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Abstract 

Tropical forest covers just 12% of the planet’s land surface, but disproportionately 

host the planet’s biodiversity, including around two thirds of all terrestrial species. 

Amazonia retains the largest extent of remaining tropical forest globally, but just over 

50% of all tropical forest loss since 2002 has been in the region. Deforestation and 

disturbance result in significant loss in forest biodiversity, but quantifying the exact 

nature of those changes can be complex. The Amazon represents a particularly 

challenging case in which to assess biodiversity change due to the spatiotemporal 

scales being assessed, because of the high proportion of rare species, and the 

challenging conditions for conducting biodiversity surveys in tropical forest.  

Ecoacoustics has been championed as a valuable tool to overcome the difficulties of 

monitoring in such conditions and at large spatio-temporal scales, but applied 

analytical methods often remain underdeveloped. In this this thesis I develop and 

use a range of ecoacoustic methods to help understand the impact of anthropogenic 

disturbance on Amazonian wildlife, using an extensive audio dataset collected from 

survey points spanning a degradation gradient in the Eastern Brazilian Amazon. In 

Chapter 2 I introduce a quick and simple method for the detection of rainfall, tested 

for efficacy globally and with an accompanying R package. In Chapter 3 I present a 

new approach to subsampling of acoustic data for manual assessment of avian 

biodiversity, finding that using a high number of short repeat samples can detect 

approximately 50% higher alpha diversity than more commonly used approaches. In 

Chapter 4 I assess the sensitivity and fidelity of two commonly used acoustic indices 

to biodiversity responses to forest disturbances, finding that measuring indices at 

narrower, ecologically appropriate time-frequency bins avoids problems with signal 

masking. In Chapter 5 I use a two-stage, random forest based method to build a 

multi-taxa classifier for the nocturnal avifaunal community in the study region, and 

use the classifier-derived data to reveal that the nocturnal bird community is largely 

robust to less intense forms of forest disturbance. Overall, in this thesis I 

demonstrate that ecoacoustics can be a highly effective method for inventorying and 

monitoring biodiversity in one of the most diverse and challenging regions on the 

planet. 
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Preface  
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scientific papers, prefaced by an introduction and concluded with a discussion of the 

results and recommendations for future research. I am fortunate that two of the 

papers have already been published (Chapters 2 and 4, published versions included 

as appendices), with a third (Chapter 3) in review. This does however result in some 

degree of overlap between the chapters, particularly in the Methods section in 

relation to data collection. Each of the data chapters is formatted in the style of the 

journal it is published in or the target journal, so there may be some small differences 

in style, although all of the journal styles are similar.  

 

The work presented in this thesis is predominantly my own. This includes all of the 

writing, with the exception of the ‘Package Description’ section and Table 2.4 in 

Chapter 2, which were written by Christian Devenish. In addition, I designed the 

studies, undertook the data collection for all of the acoustic data used in this study 

except the data from Java in Chapter 2, and undertook the data analysis. However, 

many other people contributed directly to this work, most notably my supervisory 

team, Alexander Lees, Jos Barlow and Stuart Marsden, who assisted with the study 

design, advised on analytical methods and provided revisions to draft versions of all 

of the chapters. Yves Bas, Christian Devenish, Erika Berenguer, Joice Ferreira, and 

Nárgila Gomes De Moura have also provided substantial input, advise and revisions 

at various points throughout. 

 

I use the pronoun ‘we’ in most chapters in this thesis, with the exception of the 

Introduction and Discussion. There are several reasons for this, the most significant 

being that it maintains consistency between those chapters already published or in 

revision, and those yet to be, or not intended to be, published. It is also appropriate 

recognition for the input of others as discussed above, and the collaborative nature 

of modern conservation ecology, and the substantial role the Sustainable Amazon 
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1.1. Tropical forests in the Anthropocene 

Tropical forest covers just 12% of the planet’s land surface, but is disproportionately 

important in provisioning ecosystem services (Malhi et al., 2014). Tropical forests 

hold 34% of the terrestrial carbon store (Janetos et al., 2010), and offer some of the 

greatest opportunities for forest regeneration to sequester carbon and reduce 

warming (CBD, 2010). They also provide important services regulating waterflows 

and rainfall (Foley et al., 2007; Locatelli and Vignola, 2009) - vital for agriculture in 

tropical regions and beyond, are a vital source of medicines (Albuquerque et al., 

2012), as well as providing a buffer against the spread of infectious disease 

(Ellwanger et al., 2020; Guégan et al., 2020; Swift et al., 2007). Tropical forests 

disproportionately host the planet’s biodiversity (Gentry, 1992; Mittermeier et al., 

1998) including around two thirds of all terrestrial species (Gardner et al., 2009) 

Figure 1.1. Primary forest viewed from a canopy tower in the Tapajós National 
Forest, Pará, part of our study area. 

  

Copyright: OCM  
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1.1.1. Brazil and deforestation 

Amazonia retains the largest extent of remaining tropical forest globally and 

accounts for just over 50% of the loss of tropical forest cover globally since 2002 

(Global Forest Review, 2020). About 60% of the Amazon is in Brazil (FAO, 2010), 

where most forest loss in South America between 2001-2010 occurred (Aide et al., 

2013), and was until the middle of the last decade the world’s most active 

deforestation frontier (Barlow et al., 2011; Hansen et al., 2010). Approximately 20% 

of primary forest in the Brazilian Amazon has already been lost (PRODES, 2020). 

Amazonian deforestation is driven by conversion of forest to pasture or soy, 

immigration leading to rapid increases in the regional population, expansion of road 

networks , and increases in industrial logging and mining (Andersen, 1996; Barona 

et al., 2010; Bowman et al., 2012; Laurance et al., 2001). Deforestation risks the 

region becoming a net source of carbon emissions reducing the chances of reaching 

the Paris Agreement target of limiting global warming to 1.5 degrees Celsius 

(Brienen et al., 2015; Maxwell et al., 2019; UNEP, 2019); of destabilising 

precipitation patterns with potentially disastrous consequences for agriculture in 

South America (Lapola et al., 2018; Staal et al., 2020; Vergara, 2009); and of 

irreversible biodiversity loss (IPBES, 2019; Moura et al., 2014; Wearn et al., 2012). 

Brazil was able to successfully reduce the rate of deforestation between 2004 and 

2012 by 79% (Aragão et al., 2018; Berenguer et al., 2014; Nepstad et al., 2014). The 

reduction is commonly ascribed to policy changes and strict enforcement, as well as 

a rapid reduction in the price of soy in 2004-2005 (Nepstad et al., 2014). These 

measures were headlined by the Action Plan for the Prevention and Control of 

Deforestation, extension of protected areas and an Amazonian soy moratorium, 

(Assuncąo et al., 2015; Boucher et al., 2013; Gollnow and Lakes, 2014; Heilmayr et 

al., 2020; Tacconi et al., 2019). Although the current Brazilian political situation is 

antipathetic towards environmental concerns (Anon., 2018) and deforestation rates 

have recently increased dramatically again (Silva Junior et al., 2020), the prior 

efficacy of the legislation means that there is a viable road map to ending 

deforestation in the Brazilian Amazon (Nepstad et al., 2009) given future political will. 
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Figure 1.2. Forest conversion to agropastoral matrix in our study region. 

 

A.Soy field and forest fragment. B. Extensive cattle pasture. C. Maize and highly 
degraded forest fragment. D. Cattle pasture. E. Soy field F. A road running through 
the forest/agriculture matrix. Copyright: OCM  

1.1.2. Forest disturbance in the Brazilian Amazon 

Legislation and processes regulating deforestation were primarily concerned with 

land-use and forest cover, as were conservation organisations and researchers, 

paying only limited attention to the quality of the forest that was being protected. For 

example, in 2008 the area of forest impacted by disturbance in Brazil was double 

that of forest that was cleared for another land use (Berenguer et al., 2014). 

Consequently forest disturbance, primarily caused by logging and wildfires, has 

affected an area greater than that deforested in the Brazilian Amazon to date 

(Bullock et al., 2020; Matricardi et al., 2020).  

Selective logging is the most widespread form of forest disturbance (Asner et al., 

1999; Foley et al., 2007; Veríssimo et al., 2008), with some annual harvests prior to 

1997 greater than 40 million m3 (Merry et al., 2006). Illegal logging is ubiquitous in 
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Amazonia, with some estimates suggesting the majority of all logging is illegal in the 

region (Brancalion et al., 2018; Santos de Lima et al., 2018). Logging can lead to 

severely reduced carbon stocks in forest (Rappaport et al., 2018), and lead to the 

creation of road networks to facilitate access and logging tracks to remove timber 

(Arima et al., 2005) with associated edge effects (Murcia, 1995), and severely 

altered forest structure with increased canopy openness and higher abundance of 

lianas (Gerwing, 2002). Even best-practice reduced impact logging can still have 

significant detrimental impact on forest structure (Boltz et al., 2003; Sist and Ferreira, 

2007). 

Figure 1.3. Anthropogenic forest disturbance.  

 

A: forest fires can often be very small, but still have a major impact on forest 
structure. B: Timber from low-impact logging waiting to be extracted from the 
Tapajós National Forest. C and D: Forest recovery. Copyright: A. Jos Barlow. B-D. 
OCM  

Logging also contributes to forest degradation by fire, as it creates the microclimatic 

conditions in which uncontrolled fires can take hold within standing forests (Barlow et 

al., 2020; Uhl and Kauffman, 1990). Forest fires do not occur naturally in Amazonia, 

and generally require an anthropogenic ignition source, such as fires escaping from 

pasture management or secondary forest clearing, and occur usually when forest 

conditions have been altered through logging or drought to allow fires to take hold 

(Barlow et al., 2020). Even small understorey forest fires have been shown to have a 

dramatic impact on forest structure, causing up to 50% increased tree mortality 
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(Barlow et al., 2003; Silva et al., 2018). There is also an additive effect, once an area 

of forest has been burnt, it becomes drier and therefore more vulnerable to catching 

fire again, with greater intensity (Gerwing, 2002). The extent of forest wildfires can 

be extremely difficult to monitor as they occur below the forest canopy but can cover 

vast areas. For example, at the epicentre of the 2015 El Niño events, 1 million ha of 

forest burnt in the Santarém region of Para, Brazil (Barlow et al., 2020; Withey et al., 

2018). Furthermore, as global warming exacerbates El Niño events and creates 

increasingly warmer and drier conditions, the regularity, intensity, and extent of 

wildfires are only likely to increase (Silva et al., 2018). In synergy, logging and fires 

can have severe consequences for tropical forests, reducing their aboveground 

carbon storage capacity by up to 40% (Berenguer et al., 2014), reductions in forest 

biomass which may last decades (Silva et al., 2018) in addition to causing potentially 

permanent alterations in forest structure (Barlow and Peres, 2008; Prestes et al., 

2020).  

1.1.3. Forest regeneration 

Forest cover in the Brazilian Amazon is not uniformly declining (Aide et al., 2013; 

Chazdon, 2014). Regenerating secondary forests on abandoned agricultural land are 

a feature of many frontier areas in Amazonia (Lucas et al., 2002; Nunes et al., 2020). 

Although the scale of regeneration does not match that of deforestation or 

disturbance, secondary forest covered 129,361 km2 in the Brazilian Amazon in 2017, 

or 3.8% of total forest cover (Smith et al., 2020). Secondary forest can provide many 

of the ecosystem services of primary forest, and are often vital resources in 

otherwise deforested landscapes (Börner et al., 2007; Chazdon et al., 2009; Gardner 

et al., 2009). However, secondary forest have distinct structure and composition to 

primary forest, and may never recover the same qualities as the original primary 

forest (Elias et al., 2020; Lennox et al., 2018). 

 

1.1.4. Biodiversity impacts of deforestation and disturbance 

Deforestation and disturbance result in significant biodiversity loss (Gibson, 2011), 

but quantifying the exact nature of those changes can be complex - dependant on 
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the type of impact and on the spatial and temporal scales being assessed. The 

starkest impacts on biodiversity occur with large-scale deforestation, universally 

resulting in steep declines in species richness and almost complete turnover in biotic 

communities, as complex ecosystems of forest specialists give way to homogenised 

communities of a handful of species (Gardner et al., 2013; Moura et al., 2013; Peres 

et al., 2010). 

Biodiversity response to forest disturbance is substantially more complex than the 

response to deforestation. There is a high degree of idiosyncrasy in species 

response to disturbance (Gardner et al., 2009); with some species - particularly 

specialist species - declining quickly, whilst more generalist species are unaffected 

or even able to proliferate in degraded forests (Bicknell et al., 2015; Moura et al., 

2016). At the community level, species richness often increases with disturbance at 

small spatial scales, as habitat diversity increases. Selective reduced-impact logging 

can have a relatively minor impact on biodiversity at local scales, often having no 

impact on overall assemblages in vegetation and terrestrial vertebrates (Azevedo-

Ramos et al., 2006; Bicknell et al., 2015; Vasconcelos et al., 2000; Wunderle et al., 

2006), although most vertebrates decline as logging intensity increases (Burivalova 

et al., 2014). Logging can have more substantial impacts on bat and fish 

communities (Dias et al., 2010; Peters et al., 2006; Presley et al., 2008), and 

invertebrates are rarely studied, despite making up the majority of the species pool 

(Andersen and Majer, 2004; Rappaport et al., 2021; Solar et al., 2016), although one 

study has shown a change in acoustic space use between logged and unlogged 

forest, likely driven by insects (Campos-Cerquiera et al., 2020). In contrast fires can 

cause significant decreases in fauna (Barlow and Peres, 2004a; Haugaasen et al., 

2003; Peres et al., 2003), and recurrent fires can cause up to 100% turnover in 

understorey avian composition, and dramatic shifts in tree composition (Barlow and 

Peres, 2008, 2004b).  

Deforestation and disturbance impacts biodiversity at a landscape scale however, 

with forest patch size, extent of forest fragmentation and corresponding edge effects, 

and quality of the surrounding agropastoral matrix strongly impacting regional 

biodiversity (Peres et al., 2010). The landscape scale factors drive homogenisation 

of biodiversity, reducing gamma diversity as primary forest specialists are lost and 

replaced by generalist species (Solar et al., 2015; Tabarelli et al., 2012). However, 
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there are very few studies that have conducted research at landscape scales in the 

Amazon, and limited to a few locations (Peres et al., 2010), and in landscapes that 

do not always represent the full range of threats to biodiversity in  the Amazon. For 

example, the longest running of such projects in the Amazon, the Biological 

Dynamics of Forest Fragmentation Project north of Manaus (Stouffer, 2020), 

extensively studies the impact of forest fragmentation and secondary forest, but does 

not consider disturbance. When all of the impacts are considered across a matrix of 

varying habitats and disturbance intensities at a landscape scale, the impact of 

disturbance can be severe - doubling the loss of conservation value compared to 

deforestation alone (Barlow et al., 2016).  
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Figure 1.4. Many bird species show species specific responses to forest 
fragmentation and disturbance.  

 

Top row: understory insectivores have been shown to be highly sensitive, a; the 
interfluvial endemic Bare-eyed Antbird Rhegmatorhina gymnops, b; Black-spotted 
Bare-eye Phlegopsis nigromaculata and c; Banded Antbird Dichrozona cincta. 
Middle row: other species shown to decline with forest disturbance include d; 
Cinereous Antshrike Thamnomanes caesius, e; White-flanked Antwren 
Myrmotherula axillaris and f; Screaming Piha Lipaugus vociferans. Bottom row: a 
smaller number of species actually increase in human-modified forest including g; 
Black-necked Aracari Pteroglossus aracari, h; Black-capped Becard Pachyramphus 
marginatus and i; Plumbeous Pigeon Patagoienas plumbea. Copyright: OCM  
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1.1.5. Challenges of monitoring biodiversity loss through forest degradation 

As species respond in such idiosyncratic ways to disturbance, monitoring a wide 

number of species is of vital importance. However, there are some substantial 

challenges to monitoring the impact of forest degradation on biodiversity in the 

Amazon. Foremost of these is the scales at which it is necessary to monitor. 

Because of the complex sink-source dynamics that can play out across landscape 

habitat matrices, the survey areas required can be huge. For example, the 

Sustainable Amazon Network (www.rasnetwork.org) plots covered ca 10,000 ha in 

2010 in order to incorporate a full range of deforestation and disturbance factors at 

an appropriate landscape scale (Gardner et al., 2013). Similarly, as the impacts of 

deforestation and disturbance play out over extended timescales as forests 

regenerate, recover and/or are subjected to repeated disturbance events and further 

degrade, understanding the impacts of disturbance may require repeat surveys over 

decades (Campos-Cerqueira et al., 2021; de Camargo et al., 2019; Stouffer, 2020; 

Stouffer et al., 2009). This requires a huge amount of effort, logistical and planning 

challenges, and can be prohibitively expensive.   

The second, more prosaic problem relates to the nature of tropical forest. Towering 

forest, often with dense stands of shady understory vegetation presents a severe 

challenge in which to survey any species, whilst in burnt or logged forest, fallen trees 

can be formidable barriers and dense understory regeneration can reduce visibility 

down to a few metres. High humidity and regular intense downpours, so 

characteristic of rainforest, are a stern test for any equipment. In combination, this 

makes observational studies difficult, and contributes to a lack of even basic natural 

history knowledge for many species (Lees et al., 2020), making interpretation of 

study results more difficult. 

  

http://www.rasnetwork.org/
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Figure 1.5. Visibility can be greatly reduced in disturbed forest due to dense 
understory. A. Undisturbed forest. B. Logged forest. C. Logged and burned forest. D. 
Secondary forest. All photographs taken from 10m. 

 

Figure reproduced with permission from: Berenguer, E. (2013). Estimating carbon 
and vegetation change along a gradient of forest degradation in Eastern Amazon. 
PhD Thesis. Lancaster Environment Centre, Lancaster University, Lancaster, United 
Kingdom. Copyright: Erika Berenguer 

Finally, understanding the impact of forest degradation in the Amazon is challenging 

because whilst the Amazon is hyperdiverse, many species are cryptic, and/or occur 

at low abundances (Robinson et al., 2000; Terborgh et al., 1990). This means that 

accumulating sufficient inventory completeness can be challenging without extensive 

surveying efforts (Robinson et al., 2018). Rare and cryptic species are often under-

sampled and hence discounted from studies due to insufficient detections for 

appropriate analysis. This is an important problem as the systematic disregard of 

rare species which are more likely to be dietary or habitat specialists are likely to be 

more vulnerable to forest disturbance.  

 

1.2. Ecoacoustics as a tool for monitoring biodiversity in tropical 

forests 

Ecoacoustics has been proposed as a valuable tool in overcoming the difficulties in 

monitoring in such conditions (Burivalova et al., 2019a; Deichmann et al., 2018; 
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Wagner Ribeiro Jr et al., 2017). Here I use the broadest definition of ecoacoustics 

following the originators of the term; 

“Ecoacoustics is defined as a theoretical and applied discipline that studies sound 

along a broad range of spatial and temporal scales in order to tackle biodiversity and 

other ecological questions. The use of sound as a material from which to infer 

ecological information enables ecoacoustics to investigate the ecology of 

populations, communities and landscapes.” (Sueur and Farina, 2015). 

This stands in contrast to other authors (e.g. Eldridge et al., 2018, Sugai et al., 2019) 

that have used ecoacoustics to refer to the study of patterns across entire 

soundscapes, and usually implies the use of acoustic indices. It also differentiates 

the field from bioacoustics, also commonly used as a catch-all term for ecological 

studies using acoustics (e.g. Burivalova et al., 2019), but which is more appropriately 

used in describing animal behaviour studies that have sound as a focus, and which 

can be considered a sub-discipline of ecoacoustics (Sueur and Farina, 2015). 

Ecoacoustic methods for marine and volant mammals are generally considerably 

more advanced than for birds, amphibians, reptiles and terrestrial mammals (Gibb et 

al., 2019), but this review will focus on the latter. 

Sound has long been recognised as an excellent method by which to study 

biodiversity, with many species more easily detected audibly than visually, as they 

primarily communicate and signal their presence with sound (Heinicke et al., 2015; 

Rosenthal and Ryan, 2000; Sugai et al., 2019). Animal vocalisations also carry a 

wealth of information beyond species identity, including individual identity, 

abundance, location, size of the individual, behaviour, health, and clues to the 

ecological roles and niches they fill (Blumstein et al., 2011; Farina and Gage, 2017; 

Pérez‐Granados and Traba, 2021; Rhinehart et al., 2020; Seddon, 2005; Stowell et 

al., 2019; Wilkins et al., 2013).  

 

1.2.1. Passive Acoustic Monitoring 

Ecoacoustics is underpinned by passive acoustic monitoring (PAM) (Sueur and 

Farina, 2015), the use of autonomous recording units (ARUs) to record soundscapes 
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without the concurrent presence of a human observer. PAM has several advantages 

over more traditional survey methods when it comes to application in tropical forests 

which have been well documented in a series of recent reviews (e.g. Darras et al., 

2019b, 2018; Gibb et al., 2019; Shonfield and Bayne, 2017; Sugai et al., 2019). The 

biggest benefit of PAM is the capacity to function for long periods without human 

intervention, allowing studies to more easily be conducted over larger spatiotemporal 

scales (Darras et al., 2019; Gibb et al., 2019). This allows surveys to be conducted in 

places for which regular access is logistically challenging, eases surveying at times 

that are unfavourable for traditional surveys and allows the collection of large 

quantities of data. Furthermore, pre-programmed recording schedules allow for a 

variety of sampling regimes, further extending the duration over which ARUs can 

record without human intervention - in a flexible, predictable, and replicable manner. 

This reduces the cost of data collection in comparison to traditional survey 

techniques (Darras et al., 2019), and allows for targeting of cryptic species that may 

only vocalise at specific times (Williams, 2016). Alternatively, most recording devices 

offer the capacity to record continuously and at broad frequency spectrums, meaning 

that PAM can be used to simultaneously monitor all soniferous species in the area, 

increasing the cost-efficiency of multi-taxa surveys and facilitating surveys of 

understudied taxonomic groups such as amphibians and insects (Moussy et al., 

2021; Sugai et al., 2019).  
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Figure 1.6. Deployment of a Frontier Labs Autonomous Recording Unit at one of our 
survey points 

 

Copyright: OCM  

Early practical obstacles slowing uptake have been greatly diminished in recent 

years. Cost of recording units have fallen greatly, with some units now costing under 

$50 and a trend towards miniaturisation assisting with logistical challenges in field 

placement (Beason et al., 2019; Darras et al., 2018; Hill et al., 2018; Sethi et al., 

2018; Whytock and Christie, 2016). Similarly, data storage costs have greatly 

reduced in recent years. Memory cards for ARU devices have increased in capacity 

whilst costs have fallen, as is the case for hard drives for long term storage (Walter, 

2005). Meanwhile, it is increasingly clear that cloud computing represents a long-
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term, affordable solution for both storage and computational capacity requirements 

for analysis (Brown et al., 2020, www.arbimon.rfcx.org). Of course, these benefits 

are still tempered by the realities of field-surveys in tropical forests, where 

connectivity issues can render the idea of any sort of large-scale data transfer 

entirely impractical, and electronic hardware is still subject to the ravages of humidity 

and insect damage.  

PAM offers several other advantages. For example, it makes standardisation of 

surveys easier, avoiding effects from observer presence (Alldredge et al., 2007) and 

observer bias in the field (Sauer et al., 1994). As there is a permanent record of the 

raw data, it is possible to verify and correct any bias introduced at the analysis stage 

(Darras et al., 2019). A permanent record of the raw data also limits the requirement 

for specialist observers in the field, so that a single expert observer can 

independently analyse a large number of surveys afterwards (Campbell and Francis, 

2011; Digby et al., 2013; Wheeldon et al., 2019). This can be particularly important in 

the Amazon given the limited pool of experts able to identify entire taxonomic 

communities by ear (Robinson et al., 2018). Having a permanent record of the data 

also means that it is available for reanalysis in case of technological advancements, 

or application to a new question (Digby et al., 2013; Swiston and Mennill, 2009). 

1.2.2. Ecoacoustic analysis pipelines 

It is in the analysis of PAM data for ecological purposes, and corresponding survey 

design, where the most trenchant challenges remain (Darras et al., 2020; Gibb et al., 

2019; Priyadarshani et al., 2018). Approaches to analysing ecoacoustic data can be 

subset into three main approaches; 1) manual review and identification, 2) statistical 

characterisation of the data to form acoustic indices, and 3) automated classification. 

Each method has benefits, disadvantages and significant knowledge gaps that could 

result in improved performance.  

1.2.3. Manual analysis 

The most technologically straightforward approach remains manually identification of 

the soniferous taxa of interest in the recordings. This approach has the lowest 

computational requirements, only needing the capacity to listen to the recordings 
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and/or inspect the spectrograms. A range of open-source and commercial software 

is available to undertake the Fast-Fourier transformations required for spectrograms 

and to play sound files, including Audacity (www.audacityteam.org), Raven Lite and 

Pro (www.ravensoundsoftware.com), Kaleidoscope (www.wildlifeacoustics.com) and 

Adobe Audition (www.adobe.com/uk/products/audition.html). Media labelling 

software, such as BORIS (Friard and Gamba, 2016) can be useful in the annotation 

process.  

Extensive comparisons have now been conducted between traditional point-count 

surveys and manually reviewing of PAM data, especially for the detection of species 

richness in birds, and in almost all major terrestrial biomes (Darras et al., 2019; 

Shonfield and Bayne, 2017). Although under certain conditions traditional surveys 

can outperform PAM, meta-analysis has shown that PAM studies generally 

outperform traditional counterparts (Darras et al., 2019). Manual identification can be 

extremely time-consuming, so the amount of audio data that can be analysed is 

greatly reduced in comparison to the use of acoustic indices or automated 

classification limiting the temporal and spatial scales at which it can be applied. The 

effort required often entails a subsampling approach to be taken which can limit the 

efficacy of the method especially when estimating species richness. This means that 

understanding the factors affecting sampling design, and ensuring optimal sampling 

regimes are vital when using manual analysis techniques, something that has been 

rarely addressed in relation to PAM. In addition, correct manual identification of 

sounds from recordings can be extremely challenging, meaning that this method of 

analysis requires a high degree of identification expertise. 

Manual analysis of acoustic data has been used in Amazonia to investigate the 

multi-taxon biodiversity impacts of natural gas exploration (Deichmann et al., 2017), 

small-scale gold-mining (Alvarez-Berríos et al., 2016), FSC certified logging 

(Campos-Cerqueira et al., 2020), and assessing drivers of acoustic space use (Aide 

et al., 2017). 

1.2.4. Acoustic Indices 

The second approach is to analyse recordings at the soundscape level, using 

acoustic features to create statistical indices, which are used as alternatives to 
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traditional biodiversity metrics (Farina, 2014; Farina and Gage, 2017; Sueur et al., 

2008; Towsey et al., 2014). An important aspect of acoustic indices is that they are 

not dependent on taxon identities, so require very little effort in manually reviewing 

the audio data, allowing large quantities of data to be efficiently analysed (Eldridge et 

al., 2018; Pijanowski et al., 2011; Sueur et al., 2014). As taxon-specific identification 

is not required, analysis with acoustic indices potentially greatly reduce the 

requirements for experienced field surveyors - reducing a major resource bottleneck, 

and eliminating a main source of data error cause by species misidentification 

(Robinson et al., 2018). There are a large number of acoustic indices, and 

appropriate selection is dependent on the problem being addressed - there are 

several good papers addressing the functions of a range of indices (Bradfer‐

Lawrence et al., 2019; Eldridge et al., 2018, 2016).  

The computational requirements and analytical expertise required are greater than 

manual analysis with the audio files requiring at least some sort of statistical 

analysis. There is limited GUI software to facilitate calculating even the commonest 

indices, although the Arbimon RFCx platform can calculate measures of acoustic 

space use (e.g. Deichmann et al., 2017). There are several R packages that make 

calculation of the commonest indices straightforward (Jerome Sueur et al., 2008; 

Villanueva-Rivera, Luis J. Pijanowski, 2018), meaning that technical expertise 

requirements are generally low although some of the newest proposed methods 

combine deep-learning with indices values (Sethi et al., 2020).  

As acoustic indices infer community-level information from entire soundscapes, 

questions remain as to whether they are capable of accurately capturing the 

ecological complexities of soundscapes. For example, in some studies indices were 

unable to accurately differentiate between subtly different land uses such as different 

types of forest (Bormpoudakis et al., 2013; Do Nascimento et al., 2020; Eldridge et 

al., 2018), and they can be inconsistent predictors of traditionally used biodiversity 

metrics such as species richness (Eldridge et al., 2018; Fuller et al., 2015; Jorge et 

al., 2018; Mammides et al., 2017). However, many of the concerns related to studies 

that used sub-optimal survey design, and the requirements for optimal survey 

designs for indices-based studies are increasingly well understood (Bradfer-

Lawrence et al., 2020; Mitchell et al., 2020; Pieretti et al., 2015). Acoustic indices 

have had limited usage in the Amazon beyond testing to show their efficacy, but 
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have been shown to correlate with forest structure (Do Nascimento et al., 2020) and 

a recent study using acoustic space occupancy metrics showed that insects were the 

dominant acoustic markers of forest disturbance from fire and logging (Rappaport et 

al., 2021). In other tropical forest regions, acoustic indices have been able to 

successfully characterise ecological communities at a landscape scale across 

disturbance and degradation gradients (Bradfer-Lawrence et al., 2020; Burivalova et 

al., 2019b, 2018; Mitchell et al., 2020). Acoustic indices are also increasingly used as 

predictive features in deep-learning algorithms, to identify species (e.g. Brodie et al., 

2020) or ‘outlying’ Anthropogenic sound events like chainsaws or gunshots (Sethi et 

al., 2020). 

1.2.5. Automated classification 

The final broad approach is automated classification of species, sonotypes or sound 

events. There are a range of approaches, including clustering, template matching, 

machine-learning techniques – in particular Random Forests, and deep-learning 

algorithms, primarily convolutional neural networks. All of the methods have high 

computational requirements and require a high level of expertise. In the case of 

clustering, template matching and machine-learning techniques there are several 

programs with GUI interfaces to facilitate their use (e.g. Tadarida, Bas et al., 2017, 

ASI, Ovaskainen et al., 2018, Arbimon, Mitchell-Aide 2013, Kaleidoscope Pro, 

https://www.wildlifeacoustics.com/products/kaleidoscope-pro, ) and packages in R 

(e.g. Clink and Klinck, 2019; Hafner and Katz, 2018).  

However, these approaches have proven to be difficult to apply successfully in 

complex acoustic environments such as tropical forests (Priyadarshani et al., 2018) 

and classification accuracy can be extremely difficult to replicate when the same 

algorithms are used in new areas or different habitats (Eldridge et al., 2016; Towsey 

et al., 2014). Instead, when adopting these user-friendly approaches to classification, 

many researchers have adopted semi-automated classification, in which positive 

identifications are manually verified post-classification to eliminate false positives. 

