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Abstract
Air pollution is a major issue resulting from the excessive use of conventional energy sources in developing countries and 
worldwide. Particulate Matter less than 2.5 µm in diameter (PM2.5) is the most dangerous air pollutant invading the human 
respiratory system and causing lung and heart diseases. Therefore, innovative air pollution forecasting methods and systems 
are required to reduce such risk. To that end, this paper proposes an Internet of Things (IoT) enabled system for monitoring 
and predicting PM2.5 concentration on both edge devices and the cloud. This system employs a hybrid prediction architecture 
using several Machine Learning (ML) algorithms hosted by Nonlinear AutoRegression with eXogenous input (NARX). It 
uses the past 24 h of PM2.5, cumulated wind speed and cumulated rain hours to predict the next hour of PM2.5. This system 
was tested on a PC to evaluate cloud prediction and a Raspberry Pi to evaluate edge devices’ prediction. Such a system is 
essential, responding quickly to air pollution in remote areas with low bandwidth or no internet connection. The perfor-
mance of our system was assessed using Root Mean Square Error (RMSE), Normalized Root Mean Square Error (NRMSE), 
coefficient of determination (R2), Index of Agreement (IA), and duration in seconds. The obtained results highlighted that 
NARX/LSTM achieved the highest R2 and IA and the least RMSE and NRMSE, outperforming other previously proposed 
deep learning hybrid algorithms. In contrast, NARX/XGBRF achieved the best balance between accuracy and speed on the 
Raspberry Pi.

Keywords  Air pollution forecast · PM2.5 · Machine learning · NARX architecture · Edge computing · IoT

Introduction

Urbanization promises a very high standard of life at the 
expense of deterioration in the environment and air quality. 
The extensive use of fossil-fuel-powered cars and machines 
everywhere releases a massive amount of harmful gases and 

particulate matter into our air. Air is a crucial component of 
life on Earth for every being: a plant, an animal, or a human 
alike. Air pollution undermines the wellbeing and devel-
opment of those living creatures directly. Lately, because 
of that rapid urbanization, air quality is declining quickly. 
There are several types of air pollutants, including carbon 
oxides COx (CO–CO2), nitrogen oxides NOx (NO–NO2), 
sulphur oxides SOx (SO2, SO3, SO4), Atmospheric Particu-
late Matter (PM for short) of diameters less than or equal 
to 10 µm (PM10), and PM of diameter less than or equal to 
2.5 µm (PM2.5). Researchers focus on detecting and forecast-
ing these contaminants, preferably in real-time [1–3].

Many countries worldwide defined their policies and 
standards to observe air pollution and generate alerts for 
their citizens [4]. However, these observations are mainly 
for outdoor environments, and most of the measurements 
are static and report average values. Nonetheless, air quality 
varies in real-time and may be affected by many factors [1], 
for instance, population density, wind speed and direction, 
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pollutant distribution, location (indoors or outdoors), and 
various meteorological circumstances.

Air pollution is regarded as a blend of particles and 
gases—whose concentration is higher than a recommended 
safety level—discharged into the atmosphere [5]. The 
sources of pollutants can be split into two main divisions: 
natural and anthropogenic (human-made). Pollution of natu-
ral sources refers to natural incidents triggering destructive 
effects on the environment or emitting harmful substances. 
Examples of natural incidents are forest conflagrations 
and volcanic outbursts, generating lots of air pollutants, 
including SOx, NOx, and COx. On the other hand, numer-
ous human-made sources exist like vehicles’ emissions 
and fuel combustion, which are deemed one of the leading 
causes of air pollution. Resultant pollutants could contain 
particulate matter, hydrogen, metal compounds, nitrogen, 
sulphur, and ozone. Atmospheric particulate matter encom-
passes liquid or solid granular which remains suspended in 
the atmosphere.

Medically speaking, diverse levels of health complica-
tions inflict human beings via PM [6]. Recent studies discov-
ered an insinuated relationship between long exposure to air 
pollution, especially PM2.5, and an increased chance of death 
due to the high risk of viral infections such as COVID-19 
[7]. There is evidence that PM could be a possible carrier 
of SARS-Cov-2 (COVID-19) both directly as a platform for 
viral intermixture and indirectly by inducing a substance 
upon exposure to PM, helping the virus to adhere to the 
lungs [8]. Besides, PM2.5 is considered accountable for about 
3.3 million early deaths per year worldwide, mainly in Asia 
[9]. Moreover, Egypt ranks in the 11th position—by 35,000 
deaths—in the top countries with premature death cases 
associated with outdoor air pollution. In 2016, WHO (World 
Health Organization) issued a report declaring Cairo (Egypt) 
as the second top polluted city by PM10 amongst mega-cities 
of population surpassing 14 million residents and the high-
est level of PM10 in Low- and Middle-Income Countries 
(LMIC) of Eastern Mediterranean (Emr) for the interval of 
(2011–2015) [10]. There have been great work-in-progress 
efforts to lower the average PM2.5 level in Egypt as indicated 
in the change from 78.5 to 67.9 µg/m3 (a change of about 
11 µg/m3) during the period from 2010 to 2019 [11]. Still, it 
is much higher than WHO guideline (10 µg/m3) and WHO 
least-stringent intermediate goal, Interim Target 1, (35 µg/
m3) as well as the global average of 42.6 µg/m3 in 2019 [11]. 
In addition, mortality rate related to PM2.5 in Egypt is the 
highest in North Africa and the Middle East region having 
91,000 such deaths [11].

Currently, a lot of research attention are devoted to 
improving air quality and air pollution control [11, 12]. 
Developing accurate techniques and tools to ensure air qual-
ity monitoring and prediction is crucial to achieving that 
goal. Predicting or forecasting is a vital part of the machine 

learning research field, which can deduce the future varia-
tion of an object’s state relative to previously collected data. 
Pollution forecasting is the projection of pollutant concen-
tration in the short or long term. Research on air pollution 
control has evolved since the 1960s. This evolution led to 
an increased awareness of the population about the devastat-
ing effect of this issue. Therefore, this led to a shift of the 
research focus towards air pollution forecasting.

According to how the prediction process is performed, air 
pollution forecasting is split into three categories: numerical 
models, statistical models, and potential forecasts. Moreover, 
it can be categorized into only two types based on forecast: 
pollution potential forecasting and concentration forecast-
ing [12].

