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Abstract: 

Flexible AC Transmission Systems (FACTS) and Optimal Power Flow (OPF) solutions play an important role in 

solving power operation problems. The volatile nature of the power generation profiles from renewable energy 

sources, solar, and wind systems, and determining the optimal locations and sizes of FACTS devices increase the 

complexity of the OPF problems in modern power network models, such as transmission power loss,  power 

generation operation cost and voltage deviation, as a highly nonlinear-nonconvex optimization problem. 

Therefore, this article introduces and employs four new independent, reliable and efficient optimization 

algorithms inspired by nature and biological nature, namely: Slime Mould Algorithm (SMA), Artificial 

Ecosystem-based Optimization (AEO), Marine Predators Algorithm (MPA) and Jellyfish Search (JS), for solving 

both multi and single OPF objective problems for a power network incorporating FACTS and stochastic 

renewable energy sources. The proposed new metaheuristic optimization techniques are compared to the common 

and available alternatives in the literature, Particle Swarm Optimization (PSO), Moth Flame Optimization (MFO) 

and Grey Wolf Optimizer (GWO), using IEEE 30- bus test system. To consider and address the challenges of the 

OPF in modern power network models, the proposed optimization techniques tested under different operation 

cases such as increasing in the load, with and without FCTAS and renewable energy sources, different renewable 

energy sources locations on the network. The result showed that the MPA,SMA,JS and AEO algorithms are more 

effective solvers for the OPF problems cases compared to the PSO, GWO and MFO algorithms. For example, the 

AEO obtained 0.0844  p.u in case of minimizing the voltage deviation compared to 0.1155 p.u for PSO, which 

means that the AEO algorithm improved the voltage deviation term by 27% compared to the PSO algorithm. 

Keywords: Optimal power flow (OPF); Flexible AC Transmission Systems (FACTS); metaheuristic optimization 

algorithms; renewable energy sources. 
 

1. Introduction 

1.1. Background 

Nowadays, the contribution of renewable energy sources such as wind and Photovoltaics (PV) systems in the 

power structure is presented as the main power sources alternatives to face the yearly growth in electricity demand 

due to rising population and a solution to the power system quality [1, 2]. In addition, the interest in renewable 

energy sources increased because of the decreasing installation and operation costs for the renewable energy 

systems and the high international concerns about environmental problems [2,3]. However, considering renewable 

energy sources in the power generation dispatch problems is turned to be a crucial matter due to the volatile 

behavior of these resources [1,3]. Recently, OPF including renewable energy and fossil fuel power sources is 

presented as a fundamental single or multi-optimization problem to determine the optimal power-flow and 
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generations by solving an objective function such as minimizing power losses, energy generation cost, gas 

emission and voltage deviation [4,5]. Furthermore, controlling the voltage magnitude and active and reactive 

power injections have become more challenging due to the volatile behavior of renewable energy sources in the 

power network. The traditional solutions for these power quality problems such as under load tap changing 

transformers and load shedding are limited with low operational efficiency and less compatibility due to the 

network and transformers tap operation constrainers [6].  In addition, reactive power injection techniques are very 

slow to handle sudden demand changes or the volatile behavior of renewable energy sources. Therefore, power 

electronic technologies and Flexible AC Transmission System (FACTS) devices can be a significant solution for 

controlling voltage and reactive power problems in power network under dynamic state [7]. FACTS and OPF 

management solutions aim to improve the power quality at the network by maintaining the voltage stability and 

provide cost effective and environmentally friendly power supply solutions [8,9]. In the literature, the OPF studies 

for a power network integrated with FACTS have mainly solved OPF without considering renewable generation 

sources or used only one deterministic renewable generation profile (wind or PV) [10,11] and without  taking into 

account the stochastic behavior of  these sources to solve single objective function OPF problem.  Therefore, 

unlike the previous research [8-12], this article will focus on developing a realistic power flow model for a power 

network integrated with FACTS with single and multi-objective functions which treating the stochastic behavior 

of renewable generation profiles, wind and PV sources, . In addition, this paper will investigate the impact of 

renewable generation locations and increasing load demand on the network performances. 

1.1. Literature review 

In literature, various optimization methods are utilized to solve the OPF problem with or without renewable energy 

sources. Generally, there are three main categories of optimization methods: mathematical, heuristic and 

metaheuristic algorithms. The mathematical optimization methods in particular linear and quadratic programming,  

interior point, and Newton-based methods have been mainly used to solve single objective OPF problem [13,14]. 

