

-0.42834 -0.07459 0.046563 -0.02926 

Mean Temp 0 
 

-0.17435 0.018978 -0.02107 

Rainfall 0.0541761 5.92E-06 
 

-0.03554 0.023274 

Road distance 0.2297695 6.25E-01 3.60E-01 
 

-0.89651 

Noise 0.4506478 5.87E-01 5.48E-01 0 
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Appendix A Table 2 Generalized linear mixed model (GLMM) investigating the relation between sound level measured 
at the nest-box and a) Clutch size, b) Laying date, c) Number of Fledglings and d) Average Mass of nestlings at day 15. 
Only breeding events that took place in nest-boxes for which the closest road was the M6 are included. Significant 
effects are in bold. 

Clutch size Predictors* Estimates std. 
Error 

CI t-value p 

N=497 (Intercept) 9.265 0.18 8.90 – 9.63 50.4 <0.001 

 Noise -0.480 0.23 -0.93 – -0.03 -2.11 0.035 

 Road Distance -0.729 0.23 -1.18 – -0.28 -3.17 0.002 

 Laying Date -0.986 0.1 -1.18 – -0.80 -10.18 <0.001 

 Average 
Temp. 

-0.400 0.18 -0.76 – -0.04 -2.2 0.028 

 Average 
Rainfall 

-0.153 0.18 -0.51 – 0.20 -0.85 0.394 

No. Fledglings Predictors* Estimates std. 
Error 

CI z-value p 

N=454 (Intercept) 1.914 0.468 2.71 – 16.96 4.093 4.26E-05 

 Noise -0.128 0.059 0.78 – 0.99 -2.177 0.0295 

 Road distance -0.146 0.061 0.77 – 0.97 -2.406 0.0161 

 Laying Date -0.143 0.029 0.82 – 0.92 -4.889 1.01E-06 

 Average 
Rainfall 

-0.219 0.077 0.69 – 0.93 -2.848 0.0044 

 Average 
Temp. 

-0.053 0.040 0.88 – 1.03 -1.332 0.1829 

 Clutch Size 0.087 0.013 1.06 – 1.12 6.866 6.59E-12 

Average mass Predictors* Estimates std. 
Error 

CI t-value p 

 (Intercept) 10.376 0.22 9.95 – 10.81 47.41 <0.001 

N=231 Noise -0.161 0.16 -0.48 – 0.15 -1 0.316 

 Road Distance -0.342 0.16 -0.66 – -0.02 -2.11 0.035 

 Laying Date -0.557 0.09 -0.72 – -0.39 -6.51 <0.001 

 Average 
Rainfall 

0.274 0.24 -0.19 – 0.74 1.15 0.25 

 Average 
Temp. 

-0.115 0.24 -0.59 – 0.36 -0.48 0.634 

 Clutch Size -0.294 0.07 -0.44 – -0.15 -4.05 <0.001 

 

*all fixed effects are scaled 
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Appendix B 

Appendix B Table  1 The annual number of blue tit nests contributing to estimates of first egg date, brood size, clutch size, and failure rates at the egg and nestling stage, for the UK 
(Wales and England). 

 

Region Parameter 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 All Years 

England Laying days 183 259 217 191 356 343 443 456 478 515 529 456 4426 

 Clutch size 132 162 145 173 227 300 390 343 359 380 439 332 3382 

 Brood size 296 357 324 332 458 632 571 591 707 727 756 714 6465 

 Egg fail 214 287 282 280 431 482 490 540 615 653 689 584 5548 

 Yng fail 275 333 312 316 455 575 531 585 638 691 691 630 6032 

 Total 414 508 423 486 635 798 824 808 932 997 1038 977 8840 

Wales Laying days 26 34 43 43 54 56 69 59 88 158 134 86 850 

 Clutch size  16 25 16 18 27 35 39 22 62 109 96 75 1120 

 Brood size 35 50 68 52 56 67 69 60 158 187 178 140 540 

 Egg fail 32 51 50 44 49 69 73 53 148 171 171 106 1117 

 Yng fail 33 45 38 48 56 66 69 52 150 147 136 100 940 

 Total 42 70 93 62 70 85 99 71 200 238 231 163 1424 
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Appendix B Table  2 The annual number of blue tit nests contributing to estimates of first egg date, brood size, clutch size, and failure rates at the egg and nestling stage, for the 
Netherlands. 

Region Parameter 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 All Years 

Netherlands Laying days 41 37 28 43 34 91 88 90 96 170 92 87 96 993 

 Clutch size 38 31 6 34 19 86 77 88 95 164 91 87 92 908 

 Brood size 9 9 4 27 18 68 67 71 62 105 72 65 73 650 

 Egg fail 41 37 22 35 28 92 85 88 95 167 93 81 94 958 

 Yng fail 41 29 18 30 31 75 69 67 55 82 68 45 68 678 

 Total 41 37 28 43 34 91 88 90 96 170 92 87 96 1003 
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Appendix B Table  3 Habitat classification system used for GLMMs, compared to BTO habitats and habitat codes as 
used in the Nest Record Scheme (Crick, 1992). Habitats in light grey did not appear in the records used for the analysis. 

Habitats as 
grouped for 

analysis 

BTO Main Habitat BTO 
Habitat 
Codes 

BTO Habitats 

Woodland 

Woodland (more 
than 5 m tall)  

A  Woodland 

A1 Broad-Leaved Woodland 

A2 Coniferous Woodland 

A3 Mixed Woodland 

A4 Broadleaved Water-Logged Woodland 

A5 Coniferous Water-Logged Woodland 

 A6 Mixed Broadleaved And Coniferous Water-Logged 
Woodland 

Urban/Suburban 
Human sites F  

 F1 Human Sites 
  F2 Suburban 

Open 

Human sites F3 Rural 

Scrubland (or very 
young woodland 
less than 5 m tall) 

B  Scrubland 

B1 Devastated/Regenerating Woodland/Scrub. 