Numerical modelling, as well as statistical methods, can 
be used for forecasting pollutants concentration. Never-
theless, the potential forecast can foretell the capacity and 
ability of meteorological factors, such as temperature and 
wind speed, along with other factors to dilute or diffuse air 
pollutants. If the weather conditions are likely to match the 
standards for possible severe pollution, a warning will be 
issued. In Egypt, potential forecasting is the primary tool to 
predict air quality [13]. Concentration forecast can predict 
pollutants concentration directly in a specific area, and the 
forecasted values are quantitative. Predicting air quality usu-
ally uses meteorological features besides pollutant concen-
trations to better predict future concentrations. However, in 
[14], data from various sources, including satellite images 
and measured data from ground stations, were combined for 
better prediction.

Linear machine learning (ML) models are employed in 
statistics and computer science to solve prediction problems 
in a data-driven approach, primarily when using multiple 
linear regression [15]. However, the air pollutant behaviour 
is primarily non-linear, so Support Vector Regression (SVR) 
could be used [16]. Nonetheless, a recent study shows that 
deep learning-based methods are generally more accurate in 
predicting air pollutants [17]. Therefore, multiple non-linear 
algorithms and deep learning-based algorithms were used in 
this paper to predict PM2.5 for the next hour using the data 
collected during the prior 24 h.

Conventionally, air quality is measured using air pollu-
tion monitoring stations abundant in sizes and expensive for 
installation and maintenance [18]. However, air-quality data 
generated by these stations are very accurate. According to 
Egypt’s vision of 2030, there will be an increase in stations 
deployed across the country up to 120 stations [19]. These 
stations will cost a lot. Alternative solutions have been sug-
gested to be more cost-effective and therefore cover larger 
areas. Internet of Things (IoT) is a relatively new technol-
ogy that attracts the interest of both academia and indus-
try. To overcome the shortcomings of existing air pollution 
monitoring systems in detecting and predicting near future 
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air pollution and reducing the overall cost, this paper intro-
duces a novel approach that infuses IoT technology with 
environmental monitoring and the power of edge computing 
and machine learning. This approach provides a relatively 
low-cost, accurate reporting, predictive, easy to deploy, 
scalable and user-friendly system. Multiple algorithms are 
evaluated on a PC and a Raspberry Pi to test for accuracy 
and speed for centralized and edge prediction. Prediction on 
edge devices is crucial to respond quickly to air pollution 
incidents in faraway regions with weak or no connection to 
the internet, which is the case for many low- or medium-
income countries.

Specifically, the main contributions of this paper are sum-
marized as follows:

•	 Proposing a new IoT enabled and Edge computing-based 
system for air quality monitoring and prediction.

•	 Proposing and evaluating a Non-linear AutoRegression 
with eXogenous input (NARX) hybrid architecture using 
machine learning algorithms for edge prediction scenar-
ios and central prediction.

•	 Testing the proposed NARX architecture on a PC for 
central prediction evaluation and a Raspberry Pi 4 for 
edge prediction.

•	 Evaluating many non-linear algorithms, including Long 
Short-Term Memory (LSTM), Random Forest, Extra 
Trees, Gradient Boost, Extreme Gradient Boost, and 
Random Forests in XGBoost using the proposed NARX 
architecture.

•	 Comparing our proposed architecture against the APNet 
algorithm proposed in [20] in terms of RMSE and IA, it 
was found that the NARX/LSTM hybrid algorithm pro-
duces better results than APNet

The remainder of this paper is structured as follows. Sec-
tion “Related Work” reviews the most important relevant 
works in the literature, and “Proposed IoT-based air qual-
ity monitoring and prediction system description” demon-
strates briefly the hybrid machine learning algorithms used 
in this work. Section “Proposed NARX hybrid architecture” 
describes the proposed hybrid NARX algorithm architec-
ture. Section “Performance Evaluation” presents the eval-
uation metrics used in this study. Section “Data descrip-
tion and preprocessing” introduces the dataset used and 
describes how the preprocessing was performed. Finally, 
Sect. “Results analysis and discussion” analyses and dis-
cusses the study results on both the PC and Raspberry Pi 4 
configurations, and Sect. “Conclusion” draws the concluding 
remarks and outcomes of this study.

Related work

Predicting atmospheric particulate matter has significant 
importance; researchers examined methods seeking APM 
/PM concentrations forecast as accurate and as early as 
they can. However, using these methods in the real world 
imposed the need for systems that can use sensors to col-
lect raw environmental readings to monitor pollution and 
machine learning algorithms to predict the next pollution 
level.

APNet has been presented by [20], combining LSTM and 
CNN to predict PM2.5 in a smart city configuration better. 
They used the past 24 h data of PM2.5 concentration along 
with cumulated hours of rain and cumulated windspeed to 
predict the next hour using the dataset in [21]. Their pro-
posal outperformed LSTM and CNN individually as well 
as other machine learning algorithms. They evaluated their 
proposal using Mean Absolute Error (MAE), Root Mean 
Square Error (RMSE), Pearson correlation coefficient and 
Index of Agreement (IA). They verified the feasibility and 
practicality for forecasting PM2.5 using their proposal experi-
mentally. Nonetheless, because the source of PM2.5 pollution 
is unstable, the real trend was not followed accurately by 
algorithm predictions and was a bit shifted and disordered.

A hybrid deep learning model was proposed by [22] that 
used LSTM with Convolutional Neural Network (CNN) and 
LSTM with Gated Recurrent Unit (GRU) to better forecast 
PM2.5 and PM10, respectively, for the next seven days. Their 
experiments were evaluated by RMSE and MAE. For five 
randomly selected areas, their hybrid models performed bet-
ter than other single models. CNN-GRU and CNN-LSTM 
were better fitted for PM10 and PM2.5, respectively. How-
ever, the future highest and lowest levels of PM2.5 were 
weakly predicted by these hybrid models. Also, in [23], a 
comparison between four machine learning algorithms (Sup-
port Vector Regression (SVR), Long Short-Term Memory 
(LSTM), Random Forest, and Extra Trees) was made. They 
used the past 48 h to predict the next hour. The study was 
limited in the number of machine learning algorithms com-
pared. There was a bit of a shift between actual and predicted 
values for most algorithms. It was found that the Extra Trees 
algorithm gives the best prediction performance in terms of 
RMSE, coefficient of determination R2.

