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Rule-based models generalise reaction-based models with reagents that have internal state and may be
bound together to form complexes, as in chemistry. An important class of system that would be intract-
able if expressed as reactions or ordinary differential equations can be efficiently simulated when
expressed as rules. In this paper we demonstrate the utility of the rule-based approach for epidemiolog-
ical modelling presenting a suite of seven models illustrating the spread of infectious disease under dif-
ferent scenarios: wearing masks, infection via fomites and prevention by hand-washing, the concept of
vector-borne diseases, testing and contact tracing interventions, disease propagation within motif-
structured populations with shared environments such as schools, and superspreading events. Rule-
based models allow to combine transparent modelling approach with scalability and compositionality
and therefore can facilitate the study of aspects of infectious disease propagation in a richer context than

would otherwise be feasible.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction to those obtained by considering the above as a chemical reaction

system, interpreting S,I, and R as chemical species in place of

Compartmental models in epidemiology are mathematically
equivalent to, and can be expressed in the same way as, chemical
reaction models. The classical model of Kermack et al. (1927), for
example, can be written,

s+18o (1)
IR (2)

This represents infection as an interaction between a suscepti-
ble individual and an infectious one that results in two infectious
individuals at rate £ and the recovery or removal of an infectious
individual at rate y. Kermack and McKendrick derive differential
equations for the case where the rates are constant from first prin-
ciples and arrive at a system describing the changing quantities of
individuals of each kind. These differential equations are identical
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exclusive subpopulations - it is perhaps not a coincidence that Ker-
mack was a biochemist.

This class of model is still in current use (Anderson and May,
1992; Hollingsworth, 2009; Heesterbeek et al., 2015). To represent
the natural history of a particular disease, compartments may be
added. It is common to add a latent compartment for those individ-
uals that are infected but not yet infectious. Sometimes several
kinds of infectious compartments are used to represent different
severities or stages of disease progression. However, in typical dif-
ferential equation modelling, increasing the number of compart-
ments comes at the cost of poor scaling: the number of possible
interactions increases with the square of the compartments. It is
just possible to accommodate the compartment explosion for
age-stratified models (Rohani et al., 2010). Dividing the population
into 8 age bands requires 64 interactions to capture infection and 8
more for removal. All of the other transitions for disease progres-
sion, from latent to infectious, among the various severities of
infectiousness, result in a modest increase of 8 each.

Explicitly enumerating stratified compartments begins to
become unwieldy when other features that would arbitrarily sub-

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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divide the population further, or when multiple geographic regions
(Eubank et al., 2004) are considered. Isolation, removal from, or
attenuation of participation in the infection dynamics as a result
of testing, clinical diagnosis, or simple precaution, induces a dou-
bling of compartments: we must account for the possibility of both
isolated and unconfined individuals of each kind. The wearing or
not of masks has a similar consequence, as does introducing any
feature that subdivides the population, or includes multiple popu-
lations. For example, when we consider the simplest Susceptible-
Infected-Recovered (SIR) model, it scales as shown in Table 1.

The reason for this large increase in the number of compart-
ments and required transition rates is easily seen. This formulation
requires compartments to represent disjoint subsets of the popula-
tion, and this, in-turn, implies redundant specification of interac-
tions where they are independent of the features. The
progression from latent to infectious, for example, is independent
of whether or not one is wearing a mask but one nevertheless must
specify these cases separately; interactions with peers at school
have little to do with the structure and composition of one’s family
(at least to a first approximation).

This phenomenon also has a negative effect on the ability to
inspect and understand reaction-based models. Even if a large
model with dozens of compartments and hundreds of reactions
is correct, and even if it is available for inspection, there is little
hope of understanding the reasoning behind the model. There is
also little hope of verifying that the model as written in code is
the same as the model that is written in the paper about the model
(or, rather, that both are representations of the same abstract
model).

There are several strategies used in epidemiological modelling
to make some progress in the face of the scaling difficulties posed
by adding features to compartmental models (Walters et al., 2018).
A simple approach is to assert that the additional features that do
not alter the structure of the model, e.g. that wearing a mask, for
example, reduces the infection rate (Rohani et al., 2010; Tracht
et al., 2010) or that contact tracing causes infectious individuals
to become isolated at some rate (Eubank et al., 2004; Giordano
et al.,, 2020). Doing this is not to study contact tracing or masks
and the interactions of individuals wearing them, or not, but to
presuppose that the effect of these interactions is uniform and
can be captured in a single scalar parameter. A more sophisticated
approach is to forego the elegance of the chemical reaction or com-
partmental formulation entirely and explicitly model the individu-
als in the population as agents interacting arbitrarily as in
individual- or agent-based models (Keeling and Grenfell, 2000;
Patlolla et al., 2006; Brienen et al., 2015; Hunter, 2017; Willem
et al., 2017; Tracy et al., 2018). This has the opposite problem:
where reducing interactions to a scalar is oversimplification, allow-
ing completely arbitrary interactions brings with it little analytical
or structural insight. Agent-based models also have the drawback
of needing to specify a large number of assumptions. The quantity
of assumptions often implies too many parameters to be reason-
ably informed from data or fitting. The shortcomings of both of
these strategies are a result of the choice of level of abstraction:
one too coarse, and the other too fine.

In this paper, we present an alternative approach and show that
rule-based modelling (Danos and Laneve, 2004), already used in
modelling molecular biology (Danos et al., 2007; Giordano et al.,

Table 1
The increase in compartments and transitions with the addition of features.
features 1 2 3 4
compartments 6 12 24 48
transitions 6 20 72 272
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2014; Kohler et al., 2014; Keeling et al., 2018), can be used to
express scalable and compositional models in a wide range of rel-
evant epidemiological scenarios.

The advantage of rule-based modelling is that allows for explicit
representation of entities in a model and their interactions while
disregarding features that are not relevant. The formalism is also
parsimonious: minimal extraneous detail is required to specify
the model in machine-readable form for simulation. The approach
is also transparent: the machine-readable form corresponds clo-
sely to the mathematical form resulting in minimal barriers to
inspection and verification of models.

As we demonstrate in the paper, this allows to compose, run
and verify computational models and obtain insights for relevant
epidemiological scenarios such as the effects of mask wearing in
the transmission of respiratory illnesses, passive transmission by
fomites on surfaces or by active vectors such as mosquitoes, test-
ing, tracing and isolation, as well as populations with a hybrid
well-mixed and network structure, and superspreading events at
gatherings. All of the models described in this paper are available
at https://git.sr.ht/ wwaites/rule-epi.

The main contribution of this paper is then to provide a new
arrow in the quiver of epidemiological modelling. Rule-based mod-
elling is expressive enough to capture features of disease transmis-
sion and interventions that would be impractical to represent in
compartmental models. At the same time, the language is suffi-
ciently clear to make the individual mechanisms and interactions
explicit and subject to examination and review in a way that is
rarely feasible even with the best agent- or individual-based mod-
els. We demonstrate the proposed approach by presenting specific
models for various phenomena of interest for infectious disease
modelling.

2. Rule-based approach

The chemical master equation gives the time-evolution of the
distribution of configurations of such a system, the trajectory of
distributions (Gillespie, 1992; Anderson and Kurtz, 2011). Differ-
ential equation formulations such as the one derived by Kermack
and McKendrick approximate the mean number of each chemical
species as a function of time, and this approximation becomes
increasingly accurate as this number goes to infinity. There exist
methods for obtaining approximate differential equations for the
higher moments as well. Rule-based modelling generalises this
by allowing chemical species, rather than being atomic entities,
to have internal structure and bonds between particles.

Rule-based formulations, like reaction-based ones have a useful
property: compositionality (Blinov et al., 2008; B.D.L. Marshall
et al., 2009). One can derive differential equations from reactions
using the rate equation, a sum over all reactions (Plotkin, 2013;
Baez, 2018 (Nov. 2018).). Adding rules is simply adding more terms
to this sum (the same is not true for reactions because it is neces-
sary to account for each combination of reagents). This composi-
tional property of rule-based models means that it is possible to
design models in such a way that they can be combined. For exam-
ple, one may combine a model of the flu with one of covip-19, for
example, by simply concatenating them. This is powerful capabil-
ity has been emphasised in the closely related Petri net formula-
tion (Baez and Master, 2020; Willem et al., 2006-2015). The
advantage of rules over chemical reactions in this connection is
ease of variation: a single change to a rule can cascade to many
changes in the corresponding reactions (Danos, 2009).

The entities in rule-based modelling are called agents. These
agents should not be confused with the agents as they are in
agent- or individual-based modelling in the epidemiology litera-
ture; they are much simpler and they have a precise definition
(Danos and Laneve, 2004). There are several computer languages



W. Waites, M. Cavaliere, D. Manheim et al.

for writing rule-based models, the most well-known are the x lan-
guage as implemented by the KaSim (Boutillier et al., 2020) simu-
lator and the BioNetGen language (Harris et al., 2016). We will use
K, and introduce the main features of the language here. Through-
out, we will present each statement both in mathematical notation
and in the language of the KaSim simulator. The reason is twofold.
First, readers, depending on their background, may find one or the
other more intuitive. Second, some authors have observed (Baker,
2016; Tiwari et al., 2021) a reproducibility crisis in research involv-
ing computational models. This can be partly attributed to an
underspecification of models in mathematical form such that their
representation in software is ambiguous. We explicitly show the
one-to-one correspondence between the mathematics and the
code to emphasise how the practice that we describe facilitates
reproducibility.

