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Abstract 
Variation in aboveground live tree biomass carbon (AGC) stocks is poorly understood in tropical 
montane forests1, especially in African nations where montane forests often represent most of the 
extant evergreen old-growth forest cover. Although data are few, since primary productivity is 
temperature-mediated and cloud immersion, wind and steep slopes constrain tree height2, AGC is 
widely assumed to be lower in tropical montane than lowland forests. To test this, we assembled 
and analysed a new dataset of structurally intact old-growth forests (“AfriMont”) spanning 44 
montane sites in 12 African countries, and compared findings with old-growth lowland forests in the 
African Tropical Rainforest Observation Network (AfriTRON). We find that montane sites in the 
AfriMont plot network have a mean AGC-stock of 149.4 Mg C ha-1 (95% CI 137.1-164.2), comparable 
to lowland forests in the AfriTRON plot network and higher than averages from plot networks in 
montane and lowland forests in the Neotropics. Notably, our results are substantially higher than 
the IPCC default values for these forests in Africa (89.3 Mg C ha-1)3. The distinctive structure of 
African lowland forests (low stem density and high abundance of large trees4-6) is mirrored in 
montane forests. This important carbon store is endangered, we find that 0.8 million ha of old-
growth African montane forest have been lost since 2001. Our findings highlight the urgent need for 
conserving these biodiverse7,8 and carbon-rich ecosystems. We provide country-specific montane 
forest AGC estimates modelled from our plot network to help guide forest conservation and 
reforestation interventions. 
 
 
  



 

 

Main text 
Tropical forests cover less than 10% of the global land area yet store 40–50% of terrestrial 
vegetation carbon9 and contribute more than one third of primary productivity10 so are a key 
component of the global carbon cycle11,12. There is substantial variation in carbon stocks across the 
biome, with lowland forests in Africa and Borneo storing more carbon per unit area than lowland 
forests in the Neotropics4,13. This variation arises partly from structural differences: the signature 
feature of African forests is their low stem density but relatively high abundance of large trees (>70 
cm diameter) which store large quantities of carbon, while Bornean forests are characterised by high 
stem density and basal area4-6. 
 
Despite increased understanding of biogeographic differences in tropical lowland forests, patterns of 
spatial variation in carbon stocks remain poorly understood in the 880,000 km2 of tropical montane 
forests located ≥ 1,000 m asl1. Montane forests are expected a priori to have lower aboveground live 
tree biomass carbon (AGC) stocks than lowland forests because (1) temperature decreases with 
increasing elevation, reducing net primary productivity and slowing nutrient recycling, (2) long 
periods of cloud immersion in montane forests suppresses productivity, (3) soil waterlogging slows 
nutrient recycling and (4) high epiphyte load, local wind exposure in crests and nutrient-limited soils 
limit tree size and increase investment in roots over shoots2. While forest inventory plots provide 
some support for these assumptions1 data from African mountain regions are exceptionally sparse. 
Indeed, in the most recent IPCC guidelines, there is no specific AGC default value for old-growth 
montane forests in Africa: the value given of 89.3 Mg C ha-1 is simply a mean of secondary and old-
growth forests found ≥ 1,000 m asl3. Mountain areas also pose special challenges for remote-sensing 
approaches for estimating carbon stocks, as radar data are affected by geometric distortions14 while 
steep slopes bias spaceborne LiDAR estimates towards overestimating canopy height15. These issues 
are reflected in the limited correlation between estimates of AGC-stocks at mountain locations from 
different recent remote-sensing derived carbon maps (Supplementary Information Table S1).     
 
Better understanding of montane carbon stocks is important for many African countries, particularly 
in eastern Africa where montane forests represent most of the extant evergreen old-growth forest 
cover. Quantifying carbon stocks in these ecosystems is critical for estimating national carbon losses 
from deforestation and forest degradation16. Quantifying carbon stocks in old-growth montane 
forests also serves to constrain potential carbon uptake by restored natural forests, given the high 
commitment of most African nations to the Bonn Challenge effort to restore 150 million ha of 
degraded and deforested lands by 2020 (see Table 1).  
 
Here we measured, compiled and analysed an unprecedented dataset of 226 plot inventories 
spanning 44 sites in 12 African countries, covering most major mountain regions on the continent 
(the “AfriMont” dataset). Plots range from 800 to 3,900 m asl to include submontane forests (800-
1,000 m asl) in smaller mountains closer to the ocean17,18. For all plots, stem diameter and species 
were recorded for each tree ≥10 cm diameter at breast height (or above buttress) following 
standard methods19. Tree height was sampled in 23 montane sites, allowing variation in height-
diameter allometry to be incorporated into the calculation of aboveground biomass. A total of 
72,336 stems with diameter ≥10 cm were measured. For each tree, we computed AGC (in Mg C ha-1) 
according to standard procedures (see methods). 
 
We find that the mean plot-level AGC-stock across sampled African tropical montane forests is 149.4 
Mg C ha-1 (95% CI 137.1-164.2), two-thirds more than the IPCC default value of 89.3 Mg C ha-1. Our 
estimates are robust to subsampling our dataset (Extended Data Fig. 1) and excluding small plots 
(Extended Data Fig. 2) and are not affected by the sampling strategy used to establish plots in each 
study site (Extended Data Fig. 2). Comparing our dataset to previous syntheses of montane1,20,21 and 
lowland13 forest plot networks reveals that tropical montane forests in Africa have significantly 



 

 

higher AGC-stocks per unit area than both montane (95% CI = 50.4 – 71.9 Mg C ha-1) and lowland  
(95% CI = 124.0 – 147.9 Mg C ha-1) forests in the Neotropics, and that they do not differ significantly 
from lowland forests in Africa (95% CI = -27.6 – 9.6 Mg C ha-1, Fig. 1, Table S2). The similar AGC-
stocks in montane and lowland forests in Africa contrasts with the Neotropics and Southeast Asia, 
where carbon stocks are lower in montane forests than lowland forests (albeit not significantly 
different in Southeast Asia due to the small sample size, Fig. 1). These differences are robust to 
accounting for differences in elevation among montane datasets: removing African plots 800-1,000 
m asl slightly reduces estimated montane forest AGC-stock to 145.0 Mg C ha-1 (95% CI 129.6 – 
163.2), but observed differences in AGC-stock among continents remain when plots are restricted to 
elevations well represented in all continents (Extended Data Fig. 3). 
 
The characteristic structural properties of lowland African forests (relatively low stem density and 
greater importance of large trees compared to elsewhere in the tropics4) are also evident in the 
African montane forests we sampled. In these montane forests mean stem density is 483.3 stems ha-

1 (± 177.7 s.d.) and mean basal area is 39 m2ha-1 (± 14.8 s.d.). We find a high density of large stems 
(>70 cm diameter, 19.1 stems ha-1 ± 15.4 s.d.) which contribute 35.3% (95% CI = 29.6 – 41.8 %) to 
plot-level AGC-stock (Fig. 2). The contribution of large trees to plot-level AGC-stock is also similar in 
montane and lowland Africa (95% CI of difference in square-root transformed proportional 
contribution of large trees between lowland and montane forests = -0.100 - 0.075, P = 0.80). There 
was no significant difference in the proportional contribution of any other size class to AGC-stocks 
between our montane dataset and 132 lowland plots from the AfriTRON network (P≥0.24, Table S3), 
although greater variation among plots is observed in montane forests (Fig. 2).  
 