However, these mathematical optimization methods [13,14] are limited due to the sensitivity to initial estimates 

and leading by the non-continuity and non-derivability of the objective function, which helps to trap the solution 

at local optimal. The mathematical approaches suffered during solving multi-objective OPF problems, due to the 

limitation of solving nonlinear functions or complex problems. Therefore, mathematical approaches showed low 

performance in solving OPF problems for modern power networks equipped with renewable energy sources 

[4,15]. An alternative optimization method, heuristic algorithms such as swarm intelligence and support vector 

machines, for mathematical methods is presented in [16,17]. The heuristic algorithms are easy to develop without 

requiring a re-programming for including new OPF constraints. However, the heuristic algorithms converge and 

trap in the local solution with high computational cost on solving OPF problems [1,6]. The developing and 

employing recent optimization algorithms are also a consideration of this paper, limited studies consider the 

benefit of using metaheuristic optimization methods. The combination of the previous two optimization methods 

(mathematical and heuristic) is called metaheuristic. This optimization approach is an approximation optimization 

method, which can be used to solve complex OPF problems with and without renewable energy sources [1, 6]. 

For example, MFO [14], GWO [16], PSO [17,18], Moth Swarm Optimization (MSO) [19], Teaching-Learning-

Based Optimization (TLBO) [3], Golden Ratio Optimization Method (GROM) [3], evolutionary algorithms 

[20,21] Adaptive Differential Evolution (SHADE) [22] have been developed to solve single and multiple objective 

function problem for a power network system with or without renewable energy sources. As discussed in Section 
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1.1, FACTS devices play a significant role in modern power networks such as reducing the power losses and 

generation costs and improving the voltage stability by controlling transmission lines parameters (series and shunt 

impedance, and phase angle). However, considering FACTS devices in the OPF problems increases the 

complexity of the OPF problem difficulties of achieving the optimal solution.  In the literature, heuristic and 

metaheuristic optimization methods used to solve single-objective OPF problems. For example, PSO [7,8,23], 

TLBO [24], Fuzzy Harmony Search Algorithm (FHSA) [25] and Symbiotic Organisms Search (SOS) [26] 

algorithms are employed to solve OPF problem integrated with FACTS. However, the literature in [23–26] is 

targeted at solving single objective function OPF problems and which mainly power generation cost or gas 

emission. The studies in [27,28] worked on solving single and multi-objective function OPF problems by 

assuming the perfect future knowledge for the renewable energy sources, which is unrealistic due to the non-

smooth nature of renewable energy sources. Furthermore, the hybrid optimization algorithms suffered during 

solving multi-objective functions due to the complexity and the high computational cost of the hybrid algorithms 

[27,28].  In general, the studies on solving OPF problems for a network integrated with renewable energy and 

FACTS using metaheuristic optimization methods  [29] are sparse in the literature and no studies present the 

impact of renewable energy resources (wind and PV) on the network and optimization methods performance or 

compare different new metaheuristic optimization methods.  

Recently, Biswas et al. [22] solved OPF by Success History-based Adaptive Differential Evolution (SHADE) 

algorithm for IEEE-30 bus system integrated with wind power and FACTS. However, , Biswas et al. aimed to 

solve single and multi objective function OPF problems for two main cases power generation cost and power loss, 

without considering other OPF problems such as minimizing the voltage level deviation problem. The FACTS 

and the high uncertainty level of wind power generation have a significant impact on the voltage level deviation, 

which discussed in this paper. Furthermore, Biswas et al. [22] is only employed the wind power generations units 

in fixed location as renewable energy sources in the power network without taking into account the PV generation 

units as one of main renewable energy resources. In our article, the volatile nature of both the PV and wind power 

generation systems are considered which increased the complexity of the OPF problems and determining the 

optimal locations and sizes of FACTS devices.  In addition, the impact of renewable energy resources (PV and 

wind) locations and increasing the level of load demand on the optimization algorithms and power network 

performance are investigated in this paper. Biswas et al. [22] similar to other works [24, 25] employed only one 

of the recent optimization method and comparted to common methods, however, in this article four new methods 