An agent with internal states is specified as follows - in text and
equivalently in the language of KaSim,

P(a:'tL)v S {SA,E,I, R}
f%agent: P(x{s e i r})

The meaning of this is that there is a set of agents, P() that is
partitioned into disjoint subsets, P(xs), P(xg), P(x;), P(xg). This agent,
P, might refer to a population made up of individuals whose inter-
nal state x corresponds to the compartments of an SEIR model - a
standard extension of SIR with an additional latent or exposed com-
partment whose members are infected but not yet infectious.

It is permitted to have more than one kind of internal state. For

example, one could write,

P(xy,my), ue {S,E,I,R}, ve{Y,N}
%agent: P(x{s e i r} m{y n})

to represent wearing or not of masks. One can then refer to those
infectious individuals wearing masks, P(x;, my), all individuals not
wearing masks, P(my)=J,P(x,,my), or all individuals,
P() = U,U,P(xu,m,). This is a fundamental difference between
rule-based models and compartmental or reaction models: one
can refer to specific subsets of agents as required, and those inter-
nal states that are not relevant can simply not be mentioned.

It is also possible to specify bonds between agents. This is
extensively used in molecular biology to represent polymers,
chains of molecules. Here, we will make light use of this facility
to show how a population can be given structure. As with internal
states, binding sites have names, and bonds are numbered.

P(c"), we Nt
Jagent: P(c)

The number is arbitrary and meaningful only within the scope
of an expression. Thus, P(c'), P(c!), denoting two bound agents,
means the same thing as P(c*?), P(c*?), provided that 42 is not used
elsewhere in the same expression. An unbound site is written with
a-:P(c).

A rule, much like a chemical reaction, has a left- and a right-
hand side. A rule for infection, again both in text and in the lan-
guage of KaSim, is,

k
P(zs), P(zr) — P(xr), P(z1)
’infection’ P(x{s}), P(x{i}) -> P(x{i}), P(x{i}) @ k

This is very similar to the chemical reaction representation in
Eq. 2, and the formulation in code corresponds exactly to the more
attractively typeset mathematical version.
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A convenient shorthand, with no change of meaning, useful
when the only difference between the left- and right-hand side
of a rule is a change of state, is the edit notation,

’infection’ P(x{s/il}), P(x{i}) @ k

The output of such models is defined as a set of observables. An
observable is a function of time, and is specified in terms of arith-
metic operations on the cardinalities of the sets of agents. For
example,

[P(x))] [P(x{i})] number of infectious individuals
[P(xe) UP(X;)|  |P(x{e})] + |P(x{1i})| number of infected individuals
[P(my)|/IPO)]  [P(m{y}]/|PO| fraction wearing a mask

As said, with some assumptions, this rule-based form admits
composition. Compositionality is a very convenient property for
models: it means that they can be easily combined (Blinov
et al., 2008; B.D.L. Marshall et al., 2009). Provided that all sites
and internal states of agents are consistent, composition of rule-
based models is simply concatenation. This follows from the
form of the master equation as a sum over rules. Care must still
be taken that the intended semantics are obtained when com-
posing models. A duplicate rule will obtain at twice the rate
that it otherwise would, and this may or may not be the intent.
Rules applying to partly overlapping subsets of agents present a
similar but less obvious difficulty for composition, which can be
solved with rule refinement (Danos et al., 2008). With due care,
even without using rule refinement, it is possible to create
modular models that can be combined to create more complex
ones.

3. Simulation and parameter estimation

Models specified this way are primarily intended for stochas-
tic simulation. A thorough description is provided by Boutillier
et al. (2018) that we summarise here. Considering the general
form of a rule, ¥ y # with a left-hand side .#, right-hand side
2 and rate 7, we think of ¥ as a pattern. The pattern is given
as a graph; in the above example of an infection rule, it is the
discrete graph consisting of two vertices, one having an S label,
the other having I. We can enumerate the matches of this
pattern graph in a particular configuration of the population.
The configuration of the population is called a “mixture”
in the original context of molecular biology, and the matches
of the pattern in the mixture are called the “embeddings”.
The embeddings for the pattern graph in the example are all
pairs of susceptible and infectious individuals. The set of
embeddings, together with the rate, give the propensity for the
rule. Different rules will have different propensities according
to the number of embeddings of their pattern graphs in the
population and their rates. At each step of the simulation, a
single embedding of a single rule is chosen proportionally to
these propensities for application and the simulation clock is
advanced by the appropriate interval given by Gillespie’s algo-
rithm (Gillespie, 1977). The chosen embedding is then removed
from the population and the replacement, the right-hand side 2
of the rule, glued in its place.

This procedure is potentially expensive. The operation of enu-
merating embeddings means finding all subgraph isomorphisms
of the pattern graph in the population graph is generally NP-
hard. In practice, pattern graphs tend to be small enough, and often
discrete, that it is feasible to perform this enumeration. The KaSim
software employs a further optimisation: once the initial enumer-
ation is done, it is not necessary to recompute it from scratch each
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time a rule is applied. Instead, only the incremental changes are
computed: those embeddings that can no longer exist due to the
operation of the rule are removed, and new embeddings that can
exist are added. This is possible because rules act locally and
only modify a finite and usually small subgraph of the population
graph.

The simplest way to conduct a simulation is to provide a model
written in the KaSim dialect of the x-language to provide a file to
the simulator, which is a standalone program (Boutillier et al.,
2020):

KaSim — 1 365 — o output.csv model.ka

This will produce time-series for a single trajectory sampled as
described above written to the file cutput.csv. To sample many
trajectories in parallel, an easy way is to use the GNU Parallel soft-
ware (Tange, 2020),

seq 100 | parallel KaSim —1 365 — o output — {}.csv' model.ka

which would run the same simulation 100 times producing files
named output-1.csv through output-100.csv.

This low-level interaction with the KaSim simulator can be
repetitive and many tasks such as conducting simulations, estimat-
ing parameters, summarising the results into distributions of tra-
jectories are common for any model under investigation. Python
language bindings for using KaSim are provided by the kappy
package, and we use those in the NetABC> software to streamline
these activities. In particular, NetABC provides infrastructure for
doing parameter estimation with approximate Bayesian computation
(Toni et al., 2009; Klinger et al., 2018) on models written for KaSim
as we | as some other model formulations. NetABC provides some
common choices of distance measures for comparing simulation
results to data and is extensible so application-specific measures
can easily be added. It also provides support for saving collections
of trajectories in standard formats and summarising them and pro-
ducing some simple plots. A detailed tutorial on its usage is beyond
the scope of this article which is to introduce the application fo rule-
based modelling to epidemic, but an example of fitting and simulat-
ing a simple SEIR model is given in the README file in that project’s
git repository.

It is also possible to automatically generate the differential
equations that correspond to the mean trajectory of the stochas-
tic simulations for a given model in the large population limit.
The KaDE (Camporesi et al., 2017) program generates code for
GNU Octave, Matlab, Mathematica or Maple. On the one hand
this means a large class of epidemiologically interesting models
typically expressed as ODEs can be written, often more
compactly and elegantly, in rule-based form. Because the ODEs
are generated automatically, the model expressed as rules can
be modified and the ODE systems simply regenerated without
having to engage in the bookkeeping necessary to modify
systems of ODEs manually. However it is also very easy to
produce rule-based models for interesting systems that can be
simulated stochastically but which produce systems of ODEs that
are too large to be usefully represented in that form for human
readers to understand, and sometimes too computationally com-
plex to be feasibly integrated using typically available computing
resources.

Throughout this paper, we use stochastic simulation. For all fig-
ures, we show the mean trajectory and envelope for one and two
standard deviations.

3 https://git.sr.ht/ wwaites/netabc
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4. Modelling epidemics with a rule-based approach

We describe the rule-based approach and language by present-
ing six models representing phenomena of interest in infectious
disease modelling and that feature different aspects of composi-
tionality and scalability:

1. Mask-wearing including a dynamic process where masks
become commonly worn and are later abandoned as
unnecessary

2. Fomites, where infection is transmitted through contaminated
surfaces demonstrating the effectiveness of hand-washing

3. Vector-borne diseases, with a coupled life-cycle model for the
vectors and control of an epidemic through elimination of
habitat

4. Testing, as a means of identifying infectious individuals who
should be isolated, with a finite supply of tests produced by a
manufacturing facility

5. Contact tracing, built upon the previous testing model

6. Schools, conceived of as two infection processes - interactions
among children and interactions among the general population
- coupled through a family network.

7. Gatherings where subsets of the population are more or less
likely to periodically attend gatherings at which contact fre-
quency is much greater than normal.

Each model is described and simulated for reasonable illustra-
tive values of the relevant parameters.

4.1. Masks

We develop a model for mask wearing that uses the above
agent and show how the proposed rule-based language allows
extensions with the compositional addition of new features.