To investigate if elevation affected AGC or forest structure, we modelled these variables as functions 
of elevation using random slopes mixed-effects models. This approach allows intercepts and 
relationships to vary among sites, which would be expected as mountains can have very different 
climate at the same elevation due to proximity to the ocean (generally the further, the drier) and 
because of the mass-elevation or telescopic effect22 (larger mountains are better at warming the 
atmosphere above them). We found that AGC, stem density or density of large stems (>70 cm 
diameter) were not significantly related to elevation (Fig. 3, Table S4). Across sites these non-
significant relationships were all negative, although there was some variation in strength and 
direction amongst sites (Fig. 3). Similarly, in the Neotropics and Southeast Asia montane forest plot 
datasets, AGC was not significantly correlated with elevation (Extended Data Fig. 4).  
 
To assess potential environmental drivers of AGC-stock variation across the AfriMont plot network, 
we related AGC to climate, soil and topography. We found that AGC-stocks increased with annual 
precipitation (albeit not statistically significantly), decreased with soil fertility and were higher in 
plots which were locally at higher elevation than their surroundings (Extended Data Fig. 5). 
Relationships with other environmental variables were non-significant (Extended Data Fig. 5). 
Although global datasets might not capture fine-scale variation in climate or soils in mountain 
regions23, leading to regression dilution24, the general absence of strong climate effects combined 
with the lack of significant effect of elevation on AGC-stocks suggest that the high AGC-stock of 
African montane forests is a pervasive phenomenon across a wide environmental gradient. 
 
Although the AfriMont dataset covers most major mountain areas in tropical Africa (Fig. 4), some 
areas remain under-sampled relative to forest extents (Extended Data Fig. 6), resulting in some 
differences between the environmental conditions sampled by our plot network and the wider 
montane forest biome in Africa (Extended Data Fig. 7). Notably, the absence of plots from montane 
forests of eastern Democratic Republic of the Congo (Fig. 4, Extended Data Fig. 6) means that the 
AfriMont dataset samples forests that are, on average, at higher elevations, and that are cooler and 
cloudier than the wider montane forest biome in Africa (Extended Data Fig. 7). Using relationships 



 

 

with environmental variables (Extended Data Fig. 5) to predict AGC-stocks in each 1-km grid cell 
containing montane forest gives a mean (weighted by remaining forest cover) AGC-stock of 176.9 
Mg C ha-1 (± 32.0 s.d.) for the tropical montane forest biome in Africa. This indicates that the 
estimate we report based on our AfriMont plot network data (149.4 Mg C ha-1) is conservative.    
 
Several mechanisms could explain the high AGC-stock of montane forests in the AfriMont plot 
network. Firstly, large herbivores such as elephants (Loxodonta spp.) can have profound effects on 
forest structure by consuming biomass, destroying small stems, dispersing seeds and transporting 
nutrients25. Studies for lowland forests suggest that elephants can increase carbon stocks26,27. We 
tested if AfriMont plots with known elephant presence as of 2019 had significantly higher AGC-
stocks, but found that they had significantly lower AGC-stocks, although significant differences were 
not observed in some countries (Extended Data Fig. 8). While the initial ecosystem response to 
elephant removal might be greater AGC-stocks due to reduced biomass consumption and small-stem 
destruction, the longer-term effects might differ. We were unable to fully disentangle such effects, 
as we lacked details on both i) time since elephant extirpation, and ii) elephant abundance and its 
determinants (see Table S5). 
 
A second potential explanation is a relatively low frequency of large-scale abiotic disturbances, 
allowing trees time to grow large and stands to self-thin, as is seen in lowland African forests4. For 
example, tropical cyclones are largely absent in mainland Africa (except in Mozambique28) and lava 
flows are limited even in the active volcano of Mt Cameroon29. Although fine-scale variability in 
landslide risk limits comparisons across large spatial scales, there are fewer areas with high landslide 
susceptibility in mountains in tropical Africa than in the Andes and most mountain ranges in 
Southeast Asia30. If forests have been ecologically stable over evolutionary timescales, tree species 
may be adapted to grow slowly but potentially reaching great sizes31. On Mt Kilimanjaro 
Entandrophragma individuals reach enormous heights and ages32. This low frequency of large-scale 
abiotic disturbances contrasts with the Andes and several mountains in Southeast Asia (e.g. Barisian 
mountains in western Sumatra), which are tectonically active, so the trees there are adapted to 
sudden disturbance followed by intense competition to get established and grow. Future monitoring 
of the AfriMont plot network will help determine the extent to which the high biomass of African 
tropical montane forests results from them being dynamic and productive, or adapted to stability. 
 
A third potential explanation could be the presence of conifers33. Mixed conifer/broad-leaved forests 
tend to have greater basal area than purely broad-leaved forests due to a more effective use of light 
and other resources34. Podocarpaceae can be found in montane forests across the tropics35. Despite 
having fewer species in Africa than in other continents36, these could be more abundant at the site-
level. However, there is no pantropical comparative study on Podocarpaceae abundance in tropical 
montane forests. In our dataset there was no significant correlation between plot-level AGC-stock 
and conifer (Podocarpaceae) abundance (Extended Data Fig. 9). Other explanations could be 
continental differences in mountain terrain (more gentle slopes or plateau regions in Africa) or types 
of montane forests investigated (less cloud forest existing/sampled in Africa). Within our dataset, 
slope did not have a significant effect on AGC-stocks (Extended Data Fig. 5). Contrary to the 
Neotropics37, there is no high-resolution map of cloud forests available for Africa, so while we found 
no relationship between AGC-stock and cloud frequency (Extended Data Fig. 5), we were unable to 
investigate differences in AGC-stock between cloud forest vs non-cloud forest plots.  
 
To understand the policy implications of our findings for African countries, we calculated montane 
(≥800 m asl) forest cover change between 2001 and 2018, using forest cover from ref.38 clipped to 
'primary humid forest' from ref.39. We show that tropical montane forests represent most -or all- 
evergreen old-growth forests found in ten African countries (Fig. 4), and that the Democratic 
Republic of the Congo has two thirds of the remaining 16 million ha of montane forests in Africa. 



 

 

Over 0.8 million ha (5%) have been lost in Africa since 2001, with the highest losses in the 
Democratic Republic of the Congo (500,000 ha), Uganda (64,000 ha) and Ethiopia (62,000 ha) (Fig. 4, 
Table 1). In terms of percentage, Mozambique and Côte d'Ivoire lost over 20% of their montane 
forests over this period (Fig. 4, Table 1). In some sites, however, a larger proportion of montane 
forests was lost before 2001, e.g. in Taita Hills in Kenya40. If absolute country-level deforestation 
rates continue, a further 0.5 million hectares of tropical montane forests will be lost by 2030. 
 
African tropical montane forests are not only carbon-rich, but they also harbour some of the highest 
concentrations of biodiversity and endemism in the world7-8. They are important ‘water towers’ as, 
located at the headwaters of numerous river systems, including the Congo and the Nile, they 
regulate timing and magnitude of runoff7. They also regulate local temperatures41 and provide 
numerous other services to people in the surrounding landscapes7. Clearly, more should be done to 
avoid the destruction of these important ecosystems. Logging, mining and clearing land for farming, 
but also political unrest and militia presence have affected -and continue to affect- these forests, e.g. 
in Itombwe Mts in the Democratic Republic of the Congo42. Protected areas are known to help 
reduce deforestation in the tropics43. Beyond protected areas, other forest conservation 
mechanisms could be implemented, including effective carbon finance. Previous IPCC AGC-stock 
estimates for montane forests in Africa (89.3 Mg C ha-1) may have contributed to low incentives for 
carbon finance mechanisms in these ecosystems. Our study shows the far greater carbon storage 
potential in these tropical montane forests, which will be even higher if soil carbon stocks are 
considered (e.g. > 200 Mg C ha-1 of organic carbon occurs in the top 0-30 cm soil on Mt Cameroon44 
and in the Usambara Mts, Tanzania45). 
 