B2 Chalk Downland Scrub 

B3 Heath Scrub 

B4 Young Coppice 

B5 New Plantation Scrub 

B6 Clear-Felled Woodland With/Without New Saplings 
 B7 Other Scrub 

 Semi-Natural 
Grassland and 
Marsh 

C  Semi-Natural Grassland And Marsh 

C1 Chalk Downland 

C2 Upland Grassland/Grass Moor (Unenclosed) 

C3 Grass Moor Mixed With Heather (Unenclosed) 

C4 Machair 

C5 Other Dry Grassland 

C6 Wet Field Vegetation/ Water Meadow, Grazing 
Marsh 

C7 Reed swamp 

C8 Fen, Other Open Marsh 

C9 Saltmarsh 

Heathlands & Bogs D  Heathlands And Bogs 

Farmland 
 
 
 
 
 
 

E  Farmland 

E1 Apparently Improved Grassland 

E2 Apparently Unimproved Grassland 

E3 Mixed Grass/Tilled Land 

E4 Tilled Land 

E5 Orchard 

 E6 Other Farming 

Water-bodies 
(freshwater) 

G  Waterbodies (Freshwater) 

G1 Pond (Less Than 50 m2) 

G2 Small Water-Body (50-450 m2) 

G3 Lake/Unlined Reservoir 

G4 Lined Reservoir 

G5 Gravel Pit, Sand Pit, etc. 

G6 Stream (Less Than 3 m Wide) 

G7 River (More Than 3 m Wide) 
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G8 Ditch With Water (Less Than 2 m Wide) 

G9 Small Canal (2-5 m Wide) 

G10 
 

Coastal H  Coastal 

H1 Marine -Open Shore 

H2 Marine Shore - Inlet/Cove/Loch 

H3 Estuarine 

H4 Brackish Lagoon 
 H4 Brackish Lagoon 

Inland rock  I  Inland Rock 

I1 Cliff 

I2 Scree/Boulder 

I3 Limestone Pavement 

I4 Other Rock Outcrop 

I5 Quarry 

I6 Mine/Spoil/Slag Heap 

I7 Cave  
Miscellaneous J  Miscellaneous 
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Appendix B Figure 1 Map of weather stations from the ‘Met Office – Historic station data’ dataset, providing annual 
spring temperature and precipitation data for each breeding event. Weather data was joined based on the nearest 
available (44.30 km ± 30.30 km) meteorological stations to each of the nest sites. 
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Appendix B Figure 2 Correlation matrix displaying Pearson’s correlation coefficient for continuous variables considered 
for the GLMMs. Positive correlations are displayed in blue and negative correlations in red colour. Colour intensity and 
the size of the circle are proportional to the correlation coefficients. 
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Appendix B Table 4 Estimated regression parameters, standard errors, z values, and p-values for Poisson GLMMs on 
continuous breeding variables clutch size, brood size, and first egg date and binomial GLMMs on daily nest failure rate 
at the egg stage and at the nestling stage. Noise score was derived from the noise indicator Lden.   

  Predictor Estimate Std. Error z value p-value  

Clutch Size 4323 (Intercept) 2.175 0.014 152.930 < 0.001 *** 
  Noise score 0.002 0.005 0.395 0.693  
  Open habitat -0.034 0.012 -2.772 0.006 ** 
  Urban habitat -0.068 0.015 -4.477 < 0.001 *** 
  Rainfall -0.006 0.007 -0.883 0.377  
  Latitude 0.001 0.006 0.243 0.808  
  Laying date -0.086 0.007 -13.130 < 0.001 ***   

Min Temp -0.007 0.009 -0.793 0.428 
 

Brood Size 8232 (Intercept) 2.017 0.020 102.917 < 0.001 *** 
  Noise score -0.003 0.004 -0.669 0.504  
  Open habitat -0.041 0.009 -4.413 < 0.001 *** 
  Urban habitat -0.200 0.013 -15.450 < 0.001 *** 
  Latitude 0.003 0.005 0.658 0.511  
  Laying date -0.114 0.005 -22.388 < 0.001 ***   

Rainfall -0.017 0.007 -2.554 0.011 * 
  Min Temp -0.014 0.007 -1.884 0.060 . 

First Egg Date 5754 (Intercept) 4.714 0.012 404.223 < 0.001 *** 
  Noise score -0.005 0.001 -3.680 < 0.001 *** 
  Open habitat 0.006 0.003 2.169 0.030 * 
  Urban habitat -0.006 0.004 -1.775 0.076 . 
  Latitude 0.017 0.002 10.852 < 0.001 ***   

Rainfall 0.013 0.002 6.625 0.001 *** 
  Min Temp -0.003 0.002 -1.570 0.116  

Egg Failure Rate 7201 (Intercept) 1.206 0.071 16.966 < 0.001 *** 

  Noise score -0.059 0.028 -2.120 0.034 * 
  Open habitat -0.180 0.062 -2.918 0.004 ** 
  Urban habitat -0.117 0.078 -1.502 0.133  
  Laying date 0.087 0.034 2.572 0.010 * 
  Rainfall 0.111 0.038 2.947 0.003 **   

Min Temp -0.061 0.043 -1.422 0.155 
 

  Latitude -0.060 0.032 -1.865 0.062  

Nestling Failure Rate 4529 (Intercept) 1.598 0.061 26.245 < 0.001 *** 
  Noise score 0.064 0.022 2.861 0.004 ** 
  Open habitat 0.369 0.050 7.435 < 0.001 *** 
  Urban habitat 0.326 0.062 5.228 < 0.001 *** 
  Latitude -0.114 0.027 -4.249 < 0.001 *** 
  Laying date 0.113 0.030 3.783 < 0.001 ***   

Rainfall 0.073 0.032 2.314 0.021 * 
  Min Temp -0.005 0.037 -0.127 0.899  
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Appendix C 

Appendix C Table 1 GLMM model estimates, standard errors (SE),  and p-values for the score test before and after 
standardisation, standard deviation (SD_noisetotal) of Noise Score across the entire dataset (including all species and 
variables) and standard deviation of Noise Score (SD_noise) for each species and breeding variable specific dataset. 
Standardised values were used to aid direct comparison between species in Figure 1 to Figure 5 of chapter 4. 