Another hybrid deep learning multivariate CNN-LSTM 
model was developed in [24] to predict PM2.5 concentra-
tion for the next 24 h in Beijing using the past seven days 
data from the dataset introduced in [21]. CNN could extract 
air quality features, shortening training time where LSTM 
could perform prediction using long-term historical input 
data. They tested both univariate and multivariate versions 
of CNN-LSTM against LSTM only version. To evaluate 
their work, RMSE and MAE were used. However, more 
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evaluation parameters, stating closeness to real values like 
R2 or IA rather than only errors metrics, could have been 
used to confirm their models’ performance.

To predict the daily averaged concentration of PM10 for 
one to three days ahead, [25] used meteorological param-
eters and history of PM10 in three setups for comparison 
purposes. The setups were a multiple linear regression 
model and a neural network model that uses recursive and 
non-recursive architectures. In addition, carbon monoxide 
was included as an input parameter and as a result brought 
performance enhancement to the prediction. Finally, PM2.5 
concentration was predicted using meteorological parame-
ters and PM10 and CO without a history of PM2.5 itself. They 
used correlation coefficient (R), Normalized Mean Squared 
Error (NMSE), fractional bias (FB) and Factor of 2 (FA2) 
as evaluation parameters. The recursive artificial neural net-
work model was the best in all the conducted experiments. 
However, more machine learning models could have been 
used to test their methodology further.

Some of the literature tackled the lack of air quality meas-
urement equipment in every location using Spatio-temporal 
algorithms. These algorithms predict air quality at a location 
and a time depending on another measurement elsewhere. 
The same technique can be used to enhance prediction at 
a location depending on measurements taken around it. A 
solution proposed in [26] used data of PM2.5, PM10 and O3 to 
predict air quality of the next 48 h using the 72-h history of 
features for every monitoring station in London and Beijing. 
They designed local and global air quality features by devel-
oping LightGBM, Gated-DNN and Seq2Seq. LightGBM 
was used as a feature selector, while Gated-DNN captured 
the temporal and spatial–temporal correlations, and Seq2Seq 
comprised an encoder summarizing historical features and a 
decoder that included predicted meteorological data as input, 
thus improving the accuracy. The ensemble of the three 
models (AccuAir) proved to be better than the individual 
components tested. Their models were evaluated using Sym-
metric Mean Absolute Percentage Error (SMAPE). They 
did not use LSTM in their Seq2Seq model, although it was 
proven to be very efficient in time series prediction.

Another study [27] used spatiotemporal correlation analy-
sis for 384 monitoring stations across China with Beijing 
City at the centre to form a spatiotemporal feature vector 
(STFV). This vector reflected both linear and non-linear fea-
tures of historical air quality and meteorological data and 
was formed using mutual information (MI) correlation anal-
ysis. The PM predictor was composed of CNN and LSTM 
to predict the next day’s PM2.5 average concentration. They 
experimented on data collected during three years and was 
evaluated using RMSE, MAE and Mean Absolute Percent-
age Error (MAPE). Their model was compared to Multilayer 
Perceptron (MLP) and LSTM models and proved to be more 
stable and accurate. However, their system predicts only the 

daily average and cannot be deployed to predict the hourly 
or real-time concentration of PM2.5.

As for IoT systems that monitor air quality and, in some 
cases, predict it, plenty of proposed systems exist. However, 
prediction in all of them is made in the cloud rather than at 
the edge. Chen Xiaojun et al. [28] suggested an IoT system 
that uses meteorological and pollution sensors to collect data 
and transmit them for evaluation and prediction using neural 
networks (Bayesian Regularization). They used the past 24-h 
data to predict the next 24-h period. The study did not use 
any clear evaluation metric; instead, they presented a com-
parison of prediction values vs. actual value using different 
sample sets. Their proposed system uses many sensors to 
ensure accuracy and minimize monitoring cost. The system 
is scalable and suitable for big data analysis.

A comprehensive analysis was conducted by [29] to study 
design considerations and development for air pollution 
monitoring using the IoT paradigm and edge computing. 
They calibrated data collected from sensors using Arduino 
as an edge computing device before further processing. The 
Air Quality Index (AQI) was calculated at the edge device 
and was not sent to the cloud unless it was above a specific 
limit. Data are collected in an IBM cloud for visualization 
and further processing. They calculated outdoor AQI using 
the three dominant pollutants (PM2.5, PM10 and CO2). The 
evaluation was done by calculating AQI and comparing a 
setup where measurements were flattened, calibration and 
accumulation algorithms were employed, and another setup 
where measurements were raw. They developed a system 
that saves bandwidth and energy consumption. However, 
further processing by the edge can save even more band-
width and energy consumption.

A system that can be applied to monitor pollution levels 
of a smart city is proposed in [30]. It is used primarily for 
monitoring rather than conducting prediction of future pol-
lution levels. Its primary focus is the security of the data. 
Besides, it tackles security issues of that kind of IoT system. 
There is no evaluation metric of their system, only a proof 
of concept. Their IoT solution is scalable, reliable, secure 
and has HA (high availability). However, it relies on central 
management and central prediction rather than performing 
prediction on edge devices.

In [31], the authors proposed a prediction model that 
uses data from IoT sensors deployed across a smart city. 
This model uses LSTM to predict O3 and NO2 pollution 
levels, then it calculates AQI and classify the output as an 
alarm-level of (Red, Yellow and Green). They used RMSE 
and MAE to evaluate the prediction performance, whereas 
F1-score was used to evaluate classification accuracy. LSTM 
was compared to SVR as a baseline, and LSTM was proven 
to be a better algorithm. However, their research did not 
include a comparison to other works and used only one base 
model.
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Related work can be summarized in Table 1. 

Proposed IoT‑based air quality monitoring 
and prediction system description

This section proposes a new system that leverages the ever-
growing set of single board computers (SBC) that contain 
hardware powerful enough to perform a reasonable level of 
computation with low cost and power consumption. The fol-
lowing diagram illustrates the components of the proposed 
design (Fig. 1).