As well as conserving the remaining montane forests, efforts to restore them are critical. Forest 
restoration at one of our sites, Kibale National Park in Uganda, indicates the potential for rapid AGC 
accumulation46. Our study shows the high potential AGC-stock these montane forests can attain. The 
possible co-benefits of forest restoration, notably water regulation, control of soil erosion and 
landslides and biodiversity conservation should also be considered. Most African nations are 
committed to the Bonn Challenge; Ethiopia leading with 15 million ha committed (Table 1). We 
provide country-specific estimates of potential AGC-stocks based on forests sampled in the AfriMont 
dataset to help guide such interventions (Table 1, Extended Data Fig. 10). Caution is needed when 
scaling-up our estimates to the landscape scale, as not all forests are closed-canopy old-growth and 
structurally intact. Remote sensing or ancillary data (landcover maps, spatial environmental data) 
could be used to identify e.g. exotic plantations, degraded or bamboo forests, and thus help create 
detailed AGC maps at different spatial scales16,47. A closer collaboration between air-borne, space-
borne and ground approaches (such as the AfriMont and AfriTRON plot networks) is key for accurate 
quantification and monitoring of landscape-scale tropical forest AGC-stocks, particularly in mountain 
regions. 
 
Our newly compiled dataset and analysis has provided the first large-scale quantification of AGC-
stock in African tropical montane forests, indicating it to be on average substantially higher than 
previously thought. While there is variation around this mean AGC-stock within and across sites, it is 
not systematically related to elevation. Apart from helping refine country-level estimates, IPCC 
guidelines and ground-calibration of remote-sensing estimates, continued on-the-ground monitoring 
of the AfriMont plot network will help determine ecosystem dynamics and carbon residence time in 
these extraordinarily carbon-rich forests, as well as their responses to climatic changes. 
  
  



 

 

Figures main document 

  
Fig. 1 ǀ Pantropical variation in aboveground carbon stocks sampled by plot networks in montane 
(≥ 800 m asl) and lowland (< 800 m asl) tropical forests. Data from this study for African montane 
forests (n = 226 plots), montane forests in the Neotropics (n = 131) and Southeast Asia (n = 32) from 
ref.1,20,21 , lowland forests in Africa (n = 290), the Neotropics (n = 416) and Southeast Asia (n = 60) 
from ref.13. Coloured points show the AGC-stock in each plot, with point size proportional to square-
root plot area. Black points show means for each continent-elevation category estimated using 
linear mixed-effects models with site as a random effect, and lines show 95% confidence intervals 
around means. Letters indicate signficiant differences between continent elevation category 
combinations (linear mixed-effects models with site as a random effect, P < 0.05).  
 



 

 

 
Fig. 2 ǀ Proportion of plot-level aboveground carbon stock and stems accounted for by each size 
class in montane and in lowland forests in Africa. Statistically significant differences in contribution 
of each size class between montane and lowland forest plot networks are shown by asterisks (linear 
mixed-effects model, P < 0.05). NS = non-significant difference. Montane (n = 226), lowland (n = 
132). 
  



 

 

 
 

 
Fig. 3 ǀ Relationship between elevation and (a) plot-level aboveground carbon stock, (b) stem 
density and (c) stem density of large stems (>70 cm diameter) for the AfriMont dataset. Note log-
scale of y-axis. Each response variable was log-transformed and modelled as a function of elevation 
with a linear mixed-effect models with random slopes. The dashed red line shows the relationship 
across sites (non-significant in all cases, P ≥ 0.3, Table S4), while the black lines show the relationship 
within each site. Point sizes are proportional to square-root plot area. A polynomial model allowing a 
non-linear relationship with elevation was also tested but not supported over the linear model in 
any case (P ≥ 0.7, Table S4). The absence of a significant relationship with elevation is robust to 
removing the two highest elevation sites, RWE and VRG (Table S4).  



 

 

 

 
Fig. 4. ǀ Old-growth evergreen humid forests in lowland and montane tropical Africa. Forest 
extends as per December 2018. Note that montane includes submontane forests (800-1,000 m asl, 
light purple). Montane forests represent most (or all) evergreen humid old-growth forest in ten 
African nations: Burundi, Ethiopia, Kenya, Rwanda, Tanzania, Uganda and Zimbabwe (included in 
AfriMont); and Zambia, Malawi and South Sudan (no plot data available). Forest cover extracted 
from ref.38 and clipped to ‘primary humid forest’ using ref.39. See Table 1 for country-level absolute 
estimates. 

  



 

 

Table 1 ǀ Remaining forest area and aboveground carbon estimates for montane and lowland 
tropical forests in Africa 

 

 

Forest cover as per December 2018 was extracted from ref.38 and clipped to ‘primary humid forest’ 
using ref.39. Montane forest lost covers the period 2001-2018. Mean aboveground carbon (AGC, in 
Mg C ha-1) estimates for montane (or lowland) forests were estimated from AfriMont and AfriTRON 
plot network data. Mean AGC values are in boldface, 95% confidence intervals in parentheses. For 
details on sites and plots used see Table S5. 
a ref.48 report 192 Mg C ha-1 for lowland; b ref.49 report 132.2 Mg C ha-1 for lowland. c Data from 
neighbouring Liberia.  
* few plots sampled, or very small plots sampled, AGC estimates may not be robust, see Extended 
data Fig. 10. 
**Montane forest loss in Mozambique, Uganda and Zimbabwe represents 27%, 13% and 10% of the 
existing montane forest in 2001, respectively. Montane forest loss in Côte d'Ivoire (no plot data 
available) was estimated to be 21% for the same period. 

 
  

Country Bonn 
Challenge  

(ha) 

Montane 
(ha) 

Montane 
lost (ha) 

Montane AGC Montane 
sites 

(plots) 

 
Lowland 

(ha) 
Lowland AGC Lowland 

plots 

Burundi 2 million 25,000 308 94 (47-176) 1 (7)  0 
 0 

Cameroon 12 million 845,000 30,469 153 (121-195) 7 (37)  17.7 million 166 (151-185) 72 

DRC 8 million 10.2 million 537,722 129 (84-202) 2 (37)  90 million 158 (135-183) 48 

Ethiopia 15 million 1.7 million 62,607 165 (124-215) 8 (25)  146,000 
a 0 

Guinea 2 million 30,000 1,682 314 (147-616)* 1 (2)  196,000 157 (122 – 206)c 24 

Kenya 5.1 million 569,000 44,219 104 (79-136) 8 (38)  37,000 
 0 

Mozambique 1 million 19,000 6,943** 226 (146-384)* 3 (4)  98,000 
b 0 

Nigeria 4 million 42,000 1,380 120 (47-309)* 1 (1)  1.7 million 161 (105-262) 2 

Rwanda 2 million 54,000 328 106 (65-168) 2 (11)  0 
 0 

Tanzania 5.2 million 591,000 14,049 175 (129-234) 6 (29)  131,000 128 (101-163) 16 

Uganda 2.5 million 427,000 64,642** 158 (111-209) 6 (23)  18,000 
 0 

Zimbabwe 2 million 7,000 815** 203 (108-363) 1 (12)   <1,000   0 
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Methods 
AfriMont – montane Africa dataset 
We compiled forest inventory plot data from the African Tropical Rainforest Observatory Network 
(AfriTRON; www.afritron.org ), with data curated at www.ForestPlots.net50,51 and the TEAM 
network52, as well as from numerous site-specific publications detailed in Table S5 and mapped in 
Fig. 4. Plots were selected for the analysis when conforming to the following criteria: ≥800 m asl, 
closed-canopy evergreen wet or moist tropical forest, geo-referenced, old-growth and structurally 
intact (not impacted by recent selective logging, fire or coffee cultivation), with no exotic species 
present (e.g. Eucalyptus or Pinus spp.), all trees ≥10 cm diameter measured and majority of stems 
identified to species. We included plots from Virunga Massif in Rwanda/Uganda even when not 
100% closed-canopy due to high abundance of naturally-occurring bamboo. In all plots, tree 
diameter was measured at 1.3 m along the stem from the ground, or above buttresses if present. In 
23 sites tree height was sampled in the field for some stems, using a clinometer or a laser. Families 
and species names follow the African Plant Database (ville-ge.ch/cjb/bd/africa/). The AfriMont 
dataset consists of 72,336 stems, of which 92.9% were identified to species, 98.4% to genus and 
98.5% to family. This dataset represents a standardised safe long-term repository of valuable 
historical data (four sites initially considered could not be included because tree-level data had 
already been lost by data owners).  
 