The corresponding code is provided in A. The progression rules
are exactly the same as with a regular compartmental model,

P(xg) — P(x1) 3)
P(x;) — P(xg) 4)

The infection rules are very much like a stratified compartmen-
tal model: we explicitly specify the four combinations: where the
susceptible individual is wearing a mask, or not, and where the
infectious one is, or not. Let 1 — m,, be the effectiveness of mask
wearing at preventing infection of a susceptible individual, during
a contact with an infectious individual, with x, y indicating the no-
mask/mask status of said individuals. For example,

1 08

My = [0.4 0.2] )
stipulating that: myy = 1, and there is no reduction in infection
probability; while myy = 0.2 means a very substantial reduction in
infection probability if both parties wear masks. If only one is wear-
ing a mask, the benefit is relatively small if it is the susceptible indi-
vidual and significant if it is the infectious one. The four rules are
then given as,

muuﬂﬁ

P(x57mu)7 P(lemv)‘_' (XE'/mU)v P(thﬂ) (6)
where f is the infection probability, c is the number of contacts per
unit time, and N is the total population, as usual.

In addition to the above, which might be sufficient to study the
circumstance where a constant fraction of the population wears

masks, we incorporate a simple mechanism for mask wearing to
become popular. We suppose that the more people wear masks,
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the more likely it is for individuals to decide to wear and not to
wear masks,

P(my), P(my) - P(my), P(my) )

This is a purely crowd-based logic and the result of this positive
feedback is like an epidemic of masks. It eventually results in the
entire population wearing masks. This is clearly unrealistic when
the outbreak has run its course. Therefore, we use a second rule
with negative feedback but a different rate constant,

P(my), P(my) - P(my), P(my) (8)

It is possible to notice that if x> v and there is at least a small
number of individuals wearing masks, then mask usage will simply
grow at a rate of u — v, but if the opposite is true, masks will fall to
zero. More than a simple logic of following the crowd is needed.
We reason that, in addition to observing the behaviour of others,
our agents also have access to information about the outbreak
itself, perhaps from watching the nightly news, and spontaneously
decide to wear or remove a mask proportionally to the current
danger,

P(my) —2 P(my) 9)
P(my) 2P, p(my) (10)

where p, = W or the chance at the current time of any given indi-

vidual being infectious.

Remark: the above four rules show two ways of having a rate
proportional to a subpopulation. The first is to have a bimolecular
rule and a constant rate. The second is to have a unimolecular rule
and a variable rate. To achieve a variable rate a calculation is per-
formed after each event. The difference is largely a matter of taste
as the simulator performs substantially the same computation
when incrementally computing propensities (Danos et al., 2007).

There remains the question of how to choose the rates ¢ and v
and for present purposes we will select them somewhat arbitrarily
with wearing masks significantly faster than removing them. An
alternative formulation not requiring this arbitrary choice involves
using memory of the recent past, a technique that we also use for
contact tracing in Section 4.5.

The result of running this model as described, and setting
o = 0.5, are shown in Fig. 1. With these simple assumptions about
the effect of wearing masks, and a direct implementation of the rel-
evant interactions, we can see that they do have a significant effect

-104
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2
=
Tﬂg 0.6 - —_— P(zg) |
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=
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(a) Without masks
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on reducing both the peak number of infections and the total. We
can also observe that the system settles at an equilibrium of mask
wearing. It is possible to work out precisely the nature of this equi-
librium. Since there are, at equilibrium, very few infectious individ-
uals, there is very little spontaneous mask wearing, and
spontaneous removal happens at a rate of . Masks are also
removed due to the crowd logic of Eq. 8. At equilibrium these
two processes must balance with the crowd logic of Eq. 7 causing
masks to be worn.

4.2. Hand washing

Infection due to contact surfaces contaminated by pathogens
that have been shed (fomites) is said to be mitigated by hand
washing. We model this phenomenon as follows with code in B.
Individuals in this model have hands. Hands can be clean or dirty.
They become clean through washing, and become spontaneously
dirty after some time. Our agents, therefore, have the signature,

P(xy,h,), ue {S,E,I,R}, ve {C,D} (11)
S(cw), W e {Y,N} (12)

The washing and dirtying of hands are described by the rules,
P(hp) -2 P(h¢) (13)
P(h¢) - P(hp) (14)

where w is the rate of hand washing, and 7 is the rate at which
hands become dirty.

Contamination of surfaces is straightforward and the logic is
very similar to infection in the standard model,

S(c), P(xi,ho) - S(ey), PGy, ho) (15)

This is read as, any surface coming into contact with an infec-
tious person with dirty hands becomes contaminated. This hap-
pens at a rate x of contact with surfaces and proportionally to
the fraction of the population that is infectious with dirty hands.

Decontamination is a degradation rule,

S(ey) - S(cw) (16)

where 6 is the rate of surface cleaning or fomite degradation. The
interpretation of this is left open, it may simply be that the surface
contamination becomes incapable of transmitting the virus or that
it is cleaned every 67! time units.
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(b) With masks

Fig. 1. The figure shows the results of a SEIR model with masks. Wearing masks reduces the probability of transmission by different amounts depending on whether the
susceptible or infectious individual, or both or neither, are wearing masks. Individuals wear masks according to a purely crowd-based logic: the more individuals are wearing
them, the more likely it is for one to make the transition from not wearing to wearing a mask and vice versa. This is supplemented with spontaneous mask wearing and
removal proportional to the fraction of the population that is infectious. In this and subsequent figures, the envelopes around the mean trajectories correspond to one and two

standard deviations.
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The infection process is similar to the standard model, though it
is a consequence of interaction with contaminated surfaces rather
than infectious individuals,

K

P(xs), S(ey) - P(xz). S(cy) (17)

here, k is again the rate of contact with surfaces, and the rate of
infection is proportional to the fraction of contaminated surfaces.
The factor p is, analogously to the standard model, the probability
of becoming infected upon exposure to a contaminated surface.

The rules for progression of the disease are exactly as for the
model for mask wearing in the previous section.

We can see in Fig. 2 the effect of hand washing with plausible
values for the rates. The number of shared surfaces is taken to be
equal to one quarter of the population, and individuals come into
contact with them twelve times per day. For the case with hand
washing, hands are washed relatively frequently, eight times per
day and become dirty at twice that rate. Surfaces become decon-
taminated after four hours. Hand washing results in a substantial
reduction in the number of contaminated surfaces which, in turn,
causes a much smaller peak in the number of infections and a
lower number of cumulative infections.

Note also that exactly the same model, though likely with dif-
ferent rate constants, is applicable to a scenario of transmission
by aerosol. This simply requires reinterpreting “surface” as “indoor
location” since these locations become contaminated through the
presence of infected individuals and the aerosols disperse after
some time. A slightly more sophisticated treatment that includes
the effect of masks analogously to the previous section is left as
an exercise for the reader.

4.3. Vectors

Animate vectors of disease transmission such as mosquitoes
may have a life-cycle much shorter than the duration of a disease
outbreak. It would make sense to simply assume a constant popu-
lation of vectors that becomes carrier of disease and then ceases to
be a carrier - this may in fact be the case in some circumstances.
However, for purposes of exposition, we choose to represent the
birth and death cycle of the vector explicitly. Here, our agents will
be,

P(Xu), ue {S,E,I,R} (]8)
V(x,), ve{SI} (19)
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where the individuals simply have the states corresponding to dis-
ease progression, and the vector may be susceptible or infectious.

We will just use a birth process depending only on the number
of individual vectors for simplicity and incorporate a vector control
strategy,
Vo
or in other words, a vector reproduces at rate ky, and all offspring
are in the susceptible state regardless of the parent’s infection sta-
tus. There is no transmission through reproduction among vectors,
though that would be trivial to do. The factor, w, represents the
destruction of breeding habitat and is allowed to take on values
in [0, 1]. If the vector is a mosquito, this could represent the fraction
of the quantity of standing water at the beginning of the simulation
that is allowed to remain.

The death process is very simple and just happens at a constant
rate, kq,

V(), V(xs) (20)

V()L g (21)

In this model there are two kinds of infection process: people by
vectors and infection of vectors by people. These happen with
probabilities g and ' respectively. Let M = |V| analogously to
N = |P|, and we write for these rules,

P(xs), V(x)— P(xe), V(x) (22)
Vixs), P(x) 2 V(x), P(x) (23)

where K is the frequency at which a vector contacts (e.g. bites) the
host.

As before, disease progression for the host is unchanged from
the above models.

Fig. 3 shows the host and vector populations in this model
under two scenarios: undisturbed and where a 10% of the vectors’
habitat is destroyed every 7 days. The population of vectors starts
out at five times that of the hosts and, in the second scenario, pre-
cipitously declines, and brings the outbreak under control.

There are clearly elements of this scenario that could be mod-
elled in more detail. An interesting observation, implicit in the
birth-death process here, would be the return of vectors to the sus-
ceptible state at some rate. This could be made explicit with a
V(x;) — V(xs) rule. Offspring of vectors could, as mentioned above,
inherit susceptibility or infectiousness from the parent. This sce-
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(b) Hand washing

Fig. 2. The figure shows the results of a fomite model with and without hand washing. There is one shared surface for every four individuals. Individuals can have dirty, or
clean hands. Hands are washed periodically (in this case eight times per day) and become dirty half-way between each washing. Infectious individuals with dirty hands
contaminate surfaces. Susceptible individuals with dirty hands have a chance of being infected by contact with contaminated surfaces. Contaminated surfaces become
spontaneously decontaminated after four hours, due to cleaning or degradation of the pathogen.
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(d) Vector population

Fig. 3. Model of vector mediated disease transmission. Top row is the undisturbed system. On the left is the host population in its various states of disease progression and on
the right is the vector population. Bottom row is the same system subjected to a perturbation: 10% of the vectors’ habitat is destroyed every 7 time periods.

nario would then represent two coupled epidemiological models:
an SEIR model for the host and an SIS model for the vector. These
extensions, as before, are left as an exercise.