On the edge of the system exists an instance of SBC, a 
Raspberry Pi 4. The Raspberry Pi 4 is responsible for con-
trolling and collecting data from multiple sensing stations 
via Message Queuing Telemetry Transport (MQTT). Hence, 
the edge device will act as an MQTT broker for all sensing 
stations, MQTT clients. Each station gathers readings from 
the connected sensors via a multitude of inputs available in 
an Arduino-compatible device equipped with Wi-Fi capa-
bilities, such as NodeMCU, Arduino Uno Wi-Fi, Uno, Wi-Fi 
R3, amongst others. Data could be sent to the Raspberry Pi 
through its General-Purpose Input Output (GPIO) pins or 
other inputs if Wi-Fi is unavailable. Sensors may include 
MQ gas sensors, humidity and temperature sensors like 
DHT-11 or DHT-22 and PM sensors. The stations may be 
placed in the same city in industrial or residential locations 
or distributed across the country, according to the author-
ity’s needs.

After collecting data from the attached sensors for its con-
figured period (mostly 24 h to 1 week) [20, 22], the edge 
device is responsible for calculating Air Quality Index (AQI) 
as well as predicting the next time step or steps (minutes, 
hours, days, real time) according to its configuration. It may 
also warn its local vicinity or perform other tasks as con-
figured by the authority or its operator. Afterwards, it may 
compress available readings and send them to the central 
cloud for further processing and prediction on a large scale. 
A system composed of these edge devices would broadcast 
their raw data to the cloud, which helps in making pivotal 
decisions and predicting next time-steps for the whole area 
monitored by the system. The cloud would also help esti-
mate and predict AQI for areas without edge devices, and it 
may even send corrective data to the edge devices to better 
predict air pollution concentration level in their local region 
according to data collected from other neighbouring areas.

This system could be used in multiple configurations, 
including industrial establishments, especially those deal-
ing with environmentally hazardous substances and other 
factories in general. In addition, the average consumer would 
benefit from such a system that could work independently 
from the cloud if required. Also, in governmental settings, 
this would give the big picture of the air quality situation 

nationwide. Finally, this system has a flexible configuration 
as it does not require fixed/static installations and can be 
mounted on moving vehicles with appropriate adjustments. 
The system has not been fully implemented yet just the edge 
part was implemented using a Raspberry Pi 4 device, and 
the next phase of this research study is to complete the full 
implementation.

Practical implications for implementing 
the proposed system

The proposed system will have multiple layers in terms of 
data flow, as shown in Fig. 2.

The layers presented in the figure above show the logi-
cal flow of transmission and processing of data by many 
devices and networks according to the available resources 
upon implementation.

The components of the system are:

1.	 IoT edge devices:

a.	 The IoT Sensors layer contains the sensors required 
in the prediction process. The sampling rate can 
be fixed or controlled by the IoT Edge Computing 
Nodes layer. This layer can get multiple readings 
including but not limited to: relative humidity level 
(%), temperature (°C), altitude (m), pressure (hPa), 
carbon monoxide CO (ppm), carbon dioxide CO2 
(ppm), particulate matter of 0.3 ~ 10 µm in diam-
eter (µg/m3), ammonium NH4 (ppm), methane CH4 
(ppm), wind direction (°deg), wind speed (m/s), 
detected Wi-Fi networks, and their signal strength 
in decibels. IoT Edge devices layer comprises:

	 i.	 Wired sensors transmit data through nu-
merous methods, such as (Inter-Integrat-
ed Circuits—I2C, Serial Peripheral Inter-
face—SPI, and Universal Asynchronous 
Receiver/Transmitter—UART) to the 
next layer.

	 ii.	 Wireless sensors in which data are sent 
via wireless protocols (ZigBee/Z-Wave). 
Data could be carried using MQTT over 
Zigbee protocol called (MQTT-SN).

b.	 IoT edge computing nodes:
	   Here smart edge devices can be used to process 

collected data and send either a summary or a stream 
of the current readings to the cloud or perform the 
required local prediction directly using the com-
puting power available to them. Example of these 
nodes is SBCs, Arduinos, and Arduino-compatible 
devices.
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2.	 IoT network/internet:
	   Communication between IoT Edge Devices and the 

IoT cloud is carried through this layer. First, IoT gate-
ways coordinate between various IoT Edge nodes in 
terms of network usage and cooperation. For example, 
SBCs from the previous layer could be used as IoT gate-

ways. Then, the connections are relayed to the cloud via 
many possible network facilities, such as mobile tech-
nologies (2G-3G-4G-5G-Narrowband IoT), Low-Power 
Wide Area Network (LPWAN) technologies including 
(Long-Range Wide Area Network (LoRaWAN) and Sig-
fox) or Wi-Fi. Finally, it is required to provide secure 

Fig. 1   Proposed IoT System architecture

Fig. 2   Proposed system data flow architecture
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and reliable linkage to the IoT Cloud layer with good 
coverage across the area to be monitored.

3.	 IoT cloud:
	   All data collected from various stations in the sys-

tem are processed in this part of the data flow. This part 
could be optional if the prediction is entirely made on 
the edge devices. However, for a bigger picture and more 
accurate results, central management and processing add 
higher value.

	   Usually, the processing cloud comprises Infrastruc-
ture-as-a-Service (IaaS) or Container-as-a-Service 
(CaaS) cloud services, on top of which other services 
may run. For example, MQTT brokers may run in a 
container hosted in a virtual machine, or they can run 
directly on the hypervisor if supported like vSphere 
7.0 by VMWare [32]. The container can also be run in 
various systems such as Amazon Elastic Compute Cloud 
(EC2), serving containers like Docker and Kubernetes. 
A virtual machine could have a container instance run-
ning the MQTT broker and another running web ser-
vices conforming to REpresentational State Transfer 
(REST) standards—also known as RESTful web ser-
vices. Besides, a (not only SQL—NoSQL) database 
server and a webserver would be in the virtual machine 
to serve the RESTful requests forwarded by the bro-
ker and store data required, respectively. Many virtual 
machines may exist for multiple areas for scalability. The 
data stored can be processed, and coordination between 
IoT devices can be made by a specialized IoT platform as 
a service software tool. To make large-scale predictions 
and decisions, data analytics and business intelligence, 

as well as specialized AI prediction algorithms, may be 
deployed.

4.	 Front end clients:
	   Web services API calls may be made to deliver help-

ful information for various clients, create alerts and his-
torical or live maps of the requested area’s situation.