Breeding var. Species Estimate SE p SD_noise SD_noisetotal Scaled_estimate Scaled_SE 
clutch blue_tit 0.012037 0.01 0.022 2790487 330203.1 0.001424 0.001183 
clutch great_tit -0.00469 0.01 0.446 2939381 330203.1 -0.00053 0.001123 
clutch house_sparrow -0.06674 0.02 0.001 2514423 330203.1 -0.00876 0.002626 
clutch tree_sparrow 0.004091 0.01 0.609 3188627 330203.1 0.000424 0.001036 
clutch blackbird 0.001669 0.01 0.78 2646926 330203.1 0.000208 0.001247 
clutch song_thrush 0.000679 0.01 0.945 3302663 330203.1 6.79E-05 0.001 
clutch starling 0.084578 0.04 0.021 2986757 330203.1 0.009351 0.004422 
clutch stock_dove -0.00764 0.01 0.45 2126451 330203.1 -0.00119 0.001553 
clutch kestrel 0.005637 0.01 0.631 2772274 330203.1 0.000671 0.001191 
clutch tawny_owl 0.017906 0.02 0.448 2492586 330203.1 0.002372 0.002649 
clutch barn_owl -0.01928 0.03 0.467 162094.2 330203.1 -0.03929 0.061113 
brood blue_tit -0.00717 0 0.071 2999757 330203.1 -0.00079 0 
brood great_tit -0.00469 0.01 0.446 3495564 330203.1 -0.00044 0.000945 
brood house_sparrow -0.02334 0.02 0.216 2704934 330203.1 -0.00285 0.002441 
brood tree_sparrow 0.020154 0.01 0.021 3040663 330203.1 0.002189 0.001086 
brood blackbird -0.00516 0.01 0.468 2650996 330203.1 -0.00064 0.001246 
brood song_thrush 0.006511 0.01 0.629 3058143 330203.1 0.000703 0.00108 
brood starling 0.200506 0.03 <0.001 2734265 330203.1 0.024214 0.003623 
brood stock_dove 0.002176 0.01 0.753 3788820 330203.1 0.00019 0.000872 
brood kestrel -0.0248 0.01 0.017 3495564 330203.1 -0.00234 0.000945 
brood tawny_owl 0.026009 0.02 0.113 2769296 330203.1 0.003101 0.002385 
brood barn_owl 0.02318 0.03 0.495 195797.1 330203.1 0.039092 0.050594 
feg blue_tit -0.00037 0 0.753 2790590 330203.1 -4.35E-05 0 
feg great_tit -0.00303 0 0.032 2790590 330203.1 -0.00036 0 
feg house_sparrow 0.045085 0.01 <0.001 na 330203.1 na na 
feg tree_sparrow -0.02845 0.01 <0.001 na 330203.1 na na 
feg blackbird -0.00338 0 0.14 na 330203.1 na na 
feg song_thrush -0.01213 0 0.944 na 330203.1 na na 
feg starling 0.01226 0.01 0.019 na 330203.1 na na 
feg stock_dove 0.39094 0.13 0.002 na 330203.1 na na 
feg kestrel -0.00652 0 0.064 3097152 330203.1 -0.0007 0 
feg tawny_owl -0.01371 0.01 0.08 2529395 330203.1 -0.00179 0.001305 
feg barn_owl -0.01989 0.01 0.006 na 330203.1 na na 
eggfail blue_tit -0.10636 0.03 <0.001 2773839 330203.1 -0.01266 0.003571 
eggfail great_tit -0.08553 0.03 0.002 2703579 330203.1 -0.01045 0.003664 
eggfail house_sparrow 0.5201 0.37 0.156 2380451 330203.1 0.072145 0.051324 
eggfail tree_sparrow 0.26256 0.06 <0.001 3155950 330203.1 0.027471 0.006278 
eggfail blackbird 0.0359 0.04 0.309 2703579 330203.1 0.004385 0.004885 
eggfail song_thrush 0.0265 0.08 0.736 3139194 330203.1 0.002787 0.008415 
eggfail starling -4.1806 1.95 0.032 2852940 330203.1 -0.04839 0.02257 
eggfail stock_dove -0.2801 0.27 0.291 3799619 330203.1 -0.02434 0.023464 
eggfail kestrel -0.26218 0.2 0.2 2130252 330203.1 -0.04064 0.031001 
eggfail tawny_owl -0.7229 0.32 0.025 2565797 330203.1 -0.09303 0.041182 
chickfail blue_tit 0.11626 0.02 <0.001 2967121 330203.1 0.012938 0.002226 
chickfail great_tit -0.01522 0.03 0.57 2967121 330203.1 -0.00169 0.003339 
chickfail house_sparrow 0.05969 0.1 0.536 2665881 330203.1 0.007393 0.012386 
chickfail tree_sparrow -0.18256 0.08 0.026 3039427 330203.1 -0.01983 0.008691 
chickfail blackbird 0.02313 0.04 0.575 2607184 330203.1 0.002929 0.005066 
chickfail song_thrush -0.10869 0.09 0.232 3127866 330203.1 -0.01147 0.009501 
chickfail starling 0.24517 0.12 0.048 2544520 330203.1 0.031816 0.015572 
chickfail stock_dove 0.39094 0.13 0.002 3941268 330203.1 0.032753 0.010892 
chickfail kestrel 0.32288 0.1 0.001 3545976 330203.1 0.030067 0.009312 
chickfail tawny_owl -0.15648 0.12 0.184 2752399 330203.1 -0.01877 0.014396 
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Appendix C Table 2 GLMM model estimates, standard errors (SE), test statistics, and p-values for the score test 
explaining clutch size. All models included Year as random effect. Strong effects indicated in bold. 