This can greatly improve the accuracy and usability of the data obtained, but can be 

quite time consuming. This approach has been used successfully in a range of 

studies in tropical forests (e.g. Campos-Cerqueira et al., 2021; Campos-Cerqueira 

and Aide, 2016; Pérez-Granados et al., 2021; Pérez-Granados and Schuchmann, 
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2020). To date very few studies have been conducted without manual post-

classification validation in the tropics; a template-based study monitoring the space 

use of Ramphastos tucanus in human-modified forests (Ducrettet et al., 2020), and 

the Animal Sound Identifier (Ovaskainen et al., 2018), a machine-learning approach, 

comparing nocturnal and diurnal bird communities in fragmented forests in the 

central Amazon (de Camargo et al., 2019; Ovaskainen et al., 2018).  

Recently, deep-learning techniques have shown that fully automated classification 

can attain high degrees of accuracy (Kahl et al., 2020.; LeBien et al., 2020; Ruff et 

al., 2020; Zhong et al., 2020), although no specialist software or packages exist to 

facilitate the production of deep learning algorithms for ecology, and the expertise 

required can be prohibitive. There are limited examples of ecological applications of 

this technology anywhere globally for multi-taxa studies (Florentin et al., 2020; Ruff 

et al., 2020), and one study in Puerto Rico achieved excellent accuracy for a range 

of frog and bird species in tropical forest (LeBien et al., 2020b) although it was not 

applied to ecological questions.  

Figure 1.7. Two of the nightjar species I created automated classifiers for; Common 
Pauraque Nyctidromus albicollis and Silky-tailed Nightjar Antrostomus 
sericocaudatus. 

 

Copyright: OCM 

1.3. Thesis’ Objectives 

This thesis sets out to explore and resolve methodological obstacles to the 

application of acoustic technology in answering applied ecological questions in 

relation to the impact of forest disturbance on biodiversity in the Amazon. 
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To do so I have collaborated with the Sustainable Amazon Network (Rede Amazonia 

Sustanteval/RAS), a project initiated in 2009 to undertake a social and ecological 

assessment of tropical land uses at multiple scales. I have collected over eight 

terabytes of audio data from pre-existing transects along a disturbance gradient 

spanning approximately 10,000 km2 of the eastern Brazilian Amazon in the 

municipalities of Santarém, Belterra, and Mojuí dos Campos (latitude ~ -3.046, 

longitude -54.947 WGS 84) in the Brazilian state of Pará. 

I use this data to investigate and propose solutions to four significant hurdles to the 

widespread application of ecoacoustic techniques in answering ecological questions 

in Amazonia: 

- First, I address a somewhat unexpected problem. Despite being an eponymous 

feature of rainforest impacting both bird vocalization rates and recording capability, 

there are limited options for the automated detection of rainfall in acoustic datasets. I 

present a new R package for easy, quick and accurate detection of rainfall in just a 

few lines of code, and test the method on datasets collected across the globe.  

-Secondly, I investigate optimal sampling strategies in manual analysis of audio data. 

I compare two alternative strategies, one using a small number of samples with a 

duration analogous to traditional point counts, the second using a far higher number 

of very short samples, but with the same total amount of audio data sampled. I 

investigate how these strategies impact species richness detected at alpha and 

gamma scales, how often species are undetected, and the impact the new method 

has on detection of rarer species. 

-Thirdly, I look at the use of acoustic indices in ecologically complex environments, 

and in particular whether the fidelity and sensitivity of acoustic indices to biodiversity 

responses can be improved through the use of a priori ecological knowledge to 

determine the temporal and frequency bins at which to measure the indices. 

-Fourthly, I build an automated classification algorithm for the nocturnal avifaunal 

community using a two-step process, to overcome the twin challenges of high false 

positive rate, and heterogeneous false positive rates. I apply the classifier to a large 

acoustic dataset collected across a forest disturbance gradient in the eastern 

Brazilian Amazonia without post-classification manual validation to investigate the 

impact of forest disturbance on the Amazonian nocturnal bird community. 
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Finally, I discuss the challenges that remain in applying ecoacoustic techniques to 

applied ecological questions in the Amazon, with particular reference to the 

application of ecoacoustics to studies conducted over large spatio-temporal scales. 
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2.1. Abstract 

The increasing demand for cost-efficient biodiversity data at large spatiotemporal 

scales has led to an increase in the collection of large ecoacoustic datasets. Whilst 

the ease of collection and storage of audio data has rapidly increased and costs 

fallen, methods for robust analysis of the data have not developed so quickly. 

Identification and classification of audio signals to species level is extremely 

desirable, but reliability can be highly affected by non-target noise, especially rainfall.  

Despite this demand, there are few easily applicable pre-processing methods 

available for rainfall detection for conservation practitioners and ecologists. Here, we 

use threshold values of two simple measures, Power Spectrum Density (amplitude) 

and Signal-to-Noise Ratio at two frequency bands, to differentiate between the 

presence and absence of heavy rainfall. We assess the effect of using different 

threshold values on Accuracy and Specificity. We apply the method to four datasets 

from both tropical and temperate regions, and find that it has up to 99% accuracy on 

tropical datasets (e.g. from the Brazilian Amazon), but performs less well in 

temperate environments. This is likely due to the intensity of rainfall in tropical forests 

and its falling on dense, broadleaf vegetation amplifying the sound.  

We show that by choosing between different threshold values, informed trade-offs 

can be made between Accuracy and Specificity, thus allowing the exclusion of large 

amounts of audio data containing rainfall in all locations without the loss of data not 

containing rain. We assess the impact of using different sample sizes of audio data 

to set threshold values, and find that 200 15s audio files represents an optimal trade-

off between effort, accuracy and specificity in most scenarios.  

This methodology and accompanying R package ‘hardRain’ is the first automated 

rainfall detection tool for pre-processing large acoustic datasets without the need for 

any additional rain gauge data.  
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2.2. Introduction 

Ecological questions are increasingly being answered using large datasets 

(Hampton et al., 2013; McCallen et al., 2019; Villanueva-Rosales et al., 2014), and 

faced with an ongoing biodiversity crisis, cost-effective collection of ecological data to 

address conservation challenges is vital (Gardner et al., 2008). The recent rapid 

development of cost-effective ecoacoustic sampling methods has facilitated 

collection of acoustic big data (Burivalova et al., 2019; Deichmann et al., 2018) and 

catalysed an increase in ecoacoustic monitoring. Despite the cost-effective nature of 

this sampling method (Deichmann et al., 2018; Hill et al., 2018), there are still 

significant challenges associated with the analysis of large acoustic datasets,. 

Automated detection and classification using machine or deep-learning techniques 

has been widely touted as one answer to this challenge (Priyadarshani et al., 2018). 

However, large datasets often require initial data cleaning to remove ‘noise’ (sounds 

which are not of interest), such as engines, wind and even electrical noises produced 

by the recorder (Stowell et al., 2016). The presence of hard rainfall (HR) is a 

significant contributor to noise as it can entirely mask all signals of interest or hinder 

their identification, and it can be especially problematic in both biodiverse and 

pluviose ecosystems such as tropical forests where our knowledge of biodiversity is 

most limited and acoustic data may be most useful. The use of acoustic indices, a 

common technique for quantifying biodiversity in large datasets without recourse to 

species level identification (Sueur et al., 2014; Towsey et al., 2014), have also been 

shown to be biased by the presence of heavy rainfall (Depraetere et al., 2012; 

Fairbrass et al., 2017; Towsey et al., 2014). Automated detection and excision of 

audio data at times of high rainfall is therefore often desirable before further analyses 

are undertaken, especially when using automated classifiers for detection of 

ecological sounds, as it reduces the potential for false identifications and increases 

processing time. 

Despite the need for effective tools to identify and remove audio segments 

containing heavy rain, little research currently exists on the topic. Other published 

methods have different objectives; focussing on detection of rainfall as an objective in 

its own right (Brown et al., 2019), finding a proxy variable for quantification of total 

rainfall, or being designed to function in specific geographic areas to study the effect 

of rainfall within a wider soundscape (Bedoya et al., 2017). This has resulted in 
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prioritising optimisation of accuracy of detection over ease of use and specificity. 

Other methods, such as the ecoacoustic event detection approach (Farina et al., 

2018) allow a holistic approach to identification of all acoustic events, in which rainfall 

identification becomes a secondary benefit. We argue that many ecologists and 

conservation practitioners will primarily be interested in quickly identifying the 

majority of rain files rather than ascertaining the presence or absence of rain, to allow 

for better classification of ecological sounds and unbiased indices. For these users, 

the priority will be minimizing effort and maximising specificity –e.g. ensuring that 

false positive rates are very low so that ecological data are not removed from a 

dataset to achieve a higher overall accuracy of rainfall detection. Therefore, the most 

successful reported method of automated rainfall classification Brown et al. (2019), 

which involves a complex machine-learning approach and an extensive feature set, 

could be prohibitive for non-specialists. Many users may be willing to trade-off a 

small amount of accuracy in return for much lower analytical effort and greater ease 

of comprehension. 

A simpler, quicker approach to classification has been proposed by Bedoya et al. 

(2017). This utilizes two acoustic measures indicative of rainfall taken at a single 

frequency band to set a decision threshold above which rainfall is determined to be 

present. However, this method uses minimum values over a period of acoustic data 

with rain of known intensity (using a rain gauge) to set the decision threshold. 

Obtaining verified rainfall data may not be possible in many cases, and requires 

additional cost and effort – especially in closed canopy ecosystems. Additionally the 

use of minimum values to set thresholds prioritizes accuracy over specificity, 

potentially leading to avoidably high false positive rates for relatively small gains in 

accuracy and the exclusion of potentially informative audio files. Setting threshold 

values from the second quartile of the interquartile range (Q2) may give more 

conservative predictions for the presence of HR, enabling a trade-off between higher 

specificity scores at the expense of accuracy. Furthermore, the amplitude of rainfall 

increases most noticeably at two frequency bands, 0.6-1.2 kHz and 4.4-5.6 kHz 

where the impact of raindrops hitting vegetation is most noticeable. Bedoya 

measures the indices at 0.6-1.2 kHz as light intensity rainfall is more noticeable, and 

it contains less biophony than the higher frequencies. However, it is unclear if the 

use of both of the frequency bands would produce better results when classifying 
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only heavy rain, or in locations with higher levels of anthropophony (man-made 

noise).  

Here we present a user-friendly methodology and associated R package (R Studio 

Team, 2015) ‘hardRain’, for automated rainfall detection that maintains high 

specificity and accuracy for use with new datasets. We build on the thresholding 

approach of Bedoya, developing a method to remove the need for any additional 

data from rain gauges to set threshold values. We investigate, at multiple tropical and 

temperate sites, whether using both 0.6-1.2 kHz and 4.4-5.6 kHz frequency bands 

provide greater accuracy and specificity than using only the lower frequency band, 

and assess the optimal number of files containing rainfall to use as training data from 

which to obtain threshold values. We also explore how differences in location affect 

classification results, and the trade-offs in accuracy and specificity when using 

minimum or Q2 values for setting decision thresholds.  

 

2.3. Methods 

2.3.1. Definition of rainfall 

Identifying audio files containing rain without rain gauge data is not straightforward, 

as light rainfall can be indistinguishable from background noise (Bedoya et al., 2017). 

However, in these cases, rainfall is less likely to be less disruptive for the automated 

classification of ecological sounds. Here, we focus on the detection of heavy rainfall, 

here defined as rainfall that visually masks or significantly degrades other sound 

events (see Figure 2.1 for examples). Audio files were manually assigned as either 

‘Hard Rain (HR)’ or ‘Clear’ through visual inspection of spectrograms in Raven Pro 

(Cornell Bioacoustics Research Program, 2010). For consistency, a single observer 

(OM) undertook all manual classifications in this paper
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Figure 2.1. Examples of spectrograms assigned to rainfall present and absent taken from the combined training and test dataset of 
each country, ranked by power spectral density (PSD). 
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2.3.2. Data  

This paper uses four primary datasets; two were collected in tropical rain forest; 

Santarém, Pará state, Brazil (-3.046, -54.947) and West Java, Indonesia (-6.181, 

106.827), and two from temperate climates; one from temperate forests in Taranaki, 

New Zealand (-39.448, 174.414) and one from an urban balcony in Manchester, 

United Kingdom (53.485, -2.228). All include periods of time when both rainfall and 

clear weather were prevalent. The Brazil dataset comprises more than 10,000 hrs of 

data from 29 sites, the Java data set consists of more than 10,000 hours of data 

from 11 sites in montane forests in West Java with 12 recorders per site, Manchester 

over 600 hrs from one site and New Zealand over 3,900 hrs from 31 recorders at one 

site. For further information on data collection locations and durations at each of the 

sites see Appendix S2.1. Data were collected using Frontier Labs Bioacoustic Audio 

recorders (Frontier Labs, 2015), with the exception of the New Zealand dataset 

which used NZ Department of Conservation recorders (see Metcalf et al., 2019 for 

more information). All audio data were recorded at a sampling rate of 44.1 kHz 

except the New Zealand data set recorded at 32 kHz. All audio data were subdivided 

into 15 s sound files. 

2.3.3. Threshold Setting and Optimisation 

From each primary dataset, a training and test dataset were selected. The test and 

training datasets comprised 1000 files each. We manually selected 1,500 files that 

were then randomly split into 1,000 training files and 500 test files. A further 500 files 

that had been manually selected as being Clear (of Heavy Rainfall) were included in 

the test dataset, so that both the training and test dataset are composed of 1000 

files. The Brazilian training dataset comprised 13 sites including both undisturbed 

primary and heavily degraded primary forests. The test dataset comprised eight sites 

and three sites for HR and Clear files respectively. Java training data came from 11 

sites, whilst the test dataset used data from eights sites for HR and one site for Clear 

data. Manchester HR data were collected between 25th-28th April 2019, whilst Clear 

data was from 4th November 2018. The New Zealand training data were from 18 

sites, whilst HR test data came from 16 sites and Clear from 18 sites. 
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We followed Bedoya et al., (2017) in using power spectral density (PSD) and signal-

to-noise ratio (StN) as acoustic indices. The PSD of an acoustic file increases with 

rainfall intensity, while StN is useful to differentiate files that have high PSD because 

of continuous rainfall versus those that have high PSD because of non-continuous 

loud sound sources, such as biophony (e.g. animal vocalisations) or anthropophony. 

The PSD values in both 0.6-1.2 kHz and 4.4-5.6 kHz frequency bands were 

calculated for every file with the ‘spectro’ function from the seewave package in R 

(Sueur et al., 2008). The window length used to calculate PSD values was set to 

equal the duration of the audio file (typically 15 s segments – see package 

documentation; Figure 2.2 shows these values from the test datasets). We used 

mean divided by standard deviation of the PSD for the Signal-to- Noise ratio, 

following Bedoya et al., (2017), although we note a typographical error in point 3 of 

Algorithm 2.1 as the deviation of the mean is not squared in the standard deviation 

formula. 
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Figure 2.2. Power Spectral Density and Signal-to-Noise Ratio values for audio files containing heavy rain and clear files from the 
test datasets. The y-axes are presented on a log scale. 
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In predicting the presence of heavy rain, we followed Bedoya et al., (2017) in using 

thresholds for PSD and StN, so that if any of the measured values from an audio file 

exceed the threshold, they were predicted to contain heavy rain. We used mean 

balanced accuracy (Accuracy) and specificity (Specificity) (Velez et al., 2007) to 

assess the performance of classifier models. Although accuracy is the primary 

objective of classification, in some uses the penalty for the rejection of useable data 

(false-positives) may be far higher than the consequences of keeping files containing 

rain in the dataset (false-negatives), and specificity is the best measure for that 

circumstance (Fielding and Bell, 1997). 

We tested classification performance using thresholds of PSD and StN from 

frequency band 1 (e.g. values had to exceed two thresholds to be classified as HR) 

against classification using PSD and StN from frequency bands 1 and 2 (e.g. values 

have to exceed four thresholds to be classified as HR) using a paired Wilcoxon rank 

test. To assess the effect, we took 100 subsamples of n=500 from each of the four 

countries’ training datasets. Minimum and Q2 threshold values were then obtained 

and used to classify the applicable test dataset. Accuracy and specificity values were 

calculated by country, threshold choice and the mean of all countries combined. 

To optimise the number of training samples required, we assessed the relationship 

between the number of training samples and accuracy/specificity with the aim of 

balancing the effort of manually selecting training data and the susceptibility of 

threshold values to outliers and variation in data sets. For each training dataset, 100 

subsamples of size n= 10, 20, 30, 40, 50, 75, 100, then increasing increments of 50 

to 1000, were taken and threshold values obtained using both frequency band 1 and 

2 and these used to classify the applicable test dataset. Mean accuracy, specificity 

and their standard deviations were then calculated for each sample size by country 

and threshold choice. The sample size of n=500 was tested for significant 

differences in classification Accuracy and Specificity between the countries using 

Kruskal-Wallis and pairwise Wilcoxon tests, significant at <0.05. 

In order to assess if there was overtraining between the test and training datasets, 

we conducted a case study using the Brazilian primary data. A random sample set of 

6,960 files (1 hour from each transect), independent from the test and training data, 

was taken from the Brazilian primary dataset and manually labelled. A further 
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subsample of 500 files was taken from the Brazilian training dataset to obtain 

threshold values, and these were used to predict the presence and absence of 

rainfall in the Brazilian random sample. 

 

2.4. Results 

The results produced by using both frequency bands were on average significantly 

better than those using just the 0.6-1.2 kHz band across both Specificity and 

Accuracy, with the exception of Accuracy when using the Q2 threshold, although 

results varied somewhat by country (Table 2.1). As Accuracy is not likely to be as 

important a consideration as Specificity for those choosing to use a Q2 threshold, 

using two frequency bands was deemed the better choice, and all further results 

discussed here are for classification with measurements taken from both frequency 

bands.  

Detection responses to sample size varied both by country and by the choice of 

threshold value, but were consistent across Specificity and Accuracy metrics. When 

using minimum threshold values, Accuracy showed rapid increases until an 

asymptote at 200 samples for Brazil and Java, but declines for Manchester and New 

Zealand (Figure 2.3a). Specificity reaches 100% for all samples sizes in the Brazil 

and Java datasets, but follows a similar, but steeper trend to Accuracy for 

Manchester and New Zealand (not shown in Fig 2.3). Using the Q2 threshold, 

Specificity is at 100% for all sample sizes for Brazil and Java and New Zealand and 

around 97% for Manchester (Fig 2.3b), whilst Accuracy reaches stable scores for all 

countries between 100 and 200 samples (Fig 2.3c).  
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Table 2.1. Accuracy and Specificity scores by country, threshold choice, and number of frequency bands measured. 500 samples 
were used to set the thresholds. Results with significant differences (corrected p-value <0.05) between one and two bands are in 
bold. All differences in which two bands performed better than one band are shaded. A table of the p-values can be found in 
Appendix S2.2. 

 Country 
Mean Accuracy (%) Mean Specificity (%) 

Minimum threshold 
Q2 Threshold 

Minimum threshold 
Q2 Threshold 

1 band 2 bands 1 band 2 bands 1 band 2 bands 1 band 2 bands 

Brazil 
99.69±0. 00 99.67±0.00 83.10±0. 01 69.36±0.01 100±0.00 100±0.00 100±0.00 100±0.00 

Java 
99.76±0. 00 99.75±0.00 87.13±0. 01 71.31±0.01 99.80±0. 00 100±0.00 100±0.00 100±0.00 

Manchester 
54.81±0. 01 55.73±0.01 79.39±0. 01 67.77±0.00 10.15±0. 01 12.60±0.01 

91.05±0. 
01 

97.39±0.0 0 

New Zealand 
51.75±0. 03 60.14±0.03 82.65±0. 01 72.61±0.01 3.66±0.0 5 20.49±0.06 

98.00±0. 
00 100±0.00 

Mean 
76.50±0. 01 78.83±0.01 83.07±0. 01 70.26±0.01 53.40±0. 02 58.27±0.02 

97.27±0. 
00 

99.35±0.0 0 
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Figure 2.3. Selected Accuracy and Specificity scores by sample size (n), country and threshold selection method. Specificity scores 
for minimum threshold method not shown as Specificity=1 for all sample sizes in Brazil and Java data, and below 0.5 for almost all 
sample sizes in Manchester and New Zealand datasets. The shading represents standard deviation of 100 repetitions. NZ= New 
Zealand, MCR=Manchester. 
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Comparison between country scores showed that there were significant pairwise 

differences between all countries for both threshold choices in Accuracy and 

Specificity, except where Specificity was at 100% (Table 2.1). As expected, there 

was no clear threshold value choice to maximise both Specificity and Accuracy 

across all countries. The best Accuracy scores were achieved using Minimum 

threshold values, >99% for all training sample sizes over 200 for both Brazil and Java 

but this performed poorly for Manchester and New Zealand (Table 2.1, Fig 2.3). This 

suggests that in some countries, the differentiation is not enough to achieve high 

levels of Accuracy even when excellent Accuracy scores are achieved with the same 

method in other locations. Using the Q2 threshold, Accuracy was low for all countries 

(between 65% and 73%). Despite this, high Specificity scores can be achieved for all 

countries using the Q2 threshold (Table 2.1, Fig 2.3). This highlights that even in 

datasets where there may be poor distinction between Clear and HR data using PSD 

and StN indices, 35-50% of all HR files can be identified with loss of less than 5% of 

data containing no rain. Confusion matrices are provided in Table 2.2 for the mean 

scores of a sample size of 500 training files applied to the Manchester and New 

Zealand test datasets using second quartile thresholds 

Table 2.2. Confusion matrices with 500 samples of training data using second 
quartile threshold values. 

 Manchester - testing dataset New Zealand – testing dataset 

Second Quartile Threshold Second Quartile Threshold 

Actual Class 

P
re

d
ic

te
d

 C
la

s
s
 

 TRUE FALSE TRUE FALSE 

TRUE 185 15 230 0 

FALSE 315 485 270 500 

Sensitivity=38.15%, Specificity=97.39%, 
Accuracy=67.77% 

Sensitivity=45.22%, 
Specificity=100%, 
Accuracy=72.61% 

 

 



P a g e  | 58 

 

Table 2.3. Matrix of the Brazilian case study. Data are a random sample of the entire 
audio dataset (n=6960, HR n=102) with threshold values taken from 500 randomly 
selected audio files from the Brazilian training dataset. 

 Brazil - 6960 randomly selected audio files 

Minimum Threshold Second Quartile Threshold 

Actual Class 

P
re

d
ic

te
d

 C
la

s
s
 

 TRUE FALSE TRUE FALSE 

TRUE 88 14 33 0 

FALSE 22 6836 69 6858 

Sensitivity=86.27%, 

Specificity=99.68%, 

Accuracy=92.98% 

Sensitivity=32.35%, Specificity=100%, 

Accuracy=66.18% 

 

The results for classification of the case study using 6,960 files of the Brazilian 

dataset remained good, although lower than the test scores suggesting a small 

amount of overtraining between the test and training datasets (Table 2.3). To read in, 

measure and classify all 6960 files took 15 min 16 s using a Dell EliteBook laptop 

with a 4-core Intel Core i7-7600U CPU and 16 GB RAM running Windows 10. 

 

2.5. Conclusions 

We have shown that it is possible to fully automate rainfall identification within audio 

data from tropical environments using only two simple measurements at two 

frequency bands, and requiring only a relatively small set of files containing known 

rainfall to extract threshold values. We also demonstrate that by using different 

thresholds, minimum and second quartile, the technique can be adjusted for use 

even in cases where there is poor differentiation between rain presence and absence 

with a reasonably high level of success. This means that users of hardRain can 

make informed trade-offs between effort, accuracy and specificity. 

The effectiveness of the method is clearly dependent on sample sizes, with standard 

deviations declining with increasing samples, but divergent impact on Accuracy by 

site and threshold selection method. Whilst it is possible to devise various stopping 
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rules to optimise the sample number, the optimal solution will vary with the ease of 

obtaining training files containing rain and the objectives of individual research 

projects. The standard deviation of Accuracy and Specificity is relatively low for 

almost all measures at 200 samples (Fig.2.3), with corresponding accuracy and 

specificity scores close to their maximum for the tropical datasets when using 

minimum threshold values, and for all datasets when using second quartile values. 

Using only PSD and StN as measurements to differentiate between rain presence 

and absence has clear advantages in minimising effort and ease of understanding. 

Along with Brown et al., (2019), we did not find StN to be a useful index for 

classification when we initially analysed our data using the printed formula in Bedoya 

et al., (2017). However, when we used the standard formula for standard deviation, 

the use of both PSD and StN was better than just PSD. In some circumstances, 

even the use of both indices resulted in poor differentiation. This is especially the 

case for datasets from temperate climates, with Manchester and New Zealand 

performing worse, presumably due to poorer distinction between PSD scores (Fig 

2.2). This is possibly because rainfall is less intense at these locations, or because 

rain falling on to predominately concrete (Manchester) and more open temperate 

forest canopies (New Zealand), results in less amplification than in tropical forests 

(Java and Brazil). Despite this shortcoming, by using second quartile thresholds 

between 40-50% of rain data was identified even in Manchester and New Zealand, 

with no or only a very small percentages of rain-free data misidentified (Table 2.2). 

Although not herein directly compared, our methodology is unlikely to match the 

AUC scores of the method proposed by Brown et al., (2019) or the accuracy and 

quantification of Bedoya et al., (2017). For those scholars studying rain through audio 

data, or requiring extremely precise cleaning, these would be better methods to use. 

However, our methodology provides a quick and effective classification method that 

can be applied to audio data, and is especially suited to tropical forests where the 

need for reliable acoustic data on biodiversity is greatest and rainfall is frequent. For 

researchers wishing to quickly remove rain files from large datasets prior to 

classification, this method will often represent the most time-effective way to do so. 

Additionally for research in which the penalty of false-negatives is far lower than that 

of false positives, this method of rain detection allows for informed trade-offs 

between Accuracy and Specificity which previous methods of rain detection do not.  
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2.5.1. Package description  

To facilitate the use of this rain detection method, we have developed the R package 

‘hardRain’. The package will; i) set thresholds (based on training data consisting of 

short segments of known rain audio recordings), ii) apply the thresholds to audio data 

and identify presence of rain in each input file, or subdivisions therein, iii) cut audio 

segments with rain and save the remaining segments, and optionally, create a label 

file view in Audacity or Raven software. It can also be used to test the accuracy of 

the classification using known testing and training data. The package consists of four 

main functions (Table 2.4).  

Before using the classify function it is necessary to decide which threshold values to 

use. If it is reasonable to make assumptions about the distinction between rain 

presence and absence, for instance if the data is collected in tropical rain forest, then 

the threshold can be selected and the results checked after. However, if it is unclear 

whether there will be a good distinction, accuracy can be tested using the 

classifyRain function with known testing and training data (i.e. labelled audio 

segments of heavy rain or clear) and confusion matrices and accuracy metrics 

produced (see example in vignette). See vignettes included in the package for further 

details on functionality. 
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Table 2.4. Functions in the R package ‘hardRain’. 

Function Description Main inputs 

getThreshold This function measures PSD and 
Signal-to-Noise Ratio on all input 
training files at two frequency 
bands (defaults to 0.6-1.2 kHz and 
4.4-5.6 kHz) and calculates 
minimum and 2nd quartile 
thresholds over these. 

wav filenames (and locations 
where these are stored) of 
audio segments of known 
rain, i.e. training data (see 
above for discussion on how 
many files are needed), but 
typically 200 wav files of 
about 15 s duration 

classifyRain This function takes the testing 
data, calculates the PSD and 
Signal-to-Noise Ratio and applies 
the thresholds produced by 
getThreshold function and 
classifies each input file (or 
subdivision thereof) for the 
presence / absence of rain.  
Optionally, if the function is used 
for accuracy testing, a label can be 
included denoting which files have 
presence of rain or not. 

wav filenames (and locations) 
of testing data files may be of 
short duration already 
(typically, 15-30 s segments) 
or may be provided as much 
longer files (e.g. 2-3 hours) 
and split into segments within 
the function, using the t.step 
argument (division size, in 
seconds); thresholds from 
getThreshold() 

cutRain This function takes the output from 
classifyRain() and cuts out the 
segments identified as rain in the 
input wav files and saves the 
remaining contiguous audio in a 
new folder and writes a label file 
for the original length audio file, 
marking segments with no rain 
(either or both of these options are 
available). Optionally, the new 
start time of each file can be 
recorded in the filename. 

output from classifyRain() -
only when longer files are 
classified in subdivisions; 
output location for new wav 
files. 

getMetrics This function does not 
generally need to be called 
directly. It is the workhorse 
function that reads wav files, 
extracts PSD and Signal-to-
Noise for specified frequency 
bands using seewave function 
spectro(). This function is 
called by getThreshold() and 
classifyRain() which will 
generally be used directly. 

wav filenames (and 
locations); time division (in 
seconds) to subdivide wav 
input files for analysis 
(optional) 

The package can be downloaded from: https://github.com/Cdevenish/hardRain 

https://github.com/Cdevenish/hardRain
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Chapter 3: 

Optimising tropical forest bird surveys using 
passive acoustic monitoring and high temporal 
resolution sampling 

 

 

Spix's Warbling Antbird Hypocnemis striata and spectrogram from one of the surveys 
it was detected it in. 
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3.1. Abstract 

Estimation of avian biodiversity is a cornerstone measure of ecosystem condition, 

with turnover in avian community composition underpinning many studies of land-

use change. Surveys conducted using autonomous recorders have been frequently 

found to be more efficient at estimating diversity than traditional point-count surveys. 

However, there has been limited research into the optimal temporal resolution for 

sampling – specifically the trade-off between number of samples and individual 

sample duration over a fixed total survey duration, despite autonomous recorders 

affording the possibility of repeat sampling with relative ease in comparison to 

traditional survey methods. 

We use an acoustic dataset collected from a region of very high avian biodiversity - 

the eastern Brazilian Amazon - to test the effect of using high temporal resolution 

sampling to increase temporal coverage without increasing total survey duration. We 

use this dataset to assess whether a survey protocol consisting of 240 15 second 

samples at 29 locations, high temporal resolution (HTR) sampling, has an influence 

on resulting alpha and gamma diversity and detection frequency, in comparison to 

low temporal resolution (LTR) sampling of four 15 minute samples at the same 

locations. 

We find repeated HTR sampling outperforms LTR sampling in every metric 

considered herein, with HTR sampling predicted to detect approximately 50% higher 

alpha diversity, and 10% higher gamma diversity. HTR sampling detects species 

more often, at more survey locations. LTR sampling produced almost four times as 

many false absences for species presence. Additionally, LTR sampling incorrectly 

found 70 species or 34% of the total species detected, at only a single forest type 

when they were in fact present in multiple forest types, whilst the use of HTR 

sampling reduced this to just 2 species or 0.9%. Whilst there is no difference 

between the proportion of uncommon species detected by the two methods, when 

considering species detected multiple times at multiple locations, HTR sampling 

detected three times more uncommon species than LTR sampling. 