AfriTRON – lowland Africa dataset  
The 132 lowland-forest plots are all from AfriTRON4,12,53. They were selected using the same criteria 
as above (but with elevation <800 m asl), restricted to countries for which we also had montane 
plots plus neighbouring countries where the mountains span international borders (e.g. Mt Nimba 
spans Guinea and Liberia). The dataset includes 51,305 stems, of which 89.6% were identified to 
species, 97.3% to genus and 97.7 % to family. The plot data were retrieved from forestplot.net on 
06/01/2019. The plot locations and details are in Table S6. 
 
Literature dataset 
We compiled data on AGC-stocks in tropical lowland and montane forests to compare to the 
AfriMont data. Data for lowland forests came from ref.13 and consisted of all multi- and single-census 
plots that were <800 m asl. Data for montane forests were obtained from ref. 1, with additional data 
from Venezuela (ref.20) and Colombia (ref.21). Montane plots were defined as ≥800 m asl; elevation 
was not provided for the Colombian dataset so plots were selected based on the forest type, and 
these plots were excluded from analyses requiring elevation. To avoid double counting plots, 
Venezuelan and Colombian plots were removed from the ref.1 dataset. 
 
Aboveground carbon  

http://www.afritron.org/
http://www.forestplots.net/


 

 

For each tree in the montane dataset we used the published allometric equation by ref.54 to 
estimate aboveground biomass. This allometric equation was created using data from directly 
harvested trees at 58 sites across the tropics, including eight sites with elevation ≥800m asl (range 
900-3,000m asl including sites in Africa). We then converted this biomass to carbon, assuming that 
aboveground carbon (AGC, in Mg C ha−1) is 45.6% of aboveground biomass55. AGC for each plot was 
estimated as the sum of the AGC of each living stem, divided by planimetric plot area (in hectares). If 
field measurements of slope were unavailable, we converted surface to planimetric area extracting 
slope from the SRTM product. We excluded tree ferns, bamboo and palms, as these were not 
measured in all plots. Ref.54 includes tree diameter, wood mass density and tree height. The best 
taxonomic match wood density of each stem was extracted from a global database56,57 following 
ref.53. For some sites, all trees in a plot had been sampled for height. If this was not the case, but 
some field measurements of height were available (typically ten stems per diameter class), we 
constructed a site-specific height-diameter model, using a Weibull equation following ref.58. If no 
field measurements of height were available, we constructed a cluster-specific height-diameter 
model, using a Weibull equation, as explained in Table S7 in Supplementary Information. The same 
approach was used to calculate aboveground biomass for lowland forests. For these, height was 
estimated using a Weibull equation following ref.58. 
 
Small plots and data subsampling 
For 22 sites where plots were small (<0.2 ha), we aggregated plots to groups of about 0.2 ha based 
on their geographic proximity, elevation, environmental affinity and the co-authors’ knowledge of 
the site, to help reduce the variation among plots at site level. This is because the presence of an 
extremely large tree in a small plot can result in overestimates of AGC59. We investigated if using the 
aggregated-plot approach affected AGC-stock estimates at the site level, and this was not the case 
(Extended Data Fig. 2). We also investigated if including small plots affected the continental mean 
AGC-stock estimates, as small plots have greater edge surface, and there is a tendency of some field 
teams to include large trees inside plots when laying out the boundaries60. Including small plots did 
not significantly affect our continental mean AGC-stock estimates (Extended Data Fig. 2). We also 
explored the sensitivity of our continental mean AGC-stock estimates to data subsampling. Data 
were resampled at different sample sizes either at plot level (sampling with replacement) or at site 
level (sampling without replacement). The number of plots (n=226) and the number of sites (n=44) 
we sampled indicate that our estimates of AGC-stock at the continental level are robust (Extended 
Data Fig. 1). They are also not affected by the fact that we included plots 800-1,000 m asl (Extended 
Data Fig. 3). 
 
Size classes 
For all plots, we computed the proportion of AGC which was distributed in each size-diameter class, 
using the classes of ref.6. We also computed stem density, basal area, density of large trees (>70 cm 
diameter, named SD70 in stems ha-1) and Podocarpaceae abundance (in percentage of plot-level 
basal area). 
 
Environmental variables and their effects 
Climate variables (temperature annual mean and seasonality, and precipitation mean and 
seasonality, i.e. Bio1, 4, 12 and 15) were extracted from WorldClimV261 at 30 arc-sec (~1-km) 
resolution. Mean temperature values were adjusted for the difference in elevation between the plot 
and the wider 1-km grid cell using the lapse rate of -0.005°C m-1. We obtained data on cloud cover 
from ref.62 and lightning frequency (0.1 degree, ~11 km) from the LIS very high resolution 
climatology63. Values for soil variables (cation exchange capacity, CEC, representing soil fertility, and 
percentage clay representing soil texture) were extracted from SoilGrids64 (~1-km resolution) and a 
depth-weighted mean taken for values from 0 to 30 cm depth to give a single value of each soil 
variable per plot. Elevation was obtained from SRTM (at 3 arc-second resolution, ~90 m). 



 

 

Topographic metrics were calculated from elevation data using the terrain function in the raster R 
package. These were slope and topographic position index (TPI). TPI is the difference between the 
elevation of the plot and the mean value of the eight surrounding grid cells – positive values indicate 
locally high locations and negative values indicate locally low locations. Where small plots were 
aggregated for analysis, environmental variables were extracted for the ungrouped plot locations, 
and then an area-weighted mean taken to obtain a plot-level value. 
 
Elephant and conifer effects on AGC-stocks 
For the current elephant presence in the AfriMont plots, we created a binary variable 
(presence/absence) based on co-authors knowledge of elephant ranges and elevation distribution at 
each site as of 2019. Co-authors estimated that elephants were present in 2019 in 54 plots in 12 
sites in five countries (see Table S5). For all plots which had at least one individual in the 
Podocarpaceae family (47 plots, 16 sites, 7 countries), we computed the contribution of 
Podocarpaceae to plot basal area and AGC-stock in terms of percentages.  
 
Estimating forest cover and loss 
We obtained estimates of forest cover and loss in the years 2001 through to 2018, using the ‘loss 
year’ dataset of the Global Forest Change database, version 1.6 (ref.38). To exclude plantation 
forests, ‘dry’ forests (e.g. miombo woodland) and degraded forests, we applied the ‘primary humid 
forest’ mask developed by ref.39. We distinguished montane from lowland forests using an 
elevational cut-off of 800-m elevation, using the SRTM v3 product at 1 arc-sec resolution (snapping 
to the ref.38 grid of the same resolution). Where there were gaps in the 1 arc-sec SRTM product, we 
filled these using a 1 arc-sec bilinear interpolation of the (gapless) 3 arc-sec SRTM product. To 
estimate future forest loss by year 2030, we extrapolated absolute country-level deforestation rates 
for the period 2001-2018 (in ha per year). 
 