Clutch size 

Predictors Estimates SE Statistic p Observations 

      

Blue tit  
    

4496 

Intercept 2.152 0.01 180.09 <0.001 
 

Noise score 0.012 0.01 2.29 0.022 
 

Open habitats -0.031 0.01 -2.57 0.01 
 

Urban habitats -0.091 0.01 -6.12 <0.001 
 

Rainfall -0.014 0.01 -2.04 0.042 
 

Latitude -0.014 0.01 -2.24 0.025 
 

Laying date -0.057 0.01 -9.52 <0.001 
 

Mean min. temp. -0.017 0.01 -2.06 0.04 
 

Great tit 
    

4359 

Intercept 2.050 0.02 100.51 <0.001 
 

Noise score -0.005 0.01 -0.76 0.446 
 

Open habitats -0.031 0.01 -2.4 0.017 
 

Urban habitats -0.069 0.02 -3.24 0.001 
 

Rainfall -0.035 0.01 -3.86 <0.001 
 

Latitude -0.042 0.01 -4.97 <0.001 
 

Laying date -0.068 0.01 -11.02 <0.001 
 

Mean min. temp. -0.071 0.01 -7.26 <0.001 
 

House sparrow  
    

289 

Intercept 1.459 0.02 70.4 <0.001 
 

Noise score -0.067 0.02 -3.25 0.001 
 

Laying date 2 -0.065 0.01 -4.35 <0.001 
 

Laying date 0.034 0.02 2.02 0.044 
 

Rainfall -0.009 0.02 -0.57 0.572 
 

Latitude 0.006 0.02 0.31 0.76 
 

Mean min. temp. -0.008 0.02 -0.45 0.653 
 

Tree sparrow  
    

1066 

Intercept 1.614 0.01 137.17 <0.001 
 

Noise score 0.004 0.01 0.51 0.609 
 

Laying date 0.022 0.01 3.03 0.003 
 

Rainfall -0.021 0.01 -1.99 0.046 
 

Latitude -0.014 0.01 -1.85 0.065 
 

Mean min. temp. -0.014 0.01 -1.63 0.104 
 

Blackbird 
    

1498 

Intercept 1.393 0.02 79.09 <0.001 
 

Noise score 0.002 0.01 0.28 0.78 
 

Open habitats -0.006 0.02 -0.3 0.762 
 

Urban habitats -0.045 0.02 -2.49 0.013 
 

Laying date 0.099 0.01 13.81 <0.001 
 

Laying date 2 -0.078 0.01 -14.01 <0.001 
 

Rainfall 0.001 0.01 0.09 0.929 
 

Latitude -0.001 0.01 -0.14 0.892 
 

Mean min. temp. 0.007 0.01 0.83 0.407 
 

Song thrush  
    

426 

Intercept 1.459 0.01 119.01 <0.001 
 

Noise score 0.001 0.01 0.07 0.945 
 

Laying date 0.082 0.01 7.28 <0.001 
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Laying date 2 -0.072 0.01 -8.51 <0.001 
 

Rainfall 0.010 0.01 1.08 0.282 
 

Latitude 0.006 0.01 0.5 0.62 
 

Mean min. temp. -0.004 0.01 -0.33 0.739 
 

Starling  
    

117 

Intercept 1.516 0.04 40.54 <0.001 
 

Noise score 0.085 0.04 2.34 0.021 
 

Laying date -0.010 0.02 -0.43 0.668 
 

Rainfall 0.016 0.03 0.5 0.619 
 

Latitude -0.017 0.05 -0.33 0.743 
 

Mean min. temp. -0.073 0.04 -1.73 0.087 
 

Stock dove  
    

422 

Intercept 0.760 0.01 51.09 <0.001 
 

Noise score -0.008 0.01 -0.76 0.45 
 

Laying date -0.001 0.01 -0.12 0.905 
 

Laying date 2 -0.015 0.01 -1.43 0.153 
 

Rainfall 0.001 0.01 0.06 0.949 
 

Latitude -0.003 0.01 -0.28 0.776 
 

Mean min. temp. 0.017 0.01 1.49 0.137 
 

Kestrel  
    

195 

Intercept 1.552 0.02 95.32 <0.001 
 

Noise score 0.006 0.01 0.48 0.631 
 

Laying date -0.164 0.02 -7.34 <0.001 
 

Rainfall 0.021 0.01 1.78 0.076 
 

Latitude 0.000 0.01 0.03 0.978 
 

Mean min. temp. -0.030 0.02 -1.78 0.076  
Tawny Owl     174 
Intercept 1.052 0.03 35.72 <0.001  
Noise score 0.018 0.02 0.76 0.448  
Laying date -0.098 0.03 -3.52 0.001  
Rainfall 0.043 0.03 1.6 0.112  
Latitude 0.016 0.03 0.62 0.534  
Mean min. temp. 0.099 0.03 3.46 0.001  
Barn owl     155 
Intercept 1.621 0.03 62.01 <0.001  
Noise score -0.019 0.03 -0.73 0.467  
Laying date 0.032 0.03 1.17 0.245  
Rainfall 0.026 0.03 0.9 0.367  
Mean min. temp. -0.035 0.03 -1.28 0.204  
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Appendix C Table 3 GLMM model estimates, standard errors (SE), test statistics, and p-values for the score test 
explaining brood size. All models included Year as random effect. Strong effects indicated in bold. 