We conclude that HTR sampling of passive-acoustic monitoring based surveys 

should be considered the primary method for estimating the species richness of bird 

communities in tropical forests where feasible.  
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3.2. Introduction 

Estimation of avian biodiversity is a cornerstone measure of ecosystem condition 

used in a wide range of ecological and conservation applications. Understanding 

alpha diversity in avian communities underpins many studies of land-use change in 

high biodiversity environments like tropical forests. However reliable detection, 

identification and counting of birds can be challenging in such environments 

(Robinson et al., 2018), where avian species richness reaches its global 

peak (Jenkins et al., 2013). It is well documented that tropical birds can be difficult to 

detect and count accurately as a consequence of their low abundance and difficulties 

in detecting cryptic species in structurally complex environments such that 

accumulating sufficient inventory completeness can be challenging (Karr, 1981; 

Robinson et al., 2000; Terborgh et al., 1990). 

Point counts are established as a standard survey technique for obtaining measures 

of bird species richness, abundance and population density, particularly in forest 

habitats (Bibby et al., 2000). Now that affordable and reliable passive-acoustic 

monitoring (PAM) equipment has become available (Gibb et al., 2019), 

autonomously recorded surveys in which recording units are left to document 

soundscapes over extended periods, are emerging as a supplement or alternative to 

traditional field-conducted point counts (Shonfield and Bayne, 2017). A recent review 

found that recorder-based surveys detect an average of 11% more species than 

traditional point counts with field-based observers, hereafter ‘traditional surveys’, 

albeit often with slightly different species composition (Darras et al., 2019). This is 

alongside other benefits including reduced costs, avoidance of the effects of 

observer presence (Hutto and Mosconi, 1984), increased standardization through 

expert review (Campbell and Francis, 2011), the ability to archive data for future use, 

and the capacity to record for an extended duration - including at night when 

traditional surveys are rarely conducted. Whilst automated detection and 

classification methods are not yet widely available to analyse all of the additional 

data collected (Priyadarshani et al., 2018), using autonomous recorders to collect 

data whilst subsequently manually detecting and identifying the species with passive 

acoustic monitoring surveys (hereafter ‘PAM surveys’) can still obtain significant 

improvements over traditional methods. 
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An accompanying benefit of cost-effectively recording large amounts of acoustic data 

is the ability to greatly increase the temporal resolution of sampling. Higher temporal 

resolution is achieved by a high number of short duration samples from the recorded 

audio data whilst maintaining the same total survey duration during a fixed period, 

something that would be logistically impossible with traditional surveys. Higher 

resolution sampling with traditional point-count surveys has been shown to lead to 

both detection of higher species richness (Fuller and Langslow, 1984; Siegel et al., 

2001) and better quality data for further modelling, reducing standard error and 

increasing the accuracy of density estimation (Lee and Marsden, 2008; Smith et al., 

1998). In tropical forests, where hyper-diverse avian communities include a small 

number of commoner species and a long tail of rarer species (Robinson et al., 2000; 

Terborgh et al., 1990), traditional point counts often fail to accrue enough 

independent repeat detections to allow modelling of rarer species, leading to 

knowledge deficits for those species most likely to be sensitive or vulnerable to 

disturbance and consequently underestimating impacts of land-cover change 

(Robinson et al., 2018). PAM surveys allow survey protocols to focus on a high 

number of short-duration samples without the costs associated with multiple 

repeated field visits. Despite this potential benefit of PAM surveys, most 

comparisons with traditional surveys have been conducted either simultaneously or 

using identical sampling methods. As with traditional surveys, several recent studies 

comparing PAM surveys indicate that using a higher temporal resolution for sampling 

allows detection of a higher number of species compared to lower resolution 

samples (Klingbeil and Willig 2015, Smith et al., 2020, Wimmer et al., 2013). 

However, these studies were conducted predominantly in temperate forests or arid 

systems in regions of relatively low species richness (n=44, n=96, and n=79 species 

respectively), and none used a minimum sample duration of less than one minute, 

giving relatively low temporal resolution. Additionally, Cook and Hartley (2018) found 

that using 10 s duration samples increased estimation of species prevalence 

compared to lower temporal resolution sampling through increased independent 

detections. Increased detection frequency can reduce the number of false absences, 

something that can have a significant negative impact on the accuracy of, in 

particular, species distribution modelling (Gu and Swihart, 2004; Lobo et al., 2010; 

Phillips et al., 2009). 

https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/eap.1954#eap1954-bib-0061
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/eap.1954#eap1954-bib-0027
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Estimating species richness with passive acoustic monitoring depends on two 

factors: availability and detectability (Kéry and Schmidt, 2008). The number of 

species available for detection over time (e.g. the number of species close enough to 

the recorder to be heard), varies as species move – for instance the number of 

available species would be much greater if a large mixed-species flock entered the 

detection space of the recorders. The detectability of each species (e.g. whether an 

individual of the species makes an identifiable sound during the survey) is the 

probability of recording the species when it is within the recording area. This is 

influenced by (i) species abundance, as the more individuals available for detection 

increases the probability of one of them vocalising, and (ii) the frequency of 

vocalisation, which varies by many orders of magnitude - for example, Screaming 

Pihas Lipaugus vociferans may vocalise for 77% of the time between 06:45-17:15 

(Snow, 1961), whilst Variegated Antpittas Grallaria varia have been shown to only 

sing only twice in 50 days (Jirinec et al., 2018) and (iii) the distance at which a call is 

detectable, impacted by the amplitude and acoustic frequency of the call and a range 

of environmental factors (Yip et al., 2017). 

In some cases, it may be possible to predict which time periods have the highest 

probability of detecting a higher proportion of the species pool, suggesting survey 

efforts should be targeted to those periods. For instance, traditional point counts are 

often conducted in the two hours following sunrise. However, there is a high degree 

of variation in the proportion of the total species pool that is both available and 

detectable over time, which means that having a higher number of samples over a 

fixed period (e.g. high temporal resolution) makes it more likely for a survey to 

coincide with a period in which a high proportion of the total species pool is 

detectable (Figure 3.1). Furthermore, high temporal resolution also supports 

detection of species that only vocalize within strict temporal niches, or are only 

detectable at certain periods. For example, forest falcons Micrastur spp., only reliably 

vocalise before and around dawn (Fjeldså et al., 2020), when a low proportion of the 

total species pool is detectable. Other species may have habitual movements that 

make them only available for detection during narrow windows. With low temporal 

resolution sampling, it may be possible to sample during one or several of these 

availability windows if they are known; but this would reduce the capacity to sample 

at times with a high proportion of the species pool available. Additionally, 
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vocalizations of rare species are likely to be largely stochastic, so having a higher 

number of samples spread across the survey period increases the probability of 

detection. 

Figure 3.1. Theoretical model of high and low temporal resolution sampling regimes 
over one morning in the tropics.  

 

Red vertical lines represent four 1 minute samples, black vertical lines represent 1 
second instantaneous samples (black vertical lines illustrated at double width). This 
represents a similar contrast in resolution to four 15 minute samples and 240 15 
second samples over a 15 day survey season, as compared in this paper. The y-axis 
shows a non-exhaustive selection of behaviours that impact detection probability. 
*Mixed flocks shown both prior to and after formation. Bird behaviour affecting 
detectability is hypothetical. Bird silhouettes from www.phylopic.org. 

 

We used an acoustic dataset collected between June and August 2018 in eastern 

Amazonia in order to compare the impact of using high temporal resolution (HTR) 

and low temporal resolution (LTR) sampling on species detection, without increasing 

total survey duration. We compared the results between sampling methods to 

answer the following questions: does HTR sampling result in estimating higher 

species richness and a faster species accumulation? Does HTR sampling increase 

the frequency of species detection and consequently decrease the number of false 
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absences and falsely unique occurrences? Finally, is HTR sampling more efficient at 

detecting species with low abundance? 

 

3.3. Materials and Methods 

3.3.1. Data collection 

We collected acoustic data from 29 of the survey transects of the Sustainable 

Amazon Network (Gardner et al. 2013) across an area of approximately 1 million ha, 

located in the eastern Brazilian Amazon in the municipalities of Santarém, Belterra, 

and Mojuí dos Campos (latitude ~ -3.046, longitude -54.947 WGS 84), hereafter 

‘Santarém’ in the Brazilian state of Pará. Survey points were located halfway along 

permanent 300 m transects. All transects were located in non-seasonally inundated 

‘Terra firme’ forest and distributed across a human-disturbance gradient, comprising 

seven forest classes. To minimize spatial correlation, survey points were separated 

by a minimum distance of 2 km. 

All recordings were made between 12th June 2018 and 16th August 2018, outside of 

the peak period for bird breeding (Kirwan, 2009) which commences with the onset of 

the rainy season in November, and across a period in which detectability and 

community composition should be relatively constant. Recordings at each survey 

point were made over one or two recording periods, with each recording period 

varying in length between 3 and 22 days for logistical reasons. A minimum of 13 

days were surveyed at each location. Full details of recording periods for each 

location are given in Appendix S3.1. 

We installed Frontier Labs Bioacoustic Recording Units with a 16-bit 44.1 kHz 

sampling rate each survey point. Recorders were placed in trees at a height of 7-10 

m, with the microphone facing downward, 10-20 m from the transect to reduce the 

chance of recorder theft. Recording units were positioned to avoid sound being 

blocked by overhanging branches. Frontier Labs microphones have 80 dB signal to 

noise ratio and 14dBA self-noise, a fixed gain pre-amp of 20dB, a flat frequency 

response (±2dB) from 80Hz to 20kHz and an 80Hz high-pass filter to filter out low-
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frequency wind noise (Frontier Labs, 2015). All files were recorded continuously in 

wav format. 

The continuous acoustic recordings were randomly and independently subsampled 

twice. In the first subsample (hereafter ‘LTR samples’), survey periods were 15 

minutes in duration, and four periods were extracted per survey point, totalling one 

hour of data from each transect. Across all survey points, there were a total of 116 

LTR samples. We used 15 minute durations as it is a commonly used point-count 

duration in tropical forests (Robinson et al., 2018), and as previous traditional 

surveys from the same location have used this survey duration (e.g. Moura et al., 

2013). The second subsample (hereafter ‘HTR samples’) again independently 

sampled one hour of recordings from each survey point, but this time in the form of 

240 15 s periods, totalling 6,960 samples across all transects. The selection of 15 s 

durations for HTR sampling is primarily a trade-off between the highest possible 

resolution, the associated increase in effort during analysis through the increasing 

number of files and the number of complete versus truncated vocalisations, which 

can be difficult or impossible to identify without a longer recording. Further 

considerations include minimizing bird movement in and out of the detection space 

of recorders and 15 s spectrograms can easily be displayed on a standard monitor at 

a resolution where vocalisations can be visually recognized. All samples for both 

survey methods were taken in a two-and-a-half-hour period starting 30 minutes 

before sunrise, which has been shown to be the most effective period for estimating 

species richness with PAM surveys (Wimmer et al., 2013). Subsampling was not 

stratified within that period, but LTR samples commenced on the hour, or 15, 30 or 

45 minutes past the hour, to avoid overlapping samples. Audio containing heavy 

rainfall was removed prior to initial sampling using the hardRain package in R 

(Metcalf et al., 2020). 

3.3.2. Analysis 

The audio samples were analysed manually, through visually inspecting 

spectrograms generated in Raven Pro (Center for Conservation Bioacoustics, 2019) 

at the default settings, and listening to the recordings. All identifiable avian 

vocalisations were assigned to species by a highly experienced ornithologist (NGM, 

for survey experience in the region see Moura et al., (2013), and Moura et al., 
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(2016)). All vocalizations that could only be determined to family level were 

discarded from this study. During analysis, it was apparent that 343 of the 6,960 

HTR samples fell during periods of rain intense enough to significantly inhibit bird 

vocalization activity and/or detection. These were removed from consideration but 

not replaced, leading to an uneven sample size (see Appendix S3.1). Consequently, 

for each survey point, we calculated both observed species richness and rarefied 

species richness for 45 minutes of sample effort to account for the uneven total 

sampling effort across methods, using the iNext package in R (Hsieh et al., 2020, 

v2.0.20), but patterns and results were similar to observed species richness, so only 

observed species richness is considered hereafter. 

  

Species Richness 

We compared alpha and gamma diversity metrics between the two survey 

methodologies. First, we modelled species richness at each survey point using a 

linear mixed effect models in the lme4 package, using sampling resolution as a fixed 

effect, survey point nested within forest disturbance class as a random effect, and a 

Gaussian error structure. We also calculated total species richness across all survey 

points (gamma diversity). For a repeat of this analysis including rarefied species 

richness, and data from traditional point-counts conducted in 2016, see Appendix 

S3.2. To address whether the use of HTR sampling accrued species richness at a 

faster rate than LTR sampling, we constructed sample-based species accumulation 

curves for each survey method, interpolating for 20 hours of sampling effort using the 

iNext package. 

Detection Frequency 

Next, we looked at whether HTR or LTR sampling detected species more frequently. 

A single detection is counted as a species presence in a sample, (e.g. incidence), 

not the total number of times it is detected within a sample. We summed the total 

number of detections of each species by sampling method (with a maximum possible 

of 116 for LTR samples and 6,960 for HTR samples) and compared the total number 

of detections for the species detected in both methods using a Wilcoxon signed 

ranks test. As total detections are highly dependent on the total number of samples 

and not necessarily reflective of improvements caused by greater temporal 
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coverage, we also looked at the impact of detection frequency on where species 

were detected. We summed the number of survey points at which each species was 

detected and calculated the number of species falsely found to be absent per survey 

point. A species was determined to be falsely absent if it was undetected at a 

location by one temporal resolution of sampling but detected at the same location by 

the converse resolution. 

In addition, we looked at extreme cases of false absences, in which species were 

detected at only a single survey point by a sampling resolution, but were actually 

detected at other locations by the converse method (hereafter ‘false uniqueness’), 

something that is likely to be highly detrimental to the accuracy of habitat modelling 

in particular. As most analysis of this type are directed at the habitat level we 

analysed this at the scale of forest class, and calculate the proportion of the total 

species richness of each forest class that was determined to be falsely unique 

species. The seven forest classes are: undisturbed forest (five survey points), 

selectively-logged forest (four survey points), secondary forest - forest recovering 

from complete historical clearance sensu Putz and Redford, (2010) (three points), 

and four categories of burnt forest. The four burnt categories were categorised 

dependent on whether they burnt during the extensive El Niño-induced fires in 2015 

and whether they have been selectively logged, with all logging occurring prior to 

2015. The categories are; burned in 2015 but never logged (five points), logged and 

burned prior to 2015 (four points), logged and burned in 2015 (five survey points) 

and logged and burned both before 2015 and in 2015 (three survey points). 

Sensitivity to abundance 

To test if HTR sampling detected more rare species, we compared the relative 

abundance of species detected by both methods using chi-squared tests. We 

designated each species as common, fairly common, or uncommon, using the 

Parker et al., (1996) ecological and distributional databases, the most 

comprehensive and reliable database for this type of data in the region. Species 

marked as intermediate between two abundance classes in Parker were assumed to 

belong to the rarer class, categories marked as uncertain were assumed to be 

correct, and we combined the categories of uncommon, patchily distributed and rare. 

Species nomenclature was aligned to the taxonomy of the Brazilian Ornithologists 

Records Committee (Piacentini et al., 2015). We also tested whether HTR sampling 
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detected each rare species more often. To ensure that any increase in detection of 

rare species was not caused by repeatedly detecting a single individual more often 

with HTR sampling, we also compared the number and proportion of species that 

were detected from a minimum of two transects and with >10 total detections 

(hereafter ‘multiple detections’). 

3.4. Results 

3.4.1. Species Richness 

We detected higher alpha and gamma diversity (Figure 3.2 A) using HTR sampling. 

In total, we detected 245 species; 224 species using HTR sampling with a median of 

4.0±0.02 (SE) species and 204 species using LTR sampling with a median of 

19.5±0.68 species per sample. The linear mixed effects model predicted that HTR 

sampling detects 22.9 species more per survey point than LTR, with HTR detecting 

66.27±3.77 (SE) per point and LTR sampling detecting 43.37±3.77 species per point. 

HTR sampling detected 41 species undetected in LTR samples across the 

landscape, whilst LTR sampling detected 21 species not detected by HTR sampling. 

We found that for sample-based rarefaction/extrapolation by sample method (Fig. 

3.2 B), HTR sampling led to steep increases in species accumulation up to around 

four hours of sampling effort, with 176 ± 2 (SE) species detected, and then 

attenuated, with species accumulation continuing up to 20 hours. In contrast, LTR 

sampling showed a shallower curve, in which the accumulation did not slow as 

quickly. LTR sampling detects lower species richness at all quantities of sampling 

effort and were predicted to detect 187 ± 8 (SE) species after 20 hours of sampling 

effort, compared to 217 ± 5 species by HTR sampling. HTR sampling was predicted 

to take just 11 hrs 23 mins to achieve the same species total as LTR did in all 

surveys (204 species, 29 hrs). 
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Figure 3.2. A; Comparison of the species richness detected at each of 29 survey 
points employing either low temporal resolution samples, comprised of four 15-min 
periods, or high temporal resolution surveys of 240 15-s periods. B; Sample-based 
species accumulation curves for the two sampling methods, showing interpolated 
predictions up to 20 hours sampling effort.

 

 

Detection Frequency 

Detection frequency also significantly increased with HTR sampling. Species were 

detected more often, a median of 47 ± 18.9 (SE) times compared to just 7 ± 1.0 for 

LTR sampling (V=15865, p<0.001), and at more transects, 8 ± 0.57 to 4 ± 0.47 

(V=976, p<0.001) (Fig.3.3 A). Additionally, LTR sampling detected 65% of all species 

fewer than ten times, and only six species were detected more than 50 times, with a 

maximum of 64 detections for Grey Antbird Cercomacra cinerascens. HTR sampling 

detected only 33% of all species fewer than ten times, recorded 40% of all species 

more than 50 times, recorded three species more than 1,000 times, and had a 

maximum of 1,821 detections for Bright-rumped Attila Attila spadiceus.

https://mc.manuscriptcentral.com/rsec?DOWNLOAD=TRUE&PARAMS=xik_5rBXkMFzajLsr2pgnVADh1LE9ZBaPqAAyb1EmsgLruoSruSEEkJgp93d3qvnak6Vd1B6Y2xdvTS3YsDqncmFQ3pcAmxTzrRRcjNBXKebGp7NJJhbYhgnd1En3mmKhDP7z2MwZSDTqAmVFzHx9vt7R88WDvpcRTLVeHfMYQJfYH71qPiFKy9TZLU4Hmw5KsRNPcPhZsQHrVyxHyTaG9dR7MFciNu
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Figure 3.3. Frequency of detection. A; The number of survey points each species was detected according to sampling method. B; 
The number of species falsely identified as absent per survey point. C; the number of species wrongly identified as unique to each 
forest class.
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We found that the higher detection frequency had a striking effect on the accuracy of 

species absences with LTR sampling producing 927 false absences compared to 

just 263 for HTR sampling. Every survey point had fewer false absences with HTR 

sampling than LTR (Fig.3.3 A, Fig.3.3 B), and at one location, 50 species were 

detected with LTR samples, but a further 46 were missed – whilst only nine were 

missed with HTR samples. 

This pattern was also apparent when looking at species that were only detected in a 

single forest class by one temporal resolution of sampling, but were actually detected 

in other forest classes by the converse sampling resolution. There were only two 

species that HTR sampling wrongly identified as unique to a forest class, compared 

to 70 by LTR sampling. One forest class, logged and burned in 2015, had an 

exceptionally high error rate using LTR samples, with 25 species or 21% of the total 

detected species at that class being wrongly detected as unique - something that 

could be highly misleading in habitat or distribution modelling. 

  

3.4.2. Sensitivity to abundance 

HTR sampling detected a mean 10% ±0.7 (SD) more species for common, fairly 

common and uncommon birds. However, both sampling methods detected a 

remarkably similar proportion of each category of relative abundance (Fig 3.4). When 

only considering multiple detections of species (10+ total detections and detected at 

two or more locations), HTR sampling detected substantially more species than LTR 

sampling, with the largest difference being for uncommon species for which HTR 

sampling detected nearly three times as many species (n = 13 and 38, respectively). 

Furthermore, the number of uncommon species detected as a proportion of all 

species detected multiple times declined for LTR sampling (28% to 18%) but stayed 

relatively stable for HTR (29% to 25%). When analysing only LTR sampling, the 

proportion of uncommon species in the total species pool declined from 28% for all 

species detected, to 18% when considering only multiple detections. For HTR, the 

detection of uncommon species remained similar, regardless of the abundance 

metric used (29% to 25%). 
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Figure 3.4. The proportion of common, fairly common and uncommon species 
detected using both high and low temporal resolution sampling methods. 

 

 

3.5. Discussion 

Much recent research on PAM surveys have focussed on automated methods 

(Stowell and Sueur, 2020). However, acoustic indices are limited by their inability to 

identify species, whilst machine-learning based classification methods remain limited 

to relatively small numbers of species, are technically challenging and time-

consuming to create, and are less accurate than manual analysis methods. It is likely 

to be several years before off-the-shelf, readily applied classification methods are 

available for the world’s most speciose regions (Gibb et al., 2019; Priyadarshani et 

al., 2018; Sugai et al., 2019). Given this, it remains of high importance to investigate 

and explore the benefits of PAM surveys coupled with manual analysis. 

We found that HTR avian sampling using passive acoustic monitoring outperformed 

LTR sampling in every metric considered, often by a substantial margin. This is 

particularly true for species richness, where we predict HTR sampling to record just 

over fifty percent more species at each location, as well as finding substantially 
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higher gamma diversity across the entire survey. Looking beyond species richness, 

HTR sampling is a more reliable method to obtain data for distribution and 

occupancy modelling. HTR sampling produce far fewer false negatives for the 

presence of species, and identifies far fewer species as unique to forest class, both 

of which can be significant hindrances in habitat and distribution modelling (Gu and 

Swihart, 2004; Kramer-Schadt et al., 2013). For instance, as the two logged and 

burnt forest classes had the two highest rates of false uniqueness, it seems likely 

that the two classes share a high proportion of species at low abundance that were 

not well detected by LTR sampling, but were by HTR. This could give a misleading 

impression that the time since burning, the only difference between the two classes, 

has a strong impact on species community, when the effect is actually an artefact of 

sampling. The ability to reliably repeatedly detect rare species also means that HTR 

sampling is more robust to low relative abundance, which can be advantageous in 

surveying bird communities, particularly in the tropics (Robinson and Curtis, 2020). 

  

We have not conducted sensitivity analysis to optimise the duration of samples. 

However, one previous study compared survey durations of ten, five, three, two and 

one minute across equivalent cumulative periods and found species detection rates 

increased as survey durations decreased (Bayne et al., 2017). This, alongside our 

own results suggest that by shortening survey duration and increasing the temporal 

spread of samples, species accumulation will continue to increase. In fact, whilst 

estimates of abundance from acoustic surveys remain in their infancy due to difficulty 

with estimating distance from audio data (Darras et al., 2016; Yip et al., 2017), using 

near instantaneous survey durations could resolve the issue of movement in and out 

of detection range during the survey period. However, there are some inhibiting 

factors to suggest that extremely small durations (<10 s) may not be beneficial 

overall. Firstly, NGM reported issues with identification of calls with the shorter 

duration samples due to vocalisations being truncated at the start and end of the 

recordings, or absence of patterns in vocalisations that can be important cues in 

longer recordings. Secondly, and potentially more significantly, analysis of HTR 

sampling can take substantially longer. This is due to the effect of recording 

metadata and results for each sample, and there simply being many more samples 

to record with HTR sampling. At the temporal resolutions used in this study, results 
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and metadata needed to be recorded 60 times with HTR sampling for every LTR 

sample. Whilst the extra time required in analysis is undoubtedly substantial, the 

time taken to record results and metadata is relatively small compared to the 

identification process, so that analysis time does not increase linearly with increasing 

number of samples. Furthermore the extra analysis time could be offset by the use of 

specialist software e.g. BORIS (Friard and Gamba, 2016), and by lower total survey 

duration required due to the increased species accumulation rate. 

We chose to only sample from a two-hour period at dawn for two reasons. Firstly, we 

believe that conducting repeated point-counts in the field around dawn remains the 

standard bird surveying method for many ornithologists, and closely replicating this 

facilitates comparison for those selecting a sampling strategy to use in the future. 

Secondly, sampling from a single time-period within a short survey season enables 

very high temporal resolution sampling at a scale that will allow a strong impact on 

species-richness estimation, making it simple to demonstrate the concept. However, 

the estimation of species richness might be most effective at a ‘medium’ temporal 

resolution, but one generated from extending the survey period across diel or 

seasonal cycles, rather than increasing the duration of the sample. Several studies 

have found that PAM surveys incorporating dusk, night, or the whole diel cycle are 

more effective at estimating species richness (Araújo et al., 2020; La and Nudds, 

2016; Wimmer et al., 2013). It may well be the case that the most effective method 

would involve variable temporal resolution, designating sampling effort according to 

expected species richness with the highest temporal resolution at dawn and dusk, 

and a smaller number of samples spread across the middle of the day and night for 

instance. Varying temporal resolution could just as easily be done across the 

seasonal cycle, with a higher temporal resolution used in the Neotropics at the onset 

of the rainy season when avian vocalisation and detectability peaks for instance 

(Kirwan, 2009; Pieretti et al., 2015), with a lower temporal resolution across the rest 

of the year to detect austral migrants. 

When considering whether to use HTR sampling, it is necessary to consider that 

advantages and disadvantages of HTR sampling are intrinsically linked to those of 

PAM surveys, as PAM surveys are required to obtain sufficiently high temporal 

resolution. This means that HTR surveying will be particularly effective at locations in 

which a high percentage of species are detectable by vocalisation such as forest, 
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although PAM surveys have been found to adequately reflect overall diversity even 

in arid regions in Australia (Smith et al., 2020). 

In habitats in which PAM-based surveys are more effective than traditional survey 

methods, the more species detection probability varies temporally, the more HTR 

sampling is likely to be beneficial – most likely habitats with high avian species 

richness and corresponding high conservation value. In areas with high species 

richness, spatial and vocalisation niches are more tightly packed in a given period 

(Robinson et al., 2018; Terborgh et al., 1990), and a high proportion of species occur 

naturally at low abundance. This leads to higher variability in the proportion of 

species available per survey period, and higher turnover of species between surveys 

– so that increasing the temporal spread of sampling across a fixed period leads to 

increased species detection. Whilst we have tested the impact of HTR sampling in 

Amazonia, where the benefits of increased sampling resolution are likely to be 

greatest, these results are likely to be transferrable to other tropical forest 

landscapes, and it is probable that it will benefit other regions with high temporal 

variability in the proportion of species detectable. LTR sampling offers few benefits 

over HTR except efficiency in analysis, and therefore is unlikely to be a preferential 

choice for inventorying bird species except in highly homogenized landscaped 

occupied by relatively few common species, such as small, degraded forest 

fragments. 

3.6. Conclusion 

We believe that HTR sampling from PAM surveys should be considered the standard 

and primary method for sampling bird communities in tropical forests. There is strong 

evidence that surveys conducted on lower-resolution samples from PAM surveys 

outperform human observations for bird inventories (Darras et al., 2019), suggesting 

that autonomous surveys should be used preferentially or in combination with 

traditional point-count surveys. Given the additional benefits of HTR sampling, we 

believe that within tropical forest environments manually conducted point counts 

should mainly be employed as a supplement to HTR sampling. Exceptions include 

when autonomous recordings are not possible, for example if equipment cost is too 

high, when estimates of abundance are of higher priority than estimates of species 

richness, and when a high proportion of non-vocalising species are expected. Low 
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temporal resolution sampling offers little benefit over either human observations or 

HTR sampling, except when analysis time is of high priority. Whilst a combination of 

traditional and autonomous survey techniques should still be considered the gold 

standard for conducting bird species inventories (Robinson and Curtis, 2020), if only 

a single survey method is to be used, repeated HTR sampling is likely to be the most 

effective. 
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Acoustic indices perform better when applied 

at ecologically meaningful time and frequency 

scales 

 

A spectrogram of logged forest at night 
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4.1. Abstract 

1. Acoustic indices are increasingly employed in the analysis of soundscapes to 

ascertain biodiversity value. However, conflicting results and lack of consensus on 

best practices for their usage has hindered their application in conservation and 

land-use management contexts. Here we propose that the sensitivity of acoustic 

indices to ecological change and fidelity of acoustic indices to ecological 

communities are negatively impacted by signal masking. Signal masking can occur 

when acoustic responses of taxa sensitive to the effect of interest are masked by 

less-sensitive acoustic groups, or target taxa sonification is masked by non-target 

noise. We argue that by calculating acoustic indices at ecologically appropriate time 

and frequency bins, masking effects can be reduced and the efficacy of indices 

increased. 

2. We test this on a large acoustic dataset collected in Eastern Amazonia 

spanning a disturbance gradient of undisturbed, logged, burned, logged-and-burned 

and secondary forests. We calculated values for two acoustic indices: the Acoustic 

Complexity Index and the Bioacoustic Index, across the entire frequency spectrum 

(0–22.1 kHz), and four narrower subsets of the frequency spectrum; at dawn, day, 

dusk and night. 

3. We show that signal masking has a large impact on the sensitivity of acoustic 

indices to forest disturbance classes. Calculating acoustic indices at a range of 

narrower time–frequency bins substantially increases the classification accuracy of 

forest classes by random forest models. Furthermore, signal masking led to 

misleading correlations, including spurious inverse correlations, between biodiversity 

indicator metrics and acoustic index values compared to correlations derived from 

manual sampling of the audio data. 

4. Consequently, we recommend that acoustic indices are calculated either at a 

range of time and frequency bins, or at a single narrow bin, predetermined by a priori 

ecological understanding of the soundscape. 
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4.2. Introduction 

Acoustic monitoring is rapidly becoming a key tool to measure biodiversity, with 

strident calls for broader uptake (Burivalova et al., 2019; Deichmann et al., 2018; 

Wagner Ribeiro Jr. et al., 2017). Despite increasing ease of data collection, there 

remain significant obstacles to the analysis of acoustic data, with species-level 

classification limited by the expertise and effort required to train machine learning 

models, and the limited availability of both open-source software and large audio 

libraries (Gibb et al., 2019; Priyadarshani et al., 2018). Consequentially, the use of 

acoustic indices has grown in popularity, often used as proxies for more traditional 

biodiversity metrics like species richness and composition, and presented as 

alternative effective tools for rapid biodiversity assessments (Sueur et al., 2008). 

There are a wide range of acoustic indices, but most involve calculating and 

comparing acoustic power within temporal and frequency bins (Buxton et al., 2018; 

Farina, 2014; Gibb et al., 2019; Sueur et al., 2014). These are, in turn, used to 

assess soundscape qualities such as evenness, entropy and complexity. Acoustic 

indices infer community-level information from entire soundscapes; in contrast to 

species-level classification approaches that require time-consuming complex model-

training techniques necessitating large training libraries, indices are relatively simple 

and readily available on a range of open-source platforms. 