Investigating AfriMont representativeness 
To quantify AfriMont sampling effort within the montane forest biome in Africa, we used the map of 
tropical montane forest extent (see above) and calculated the amount of remaining forest in each 1-
degree grid-cell. By dividing the area sampled in the AfriMont dataset by the proportion of this 
biome in a grid-cell, we calculated the expected sampling intensity if sampling was proportional to 
remaining forest extent. To assess how representative our plot network was of the environmental 
conditions of the wider tropical montane forest biome in Africa, we extracted the environmental 
data (climate and soil variables presented above) at ~1-km resolution from grid-cells that contained 
montane forest. We then visually compared the distribution of each variable in our dataset to its 
distribution across the biome (Extended Data Fig. 7). 
 
AfriMont vs global AGC maps 
We extracted alternative AGC estimates for the AfriMont plots (unaggregated, n=666) from four 
different sources: Harris et al. (ref.65) (30-m resolution, dated 2000), the ESA CCI Biomass map66 
(100-m resolution, 2017), Saatchi, et al. (ref.67) (1-km resolution, 2007/8) and Avitabile et al. (ref.68) 
(1-km resolution, circa 2000-2010). Most of the AfriMont plots were sampled between 2000 and 
2019 (Table S5). Where the plots were found within a single map pixel, we extracted that value. 
Where plots were larger than the pixel size, we averaged the values from the surrounding pixels 
weighted according to the proportion of the pixel that was in the plot. 
 
Statistical analysis 
Data were analysed using linear mixed-effects models, with site as a random effect. Site was 
included as a random intercept in all models, and as a random slope where relationships were 
assessed against elevation. Allowing the slope of the elevation effect to vary amongst sites in this 
way captures the a priori expectation for slopes to differ among sites, for example due to mass 



 

 

elevation effects. The effect of plot size on variation was accounted for by weighting observations by 
a power transformation of plot size; this was estimated during model fitting using the varPower 
function in the nlme R package (ref.69), and then models refitted using the lme4 R package (ref.70) 
using these estimated weights. Confidence intervals and P-values for mixed effects models 
parameters were estimated by bootstrapping models (1,000 iterations) using the 
bootstrap_parameters function in the parameters R package (ref.71). AGC-stocks, stem density and 
SD70 were natural-log transformed (a small constant was added to SD70 before log transforming to 
avoid log-transforming zeros) to meet assumptions of normality and avoid heteroscedacity. Likewise, 
the proportional contribution of each size class was square-root transformed. Differences in AGC-
stocks between all combinations of lowland and montane forests amongst continents were assessed 
using Tukey post-hoc tests implemented in the multcomp R package (ref.72). Relationships between 
AGC-stocks and environmental variables were investigated by fitting all subsets of the full model 
with all environmental covariates and averaging the best supported (ΔAIC<4) models (using dredge 
and movel.avg functions in the MuMIn R package (ref.73). We used these relationships with climate 
and soil to predict AGC-stocks in each 1-km grid cell containing montane forests (holding 
topographic variables at their dataset wide mean), and then took the forest-area weighted mean of 
these to obtain a single mean for the tropical montane forest biome in Africa. Differences in AGC-
stocks between plots with and without elephants were tested using t-test with AGC-stocks natural-
log transformed. We investigated if Podocarpaceae abundance (in terms of basal area) and plot 
AGC-stocks were significantly correlated using Spearman's rank correlation coefficient. To 
investigate if sampling design affected AfriMont AGC-stock estimates we used ANOVA to test 
whether site-level mean AGC-stocks differed according to the sampling strategy used to establish 
plots at that site. To explore the relationship between AfriMont AGC-stock estimates and global 
maps, and among these global maps, we used Spearman’s rank correlation test. 
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Extended Data Fig. 1 ǀ Sensitivity of mean aboveground carbon stock estimates to data 
subsampling. AfriMont plot data were resampled at different sample sizes either at plot level 
(sampling with replacement) or at site level (sampling without replacement). N = 1,000 resamples 
for each sample size. 
  



 

 

 
 

 
Extended Data Fig. 2 ǀ Effect of plot area, aggregation procedure and plot design on estimates of 
aboveground carbon stocks. (a) Relationship between aboveground carbon stocks and plot area of 
plots prior to aggregation. The red line shows the fit of a locally weighted regression model (span = 
0.75) relating these variables, with dashed lines showing the standard errors. (b) Variation in 
aboveground carbon stocks using either all plots prior to aggregation (unaggregated), plots prior to 
aggregation but excluding those < 0.2 ha (unaggregated, > 0.2 ha) or the aggregated plots used in 
the main analyses (aggregated). (c) Effects of plot design on aboveground carbon stocks (each site 
represents one dot). Sampling strategies include random or stratified random, plots positioned along 
transects, plots established within elevation bands, subjective measures such as choosing an area of 
forest considered representative of the wider area, and other strategies (one plot sampled per site 
or unclear strategy). Carbon stocks (log-transformed) did not differ significantly between sites with 
different sampling strategies (ANOVA: F4,39 = 0.432, P = 0.785). For specific site information see 
Table S5. 
 

 
  



 

 

 
 

 
Extended Data Fig. 3 ǀ Robustness of differences in tropical montane forest aboveground carbon 
(AGC) stocks among continents to differences in elevation. (a) Elevations of montane forests plots 
sampled in each continent. Violin plots show the distribution of data, with boxplots showing the 
median and interquartile range of elevation in each continent. (b) Effect of removing submontane 
plots (800-1,000 m asl) and high elevation plots (> 2,200 m asl, approximately the upper quartile of 
elevations for the African montane plot dataset) on AGC-stocks in montane forests sampled by plot 
networks in each continent. Mean AGC-stocks and 95% confidence intervals are shown as estimated 
by models using i) all data, ii) excluding plots 800-1,000 m, and iii) restricting plots to 1,000-2,200 m. 
Means for all plots differ from the analysis in Fig. 1 as literature plots without elevation data (plots in 
Colombia) were excluded from this analysis. Point symbols are proportional to square-root plot area. 
N = 324 plots.  
  
  



 

 

 
Extended Data Fig. 4 ǀ Relationship between aboveground carbon (AGC) stocks and elevation for 
tropical montane forests in each continent. Dashed lines show relationships from a linear mixed-
effects model of log-transformed AGC-stocks as a function of elevation, continent and their 
interaction. Site was included as a random effect, and AGC-stock – elevation relationships allowed to 
vary among sites. Lines show fitted slopes across sites. Neither the overall relationship between 
elevation and AGC-stocks (slope = -0.039 [95% CI = -0.127 – 0.057], P = 0.420) nor interactions 
between elevation and continent (Southeast Asia, change in slope = -0.074 [-0.294 – 0.149], P = 
0.503; Neotropics, change in slope = 0.006 [-0.132 – 0.149], P = 0.913) are statistically significant. N = 
324 plots.  
 
  



 

 

 
 

 
Extended Data Fig. 5 ǀ Environmental drivers of aboveground carbon stocks across the AfriMont 
plot network. Coefficients are from a linear mixed-effects model with site as a random intercept. 
Results are following all-subsets regression and model averaging, in which variables that do not 
appear in well supported models are given coefficients of zero, leading to shrinkage in model 
coefficients. Statistically significant relationships (P < 0.05) are indicated with asterisks. TPI refers to 
topographic position index (positive values indicate higher than surroundings, negative values 
indicate lower than surroundings).  
  