(SMA, AEO, MPA and JS) are used to solve complex OPF and FACTS problems and compared them to common 

optimization method. In general, the OPF solutions of power network equipped with FACTS have mainly solved 

in the literature [7,8] without considering renewable generation sources in the power grid or used only one 

deterministic renewable generation profile (wind or PV) [12,22] without taking into account the stochastic 

behavior of these sources to solve single and multi-objective function OPF problem. Therefore, this work aims to 

develop new metaheuristic optimization algorithms for improving the power network performance by solving 

both multi and single objective function OPF problems for a modern power network integrated with FACT devices 

and considering the stochastic behavior of renewable energy sources, wind and PV systems. In addition, the impact 

of increasing the load demand and the location of renewable energy sources on the OPF is presented by taking 

into account the non-convex and highly complex optimization problem nature. The current literature has begun to 

investigate the benefits of treating the uncertainty of renewable energy sources to increase the power network 



4 

power flow efficiency [3]. Probabilistic estimation techniques are employed in [1-3] to generate the wind and PV 

profiles considering the uncertainty in the generation of renewable energy sources. Challenges in predicting the 

stochastic nature of the renewable energy sources for a power network equipped with FACT devices increase the 

difficulties of optimality solving OPF problems. In this paper, the stochasticity of renewable energy sources will 

be treated by creating a realistic model compared to the literature-based probabilistic estimation techniques 

(Weibull and lognormal). In addition, the new metaheuristic optimization algorithms in this article, namely: MPA 

[30], JS [31], SMA [32] and AEO [33] are employed and used to decrease the impact of the uncertainty term due 

to the renewable energy sources and FACTS on the power network performance for a given OPF single and multi 

cost objective functions. The new metaheuristic optimization techniques are required less adjustable parameters 

compared to other metaheuristic techniques [30-33], which means that these techniques are easier to be developed 

and implemented with a lower computational cost. This helps these new algorithms to be the potential for solving 

OPF problems compared to common optimization methods in the literature. 

In general, the new metaheuristic optimization techniques algorithms are bio-inspired algorithm (MPA and JS) 

and nature-inspired algorithm (SMA and AEO) [30-33] developed based on the intelligent movements and 

activities in nature. These new optimization algorithms aim to provide highly efficient algorithms for solving 

complex actual engineering problems. The performance of newly proposed optimization algorithms is compared 

and evaluated throughout benchmark test functions and different actual engineering problems [30-33]. The new 

proposed metaheuristic optimization techniques performance results show a powerful ability to achieve a global 

solution and outperformed over twenty well-studied and new metaheuristics algorithms such as PSO, Genetic 

Algorithm (GA) and TLBO. Therefore, the MPA, JS, SMA and AEO algorithms can be beneficial for solving 

complex power flow problems (single and multi-objective functions) for a power network system integrated with 

stochastic renewable energy resources and FACTS Devices. Adequate new optimization models for power 

network applications integrated with stochastic renewable energy resources have a worldwide interest due to the 

significant benefits of reducing gas emission, energy losses and generation cost. To the author's knowledge, there 

are no works on solving OPF and energy optimization problems have used and employed the new proposed 

metaheuristic optimization techniques in this paper (MPA, JS, SMA and AEO) and considering the impact of the 

volatile nature of renewable energy resources and their locations, FACT devices and increasing the load demand 

on the power network performance.  Furthermore, this paper introduces a comprehensive analysis of the literature 

utilizing the most common, powerful and recent metaheuristic algorithms, PSO, MFO and GWO [14, 18]. 

1.2. Contributions 

In this work, the new proposed metaheuristic optimization techniques have been presented and employed for a 

power network integrated with stochastic renewable energy resources and FACTS devices. The renewable energy 

resource profiles (PV and wind) are generated based on the stochastic probability prediction model. To the author's 

knowledge, the new proposed metaheuristic optimization techniques in this paper (MPA, JS, SMA and AEO) 

have not used on solving OPF and energy optimization problems, unlike the previous studies [14-18, 23-29] that 

only used and applied one optimization method and comparted to common methods. In addition, the new proposed 

techniques in this paper are compared to a common and powerful metaheuristic optimization method, PSO, and 

other common methods from literature in solving different OPF problems and under different power operation 

scenarios.  The newly proposed metaheuristic algorithms have been designed to minimize generation cost, power 

losses and voltage deviation on IEEE 30-bus power network. Furthermore, this paper aims to fill the gap in the 
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literature by investigating the impact of renewable energy resource locations and increasing the level of load 

demand on the optimization algorithms and power network performance. The contributions of this article are 

summarized as follows: 

i. New metaheuristic optimization techniques (MPA, JS, SMA and AEO) are developed and employed to solve 

OPF problems (single and multi-objective function) considering FACT devices and the volatile behavior of 

renewable energy resources by using a probabilistic estimation model. 

ii. Unlike the previous studies [23-29], these papers aim to develop a realistic power network model integrated 

with stochastic renewable energy resources and FACTS devices. Furthermore, a comparison analysis for the 

metaheuristic optimization techniques on solving single and multi-objective functions for power networks 

equipped with or without FACTS and renewable energy resources. 

iii. A comparison analysis for new metaheuristic optimization techniques on different scenarios and investigating 

the impact of renewable energy resources locations and increasing the level of load demand on the 

optimization algorithms and power network performance.  