Despite their increasing popularity, acoustic indices are not always effective at 

answering key questions related to conservation or natural resource management. 

The first issue relates to their sensitivity to changes in environmental conditions. 

Acoustic indices have been shown to effectively distinguish between disparate land 

uses (Bradfer-Lawrence et al., 2019; Carruthers-Jones et al., 2019; Depraetere et 

al., 2012). However, they are less successful in distinguishing differences between 

similar land uses; for example between different types of forest (Bormpoudakis et al., 

2013; Do Nascimento et al., 2020; Eldridge et al., 2018), or require a very large 

number of spatial replications to do so (Mitchell et al., 2020). The second issue 

relates to their fidelity as indicators of biodiversity, as they can be inconsistent 

predictors of traditionally used biodiversity metrics such as species richness 

(Eldridge et al., 2018; Fuller et al., 2015; Jorge et al., 2018; Mammides et al., 2017). 
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The problems of low sensitivity and inconsistent fidelity are potentially caused by 

signal masking—while certain vocalising taxa or taxonomic groups may respond 

strongly to changes in environmental condition, others may not. By measuring 

acoustic indices at intervals that measure across multiple taxonomic groups, 

sensitivity to these varied responses is lost, which may not be the case if indices 

were measured with multiple intervals. Similarly, fidelity to a single taxonomic group 

is lost by the use of broad time and frequency intervals, which may be improved by 

the use of narrower, tailored intervals. There are two key ways in which signal 

masking can occur in acoustic indices. The first, temporal masking, can occur when 

acoustic indices are measured over time periods that are too long, so that sounds 

from sensitive time periods may be confounded by a lack of change or contrasting 

responses in other time periods. For example, the vocal community at dawn may 

respond to a disturbance event very differently from the dusk community 

(Deichmann et al., 2017), so that measuring both together masks overall community 

responses. To avoid this, the analysis of acoustic indices often involves temporally 

limiting or splitting the data analysed into discrete periods, such as dawn and dusk 

(Bradfer-Lawrence et al. 2020; Deichmann et al., 2017; Eldridge et al., 2018; Fuller 

et al., 2015; Machado et al., 2017), selecting time periods that coincide with the peak 

communication time for certain groups. 

The second form of signal masking, frequency masking, can occur when acoustic 

indices are measured at frequency bins that are too broad, so that sounds at 

sensitive frequencies are swamped by contrasting or null responses at other 

frequencies. Although the importance of frequency masking has not been explicitly 

considered in relation to acoustic index functioning, there is a strong a priori reason 

to believe it may be important, and has been postulated by others (Eldridge et al., 

2018). There is a broad negative relationship between body size and the frequency 

at which animals vocalise (Gillooly & Ophir, 2010; Ryan & Brenowitz, 1985; Seddon, 

2005; Wilkins et al., 2013), meaning that the largest species, predominantly 

mammals, vocalise at the lowest frequencies, while orders composed of smaller 

species such as orthopterans predominate at higher frequencies. In addition, 

neotropical bird vocalisations exhibit both temporal and frequency partitioning to 

avoid signal masking from cicadas and other loud insects (Aide et al., 2017; Hart et 
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al., 2015). At its simplest, this should result in different frequency bins being 

dominated by sounds from different broad taxonomic groupings (Figure 4.1). 

 

Figure 4.1. A conceptual framework of soundscape dominance across time and 
frequency. 

 

(a) Conceptual framework illustrating the expected acoustic niches of different 
taxonomic groups in variable time–frequency bins (TFBs). The 0.3–22.05 kHz bin 
(top row) shows which taxonomic groups would be included without frequency 
partitioning, while the right-hand column shows the same without temporal 
partitioning. Note that the taxonomic groups are illustrative and are not applicable to 
every species, for example, many rodents vocalise at both low and high frequencies. 
(b) Shows four 1-min spectrograms taken from a single location in the Amazon rain 
forest (point 21) on an arbitrarily selected date (8 July 2018), demonstrating 
soundscape partitioning across temporal and frequency scales. The variation in 
amplitude in the intense band of insect noise between 4 and 12 kHz is particularly 
noticeable, as is the increase in avian vocalisation at dawn below4 kHz 
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Here, we use a dataset from one of the world's most speciose ecosystems—the 

Brazilian Amazon—to explore how the use of time and frequency bins (henceforth 

TFBs) can improve the sensitivity and fidelity of acoustic indices. By calculating 

acoustic index values within restricted frequency bands, the potential masking effect 

could be reduced, and correlations with specific taxonomic groups increased. 

Initially, we establish whether measuring indices at broad time and frequency scales, 

as is standard practice, masks variation in acoustic responses across narrower 

TFBs. Next, we look at the impact of signal masking on the efficacy of acoustic 

indices as a proxy for biodiversity and test the suitability of using TFBs as a solution 

by asking two questions of high relevance to practitioners and policy makers. First, 

do TFBs improve the sensitivity of acoustic indices to changes in forest condition 

(e.g. disturbance)? This is key to monitoring forest recovery following disturbances 

such as selective logging or wildfire, analyses which underpin many applied ecology 

questions. Second, do TFBs improve the fidelity of acoustic indices as proxies for 

traditional field surveys aimed at establishing species richness and composition? 

These field surveys can be expensive and inefficient for a range of taxonomic groups 

(Gardner et al., 2008), and if acoustic indices can be shown to be a reliable 

replacement for traditional survey methods, such as point count bird surveys, then 

they may offer a significant cost saving. 

 

4.3. Materials and Methods 

4.3.1. Study area and data collection 

We collected acoustic data in the eastern Brazilian Amazon in the municipalities of 

Santarém-Belterra-Mojuí dos Campos (latitude−3.046, longitude −54.947, hereafter 

Santarém) in Pará state, between 12 June 2018 and 16 August 2018. We used the 

permanent transects of the Sustainable Amazon Network (Gardner et al., 2013) 

distributed in terra firme forest habitats. We sampled 28 300-m transects distributed 

into five forest classes: undisturbed primary forests (n = 4), logged primary forests (n 

= 4), burned primary forests (n = 5), logged-and-burned primary forests (n = 12) and 

secondary forests— forests recovering after being completely felled (n = 3).  
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We installed Frontier Labs Bioacoustic Recording Units with a 16-bit 44.1 kHz 

sampling rate at points halfway along each transect. Recorders were placed in trees 

at a height of 7–10 m, with the microphone placed in a downward facing position, at 

a distance of 10–20 m from the transect to reduce the chance of recorder theft. 

Recording units were placed away from immediately overhanging dense vegetation 

to avoid sound being blocked and to limit geophony from leaves and branches. The 

microphones used have 80 dB signal to noise ratio and 14 dBA self-noise, a fixed 

gain pre-amp of 20 dB, a flat frequency response (±2 dB) from 80 Hz to 20 kHz and 

an 80 Hz high-pass filter to filter out low-frequency wind noise (Frontier Labs, 2015). 

All files were recorded in wav format. Recordings were made continuously (Frontier 

Labs software writes a new file every ~6 hr) over multiple discrete time periods of 

differing length at each point with discrete time periods ranged in duration between 3 

and 20 days. Total recording duration and first and last recording dates are included 

in Appendix S4.1. The inaccessibility of some transects used in previous studies 

meant that a balanced survey design was impossible across the disturbance 

categories (Table 4.1). 

Table 4.1. Audio sampling by forest class after automated removal of recordings 
containing heavy rainfall. 

Forest class Sampled points (n) Total sampling time 

(min) 

Primary 4 90,600 

Logged primary 4 89,540 

Burned primary 5 139,720 

Logged-and-burned primary 12 238,130 

Secondary 3 60,970 

 

4.3.2. Data analysis 

We selected two acoustic indices, the Acoustic Complexity Index and the 

Bioacoustic Index as they are two of the commonest indices used in ecoacoustic 
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studies. However the Acoustic Complexity Index is commonly applied across broad 

frequency ranges, and the Bioacoustic Index (BI) is typically applied at restricted 

frequency ranges, making an ideal comparison for this study as in combination, they 

are likely to be representative of how many acoustic indices will be affected by the 

use of narrower time and frequency bins. The Acoustic Complexity Index is intended 

to quantify biotic sound while being robust to non-target noise (Duarte et al., 2015; 

Fairbrass et al., 2017; Pieretti et al., c), and is commonly applied across broad 

frequency bins. Acoustic Complexity Index measures the irregularity in amplitude 

across time samples by frequency bin, relative to the total amplitude of the frequency 

bin. The Acoustic Complexity Index has been found to significantly correlate with 

species richness for some taxa (Bertucci et al., 2016; BradferLawrence et al., 2020; 

Eldridge et al., 2018; Mitchell et al., 2020), while in others it showed little or no 

correlation (Fuller et al., 2015; Mammides et al., 2017; Moreno-Gómez et al., 2019) 

although this may be due to limitations in methodology and small sample sizes. In 

contrast, the BI is generally applied to narrower frequency bins, and is intended to 

provide relative abundance of avian community within a frequency range that 

contains most bird sound (Boelman et al., 2007). It measures the disparity between 

the quietest and loudest 1 kHz frequency bins. Again, the BI has been found to be a 

good predictor of diversity in some studies (Eldridge et al., 2018; Gasc et al., 2017; 

Hilje et al., 2017; Mitchell et al., 2020) while others have found it to be poor (Fuller et 

al., 2015; Moreno-Gómez et al., 2019), although concerns about the limitations of the 

methodologies used in these studies apply here too. We expect both indices to 

increase with increasing species richness and species abundance, and for 

correlations between both abundance and richness with the indices to be strongest 

in the frequency and time bins that are most dominated by the target taxa (Table 

4.2), particularly diurnal bird species at dawn between 0.3 and 12 kHz and nocturnal 

taxa at night between 0.3 and 4 kHz. 

We calculated the indices using the soundecology package (Villanueva-Rivera et al., 

2011, v1.3.3) in R (R Core Team, 2019) which includes minimum and maximum 

frequency limits for both the Acoustic Complexity Index and BI, allowing easy and 

consistent index calculation at a range of frequency bins. To limit microphone self-

noise, the lowest frequency included in analysis was 300 Hz. We then calculated the 

mean index value per 10-min interval of data collected for each acoustic index and 
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each of the 20 TFBs (Figure 4.1a), having first screened out recording periods 

containing heavy rainfall (n = 527) using the hardrain package (Metcalf, Lees, et al., 

2020, v0.1.1) in R Studio. 

We selected TFBs with the objective of capturing periods of time and frequency 

bands that are most taxonomically homogenous. TFBs were not quantitatively 

optimised, but rather subjective approximations that aimed to effectively capture 

broad taxonomic groupings in tropical forest landscapes. Temporal limits were 

determined by patterns in animal communication in the diel cycle, to encapsulate 

dawn, dusk, daytime and night-time periods (Pieretti et al., 2015; Rodriguez et al., 

2014); commonly used sampling periods in acoustic recording (Sugai et al., 2019). 

‘Dawn’ was assigned to the period from 30 min prior to sunrise and for the following 

2 hr, while ‘Dusk’ was the 2-hr period ending at 30 min after sunset. ‘Day’ and ‘Night’ 

are the respective intervening periods. Frequency limits were determined by a review 

of the literature and our own experience of manually analysing 100s of hours of 

acoustic data from the region. The taxonomic groupings we hypothesise dominate 

each TFB are illustrated in Figure 4.1a. Table 4.2 contains some of the TFBs likely to 

contain particularly high activity from particularly homogeneous groupings. 0.3-22.1 

kHz frequency bin (hereafter ‘baseline’) was used as baseline data, representative of 

how most terrestrial acoustic indices are currently calculated across the spectrum of 

human hearing or the common sampling rate of 44.1 kHz. However, it is worth noting 

that the BI is commonly calculated with a narrower frequency bin than the baseline, 

typically from 2 to 8 or 11 Khz (Boelman et al., 2007; Bradfer-Lawrence et al., 2019; 

Villanueva-Rivera et al., 2011). We have used the same baseline as the Acoustic 

Complexity Index for ease of comparison, and because the mechanisms causing 

masking between ecologically relevant and non-relevant frequency bins are the 

same regardless of absolute frequency. Of course, macro frequency bands will never 

solely encompass single taxonomic groups, and boundaries will always be 

somewhat arbitrary due to variations in acoustic communication at species, temporal 

and even individual levels. 
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Table 4.2. Selected time–frequency bins and the taxonomic groups expected to 
dominate each sample 

Frequency 

band (kHz) 

Time period Taxonomic group References 

0.3–4 Night Terrestrial/arboreal mammals, 

anuran and birds 

Chek et al. (2003) and 

Lima et al. (2019) 

4–12 Day Hemiptera/orthoptera Hart et al. (2015) and 

Schmidt et al., 2013 

4–12 Night Hemiptera/orthoptera Hart et al. (2015) and 

Schmidt et al. (2013) 

0.3–12 Dawn Diurnal/crepuscular birds Tobias et al. (2014) 

12–22.1 Dusk Insects, bats and frogs Lima et al. (2019) and 

Schmidt et al. (2013) 

12–22.1 Night Insects Schmidt et al. (2013) 

 

4.3.3. Signal masking 

To investigate whether the soundscape responds differently to human-driven 

disturbance across time and frequency, we looked at the variation in response of 

each disturbance class for each TFB. Having removed periods with extreme outlying 

index values, we took a random sample of acoustic index values for each acoustic 

index and TFB from each forest class (n = 500), giving a total sample size of n = 

2,500 per TFB/index. For each TFB and acoustic index we conducted a Kruskal–

Wallis (Kruskal & Wallis, 1952) test between the five forest classes, and calculated 

the effect size (ε2). When significant differences between the classes were found, we 

used a Dunn's test (Dunn, 1964) to establish how many of the ten forest class pairs 

were significantly different from each other. 
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4.3.4. The sensitivity of acoustic indices to habitat 

To assess whether the use of TFBs increased acoustic index sensitivity to forest 

classes, we built distributed random forest models from the h2o r package (LeDell et 

al., 2020, v3.30.0.1), varying the number of TFBs used as predictors. Firstly, we 

tested if the use of TFBs improved classification accuracy between the two most 

ecologically distinct sampled habitats; undisturbed primary forest and secondary 

forest (Moura et al., 2013). To do so, we built two binomial random forest models, 

the first using training data only from the baseline frequency bin across all time 

periods, the second using training data from all frequency bins and time periods. 

Next, models were trained and tested on data from all five forest classes, which 

previous studies (e.g. Moura et al., 2013) suggest would provide a more challenging 

classification problem. 

We used each combination of index and TFB as a separate predictor. The training 

datasets required subsampling to obtain predictors of equal length, as not all time 

periods were of the same duration, and forest classes had unequal survey effort. We 

used the same subsample as above (see Section 2.3), so that each TFB predictor 

had 2,500 samples, with 500 samples from each forest class. This resulted in a 

greatly reduced dataset for training the models with 100,000 acoustic indices values 

compared to 1,277,560 in the original dataset. Prior to model training, the dataset 

was split with 75% of observations used for training and 25% as a test dataset. 

Model parameters were kept constant across all models (Appendix S4.2). We used 

balanced accuracy (Fielding & Bell, 1997), F1 scores (Chinchor, 1992) and 

Matthew's Correlation Coefficient (Guilford, 1954) as accuracy metrics (Appendix 

S4.5A), which were calculated per forest class based on predictions of the test 

dataset and are presented here as an unweighted mean across all forest classes 

included in the respective model. 

4.3.5. Fidelity of acoustic indices to taxonomic measures of biodiversity 

We assessed correlations between acoustic index scores and biodiversity indicator 

metrics, to see how representative the indices were of commonly used indicators of 

diversity. Data on the presence/absence of three sets of species were generated 

from two subsets of the audio data. Each audio subset consisted of 28 hr of sound 
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recordings, in the form of two hundred and forty 15-s recordings from each point. 

The first dataset was restricted to the dawn period (hereafter dawn birds), in which 

all identifiable avian vocalisations were assigned to species by an ornithologist 

(Nárgila Gomes De Moura) with extensive field experience of point counts in the 

same sites (e.g. Moura et al., 2013). This method of species detection is likely to 

produce comparable results to traditional point count surveys as several papers have 

shown that experienced observers reviewing recordings and spectrograms can be 

more or equally effective at detecting species than field-based surveys (Darras et al., 

2019; Shonfield & Bayne, 2017). The second set of data was restricted to the 

nocturnal period (hereafter nocturnal birds), and again all identifiable avian 

vocalisations were assigned to species by an experienced ornithologist (OCM). The 

third set was generated from the nocturnal data subset again (hereafter nocturnal 

taxa), but comprises all biophony below 4 kHz, identified (by OCM) where possible 

or sonotyped if not. It is worth noting that all of the bird species identified at night 

vocalised below 4 kHz, so that the nocturnal bird set is wholly a subset of the 

nocturnal taxa set. 

For each of these matrices (i.e. dawn birds, nocturnal birds and nocturnal taxa), five 

metrics were calculated; total number of encounters (the sum of the number of 15-s 

recordings each species was present in), species richness, Shannon diversity, 

Pielou's evenness and the first axis from a non-metric multidimensional scaling 

ordination (hereafter MDS1) using the Jaccard method from the vegan package 

(Oksanen et al., 2019). Total encounters were included as a proxy for the abundance 

of sounds, to test if indices responded more strongly to more sources of noise, 

regardless of composition. Estimated species richness from the dawn matrix was 

calculated for each point at 98.5% coverage based on rarefaction/extrapolation using 

the iNEXT package (Hsieh et al., 2020, v2.0.20), as some of the survey files were 

removed as they contained periods of heavy rain which affected the number of 

vocalising species. Observed species richness was used for metrics from the 

nocturnal matrix, as the data were pre-screened for rain. Shannon diversity, Pielou's 

evenness and species richness were included as standard measures of ecological 

diversity (Oksanen et al., 2019). MDS1 was included to reflect turnover mediated by 

disturbance, as high values correspond with less disturbed habitats, while lower 

values have communities associated with more disturbed habitats. Correlations 
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between these metrics are available in Appendix S4.3. Median values of each 

acoustic index were calculated for each point and TFB, and Spearman's rank order 

correlations (α = 0.05) were calculated between these and the biodiversity metrics. 

Significant differences between each correlation and the respective baseline 

correlation were calculated using Zou's confidence interval test (Zou, 2007) in the 

cocor package (Diedenhofen & Musch, 2015, v.1.1–3). 

 

4.4. Results 

4.4.1. Sensitivity: Forest disturbance 

The Kruskal–Wallis and Dunn's test revealed strong evidence that acoustic masking 

affects the sensitivity of acoustic indices, both temporally and by frequency. All of the 

Kruskal–Wallis tests were significant (p < 0.05), showing that acoustic indices are 

sensitive to at least some disturbance events regardless of frequency band or time 

period. There were significant differences between all 10 forest class pairs in every 

time period and with both indices when considering all frequency-restricted TFBs 

together. In contrast, there were no time periods with significant differences between 

all forest class pairs when using only the baseline TFBs, but Acoustic Complexity did 

have significant differences between nine forest class pairs in three time periods, 

and BI once. Twelve TFBs showed significant difference (p < 0.05) between more 

forest classes than the corresponding baseline, and 21 TFBs had higher effect sizes 

than the corresponding baseline, suggesting that in many cases stronger responses 

to disturbance events at narrower frequency bins are masked by the use of broad 

frequency bins (Figure 4.2). No baseline TFB achieved perfect separation between 

all 10 forest class pairs but this was achieved by three of the non-baseline TFBs. 

Furthermore, Acoustic Complexity Index at dusk and the baseline frequency bin 

produced the lowest number of significantly different forest class pairs, just two, 

suggesting that using only the broadest frequency bin can result in relatively poor 

differentiation between forest disturbance classes. No one frequency bin or time 

period had a consistently larger effect size, or consistently differentiated between 

more forest classes. There were several occasions in which effect size increased in 

comparison to the baseline while the number of different forest classes decreased 
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(e.g. Acoustic Complexity Index at dawn, 0.3–4 kHz, BI at night, 0.3–4 kHz). This 

suggests that the soundscape at this frequency bin is showing a particularly strong 

response to disturbance in one or more of the forest classes (in Appendix S4.1). 

Figure 4.2. The difference between index values for the five forest classes at 20 
time–frequency bins (TFBs) and the Acoustic Complexity Index and Biodiversity 
Index.  

 

All TFBs (points) detected significant differences (p < 0.05) between forest classes. 
The number of significantly different (p < 0.05) forest class pairs were calculated for 
all TFBs using a Dunn's test. Colour scale represents the effect size (ε2). Frequency 
bins above the dotted line have more significantly different forest class pairs than the 
corresponding baseline frequency bin, while frequency bins which are redder in 
colour than the corresponding baseline show a greater effect size. The number of 
significantly different forest class pairs detected by all TFBs except the baseline is 
shown at the bottom of each panel. This additional sensitivity to disturbance would 
be masked if acoustic indices were only calculated at broad (e.g. baseline) frequency 
bins. 
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4.4.2. Sensitivity: Forest class differentiation 

The random forest models generated using all of the TFBs as predictors were able to 

classify forest classes with a high degree of accuracy, with 99.6% balanced accuracy 

between secondary and undisturbed forest and 88.2% between the five forest 

classes (Figure 4.3). The models using all TFBs as predictors outperformed the 

corresponding baseline models in both tests, but as expected the baseline models 

performed particularly poorly when classifying between all five forest classes, 

achieving just 62.1%. The confusion matrix for the random forest model using all 

TFBs across all five classes suggest that acoustic indices do respond to 

soundscapes in ecologically meaningful ways, as both burned forest classes had 

comparatively high error between them, as did the two most disturbed classes, 

logged and burned versus secondary forest (Appendix S4.5B). 
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Figure 4.3. Random Forest accuracy metrics for classification of forest classes. 

 

Left-hand bars (light grey) show accuracy scores from models using acoustic index 
values only from baseline (0.3–22.1 kHz) frequency bins, while right-hand bars (dark 
grey) show accuracy scores from models using index values from all frequency bins. 
The top row shows models trained and tested on the two most ecologically distinct 
forest classes, primary and secondary forest, the bottom row shows models trained 
on all five forest classes. The accuracy scores are unbalanced mean scores across 
all classes included for balanced accuracy, F1 and Matthew's correlation coefficient 
(MCC). Models using all time–frequency bins as predictors consistently perform 
better than models only using the baseline frequency bin. 

 

4.4.3. Fidelity: Biodiversity correlations 

Correlations with traditional biodiversity metrics revealed complex patterns, 

underpinned by strong variation across index, frequency bins and time periods. For 

simplicity, we have focussed on time periods in which acoustic index values most 

directly reflect variation in manually reviewed datasets—dawn and day time for the 

dawn bird dataset, and night for the nocturnal datasets (Figure 4.4). The two 
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strongest correlations, were at night between BI and diurnal avian MDS1 at 4–12 

kHz (rs = 0.74) and dusk at 0.3–12 kHz (rs = 0.72). 

The correlation scores provide strong evidence that the use of TFBs increase the 

fidelity of correlations. We found that correlation directions of the frequency/bins 

differed from the corresponding baseline frequency bin for at least one of the metrics 

in every time period in both indices. The strongest examples of this were between BI 

at dawn with dawn birds, which saw predominantly significant positive correlations at 

frequency bands at which dawn birds vocalise, but negative correlations in the 

baseline and 12–22.1 kHz frequency bins. We also found 28 instances in which 

correlations were significantly different to the corresponding baseline frequency bin. 

Overall, the Acoustic Complexity Index was inconsistently correlated with biodiversity 

indicator metrics with predominantly negative and significant correlations with 

diversity metrics at dawn, but mostly positive correlations during the day and at night 

for most frequency bands, with far fewer significant correlations. In contrast, the BI 

showed predominantly positive correlations with most diversity metrics except MDS1 

across all three time periods and all three frequency bins only including sound below 

12 kHz. For the community metrics most likely to be useful to ecologists, species 

richness and Shannon diversity, there were 19 significant correlations. However, 

where we found significant correlations with these metrics, there were still strong 

reasons for doubting the fidelity of acoustic indices as proxies. At dawn, correlations 

for both indices were weaker than the respective correlations with total encounters or 

MDS1, suggesting the indices were more sensitive to the number of individual 

sounds or the overall community. At night, nocturnal birds and taxa correlations with 

the BI showed conflicting patterns with correlations at frequency bins more likely to 

be relevant to the relevant taxonomic group, suggesting a strong masking effect by 

vocalisations of non-target taxa. The exception to this is the correlation between 

dawn birds and BI during the day at 0.3–4 kHz, which shows strong correlations with 

species richness and Shannon diversity (rs = 0.44 and 0.40), a similar correlation 

with total encounters (rs = 0.40) and no significant correlation with MDS1. 
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Figure 4.4. Spearman's rank correlation 
coefficients between acoustic indices 
(Acoustic Complexity Index, Bioacoustic 
Index) at five frequency bins and three 
time periods, and biodiversity indicator 
metrics. Biodiversity indicator metrics 
are derived from dawn birds, nocturnal 
birds and all nocturnal taxa vocalising 
between 0.3 and 4 kHz, obtained 
through manual identification of species 
in a subset of the acoustic data. Total 
encounters (Tot. Encounters) was 
included as a proxy for the abundance 
of sounds. Species richness (Sp. 
Richness), Shannon diversity (Diversity) 
and Pielou's evenness (Evenness) are 
included as standard measures of 
ecological diversity. The first axis of a 
non-metric multidimensional scaling 
ordination (MDS1) is included to reflect 
turnover mediated by disturbance. Non-
significant correlations are shown in 
coloured empty squares, significant (p < 
0.05) correlations are shown in squares 
containing their correlation coefficient 
(rs) and correlations significantly 
different to the corresponding baseline 
correlation (Zou's confidence interval 
test) have black borders. Colour scale 
indicates the direction and strength of 
the correlation.
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4.5. Discussion 

We found that calculating acoustic indices at narrower TFBs results in large 

increases in the sensitivity of acoustic indices to the soundscape response of 

different forest classes. Calculating acoustic indices across a single broad frequency 

bin, as is commonplace in the ecoacoustic literature (Buxton et al., 2018; Gibb et al., 

2019; Sueur et al., 2014) can mask varied responses across time periods and 

frequency bins, reducing the sensitivity of acoustic indices. Furthermore, when 

acoustic indices are used as proxies for biodiversity indicator metrics, masking can 

have a serious impact on the fidelity of the correlations. Correlating broad frequency 

bins with biodiversity metrics generated from taxa whose vocalisations do not occur 

across the entire frequency range is likely to be highly misleading. It not only 

misrepresents the magnitude of correlations, but potentially results in spurious 

inverse correlations caused by the responses of acoustically dominant species or 

patterns from acoustic space that are not biologically relevant. 

The sensitivity gains of this new methodology are particularly apparent when using 

acoustic indices to differentiate between environments with classification accuracy 

greatly increased. Accuracy scores are as good or better than many in the literature 

(Bormpoudakis et al., 2013; Bradfer-Lawrence et al., 2019; Do Nascimento et al., 

2020; Eldridge et al., 2018), especially considering that model hyperparameters are 

not optimised, fewer acoustic indices were used, and that the forest classes 

considered here are all of the same land cover (tropical forest) and within the same 

landscape. In addition, these results have been achieved while using only 

approximately one sixth of the training data compared to the models using only a 

single baseline frequency band, suggesting that by using TFBs, large efficiency 

savings can be made in terms of data collection. We therefore recommend that 

acoustic indices are calculated across a range of frequency bins and temporal 

periods in any study using acoustic index values to characterise and identify land 

use. 

The impact of signal masking and the benefits of using narrower time–frequency bins 

to avoid it are equally apparent when correlating acoustic indices with biodiversity 

metrics. However, despite the increased fidelity of the correlations, the use of single 

acoustic indices as direct proxies for biodiversity indicator metrics is still problematic. 



P a g e  | 111 

 

While we found the predicted positive correlations between diversity, richness and 

the BI at the most relevant TFBs, we found a negative correlation between the 

Acoustic Complexity Index at dawn with bird species richness and abundance. This 

contrasts with other similar studies in comparable habitats that found positive 

relationships (Bradfer-Lawrence et al., 2020; Eldridge et al., 2018; Mitchell et al., 

2018). However, Mitchell et al. (2020) found high Acoustic Complexity values in oil 

palm plantations where diversity was low, and noted that the significant relationships 

they found were within habitat types, but not across different habitats. Furthermore, 

the complex mechanisms determining abundance and species richness in tropical 

forests remain poorly understood, particularly in relation to the impacts of 

disturbance (Barlow et al., 2016, Terborgh et al., 1990). It is possible that 

idiosyncratic responses of single or a few taxa to disturbance could create such a 

negative correlation (Moura et al., 2016), especially if the taxa are acoustically 

dominant. In general, the strongest correlations we found were with total encounters 

and MDS1—metrics that would only be of ecological interest if the underpinning 

species were well-understood, requiring extensive manual surveys and undermining 

the purpose of acoustic indices. Despite this, the strong positive correlation between 

BI and dawn bird species richness and diversity in the day at 0.3–4 kHz is 

interesting. It is plausible that this time–frequency bin contains the least vocalisation 

from non-target taxa, insects sonify predominantly around >4 kHz and after the dawn 

chorusing of acoustically dominant vertebrates, particularly red-handed howler 

monkey Alouatta belzebul (Sekulic, 1982). Furthermore, it is after the end of the bird 

dawn chorus, during which it is possible that intense vocal activity of a few species 

may mask underlying richness and diversity. 

We have deliberately chosen to use subjective frequency bins determined by a priori 

knowledge of acoustic space use in our study system, to demonstrate both the wide 

applicability of this method, and that frequency bin selection need not be onerous to 

generate substantial benefits. However, choosing narrower or different frequency 

bins and time periods based on prior quantification of acoustic space use could 

provide substantial further benefits in understanding the effects of signal masking on 

correlations. Several existing methods exist to do so, either comprehensively through 

the multiscalar fractal approach (Monacchi & Farina, 2019), or more broadly using 

measures of acoustic space use or biophonic density (Aide et al., 2017; Eldridge et 
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al., 2018). Quantifying TFB dominance by even broad acoustic clades could be 

highly informative and could provide quantifiable data on the relative effect size of 

the impact of disturbance types on those clades. Additionally, variation in the 

granularity of TFBs may well-reveal further unknown ecological patterns. While we 

have focused primarily on masking in the frequency domain, and across the diel 

cycle in the temporal domain, it is entirely plausible that analysis of acoustic indices 

at both greater and finer temporal scales, and broad frequency ranges, could reveal 

other patterns. For instance, within dawn choruses where we already know bird 

species can hold very specific temporal niches in the tropics (Fjeldså et al., 2020), or 

across seasonal scales such as the winter midday chorus in temperate forests 

(Farina & Ceraulo, 2017).  