Brood size 

Predictors Estimates SE Statistic p Observations 

      

Blue tit  
    

8955 

Intercept 2.038 0.02 107.47 <0.001 
 

Noise score -0.007 0 -1.8 0.071 
 

Open habitats -0.051 0.01 -5.8 <0.001 
 

Urban habitats -0.205 0.01 -16.26 <0.001 
 

Latitude 0.004 0 0.8 0.421 
 

Laying date -0.105 0 -24.18 <0.001 
 

Rainfall -0.017 0.01 -2.75 0.006 
 

Mean min. temp. -0.001 0.01 -0.17 0.862 
 

Great tit  
    

4359 

Intercept 2.050 0.02 100.51 <0.001 
 

Noise score -0.005 0.01 -0.76 0.446 
 

Open habitats -0.031 0.01 -2.4 0.017 
 

Urban habitats -0.069 0.02 -3.24 0.001 
 

Rainfall -0.035 0.01 -3.86 <0.001 
 

Latitude -0.042 0.01 -4.97 <0.001 
 

Laying date -0.068 0.01 -11.02 <0.001 
 

Mean min. temp. -0.071 0.01 -7.26 <0.001 
 

House sparrow  
    

517 

Intercept 1.167 0.04 32.83 <0.001 
 

Noise score -0.023 0.02 -1.24 0.216 
 

Laying date 0.004 0.02 0.25 0.802 
 

Laying date 2 -0.048 0.02 -2.95 0.003 
 

Rainfall 0.070 0.02 3.01 0.003 
 

Latitude -0.011 0.02 -0.56 0.575 
 

Mean min. temp. -0.048 0.02 -2.18 0.03 
 

Tree sparrow   
    

1328 

Intercept 1.408 0.02 81.61 <0.001 
 

Noise score 0.020 0.01 2.32 0.021 
 

Laying date 0.023 0.01 2.75 0.006 
 

Rainfall -0.011 0.01 -0.75 0.456 
 

Mean min. temp. -0.041 0.01 -4.12 <0.001 
 

Latitude -0.052 0.01 -5.8 <0.001 
 

Blackbird  
    

1883 

Intercept 1.219 0.02 51.74 <0.001 
 

Noise score -0.005 0.01 -0.73 0.468 
 

Open habitats 0.045 0.02 1.94 0.053 
 

Urban habitats -0.028 0.02 -1.2 0.23 
 

Laying date 0.047 0.01 5.94 <0.001 
 

Laying date 2 -0.049 0.01 -7.43 <0.001 
 

Rainfall 0.015 0.01 1.74 0.082 
 

Latitude -0.001 0.01 -0.08 0.939 
 

Mean min. temp. -0.008 0.01 -0.74 0.46 
 

Song thrush 
    

404 

Intercept 1.324 0.02 70.88 <0.001 
 

Noise score 0.007 0.01 0.48 0.629 
 

Laying date 0.035 0.02 2.27 0.024 
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Laying date 2 -0.057 0.01 -4.4 <0.001 
 

Rainfall 0.026 0.01 1.86 0.064 
 

Latitude -0.001 0.02 -0.08 0.937 
 

Mean min. temp. -0.004 0.02 -0.25 0.801 
 

Starling 
    

532 

Intercept 1.111 0.07 16.21 <0.001 
 

Noise score 0.201 0.03 7.63 <0.001 
 

Laying date -0.029 0.02 -1.21 0.229 
 

Rainfall -0.148 0.04 -3.42 0.001 
 

Latitude -0.176 0.04 -4.97 <0.001 
 

Mean min. temp. -0.302 0.04 -7.54 <0.001 
 

Stock dove 
    

950 

Intercept 0.618 0.01 64.2 <0.001 
 

Noise score 0.002 0.01 0.31 0.753 
 

Laying date -0.004 0.01 -0.55 0.582 
 

Laying date 2 0.001 0.01 0.1 0.922 
 

Rainfall 0.011 0.01 1.52 0.13 
 

Latitude -0.012 0.01 -1.51 0.131 
 

Mean min. temp. -0.011 0.01 -1.43 0.152 
 

Kestrel 
    

802 

Intercept 2.149 0.08 26.16 <0.001 
 

Noise score -0.025 0.01 -2.39 0.017 
 

Laying date -0.007 0 -9.31 <0.001 
 

Rainfall 0.012 0.01 1.02 0.309 
 

Latitude 0.020 0.01 1.92 0.055 
 

Mean min. temp. 0.003 0.01 0.21 0.837  
Tawny owl     468 
Intercept 0.767 0.02 44.71 <0.001  
Noise score 0.026 0.02 1.59 0.113  
Laying date -0.290 0.05 -6.18 <0.001  
Rainfall -0.025 0.02 -1.36 0.173  
Latitude -0.012 0.02 -0.69 0.491  
Mean min. temp. 0.030 0.02 1.63 0.105  
Barn owl      56 
Intercept 1.625 0.03 52.1 <0.001  
Noise score 0.023 0.03 0.69 0.495  
Laying date -0.050 0.03 -1.56 0.126  
Rainfall -0.029 0.03 -0.84 0.405  
Mean min. temp. -0.021 0.03 -0.67 0.508  
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Appendix C Table 4 GLMM model estimates, standard errors (SE), test statistics, and p-values for the score test 
explaining laying date. All models included Year as random effect. Strong effects indicated in bold. 

Laying date 

Predictors Estimates SE Statistic p Observations 

      