The code for this model is in C.

4.4. Testing

The presented rule-based approach can also allows to express a
more sophisticated model of testing than is normally found. In this
model, tests, T() are discrete units that are manufactured at a con-
stant rate m and are consumed on use. This has an advantage over
a representation where tests are simply asserted to be performed
at some rate because if a test is not available, it cannot be per-
formed. Explicitly representing tests as a participant in testing
reflects important considerations of manufacturing and the supply
chain. The manufacturing rule is simple,

@-5T() (24)

and the tests have a characteristic recall (true positive rate), r and
specificity (true negative rate), s.

Upon a positive test, an individual becomes isolated and can no
longer infect others. In addition to the usual disease progression
states and the quarantine state, we also endow individuals with
a “testable” state. This last has no additional meaning and is true
if and only if an individual is infectious. Its use is to allow for a
more compact representation of the testing rules. This is an exam-
ple of where, far from adding complexity, the judicious addition of

states can actually simplify a model. Our principal agent has the
signature,

P(XU7tV7qW)7 ue {S7E711R}7 ve {YvN}vw € {YvN} (25)

Our progression and removal rules, while simple, are no longer
the same as in the previous models because they govern member-
ship in the testable set. We write,

P(Xg, ty) — P(xi, ty) (26)
P(x1, ty) = P(xg, tn) (27)

in other words, at the same instant that an individual becomes
infectious, they also become subject to correctly testing positive.
As they are removed through recovery or death, they are no longer
subject to correctly testing positive.

Infection is similar to a standard SEIR model with the caveat
that it can only take place among unconfined individuals,

pe
P(stqN)r P(leqN)—N)P(XE7qN)7 P(xlqu) (28)

Note that testability is not mentioned and isolation status is not
changed. This is exactly the standard infection rule applying only
between the unconfined subsets of P(xs) and P(x;).

There are four testing rules corresponding to the four possibili-
ties of true positives and negatives and false positives and nega-
tives. For realism, we suppose that there is a random testing rate,
0o, for sampling the population, and a targetted testing rate, 0;,
for individuals that are infectious. This is justified by the fact that
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infectious individuals are frequently symptomatic, perhaps requir-
ing medical care, and so they are specifically tested. Because infec-
tious individuals may also be randomly testing, the effective
testing rate for them is,

0 =06y + 6; — 6006 (29)

where the third term on the right hand side corrects for double-
counting as we do not suppose that these individuals will be tested
by both methods.

For present purposes, only unconfined individuals that partici-
pate in disease propagation will be tested. Our four testing rules
are, therefore,

P(ty.qy). T~ P(ty.qy) (30)
P(tn,qy), T~ P(ty, qy) (31)
P(ty.qy). T()—" P(tn.qy) (32)
P(ty,qy), TO ——"" P(ty.qy) (33)

These are, in order, true negatives, false negatives, true positives
and false positives. Note that the test, T(), is consumed in this pro-
cess and does not appear on the right-hand side of any of the rules.
The reason for introducing the extra testable state is evident: it lets
us write these testing rules in terms of the relevant feature. If we
had not done so, it would have been necessary to write separate
true and false negative testing rules for each of S E,R, resulting
in eight rules in total rather than four.
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Finally, those individuals that became isolated when unin-
fected, or who have recovered in isolation, exit to the unconfined
state at a rate which we take without loss of generality to be equal
to the infectious period,

P(xs,qy) — P(xs, qy)

P(xg,qy) — P(xg, qn)

which completes this model. The corresponding code is reproduced
in D.

Fig. 4 shows example trajectories of this system under condi-
tions of low and high production of tests. For the top row, tests
are manufactured at a rate sufficient to test 2.5% of the population
daily. For the bottom row there are enough tests for 5%. An evident
significant difference is the effect of false negatives with increased
testing. In the bottom row, the majority of isolated individuals are,
in fact, susceptible or recovered and not infected. The testing
regime has a relatively high false positive rate of 20% and because
the majority of the population is initially susceptible, there are
more of them isolated than the other population subsets. As the
outbreak progresses, more individuals are in the removed subset
and they become isolated in proportion to the fraction of the pop-
ulation that they make up. In the top row, infectious individuals
initially dominate as there are insufficient many tests to randomly
sample the population. These are also insufficiently many tests for
isolation due to testing to contain the outbreak, so, as it progresses,
those who have recovered form the majority of isolated individu-
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(d) Isolated population

Fig. 4. Resource constrained testing leading to isolation. The top row is a circumstance where sufficient tests are manufactured to test 2.5% of the population daily and the
bottom row, 5%. Tests are consumed on use, and have a recall (true positives rate) and specificity (true negative rate) of 80%. A positive test leads immediately to isolation. On
the left are the unconfined sub-populations and on the right are the isolated sub-populations. Infection only happens within the unconfined sub-populations.
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als, again due to false positives in testing, simply because they
form the largest subset of the population.

4.5. Tracing

The final model in this paper which demonstrates the flexibility
of the proposed rule-based approach is for contact tracing.

It builds upon the previous testing model because testing trig-
gers contact tracing. It employs a slightly generalised version of
the technique used in our previous work (Sturniolo et al., 2020)
that functions as follows. Suppose that each time contact with an
infectious individual occurs, a trace is left behind. These traces fol-
low individuals through the disease progression, and eventually
degrade. We represent these traces as the agent,

C(xy), u € {S,E, LR} (36)

and we use the same agents T and P from the previous model.

The progression rules for individuals are likewise the same, and
to then we add straightforward equivalents for the traces, along
with a degradation rule,

C(xe) = C(xy) (37)
C(x1) = C(xg) (38)
)@ (39)

Contact is, however, now more complex as we need rules for all
contacts with infectious individuals, not only those that result in
infection. All of these contacts produce traces, but only those
which result in infection change the state of the individual contact,

(1-p)c

P(xs,qy), P(x1,qy) —— P(Xs,qn), P(X1,qy), C(Xs) (40)
P(xs, s P, Gx) —— P(xs, @), P, ), Clx6) (41)
P(Xe, ), P(x1, Q) —— P(Xe. ). P(xi.dy). C(xe) (42)
P(%, @), P(t1, Q) —— P(x1,qy), P(x1,y). C(x) (43)
P(e. ). P(X1,Gy) —— Plxe. G), P(xi, ), C(xe) (44)

Tracing is an operation that consumes a trace. Individuals may
be traced whether or not they are isolated, and are traced in pro-
portion to the fraction of the isolated population: those who have
been isolated due to a true or false positive test have their contacts
traced. The tracing rules, therefore, are,

o

P(xy), P(qy). C(Xs) > P(xu,qy), P(qy) (45)

for u € {S,E,I,R}, and where 7 is the tracing efficiency, or the num-
ber of contacts per unit time that are expected to be traced.

Note that this formulation of tracing differs from that of our pre-
vious work (Sturniolo et al., 2020) in two main respects. First, trac-
ing is somewhat recursive: becoming isolated due to tracing also
causes contacts to be traced. If recursive tracing is not required, it
is sufficient to add a state that records test results. Secondly, here,
the rate of being traced is proportional to the number of infectious
contacts one has experienced in the time window before the traces
degrade. If tracing happens at a constant rate per infectious individ-
ual, then having had contact with two such individuals should
result in being traced more quickly. There is no mechanism, how-
ever, to distinguish between multiple contacts with the same infec-
tious individual and contacts with multiple infectious individuals.
In our previous work, tracing happens in proportion to the likeli-
hood of having had at least one infectious contact which may tend
to underestimate the influence of contact tracing on containment
of outbreaks. The model given here is more eager and this may lead
to overestimation the effect of tracing. It is not obvious which
model most closely resembles the reality of contact tracing.
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Fig. 5 shows this model performing under less optimal testing
conditions than previously. That is, the tests are identically 80%
accurate and the aspirational sampling and targetting testing rates
are the same. The testing rates are aspirational because manufac-
turing is even more constrained: only 100 tests produced per
day. This poor provision of tests is supplemented with a good con-
tact tracing regime as described above with 1 = 0.45 meaning that
90% of contacts are traced, on average, within two days. A striking
feature is the large and slowly degrading number of susceptible
individuals that are isolated due to contact tracing. This is a conse-
quence of the fact that it is far less likely to become infected due to
contact with an infectious individual than to escape infection.
These contacts are nevertheless traced, resulting in many suscepti-
ble individuals becoming isolated. This number is sufficiently large
that it appreciably depletes the susceptible pool, rapidly slowing
propagation of the disease.

4.6. Schools

Our next example, reproduced in code in F and shows how the
proposed rule-based approach can express two coupled subpopu-
lations: adults and children. The background environment is a
well-mixed epidemic model such as we have seen above, with
the usual progression rules and an infection rule attenuated with
contact restrictions. Against this background, some structure is
added: families. A family may consist of up to two children and
up to two adults. The infection is transmitted much more easily
within families; family members are in frequent close contact with
one another. We also allow children to go to school, a second well-
mixed environment. Though children spend only part of their time
at school, contact with other children is much more frequent. Let
us see how to represent this rather complex situation as a small
number of rules.