We found that acoustic indices are sensitive to soundscapes modified by habitat 

disturbance and can therefore be highly costeffective tools for assessing forest 

condition and monitoring changes in conservation value in response to management 

interventions or other environmental changes. Acoustic indices are however highly 

susceptible to signal masking, where divergent responses across temporal and 

frequency spectrums are masked by calculating indices at inappropriate scales. We 

therefore recommend that acoustic indices are calculated either at a range of time 

and frequency bins when used to characterise a landscape, or a narrow bin 

predetermined by a priori ecological understanding of the soundscape when used as 

a proxy for the biodiversity of a specific taxonomic group. 
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Chapter 5:  

The impacts of anthropogenic forest 
disturbance on nocturnal Amazonian avifauna: 
a two-step method for acoustic classification 
of a nocturnal bird community and reduction of 
spatially heterogeneous error using passive 
acoustic monitoring in disturbed forest 
landscapes. 

 

Crested Owl Lophostrix cristata and a spectrogram of its call from a correctly 
classified audio file. 
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5.1. Abstract 

Amazonian forests are threatened by anthropogenic disturbance with selective 

logging and forest fire, affecting large areas of primary rainforest. Avian responses to 

disturbance can be variable across species, and the impact of forest disturbance on 

the regions nocturnal bird species is unknown. We use passive acoustic monitoring 

(PAM) techniques to study the nocturnal avian community in eastern Amazonia 

across a degradation gradient.  

PAM can be an effective method for monitoring nocturnal species as it allows the 

collection of large audio datasets, removes logistical constraints in the data collection 

process, and avoids altering species behaviour. However, analysis of large acoustic 

datasets is challenging, and fully automated machine-learning processes rarely 

used. Here, we develop a new two-stage method to fully automate the classification 

process for ten nocturnal species using random – the first to classify detected sound 

events to species level, the second to correct for spatially heterogenous error in 

classification. 

We find that the open-source acoustic classification toolbox Tadarida is able to 

detect and classify sound events with accuracy comparable to other published 

methods. However, we also show that even for species with good classification 

accuracy, spatial heterogeneity of false positive errors can be large. Our second 

contextual classification stage resolves this issue, providing reliable and accurate 

data from which to make ecological inferences.  

None of the target species were most commonly detected in undisturbed forest. For 

the seven species detected often enough to allow for modelling, four had significantly 

higher incidence in forest with some type of anthropogenic disturbance and three 

showed no significant difference between forest classes. There was no significant 

difference in species richness between undisturbed forest and forest that had been 

disturbed. The nocturnal avian species considered in this study appear to be robust 

to at least some degree of disturbance, and may even benefit from increased forest 

openness associated with some types of disturbance. However, given the 

intensification of disturbance in the region, it is necessary to study the longer-term 

impact of repeated wildfires and of more severe forms of disturbance than 

considered here before drawing conservation conclusions. 
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5.2. Introduction 

Tropical forests face intense anthropogenic pressure from deforestation, 

fragmentation and disturbance acting in synergy with climate change. Approximately 

one third of the world’s remaining tropical forest is found in Brazil, and after falling 

year on year from 2004 until 2012, deforestation rates in the Brazilian Amazon have 

now started increasing again with an estimated 11,088 km2 of forest cleared in 2020 

alone (Silva Junior et al., 2020; TerraBrasilis, 2020). Declines in species richness 

and shifts in community composition are most acute following habitat conversion to 

non-forest land-uses and associated fragmentation of remaining forests (Barlow et 

al., 2007; Lees and Peres, 2006; Moura et al., 2016; Neate-Clegg and Şekercioğlu, 

2020; Stouffer, 2020). However, forest disturbance through logging, fires and edge 

effects is more widespread, and has affected an area greater than that deforested in 

the Brazilian Amazon to date (Bullock et al., 2020; Matricardi et al., 2020).  

Forest disturbance alters species composition by changing forest structure (Barlow 

et al., 2006, 2002; Burivalova et al., 2015; Haugaasen et al., 2003; Johns, 1991; 

Thiollay, 1997), doubling the loss of conservation value compared to deforestation 

alone (Barlow et al., 2016). Yet there is considerable variation in the way species or 

taxa respond to disturbance (Barlow et al., 2007; Gardner et al., 2009; Lawton et al., 

1998; Moura et al., 2016). Within well-studied taxa such as birds, small-bodied and 

insectivorous species tend to fare worse (Burivalova et al., 2015; Sekercioglu et al., 

2002) but it is often necessary to study individual families and even species in order 

to accurately predict responses to disturbance (Gardner et al., 2008). Furthermore, 

some tropical birds remain understudied; nocturnal bird species (here Strigidae, 

Nyctibidae and Caprimulgidae following Sberze et al., 2010) are foremost amongst 

these, and particularly in Amazonia there is much uncertainty about how they 

respond to forest disturbance. For example a widely-used classification based on 

expert-knowledge lists many as having medium or high sensitivity to anthropogenic 



P a g e  | 125 

 

disturbance (Parker et al., 1996), and a limited number of studies have found 

differences in occurrence and abundance by forest type (Lloyd, 2003), forest 

structure (Barros and Cintra, 2009; Esclarski and Cintra, 2014), altitude (Walter et 

al., 2017) and habitat fragmentation (Claudino et al., 2018; Walter et al., 2017). 

However, this contrasts with a study from central Amazonian that suggests a low 

degree of sensitivity: primary and secondary forest showed similar species richness 

of nocturnal species, and of six focal species only White-winged Potoo Nyctibius 

leucopterus avoided secondary growth (Sberze et al., 2010). These contrasting 

findings indicate a need for further work to understand the response to disturbance 

of nocturnal Amazonian birds which occupy a unique diel activity niche, and elevated 

trophic positions which may mean they have disproportionately important ecological 

roles (Sberze et al., 2010), and as predominantly sedentary species at low elevation, 

are potentially particularly vulnerable to climate change (Sekercioglu, 2010). 

Surveying tropical forests present a range of logistical challenges and safety 

concerns even by day, with nocturnal fieldwork being especially challenging. Almost 

all studies of nocturnal birds in tropical forests have been conducted using traditional 

field survey methods such as walked line transects, which limit the number of spatial 

and temporal survey repetitions (Lloyd, 2003; Sberze et al., 2010).Such traditional 

surveys often fail to detect species when playback is not used (Barros and Cintra, 

2009), a method which can significantly alter behaviour and space use by drawing 

birds long-distances towards the acoustic lure (Zuberogoitia et al., 2020). Passive 

acoustic monitoring (hereafter PAM) techniques resolve many of these issues, by 

allowing surveying to be conducted without affecting behaviour, and over a long 

enough duration that false negatives can be reduced (Darras et al., 2019; Gibb et al., 

2019). PAM, coupled with automated classification algorithms, has been successfully 

used in North America to provide novel insights into the behaviour and ecological 

niches of nocturnal species (e.g. Knight et al., 2017; Ruff et al., 2020; Shonfield et 

al., 2018). The only Amazonian study using such methods that we are aware of - 

Ovaskainen et al., (2018) was conducted at the same study site as Sberze et al., 

(2010) and reconfirmed their findings. However, no PAM study in the Amazon has 

assessed nocturnal species responses to some of the most spatially extensive 

disturbance types (logging and fire) that may eventually impact much of the basin’s 
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remaining forests under pessimistic scenarios of climate and land use change (Asner 

et al., 1999; Fonseca et al., 2019; Matricardi et al., 2020, 2013).  

Despite the advances promised by PAM, automated classification approaches 

available through user-friendly software platforms (e.g. those listed in Table 4 of 

Priyadarshani et al., (2018)) have often required a large amount of post-classification 

validation, which can be very time-consuming (Campos-Cerqueira and Aide, 2016; 

Knight et al., 2017; Metcalf et al., 2019). Furthermore, when false positives are not 

equally distributed across survey points, they can skew ecological interpretations, an 

issue that has only recently been highlighted in the ecological literature (Balantic and 

Donovan, 2019; Chambert et al., 2018a, 2018b; Clement, 2016; Louvrier et al., 2019; 

Stolen et al., 2019; Wright et al., 2020), and has yet to be addressed in avian PAM 

monitoring. For instance, classification error could be high at ecotones where 

replacement species with similar vocalizations may overlap, potentially introducing 

classifier bias. 

Here, we address two key knowledge gaps relating to nocturnal species and 

automated detection. First, we test a method using two-step random forest 

classification, to produce an initial classification with high accuracy and then to 

correct for heterogeneity of false positives. Secondly, we assess the responses of 

ten focal nocturnal species (four species of owl, three potoos and three nightjars) in 

a human-modified landscape.  

 

5.3. Materials and Methods  

5.3.1. Study site and data collection 

Our study area covers approximately 10,000 km2 of the eastern Brazilian Amazon in 

the municipalities of Santarém, Belterra, and Mojuí dos Campos (latitude ~ -3.046, 

longitude -54.947 WGS 84), hereafter ‘Santarém’ in the Brazilian state of Pará. We 

collected acoustic data from survey points halfway along 29 survey transects 

maintained by the Sustainable Amazon Network (Gardner et al., 2013; RAS, 2020). 

Transects have a minimum separation of 2 km to minimize spatial dependence, and 

are located in terra firme rain forest across an anthropogenic disturbance gradient 
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comprising seven classes; undisturbed primary forests (n=5), primary forests that 

has been selectively logged (n=4), primary forest which have been logged and burnt 

prior to 2015 (n=4), primary forest burnt in 2015-2016 (n=5), logged primary forest 

burnt in 2015-2016 (n=5), and logged primary forest burnt prior to 2015 and burnt 

again in 2015-2016 (n=3) and secondary forest (n=3)  here defined as forests 

recovering from historical clear-cutting following Putz and Redford, (2010).  

We collected acoustic and ecological variables at each transect. All recordings 

forming the main acoustic dataset were made between 12 June and 16 August 2018 

using Frontier Labs Bioacoustic Recording Units (Frontier Labs, 2015). Recordings 

at each survey point were made over one or two recording periods to allow the best 

possible lunar coverage that logistical limitations would allow, with each recording 

period varying in length between 3 and 22 days. A minimum of 13 days were 

surveyed at each location. Full details of recording periods, equipment and protocols 

for each location are given in Figure 5.1 and Appendix S5.1. 
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Figure 5.1. A. Recording periods per transect. B. Violin plot of the survey coverage of the lunar cycle by transect. The thickness of 
the bars represent proportion of coverage. Lunar illumination is from zero (no moon) to one (full moon).
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Automated classification 

Tadarida (Bas et al., 2017) is an open-source toolbox requiring limited post-

classification validation that has been shown to be effective at classifying various 

European species of insects and mammals (Barré et al., 2019; Newson et al., 2017). 

Tadarida first detects sound events using an hysteresis function, extracts 269 acoustic 

features (e.g. minimum and maximum frequency, peak frequency, duration) and 

facilitates labelling of features for use as training data in a random forest classifier 

(see Bas et al., 2017 for full details). We used Tadarida to build a classifier in R (R 

Core Team, 2020) for 59 common sonotypes identified in our training data set, 

comprising birds, amphibians, reptiles, mammals and several other sources of noise. 

We used labelled data from our own training set, as well as recordings from online 

archives (Amphibian Survival Alliance, www.amphibians.org; Emmons et al., 1997; 

Macaulay Library, www.macaulaylibrary.org; Marantz et al., 2006; xeno-canto, 

https://www.xeno-canto.org) and augmented recordings by adding rain noise to 

manipulate the signal-to-noise-ratio. Details of the training dataset and labelling 

process are in Appendix S5.2. Once the classifier was built, we extracted the out-of-

bag scores to assess performance. Out-of-bag scores were stratified by survey point 

and date for recordings from our own monitoring and by unique recording for 

recordings from online databases, in order to limit over-training. Tadarida produces a 

confidence score for every class in the training data (n=59) for every sound event 

classified, so for accuracy metrics we treated the class with the maximum score as 

the predicted class. We calculated commonly used accuracy metrics for 

classification; Precision, Recall, area-under-the-curve (AUC) for Precision/Recall and 

Reciever Operating Curves, Balanced Accuracy and F1 Score, in standard manner 

following Fielding and Bell (1997), using the ‘caret’ package (Kuhn, 2020). 
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Figure 5.2. Workflow for two-stage classification. 

 

We intended to use every nocturnal species that we detected from the families 

Strigidae, Nyctibidae and Caprimulgidae, however it was apparent from early trials 

that we were unable to find enough training data for the calls of Tropical Screech-owl 

Megascops choliba, Long-tailed Potoo Nyctibius aethereus or Blackish Nightjar 

Nyctipolus nigrescens for the classifier to accurately classify these species, so they 

were not considered as target species. Black-banded Owl Strix huhula vocalisations 

were common in the data, but appeared to show huge variation in all call types, 

forming a continuum of calls that at the extremes we struggled to distinguish from a 

range of species including M. usta, N. aethereus and Mottled Owl Strix virgata, 

despite consulting a range of regional experts. An additional consequence was that 

S. virgata was suspected to be present but not confirmed in the dataset. 

Consequently, we were left with ten target species; Southern Tawny-bellied Screech-

owl Megascops usta, Crested Owl Lophostrix cristata, Spectacled Owl Pulsatrix 

perspicillata, Amazonian Pygmy-owl Glaucidium hardyi, Great Potoo Nyctibius 
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grandis, Common Potoo Nytibius griseus, White-winged Potoo Nyctibius 

leucopterus, Ocellated Poorwill Nyctihprynus ocellatus, Silky-tailed Nightjar 

Antrostomus sericocaudatus and Common Pauraque Nyctidromus albicollis. Of 

these, N. griseus and N. albicollis are commonly associated with open areas or 

clearings and tolerant of anthropogenic disturbance (Guilherme and Lima, 2020; 

Kirwan, 2009; Voudouris, 2020), whilst the others are considered forest species 

(Adams, 2020; Cleere and Kirwan, 2020; Cohn-Haft, 2020; Holt et al., 2020a, 2020b, 

2020c; Schulenberg, 2020; Wilkinson, 2020) with medium or high sensitivity to 

anthropogenic disturbance (Parker III et al., 1996). To overcome the issue of 

multiclass classification in which only a small number of the classes were of interest, 

we calculated binary confusion matrices and classification scores for each of the ten 

target species. We then used the Tadarida random forest to classify all of the 

detected sound events from the entire dataset for all 59 classes, and summarised 

species presence of our ten target species by 15 s sound file. 

5.3.2. Contextual Classification 

To assess if heterogeneity of false positive error occurred in the Tadarida 

classification results we took a random sample of files (n=2900) in which Tadarida 

had classified the target species as present. We stratified the sample, taking 100 

sound files from each survey location, further stratified into quintiles of confidence 

score from zero to 100. When there were not enough samples within a quintile, 

which occurred mostly at high confidence ranges, additional samples were taken 

randomly. We manually checked for vocalisations of the target species in each 

sampled file and calculated the specificity of the classifier for each species at each 

survey location. We used the variance of the specificity across locations to assess 

how severe heterogeneity of false positive error was. For the purposes of 

consistency in this study, we treated all species as having heterogeneous false 

positive error and built contextual classifiers for each species. 

To rectify heterogeneity of error, we used the manually assessed samples as training 

data for a contextual classifier. We hypothesized that providing the classifier with 

more ecological context across differing timescales, the accuracy would improve. We 

therefore built individual contextual classifiers for each of our ten target species. As 
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we were primarily concerned with rectifying problems with precision, we designed 

the contextual classifier to operate only on those 15 s files already classified by 

Tadarida as having a target species present. From each manually checked 15 s file, 

we calculated a series of variables to be used to train a new random forest. This 

included some environmental data about each 15 s file - the ‘rainQ2’ and ‘rain_min’ 

prediction of rainfall from the hardRain package (Metcalf et al., 2020) and root mean 

square of the sound envelope utilising the seewave package (Sueur et al., 2008) as 

measures of background noise levels, as well as time and date. We also used 

Tadarida scores as predictors - the maximum Tadarida confidence score of the 

target species, and for every class in the Tadarida classifier the minimum, maximum, 

mean, 90th and 95th quantile and summed confidence score, the ratio of classified 

sound events to the target species, and the three species most commonly detected 

in the file. In addition, we calculated the same confidence score variables for over 

both ten minute and one hour periods centred on the manually assessed file. For the 

latter, we also calculated the 98th percentile of the classifier score for each class. 

This gave us a feature set of 716 predictors for each target species. 

We used this feature set to build a distributed random forest classifier in the H2O 

package (LeDell et al., 2020), first splitting the data into training (70%) and test 

(30%) datasets. Although random forests can handle a large number of predictor 

variables well, as an additional precaution against overtraining we initially built a 

model using the whole feature set, used the H2O variable importance function to 

ascertain relative variable importance, and rebuilt a final model with variables of an 

importance greater than 0.05. We then ran the contextual classifier on the test 

dataset. We used the confidence scores from the test dataset to determine an 

optimum threshold (Appendix S5.3) to prevent false positive occurrences whilst 

minimizing heterogeneity of error. We applied the same threshold selection process 

to the Tadarida confidence scores to test if the contextual classifier improved 

classification performance. 

Every 15 second file in which the Tadarida classifier had predicted the presence of a 

target species was then reclassified with a contextual classifier. All files in which the 

confidence score was above the selected optimal threshold were designated as 

having the target species present, whilst those with confidence scores below the 
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threshold were re-designated as absent. As the classification process prioritised 

precision over recall, presences were summarized to ten-minute intervals, also 

reducing temporal autocorrelation. Finally, we calculated the proportion of ten minute 

intervals each species was present in per night, having first removed all intervals that 

contained 15 s or more of heavy rain. 

5.3.3. Impacts of Forest Disturbance 

We calculated detected species richness of target species at each survey point, both 

with all detections and only sites with five or more detections to account for false 

presences introduced by the automated detection process. We tested for differences 

in species richness between forest classes using a Kruskal-Wallis test (Kruskal and 

Wallis, 1952). To understand the factors affecting species presence we built 

hierarchical mixed models using the glmmTMB package (version 1.0.2.1, Brooks et 

al., 2017) for each of our target species. We used the proportion of ten minute 

intervals in which the target species were detected as a response variable for logistic 

regression (link = log). Forest class and lunar illumination were used as predictors, 

and survey point as a random effect to control for spatial auto-correlation. Lunar 

illumination was calculated at midnight of each night surveyed using the lunar 

package in R (Lazaridis, 2014). We used the number of ten-minute intervals in each 

night as model weights. 

As the data contains a high proportion of absences (zeroes), and a variety of 

probability distribution families can be used for proportional response data, we 

trialled five error structures (binomial, beta-binomial, negative binomial, poisson and 

hurdle models) and four zero-inflation parameters, following Brooks et al., (2017) to 

determine the most appropriate. We excluded three species from further analysis; N. 

griseus, N. leucopterus and N. ocellatus as we were unable to find a model with a 

good fit, potentially due to the low number of detections and high number of survey 

points at which they were completely absent. The best model for five species used a 

betabinomial error structure, with a single zero inflation parameter applied to all 

observations. As this error structure was second best for the remaining two species, 

and by less than two AIC units (Burnham and Anderson 2002), we used it for all 

species. Full AIC tables are in Appendix S5.4, and model diagnostic plots for the 

selected models in Appendix S5.5. Finally, we contrasted the effect of forest classes 
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using multiple comparisons of group means with the Tukey test in the multcomp 

package (Hothorn et al., 2008).  

5.4. Results 

5.4.1. Acoustic Classification 

The Tadarida classifier produced out-of-bag classification results with a mean 

balanced accuracy of 0.938 across all species, seven species had a balanced 

accuracy of 0.95 or greater (Table 5.1), whilst only N. leucopterus performed 

relatively poorly at 0.76. More importantly at a stage at which no threshold had been 

applied, recall was above 0.9 for all target species except N. leucopterus. Full out-of-

bag accuracy metrics for target and non-target species are available in Appendices 6 

and 7. Precision/recall curves are shown in the top row of Figure 5.3. However, out-

of-bag results should be treated with caution as they contain many files from online 

archives, which may have better or worse classification results than the files from our 

own recordings. 
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Table 5.1. Stratified out-of-bag accuracy metrics for ten target species from the 
Tadarida classifier (n=314,344). 
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Megascops usta 0.383 0.969 0.869 0.981 0.959 0.549 

Lophostrix cristata 0.407 0.978 0.955 0.988 0.973 0.574 

Pulsatrix perspicillata 0.447 1 0.896 1 0.99 0.618 

Glaucidium hardyi 0.372 0.944 0.866 0.968 0.95 0.533 

Nyctibius grandis 0.425 0.892 0.881 0.942 0.925 0.576 

Nyctibius griseus 0.771 0.942 0.958 0.967 0.94 0.848 

Nyctibius leucopterus 0.318 0.541 0.416 0.763 0.76 0.4 

Nyctiphrynus ocellatus 0.527 0.99 0.978 0.995 0.988 0.688 

Antrostomus sericocaudatus 0.321 0.991 0.948 0.993 0.957 0.485 

Nyctidromus albicollis  0.171 0.935 0.456 0.945 0.942 0.289 

The manually-checked verification files (Table 5.2) showed high variance in precision 

for some species, with the precision variance of the three nightjar species particularly 

variable in accuracy across locations with N. ocellatus having a specificity variance 

of 0.49. In contrast, owls did not seem so impacted, with P. perspicillata the highest 

with 0.15, but both M. usta and L. cristata having very low variance of 0.09. All 

species showed at least one location with precision of 0, which is to be expected, as 

using scores prior to thresholding is likely to result in only false positives at some 

sites if the target species do not occur at all of the survey points.  
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The contextual classifiers without the use of a threshold performed better than the 

Tadarida classifier for every species (Figure 5.3, bottom row), and with a mean ROC 

area under the curve (AUC) of 0.972±0.02 (SD), an average increase of 0.13 on the 

Tadarida results on the same data. It should be noted that all results given for the 

contextual classifier and the Tadarida classifier pertaining to the test dataset of the 

manually checked stratified sample are taken from files in which the initial Tadarida 

classifier has already predicted species presence – so exclude the false negatives 

from the original Tadarida classification. Across all candidate thresholds, the 

contextual classifiers had a mean variance of precision of 0.017 ±0.027 (SD) 

compared to 0.109±0.103(SD) for the Tadarida classifier 
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Table 5.2. Variance of precision across survey locations. 
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Minimum 0 0 0 0 0 0 0 0 0 0 

Maximum 0.814 0.954 0.68 0.935 0.571 0.524 0.408 0.925 0.871 0.842 

Mean⃰ 0.497 0.684 0.296 0.557 0.169 0.055 0.017 0.186 0.364 0.147 

Variance 0.092 0.089 0.148 0.14 0.183 0.241 0.345 0.491 0.291 0.366 

*Mean precision is not balanced by the number of detections at each location. 
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Figure 5.3. Top row: Precision/Recall curves created from out-of-bag scores per 15 s file for the Tadarida classification model, 
treating each target species as a binary classification. Bottom row: A comparison of receiver-operating-characteristic (ROC) 
curves for the Tadarida classifier and Contextual classifier, using a manually checked stratified sample of files in which the 
Tadarida classifier had predicted the presence of a target species.  
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After optimal thresholds are applied, the contextual classifier has very low variance 

of precision (Table 5.3), with a mean of just 0.006 ±0.016 (SD). L. cristata had the 

lowest variance with the Tadarida classifier, but has the highest variance with the 

contextual classifier although it is still almost half the Tadarida score at 0.051. 

Penalising false positives and variance of precision heavily whilst optimising 

thresholds has come at some cost to overall accuracy, with the ROC AUC declining 

to a mean of 0.881±0.086. However, six species still had AUC scores of over 0.9 and 

only N. griseus had a score that could be considered poor at 0.648, driven by low 

recall of just 0.295. When adjusted for the estimated number of calls missed by the 

initial Tadarida classification, just N. griseus and N. leucopterus had recall below 0.5. 

 

Table 5.3. Accuracy metrics for contextual classifiers with optimal confidence score 
thresholds, when applied to a manually checked stratified sample of files in which the 
Tadarida classifier had predicted the presence of the target species. 
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Recall 0.86 0.872 0.876 0.881 0.69 0.295 0.867 0.848 0.838 0.813 

Variance of 
Recall 

0.034 0.007 0.075 0.014 0.115 0.311 0.001 0.024 0.098 0.18 

Precision 0.972 0.956 0.97 0.961 0.967 1 0.929 0.99 0.991 0.925 

Variance of 
Precision 

0.002 0.051 0.003 0.002 0.002 0 0 0 0 0.004 

F1 0.913 0.912 0.921 0.919 0.805 0.456 0.897 0.914 0.908 0.865 

ROC AUC  0.916 0.889 0.931 0.916 0.842 0.648 0.933 0.923 0.916 0.898 

Balanced 
Accuracy 

0.914 0.882 0.949 0.91 0.933 0.964 0.996 0.954 0.923 0.947 

Recall - 
Adjusted 

0.833 0.853 0.876 0.832 0.615 0.278 0.469 0.84 0.831 0.76 

Accuracy metrics per Field and Bell (1997) except Variance of Recall and Precision.  
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5.4.2. Impacts of Forest Disturbance 

There was wide variation in how often each species was detected (Fig 5.4). L. 

cristata was detected the most often, present in 6,366 ten-minute intervals - 24% of 

the total number of intervals. M. usta, and A. sericocaudatus were both detected in 

3,746 and 3,217 intervals respectively and G. hardyi 2,403. All the other species 

were detected in fewer than 1,000 intervals and N. leucopterus was the only species 

with fewer than 100 detections, with just 23 detections at only two survey points. 
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Figure 5.4. Classifier detections by forest class. Note the variable y-axis scale to 

emphasize the number of detections by forest class, rather than rate of detection 

between species.
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There were no significant differences in species richness between the forest classes, 

when calculated with all detections and when presence at survey points with fewer 

than five detections was discounted to limit the risk of false presence (Fig.5.5). Of all 

the forest classes, undisturbed forest had the second lowest richness of focal 

species, with a mean of just 6±1.4 (SD) species present. N. griseus and N. 

leucopterus were never recorded in undisturbed forest, whilst N. ocellatus was 

recorded at a single undisturbed survey point, and N. albicollis recorded only very 

rarely (Fig.5.3). Forest that was burnt both in and prior to 2015 and was also logged 

had the highest species richness with a mean of 8±1.0 (SD), and only N. ocellatus 

was undetected in this forest class. Forest that was burnt prior to 2015 and logged 

had the lowest mean species richness, 5.3±2.6, with two of the four survey points in 

the forest class recording just three species, with M .usta and P. perspicillata 

common between them. Nor did undisturbed forest have the highest encounter rate 

for any species (Fig 5.3., Appendix S5.8). L. cristata and G. hardyi were most 

common in logged forest, N. ocellatus was most commonly encountered in 

secondary forest and the remaining species were most common in forest classes 

that had been burnt at least once. 
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Figure 5.5. Community matrix of bird species by survey point. Intensity of colour 
represents the number of detections by the contextual classifier. Survey points with 
few detections are shown in grey as there is a higher chance of false presence. 

 

All of the species we studied were more commonly detected in forest that had 

undergone some form of disturbance than in nominally undisturbed forest, although 

we did not find any universal patterns in the focal species response to disturbance. 

Of the species we were able to model, two were most commonly detected in logged 

forest, two in recently burnt forest, two in recently burnt and logged forest and one in 

forest that had been burnt before 2015, in 2015 and had been logged (Fig. 5.6). Of 

the three species we were unable to model, the raw detections suggested that two 

were commonest in secondary forest and one in forest that had been burnt before 

2015, in 2015 and had been logged (Fig. 5.4). Four species showed a significant and 
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positive response to lunar illumination which was particularly strong for G. hardyi and 

A. sericocaudatus. P. perspicillata was detected significantly less often with higher 

lunar illumination and two owl species M. usta and L. cristata did not show a 

significant response to illumination. Although we were unable to fit models for N. 

griseus and N. leucopterus, a similar very strong positive trend was apparent in the 

detections for these species too, particularly in the latter species in which calls were 

only detected on nights with >90% lunar illumination.  
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Figure 5.6. Estimates of fixed effects on the encounter rate for seven focal species. 
Forest classes shown to have significantly different means using multiple 
comparisons of group means with the Tukey test are marked with horizontal bars.  
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5.5. Discussion 

5.5.1. Classification accuracy 

In combination, Tadarida and the contextual classifier produce classification 

accuracy metrics comparable to many published results (Aide et al., 2013; Bravo et 

al., 2017; Cardona et al., 2021; Goyette et al., 2011; Ovaskainen et al., 2018; Pérez-

Granados and Schuchmann, 2020a; Ruff et al., 2020), although is not as accurate as 

some of the cutting-edge deep-learning techniques (Kahl et al., 2020; Zhong et al., 

2020). The Tadarida classification had an unweighted mean balanced accuracy of 

94% and unweighted mean recall of 92% for the target species. The specificity of 

Tadarida was particularly low compared to comparable classification approaches, 

but this is at least in part because we have applied a threshold to the confidence 

scores at the stage Tadarida accuracy scores are calculated. Importantly, we found 

that even species showing excellent scores in standard accuracy metrics such as 

ROC AUC, precision/recall AUC and balanced accuracy, could exhibit up to 49% 

variance in classification precision across survey points.  

This heterogeneity of error is rarely tested for in ecoacoustic studies using 

automated classification (Wright et al., 2020) and could potentially confound 

ecological interpretation. Although we did not explicitly test to see if this effect 

diminished with increasing classification confidence score (i.e. whether it could be 

resolved by simply applying a threshold value to the classification scores), our own 

informal assessments suggested that the problem remained even with stringent 

thresholds applied. There is no reason to think that this problem should be 

particularly unique to this dataset, or even to random forest classifications, as the 

underlying causal factors are likely ecological in nature, for instance in this case 

likely caused by replacement species such as A. sericocaudatus and N. albicollis 

meeting at ecotones. We therefore strongly recommend that future studies explicitly 

test for, and take measures to reduce variance in error across survey locations. By 

introducing a second contextual classification stage and the second confidence 

score thresholds, we were able to reduce the variance hugely, with no species 

having a variance of precision above 0.05, whilst increasing precision to an 

unweighted mean of 97% and maintaining a balanced accuracy of 94%.   
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We have not, however, presented accuracy metrics in a standard way, such as those 

described in Knight et al. (2017), instead relying on out-of-bag scores for the 

Tadarida classifier. Out-of-bag scores can be very reliable (Breiman, 2001, 1996; 

Janitza and Hornung, 2018), especially when stratified to match the training data as 

they are here (Mitchell, 2011). However, in this case ~87% of the training data 

comes from audio we have augmented, or is from online databases, meaning that 

the classifier may have different accuracy when it is applied to data solely taken from 

our PAM recorders. We considered reporting out-of-bag accuracy statistics only from 

the data from our own recorders and without augmentation, but for a number of 

species this is heavily biased by the very small sample size - the reason we used the 

additional data in the first place. Fortunately, we can gain a better insight into the 

classification performance on PAM collected data through the manually-checked 

data for the contextual classifier. These data not only shows the vital importance of 

accounting for spatial variation on error, but also provides a prediction of the 

classification specificity based entirely on manual validation of data taken from our 

own PAM recordings. 