 

 

 
 
Extended Data Fig. 6 ǀ Expected sampling effort if effort was distributed in proportion to the area 
of tropical montane forest biome in Africa. Data are summarised at 1-degree resolution. Upward 
triangles show grid-cells where AfriMont sampling effort is more than double expected effort, 
downward triangles show grid-cells where AfriMont sampling effort is less than half expected effort. 
Circles denote AfriMont sampling effort being between half and double expected effort. The extent 
of the tropical montane forest biome was defined as closed-canopy forests ≥ 800 m asl in December 
2018, extracted from ref.38 and clipped to ‘primary humid forest’ using ref.39. This grided map differs 
from Fig. 4 as numerous grids have very little tropical montane forest. 
  



 

 

 
 
Extended Data Fig. 7 ǀ Differences in the environmental conditions sampled by the AfriMont plot 
network and the tropical montane forest biome in Africa. The extent of the biome was defined as 
closed-canopy forests ≥ 800m asl in December 2018, extracted from ref.38 and clipped to ‘primary 
humid forest’ using ref.39. Environmental variables for the biome were extracted at ~1-km 
resolution. 
 
  



 

 

 
Extended Data Fig. 8 ǀ Differences in aboveground carbon (AGC) stocks in AfriMont plots located in 
montane forests with and without elephants. (a) Differences across all plots in the AfriMont 
dataset. AGC-stocks are statistically significantly lower in forests with elephants (t-test, t = 3.5, 
df=83.5, P = 0.001). (b) Differences in countries where elephants are present in at least one of the 
montane sites studied. Black squares show means in each country in forests with or without 
elephants – solid lines denote statistically significant differences (t-tests, P < 0.05). Elephant 
presence in 2019 was estimated by co-authors (see Table S5).  
  



 

 

 

 
Extended Data Fig. 9 ǀ Relationship between aboveground carbon (AGC) stocks and 
Podocarpaceae. (a) Relationship between AGC-stocks and Podocarpaceae basal area across plots in 
the AfriMont network, expressed as a percentage of total plot basal area. These variables are not 
significantly correlated (rs = 0.083, n = 226, P = 0.212). (b) Distribution of plots with at least 20 % 
basal area of Podocarpaceae (black points) in relation to elevation and AGC-stocks. AGC-stocks are 
not significantly related to elevation or Podocarpaceae basal area (Linear mixed effects model, P = 
0.152 and 0.132 respectively). 
 
 
  



 

 

 
Extended Data Fig. 10 ǀ Within country variation in aboveground carbon stocks based on the 
AfriMont plot network. Error bars show means and 95% confidence intervals estimated by linear 
mixed-effects models. Modelled means not shown for countries with fewer than five plots. Point size 
is proportional to plot area. 
 

  



 

 

Supplementary Information Table S1 ǀ Correlations between different recent remote-sensing 
derived carbon maps and between these maps and AfriMont plot aboveground carbon stock 
estimates. Pairwise Spearman’s rank correlation coefficients are shown. 
 

  
  Dated 

Spatial 
resolution 1 2 3 4 

1 Harris et al. (ref. 65) 2000 30 m -    

2 ESA CCI Biomass map (ref. 66) 2017 100 m 0.29    

3 Saatchi et al. (ref. 67) 2007/2008 1,000 m 0.04 0.35   

4 Avitabile et al. (ref. 68) 2000-2010 1,000 m 0.09 0.45 0.59  
5 

  

AfriMont plots 
(unaggregated, n=666) 

  
  0.19 -0.11 

-
0.13 -0.12 

bold: significant at P < 0.01 

 
  



 

 

Supplementary Information Table S2 ǀ Estimated differences in aboveground carbon (AGC) stocks 
amongst continents and forest elevation category. Coefficients are from a linear mixed-effects 
model, where African montane forests are taken as the model intercept; other coefficients show 
differences from this intercept. 95% confidence intervals and P-values were estimated by 
bootstrapping the fitted model. AGC-stocks were log-transformed prior to analysis, and coefficients 
relate to the log-transformed variable.   

 
Term Estimate LCL UCL P 

Intercept - Africa montane 5.007 4.921 5.101 <0.001 

Difference: 
Africa lowland 

 
0.054 

 
-0.066 

 
0.170 

 
0.360 

Southeast Asia montane -0.037 -0.287 0.202 0.793 

Southeast Asia lowland 0.311 0.142 0.472 <0.001 

Neotropics montane -0.531 -0.655 -0.411 <0.001 

Neotropics lowland -0.276 -0.386 -0.175 <0.001 

 
 
  



 

 

Supplementary Information Table S3 ǀ Difference in contribution of different size classes to 
aboveground carbon (AGC) stocks and number of stems between montane and lowland forests in 
Africa. Coefficients are from linear mixed-effects models of the proportion contribution of a given 
size class against forest elevation category are shown. Proportions were square-root transformed 
prior to analysis, and coefficients relate to the transformed variables. 95% confidence intervals and 
P-values were estimated by bootstrapping the fitted models. 

 
Variable Size class 

(cm) 
Difference from 
lowland 

LCL UCL P 

AGC-stocks <30 -0.018 -0.071 0.031 0.474  
30-50 -0.004 -0.044 0.036 0.835  
50-70 -0.024 -0.066 0.016 0.240  
>70 -0.011 -0.100 0.075 0.799 

Stems <30 -0.031 -0.059 -0.004 0.026  
30-50 0.030 0.003 0.056 0.022  
50-70 0.014 -0.015 0.044 0.378  
>70 0.018 -0.019 0.055 0.334 

 
  



 

 

Supplementary Information Table S4 ǀ Relationship between elevation and aboveground carbon 
(AGC) stocks, stem density and density of large stems (>70 cm diameter, SD70) for the AfriMont 
dataset. Relationships are from linear mixed-effects models with site as a random effect, and 
relationship with elevation allowed to vary with site. Response variables were log-transformed, and 
elevation was scaled by subtracting its mean and dividing by its standard deviation. 95% confidence 
intervals and P values were obtained by bootstrapping the fitted models. Polynomial and linear 
models were compared using likelihood ratio tests; slopes are from linear models. RWE: Rwenzori 
Mts, VRG: Virunga Mts, see Table S5. 

  
All data 

    
Excluding RWE and VRG 

  

Response 
variable 

Slope LCL UCL P Significance of 
non-linear 
relationship 

Slope LCL UCL P Significance of non-
linear relationship 

AGC- stocks -
0.043 

-
0.140 

0.064 0.418 χ2
1 = 0.129, P 

=0.720  
-0.039 -

0.154 
0.076 0.511 χ2

1 = 0.440, P = 0.507 

Stem density -
0.036 

-
0.118 

0.042 0.350 χ2
1 0.002, P = 

0.963 
-0.044 -

0.135 
0.046 0.308 χ2

1 = 0.142, P = 0.706 

SD70 -
0.059 

-
0.260 

0.148 0.599 χ2
1 = 0.105, P = 

0.746 
0.022 -

0.202 
0.236 0.849 χ2

1 = 4.005, P = 0.045* 

* Polynomial model: SD70 = 2.756 – 0.575 Elevation + 2.060 Elevation2 

  



 

 

Supplementary Information Table S5 ǀ Site attributes of the AfriMont plot network. Plots size refers to planimetric area. Elevation from SRTM v3 at 3 arc-1 
sec (~90m) resolution. 2 

 3 

Country Site Code 
No. 

plots 
Plots 

size (ha) 
  

Elevation  
(m asl) 