We begin by defining the primary agent. It has the same infec-
tion states as above, as well as an internal state to identify as either
a child or an adult. Additionally, there are three binding sites that
permit the formation of child-parent or parent-parent bonds,

P(Xy,a,,€9%), ue {S,E,I,R}, v e {A C},ijkeN* (46)

We use fast binding rules to bind pairs of adults at the begin-
ning of the simulation,

P(ap, €3), P(a, €3) = P(aa, el), P(aa, el) (47)
and then we assign bind to pairs of adults,

P(aC7e.l7e.2)’P(aA7€17e§)7p(aﬂveﬁﬁeg) =

48
P(aﬁe}’e%)‘/l)(a/‘\ﬂe}ﬂe§)7P(aA7e%7e§) ( )

These three rules are sufficient to generate a small variety of
family motifs: single individuals, childless couples, and couples
with one or two children.

The main feature of these two rules is that the motifs that they
produce are bounded in size. An alternative formulation would
first associate children with adults and then preferentially associ-
ate the parents of the same children. This would allow for families
with two children and three parents, or indeed arbitrarily large
families in different configurations. Such a generative rule-set
could be,

P(ac,€,),P(as, e;) = P(ac, e;), P(as, e;) (49)
P(ac,e)),P(as, e,) — P(ac, e,), P(as, e)) (50)
P(ac,e},€3),P(as,e],e;),P(as, €5, €;)

—sooP(ac, el,e2),P(a, e}, e3), P(aa, 3, €3) (51)
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Fig. 5. Isolation through testing and contact tracing. Note the different layout from previous figures in order to obtain better agreement of scale. On the left are susceptible
and removed individuals, both isolated and not. On the right are infectious and exposed individuals, both isolated and not. The parameters are as with those for the scenario
with testing alone, identical background rates and targeted rates of testing, and identical 80% accuracy. Here, manufacturing is even more constrained: only 100 tests/day are
produced. Contact tracing is performed efficiently with 90% of contacts traced in 48 h.

and may reflect human society more accurately. The distribution of
motifs could be adjusted by using different large but finite rates
rather than oo.

The simulation substrate being a regular SEIR model, we have
standard infection and progression rules that will be familiar from
the foregoing sections,

P(xs), P(xa) 2 P(xz), P(x,) (52)
P(xg) — P(x)) (53)

P(x)) = P(x) (54)
where ¢ is the factor by which lockdown distancing measures atten-
uate the normal propagation of the disease.

The children in this simulation spend some time in school, a
fraction, s € [0, 1], of their waking day. While at school, they have
contact with other children at an accelerated rate, « > 1. This phe-
nomenon will be familiar to any parent of a school-aged child.
School is represented simply as a second mass-action infection rule
that applies only to children.

B
P(ac, xs), P(ac, X)) —, P(ac, xg), P(ac, X)) (55)

Finally, infection does not spread within families with the same
dynamic as in the general population. Family members are much
more likely to pass the infection to each other. We use three rules
for this: from the child to each parent in proportion to the time
they spend away from school, and between parents,

1 1y (-9 1 1
P(xs,eq), P(x;,e;) — P(xg, eq), P(x;, €7) (56)
1-s)8
P(xs,e%),P(x,,e%)ﬂP(xE,eﬁ),P(x,,eﬁ) (57)
B
P(xs,€3), P(x;,e3) —— P(xg, €3), P(x;, €3) (58)

That is the entire model: two compartmental-style infection
processes coupled with a network epidemic model, expressed suc-
cinctly in 9 rules. The results at the level of the population are
shown in Fig. 6. The overall effect of schools being open is clear:
the peak in infections is much larger, and the outbreak progresses
more rapidly though there is little change in the cumulative infec-
tions (equivalent to P(xg)). The underlying mechanism is visible in
Fig. 7 where the adult and child subpopulations are presented sep-
arately. In particular, Fig. 7b shows the curve for infectious chil-

10

dren, P(x;,ac), significantly leading that for infectious adults,
P(x1,a4). Schools, modelled as we have done here, are an accelerant
of the outbreak. Of course, this is true in this case by construction:
we supposed that a sub-population spends some time in circum-
stances where contact happens at a greater rate than in the general
population. However such a representation would seem to corre-
spond reasonably faithfully to reality.

4.7. Gatherings

Our final example is one kind of superspreading event. There
are several scenarios in which such events can occur, driven by bio-
logical, behavioural, environmental factors or indeed happenstance
(Althouse et al., 2005). This example is of the behavioural kind. The
agents in this case are placed on a spectrum from “loner” to ‘“so-
cialite”. The difference is the propensity to participate in “gather-
ings” which are daily events where the contact rate is much
higher than normal. Whereas in previous examples, the disease
was parametrised to have an infectiousness () comparable to
what we expect from the 2019 novel coronavirus, here we use an
contagion that is only half as infectious.

The agent in this simulation is declared as,

P(xy,8,,cn)u € {S,E,LLR}, v e {Y,N}, ce{1,...,10}

The g site indicates whether the individual is participating in a
gathering, and c is an integer scale from 1 to 10 of how social that
individual is implemented using a counter. Beginning with some
housekeeping, as the internal state of ¢ will be initialised to zero,
we very rapidly assign individuals uniformly to the social scale,

(60)

(59)

P(co) = P(cn)

for each n.
Progression of the disease are the standard simple rules,

P(x) 5 P(x;) and P(x;) ER P(xg), and we have a pair of infection rules,

/Cin

P(xs,gy), P(x1, &y) — P(Xe, gy), P(x1, &) (61)
ﬁcig

P(xs,8y), P(X1, 8y) — P(xe, gy ), P(x1,y) (62)

These are similar to the standard infection rule, though the rates
are different. First ¢, > c,, the contact rate at gatherings is much
higher than usual, and the normalisation constant is not the entire
population but only those that are gathering, or not as appropriate.
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Fig. 6. The influence of schools on disease propagation. On the left is the trajectory of an epidemic with schools as described in the text. One quarter of the population consists
of children and distancing measures are generally in effect, except that the children go to school where they interact at a high rate. On the right, schools are closed, s = 0.
Though the asymptotic distribution is similar, schools promote infection propagation through the otherwise distanced population.
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Fig. 7. Schools are an accelerant. This is a more detailed view of the same scenarios of Fig. 6 with the adult and child population shown separately. Note in particular the curve
for P(x;,ac) clearly leading the curve for P(x;,ap) in Fig. 7b. This is different from Fig. 7d where the corresponding peaks occur at similar times. This shows that children

attending schools are agents of infection of the w.ider population.

This represents a true partition of the population into those that
are gathering and interacting only with one another, and those that
are not. There is no interaction between gatherings and the rest of
the population while the gathering is taking place - those social
creatures that gather become infected and take the disease home.

gathering,

Kol
P(gy, Cn) % P(gy, Cn)

P(gy)—knP(gy)

The remaining two rules describe joining and leaving a

(63)
(64)
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If k; is the maximum rate of joining gatherings, the rate at
which Eq. 64 occurs is scaled down according to the social predis-
position of the individual. In the simulation k, is chosen such that
the most social individuals are expected to gather once per day and
k, such that they are expected to leave a gathering after an hour.

P(gy)

250

200 |

150 |

100 | B

Embeddings (Individuals)

0 2 4 6 8 10 12 14

Time

Fig. 8. Gatherings. This figure shows a two week time period with regular
gatherings. Individuals spend about an hour at a gathering, and at most these
consist of about 250 individuals (2.5% of the population).
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The 4 is a binary parameter indicating whether a gathering is tak-
ing place or not. This is set and cleared with a pair of perturbations.
It is set to 1 once per day and set to O after six hours.

Fig. 8 shows daily gatherings in a two week time period. Indi-
viduals spend an hour, on average, at a gathering, and at their peak,
gatherings consist of about 2.5% of the population, though for a
short time. The contact rate within a gathering is 10x the normal
rate. This increase corresponds to a modest increase in the average
contact rate of the most social individuals of a factor of
2+ 105, = 1.375. Only 10% of the population is that gregarious;
on average these gatherings increase the contact rate by a factor
of only 1.17.

The effect of the modest increase in the contact rate is amplified
by the partitioning of the population. Individuals who are gather-
ing interact at this elevated rate only with others who are also
gathering. Being a small fraction of the total population, once one
social individual is infected, if they are gathering, the chance of
encountering them is proportionally higher: (0.025N)™' = 40N~".
This phenomenon is readily apparent from Fig. 9 where gatherings
with the dynamics as described result in a doubling of the peak
infectious individuals and a near doubling of the total infections.

5. Discussion

This study gives a primer for applying rule-based methods used
in molecular biology (Danos et al., 2007; Giordano et al., 2014;

200

——— P(zp) = P(z)

150 - n

100 - A AN |

50 |/

Embeddings (Individuals)

| % .
0 50 100 150 200 250 300 3
Time
(b) No gatherings, E & I
200 T T T

\,, —— Pg) —— P(zp)

150

100

Embeddings (Individuals)

50 |

150 200 250 300 350
Time

|
100

(d) Gatherings, E & T

Fig. 9. Superspreading events. Top row, no gatherings. This is a relatively slow contagion with Ry ~ 1.1 Bottom row, periodic gatherings as illustrated in Fig. 8. The gatherings
result in a much more forceful epidemic with twice the peak infectious population and nearly twice the t.otal infections.
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Kohler et al., 2014; Keeling et al., 2018) to a selection of problems
in epidemiological modelling. Each of the models we have chosen
would be very challenging to implement as compartmental models
because of the scaling issues we discussed. They could all be imple-
mented using agent- or individual-based techniques, but, we argue
in this paper, not as clearly and parsimoniously as we have done
here.