  

5.5.2. Vocal activity rate and recall 

The manual validation and contextual classifier only applies to files Tadarida has 

already identified as having a target species presence in, which means that the vast 

majority of our estimation of the true negative and false negative rate is dependent 

on out-of-bag scores without further manual verification. This means that there is 

considerably more uncertainty surrounding our estimated recall rates than the 

estimated specificity rates. However, summarising presence over ten-minute periods 

should rectify this issue to a large extent, as recall over a ten-minute period becomes 

dependent on the classification recall rate of 15 s recordings and species call rate. 

For example if N. grandis calls in more than one 15 s recording within a ten-minute 

period it should be detected given the adjusted recall of 0.615.  

To our knowledge there is very little published data on the call rates of these 

species, with the exception of (Pérez-Granados and Schuchmann, 2020b), which 

implies N. albicollis call often. Our own experience both in the field and in manually 
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labelling the training data is that when vocalizing, the majority of the species vocalize 

in bouts of many calls over an extended duration. This entails that overestimation of 

recall of 15 s files is less problematic as even a very low recall should have enough 

opportunities to detect at least one vocalisation. The observations of Wilkinson 

(2009) that A. sericocaudatus usually only called only once or twice per evening in 

the breeding season during a study in Peru were not found to be the case here. 

Extended periods of repeated calling in quick succession was the norm, and single 

or double calls in isolation were never noted during the labelling process. An 

example spectrogram of this behaviour and accompanying audio file is provided in 

Appendix S5.9. We also found a single nest of A. sericocaudatus near the trail to one 

of our survey points (ML 308449521, eBird checklist S47118789), so think it unlikely 

that this difference in vocalisation rate was caused by being at different stages in the 

breeding cycle.  

The potoos however were far less prone to calling in quick succession, an 

observation also found for N. grandis and N. griseus in the Pantanal (Pérez-

Granados and Schuchmann, 2020a), meaning that firstly it was far harder to find 

enough calls to train an accurate classifier and secondly the impact of low recall is 

far greater. The low detection rate and subsequent poor model performance of N. 

leucopterus and N. griseus are perhaps suggestive that the true recall rate for these 

species is low enough that it is impacting detection at even the 10 minute interval 

scale. Conversely, when we examine our results, it suggests that precision is likely 

greatly underestimated for many species, with 85 survey point absences recorded, 

with every species being absent from at least one transect, except M. usta - which 

given the minimum of 23,760 files per survey point to classify, is suggestive of a 

much higher specificity rate than that estimated. Manual examination of enough ten-

minute intervals to provide accurate estimates of classifier performance would be so 

time-consuming as to render the automated classification redundant however, and 

we believe that in combination the metrics provided here are enough to provide 

confidence in the ecological veracity of our findings.  
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5.5.3. Measuring encounter rates 

In the absence of being able to estimate density, which remains highly challenging 

with large datasets in multi-species studies with PAM (Pérez‐Granados and Traba, 

2021), occupancy-type metrics based on the presence/absence of species are 

commonly used, and have been adopted in several studies using PAM-derived data 

(Abrahams and Geary, 2020; Campos-Cerqueira et al., 2021; Campos-Cerqueira 

and Aide, 2016; Duchac et al., 2020). Whilst variability in detection rates can affect 

the significance of species response to environmental factors, studies have shown 

that controlling for detection variability through study design can be as effective 

(Banks‐Leite et al., 2014), especially in studies such as this one whose primary 

purpose is assessing the effect of environmental factors on species presence, as 

opposed to estimating occupancy. We believe we have adequately controlled for 

most variability in detection, distributing survey periods as equally as logistically 

possible across the lunar cycle (Fig. 5.1), removing periods of extreme weather and 

including lunar illumination as a fixed effect in the hierarchical logistic regression 

models, as well as including survey point as a random effect in the model.  

We found lunar illumination to have a significant effect on encounter rate for five of 

our target species, unlike previous multi-taxa studies which found lunar illumination 

to not have a strong impact on vocalisation (Ovaskainen et al., 2018). This is 

supported by other studies that also found positive relationships between M. 

usta/watsonii, L. cristata, G. hardyi, N. griseus, N. grandis and N. albicollis call rates 

and lunar illumination (Pérez-Granados and Schuchmann, 2020a, Pérez-Granados 

and Schuchmann, 2020b, Rodriguez-Bravos, 2017). Only P. perspicillata showed a 

negative response to lunar illumination, matching the responses found elsewhere for 

that species (Rodriguez-Bravos, 2017). Our findings suggest that optimal surveying 

for Neotropical avian forest communities should prioritise surveying during the full 

moon, but would need to include some periods with low illumination to maximise 

detection probability for all species.  

In addition, we have controlled for variation in false positive heterogeneity, 

something that has rarely been undertaken in occupancy modelling when using 

automated detection processes (Stolen et al., 2019), meaning that we are confident 

that the relative differences in encounter rates represent real ecological preferences 
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in habitat use. However, we were unable to control for potential variation in detection 

distance across forest classes as measuring detection distance is not straightforward 

across long timescales and multiple species (Darras et al., 2016), and whilst 

detection distance can strongly influence detection, it is rarely well quantified in 

large-scale PAM studies. It is not apparent that there are systematic biases in 

detection distance, and it is not clear what the influence of forest disturbance on 

detection distance might be, as although there is likely to be higher density 

understorey blocking sound transmission, the more open canopy may also lead to 

increased geophony, particularly wind noise. 

 

5.5.4. Impacts of Forest Disturbance 

Whilst there were no significant differences in species richness and few in encounter 

rate, there are some common trends across taxonomic groups that provide valuable 

insight into the impacts of forest disturbance on nocturnal Amazonian species. 

Although the differences in species richness were not significant, they follow a 

pattern of richness suggestive of nocturnal species not being highly sensitive to 

disturbance, with richness highest in areas with disturbance that can support both 

most interior forest and some edge or even non-forest species. Unlike diurnal birds 

in the region (Moura et al., 2016), we did not find any nocturnal species that were 

highly sensitive to disturbance, indicated by their absence in areas with any level of 

disturbance, perhaps suggesting that dietary and environmental niches are broader 

in nocturnal species. However, we cannot rule out that we simply did not include the 

most disturbance sensitive species in the classifier as they were too rare to be 

detectable during the manual labelling of training data. Of the species known to be 

present in the region it is only Long-tailed Potoo N. aethereus that this seems 

plausible for, but we detected this species in burnt forest during the manual labelling 

process. 

The encounter rates also suggest that many nocturnal species are more common in 

areas with some disturbance. All species were detected by the classifiers in 

undisturbed forest by the automated classification except N. griseus which was not 

expected in undisturbed habitat, and N. leucopterus, which we found to be present at 
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an undisturbed survey point during the manual data labelling process. N. ocellatus 

and N. albicollis had very few detections in undisturbed primary forest, and we did 

not find the latter in undisturbed forest whilst manually labelling training data, 

suggesting that neither species is regularly found in undisturbed forest. However, all 

ten species, including the eight species thought to be intolerant to disturbance 

(Parker III et al., 1996) had higher encounter rates (or raw detections when not 

modelled) in human-modified forest. This suggests that many nocturnal Amazonian 

species occur at naturally low densities in undisturbed primary forest, possibly 

because they are adapted to naturally occurring forest edges such as streams and 

tree-falls, or because they are limited by food and nest-site availability. These 

species may then increase in density with forest disturbance and fragmentation, 

which increases the density of forest edge, of nest site availability through increased 

standing deadwood and tree snags, or through increased prey availability as 

generalist small mammal species can become hyper-abundant in human-modified 

and fragmented forest (Bernard et al., 2009; da Fonseca and Robinson, 1990). This 

is supported by a study from Indonesian Borneo (Burivalova et al., 2019), which 

found whilst diurnal soundscape saturation decreased with disturbance, nocturnal 

soundscape saturation increased. The authors hypothesized it may be caused by an 

increase in owls, better suited to finding prey in open forests, which appears to be 

similar to our own findings. We also found an increase in nightjar and potoo species 

too, perhaps indicating that at least some species of insect prey also increase. 

This is most apparent in the significantly higher encounter rates of M. usta and N. 

grandis in forest burnt in 2015 compared to undisturbed forest. This pattern is 

mirrored in the encounter rates of the two species in the other forest classes that 

could be considered to have intermediate disturbance - logged or burnt only once, 

although they were not significant. The encounter rates of three other species that 

were considered to be intolerant to forest disturbance; L. cristata, G. hardyi, and A. 

sericocaudatus also showed the same pattern. Although none of the differences 

were significant, all five of these species exhibited declining encounter rates in at 

least some of the more severely disturbed forest classes, perhaps indicating that 

intense disturbance can cause decline. However, all five species were present in the 

most human-modified forest classes with the exception of N. grandis in secondary 

forest, indicating that these species can continue to persist at least at low levels in 
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heavily disturbed forest and occupy regenerating secondary forests. N. ocellatus 

showed a similar pattern in number of raw detections as opposed to encounter rate, 

although with a high number of detections in secondary forest, perhaps indicating a 

preference for dense understory.  

There are also three species that have their highest encounter rates or number of 

detections in more severely human-modified forest; logged and burnt, logged and 

burnt before and after 2015 and secondary forest. Two of these species, N. griseus 

and N. albicollis, are well known for their preference for forest edge habitats and 

tolerance of anthropogenic disturbance. N. griseus detections supported the finding 

of Sberze et al (2010), showing a strong preference for secondary forest. N. 

albicollis, on the other hand, had the highest encounter rates in logged forest that 

was also burnt in 2015, significantly higher than in undisturbed forest or forest that 

was burnt in 2015 but hadn’t been logged - and did not show a significant difference 

between undisturbed and secondary forest. The third species, P. perspicillata 

showed a strong preference for forest that had been logged and burnt before and 

after 2015, with significantly higher encounter rates than in undisturbed, logged or 

forest burnt in 2015, providing qualitative evidence that this species is more tolerant 

of disturbance than L. cristata (Holt et al., 2020c). The final target species, N. 

leucopterus, lived up to its reputation for elusiveness (Cohn-Haft, 1993), and the 

automated classification only detected it from two survey points. That neither of 

these were in undisturbed forest indicates that it is not highly sensitive to forest 

disturbance. In keeping with Sberze et al., (2010), we did not detect it in secondary 

forest.  

5.5.5. Temporal trends 

Although we have treated forest disturbance as discrete classes, in reality forest 

disturbance in the Amazon is both a gradient and dynamic, with logging and 

fragmentation increasing vulnerability to fire, and forest once burnt is far more 

susceptible to being burnt repeatedly. This means that initial indications that species 

may benefit from disturbance should be treated with caution, as the benefits may be 

short-lived as disturbance intensifies and forest degrades. Furthermore, even if 

additional disturbance events can be prevented, human-modified forest remains 
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dynamic as initial dense understory growth is replaced over time by increasingly 

enclosed canopy. However, the timescales and processes involved in forest 

recovery in human-modified forest remain poorly understood (Liebsch et al., 2008, 

Nunes et al., 2021, Sist et al., 2007, Stouffer et al., 2020), as do the impacts this will 

have on the nocturnal avian community. This highlights the importance of long-term 

monitoring of forest disturbance in the Amazon, something ecoacoustics is well 

suited to. 

5.6. Conclusions 

The use of PAM and automated classification of acoustic data facilitates the 

collection and analysis of acoustic big data to ascertain patterns of distribution of 

nocturnal Amazonian species, far in excess of anything logistically feasible using 

traditional survey methods. We have shown the open-source machine-learning 

toolbox Tadarida to be useful in producing precise predictions of the presence of 

vocalisations of a range of bird species, even in acoustically complex environments 

such as tropical rainforests. However, we have also shown that even ostensibly 

accurate classifications with balanced accuracy >95% can still exhibit high amounts 

of variance in error rates, potentially confounding ecological insight if the factors 

underlying the variance correlate with the ecological factors being studied, as they 

do here. Contrary to our expectations we found that incidence rates of all species 

were higher or no different in anthropogenically disturbed forest than in undisturbed 

forest, albeit with highly variable responses between species and across disturbance 

types. The perennial challenge remains however in dealing with the rarest species 

which we were unable to model and which may be more sensitive to disturbance 

than other members of the assemblage.   
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Discussion 

The Brazilian Amazon is a vast, dynamic and complex system, that requires precise, 

effective and efficient methods to reveal the complexities of biodiversity loss in the 

region. Failure to engage with this task will have global ramifications for the current 

anthropogenic extinction crisis (Ceballos et al., 2015). Three years ago 15 pre-

eminent scientists argued that ecoacoustic studies could play a vital role in achieving 

that understanding in tropical forests, suggesting that “failure to collect acoustic data 

now in tropical ecosystems would represent a failure to future generations of tropical 

researchers and the citizens that benefit from ecological research” (Deichmann et 

al., 2018).  

In the following years, ecoacoustics as a discipline has risen to meet that challenge, 

and passive acoustic monitoring (PAM) has proven to have wide applicability for 

biodiversity monitoring in tropical forests (Bradfer-Lawrence et al., 2020; Burivalova 

et al., 2019, 2018a; Campos-Cerqueira et al., 2021; Campos‐Cerqueira et al., 2020; 

Darras et al., 2019; de Camargo et al., 2019; LeBien et al., 2020; Pérez-Granados 

and Schuchmann, 2020; Sugai et al., 2019). Despite its increasing influence, 

ecoacoustics remains on the cusp of maturity as a discipline (Stowell and Sueur, 

2020). Much of the literature is dominated by methods papers still resolving 

fundamental knowledge gaps in how to apply ecoacoustic techniques (e.g. Bradfer‐

Lawrence et al., 2019; Mitchell 2020, Yip et al., 2019), although the number of 

applied papers are increasing, particularly studies using semi-automated 

classification (Priyadarshani et al, 2018, Gibb et al., 2019). Aspects of the field are 

advanced, in particular the hardware requirements for effective passive acoustic 

monitoring have been well addressed (Darras et al., 2021; Hill et al., 2018; Sethi et 

al., 2018) and increasingly automated classification with deep learning appears 

ready for applied usage (Ruff et al., 2020; Zhong et al., 2020). However, many other 

facets are under-developed. In particular there remains a lack of clarity around the 

theoretical underpinnings and practical applications of acoustic indices, and a 

surprisingly limited amount of research into how manual analysis of acoustic data 

can be optimised with passive acoustic monitoring.  
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6.1. Developments in ecoacoustic analysis 

In Chapter One, I discuss how ecoacoustics can be applied to monitoring 

biodiversity in Amazonia, and the recent advancements made in the field. I 

summarize a range of studies that show ecoacoustic workflows have great potential 

in helping to gain a better understanding of the complex impacts of forest 

disturbance on biodiversity in the region. I also highlight a range of knowledge gaps 

that prevent wider adoption of PAM and ecoacoustic workflows, and argue that many 

of the limiting factors related to hardware have been overcome, or are likely to be in 

the near future – but that greater research is needed in creating simple, effective and 

replicable analysis workflows.  

In Chapter Two I present a method and accompanying R package to fully automate 

rainfall identification in audio data. The method provides a quick and effective 

classification and is especially suited to tropical forests where the need is greatest. I 

demonstrate that through the use of minimum and second quartile thresholds, the 

method can be adjusted for use even in cases where there is poor differentiation 

between rain presence and absence with a reasonably high level of success. This 

allows users of hardRain to make informed trade-offs between effort, accuracy and 

specificity. Whilst the method may not be as accurate as other more technical 

approaches (Brown et al., 2019), for researchers wishing to quickly remove rain files 

from large datasets prior to ecoacoustic analysis, this method will often represent the 

most time-effective way to do so. 

In Chapter Three, I test subsampling methods for the manual analysis of acoustic 

data, the most technically accessible method of analysis to inventory biodiversity 

using ecoacoustics. Up to 2018, 58% of all ecoacoustic studies were still analysed 

manually, with the majority of studies in recent years also using autonomous 

recorders (Sugai et al., 2019). Autonomous recorders allow users to adopt a range of 

study designs and subsampling approaches that are not practically possible with 

more traditional monitoring approaches (Darras et al., 2019; Prince et al., 2019), yet 

there is little understanding of the potential benefits or trade-offs. This is particularly 

important as the use of fully or even semi- automated classification methods for 

inventorying bird species in highly biodiverse regions remains distant. The most 

species-rich bird communities yet to be sampled with semi-automated classification 
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(Campos-Cerqueira and Aide, 2021) and fully automated methods (de Camargo et 

al., 2019) involve 50 and 60 species respectively, approximately a quarter of the 245 

species inventoried in my study. Given the discrepancy between the capabilities of 

current classification methods and the complexity of ecological reality, better 

understanding of how manual analysis can be optimised should be a priority for the 

ecoacoustic field. I find that subsampling 240 fifteen second samples at each point 

for a total duration of one hour outperforms the use of four 15 minute samples, 

detecting approximately 50% higher alpha diversity, and 10% higher gamma 

diversity. The low temporal resolution sampling is almost four times more likely to 

miss species presence at a site. These are substantial benefits, and I believe this 

subsampling approach should be adopted as the standard and primary method for 

sampling bird communities in tropical forests, until automated classification methods 

for entire communities are widely available.   

In Chapter Four, I test the performance of acoustic indices for measuring 

biodiversity in complex acoustic environments, particularly whether the sensitivity 

and fidelity of acoustic indices are negatively impacted by signal masking. 

Soundscape analysis with acoustic indices offers great potential if habitats can be 

accurately characterised and reliable proxies for biodiversity metrics obtained, as 

they are easily calculated with a minimum of effort (Eldridge et al., 2018). I show that 

signal masking has a large impact on the sensitivity of acoustic indices to forest 

disturbance classes. Calculating acoustic indices at a range of narrower time–

frequency bins substantially increases the classification accuracy of forest classes by 

random forest models. Furthermore, signal masking leads to misleading correlations, 

including spurious inverse correlations, between biodiversity indicator metrics and 

acoustic index values compared to correlations derived from manual sampling of the 

audio data. Consequently, I recommend that acoustic indices are calculated either at 

a range of time and frequency bins, or at a single narrow bin, predetermined by a 

priori ecological understanding of the soundscape. 

In Chapter Five I use automated classification of acoustic data to generate a 

presence/absence dataset of the nocturnal bird community in the study region, and 

then examine the impact of disturbance on these little-studied species. I find that 

Random Forest classification techniques, in particular those developed by the 

Tadarida toolbox, are able to accurately classify a range of taxa even in highly 
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complex acoustic environments like tropical rainforest. Automated classification is 

already one of the most developed aspects of ecoacoustics (Stowell and Sueur, 

2020), but use of these methods to produce accurate data suitable for ecological 

inference remains rare, so this study represents valuable evidence as the field 

advances - from theoretical and methodological research to application for ecological 

and conservation research. While a range of classification algorithms exist - with the 

most recent methods reporting higher accuracy than our own, there is limited 

research into the impact of context-specific error structures produced in this manner, 

or best methods to prepare and analyse data from classifiers for ecological inference 

and prediction. Here, I provide important insights into how small inaccuracies in 

classification-derived data such as heterogeneity of false positives, can have a 

disproportionate effect on ecological inference and provide a new, relatively 

straightforward method to resolve biases in accuracy.  

Having corrected for heterogeneity of error, I use the classification data to model the 

impact of forest disturbance on the regional nocturnal bird community, the first study 

of its kind to consider the two commonest forms of disturbance in Amazonia, logging 

and fire. I show that all of the species studied were more commonly detected in 

forest that had undergone some form of disturbance than in nominally undisturbed 

forest, although there were no universal patterns in the focal species response to 

disturbance. This suggests that the nocturnal avian community is not highly sensitive 

to disturbance, although further research is needed to understand species-specific 

resilience to forms and intensity of disturbance at a wider spatial scale. 

 

6.2. Future Research 

6.2.1. Signal Processing 

Acoustic pre-processing and noise reduction, including the detection and removal of 

rainfall, can play an important role in the effectiveness of acoustic analysis. In many 

ways, this aspect of analysis is quite advanced as there is considerable overlap in 

methods that have high levels of industry investment and development such as speech 

recognition (Stowell et al., 2016). However, as with much of the development of 

ecoacoustic analysis methods, there are few guidelines or studies targeted at 
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ecologists rather than computer scientists as the primary end users, thus limiting the 

potential applied impact. In particular, much of the research on noise reduction is 

aimed at the use of automated classification with deep learning techniques, and 

quantification of the impacts of proposed methods on ecological conclusions are rare. 

Exceptions to this include some studies related to cicada chorusing and rainfall (Brown 

et al., 2019; Sánchez‐Giraldo et al., 2020), and a brief summary of noise reduction 

techniques in relation to automated detection of bird calls (Priyadarshani et al., 2018). 

A thorough review of pre-processing and noise reduction techniques aimed at 

ecologists would be a highly useful addition to the ecoacoustic literature. Further 

studies that include explicit considerations linking analysis methods to pre-processing 

methods would also be useful, as pre-processing that may be appropriate for 

classification may be inappropriate for acoustic indices. In addition, software or 

R/Python packages facilitating the use of a collection of the most appropriate pre-

processing techniques for ecoacoustic analysis would be highly desirable, although 

several packages currently offer one or two methods with limited documentation as to 

expected impact (e.g. ‘rmnoise’ in Seewave, Sueur et al., 2008). 

 

6.2.2. Manual Analysis 

There are still many questions that remain unanswered regarding optimisation of the 

use of passive acoustic monitoring for inventorying biodiversity. Whilst I focus on a 

comparison of two methods after data collection and within a set survey period, there 

are still questions about optimal recorder array number and layout, detection 

distance and subsequent trade-offs with recording duration and analysis time (Sugai 

et al., 2020). As these questions are related to the spatio-temporal structuring of 

species richness, a repeat of the famous Cocha Cashu study on the structure and 

organisation of bird communities (Terborgh et al., 1990) but using autonomous 

recording units would likely be highly revealing in this regard. Studies using 

automated classification for a fraction of total avian biodiversity in a region have 

shown that spatial turnover can far outweigh temporal turnover for instance (de 

Camargo et al., 2019). Furthermore, better understanding of the spatio-temporal 

dynamics of species richness, and importantly the variation of species availability for 

detection, can allow for better optimisation of sampling across diel and seasonal 
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cycles (Pieretti et al., 2015). For instance using a higher temporal resolution during 

peak periods and targeted sampling at periods or locations with highly distinct 

species composition could result in higher, and more accurate, estimations of 

species richness.  

 

6.2.3. Acoustic Indices 

There has been a considerable amount of research conducted on the appropriate 

methods/methodology for the use of acoustic indices. Independent studies have 

addressed the impact of temporal (Bradfer‐Lawrence et al., 2019) and spatial scale 

(Mitchell et al., 2020) at which recordings are taken on the effectiveness of indices, 

complemented by our own findings on the appropriate temporal and frequency 

scales at which to apply indices. It is quite apparent from a range of studies, 

including our own, that soundscapes vary considerably between habitats and across 

habitat quality gradients. These differences can be used to compare acoustic 

communities relative to each other, (Campos-Cerqueira and Aide, 2017; Furumo and 

Aide, 2019), and to classify habitat types (Bradfer‐Lawrence et al., 2019; Do 

Nascimento et al., 2020). Despite this, questions remain as to the cost-effectiveness 

of using acoustic indices to classify land cover types, as remote sensing techniques 

or in-situ inventories of forest structure may produce better results (e.g. MapBiomas 

www.mapbiomas.org, Terra Class, www.terraclass.gov.br, Gardner et al., 2013).  

Using indices as proxies for biodiversity metrics, or to make direct inferences about 

species richness or community turnover also remains problematic. Whilst it is clear 

that it is possible to achieve even quite strong correlations with traditionally 

measured biodiversity metrics (e.g. Bradfer-Lawrence et al., 2020; Hilje et al., 2017), 

and whilst the methods I have developed can certainly make those correlations both 

stronger and more reliable, it is not entirely apparent how to interpret those 

correlations. For instance, what does a 60% correlation with species richness and/or 

a 50% correlation with total number of sound events actually tell us about species 

communities that respond to habitat changes and disturbance in highly idiosyncratic 

ways? In fact, acoustic indices may be most useful in identifying the taxonomic 

groups most likely to be impacted by habitat changes (Rappaport et al., 2021), by 

http://www.mapbiomas.org/
http://www.terraclass.gov.br/
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comparing relative acoustic communities, and identifying acoustic niches that are 

most different to reference sites. Here, relatively straightforward indices, such as 

acoustic space use and soundscape saturation (e.g. Aide et al., 2017; Burivalova et 

al., 2019) may be the most useful. 

In order to better understand the acoustic events driving variation in acoustic indices’ 

responses to ecological change, two aspects of further research should be 

prioritised. The first is the impact of species abundance, something that is rarely 

considered or quantified in acoustic soundscape studies. Secondly, further 

investigation into the theoretical underpinnings of acoustic indices and ecological 

reality are required. Acoustic indices are predicated on two theoretical paradigms 

(Sueur and Farina, 2015), the acoustic niche hypothesis, which suggests that sound 

producing organisms each occupy their own time and frequency niche in which to 

vocalise (Krause, 1993), and the acoustic adaptation hypothesis that postulates that 

the acoustic properties of habitats shape animal sounds (Morton, 1975), resulting in 

habitats having unique acoustic signatures. It has been argued that intact 

ecosystems have saturated soundscapes, whilst defaunation leads to gaps, or 

missing niches, in the soundscape. These gaps are detectable by acoustic indices 

and are interpretable as relating to biodiversity richness and intactness (Sueur et al., 

2014), an approach that has been widely adopted (Burivalova et al., 2018; Moreno-

Gómez et al., 2019; Rappaport et al., 2021; Zhao et al., 2017). Yet more direct 

studies of ecological responses to forest disturbance and degradation show that 

whilst species richness often declines overall, generalist species are often able 

occupy degraded areas where they were previously absent (Moura et al., 2016; 

Solar et al., 2015; Tabarelli et al., 2012). Generalist species, by their nature, often 

occupy less speciose habitats, so it would be reasonable to assume that they may 

occupy wider acoustic niches. Therefore, increases in these species may create a 

more complete, or even over-saturated soundscape than explained by species 

richness or intactness alone. Currently, the turnover of species whose vocalisations 

may have evolved to occupy different acoustic niches is rarely considered in 

soundscape ecology.  
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6.2.4. Automated classification 

Automated classification of biophony, and bird calls in particular, receives a relatively 

high degree of research attention, including frequent artificial intelligence 

competitions (Kahl et al., 2020). In general however, much of the research is 

focussed on applying new algorithms to more species, and achieving higher 

accuracy scores. Whilst accuracy is hugely important, it can come at the cost of 

efficiency and utility, and a lack of research into the impact of various types of error 

in ecological classification means we know very little about what ‘good enough’ might 

look like. I presented classification methods that are less accurate than some of 

those already published, but I believe remain highly of high utility to those methods 

already published through ease of use (Chapter 2) or were able to make an accurate 

and significant contribution to our knowledge of tropical ecology (Chapter 5).  

For ecology and conservation research purposes many of the existing deep learning 

algorithms already produce accuracy scores good enough, and across enough 

species, to produce meaningful insights, but are unavailable to practitioners in the 

best position to use them. More focus should be given to making deep-learning 

algorithms easily available and adaptable, without requirements for high levels of 

technical expertise. The only deep-learning algorithm currently available without a 

coding interface is BirdNET (www.birdnet.cornell.edu), which does not easily 

facilitate the analysis of large quantities of data, whilst other software platforms, 

Kaleidoscope Pro (www.wildlifeacoustics.com/products/kaleidoscope-pro), the BTO 

Acoustic Pipeline (www.bto.org/our-science/projects/bto-acoustic-pipeline) and RFCx 

Arbimon (www.arbimon.rfcx.org) currently use machine-learning not deep learning 

for their classification processes.  

Furthermore, the amount of fastidiously labelled training data required for building 

both machine and deep-learning algorithms is a major hindrance for their uptake 

(Gibb et al., 2019), yet there has been limited sensitivity analysis conducted to 

ascertain the impacts of reducing quantities of training data, using soft labelling, or of 

data augmentation methods, especially in an ecological context. Research in to 

algorithm development for bird classification is increasingly using ‘real world’ data, 

which is ultimately beneficial to the applicability of the methods. This is done either 

through the use of PAM derived datasets (Ruff et al., 2020; Zhong et al., 2020) and 

http://www.wildlifeacoustics.com/products/kaleidoscope-pro
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clustering (Ruff et al., 2020)or template-based detection to generate the training data 

(Ovaskainen et al., 2018; Zhong et al., 2020), or through the use of large online 

databases such as xeno-canto (Kahl et al., 2020). Online databases such as xeno-

canto (www.xeno-canto.org) and the Macaulay Library (www.macaulaylibrary.org) 

offer large quantities of soft-labelled data offering a possible solution to the 

requirement for high quantities of training data. However, these datasets often have 

recordings that contain multiple species and noise sources, and have much higher 

signal-to-noise ratio than PAM recordings. Further research is needed into the best 

methods of applying the training data acquired from online datasets to algorithms 

that will ultimately be used on PAM recordings.   

 

6.3. The Role of Ecological Knowledge and Fieldwork 

Finally, I wanted to highlight the role of ecological knowledge in ecoacoustics, as a 

theme that occurs across this body of research and which has only clarified with the 

benefit of hindsight. When working with autonomous recording units and artificial 

intelligence techniques, it has been informally suggested to me many times, although 

rarely written about, that these methods will eventually replace human surveyors and 

human knowledge. I believe that this thesis is evidence to the contrary. Whilst 

passive acoustic monitoring and ecoacoustic workflows have the capacity to greatly 

reduce the amount of human effort required, every chapter has required or benefitted 

from in-depth knowledge of the ecosystems the processes are being applied to, and 

subtle understanding of the problems to be addressed that can only be contributed 

by a human.  

The genesis of Chapter 3 lies in the memory of a morning spent observing the dawn 

chorus from a canopy tower in our study site - listening to forest-falcons Micrastur 

spp. and tinamous Tinamus spp., give way to woodcreepers Dendrocolaptinae spp., 

toucans Ramphastos spp., and finally Screaming Pihas Lipaugus vociferans, whilst 

watching mixed-species canopy flocks move in and out of the estimated range of a 

hypothetical recording unit. This resulted in a hypothesis that higher temporal 

resolution sampling would result in the detection of higher species richness. 

Similarly, in Chapter 4, it is our own understanding of acoustic partitioning across 

longer timescales, obtained through hours in the field and active listening that helped 

http://www.macaulaylibrary.org/
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define the boundaries used in measuring of acoustic indices. Measuring acoustic 

indices within those boundaries results in higher sensitivity to changes in the 

soundscape and increased fidelity to changes in biodiversity. For Chapters 2 and 5, 

our understanding of the ecological systems within which the classifiers were being 

applied allowed us to make informed trade-offs between accuracy and utility. In 

particular, in Chapter 5, understanding the temporal scale at which presence data 

are useful, and knowing that many of the species call repeatedly allowed us to apply 

very high thresholds, reducing greatly reducing false positives at the expense of 

recall. There is a paradox here that will require careful redress by the ecoacoustic 

field; as workflows improve there is likely to be less and less requirement for time 

spent in the field, but an increased need for the knowledge derived from time in the 

field to interpret the data and improve methods.  