Blue tit  
    

6716 

Intercept 4.705 0.01 453.29 <0.001 
 

Noise score 0.000 0 -0.31 0.753 
 

Open habitats 0.012 0 4.53 <0.001 
 

Urban habitats 0.000 0 -0.1 0.921 
 

Latitude 0.014 0 9.74 <0.001 
 

Rainfall 0.012 0 7 <0.001 
 

Mean min. temp. -0.012 0 -6.11 <0.001 
 

Great tit  
    

5112 

Intercept 4.708 0.01 366.64 <0.001 
 

Noise score -0.003 0 -2.14 0.032 
 

Open habitats 0.001 0 0.19 0.853 
 

Urban habitats -0.012 0.01 -2.32 0.02 
 

Latitude 0.018 0 8.04 <0.001 
 

Rainfall 0.005 0 2.03 0.043 
 

Mean min. temp. 0.001 0 0.55 0.585 
 

House sparrow  
    

662 

Intercept 4.932 0.01 465.97 <0.001 
 

Noise score 0.045 0.01 5.29 <0.001 
 

Rainfall 0.029 0.01 3.08 0.002 
 

Latitude 0.013 0.01 1.43 0.154 
 

Mean min. temp. -0.021 0.01 -2.24 0.025 
 

Tree sparrow  
    

1596 

Intercept 4.908 0.01 335.2 <0.001 
 

Noise score -0.028 0.01 -4.7 <0.001 
 

Rainfall 0.010 0.01 1.03 0.301 
 

Latitude 0.003 0.01 0.61 0.544 
 

Mean min. temp. 0.065 0.01 9.48 <0.001 
 

Blackbird 
    

1733 

Intercept 4.731 0.01 463.55 <0.001 
 

Noise score -0.003 0 -1.48 0.14 
 

Open habitats -0.004 0.01 -0.47 0.638 
 

Urban habitats 0.021 0.01 2.9 0.004 
 

Rainfall 0.013 0 4.28 <0.001 
 

Latitude 0.001 0 0.41 0.682 
 

Mean min. temp. -0.025 0 -7.15 <0.001 
 

Song thrush  
    

1049 

Intercept 0.000 0.02 288.99 <0.001 
 

Noise score -0.012 0 -0.07 0.944 
 

Rainfall -0.012 0.01 -2.32 0.02 
 

Latitude -0.019 0 -3.05 0.002 
 

Mean min. temp. 
 

0 -3.87 <0.001 
 

Starling  
    

593 

Intercept 4.678 0.01 439.78 <0.001 
 

Noise score 0.012 0.01 2.34 0.019 
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Rainfall -0.002 0.01 -0.35 0.723 
 

Mean min. temp. -0.010 0.01 -1.55 0.122 
 

Latitude 0.029 0.01 4.71 <0.001 
 

Stock dove  
    

193 

Intercept 2.936 0.13 23.28 <0.001 
 

Noise score 0.391 0.13 3.07 0.002 
 

Rainfall 0.131 0.14 0.93 0.35 
 

Laying date -0.062 0.12 -0.53 0.597 
 

Latitude -0.345 0.13 -2.74 0.006 
 

Kestrel  
    

800 

Intercept 4.700 0.02 292.03 <0.001 
 

Noise score -0.007 0 -1.85 0.064 
 

Latitude 0.009 0 2.33 0.02 
 

Rainfall -0.003 0.01 -0.62 0.533 
 

Mean min. temp. -0.005 0.01 -0.89 0.371  
Tawny owl     267 
Intercept 4.231 0.01 357.03 <0.001  
Noise score -0.014 0.01 -1.75 0.08  
Rainfall -0.022 0.01 -2.32 0.02  
Latitude 0.037 0.01 4.48 <0.001  
Mean min. temp. -0.049 0.01 -5.37 <0.001  
Barn owl      211 
Intercept 4.745 0.02 227.48 <0.001  
Noise score -0.020 0.01 -2.77 0.006  
Rainfall -0.009 0.02 -0.41 0.681  
Mean min. temp. -0.018 0.02 -0.82 0.41  
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Appendix C Table 5 GLMM model estimates, standard errors (SE), test statistics, and p-values for the score test 
explaining nest failure at the egg stage. All models included Year as random effect. Strong effects indicated in bold. 

Failure rate at egg stage 

Predictors Estimates SE Statistic p Observations 

      

Blue tit  
    

8319 

Intercept 1.219 0.08 15.4 <0.001 
 

Noise score -0.106 0.03 -4.14 <0.001 
 

Open habitats -0.128 0.05 -2.41 0.016 
 

Urban habitats -0.192 0.08 -2.53 0.011 
 

Laying date 0.080 0.03 3.09 0.002 
 

Rainfall 0.097 0.03 3 0.003 
 

Mean min. temp. 0.098 0.04 2.57 0.01 
 

Latitude -0.021 0.03 -0.71 0.475 
 

Great tit  
    

7258 

Intercept 1.317 0.09 15.44 <0.001 
 

Noise score -0.086 0.03 -3.05 0.002 
 

Open habitats 0.024 0.05 0.5 0.619 
 

Urban habitats -0.646 0.11 -5.97 <0.001 
 

Laying date -0.323 0.02 4.85 <0.001 
 

Rainfall 0.100 0.04 -0.87 0.385 
 

Mean min. temp. -0.036 0.04 -8.35 <0.001 
 

Latitude -0.374 0.04 -8.08 <0.001 
 

House sparrow  
    

329 

Intercept -2.693 1.61 -1.68 0.094 
 

Noise score 0.520 0.37 1.42 0.156 
 

Rainfall 0.676 0.51 1.32 0.186 
 

Laying date -0.156 0.18 -0.85 0.396 
 

Mean min. temp. 0.345 0.33 1.05 0.293 
 

Tree sparrow  
    

1204 

Intercept 0.700 0.12 5.77 <0.001 
 

Noise score 0.263 0.06 4.34 <0.001 
 

Latitude -0.132 0.07 -1.99 0.047 
 

Rainfall 0.080 0.1 0.79 0.428 
 

Laying date -0.121 0.06 -1.89 0.059 
 

Mean min. temp. 0.212 0.08 2.65 0.008 
 

Blackbird  
    

1594 

Intercept 1.671 0.1 17.01 <0.001 
 

Noise score 0.036 0.04 1.02 0.309 
 

Open habitats -0.258 0.12 -2.24 0.025 
 

Urban habitats -0.141 0.11 -1.29 0.198 
 

Latitude 0.092 0.05 2.01 0.045 
 

Rainfall -0.109 0.04 -2.64 0.008 
 

Laying date -0.193 0.04 -4.86 <0.001 
 

Mean min. temp. -0.051 0.05 -1.1 0.27 
 

Song thrush 
    

383 

Intercept 1.561 0.08 19.14 <0.001 
 

Noise score 0.027 0.08 0.34 0.736 
 

Latitude -0.147 0.09 -1.57 0.115 
 

Rainfall -0.035 0.09 -0.41 0.679 
 

Laying date -0.129 0.08 -1.69 0.092 
 

Mean min. temp. -0.042 0.09 -0.46 0.647 
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Starling 
    