In fact, the scenarios described above highlight the features of
the proposed modelling framework in terms of transparency and
compositionality. The scalability of the approach become clear
when the examples presented are expressed as reactions. Table 2
shows, for each example, the number of species or compartments
and the number of reactions as well as the number of agents and
rules required to capture the same dynamics.

All of the examples are substantially more succinct when writ-
ten with rules. The simplest models, of fomites, vector-borne dis-
eases and testing alone are only simpler by a factor of 2 or 3 and
could feasibly be studied in reaction-based form. The other models,
despite not being substantially more complex in rule-based form
require orders of magnitude more compartments and reactions
to capture the same dynamics.

Moreover, the examples provided show that rule-based mod-
elling allows principled expression of interactions in readily-
simulated way that is much easier to specify, and allow for greater
flexibility in structure.

Rule-based models are also compositional meaning that they can
be easily combined: with some semantic assumptions, combining
models can simply mean concatenating their rules.

Rule-based modelling has previously been applied to address
the limitations of traditional approaches for modelling chemical
kinetics in cell signalling systems (Danos et al., 2007; Giordano
et al., 2014; Kohler et al., 2014). An attempt to develop a rule-
based model for chronic-disease epidemiology has also been made
previously (Anderson et al., 2012), but the core methodology there
was somewhat intertwined with agent-based models. As we have
mentioned in the introduction, the approach that we have demon-
strated here of constructing and simulating a chemical master
equation, is different from agent- or individual-based modelling.
It is also different from reaction-based models that have been con-
sidered for epidemiology (Lorton et al., 2019) in that it manages
combinatorial explosion well. Rule-based modelling provides a
flexible and computationally efficient methodology that can easily
be adapted, and expanded to answer existing and emerging ques-
tions in epidemiology.

The novelty of our work is in translating an established molec-
ular biology modelling framework to epidemiological modelling,
with a view to timely application to the COVID-19 epidemic.

The spread of the SARS-CoV-19 virus during 2020 causing a
pandemic of COVID-19 across the world, has highlighted the
importance of modelling in decision making. Modelling has been
at the forefront of the discussion around imposition of social dis-
tancing measures and evaluation of different scenarios to relax

Table 2

Number of modelling entities required for the example models given here when
treated as rule-based vs reaction-based models. Note that the schools model requires
a number of species or compartments and reactions that is in principle unbounded.

model agents rules species reactions
masks 1 10 9 96
fomites 2 6 11 32
vectors 2 6 7 16
testing 2 10 12 38
tracing 3 21 16 170
schools 1 9 219 89098
gatherings 1 16 85 766
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them (Blinov et al., 2020; Prem et al., 2020; Mallavarapu et al.,
2238; Panovska-Griffiths et al., 2020; Colbourn et al., 2020; Milne
et al., 2020). Having an appropriate model for the available data at
every step of the growing epidemic is important and this requires
variety of modelling approaches, each with different strengths and
weaknesses (Panovska-Griffiths, 2020; Baez et al., 2020; Adam,
2020). Our contribution with this paper is to highlight another
approach in modelling infectious disease spread - in this case bor-
rowed from molecular biology.

We note that although we have demonstrated the expressive
power of rule-based modelling, the examples given here are simply
that: examples and represent a proof-of-principle. They are
intended to show some scenarios that are detailed enough to be
interesting but they are simple and consider specific phenomena
in isolation. Each of these examples could usefully be elaborated
and studied in greater detail. Because the mechanisms underlying
infectious disease propagation and interventions can be explicitly
represented, studying these and other examples as rule-based
models is likely to yield important insights. Rule-based modelling
is a powerful tool to gain a more detailed understanding of the
dynamics of outbreaks and the options available for their manage-
ment. Immediate future work is in applying these techniques to
pressing questions from the covip-19 epidemic: how the detail of
different testing and tracing strategies affects success, the role
played by superspreading events, and the interplay between social
dynamics and epidemic dynamics.

Rule-based modelling is not a panacea. There are several practi-
cal challenges to its adoption, and some kinds of model that are dif-
ficult to express.

First, the notation and approach is not well understood in epi-
demiology, and this requires a change in practice. There is poten-
tial for misunderstanding where key terminology - in particular
the words “agent” and “compartment” are used in different senses
by the different communities. We argue that the simplicity and
elegance of representation, thinking simply in terms of simple indi-
vidual interactions rather than the set of complicated differential
equations that can be derived for them is sufficient to warrant
the use of the rule-based representation. The benefit of understand-
able models, where a single description is suitable both for com-
puter simulation and human digestion is substantial; it turns
opaque science and makes it transparent. While there is some iner-
tia and there is some cost to adopting this representation, we think
the benefits are immense.

Second, this method is not a “drop-in” replacement for differen-
tial equation models. For maximum utility, further work on making
the use of rule-based models in other systems easier would be
valuable. Most epidemiology packages in Python or R implement
a limited set of models, even those that are intended to allow
use of varied structures. Adopting rule-based modelling is an easy
way to make such packages far more extensible. It is possible to
control stochastic simulations of rule-based models today in
Python, and it is possible to generate differential equations for
solving using GNU Octave, Matlab, Mathematica and Maple. It
would be useful to generate differential equations for solving in
Python from rule-based models, and currently we are not aware
of any interface for the R language, commonly used in epidemio-
logical modelling. These are minor practical limitations, easily
remedied with some straightforward work and not limitations in
principle.

Finally, there are kinds of models that one would like to express
that would require extension of existing rule-based modelling
tools. True network models are also difficult to implement as bind-
ing sites can only have zero or one bonds. This means that, consid-
ering these bonds as edges in a graph, it is only possible to have
vertices of finite degree and it is cumbersome to have vertices of
more than very small degree. Addressing this limitation would
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require an extension to the core language and cannot be solved
with code generation. Partitions (which we would like to call com-
partments but that would collide with the use of the word in epi-
demiology) between which agents are permitted to migrate and
within which rules are scoped are cumbersome to express. The
“gatherings” model of Section 4.7 does this, partitioning the popu-
lation into those that have gathered together and those that have
not, but it is easy to see that this would quickly become unwieldy
for a large number of partitions. Spatial extensions to the x lan-
guage (Sorokina et al., 2013) exist that automate the process of
generating rules for partitions of this kind. If the computational
expense is tolerable it is possible to conduct rule-based simula-
tions of spatial models.

More generally, while it is always possible to generate differen-
tial equations for moments of the observables (Camporesi et al.,
2017) of rule-based models, in some cases requiring truncation
where the rules produce infinite systems, there are trade-offs.
The computational expense of simulation of rule-based models of
the kind here depends both on the complexity of the rules them-
selves, their rates, and the configuration of the system. The simple
models given here can typically be simulated on commonly avail-
able hardware in seconds, or several minutes but it is not uncom-
mon for complex models to require several hours of compute time.
By contrast a low-dimensional differential equation model can be
simulated in seconds regardless of the population size or the rates
involved, subject to some caveats about stiffness where models
represent processes that occur at very different time-scales. How-
ever, the differential equations that can be derived from rule-based
models are commonly very high-dimensional and it is not straight-
forward to obtain low-dimensional approximations. If such
approximations are available, analytical results might be obtain-
able, for example concerning final epidemic size, whereas with
stochastic simulation we must be content with analysis of time-
series data.

Due to the use of Gillespie’s algorithm, there is also the built-in
underlying assumption of exponentially distributed rule activity.
This is the same assumption built into ordinary differential equa-
tions given that they are the continuous limit of such a process,
but it is not possible to simply choose a different distribution for
the application of a given rule. It is common, for example in

14

Journal of Theoretical Biology 530 (2021) 110851

branching process models to capture phenomena such as I' dis-
tributed recovery times from an infection by directly using this dis-
tribution. It is, however, possible at least in principle to replace
such a rule with a set of rules that models the underlying process,
the interplay between the infection and the immune response that
produces events with a distribution that is effectively a complicated
sum of exponentially distributed processes. This approach, though
it increases the complexity of the model and computational
expense, has the benefit that it can be understood to explain phe-
nomena observed at the host or population level in terms of sim-
pler underlying processes. Models framed in this way are more
mechanistic than phenomenological.