Elephant 
Presence 

Year 
Plot 

Setup 
Main 

reference 

Burundi Kibira NP  BUR 7 1.8-3.6 a 1900-2500 0 2012 T Ref. 74 

Cameroon Babanki BAB 2 0.72-1 a 2000-2350 0 
2008-

2009 
R unpublished 

 Bakossi Mts BAK 12 
0.91-
0.99 

 1000-1400 0 2016 Sub Ref. 75 

 Mt Cameroon CAM 10 0.5-1.1 a 960-2270 1 (some) 2011 T Ref. 76 

 Mt Mbam MBA 2 
0.23-
0.54 

a 1760-2220 0 2017 E Ref. 77 

 Nguti  NGI 3 
0.80-
0.87 

 870-940 1 2013 other unpublished 

 Mt Oku OKU 2 
0.39-
0.54 

a 2200-2700 0 2017 E Ref. 77 

 Rumpi Hills RUM 4 
0.95-
0.99 

 1350-1750 0 2015 Sub Ref. 78 

 Takamanda TNP 2 1  1190-1290 1 2012 other Ref. 4 

DRC Itombwe Mts ITO 8 0.9  1100-2470 1 (some) 2019 E unpublished 

 Kahuzi-Biega NP KAH 29 0.9  1630-2430 0 2014 R Ref. 79 

Ethiopia Bonga BON 5 
0.19-
0.82 

a 1570-2660 0 
2001-

2005 
T Ref. 80 

 Harena Forest (Bale) HAR 4 
0.19-
0.27 

a 800-1120 0 
2001-

2005 
T Ref. 80 

 Jaba JAB 1 0.26 a 1500-1650 0 
2001-

2005 
R Ref. 80 

 Kafa Biosphere Reserve KAF 7 
0.24-
0.35 

a 1470-2670 0 2011 R Ref. 81 



 

 

 Munessa Forest (Bale) KUK 1 0.49 a 2300-2310 0 2011 other Ref. 82 

 Berhane–Kontir SHE 6 
0.19-
0.23 

a 1520-2090 0 
2001-

2005 
T Ref. 80 

 Yayu Coffee Forest  YAY 1 0.99  1500 0 2014 other unpublished 

Guinea Mt Nimba NIM 2 
0.36-
0.42 

a 760-1060 0 2011 Sub unpublished 

Kenya Aberdares Mts ABE 5 
0.35-
0.77 

a 2270-3020 1 2014 R Ref. 83 

 Mt Kulal KUL 9 0.2  1800-2150 0 2016 E Ref. 84 

 Mt Marsabit MAR 6 0.2  1070-1400 1 2016 E Ref. 84 

 Mau Forest Complex MAU 3 
0.27-
0.45 

a 2080-2850 1 2012 R Ref. 85 

 Mt Nyiro NYI 9 0.2  2150-2710 0 2016 E Ref. 84 

 Taita Hills TAI 6 0.2-1.6 a 1550-2170 0 
2013-

2015 
R Ref. 86 

Mozambique Mt Lico LIC 1 0.11 a 900-1000 0 2018 Sub unpublished 

 Mt Mabu MAB 2 
0.11-
0.18 

a 1000-1320 0 2008 Sub unpublished 

 Mt Muli MUL 1 0.11 a 1200-1280 0 2018 Sub unpublished 

Nigeria Ngel-Nyaki FR NGE 1 1  1570 0 2015 other Ref. 87 

Rwanda Nyungwe NP NYU 5 0.5  1950-2480 0 2015 Sub Ref. 88 

 Virunga Mts VRG 6 0.99  2470-3390 1 2015 Sub 
unpublished 

(TEAM) 

Tanzania Nguu GUU 1 0.38  950 0 2009 other Ref. 16 

 Mt Kilimanjaro KIL 13 
0.19-
0.25 

 1630-2800 0 
2010-

2013 
E Ref. 89 

 Udzungwa Mts UDZ 7 
0.85-
0.97 

 1140-1970 0 
2007-

2010 
E Ref. 16 



 

 

 Ukaguru UKA 2 
0.37-
0.39 

 1190-1640 0 2009 Sub Ref. 16 

 Uluguru ULU 2 
0.18-
0.26 

 970-2110 0 2009 Sub Ref. 16 

 Usambara Mts USA 4 
0.97-
0.99 

 1050-1830 0 2010 E Ref. 16 

Uganda Budongo FR BUD 1 1.86  1090 0 2008 other Ref. 90 

 Bwindi NP BWI 6 1  1420-2380 1 2009 Sub Ref. 52 

 Kibale NP KIB 4 0.24  1210-1540 1 2013 other  Ref. 46 

 Mpanga MPG 1 0.63  1180 0 2006 other Ref. 91 

 Rabongo FR RAB 7 1  950-990 1 
1992-

1993 
R Ref. 92 

 Rwenzori Mts RWE 4 
0.61-
0.86 

a 1800-3900 1 (some) 2019 E unpublished 

Zimbabwe Chirinda FR CHI 12 0.24   1090-1250 0 1995 R unpublished 

a plots were originally  <0.2 ha and were aggregated into larger plots, see methods for details. Elevation for these plots refers to original unaggregated plots. 4 
FR: Forest Reserve, NP: National Park.  5 
For elephant presence: 1: presence in all plots in the site, some: some plots in the site, 0: absence. Presence in 2019 was estimated by co-authors and refers to variable densities of resident 6 
and migrant individuals of both the savanna elephant (Loxodonta africana) and the smaller forest elephant (L. cyclotis). In some sites elephants are confined and highly abundant (e.g. in ABE, 7 
where there is an electric fence), conditions which might not have occurred under ‘natural’ circumstances in the past. 8 
Plot setup refers to: random or stratified random (R), plots positioned along transects (T), plots established within elevation bands (E), subjective measures such as choosing an area of forest 9 
considered representative of the wider area (Sub), and other strategies (1 plot sampled per site or unclear strategy, other).10 



 

 

Supplementary Information Table S6 ǀ Information on the AfriTRON plots used. 11 

 12 

Country Code Latitude Longitude 
Elevation 

(m asl) 
 Plot size 

(ha) 

Cameroon DJL-01 3.1 13.6 544 1 

 DJL-02 3.1 13.6 606 1 

 DJL-03 3 13.6 569 1 

 DJL-04 3 13.6 595 1 

 DJL-05 3 13.6 604 1 

 DJL-06 3 13.6 585 1 

 DJA-05 3.2 12.6 640 1 

 DJA-07 2.9 13.3 580 0.5 

 DJA-09 3.1 13.6 660 1 

 CAM-02 2.3 9.9 38 1 

 EJA-04 5.7 9 142 1 

 EJA-05 5.7 9 166 1 

 NGI-12 5.2 9.7 724 1 

 NGO-04 2.6 14.1 491 1 

 NGO-01 2.6 14.1 516 1 

 NGO-02 2.6 14.1 574 1 

 NGO-05 2.6 14.1 518 1 

 NGO-06 2.6 14.1 529 1 

 DNG-02 5.2 13.5 716 1 

 MIT-01 2.4 13.5 618 1 

 DJA-01 3.3 12.9 590 2.25 

 DJA-02 3.3 12.9 590 2.5 

 DJA-03 3.3 12.9 570 2.5 

 DJA-04 3.3 12.9 610 2.5 

 CAM-01 2.3 9.9 58 1 

 CAM-03 2.4 9.9 100 1 



 

 