1.3.    Outline of paper 

The remaining parts of this study are structured as follows: Section 2 detail and present the OPF problems 

formulation, the probability prediction models for renewable energy resources and FACTS devices. The new 

proposed metaheuristic optimization techniques are described in Section 3. Finally, the simulation results, 

comparisons and discussions are elaborated in Section 4. The summary of this work and conclusions are given in 

Section 5. 

2. OPF Problem Description: mathematical formulation and modeling. 
 

            The main target of developing OPF problem for a power network is finding the optimal generation mix 

under a predefined objective function and number of constraints. However, the OPF problems for a power network 

equipped with renewable energy resources and FACTS devices are complex, nonlinear and non-convex 

optimization problems. In this paper, the most important objective functions, single and multi-objective functions, 

are presented and developed for OPF problems [3, 7, 13]. The single and multi-objective functions for the OPF 

have been divided into 4 main cases. These objective functions are solved for a power network (30-bus IEEE) 

equipped with renewable energy resources and FACTS devices under a number of constraints including equality 

and inequality limitations, as it will be introduced in subsections 2.1 and 2.2. In subsection 2.3, the probabilistic 

estimation model for renewable energy resources (PV and wind) is developed and presented. The multi-objective 

function is formulated in this work as summations for the single objective functions. The single and multi-

objective functions of OPF are expressed as follows: 

• Case 1: minimizing the power losses. 

The power transmission losses for the proposed power network model, 𝑃𝑙𝑜𝑠, for all types of generation units 

is given by [3, 13-15] as   

𝑃𝑙𝑜𝑠 =∑𝐶𝑛(𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗  cos(𝜃𝑖 − 𝜃𝑗))

𝑁

𝑛=1

, 

 

(1) 
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where 𝑃los is the total of power transmission losses over all buses and lines in the power network, N is the 

total number of lines and buses, 𝑉𝑖 and 𝑉𝑗 are the voltages magnitudes between bus i and bus j of branch n, 𝜃𝑖 and 

𝜃𝑗 are the voltage angles between bus i and bus j of branch n and 𝐶𝑛 is the conductance of branch n. 

 

• Case 2: minimizing the generation cost. 

The generation cost of all committed units for the proposed power network model, 𝑃𝑐𝑜𝑠𝑡  , is given using a 

common quadratic function that is presented in [3, 24, 28] as 

𝑃𝑐𝑜𝑠𝑡 = ∑𝜆𝑔 + 𝛿𝑔 𝑃𝑔 + 𝜑𝑔𝑃𝑔
2,

𝐺

𝑔=1

 

 

(2) 

where 𝑃𝑐𝑜𝑠𝑡  is the total generation cost of all committed units (G), 𝑃𝑔 the power generated from unit (g), the 

cost coefficients for the generation unit (g) are 𝜆𝑔 , 𝛿𝑔 and 𝜑𝑔. 

 

• Case 3: minimizing the voltage level deviation. 

The voltage deviation, 𝑉𝑑𝑒𝑣 , is one of the most common terms to evaluate the quality of the power networks. 

The 𝑉𝑑𝑒𝑣 is defined as the summation of the voltage deviations between the actual voltage at each load bus in the 

system, 𝑉𝑑 and the rated voltage, which equal to 1.0 per unit, for all buses, D, as shown in Equation (3) [3,20]. 

𝑉𝑑𝑒𝑣 =∑|𝑉𝑙 − 1|

𝐷

𝑑=1

 

 

(3) 

 

• Case 4: minimizing the power losses, generation cost and voltage deviation. 