We have shown that rule-based modelling has a major advan-
tage in expressivity and compositionality over the current practice
with compartmental models in epidemiology, and in clarity over
individual-based models. This work brings a broad range of phe-
nomena that are both interesting and important to understand
within the scope of what can be studied in a systematic and prin-
cipled way. We have demonstrated this by example, providing
seven easy pieces: simple, yet interesting models that provide
not only an illustration of the utility of rule-based modelling, but
starting points for further study.
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Appendix A. Code: Masks

Jvar: beta 0.034 // infection probability per contact

hvar: c 13 // contact rate per day

%var: alpha 0.2 // progression from exposed to infectious
Jvar: gamma 0.1429 // progression from infectious to removed
svar: mu 1.0 // convincing rate for mask wearing

J%var: nu 0.2 // convincing rate for mask removal

hvar: sp 0.5 // spontaneous use of masks

// effect of different combinations of mask wearing

Jvar: mask_nn 1.0 // no masks

%var: mask_yn 0.5 // infectious wears mask, susceptible not
%var: mask_ny 0.8 // susceptible wears mask, infectious not
Jvar: mask_yy 0.2 // both wear masks

Jagent: P(x{s e i r} m{y n})

’progression’ P(x{e/i}) @ alpha

’removal’ P(x{i/r}) @ gamma

’infection_nn’ P(x{s/e}, m{n}), P(x{i}, m{n}) @ mask_nn * beta * ¢ / N
’infection_yn’ P(x{s/e}, m{y}), P(x{i}, m{n}) @ mask_yn * beta * c / N
’infection_ny’ P(x{s/e}, m{n}), P(x{i}, m{y}) @ mask_ny * beta * c / N
’infection_yy’ P(x{s/e}, m{y}), P(x{i}, m{y}) @ mask_yy * beta * c / N
’convincing’ P(m{n/y}), P(m{y}) @ mu/N // start wearing masks
’removing’ P(m{y/n}), P(m{n}) @ nu/N // stop wearing masks
’spont_mask’ P(m{n/y}) @ sp*PI

>spont_unmask’ P(m{y/n}) @ spx(1-PI)

%obs: S [P(x{s}) |

%obs: E [P(x{e}) |

%hobs: I [P(x{i}) |

%obs: R [P(x{r}) |

%obs: M [P(m{y}) |

// variables for population size and initialisation
fvar: N 10000 // total population

// initially infectious

Jvar: INIT_I 50

Jvar: INIT_S N - INIT_I

// fraction susceptible

Yvar: PI INIT_I/N

%init: INIT_I P(x{i}, m{n})
%init: INIT_S P(x{s}, m{n})

Jmod: [truel do $UPDATE PI |P(x{il})|/N; repeat [truel

15
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Appendix B. Code: Hand washing

15
16
17
18
19

20

%var:
hvar:
%var:
hvar:
%var:
%var:
hvar:

beta
alpha
gamma
omega
tau
kappa
delta

0.025 // infection probability per contact

Journal of Theoretical Biology 530 (2021) 110851

0.2 // progression from exposed to infectious
0.1429 // progression from infectious to removed
8 // wash hands omega times per day

16 // rate at which hands become dirty

12 // contact rate with surfaces

6 // decontamination rate for surfaces

// individuals can have clean or dirty hands

@ alpha
@ gamma

> P(h{c}) @ omega, tau

f%agent: P(x{s e i r} h{c 4d})

// surfaces can be contaminated or not
f%agent: S(c{y n})

’progression’ P(x{e/i})

’removal’ P(x{i/r})

>washing’ P(h{d}) <-
’contamination’ S(c{#}),

’decontamination’ S(c{y/n})

’infection’

%obs:
hobs:
%obs:
%obs:
%obs:

// variables

%var:
hvar:

// initially
INIT_I
// initially

%var:

%var:

%init:
%hinit:
%hinit:

Q™ H M@ W

N
NS

P(x{s/e},

IP(x{s}) |
|P(x{e}) |
IP(x{i}) |
IP(x{r}) |
ISCc{y}) |

for population
10000 //
2500 //
infectious

100
susceptible

INIT_S N - INIT_I

INIT_
INIT_

NS

I P(x{i}, h{a})
S P(x{s}, h{d})
S(c{n})

@ delta

P(x{i}, h{d}) -> S(c{y}), P(x{i}, h{d}) @ kappa/N

h{d}), S(c{y}) @ beta * kappa / NS

size and initialisation
total population
number of surfaces

16
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Appendix C. Code: Vectors

15

[V

%var: beta 0.036 // probability of infection from a bite
%var: bprime 1 // probability of vector becoming infectious
%var: alpha 0.2 // progression from exposed to infectious
Jvar: gamma 0.1429 // progression from infectious to removed
J%var: kappa 1.0 // bites per day per mosquito

Jvar: kb 0.1429 // birth rate slightly slower than

J%var: kd 0.1429 // death rate

Jvar: water 1 // amount of the breeding habitat available

// individuals simply have disease progression states
Jagent: P(x{s e i r})

// vectors can be susceptible or infectious

fhagent: V(x{s i})

’progression’ P(x{e/i}) @ alpha

’removal’ P(x{i/r}) @ gamma

‘birth’ v, . > V0O, V(x{s}) @ water * kb
’death’ VO -> . @ kd

’biting’ V(x{s/i}), P(x{i}) @ bprime * kappa / M
>infection’ P(x{s/e}), V(x{i}) @ beta * kappa / N
%obs: S IP(x{s}) |

%obs: E |IP(x{e}) |

%obs: I IP(x{i}) |

%obs: R IP(x{r}) |

%obs: Vs [V(x{s}) |

J%obs: Vi IV(x{i}P) |

// variables for population size and initialisation
Jhvar: N 10000 // total population

Jvar: M 50000 // number of mosquitoes

// initially infectious

Jvar: INIT_I 100

// initially susceptible

J%var: INIT_S N - INIT_I

%init: INIT_I P(x{il})
%init: INIT_S P(x{s})
%init: M Vix{s})

// perturbation: track the number of vectors
Jmod: [true] do S$UPDATE M |V(Q)I; repeat [truel

// perturbation: destroy habitat
Ymod: [T] > 60 do $UPDATE water water * 0.5;

17
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Appendix D. Code: Testing

1| %hvar: beta 0.034 // probability of infection from contact

2| hvar: c 13 // contact rate, lower than normal

3| hvar: alpha 0.2 // progression from exposed to infectious

4| hvar: gamma 0.1429 // progression from infectious to removed

5| hvar: theta0 0.0714 // rate of testing in the general population
6| hvar: thetal 1.0 // rate of testing of infectious population
7| 4var: theta theta0 + thetal - thetaO*thetal

g| hvar: m 500 // rate of manufacturing tests

o| hvar: r 0.8 // recall - true positives per positive

10| %hvar: s 0.8 // specificity - true negatives per negative

12| // individuals have disease progression, testability and isolation status
13| hagent: P(x{s e i r} t{y n} q{y n})

14| // tests are discrete entities

15| hagent: T()

16

17| *manufacturing’ . -> T() @ m

19| ’progression’ P(x{e/i}, t{n/y}) @ alpha

20| removal’ P(x{i/r}, t{y/n}) @ gamma

21

22 *infection’ P(x{s/e}, q{n}), P(x{i}, q{n}) @ beta * ¢ / N

23

24| "test_tn’ P(t{n}, qf{n}), TO -> P(t{n}, q{n}), @ s*xthetal

25| *test_£fp’ P(t{n}, gq{n}), TO -> P(t{n}, qi{y}), @ (1-s)*thetal
26| test_tp’ P(t{y}, qin}), TO -> P(t{y}, aiy}), @ rxtheta

27| *test_fn’ P(t{y}, q{n}), TO -> P(t{y}, qi{n}), @ (1-r)*theta
28

20| 7exit_s”’ P(x{s}, q{y/n}) @ gamma

30| ’exit_r’ P(x{r}, q{y/n}) @ gamma

31

32| %obs: Sm IP(x{s}, q{n})|

33| %obs: En |P(x{e}, q{n})|

34| %obs: In IP(x{i}, gq{n}) |

35| %4obs: Rn [P(x{r}, q{n})|

36| hobs: 8y IP(x{s}, q{y}H |

37| hobs: Ey |P(x{e}, qi{y}) |

38| hobs: Iy IP(x{i}, q{y») |

30| hobs: Ry |P(x{r}, q{y}) |

41| // variables for population size and initialisation
42| hvar: N 10000 // total population

43| // initially infectious

44| fhvar: INIT_I 100

45| // initially susceptible

46| hvar: INIT_S N - INIT_I

as| %hinit: INIT_I P(x{i}, t{n}, qi{n})
49| %init: INIT_S P(x{s}, t{n}, q{nl})

18
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Appendix E. Code: Tracing

1| %var: beta 0.034 // probability of infection from contact

2| hvar: c 13 // contact rate, lower than normal

3| hvar: alpha 0.2 // progression from exposed to infectious

4| hvar: gamma 0.1429 // progression from infectious to removed

5| hvar: theta0 0.0714 // rate of testing in the general population
6| hvar: thetal 1.0 // rate of testing of infectious population
7| hvar: theta theta0 + thetal - thetaOx*thetal

g| hvar: m 100 // rate of manufacturing tests

o| hvar: r 0.8 // recall - true positives per positive

10| %hvar: s 0.8 // specificity - true negatives per negative
11| hvar: eta 0.45 // trace 90% of contacts in two days

13| // individuals have disease progression, testability and isolation status
14| hagent: P(x{s e i r} t{y n} qiy n})

15| // tests are discrete entities

16| hagent: T()

17| // traces follow the same disease progression as individuals

18| hagent: C(x{s e i r})

20| // manufacturing of tests
manufacturing’ . -> T() @ m

21

22

23| // progression of individuals

24| >progression’ P(x{e/i}, t{n/y}) @ alpha
25| removal’ P(x{i/r}, t{y/n}) @ gamma
27| // progression of traces