 DJK-01 3.3 12.7 647 1 

 DJK-02 3.3 12.7 722 1 

 DJK-03 3.4 12.7 639 1 

 DJK-04 3.4 12.7 639 1 

 DJK-05 3.3 12.8 779 1 

 DJA-17 2.9 13.3 575 0.2 

 TNP-11 6.2 9.3 166 0.92 

 DJK-06 3.3 12.8 639 1 

 TNP-14 6.1 9.3 158 0.8 

 MDJ-01 6.2 12.8 789 1 

 MDJ-03 6 12.9 757 1 

 MDJ-07 6 12.9 764 1 

 MDJ-10 6 12.9 767 0.4 

 BIS-01 3.3 12.5 633 1 

 BIS-02 3.3 12.5 633 1 

 BIS-03 3.3 12.5 660 1 

 BIS-04 3.3 12.5 634 1 

 BIS-05 3.3 12.5 658 1 

 BIS-06 3.3 12.5 574 1 

 TNP-06 6.1 9.4 187 1 

 TNP-07 6.1 9.4 381 1 

 TNP-10 6.2 9.3 185 1 

 TNP-12 6.1 9.2 133 1 

 TNP-13 6.1 9.2 139 1 

 TNP-15 6.1 9.3 182 1 

 NGI-01 5.3 9.5 248 1 

 NGI-02 5.3 9.5 258 1 

 NGI-03 5.4 9.6 251 1 

 NGI-04 5.4 9.6 511 1 

 NGI-05 5.4 9.6 397 1 



 

 

 NGI-06 5.2 9.7 531 1 

 NGI-07 5.2 9.7 790 1 

 NGI-08 5.2 9.7 669 1 

DRC YOK 0.3 25.3 418 9 

 ITU-01 1.4 28.4 750 0.25 

 ITU-02 1.4 28.5 750 0.44 

 ITU-03 1.3 28.6 750 0.5 

 ITU-04 1.4 28.4 750 0.5 

 ITU-05 1.4 28.5 750 0.5 

 ITU-06 1.4 28.6 750 0.5 

 SNG-01 -1.7 20.6 371 1 

 SNG-02 -1.7 20.6 365 1 

 SNG-03 -1.7 20.6 420 1 

 SNG-04 -1.7 20.5 384 1 

 SNG-05 -1.7 20.5 361 1 

 SNG-06 -1.7 20.5 360 1 

 SNG-07 -1.7 20.5 362 1 

 SNG-08 -1.7 20.5 382 1 

 SNG-09 -1.7 20.5 374 1 

 KSN-01 0.3 25.3 449 0.2 

 KSN-02 0.3 25.3 455 0.2 

 KSN-05 0.3 25.3 452 0.2 

 KSN-06 0.3 25.3 440 0.2 

 YGB-08 0.8 24.5 460 1.02 

 YGB-14 0.8 24.5 438 1.07 

 YGB-15 0.8 24.5 464 1.07 

 YGB-16 0.8 24.5 427 1.02 

 YGB-17 0.8 24.5 466 1.03 

 YGB-18 0.9 24.5 427 1.01 

 YGB-24 0.8 24.5 464 1.07 



 

 

 YGB-25 0.8 24.5 477 0.99 

 YGB-26 0.8 24.5 435 1 

 YGB-27 0.8 24.5 417 1 

 YGB-28 0.8 24.5 489 1.02 

Liberia GBO-19 5.4 -7.6 175 0.78 

 GBO-02 5.4 -7.6 172 1 

 GBO-08 5.4 -7.6 174 1 

 GBO-01 5.4 -7.6 171 0.98 

 GBO-03 5.4 -7.6 175 0.69 

 GBO-04 5.4 -7.6 175 0.42 

 GBO-10 5.4 -7.6 175 0.46 

 GBO-11 5.4 -7.6 175 0.67 

 GBO-13 5.4 -7.6 175 0.56 

 GBO-14 5.4 -7.6 175 0.83 

 GBO-15 5.4 -7.6 175 0.71 

 GBO-16 5.4 -7.6 161 0.44 

 GBO-18 5.4 -7.6 175 0.62 

 GBO-20 5.4 -7.6 175 0.59 

 CVL-01 6.2 -8.2 257 0.89 

 CVL-10 6.2 -8.2 262 0.78 

 CVL-11 6.2 -8.2 260 0.85 

 CVL-08 6.2 -8.2 281 1 

 GBO-12 5.4 -7.6 167 1 

 GBO-05 5.4 -7.6 151 0.88 

 GBO-06 5.4 -7.6 154 0.64 

 GBO-07 5.4 -7.6 176 0.43 

 GBO-09 5.4 -7.6 176 0.2 

 GBO-17 5.4 -7.6 160 0.84 

Nigeria OBE-83 5.3 8.5 121 1 

 OBE-84 5.3 8.5 125 1 



 

 

Tanzania UDJ-01 -8.6 35.9 510 0.25 

 UDJ-02 -8.6 35.9 630 0.25 

 VTA-01 -7.8 37 296 0.28 

 VTA-02 -7.8 36.9 583 0.52 

 VTA-03 -7.8 36.9 670 0.8 

 VTA-04 -7.7 36.9 608 0.6 

 VTA-14 -5.1 38.7 595 0.52 

 VTA-19 -7.9 36.9 610 1 

 VTA-23 -7 37.8 391 0.4 

 VTA-24 -7.2 37 587 0.4 

 VTA-28 -6 37.7 508 0.4 

 VTA-29 -6 37.7 771 0.4 

 VTA-34 -5.5 38.8 91 0.4 

 VTA-35 -5 38.8 198 0.4 

 VTA-36 -5 38.8 288 0.2 

  UDZ-03 -7.8 36.9 789 1 
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Supplementary Information Table S7 ǀ Parameters of the cluster-specific height-diameter allometric models used in this study. A Weibull model (following 15 
ref.58) was used. 16 

Cluster Sites with field height Heights sampled Sites without field height a b c 

high EA ABE, KUK, RWE(high) 1690 MAU(high), VRG(high) 1671 0.0019 0.485 

high Kilimanjaro KIL(high) 677  25.949 0.035 1.016 

dry EA KUL, NYI 679  1314 0.0032 0.392 

dry WA (& YAY) BAB,MBA, OKU 1467 NGE, YAY 25.677 0.047 0.926 

wet WA NGI, TNP 331 BAK, NIM, RUM (low) 46.087 0.063 0.659 

mid Albertine/EA 
  

 
BUR,BWI(high), 
ITO(high), KAH, NYU, 
RWE(low) 

 
5363 

  

BON, JAB, KAF, MAU (mid), SHE, VRG(low) 
  

30.409 
  

0.025 
  

1.021 
  

low Albertine BUD, ITO(low), KIB 617 BWI (low), MPG, RAB 99.994 0.023 0.699 

Mt Cameroon CAM 4014 RUM (mid) 28.845 0.03 0.989 

mid EAM & Mozambique   

 
KIL(low), TAI, UDZ, 
USA(mid) 1046  CHI, LIC, MAB, MUL, UKA(mid), ULU(mid)  127.507  0.02  0.592  

low EAM USA(low) 109 GUU, UKA(low), ULU (low) 50.042 0.025 0.96 

hyper dry EA MAR 301 HAR 25.691 0.195 0.493 

EA: East Africa, WA: West Africa, EAM: Eastern Arc Mountains, low: low elevations, mid: mid elevations, high: high elevations. For site codes refer to Table S5. 17 
 18 
Plots were clustered using selected climatic variables (mean annual temperature, temperature seasonality, total precipitation, precipitation seasonality and 19 
minimum temperature). We computed aboveground carbon estimates for sites with field height (H) measurements available, using: a) field-H, b) cluster-20 
specific-H-model and c) all-sites-H-model. For most sites (except two) approach b (cluster-specific-H-model) outperformed approach c (all-sites-H-model), 21 
therefore, approach b was used for sites with no field measurements of height. 22 
 23 

 24 