Prediction algorithms

To help build the proposed system, multiple prediction 
algorithms were compared to determine the best and most 
efficient one for use at both the edge and the central cloud.

Non‑linear AutoRegression with eXogenous input 
(NARX) model

NARX is mainly used in time series modelling. It is the 
non-linear variant of the autoregressive model having exog-
enous (external) input. The autoregressive model determines 
output depending linearly on its past values. Hence, NARX 
relates the current value of a time series to previous values 
of the same series and current and earlier values of the driv-
ing (exogenous) series. A function exists to map input values 
to an output value. This mapping is usually non-linear—
hence NARX—and it can be any possible mapping functions 
including Neural Networks, Gaussian Processes, Machine 
Learning algorithms and others. The general concept of 
NARX is illustrated in Fig. 3 [33].

The model works by inserting input features from sequen-
tial time-steps t and grouping past time-steps in parallel 
into the exogenous input order each of length q. If required, 
each of these features can be delayed by d time-steps. This 

Fig. 3   NARX model
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means that for each input feature you can choose how many 
timesteps to include using exogenous order q and delay 
that amount of data by d. Figure 3 shows that by includ-
ing only one input feature marked as x1 and using q1 input 
order and d1 delay. Meanwhile, the target values are stacked 
similarly, representing autoregression order of length p. 
Direct AutoRegression (DAR) is another variant in which 
the predicted output is used as an autoregression source 
rather than externally [34]. A library named fireTS has been 
implemented in Python by [35] to apply NARX using any 
scikit-learn [36] compatible regression library as a mapping 
function. NARX can be represented mathematically as [34]

where ŷ is the predicted value, f (.) is the non-linear mapping 
function,y is the target output at various time-steps t  , p is 
the order of target outputs (autoregression) used specifying 
how many time-steps to use of the target of prediction, X is 
input features matrix,  q is a vector specifying the order of 
exogenous input determining how many time-steps to inject 
from each of the input features, and d is a vector representing 
the delay introduced to each of the input features.

Long short‑term memory (LSTM)

Long short-term memory algorithm is one of the algorithms 
that are used frequently for analysing time series data. It 
receives not only the present input but results from the past 
as well. This process is executed by utilizing the output at 
time (t-1) to be the input at time (t), accompanied by the 
fresh input at time (t) [37]. Hence, there is’ memory’ stored 
within the network, in contrast to the “feedforward net-
works”. This approach is a crucial feature of LSTM as there 
exists constant information about the preceding sequence 
itself and not just the outputs [38]. Air pollutants vary over 
time and health threats are related to long-term exposures 
to PM2.5. During long periods, it is manifest that the best 
forthcoming air pollution predictor is the prior air pollution 

(1)
ŷ(t + 1) = f (y(t), y(t − 1), y(t − 2),⋯ , y(t − p + 1),X(t − d),

X(t − d − 1),X(t − d − 2),⋯ ,X(t − d − q + 1))

[39]. Simple Recurrent Neural Networks (RNNs) often 
require finding links among the final output and input data. 
Storing several time-steps before are limited as there exist 
several multiplications (an exponential number) that occur 
within the net hidden layers. These multiplications result in 
derivatives that will progressively fade away; consequently, 
the computation process to execute a learning task becomes 
difficult for computers and networks [37].

For this reason, LSTM is a suitable model because it pre-
serves errors within a gated cell. On the other hand, simple 
RNN usually has low accuracy and major computational 
bottlenecks. A comparison between simple RNN and LSTM 
RNN is presented in Figs. 4, 5 [40].

It is evident from Figs. 4, 5 that the memory elements in 
Fig. 5 are the main difference between the structure of RNN 
and LSTM.

The process of forward training of LSTM is formulated 
via the following equations [41]:

where it,ot and ft are activation of the input gate, output gate 
and forget gate, respectively; Ct and ht are the activation 
vectors for each cell and memory block, respectively; and 
W  and b are the weight matrix and bias vector, respectively. 
Also �(∙) is considered the sigmoid function defined in (7) 
and tanh(∙) is the tanh function, specified in (8).

(2)ft = �
(
Wf ⋅

[
ht−1, xt

]
+ bf

)

(3)it = �
(
Wi ⋅

[
ht−1, xt

]
+ bi

)

(4)Ct = ft ∗ Ct−1 + it ∗ tanh
(
WC ⋅

[
ht−1, xt

]
+ bc

)

(5)ot = �
(
Wo ⋅

[
ht−1, xt

]
+ bo

)

(6)ht = ot ∗ tanh
(
Ct

)

(7)�(x) =
1

1 + e−x

Fig. 4   Simple RNN with one 
layer and no gated memory cells
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Random forests (RF)

The algorithm of Random forests can be defined as a collec-
tion of decision trees, where every single tree is employing 
the best split for its construction. Each node in the predic-
tor’s subset is picked randomly at that node. Then, for the 
prediction step, the majority vote is taken.

Random forests possess two parameters:

•	 mtry: number of predictors sampled for the splitting step 
at every node.

•	 ntree: number of grown trees.

Random Forest algorithm starts by first obtaining ntree 
bootstrap samples from the original data. Next, an unpruned 
classification or regression tree is grown using mtry of sam-
pled random predictors for each sample. Then, the fittest 
split is chosen at each node. Eventually, predictions are car-
ried out using the predictions aggregation of ntree trees, such 
as the average or median, for regression and majority poll 
for classification.

To calculate the error rate, predictions of the out-of-bag 
samples, which means the data are not included in a boot-
strap sample, are used [42, 43].

Extra trees (ET)

Extra Trees machine learning algorithm depicts a tree-based 
ensemble approach operated in supervised regression and 
classification problems. Its central notion is about construct-
ing regression trees ensemble or unpruned decision trees 

(8)tanh (x) =
ex − e−x

ex + e−x
per the top-down classical procedure. Moreover, it builds 
wholly randomized trees whose structures are separate from 
the learning sample result values in extreme cases.

Extra Trees and Random Forest revolve around the same 
idea. In addition, though, Extra Trees selects the best fea-
ture at random in conjunction with the corresponding value 
during splitting the node [44]. Another distinction between 
Extra Trees and Random Forest is that Extra Trees uses 
all components of the training dataset to train every single 
regression tree, whereas Random Forest trains the model 
using the bootstrap replica technique [45].