216 

Intercept -5.744 3 -1.92 0.055 
 

Noise score -4.181 1.95 -2.14 0.032 
 

Latitude 3.220 1.62 1.99 0.046 
 

Rainfall 2.039 1.1 1.85 0.065 
 

Laying date 1.327 0.75 1.76 0.079 
 

Mean min. temp. -0.114 0.84 -0.14 0.892 
 

Stock dove  
    

324 

Intercept 0.700 0.32 2.21 0.027 
 

Noise score -0.280 0.27 -1.06 0.291 
 

Rainfall 0.104 0.2 0.51 0.61 
 

Laying date 0.120 0.13 0.93 0.355 
 

Mean min. temp. -0.212 0.16 -1.34 0.18 
 

Latitude -0.264 0.19 -1.36 0.175 
 

Kestrel 
    

443 

Intercept -0.425 0.53 -0.81 0.42 
 

Noise score -0.262 0.2 -1.28 0.2 
 

Latitude 0.691 0.16 4.22 <0.001 
 

Rainfall 0.255 0.19 1.32 0.188 
 

Laying date 1.177 0.14 8.3 <0.001 
 

Mean min. temp. 0.052 0.17 0.3 0.761  
Tawny owl     123 
Intercept 1.235 0.39 3.14 0.002  
Noise score -0.723 0.32 -2.24 0.025  
Rainfall 0.484 0.26 1.83 0.067  
Laying date 0.426 0.22 1.95 0.051  
Mean min. temp. 0.116 0.23 0.5 0.616  
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Appendix C Table 6 GLMM model estimates, standard errors (SE), test statistics, and p-values for the score test 
explaining nest failure at the nestling stage. All models included Year as random effect. Strong effects indicated in bold. 

Failure rate at nestling stage 

Predictors Estimates SE Statistic p Observations 

      

Blue tit  
    

5585 

Intercept 1.407 0.07 20.6 <0.001 
 

Noise score 0.116 0.02 5.63 <0.001 
 

Open habitats 0.478 0.05 10.26 <0.001 
 

Urban habitats 0.394 0.06 6.63 <0.001 
 

Latitude -0.142 0.03 -5.62 <0.001 
 

Laying date 0.194 0.03 7.11 <0.001 
 

Rainfall 0.052 0.03 1.77 0.077 
 

Mean min. temp. -0.098 0.04 -2.72 0.006 
 

Great tit  
    

4103 

Intercept 1.775 0.08 17.12 <0.001 
 

Noise score -0.015 0.03 -0.57 0.57 
 

Open habitats -0.162 0.06 7.33 <0.001 
 

Urban habitats -0.405 0.08 2.89 0.004 
 

Latitude 0.073 0.04 1.96 0.05 
 

Laying date 0.000 0.03 -0.01 0.989 
 

Rainfall 0.153 0.04 3.78 <0.001 
 

Mean min. temp. 0.287 0.05 6.08 <0.001 
 

House sparrow  
    

371 

Intercept 1.943 0.18 11.06 <0.001 
 

Noise score 0.060 0.1 0.62 0.536 
 

Latitude -0.354 0.12 -3.06 0.002 
 

Rainfall 0.350 0.13 2.71 0.007 
 

Mean min. temp. 0.157 0.13 1.18 0.238 
 

Laying date 0.165 0.09 1.94 0.052 
 

Tree sparrow  
    

672 

Intercept 1.278 0.13 9.56 <0.001 
 

Noise score -0.183 0.08 -2.23 0.026 
 

Latitude -0.250 0.06 -3.99 <0.001 
 

Rainfall 0.077 0.11 0.68 0.494 
 

Mean min. temp. -0.106 0.11 -0.95 0.344 
 

Laying date 0.152 0.06 2.37 0.018 
 

Blackbird 
    

1343 

Intercept 1.298 0.13 10.21 <0.001 
 

Noise score 0.023 0.04 0.56 0.575 
 

Open habitats 0.367 0.14 2.61 0.009 
 

Urban habitats 0.362 0.14 2.57 0.01 
 

Latitude 0.001 0.06 0.02 0.986 
 

Rainfall 0.033 0.05 0.74 0.46 
 

Laying date -0.107 0.04 -2.66 0.008 
 

Mean min. temp. -0.042 0.08 -0.54 0.588 
 

Song thrush  
    

295 

Intercept 1.699 0.09 19.95 <0.001 
 

Noise score -0.109 0.09 -1.19 0.232 
 

Latitude -0.042 0.11 -0.39 0.694 
 

Mean min. temp. 0.089 0.1 0.85 0.397 
 

Rainfall 0.201 0.08 2.41 0.016 
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Laying date -0.020 0.09 -0.23 0.815 
 

Starling  
    

257 

Intercept 1.721 0.28 6.16 <0.001 
 

Noise score 0.245 0.12 1.97 0.048 
 

Rainfall -0.049 0.22 -0.22 0.828 
 

Laying date 0.269 0.13 2.1 0.036 
 

Mean min. temp. 0.948 0.17 5.47 <0.001 
 

Stock dove  
    

193 

Intercept 2.936 0.13 23.28 <0.001 
 

Noise score 0.391 0.13 3.07 0.002 
 

Rainfall 0.131 0.14 0.93 0.35 
 

Laying date -0.062 0.12 -0.53 0.597 
 

Latitude -0.345 0.13 -2.74 0.006 
 

Kestrel  
    

392 

Intercept 2.356 0.39 6.07 <0.001 
 

Noise score 0.323 0.1 3.27 0.001 
 

Latitude 0.014 0.08 0.18 0.861 
 

Rainfall 0.420 0.12 3.57 <0.001 
 

Laying date -0.169 0.11 -1.58 0.115 
 

Mean min. temp. 1.929 0.16 11.88 <0.001  
Tawny owl     238 
Intercept 3.376 0.15 23.13 <0.001  
Noise score -0.156 0.12 -1.33 0.184  
Latitude 0.222 0.13 1.73 0.083  
Mean min. temp. -0.343 0.14 -2.49 0.013  
Rainfall -0.066 0.16 -0.42 0.672  
Laying date 0.037 0.12 0.3 0.763  
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Appendix D 