6.4. Conclusion 

I have used passive acoustic monitoring at an Amazonian deforestation hotspot to 

acquire an extensive acoustic data across a representative gradient of forest quality.  

I use this dataset to address key knowledge gaps and methodological limitations in 

ecoacoustic workflows. Finally, I demonstrate that ecoacoustic workflows can be 

used to examine species-specific ecological responses in understudied taxa, 

revealing that much of the nocturnal bird community is tolerant to at least some 

degree of disturbance. It is clear that ecoacoustics can be a vital tool in 

understanding, monitoring and reducing biodiversity loss in the Amazon, as very few 

technologies offer the operational capacity to monitor at such varied spatiotemporal 

scales, and analytical capacity at such a range of taxonomic resolution.  
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Appendices 

S2.1 Survey metadata for the audio data used in Chapter 2. 
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Lo
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gitu
d
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D
u

ratio
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(h
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Start d
ate

 

En
d

 D
ate 

Typ
e 

N
o

tes 

Brazil 1 B112 T12 -2.693 -54.452 456 11/06/2018 16/08/2018 Continuous 

Collected in continuous blocks throughout 
this period. Total duration calculated by 
multiplying number of days deployed by 24 
hrs, so overestimated for days in which 
recorders were only partially deployed. 

Brazil 2 B112 T8 -2.693 -54.495 432 11/06/2018 16/08/2018 Continuous 

Collected in continuous blocks throughout 
this period. Total duration calculated by 
multiplying number of days deployed by 24 
hrs, so overestimated for days in which 
recorders were only partially deployed. 

Brazil 3 B125 T9 -2.804 -54.568 336 11/06/2018 16/08/2018 Continuous 

Collected in continuous blocks throughout 
this period. Total duration calculated by 
multiplying number of days deployed by 24 
hrs, so overestimated for days in which 
recorders were only partially deployed. 

Brazil 4 B129 T10 -2.726 -54.777 348 11/06/2018 16/08/2018 Continuous 

Collected in continuous blocks throughout 
this period. Total duration calculated by 
multiplying number of days deployed by 24 
hrs, so overestimated for days in which 
recorders were only partially deployed. 

Brazil 5 B129 T11 -2.706 -54.786 384 11/06/2018 16/08/2018 Continuous 

Collected in continuous blocks throughout 
this period. Total duration calculated by 
multiplying number of days deployed by 24 
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hrs, so overestimated for days in which 
recorders were only partially deployed. 

Brazil 6 B129 T5 -2.714 -54.749 384 11/06/2018 16/08/2018 Continuous 

Collected in continuous blocks throughout 
this period. Total duration calculated by 
multiplying number of days deployed by 24 
hrs, so overestimated for days in which 
recorders were only partially deployed. 

Brazil 7 B160 T10 -2.819 -54.882 336 11/06/2018 16/08/2018 Continuous 

Collected in continuous blocks throughout 
this period. Total duration calculated by 
multiplying number of days deployed by 24 
hrs, so overestimated for days in which 
recorders were only partially deployed. 

Brazil 8 B260 T1 -3.002 -54.895 336 11/06/2018 16/08/2018 Continuous 

Collected in continuous blocks throughout 
this period. Total duration calculated by 
multiplying number of days deployed by 24 
hrs, so overestimated for days in which 
recorders were only partially deployed. 

Brazil 9 B260 T4 -3.02 -54.857 432 11/06/2018 16/08/2018 Continuous 

Collected in continuous blocks throughout 
this period. Total duration calculated by 
multiplying number of days deployed by 24 
hrs, so overestimated for days in which 
recorders were only partially deployed. 

Brazil 10 B260 T5 -2.984 -54.878 336 11/06/2018 16/08/2018 Continuous 

Collected in continuous blocks throughout 
this period. Total duration calculated by 
multiplying number of days deployed by 24 
hrs, so overestimated for days in which 
recorders were only partially deployed. 

Brazil 11 B260 T6 -3 -54.877 336 11/06/2018 16/08/2018 Continuous 

Collected in continuous blocks throughout 
this period. Total duration calculated by 
multiplying number of days deployed by 24 
hrs, so overestimated for days in which 
recorders were only partially deployed. 

Brazil 12 B261 T10 -3.018 -55.005 552 11/06/2018 16/08/2018 Continuous 

Collected in continuous blocks throughout 
this period. Total duration calculated by 
multiplying number of days deployed by 24 
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hrs, so overestimated for days in which 
recorders were only partially deployed. 

Brazil 13 B261 T8 -3.029 -55.011 552 11/06/2018 16/08/2018 Continuous 

Collected in continuous blocks throughout 
this period. Total duration calculated by 
multiplying number of days deployed by 24 
hrs, so overestimated for days in which 
recorders were only partially deployed. 

Brazil 14 B261 T9 -3.04 -55.015 504 11/06/2018 16/08/2018 Continuous 

Collected in continuous blocks throughout 
this period. Total duration calculated by 
multiplying number of days deployed by 24 
hrs, so overestimated for days in which 
recorders were only partially deployed. 

Brazil 15 B307 T3 -3.13 -54.857 456 11/06/2018 16/08/2018 Continuous 

Collected in continuous blocks throughout 
this period. Total duration calculated by 
multiplying number of days deployed by 24 
hrs, so overestimated for days in which 
recorders were only partially deployed. 

Brazil 16 B307 T7 -3.147 -54.838 480 11/06/2018 16/08/2018 Continuous 

Collected in continuous blocks throughout 
this period. Total duration calculated by 
multiplying number of days deployed by 24 
hrs, so overestimated for days in which 
recorders were only partially deployed. 

Brazil 17 B357 T4 -3.283 -54.854 336 11/06/2018 16/08/2018 Continuous 

Collected in continuous blocks throughout 
this period. Total duration calculated by 
multiplying number of days deployed by 24 
hrs, so overestimated for days in which 
recorders were only partially deployed. 

Brazil 18 B363 T3 -3.296 -54.963 336 11/06/2018 16/08/2018 Continuous 

Collected in continuous blocks throughout 
this period. Total duration calculated by 
multiplying number of days deployed by 24 
hrs, so overestimated for days in which 
recorders were only partially deployed. 

Brazil 19 B363 T5 -3.337 -54.984 384 11/06/2018 16/08/2018 Continuous 

Collected in continuous blocks throughout 
this period. Total duration calculated by 
multiplying number of days deployed by 24 
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hrs, so overestimated for days in which 
recorders were only partially deployed. 

Brazil 20 B363 T6 -3.336 -54.956 324 11/06/2018 16/08/2018 Continuous 

Collected in continuous blocks throughout 
this period. Total duration calculated by 
multiplying number of days deployed by 24 
hrs, so overestimated for days in which 
recorders were only partially deployed. 

Brazil 21 B363 T7 -3.32 -54.96 456 11/06/2018 16/08/2018 Continuous 

Collected in continuous blocks throughout 
this period. Total duration calculated by 
multiplying number of days deployed by 24 
hrs, so overestimated for days in which 
recorders were only partially deployed. 

Brazil 22 B363 T8 -3.329 -54.972 456 11/06/2018 16/08/2018 Continuous 

Collected in continuous blocks throughout 
this period. Total duration calculated by 
multiplying number of days deployed by 24 
hrs, so overestimated for days in which 
recorders were only partially deployed. 

Brazil 23 B399 T7 -3.429 -54.843 408 11/06/2018 16/08/2018 Continuous 

Collected in continuous blocks throughout 
this period. Total duration calculated by 
multiplying number of days deployed by 24 
hrs, so overestimated for days in which 
recorders were only partially deployed. 

Brazil 24 B399 T8 -3.482 -54.862 360 11/06/2018 16/08/2018 Continuous 

Collected in continuous blocks throughout 
this period. Total duration calculated by 
multiplying number of days deployed by 24 
hrs, so overestimated for days in which 
recorders were only partially deployed. 

Brazil 25 B399 T10 -3.464 -54.907 408 11/06/2018 16/08/2018 Continuous 

Collected in continuous blocks throughout 
this period. Total duration calculated by 
multiplying number of days deployed by 24 
hrs, so overestimated for days in which 
recorders were only partially deployed. 

Brazil 26 B69 T11 -2.574 -54.671 384 11/06/2018 16/08/2018 Continuous 

Collected in continuous blocks throughout 
this period. Total duration calculated by 
multiplying number of days deployed by 24 
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hrs, so overestimated for days in which 
recorders were only partially deployed. 

Brazil 27 B69 T8 -2.515 -54.675 384 11/06/2018 16/08/2018 Continuous 

Collected in continuous blocks throughout 
this period. Total duration calculated by 
multiplying number of days deployed by 24 
hrs, so overestimated for days in which 
recorders were only partially deployed. 

Brazil 28 Bextra T2 -0.938 -54.988 384 11/06/2018 16/08/2018 Continuous 

Collected in continuous blocks throughout 
this period. Total duration calculated by 
multiplying number of days deployed by 24 
hrs, so overestimated for days in which 
recorders were only partially deployed. 

Brazil 29 Bextra T3 -2.928 -55.002 480 11/06/2018 16/08/2018 Continuous 

Collected in continuous blocks throughout 
this period. Total duration calculated by 
multiplying number of days deployed by 24 
hrs, so overestimated for days in which 
recorders were only partially deployed. 

Java Cikuray Carik 107.8545526 
-

7.331443748 120 02/12/2018 06/12/2018 Continuous 

Total duration calculated by multiplying 
number of days deployed by 24 hrs, so 
overestimated for days in which recorders 
were only partially deployed. 

Java  Pemancar 107.8703651 
-

7.318098911 144 18/11/2018 23/11/2018 Continuous 

Total duration calculated by multiplying 
number of days deployed by 24 hrs, so 
overestimated for days in which recorders 
were only partially deployed. 

Java 
Limbun
g Mekarwangi 107.8182765 

-
7.496942254 120 10/12/2018 14/12/2018 Continuous 

Total duration calculated by multiplying 
number of days deployed by 24 hrs, so 
overestimated for days in which recorders 
were only partially deployed. 

Java Masigit 
Pasir 
Cadaspanjang 107.3824806 

-
7.125237426 120 12/03/2019 16/03/2019 Continuous 

Total duration calculated by multiplying 
number of days deployed by 24 hrs, so 
overestimated for days in which recorders 
were only partially deployed. 

Java Patuha Cimanggu 107.3934156 
-

7.155668666 144 22/02/2019 27/02/2019 Continuous 
Total duration calculated by multiplying 
number of days deployed by 24 hrs, so 
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overestimated for days in which recorders 
were only partially deployed. 

Java  Kawah Putih 107.4103361 
-

7.161622925 120 03/03/2019 07/03/2019 Continuous 

Total duration calculated by multiplying 
number of days deployed by 24 hrs, so 
overestimated for days in which recorders 
were only partially deployed. 

Java Slamet Guci 109.1906051 
-

7.222455922 144 12/10/2018 17/10/2018 Continuous 

Total duration calculated by multiplying 
number of days deployed by 24 hrs, so 
overestimated for days in which recorders 
were only partially deployed. 

Java  Kaliwadas1 109.1779753 
-

7.252378917 120 01/10/2018 05/10/2018 Continuous 

Total duration calculated by multiplying 
number of days deployed by 24 hrs, so 
overestimated for days in which recorders 
were only partially deployed. 

Java  Kaliwadas2 109.1727316 
-

7.260066417 96 05/10/2018 08/10/2018 Continuous 

Total duration calculated by multiplying 
number of days deployed by 24 hrs, so 
overestimated for days in which recorders 
were only partially deployed. 

Java  Ketenger1 109.2030743 
-

7.300964231 120 08/09/2018 12/09/2018 Continuous 

Total duration calculated by multiplying 
number of days deployed by 24 hrs, so 
overestimated for days in which recorders 
were only partially deployed. 

Java  Ketenger2 109.2065445 -7.28306092 264 15/09/2018 25/09/2018 Continuous 

Total duration calculated by multiplying 
number of days deployed by 24 hrs, so 
overestimated for days in which recorders 
were only partially deployed. 

Java  Ketenger3 109.2026861 
-

7.268372385 120 21/09/2018 25/09/2018 Continuous 

Total duration calculated by multiplying 
number of days deployed by 24 hrs, so 
overestimated for days in which recorders 
were only partially deployed. 

New Zealand 

Rotokare 
Scenic 
Reserve -39.448259 -174.41464 3968 18/04/2017 19/05/2017 08:00-10:00, 15:00-17:00 

Manchester Ancoats 53.485 -2.228 484 30/10/2018 19/11/2018 Continuous 

Manchester Ancoats 53.485 -2.228 120 24/04/2019 30/04/2019 Continuous 
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S2.2. P-values for Table 2.1 

P values   
 

      

 Accuracy  
 

  Specificity   

 Minimum threshold 
 

SQ Threshold 
Minimum 
threshold SQ Threshold 

Country 1 Band 2 bands  1 Band 2 bands 1 Band 2 bands 1 Band 2 bands 

Brazil 0.000627   3.90E-18  NA  NA  

Java 0.582768  

 
3.74E-18  

2.58E-
23  NA  

Manchester 2.74E-18  

 
3.78E-18  

3.51E-
18  

3.43E-
18  

New 
Zealand 3.69E-18  

 
3.81E-18  

3.80E-
18  

3.26E-
21  

Mean 4.74E-39  

 
2.71E-67  

3.13E-
51  

3.03E-
35  
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S3.1: Survey locations, effort and protocols 

Point Transect name Latitude Longitude 
First 

recording 
period 

Second 
recording 

period 

Duration 
(mins) 

Habitat 
type 

(primary 
forest 
unless 
stated) 

Short-
duration 
surveys 

(n) 

Standard-
duration 
surveys 

(n) 

1 B112 T12 -2.693 -54.452 

06/07/2018-
13/07/2018 

20-07/2018-
30/07/2018 

22992 

Logged and 
burned in 

2015 

231 
4 

2 B112 T8 -2.693 -54.495 

06/07/2018-
13/07/2018 

20-07/2018-
31/07/2018 26397 

Logged 231 4 

3 B125 T9 -2.804 -54.568 

02/08/2018- 
16/08/2018 

NA 

19716 

Logged and 
burned in 

2015 

239 
4 

4 B129 T10 -2.726 -54.777 

30/06/2018-
07/07/2018 

04/08/08-
16/08/2018 

17862 

Logged and 
burned < 

2015 

232 
4 

5 B129 T11 -2.706 -54.786 

30/06/2018-
07/07/2018 

04/08/08-
13/08/2018 21970 

Secondary 214 4 

6 B129 T5 -2.714 -54.749 

30/06/2018-
07/07/2018 

04/08/08-
13/08/2018 

21700 

Logged and 
burned < 

2015 

238 
4 

7 B160 T10 -2.819 -54.882 

14/06/2010-
28/06/2018 

NA 

19333 

Logged 192 4 

8 B260 T1 -3.002 -54.895 

14/06/2010-

28/06/2018 

NA 

19145 

Logged and 
burned in 

2015 231 

4 
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9 B260 T4 -3.02 -54.857 

14/06/2018-

20/06/2018 

29/06/2018-
12/07/2018 

25897 

Logged and 
burned in 

2015 224 

4 

10 B260 T5 -2.984 -54.878 

14/06/2018-

28/06/2018 

NA 

19081 

Logged and 
burned – 

both 230 

4 

11 B260 T6 -3.00 -54.877 

14/06/2018-

28/06/2018 

NA 

19113 

Logged 

219 

4 

12 B261 T10 -3.018 -55.005 

12/06/2018-
05/07/2018 

NA 

30769 

Burned in 
2015 

222 4 

13 B261 T8 -3.029 -55.011 

12/06/2018-
05/07/2018 

NA 

31468 

Burned in 
2015 

227 4 

14 B261 T9 -3.04 -55.015 

12/06/2018-
16/06/2018 

06/08/2018-
13/08/2018 28212 

Burned in 
2015 

218 4 

15 B307 T3 -3.13 -54.857 

20/07/2018-
08/08/2018 

NA 

27146 

Logged and 
burned – 

both 

239 
4 

16 B307 T7 -3.147 -54.838 

20/07/2018-
21/07/2018 

28/07/2018-
09/08/2018 

18932 

Logged and 
burned – 

both 

240 
4 

17 B357 T4 -3.283 -54.854 

18/06/2018-
02/07/2018 

NA 

19371 

Secondary 210 4 

18 B363 T3 -3.296 -54.963 

02/07/2018-
09/07/2018 

16/07/2018-
23/07/2018 18958 

Undisturbed 239 4 

19 B363 T5 -3.336 -54.984 

04/08/2018 10/08/2018 

17827 

Undisturbed 230 4 
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20 B363 T6 -3.336 -54.956 

03/07/2018-
10/07/2018 

08/08/2018-
15/08/2018 18958 

Undisturbed 240 4 

21 B363 T7 -3.32 -54.96 

21/06/2018-
03/07/2018 

08/08/2018-
15/08/2018 26246 

Undisturbed 239 4 

22 B363 T8 -3.329 -54.972 

21/06/2018-
03/07/2018 

08/08/2018-
15/08/2018 26119 

Undisturbed 239 4 

23 B399 T7 -3.429 -54.843 

14/07/2018-
31/07/2018 

NA 

22085 

Logged 240 4 

24 B399 T8 -3.482 -54.862 

14/07/2018-
27/07/2018 

08/08/2018-
10/08/2018 25334 

Secondary 240 4 

25 B399 T10 -3.464 -54.907 

14/07/2018-
31/07/2018 

NA 

21897 

Logged and 
burned < 

2015 

237 
4 

26 B69 T11 -2.574 -54.671 

13/06/2018-
29/06/2018 

NA 

25989 

Logged and 
burned < 

2015 

199 
4 

27 B69 T8 -2.515 -54.675 

13/06/2018-
29/06/2018 

NA 

26103 

Logged and 
burned in 

2015 

225 
4 

28 BExtra T2 -2.938 -54.988 

13/06/2018-
29/06/2018 

NA 

25687 

Burned in 
2015 

219 4 

29 BExtra T3 -2.928 -55.002 

19/06/2018-
09/07/2018 

NA 

32277 

Burned in 
2015 

233 4 

Transect name: B=catchment number, T= transect number as detailed in Gardner et al.,(2013) 

We installed Frontier Labs Bioacoustic Recording Units with a 16 bit 44.1 kHz sampling rate at points halfway along each transect. 

Recorders were placed in trees at a height of 7-10 m, with the microphone placed in a downward facing position, at a distance of 

10-20 m from the transect to reduce the chance of recorder theft. Recording units were placed away from immediately overhanging 

dense vegetation to avoid sound being blocked and to limit geophony from leaves and branches. The microphones used have 80 
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dB signal to noise ratio and 14dBA self-noise, a fixed gain pre-amp of 20dB, a flat frequency response (±2dB) from 80Hz to 20kHz 

and an 80Hz high-pass filter to filter out low-frequency wind noise (Frontier Labs, 2015). All files were recorded in wav format. 

Recordings were made continuously (Frontier Labs software writes a new file every ~6 hrs).
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S3.2: Manual surveys 

We compared this acoustic data with traditional point count surveys conducted at the 

same sites by three experienced observers (Alexander C. Lees, NGM and Sidnei 

Dantas, see Moura et al., (2013), Moura et al., (2016), Henriques et al., (2003)) 

between 15-26th November 2016. Surveys lasted 15 minutes each, and were 

conducted between 05:45 and 09:45, and two surveys were conducted from each of 

0 m, 150 m and 300 m along the transect, so that each transect was surveyed six 

times in total. The detection method was noted for each species per survey as either 

visual or auditory. In all other respects, the surveys followed the protocols set out in 

previous published surveys at the site (Lees et al., 2013). There are distinct 

differences between the traditional surveys and the recorded surveys; being 

conducted at the start of the rainy season when birds are expected to be most 

vocally active and hence easily detected, across a greater spatial scale (three points, 

at 0m, 150 m and 300m along each transect), for 90 minutes rather than 60 at each 

transect, and over a slightly longer survey window each morning. Furthermore, ten of 

the transects were fire-damaged during El Nino events in 2015, and therefore have 

significantly different vegetation structure between 2016 and now owing to two years 

worth of post-fire regeneration (Berenguer et al., 2018), whilst the structure of the 

other transects remains similar.  

We modelled the resulting species richness scores using linear mixed effects models 

in the lme4 package, using survey method and presence of fire in 2015 as fixed 

effects and transect nested within disturbance class as a random effect.  
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Traditional surveys detected a total of 255 species, higher than either of the other 

methods. However, traditional surveys detected 48±3.7 (SE) species per transect, 

which is 5.4±1.85 more than standard-duration surveys, but 19.4±1.85 species less 

than short-duration surveys. 

Whilst we statistically account for the differences in survey method where possible 

using rarefied species richness data (Oksanen et al., 2019), we believe that the 

traditional surveys are detecting higher species richness than had they been 

conducted in the same season of 2018 using identical protocols as the 

autonomously recorded surveys – particularly given the results of Darras et al., 

(2019). However, we have included the comparison here as we believe it is useful to 

readers to place the results of the comparison between short and long duration 

surveys with autonomous audio recordings in the context of the regional species 

pool likely to be detected by traditional point counts. It further emphasises the 

efficacy of short-duration surveys that despite the considerable biases in favour of 

the traditional surveys, short-duration recorded surveys still recorded substantially 

higher species richness. 
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S4.1: Survey locations and effort 
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1 B112 T12 -2.693 -54.452 

06/07/201
8 

30/07/201
8 

22992 

Logged 
and 

burned 

2 B112 T8 -2.693 -54.495 
06/07/201

8 
31/07/201

8 26397 
Logged 

3 B125 T9 -2.804 -54.568 

02/08/201
8 

16/08/201
8 

19716 

Logged 
and 

burned 

4 B129 T10 -2.726 -54.777 

30/06/201
8 

16/08/201
8 

17862 

Logged 
and 

burned 

5 B129 T11 -2.706 -54.786 
30/06/201

8 
13/08/201

8 21970 
Secondary 

6 B129 T5 -2.714 -54.749 

30/06/201
8 

13/08/201
8 

21700 

Logged 
and 

burned 

7 B160 T10 -2.819 -54.882 
14/06/201

0 
28/06/201

8 19333 
Logged 

8 B260 T1 -3.002 -54.895 

14/06/201

8 

28/06/201
8 

19145 

Logged 
and 

burned 

9 B260 T4 -3.02 -54.857 

14/06/201

8 

12/07/201
8 

25897 

Logged 
and 

burned 

10 B260 T5 -2.984 -54.878 

14/06/201

8 

28/06/201
8 

19081 

Logged 
and 

burned 

11 B260 T6 -3.00 -54.877 

14/06/201

8 

28/06/201
8 

19113 

Logged 

12 B261 T10 -3.018 -55.005 
12/06/201

8 
05/07/201

8 30769 
Burned 

13 B261 T8 -3.029 -55.011 
12/06/201

8 
05/07/201

8 31468 
Burned 

14 B261 T9 -3.04 -55.015 
12/06/201

8 
13/08/201

8 28212 
Burned 

15 B307 T3 -3.13 -54.857 

20/07/201
8 

03/08/201
8 

27146 

Logged 
and 

burned 

16 B307 T7 -3.147 -54.838 

20/07/201
8 

03/08/201
8 

18932 

Logged 
and 

burned 

17 B357 T4 -3.283 -54.854 
18/06/201

8 
02/07/201

8 19371 
Secondary 

18 B363 T3 -3.296 -54.963 
02/07/201

8 
23/07/201

8 18958 
Unburned 

19 B363 T6 -3.336 -54.956 
03/07/201

8 
15/08/201

8 18958 
Unburned 
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20 B363 T7 -3.32 -54.96 
21/06/201

8 
15/08/201

8 26246 
Unburned 

21 B363 T8 -3.329 -54.972 
21/06/201

8 
15/08/201

8 26119 
Unburned 

22 B399 T7 -3.429 -54.843 
14/07/201

8 
31/07/201

8 22085 
Logged 

23 B399 T8 -3.482 -54.862 
14/07/201

8 
10/08/201

8 25334 
Secondary 

24 B399 T10 -3.464 -54.907 

14/07/201
8 

31/07/201
8 

21897 

Logged 
and 

burned 

25 B69 T11 -2.574 -54.671 

13/06/201
8 

29/06/201
8 

25989 

Logged 
and 

burned 

26 B69 T8 -2.515 -54.675 

13/06/201
8 

29/06/201
8 

26103 

Logged 
and 

burned 

27 Bextra T2 -2.938 -54.988 
13/06/201

8 
29/06/201

8 25687 
Burned 

28 Bextra T3 -2.928 -55.002 
19/06/201

8 
09/07/201

8 32277 
Burned 

Transect name: B=catchment number, T= transect number as detailed in Gardner et 

al.,(2013) 

 

S4.2: H2O RandomForest Hyperparameters 

h2o.randomForest(x, y, data, classification = TRUE, ntree = 50, depth = 20,  

  sample.rate = 2/3, classwt = NULL, nbins = 100, importance = FALSE,  

  validation, nodesize = 1, balance.classes = FALSE, max.after.balance.size = 5, 

  use_non_local = TRUE, version = 2, ntrees=200, mtries=5, score_each_iteration = 

T,  

seed = 1000000) 
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S4.3: Correlations between biodiversity metrics

 

NB=nocturnal birds, NA= Nocturnal all taxa, no label = Dawn birds 

 

S4.4: Results table for Kruskal Wallis tests 

Acoustic 
Index 

Time 
period 

Frequency 
bin 

Effect 
size 

No. of significantly different 
habitat pairs 

AC Dawn 0.3-12 0.211 8 

AC Day 0.3-12 0.0384 7 

AC Dusk 0.3-12 0.0448 6 

AC Night 0.3-12 0.0706 8 

AC Dawn 0.3-4 0.251 8 

AC Day 0.3-4 0.0702 6 

AC Dusk 0.3-4 0.0484 7 
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AC Night 0.3-4 0.219 8 

AC Dawn 12-22.1 0.0869 8 

AC Day 12-22.1 0.157 8 

AC Dusk 12-22.1 0.0695 7 

AC Night 12-22.1 0.0295 6 

AC Dawn 04-12.0 0.173 7 

AC Day 04-12.0 0.0345 6 

AC Dusk 04-12.0 0.0855 8 

AC Night 04-12.0 0.0996 9 

AC Dawn Base 0.193 9 

AC Day Base 0.105 9 

AC Dusk Base 0.00894 2 

AC Night Base 0.0707 9 

BI Dawn 0.3-12 0.0266 6 

BI Day 0.3-12 0.0982 9 

BI Dusk 0.3-12 0.0248 6 

BI Night 0.3-12 0.0682 8 

BI Dawn 0.3-4 0.106 7 

BI Day 0.3-4 0.119 9 

BI Dusk 0.3-4 0.0514 7 

BI Night 0.3-4 0.166 7 

BI Dawn 12-22.1 0.0537 8 

BI Day 12-22.1 0.0672 7 

BI Dusk 12-22.1 0.0815 6 

BI Night 12-22.1 0.125 9 

BI Dawn 04-12.0 0.0492 8 

BI Day 04-12.0 0.103 8 

BI Dusk 04-12.0 0.305 7 

BI Night 04-12.0 0.237 10 

BI Dawn Base 0.0547 7 

BI Day Base 0.0372 7 

BI Dusk Base 0.0392 6 

BI Night Base 0.0524 8 

 

S4.5A. Random forest accuracy metrics for classification of forest 

classes: 

Forest Class 

Frequency 
bins used 
as training 
data Metric Score 

Primary vs Secondary Baseline 
Balanced 
Accuracy 0.859475 

Primary vs Secondary All 
Balanced 
Accuracy 0.995726 
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All Baseline 
Balanced 
Accuracy 0.636062 

All All 
Balanced 
Accuracy 0.891751 

Primary vs Secondary Baseline F1 0.860385 

Primary vs Secondary All F1 0.995909 

All Baseline F1 0.47718 

All All F1 0.829385 

Primary vs Secondary Baseline MCC 0.722627 

Primary vs Secondary All MCC 0.99185 

All Baseline MCC 0.2716 

All All MCC 0.784214 

 

S4.5B. Confusion matrices for random forest models between all 5 

habitat classes.

 

 

S5.1. Recording protocols 

Recorders were located halfway along the 300 m transects. All recordings forming 

the main acoustic dataset were made between 12th June 2018 and 16th August 

2018. Recordings at each survey point were made over one or two recording 

periods, with each recording period varying in length between 3 and 22 days for 

logistical reasons. A minimum of 13 days were surveyed at each location. In 

addition, data was collected from three transects between 27th November and 8th 
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December 2017 which comprised the majority of the training data for the classifier, 

but was not included in the ecological analysis.  

 All ecoacoustic data were collected using Frontier Labs Bioacoustic Recording Units 

with a 16 bit 44.1 kHz sampling rate. The microphones used have 80 dB signal to 

noise ratio and 14dBA self-noise, a fixed gain pre-amp of 20dB, a flat frequency 

response (±2dB) from 80Hz to 20kHz and an 80Hz high-pass filter to filter out low-

frequency wind noise(Frontier Labs, 2015). All files were recorded in wav format. 

Trees were selected between 10-20m from the RAS transects to reduce the chance 

of theft of the recorders and placed at a height of 7-10m from the ground, with the 

microphone in a downward facing position. The diameters of the trees were 

estimated to be under 1.5m whilst large enough to withstand the weight of a ladder 

and person. ARUs were placed away from immediately overhanging dense 

vegetation to avoid sound being blocked and to limit geophony from leaves and 

branches.  

 

S5.2. Building the Tadarida classifier 

Building classifiers using Tadarida is a three step process; firstly automatically 

detecting sound events and acoustic feature extraction, then manual labelling, and 

finally building a random forest classification algorithm in R - for full details of the 

detection and feature extraction process, see Bas et al., (2017). Tadarida works best 

over short-duration sound files, so we divided all of our recordings into files with a 

duration of 15 s. We initially used the default settings for detection and measurement 

of features, but found that it split sounds too often along the time axis (e.g. dividing 

single call syllables), possibly due to reflection of sound in the forest, and merging of 

sounds across the frequency axis. To resolve these issues, we increased frequency 

resolution at the expense of temporal resolution by multiplying the sampling rate by 

5, so that files that had previously been read as having 15 s duration and a 

maximum frequency of 22.05 kHz were now interpreted by the program as being 3 s 

in duration with a maximum frequency of 110.25 kHz. We also reduced the default 

hysteresis curve start and stop settings to 24 and 19, resulting in better distinguished 

sound events.  
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We then undertook manual labelling of detected sound events to build a training 

dataset. As random forests can respond to data outside of the training dataset in 

unpredictable ways, it was important to incorporate a broad range of sound events in 

the training set. In order to systematically search for sound types, we used a subset 

of recordings comprising 96 hours of data and consisting of 3 hours of recording per 

night – one hour up to 30 minutes before sunrise, one hour commencing 30 minutes 

after sunset and 00:00-01:00, every 3rd night from each of the ARUs deployed. The 

majority of the manually labelled sound events came from an independent data set 

not used in the ecological analysis. As the independent data set only came from 

sites inside the protected area, we also included some recordings from the main 

dataset, in order to include species that were present in the survey area but not in 

areas of extensive forest. Whilst manually labelling, species identifications were 

made where possible through the author’s own knowledge or by comparison to 

readily available sound databases (Amphibian Survival Alliance, n.d.; Emmons et al., 

1997; Macaulay Library, n.d.; Marantz et al., 2006; Xeno-Canto, n.d.) or sonotyped in 

to similar sounding groups. Where species have more than one distinct vocalisation, 

these were entered as separate classes. In the case of target species, we selected 

one vocalisation to become the target, except for in the case of Nyctidromus 

albicollis, as the two sonotyped call types had some overlap so these were treated 

as separate labels, but combined at the classifier assessment stage. At the end of 

this process >300 sound types had been identified, which were simplified to a final 

59 sound types, either by merging similar sound types or removing ones that rarely 

occurred.  