Gradient boost (GB)

Gradient Boost is one of the ensemble-learning techniques 
in which a collection of predictors come together to give 
a final prediction. Boosting requires predictors to be made 
sequentially; hence training data are fed into the predictors 
without replacement leading to new predictors learning from 
previous predictors [46]. This sequential process reduces 
the time required to reach actual predictions. In addition, 
gradient boosting uses weak learners/predictors to build a 
more complex model additively. These predictors are usu-
ally decision trees.

Extreme gradient boost (XGB)

XGBoost is another ensemble scalable machine learning 
algorithm for gradient tree boosting used widely in computer 
vision, data mining, and other domains [47]. The ensemble 
model used in XGBoost—usually a tree model — is trained 
additively until stopping criteria are satisfied, such as early 
stopping rounds, boosting iterations count, amongst others. 
The objective is to optimize the t-th iteration by minimizing 
the subsequent approximated formula [47]:

Fig. 5   LSTM RNN elemental network structure
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where L(t) is the solvable objective function at the t-th itera-
tion, l  is a loss function that calculates the difference 
between the prediction ŷ of the i-th item at the t-th iteration 
and the target yi , �ŷ(t−1) l

(
yi, ŷ

(t−1)

i

)
 is first-order gradient sta-

tistics on the loss function and �2
ŷ(t−1)

l
(
yi, ŷ

(t−1)

i

)
 is the second-

order, ft
(
xi
)
 is the increment.

XGBoost is currently one of the most efficient open-
source libraries, as it allows for fast model exploration and 
uses minimal computing resources. These merits led to its 
use as a large-scale, distributed, and parallel solution in 
machine learning. Besides, XGBoost generates feature sig-
nificance scores according to feature frequency use in split-
ting data or based on the average gain a feature introduces 
when used during node splitting across all trees formed. That 
characteristic is of great use and importance for analysing 
factors that increase PM2.5 concentrations.

Random forests in XGBoost (XGBRF)

Gradient-boosted decision trees and other gradient-boosted 
models can be trained using either XGBoost or Random 
Forests. This training is possible because they have the exact 

(9)L
(t) ≃

n∑

i=1

[
l
(
yi, ŷ

(t−1)

i

)
+ 𝜕ŷ(t−1) l

(
yi, ŷ

(t−1)

i

)
ft
(
xi
)
+

1

2
𝜕
2

ŷ(t−1)
l
(
yi, ŷ

(t−1)

i

)
f 2
t

(
xi
)]

+ Ω
(
ft
)

model representation and inference, but their training algo-
rithms are different. XGBoost can use Random Forests as 
a base model for gradient boosting or can be used to train 
standalone Random Forests. In XGBRF training, standalone 
random forest is the focus. This algorithm is a Scikit-Learn 
wrapper introduced in the open-source library of XGBoost, 
and it is still experimental [48]; this means that the interface 
can be updated anytime.

Proposed NARX hybrid architecture

Our proposed architecture uses NARX’s non-linear map-
ping function as a host for machine learning algorithms. As 
Fig. 6 illustrates, the input features are passed through the 
pre-processing process, which removes invalid data and nor-
malizes features and converts categorical features to numeric 
values. Data are then split into training and testing segments. 
The training segment is the first four years of data, and the 
testing uses the last year of the dataset described in sec-
tion “Data Description and Preprocessing”. Then NARX 
trains the machine learning (ML) algorithm with data in 
each epoch as defined by its parameters. The system is then 
evaluated using the fifth-year test data.

Fig. 6   Proposed architecture 
diagram
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The proposed architecture can be described in the following steps:

and minimum values in the actual data. Comparison between 
models or datasets with different scales is better performed 
using NRMSE. The equation used for its calculation is[50]:

Coefficient of determination (R2)

This parameter evaluates the association between actual and 
predicted values. It is determined as [51]:

where n is the records count, Pi and Ai are the predicted and 
actual values, respectively. A represents the mean measured 
value of the pollutant.

As for the unit of measurement, R2 is a descriptive statis-
tical index. Hence, it has no dimensions or unit of measure-
ment. If the prediction is completely matching the actual 
value, then R2 = 1 . A baseline model where the predicted 
value is always equal to the mean actual value will produce 
R2 = 0 . If predictions are worse than the baseline model, 
then R2 will be negative.

(11)NRMSE =
RMSE

Max
(
Ai

)
−Min

(
Ai

)

(12)R2 = 1 −

∑n

i=1

�
Ai − Pi

�2

∑n

i=1

�
Ai − A

�2

Performance evaluation

Evaluation metrics

To assess the performance of the prediction model used 
and reveal any potential correlation between the predicted 
and actual values, the following metrics are used in our 
experiments.

Root mean square error (RMSE)

Root mean square error computes the square root of the 
mean for the square of the differences between predicted 
and actual values. It is computed as [49]:

where n is the number of samples, Pi and Ai are the predicted 
and actual values, respectively.

RMSE has the same measurement unit of the predicted or 
actual values, which is in our study μg/m3. The less RMSE 
value is the better the model prediction performance.

Normalized root mean square error (NRMSE)

Normalizing root mean square error has many forms. One 
form is to divide RMSE by the difference between maximum 

(10)RMSE =

�
∑n

i=1

�
Pi − Ai

�2

n
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Index of agreement (IA)

A standardized measure of the degree of model forecast-
ing error varying between 0 and 1; proposed by [52]. This 
measure is described by:

where n is the samples count, Pi and Ai are the predicted 
and actual measurements, respectively. P and A represent 
the mean of predicted and measured value of the target, 
respectively. It is a dimensionless measure where 1 indi-
cates a complete agreement and 0 indicates no agreement 
at all. It can detect proportional and additive differences in 
the observed and predicted means and variances; however, 
it is overly sensitive to extreme values due to the squared 
differences.

Data description and preprocessing

The dataset used was acquired from meteorological and air 
pollution data from 2010 to 2014 [21] for Beijing—China, 
published as a dataset in the University of California, 
Irvine (UCI) machine learning repository. This dataset was 
employed just for evaluation purposes, and in the following 
research, data from Egypt will be used when available from 
authoritative air pollution stations. The dataset encompasses 
hourly information about numerous weather conditions, such 
as (dew point, temperature) °C, (pressure) hPa, (combined 
wind direction, cumulated wind speed) m/s, cumulated hours 
of rain and cumulated hours of snow. It also includes PM2.5 
concentration in µg/m3. Only cumulated wind speed and 
cumulated hours of rain, as well as PM2.5, were used in our 
experiments. All records missing PM2.5 measurements were 
removed.