 

Appendix D Table 1 Pre vs post playback for noise level experiment (Experiment 1) 

 Playback type  Treatment n Mean Sd. Wilcoxon z Effect size, r W p 

Number of songs 

noise No-noise  pre 22 3.82 6.51     

  after 22 18.77 22.45 -3.6168 -0.7711 169.0 0.0003 

High-level noise  pre 21 4.00 5.80     

  after 21 16.81 16.32 -3.6595 -0.7986 170.0 0.0003 

Low-level noise  pre 22 5.18 4.91     

  after 22 13.09 13.55 -2.9664 -0.6324 154.0 0.003 

Number of flights 

No-noise  pre 22 1.09 1.19     

  after 22 6.64 4.68 -3.8071 -0.8117 190.0 0.0001 

High-level noise  pre 21 1.00 1.38     

  after 21 8.67 4.19 -3.9777 -0.8680 230.0 0.0001 

Low-level noise  pre 22 0.50 0.80     

  after 22 4.45 3.10 -3.8091 -0.8121 190.0 0.000 

Time spent within 5 m (s) 

No-noise  pre 22 3.05 12.81     

  after 22 14.14 21.77 -2.3694 -0.5052 43.0 0.018 

High-level noise  pre 21 10.00 21.91     

  after 21 26.95 24.23 -2.6502 -0.5783 54.0 0.008 

Low-level noise  pre 22 2.73 12.79     

  after 22 12.18 20.59 -2.1024 -0.4482 21.0 0.036 
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Appendix D Table 2 Control vs consistent stimuli for noise level experiment (Experiment 1) 

 Playback type  Treatment n Mean Sd. Wilcoxon z Effect size, r W p 

Number of songs 

No-noise  consistent 22 20.50 21.24     

  control 22 12.68 18.15 -2.8390 -0.6195 181.5 0.005 

High-level noise  consistent 21 21.48 18.41     

  control 21 21.29 18.96 -0.0696 0.0152 118.0 0.945 

Low-level noise  consistent 22 18.73 13.54     

  control 22 10.18 11.97 -3.8017 -0.8105 244.0 0.0014 

Response latency (s) 

No-noise  consistent 22 11.91 19.05     

  control 22 19.64 26.38 -1.4959 -0.3189 72.00 0.135 

High-level noise  consistent 21 22.86 45.85     

  control 21 8.33 8.61 -0.9533 -0.2080 131.0 0.340 

Low-level noise  consistent 22 14.59 17.84     

  control 22 21.14 43.78 -0.0650 -0.0139 124.0 0.948 

Number of flights 

No-noise  consistent 22 6.23 4.22     

  control 22 6.77 3.95 -0.2408 -0.0513 79.5 0.810 

High-level noise  consistent 21 8.86 6.58     

  control 21 9.10 5.52 -0.6102 0.1332 97.5 0.542 

Low-level noise  consistent 22 4.55 3.02     

  control 22 4.45 2.96 -0.1320 -0.0281 101.0 0.895 

Time spent within 5 m (s) 

No-noise  consistent 22 69.45 76.33     

  control 22 66.91 84.51 -0.1420 -0.0303 63.0 0.887 

High-level noise  consistent 21 80.52 75.60     

  control 21 86.00 67.86 -0.1960 -0.0428 80.5 0.845 

Low-level noise  consistent 22 30.00 52.38     

  control 22 32.00 56.58 -0.0445 0.0095 32.0 0.965 
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Appendix D Table 3 Pre vs post playback for noise frequency band experiment (Experiment 2) 

 Playback type  Treatment n Mean Sd. Wilcoxon z Effect size, r W p 

Number of songs 

Low-frequency pre 21 3.67 5.35     

  after 21 9.67 10.68 -2.2229 -0.4851 34 0.026 

High-frequency pre 20 2.50 3.59     

  after 20 7.90 7.79 -3.0041 -0.6717 20 0.003 

Number of flights 

Low-frequency pre 21 1.29 1.52     

  after 21 5.00 4.46 -3.4687 -0.7569 16.5 0.001 

High-frequency pre 20 0.80 0.89     

  after 20 5.05 3.73 -3.5521 -0.7943 6.5 0.0004 

Time spent within 5 m (s) 

Low-frequency pre 21 8.57 21.51     

  after 21 17.14 23.43 -1.9022 -0.4151 6 0.057 

High-frequency pre 20 1.00 4.47     

  after 20 12.95 18.62 -2.2529 -0.5038 3 0.024 

 

 

 

 

 

 



Appendices 

 

202 
 

 

Appendix D Table 4 Control vs consistent stimuli for noise frequency band experiment (Experiment 2) 

 Playback type  Treatment n Mean Sd. Wilcoxon z Effect size, r W p 

Number of songs 

Low-frequency consistent 21 14.29 9.95     

  control 21 9.05 10.18 -2.5771 -0.5624 190 0.010 

High-frequency consistent 20 13.20 16.47     

  control 20 9.65 10.47 -1.1993 -0.2617 113.5 0.230 

Number of flights 

Low-frequency consistent 21 7.38 5.85     

  control 21 6.05 5.35 -0.6476 -0.1413 134.5 0.517 

High-frequency consistent 20 6.75 3.39     

  control 20 5.50 3.61 -0.2588 -0.2588 112.5 0.247 

Response latency (s) 

Low-frequency consistent 21 8.71 9.51     

  control 21 19.38 28.87 -0.6052 -0.1321 79.5 0.545 

High-frequency consistent 20 8.15 7.18     

  control 20 21.60 27.53 -1.8499 -0.4137 55 0.064 

Time spent within 5 m (s) 

Low-frequency consistent 21 66.38 74.59     

  control 21 83.71 74.08 -0.9232 -0.2015 56.5 0.356 

High-frequency consistent 20 41.40 50.03     

  control 20 38.15 55.74 -1.3295 -0.2973 65 0.184 



 

 
 

 