Next, we undertook a range of data augmentation measures, including adding 

training data for 34 sonotypes from the Macaulay Library and Xeno-Canto. In 

addition, we amplified each file containing one or more manually labelled sound 

events at two levels, and overlaid each labelled training file over one of three files 

containing different intensities of rainfall, creating six new versions of each labelled 

file. We then used the match function in R to automatically transcribe the labelled 

training data from the manually assessed file to the augmented files. 
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Species DS
Es 
(n) 

Colle
cted 
data 
DSE 
(n) 

Augme
nted 
Collect
ed 
DSEs 
(n) 

ML 
DS
Es 
(n) 

XC 
DS
Es 
(n) 

Colle
cted 
15 s 
files 
(n) 

Augme
nted 
collect
ed 15 
s files 
(n) 

M
L 
15 
s 
fil
es 
(n
) 

ML 
uniq
ue 
files 
(n) 

X
C 
15 
s 
fil
es 
(n
) 

XC 
uniq
ue 
files 
(n) 

Uni
que 
site
s (n) 

adeaff 110
9 

1109 NA NA NA 55 NA N
A 

NA N
A 

NA 11 

adehyl 267
1 

2671 NA NA NA 88 NA N
A 

NA N
A 

NA 17 

alltap 152
3 

1523 NA NA NA 98 NA N
A 

NA N
A 

NA 13 

alobel 171
33 

1713
3 

NA NA NA 254 NA N
A 

NA N
A 

NA 34 

alobel_c
all 

424
3 

4243 NA NA NA 68 NA N
A 

NA N
A 

NA 4 

antser 270
67 

8508 1954 166
05 

NA 307 14 77 9 N
A 

NA 67 

boageo 104
9 

1049 NA NA NA 29 NA N
A 

NA N
A 

NA 9 

branch 148
4 

1484 NA NA NA 76 NA N
A 

NA N
A 

NA 42 

cicada 230
58 

2305
8 

NA NA NA 108 NA N
A 

NA N
A 

NA 8 

cow 112
9 

125 NA 100
4 

NA 7 NA 6 1 N
A 

NA 23 

crysou 111
72 

647 NA 647
2 

40
53 

39 NA 83
6 

90 65
0 

120 235 

cryvar 100
18 

673 NA 865
0 

69
5 

25 NA 10
5 

41 62 32 95 

denleu 197
1 

1971 NA NA NA 144 NA N
A 

NA N
A 

NA 30 

denmin 120
94 

1209
4 

NA NA NA 181 NA N
A 

NA N
A 

NA 16 

dentri 110
5 

1105 NA NA NA 26 NA N
A 

NA N
A 

NA 7 

dog 590
7 

5907 NA NA NA 162 NA N
A 

NA N
A 

NA 18 
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engfrei 104
0 

1040 NA NA NA 18 NA N
A 

NA N
A 

NA 2 

gecko 306
7 

3067 NA NA NA 144 NA N
A 

NA N
A 

NA 77 

glahar_s
ocial 

188
58 

5794 NA 130
64 

NA 279 NA 43 9 N
A 

NA 74 

hercac 286
4 

2864 NA NA NA 26 NA N
A 

NA N
A 

NA 7 

hercac_c
all 

120
8 

1208 NA NA NA 13 NA N
A 

NA N
A 

NA 2 

i5 171
6 

1716 NA NA NA 58 NA N
A 

NA N
A 

NA 10 

lf7 869 869 NA NA NA 13 NA N
A 

NA N
A 

NA 4 

lopcri_so
cial 

491
0 

2853 NA 205
7 

NA 297 NA 15 2 N
A 

NA 40 

lursem_c
all 

899 NA NA 899 NA NA NA 27 10 N
A 

NA 10 

lursem_s
ocial 

121
74 

204 NA 119
70 

NA 10 NA 29 10 N
A 

NA 18 

megcho_
call 

185
8 

1858 NA NA NA 126 NA N
A 

NA N
A 

NA 30 

megwat_
social 

312
40 

1239
7 

NA 188
43 

NA 394 NA 41 11 N
A 

NA 76 

nycaet_s
ong 

102
2 

166 NA 647 20
9 

16 NA 66 13 45 7 22 

nycalb 213
9 

2139 NA NA NA 117 NA N
A 

NA N
A 

NA 22 

nycalb2 301
0 

168 NA 284
2 

NA 6 NA 5 2 N
A 

NA 19 

nycgra_c
all 

868 347 NA 521 NA 37 NA 10 5 N
A 

NA 20 

nycgra_s
ocial 

381
1 

319 NA 341
3 

79 58 NA 13
4 

26 23 10 54 

nycgri 915
6 

187 NA 681
9 

21
50 

21 NA 54
2 

68 19
3 

82 171 

nycleu 326
2 

2485 NA 515 26
2 

78 NA 62 11 20 11 34 
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nycoce 294
8 

2786 NA 162 NA 298 NA 1 1 N
A 

NA 15 

odoguj 181
3 

1813 NA NA NA 22 NA N
A 

NA N
A 

NA 2 

ortho1 892
6 

8926 NA NA NA 297 NA N
A 

NA N
A 

NA 60 

ortho3 839 839 NA NA NA 55 NA N
A 

NA N
A 

NA 26 

ortmot 344
0 

3440 NA NA NA 88 NA N
A 

NA N
A 

NA 12 

pristi2 103
6 

1036 NA NA NA 139 NA N
A 

NA N
A 

NA 35 

pulper_s
ocial 

143
62 

3555 NA 108
07 

NA 154 NA 20 3 N
A 

NA 20 

rhimag 327
9 

3279 NA NA NA 56 NA N
A 

NA N
A 

NA 17 

rhysim_a
larm 

359
5 

40 NA 355
5 

NA 2 NA 16 3 N
A 

NA 8 

rhysim_c
all 

140
4 

916 NA 488 NA 58 NA 7 5 N
A 

NA 11 

rhysim_c
all2 

203
8 

NA NA 203
8 

NA NA NA 17 4 N
A 

NA 5 

rhysim_s
ocial 

131
01 

2352 NA 107
49 

NA 67 NA 33 6 N
A 

NA 13 

rooster 250
0 

2500 NA NA NA 80 NA N
A 

NA N
A 

NA 12 

scicru 146
5 

1465 NA NA NA 23 NA N
A 

NA N
A 

NA 5 

strhuh_c
all 

232
4 

353 NA 197
1 

NA 64 NA 32 6 N
A 

NA 20 

strhuh_c
all2 

179
8 

437 NA 136
1 

NA 21 NA 50 7 N
A 

NA 25 

strhuh_s
ocial 

527
0 

5270 NA NA NA 564 NA N
A 

NA N
A 

NA 25 

tingut_so
cial 

224
5 

1216 NA 102
9 

NA 77 NA 18 6 N
A 

NA 21 

tintao_so
cial 

145
3 

34 NA 121
3 

20
6 

4 NA 20
9 

23 58 11 39 
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tintao_so
ng 

970 237 NA 733 NA 35 NA 11 4 N
A 

NA 19 

tralf 824 824 NA NA NA 39 NA N
A 

NA N
A 

NA 12 

tranr 756
6 

7566 NA NA NA 351 NA N
A 

NA N
A 

NA 51 

trasq 263
3 

2633 NA NA NA 106 NA N
A 

NA N
A 

NA 15 

wd 181
1 

1811 NA NA NA 80 NA N
A 

NA N
A 

NA 20 

 

S5.3. Optimising classification thresholds 

First, we obtained a set of candidate thresholds using the ROCR package. We built receiver 
operating characteristic (ROC) curves, and calculated the optimal thresholds with false 
positives weighted from zero to ten compared to false negatives. We then used classifier 
accuracy metrics to assess which candidate threshold best matched our classification 
priorities of high precision and low variance of error. To assess if the variance of error had 
decreased, we calculated the variance of recall and the variance of precision across survey 
locations at each threshold. We then calculated the harmonic mean of the variance values, 
to give the variance F score. Next, we calculated four bespoke classifier accuracy statistics 
for the impact of each of these thresholds, heavily weighting in favour of precision. These 
consisted of; precision plus F1 score, precision plus the area under the curve, precision plus 
the variance of precision and precision plus the variance F score. We ranked each threshold 
by metric from lowest to highest score, multiplied the ranks of precision plus area under the 
curve and precision plus the variance of precision by 1.5, and took the sum of the ranks. The 
threshold with the highest summed rank was selected as the optimal threshold.  
 

S5.4: GLMM AIC table 

Basic model: Detections/Survey~Forest_Class+Lunar_Illumination+(1|Survey_Point) 

Zero-inflation:0=~Gradient, 1= ~1, 2=~. No zi in model name=no zero-inflation parameter 

Family: bb=betabinomial, bin=binomial, pm=poisson, nbm=negative binomial, hurdle= 
truncated poisson  

Model dAIC df 

Species: M. usta   

zibb1 0 11 

zibb0 6.1 17 

zibb2 10 19 

bb 15.4 10 
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zibin0 730.6 16 

zibin2 730.8 18 

bin 1042.8 9 

zibin1 1593.8 10 

zinbm2 136187.3 19 

zinbm0 137729.5 17 

zinbm1 139010.6 11 

nbm 139959.2 10 

zihurdle2 158843.8 18 

zipm2 158848.5 18 

zipm0 161004.8 16 

zihurdle0 162593 16 

zipm1 163476.6 10 

zihurdle1 165326.1 10 

pm 176468.3 9 

Species: L. cristata   

bb 0 10 

zibb1 0.5 11 

zibb0 8.5 17 

zibin2 1317.6 18 

zibin0 1338.2 16 

zibin1 1358.8 10 

bin 1695.7 9 

zinbm2 150074.9 19 

zinbm0 153645.2 17 

zinbm1 155199.2 11 

nbm 157605.2 10 

zihurdle2 178440.9 18 

zipm2 178442.2 18 
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zipm0 182522.3 16 

zipm1 184419 10 

zihurdle0 186336.7 16 

zihurdle1 189313.5 10 

pm 200901.3 9 

zibb2 NA 19 

Species: P. perspicillata   

zibb1 0 11 

bb 5.1 10 

zibb0 9.8 17 

zibin2 85.8 18 

zibin1 89.4 10 

zibin0 90.5 16 

bin 344.4 9 

zinbm2 46052.2 19 

zinbm0 46837.7 17 

zinbm1 47118.2 11 

nbm 47314.9 10 

zipm2 48999.2 18 

zihurdle2 49010.1 18 

zipm0 49849.8 16 

zipm1 50348.5 10 

zihurdle0 52649.7 16 

zihurdle1 55538.1 10 

pm 63601.6 9 

zibb2 NA 19 

Species: G. hardyi   

zibb1 0 11 

zibb0 2.2 17 
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bb 9 10 

zibin0 649.4 16 

zibin1 657.4 10 

bin 1007.6 9 

zinbm2 96303.5 19 

zinbm0 99837.1 17 

zinbm1 101049.3 11 

nbm 101954 10 

zihurdle2 114014.1 18 

zipm2 114050.9 18 

zipm0 119115.7 16 

zipm1 120024 10 

zihurdle0 125429.5 16 

zihurdle1 128628.9 10 

pm 136752.7 9 

zibin2 NA 18 

zibb2 NA 19 

Species: N. grandis   

bb 0 10 

zibb1 2 11 

zibb0 12.8 17 

zibin2 60.2 18 

zibin1 86.2 10 

zibin0 88.4 16 

bin 210.3 9 

zinbm2 47856.2 19 

zinbm0 49592.1 17 

zipm2 49752.5 18 

zihurdle2 49777.8 18 
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zinbm1 49863.8 11 

nbm 49864.3 10 

zipm0 52140 16 

zipm1 52636.9 10 

zihurdle0 56826.5 16 

pm 58832.9 9 

zihurdle1 60367 10 

zibb2 NA 19 

Species: N. griseus   

bb 0 10 

zibb1 0.4 11 

zibin1 39.6 10 

bin 113.3 9 

zinbm1 18985.3 11 

nbm 19002.4 10 

zipm1 20588.6 10 

pm 24498.9 9 

zihurdle1 25429.3 10 

zinbm2 48430 19 

zipm0 NA 16 

zipm2 NA 18 

zinbm0 NA 17 

zihurdle0 NA 16 

zihurdle2 NA 18 

zibin0 NA 16 

zibin2 NA 18 

zibb0 NA 17 

zibb2 NA 19 

Species: N. leucopterus   
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zibin1 0 10 

bb 5 10 

bin 11.1 9 

zipm1 1649.6 10 

nbm 1960.6 10 

pm 2233.5 9 

zipm0 NA 16 

zipm2 NA 18 

zinbm0 NA 17 

zinbm1 NA 11 

zinbm2 NA 19 

zihurdle0 NA 16 

zihurdle1 NA 10 

zihurdle2 NA 18 

zibin0 NA 16 

zibin2 NA 18 

zibb0 NA 17 

zibb1 NA 11 

zibb2 NA 19 

Species: N. ocellatus   

zibin1 0 10 

zibb1 534.7 11 

bb 537.6 10 

bin 974.8 9 

zinbm1 31549.2 11 

nbm 32011.6 10 

zipm1 36378.7 10 

pm 48152.8 9 

zipm0 NA 16 
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zipm2 NA 18 

zinbm0 NA 17 

zinbm2 NA 19 

zihurdle0 NA 16 

zihurdle1 NA 10 

zihurdle2 NA 18 

zibin0 NA 16 

zibin2 NA 18 

zibb0 NA 17 

zibb2 NA 19 

Species: A. sericocaudatus   

zibb1 0 11 

bb 7.9 10 

zibb0 8.4 17 

zibin2 953.2 18 

zibin0 993.5 16 

bin 1404.2 9 

zinbm2 92571.5 19 

zinbm0 96506.9 17 

zinbm1 97230.1 11 

nbm 97655.5 10 

zipm2 117866.6 18 

zihurdle2 118066 18 

zipm0 123062.2 16 

zipm1 124732.8 10 

zihurdle0 132888.1 16 

zihurdle1 139146.1 10 

pm 144170 9 

zibb2 NA 19 
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Species: N. albicollis   

zibb1 0 11 

zibb0 9.1 17 

bb 20.2 10 

zibin0 356.5 16 

zibin1 370 10 

bin 706.3 9 

zibb2 1562.1 19 

zinbm2 53010.5 19 

zinbm0 55582.3 17 

zinbm1 56409.3 11 

nbm 57079.3 10 

zipm2 59310.5 18 

zihurdle2 59330.9 18 

zipm0 62564.4 16 

zipm1 64027.3 10 

zihurdle0 69924.9 16 

zihurdle1 75296.6 10 

pm 80784.9 9 

zibin2 NA 18 
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S5.5. GLMM diagnostic plots 

Megascops usta: 

 
 

Lophostrix cristata: 
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Pulsatrix perspicillata: 

 
 

 

Glaucidium hardyi: 
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Nyctibius grandis: 

 
 
Antrostomus sericocaudatus: 
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Nyctidromus albicollis: 

 
 

 

S5.6. Out-of-bag accuracy metrics for target species 

 
Stratified out-of-bag accuracy metrics by DSE for ten target species from the Tadarida 
classifier. 

Species AUC F1 Precision Recall Specificity 

Megascops usta 0.958 0.904 0.880 0.930 0.986 

Lophostrix cristata 0.937 0.809 0.750 0.879 0.995 

Pulsatrix perspicillata 0.981 0.922 0.879 0.969 0.994 
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Glaucidium hardyi 0.929 0.854 0.840 0.868 0.989 

Nyctibius grandis 0.846 0.683 0.671 0.695 0.996 

Nyctibius griseus 0.894 0.791 0.788 0.795 0.994 

Nyctibius leucopterus 0.735 0.483 0.490 0.476 0.995 

Nyctiphrynus ocellatus 0.935 0.839 0.808 0.873 0.998 

Antrostomus sericocaudatus 0.874 0.779 0.793 0.766 0.981 

Nyctidromus albicollis 0.827 0.646 0.634 0.660 0.994 

 

 

 

S5.7. Out-of-bag accuracy metrics for non-target sonotypes 

Sonotyp
e 

Sensi
tivity 

Speci
ficity 

Pos.Pred
.Value 

Neg.Pred
.Value 

Preci
sion 

Re
call 

F1 Preval
ence 

Detectio
n.Rate 

Detection.Pr
evalence 

Balanced.A
ccuracy 

adeaff 0.942 1.000 0.953 1.000 0.95
3 

0.9
42 

0.9
47 

0.004 0.003 0.003 0.971 

adehyl 0.863 0.999 0.920 0.999 0.92
0 

0.8
63 

0.8
91 

0.008 0.007 0.008 0.931 

alltap 0.876 0.999 0.806 0.999 0.80
6 

0.8
76 

0.8
40 

0.005 0.004 0.005 0.938 

alobel 0.812 0.986 0.764 0.989 0.76
4 

0.8
12 

0.7
87 

0.055 0.044 0.058 0.899 

alobel_
call 

0.853 0.997 0.823 0.998 0.82
3 

0.8
53 

0.8
37 

0.013 0.012 0.014 0.925 

boageo 0.655 1.000 0.895 0.999 0.89
5 

0.6
55 

0.7
57 

0.003 0.002 0.002 0.827 
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branch 0.651 0.998 0.668 0.998 0.66
8 

0.6
51 

0.6
59 

0.005 0.003 0.005 0.825 

cicada 0.998 1.000 0.999 1.000 0.99
9 

0.9
98 

0.9
98 

0.073 0.073 0.073 0.999 

cow 0.701 1.000 0.966 0.999 0.96
6 

0.7
01 

0.8
12 

0.004 0.003 0.003 0.850 

crysou 0.944 0.998 0.957 0.998 0.95
7 

0.9
44 

0.9
51 

0.036 0.034 0.035 0.971 

cryvar 0.881 0.991 0.762 0.996 0.76
2 

0.8
81 

0.8
17 

0.032 0.028 0.037 0.936 

denleu 0.620 1.000 0.965 0.998 0.96
5 

0.6
20 

0.7
55 

0.006 0.004 0.004 0.810 

denmin 0.956 0.993 0.837 0.998 0.83
7 

0.9
56 

0.8
93 

0.038 0.037 0.044 0.974 

dentri 0.924 1.000 0.888 1.000 0.88
8 

0.9
24 

0.9
06 

0.004 0.003 0.004 0.962 

dog 0.639 0.991 0.572 0.993 0.57
2 

0.6
39 

0.6
04 

0.019 0.012 0.021 0.815 

engfrei 0.965 1.000 0.988 1.000 0.98
8 

0.9
65 

0.9
77 

0.003 0.003 0.003 0.983 

gecko 0.748 0.995 0.589 0.998 0.58
9 

0.7
48 

0.6
59 

0.010 0.007 0.012 0.871 

hercac 0.615 1.000 0.971 0.996 0.97
1 

0.6
15 

0.7
53 

0.009 0.006 0.006 0.808 

hercac_
call 

0.538 1.000 0.964 0.998 0.96
4 

0.5
38 

0.6
91 

0.004 0.002 0.002 0.769 

i5 0.900 1.000 0.990 0.999 0.99
0 

0.9
00 

0.9
42 

0.005 0.005 0.005 0.950 

lf7 0.861 1.000 0.949 1.000 0.94
9 

0.8
61 

0.9
03 

0.003 0.002 0.002 0.930 

lursem_
call 

0.862 1.000 0.902 1.000 0.90
2 

0.8
62 

0.8
81 

0.003 0.002 0.003 0.931 

lursem_
social 

0.890 0.996 0.911 0.996 0.91
1 

0.8
90 

0.9
00 

0.039 0.034 0.038 0.943 

megcho
_call 

0.691 0.998 0.717 0.998 0.71
7 

0.6
91 

0.7
04 

0.006 0.004 0.006 0.845 

nycaet_
song 

0.631 1.000 0.931 0.999 0.93
1 

0.6
31 

0.7
52 

0.003 0.002 0.002 0.816 
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nycgra_
call 

0.620 1.000 0.905 0.999 0.90
5 

0.6
20 

0.7
36 

0.003 0.002 0.002 0.810 

odoguj 0.686 0.999 0.842 0.998 0.84
2 

0.6
86 

0.7
56 

0.006 0.004 0.005 0.843 

ortho1 0.978 0.998 0.922 0.999 0.92
2 

0.9
78 

0.9
49 

0.028 0.028 0.030 0.988 

ortho3 0.670 1.000 0.966 0.999 0.96
6 

0.6
70 

0.7
91 

0.003 0.002 0.002 0.835 

ortmot 0.562 0.992 0.444 0.995 0.44
4 

0.5
62 

0.4
96 

0.011 0.006 0.014 0.777 

pristi2 0.895 1.000 0.917 1.000 0.91
7 

0.8
95 

0.9
06 

0.003 0.003 0.003 0.948 

rhimag 0.848 0.999 0.905 0.998 0.90
5 

0.8
48 

0.8
76 

0.010 0.009 0.010 0.924 

rhysim_
alarm 

0.793 0.996 0.699 0.998 0.69
9 

0.7
93 

0.7
43 

0.011 0.009 0.013 0.894 

rhysim_
call 

0.729 0.999 0.782 0.999 0.78
2 

0.7
29 

0.7
54 

0.004 0.003 0.004 0.864 

rhysim_
call2 

0.283 0.998 0.466 0.995 0.46
6 

0.2
83 

0.3
52 

0.006 0.002 0.004 0.640 

rhysim_
social 

0.914 0.995 0.890 0.996 0.89
0 

0.9
14 

0.9
02 

0.042 0.038 0.043 0.955 

rooster 0.155 0.999 0.591 0.993 0.59
1 

0.1
55 

0.2
46 

0.008 0.001 0.002 0.577 

scicru 0.978 1.000 0.992 1.000 0.99
2 

0.9
78 

0.9
85 

0.005 0.005 0.005 0.989 

strhuh_
call 

0.647 0.999 0.876 0.997 0.87
6 

0.6
47 

0.7
45 

0.007 0.005 0.005 0.823 

strhuh_
call2 

0.530 0.999 0.796 0.997 0.79
6 

0.5
30 

0.6
36 

0.006 0.003 0.004 0.765 

strhuh_
social 

0.640 0.995 0.677 0.994 0.67
7 

0.6
40 

0.6
58 

0.017 0.011 0.016 0.817 

tingut_s
ocial 

0.841 0.996 0.615 0.999 0.61
5 

0.8
41 

0.7
10 

0.007 0.006 0.010 0.919 

tintao_s
ocial 

0.766 1.000 0.927 0.999 0.92
7 

0.7
66 

0.8
39 

0.005 0.004 0.004 0.883 

tintao_s
ong 

0.763 0.999 0.657 0.999 0.65
7 

0.7
63 

0.7
06 

0.003 0.002 0.004 0.881 
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tralf 0.466 0.999 0.470 0.999 0.47
0 

0.4
66 

0.4
68 

0.003 0.001 0.003 0.732 

tranr 0.574 0.994 0.704 0.990 0.70
4 

0.5
74 

0.6
32 

0.024 0.014 0.020 0.784 

trasq 0.508 0.998 0.661 0.996 0.66
1 

0.5
08 

0.5
74 

0.008 0.004 0.006 0.753 

wd 0.626 0.998 0.684 0.998 0.68
4 

0.6
26 

0.6
54 

0.006 0.004 0.005 0.812 

 

S5.8. Species detections by forest class 

 

Forest class Species Mean (SD) Median Max 

Undisturbed Megascops usta 48.4+/-30.179 39 96 

Logged Megascops usta 131.25+/-
119.349 

121 269 

Burnt in 2015 Megascops usta 265.4+/-111.749 296 415 

Burnt in 2015 + Logged Megascops usta 125+/-93.195 121 243 

Burnt < 2015 + Logged Megascops usta 121.5+/-151.854 51 349 

Burnt < 2015 + in 2015 + 
Logged 

Megascops usta 56.667+/-45.654 36 109 

Secondary forest Megascops usta 165.333+/-
153.266 

108 339 
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Undisturbed Lophostrix cristata 124+/-61.388 142 181 

Logged Lophostrix cristata 424.75+/-
356.421 

402 882 

Burnt in 2015 Lophostrix cristata 356.2+/-256.883 223 767 

Burnt in 2015 + Logged Lophostrix cristata 329.75+/-
220.893 

325.5 556 

Burnt < 2015 + Logged Lophostrix cristata 107.75+/-
172.442 

34 363 

Burnt < 2015 + in 2015 + 
Logged 

Lophostrix cristata 76+/-24.759 67 104 

Secondary forest Lophostrix cristata 96+/-72.09 60 179 

Undisturbed Pulsatrix perspicillata 5.4+/-4.98 6 12 

Logged Pulsatrix perspicillata 3.25+/-2.062 3 6 

Burnt in 2015 Pulsatrix perspicillata 6+/-11.247 1 26 

Burnt in 2015 + Logged Pulsatrix perspicillata 12+/-8.042 15.5 17 

Burnt < 2015 + Logged Pulsatrix perspicillata 22.5+/-12.477 23 35 
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Burnt < 2015 + in 2015 + 
Logged 

Pulsatrix perspicillata 43.667+/-22.898 51 62 

Secondary forest Pulsatrix perspicillata 15.667+/-5.132 17 20 

Undisturbed Glaucidium hardyi 22.4+/-16.965 20 51 

Logged Glaucidium hardyi 163+/-147.289 154.5 312 

Burnt in 2015 Glaucidium hardyi 116.8+/-75.748 92 222 

Burnt in 2015 + Logged Glaucidium hardyi 103.25+/-95.395 92.5 227 

Burnt < 2015 + Logged Glaucidium hardyi 24.25+/-34.413 12 73 

Burnt < 2015 + in 2015 + 
Logged 

Glaucidium hardyi 149+/-219.11 24 402 

Secondary forest Glaucidium hardyi 32.667+/-40.513 20 78 

Undisturbed Nyctibius grandis 3+/-5.612 1 13 

Logged Nyctibius grandis 24.5+/-21.142 21.5 53 

Burnt in 2015 Nyctibius grandis 29.6+/-14.96 27 48 
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Burnt in 2015 + Logged Nyctibius grandis 25+/-18.991 27 45 

Burnt < 2015 + Logged Nyctibius grandis 5.75+/-10.21 1 21 

Burnt < 2015 + in 2015 + 
Logged 

Nyctibius grandis 9.667+/-8.737 12 17 

Secondary forest Nyctibius grandis 1.333+/-0.577 1 2 

Undisturbed Nyctibius griseus 0+/-0 0 0 

Logged Nyctibius griseus 5+/-8.124 1.5 17 

Burnt in 2015 Nyctibius griseus 1.4+/-2.608 0 6 

Burnt in 2015 + Logged Nyctibius griseus 2.25+/-2.062 2 5 

Burnt < 2015 + Logged Nyctibius griseus 1+/-1.414 0.5 3 

Burnt < 2015 + in 2015 + 
Logged 

Nyctibius griseus 5.333+/-3.512 5 9 

Secondary forest Nyctibius griseus 31+/-34.395 25 68 
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Undisturbed Nyctibius leucopterus 0+/-0 0 0 

Logged Nyctibius leucopterus 0+/-0 0 0 

Burnt in 2015 Nyctibius leucopterus 0.4+/-0.894 0 2 

Burnt in 2015 + Logged Nyctibius leucopterus 0+/-0 0 0 

Burnt < 2015 + Logged Nyctibius leucopterus 0+/-0 0 0 

Burnt < 2015 + in 2015 + 
Logged 

Nyctibius leucopterus 7+/-12.124 0 21 

Secondary forest Nyctibius leucopterus 0+/-0 0 0 

Undisturbed Nyctiphrynus ocellatus 0.4+/-0.894 0 2 

Logged Nyctiphrynus ocellatus 57.75+/-115.5 0 231 

Burnt in 2015 Nyctiphrynus ocellatus 19.2+/-14.007 27 33 

Burnt in 2015 + Logged Nyctiphrynus ocellatus 42+/-84 0 168 

Burnt < 2015 + Logged Nyctiphrynus ocellatus 3+/-6 0 12 
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Burnt < 2015 + in 2015 + 
Logged 

Nyctiphrynus ocellatus 0+/-0 0 0 

Secondary forest Nyctiphrynus ocellatus 96+/-163.686 3 285 

Undisturbed Antrostomus 
sericocaudatus 

11.2+/-19.537 3 46 

Logged Antrostomus 
sericocaudatus 

47.5+/-88.425 5 180 

Burnt in 2015 Antrostomus 
sericocaudatus 

227.4+/-195.745 138 473 

Burnt in 2015 + Logged Antrostomus 
sericocaudatus 

211+/-170.759 239 364 

Burnt < 2015 + Logged Antrostomus 
sericocaudatus 

92.75+/-185.5 0 371 

Burnt < 2015 + in 2015 + 
Logged 

Antrostomus 
sericocaudatus 

149+/-51.971 129 208 

Secondary forest Antrostomus 
sericocaudatus 

57.333+/-91.621 9 163 

Undisturbed Nyctidromus albicollis 1.4+/-2.074 1 5 

Logged Nyctidromus albicollis 22.25+/-27.597 15.5 58 

Burnt in 2015 Nyctidromus albicollis 3+/-3.464 2 8 
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Burnt in 2015 + Logged Nyctidromus albicollis 144+/-170.749 82.5 388 

Burnt < 2015 + Logged Nyctidromus albicollis 206.5+/-252.842 155 516 

Burnt < 2015 + in 2015 + 
Logged 

Nyctidromus albicollis 88.333+/-71.347 127 132 

Secondary forest Nyctidromus albicollis 3.333+/-2.887 5 5 

 

 

 

 

S5.9: Spectrogram of 21st July 2018 at 21:05 showing a typical 

series of A. sericocaudatus calls. 

The recording is 15 s in duration containing 7 A.sericocaudatus calls (1.2-2.2 kHz, 
throughout), 5 L.cristatus calls (0.2-0.7 kHz, 2.5 - 12 s) and a single G. hardyi call (1.2 kHz, 
4.5-7.5 s) taken from logged forest burnt after 2015 on. Frequencies and times are 
approximate. 
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No method is perfect. 