Before being used in the chosen prediction algorithms, 
the dataset was converted into a time series dataset to solve 
a supervised learning problem [53]. To predict PM2.5 of the 
next hour, data from the earlier 24 h were used. The trans-
formation was performed via shifting records up by 24 posi-
tions (the hours employed as the basis for prediction). Then 
these records were placed as columns next to the present 
dataset, and this process was repeated recursively to get this 
form; dataset (t-n), dataset (t-n-1), …, dataset (t-1), data-
set (t). This shifting was used in algorithms that were used 
independently from NARX hybrid architecture. To evalu-
ate the algorithms properly, K-Fold = 10 splitting method 
was used. K-Fold splits the dataset records into n sets using 
n-1 as training and one set as the test in a rotating manner. 
No randomization or shuffling was used with K-Fold split-
ting. The input for the LSTM algorithm was rescaled using 

(13)IA = 1 −

∑n

i=1

���Pi − Ai
��
�2

∑n

i=1

�
�
�
�
Pi − A

�
�
�
+
�
�
�
Ai − A

�
�
�

�2

scikit-learn StandardScaler API [54] using default param-
eters. Standard Scaler removes the mean and scales to unit 
variance. To ensure no data leakage [56], scaling and inverse 
scaling for training set and test set were done separately. 
Dataset statistics are displayed in Table 2. 

Results analysis and discussion

Experiments were run on two platforms for validation pur-
poses; on an edge device and a PC. The PC had an Intel 
processor Core i7 6700 @3.4 GHz quad-core with hyper-
threading enabled alongside 16 GB of DDR4 RAM. The 
edge device was a Raspberry Pi 4 Model B (referred to 
afterwards as RP4) with 4 GB LPDDR4-3200 SDRAM. The 
devices were dedicated only to run the experiments with no 
other workloads. As stated, the input was shifted by 24 h to 
adapt for a time series prediction, but only for the algorithms 
that were not used as base models in NARX hybrid methods. 
The same shifted input was supplied to six methods: LSTM, 
RF, ET, GB, XGB, and XGBRF.

The proposed NARX hybrid architecture hosted six 
machine learning algorithms, LSTM, RF, ET, GB, XGB, 
and XGBRF.

As for algorithms parameters, LSTM had three layers (1) 
an input layer of 128 nodes, (2) a hidden layer of 50 nodes, 
and (3) an output layer of one node. LSTM was executed 
using a batch size of 72 and 25 epochs and used Rectified 
Linear Unit (ReLU) activation function as well as Adaptive 
Moment Estimation (Adam) optimizer to minimize the loss 
function (MAE). This configuration was used in [23]. All 
other algorithms used default values as indicated by scikit-
learn API [54]. NARX used parameters of 24 for auto-order 
of PM2.5 and four combinations of exogenous delay (ed) 
and exogenous order (eo) for the combined wind speed and 
cumulated hours of rain for each hosted algorithm namely 

Table 2   Dataset statistics

Cumulated 
wind speed

Cumulated 
hours of rain

PM2.5

Count 43,824 43,824 41,757
Mean 23.88914 0.194916 98.61321
Standard deviation 50.01006 1.415851 92.04928
Minimum 0.45 0 0
Percentile (25%) 1.79 0 29
Percentile (50%) 5.37 0 72
Percentile (75%) 21.91 0 137
Maximum 585.6 36 994
Empty count 0 0 2067
Loss percentage 0.00% 0.00% 4.95%
Coverage percentage 100.00% 100.00% 95.28%
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([00, 00], [01, 01]), ([00, 00], [24, 24]), ([08, 08], [01, 01]), 
and ([24, 24], [24, 24]), respectively.

All methods were executed in parallel on all Central Pro-
cessing Unit (CPU) cores to boost performance. The follow-
ing figures show 48-h-sample time-steps predicted via our 
tests versus real values for one of the ten runs performed.

Figures 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 show 
the values of predicting two days in one-hour time-steps of 
the fifth fold of the K-Fold splitting using the algorithms 
mentioned above accompanied by actual data to assess their 
performance on both a PC and an RP4. Those figures com-
pare the actual measured data to the predicted value using a 
specific algorithm without NARX and with various NARX 
configurations.

It is worth mentioning that there is almost always a time-
shift in prediction versus real values. Table 3 compares per-
formance metrics for experiments run on the PC as well 
as the RP4. The arrows next to the evaluation parameter 
names indicate the direction where better results are, hence 
the upward arrow indicates that higher values are better 
results, and the downward arrow indicates that lower values 
are better results. The best values were coloured in green, 
while the worst were coloured in red, whereas purple repre-
sents the chosen balanced value. The evaluation metrics used 
were RMSE, NRMSE, R2, and IA, and training duration in 
seconds (Ttr)—as measured by Python.

Figures 19, 20, 21, 22, 23 illustrate these results visually 
for easier comparison. In all subsequent figures, the worst 
value bar was coloured in red for the PC and striped red 
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Fig. 7   Real vs. Prediction for the proposed NARX hybrid and LSTM run on PC
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Fig. 8   Real vs. Prediction for the proposed NARX hybrid and Random Forests run on PC
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for the RP4. In contrast, the best value bar was coloured in 
green for the PC and striped green for the RP4. The chosen 
balance bar was coloured in purple for PC and striped purple 
for RP4. As the values of exogenous delay and exogenous 
order for both features are the same in each variation, the 
name has been shortened in the figures from ed_[xx, xx] and 
eo_[yy, yy] to be (dx, oy). In addition, each figure is split 
into sections with each section representing the non-NARX 
algorithm followed by the NARX variations designated only 
by (dx, oy) pairs.