28| >c_progression’ C(x{e/i}) @ alpha

20| >c_removal’ C(x{i/r}) @ gamma

30| ’c_degradation’ C() -> . @ gamma

32| // contact rules

33| > lucky’ P(x{s}, qf{n}), P(x{i}, qf{n}), . ->

34 P(x{s}, qi{n}), P(x{i}, q{n}), C(x{s}) @ (1 - beta) * ¢ / N
35| >infection’ P(x{s}, q{n}), P(x{i}, q{n}), . ->

36 P(x{e}, q{n}), P(x{i}, q{n}), C(x{el}) @ beta * ¢ / N
37| exposed’ P(x{e}, qi{n}), P(x{i}, q{n}), . ->

38 P(x{e}, qi{n}), P(x{i}, q{nl}), C(x{el}) @c /N

39| >infected’ P(x{i}, qi{n}), P(x{i}, q{n}), . ->

40 P(x{i}, qi{n}), P(x{i}, q{n}), C(x{i}) @c /N

41| ? immune’ P(x{r}, q{n}), P(x{i}, q{n}), . ->

42 P(x{r}, q{n}), P(x{i}, q{n}), C(x{r}) @ c /N

43

44| // testing rules

45| "test_tn’ P(t{n}, qi{n}), TO -> P(t{n}, qi{n}), @ s*xthetal

46| *test_fp’ P(t{n}, qi{n}), TO -> P(t{n}, qi{y}), @ (1-s)*thetal
47| 7test_tp’ P(t{y}, qin}), TO -> P(t{y}, ai{y}), . @ rxtheta

48| "test_fn’ P(t{y}, q{n}), TO -> P(t{y}, qi{n}), @ (1-r)*theta
19

50| // tracing rules

51| *trace_s’ P(x{s}, q{#}), P(q{y}), C(x{s}) ->

52 P(x{s}, qf{y}), P(a{y}), . @ eta * theta / N
53| ’trace_e’ P(x{e}, q{#}), P(aq{y}), C(x{e}) ->

54 P(x{e}, qf{y}), P(a{y}), . @ eta * theta / N
55| trace_i’ P(x{i}, qf{#}), P(q{y}), C(x{i}) ->

56 P(x{i}, qf{y}), P(a{y}), . @ eta * theta / N
57| ’trace_r’ P(x{r}, q{#}), P(q{y}), Cc(x{r}) ->

58 P(x{r}, q{y}), P(a{y}), . @ eta * theta / N
59

60| // exit from isolation

61| exit_s’ P(x{s}, q{y/n}) @ gamma

62| >exit_xr’ P(x{r}, q{y/n}) @ gamma

63

64| %obs: Sn |P(x{s}, gq{n}) |

65| 4obs: En |P(x{e}, q{n})|

66| 4obs: 1In IP(x{i}, q{n}) |
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0w N O G A W N e
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80

%obs: Rn
%obs: 8y
%obs: Ey
%obs: Iy
%obs: Ry
%obs: Cs
Jobs: Ce
%obs: Ci
%obs: Cr

// variables
Yvar: N

// initially
Jvar: INIT_I
// initially
Jvar: INIT_S

%init:
%init:

INIT_I P(x{i},
INIT_S P(x{s},
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IP(x{r},
|P(x{s},
IP(x{el},
|P(x{i},
|P(x{r},
[C(x{s}) |
|C(x{e}) |
[c(x{i}) |
lc(x{z}) |

q{n}) |
qf{y B |
q{yb) |
qf{y B |
aqiy}) |

size and initialisation
total population

for population
10000 //
infectious

100
susceptible

N - INIT_I
t{n},
t{n},

q{n})
q{n})
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Appendix F. Code: Schools

%var:
hvar:
%var:
%var:
%var:
%var:
%var:
%var:

beta

c

d
alpha
gamma
school
lock
child

15 mins

0.034 //

13 // contacts per unit time
0.01 // contact duration

0.2 //

0.1429 //

0.5 //

0.3 //

2 //
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infection probability per contact

progression from exposed to infectious
progression from infectious to removed
fraction of the waking day spent at school
reduction in contact due to lockdown
increase in contact at school

// individuals have the usual disease progression states and
// are in two groups

// these
hagent:

individuals.
P(x{s e i r} a{c a} el e2 e3)

// Pair adults

’parents’

P(af{a},

// Produce children

’children’

// infection
’infection’

’infection_sc’
’infection_el”’
’infection_e2’
’infection_e3’

P(a{a},
P(a{c},

e3[./31),

el[./1],
e1[./1],

-- children and adults.

P(x{s/e}), P(x{i})

P(x{s/e}, a{c}H),
P(x{s/e}, e1[1]),
P(x{s/e}, e2[2]),
P(x{s/e}, e3[31),

’progression’ P(x{e/i}) @ alpha
P(x{i/r}) @ gamma

’removal’
%obs: 8

%obs: E

%obs: I

%obs: R

%obs: Sa
%obs: Ea
%obs: Ia
%obs: Ra
%obs: Sc
%obs: Ec
%obs: Ic
%obs: Rc
%obs: F1
%obs: F2
%obs: F3
%obs: F4

// variables

%var:

N

// initially

%var:

INIT_I

// initially

%var:

INIT_S

|P(x{s}) |
IP(x{e}) |
IP(x{i}) |
IP(x{r}) |
|P(afal,
|P(a{a},
|P(af{al,
|P(a{a},
|P(af{c},
|P(a{c},
|P(a{c},
|P(af{c},
|P(e3[.1)

x{s}h |
x{e}) |
x{i}) |
x{r}) |
x{s}) |
x{e}) |
x{iP) |
x{r}) |
|

P(af{a},

e3[3]),
e2[./2]) @ inf

IP(et[.],e2[.1,e3[_1)1/2

|PC(et[_],e2[.1,e3[_1)I

IP(et[_],e2[_1,e3[_1)1/2

e3[./3]1) @

P(x{i},
P(x{i},
P(x{i},
P(x{i},

a{c}h)

e1[11)
e2[2])
e3[31)

©@ © © ©®

bonds form between

inf

P(af{a}, e2[./2]1, e3[31),

lock*betax*c/N
(child*school*beta*c)/(P_CHILD*N)
(1-school)*beta/d
(1-school)*beta/d

beta/d

for population size and initialisation
// total population

10000

infectious

50

susceptible
N - INIT_I

// probability of being a child
P_CHILD 0.25

hvar:

hinit:
%hinit:
%init:
%init:

INIT_I*P_CHILD

P(x{i},

INIT_I*(1-P_CHILD) P(x{i},

INIT_S*P_CHILD

P(x{s},

INIT_S*(1-P_CHILD) P(x{s},

a{c})
a{al})
a{c})
a{a})
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Appendix G. Code: Gatherings

1| hvar: beta 0.016 // infection probability per contact

2| hvar: c_n 10 // normal contact rate per day

3| hvar: c_g 100 // gathering contact rate per day

1| hvar: alpha 0.2 // progression from exposed to infectious
5| hvar: gamma 0.1429 // progression from infectious to removed
6| hvar: gather 0 // how often gathering happens

7| hvar: k_gather 4 // how frequently to gather

g| hvar: k_leave 24 // how long a gathering lasts

9

0| hagent: P(x{s e i r} g{y n} c{=1 / +=10})

11

12| ’progression’ P(x{e/i}) @ alpha

13| >removal’ P(x{i/r}) @ gamma

14

15| >infection_n’ P(x{s/e}, g{n}), P(x{i}, g{n}) @ beta * c_n / NN
16| >infection_g’ P(x{s/e}, gl{y}), P(x{i}, g{y}) @ beta *x c_g / NG
17

18| >gathering’ P(g{n/y}, c{=social}) @ gather * k_gather * social/10
19| >leaving’ P(g{y/n}) @ k_leave

20

21| >sort_1’ P(c{=0/+=1}) @ inf

22| ’sort_2° P(c{=0/+=2}) @ inf

23] ’sort_3’ P(c{=0/+=3}) @ inf

24| ’sort_4° P(c{=0/+=4}) @ inf

25 >sort_5> P(c{=0/+=5}) @ inf

26| ?sort_6’ P(c{=0/+=6}) @ inf

27| ?sort_7’ P(c{=0/+=7}) @ inf

28| sort_8’ P(c{=0/+=8}) @ inf

20| ’sort_9° P(c{=0/+=9}) @ inf

30| ’sort_10° P(c{=0/+=10}) @ inf

31

32| hobs: S [P(x{s}) |

33| %hobs: E IP(x{e}) |

34| fobs: I IP(x{i}) |

35| hobs: R [P(x{r}) |

36| hobs: G IP(g{y}) |

37| hobs: P1 [P(x{r}, c{=1}) 1

38| hobs: P2 [P(x{r}, c{=2})1I

30| %hobs: P3 [P(x{r}, c{=3})I|

10| hobs: P4 [P(x{r}, c{=4})|

11| %obs: PB IP(x{r}, c{=5})I|

12| fiobs: P86 [P(x{r}, c{=6})1

13| hobs: P7 [P(x{zr}, c{=71)1I

11| fobs: P8 [P(x{r}, c{=8})1

15| hobs: P9 [P(x{r}, c{=9})1I

16| hobs: P10 [P(x{r}, c{=10}) |

a7

48| // variables for population size and initialisation

10| bvar: N 10000 // total population

s0| // initially infectious

51| hvar: INIT_I 50

52| hvar: INIT_S N - INIT_I

53

54| hinit: INIT_I P(x{i}, gin}, c{=0})

55| hinit: INIT_S P(x{s}, gin}, c{=0})

56

57| hvar: NN N

sg| hvar: NG O

50| 4mod: [true] do $UPDATE NN |P(g{n})|; repeat [truel

60| 4mod: [true] do $UPDATE NG |P(g{y})|; repeat [truel

61

62| /mod: alarm 0.25 gather > 0 do $UPDATE gather 0; repeat [truel
63| 4mod: alarm 1 do $UPDATE gather 1; repeat [true]
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