In general, all methods examined perform well above 
0.9 in R2 for both PC and RP4 configurations. The use of 
NARX allowed showing the effect of exogenous variables on 
the prediction process of PM2.5. Using NARX, the amount 
of past data for each exogenous (external) variable can be 

specified as well as how much delay to be introduced for the 
used data. This delay and exogenous order can indicate the 
exact effect of the external inputs on the target of predic-
tions. Also, the delay between the external input and the 
target for prediction (exogenous delay—ed) can be sourced 
from the physical relation between those external inputs and 
the target. For example, an increase in the wind speed could 
help predict pollution level not in the exact near future but 
after a delay of several hours. In addition, the extended his-
tory of a particular external input could mislead the predic-
tion of the target pollutant.

As the results show, the usage of less external data in 
LSTM (i.e., the exogenous order—eo—of NARX) led to 
better prediction in general. Nevertheless, in Random Forest 
and Extra Trees, more external variables data led to better 
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Fig. 9   Real vs. Prediction for the proposed NARX hybrid and Extra Trees run on PC
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Fig. 10   Real vs. Prediction for the proposed NARX hybrid and Gradient Boost run on PC
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results. This improvement is evident from Figs. 8, 9 for the 
PC and Figs. 14, 15 for the RP4 where extra information 
with no delay is the best fit. This observed behaviour could 
be due to the fact that LSTM contains memory cells that 
perform better if fewer external data are fed into the train-
ing process, creating more focus on the predicted target. 
This effect can be seen on both Figs. 7, 13 in the zoomed 
window showing NARX_LSTM_ed_[08, 08]_eo_[01, 01] 
and NARX_LSTM_ed_[00, 00]_eo_[01, 01], respectively, 
to be closer to the real values than other methods. In fact, 
the averaged results of K-Fold = 10 indicate that NARX_
LSTM_ed_[08, 08]_eo_[01, 01] is the best algorithm when 
executed on a PC while NARX_LSTM_ed_[00, 00]_eo_[01, 
01] is the best algorithm when executed on a RP4. Due to 
randomness in LSTM, there is a little difference between 

results obtained from the devices used, but the consistency 
of the results is better when using lower exogenous input 
orders, which proves that LSTM performs better with less 
interference from exogenous inputs. In addition, less exog-
enous inputs mean fewer data used for training and hence 
less training time.

It can be noted that Extreme Gradient Boost (XGB) has 
no randomness in its processing, leading to typical results 
being produced across the PC and the RP4 with or without 
NARX. Nonetheless, XGB scores the lowest performance as 
indicated in Figs. 11, 17 by the irregular pattern in predic-
tion (a few spikes in the rather staple period). Despite this 
low prediction performance, the speed of XGB is very high. 
XGBRF surpasses XGB with even better prediction perfor-
mance. This improvement is apparent in Figs. 12, 18, where 
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Fig. 11   Real vs. Prediction for the proposed NARX hybrid and Extreme Gradient Boost run on PC
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Fig. 12   Real vs. Prediction for the proposed NARX hybrid and Random Forests in XGBoost run on PC
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prediction is smoother than XGB. In a RP4, it is important 
to save energy as less time means less computing power 
needed and faster results. Hence, NARX_XGBRF can be a 
very good candidate to run as a predictor on edge devices if 
the deployed system requires a quick prediction. However, if 
the system deployed does not require quick prediction, then 
NARX_LSTM is the best performant. Comparing our results 
to [20], the average of NARX_LSTM_ed_[08, 08]_eo_[01, 
01] on a PC outperforms their APNet average in terms of 
RMSE (23.6456 vs. 24.22874) as well as IA (0.9815 vs. 
0.97831).

Conclusion

This paper proposed and evaluated a hybrid NARX archi-
tecture hosting many machine learning algorithms involved 
in predicting PM2.5 concentration in the atmosphere using 
the previous 24 h data of cumulated wind speed and cumu-
lated hours of rain to predict the next hour. The experiments 
were conducted on both a regular PC and an SBC, namely 
Raspberry Pi 4. Besides, an IoT system is proposed to better 
monitor and predict Air Quality Index (AQI) by combining 
sensors and SBCs and a central cloud into an edge comput-
ing paradigm. The proposed system is flexible and usable 
in multiple configurations, including industrial, governmen-
tal, and household. The use of edge devices to predict air 
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Fig. 13   Real vs. Prediction for the proposed NARX hybrid and LSTM run on Raspberry Pi 4
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Fig. 14   Real vs. Prediction for the proposed NARX hybrid and Random Forests run on Raspberry Pi 4
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pollution is essential as it allows for quicker response in 
case of air pollution incidents or the case where connection 
to the internet is deficient or in an isolated remote site. The 
performance of the Machine Learning algorithms used in 
this work was investigated by applying them to the same 
dataset. In terms of the correlation between actual and pre-
dicted results, NARX/LSTM shows the best performance by 
providing more accurate results than a state-of-the-art deep 
learning hybrid method named APNet. To be able to run 

efficiently on edge devices, fast prediction algorithms are 
preferable. The obtained results indicate that XGB related 
methods are fast and the best method for both efficiency and 
accuracy is NARX/XGBRF.

Future work

There are various directions to be explored after this work. 
First, the proposed IoT system can be fully implemented 
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Fig. 15   Real vs. Prediction for the proposed NARX hybrid and Extra Trees run on Raspberry Pi 4
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Fig. 16   Real vs. Prediction for the proposed NARX hybrid and Gradient Boost run on Raspberry Pi 4
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and evaluated in terms of delay in various components and 
prediction performance. Second, the proposed system can be 
tested for various scenarios and can be optimized by auto-
matically switching the context due to criteria defined by 
system operators. For example, the system can be switched 
from taking samples every 8 h in light pollution to tak-
ing more samples and giving better prediction if pollution 
increases. Third, complete exploration of NARX, with more 
variation of exogenous order and exogenous delay, can also 

be done. Fourth, having multiple nodes capable of running 
prediction algorithms paves the way for distributed comput-
ing and optimizations of speed and reliability. In addition, 
optimizing LSTM to run on edge devices is another step to 
improve prediction performance. This improvement can be 
made using GPU processing or Google Coral Edge TPU.
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Fig. 17   Real vs. Prediction for the proposed NARX hybrid and Extreme Gradient Boost run on Raspberry Pi 4
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Fig. 18   Real vs. Prediction for the proposed NARX hybrid and Random Forests in XGBoost run on Raspberry Pi 4
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Table 3   Average Prediction evaluation results for K-Fold = 10
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