     In order to evaluate the proposed new metaheuristic optimization techniques on different level of complexity 

for the OPF cost function, Case 4 merges three single cost functions into a multi cost function. In Equation (4), 

the generation cost, power losses and voltage deviation functions (Case 1 to 3) are emerged as multi cost function 

in Case 4, as 

𝐾𝑎𝑙𝑙 = (𝜗𝑃∑𝐶𝑛(𝑉𝑖
2 + 𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗  cos(𝜃𝑖 − 𝜃𝑗))

𝑁

𝑛=1

) + (𝜗𝑓∑𝜆𝑔 + 𝛿𝑔 𝑃𝑔 + 𝜑𝑔𝑃𝑔
2

𝐺

𝑔=1

)

+ (𝜗𝑉𝐷∑|𝑉𝑙 − 1|

𝐷

𝑑=1

). 

 

 

(4) 

In Equation (4), the  𝜗𝑃, 𝜗𝑓 , 𝜗𝑉𝐷  are the weight factors for power losses, generation cost and  voltage deviation 

indexes and they are assumed to be equal 22, 1 and 21 , respectively, as common and optimal values for the 

proposed power network [3, 24,28]. In general, the weighted sum strategy, Equation 4, is one of the most popular 

multi objective functions strategies. This strategy has been used in this paper, which required converting the 

objective problems into a scalar problem  through scaling operation and then adding a weighted sum of all the 

objectives. In order to recover the original values of the objective function, its required to reverse the scaling. 

Equation (4) presented the multi objective function form as common and standard equation for the proposed power 

network [3, 24,28]. 
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2.1 FACTS device modeling 
 

Flexible AC Transmission Systems (FACTS) devices as power electronic converters aim to increase the power 

transfer capability and give more flexibility and speed to control the power flow by controlling the various 

parameters in transmission line circuits [7,23-26]. In general, many types of FACTS device controllers are 

developed and used to increase the overall power network efficiency [7]. In this work, the common types of 

FACTS devices are employed, which are: shunt controllers (SVC) and series controllers (TCSC and TCPS).  For 

more details and comprehensive information about the type of FACTS controllers, interested readers are directed 

to [7,34-36]. The significance of integrating FACTS devices in the power network depends on the location and 

sizing of the FACTS devices and coordination between them. In this paper, the optimal location and sizing of 

FACTS devices have been determined based on achieving the maximum improvement at each cost function 

(Cases 1 to 4). The proposed new metaheuristic optimization techniques in this paper are employed to solve OPF 

with FACT devices considering the FACTS rating presented in Table 1 [7,34-36]. 

Table 1: The FACTS operation rating. 

Description Operation rating 

Min  Max 

Compensation by TCSC 0% 50% 

Angle of phase shifter (TCPS) −5° 5° 

SVC can either absorb (negative) or deliver (positive) 

reactive power up (MVAr) 

-10 10 

2.2 The power network constraints 
 

In a power network, the OPF problems are limited to a number of constraints, which are usually related to the 

physical limitations for the network equipment and the operating conditions such as frequency, current and 

voltage.  These constraints are basically divided into equality and inequality constraints. 

• Equality Constraints for OPF problem: 

The equality constraints are typically described as the power flow between the generation and consumer sides in 

a network. The total active and reactive power, ∑ 𝑃𝑔
𝐺
𝑔=1  , and, ∑ 𝑄𝑔

𝐺
𝑔 , are described by Equations (5) and (6), 

respectively, for all available thermal and renewable energy resources generations units [1,3, 13-20] as 

∑𝑃𝑔

𝐺

𝑔=1

= 𝑃𝐿 + 𝑃𝑙𝑜𝑠 , 

 

(5) 

∑𝑄𝑔

𝐺

𝑔=1

= 𝑄𝐿 + 𝑄𝑙𝑜𝑠 , 

 

(6) 

where 𝑃𝐿  and 𝑄𝐿  are the active and reactive of load demand (consumer sides), G is the total number of generation 

units, 𝑃𝑔 and  𝑄𝑔 are the total active and reactive generated from generation unit g, 𝑃𝑙𝑜𝑠 and 𝑄𝑙𝑜𝑠  are the total active 

and reactive power loss over all buses and lines in the network, respectively. Furthermore, the power flow 

constraints at the level of single generation unit in the power network can be described as follow [3]:  
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𝑃𝑔 − 𝑃𝐿𝑔 = 𝑉𝑔∑𝑉𝑛(𝐶𝑔𝑛 cos 𝜃𝑔𝑛 + 𝐵𝑔𝑛 sin 𝜃𝑔𝑛),

𝑁

𝑛=1

 

 

(7) 

𝑄𝑔 − 𝑄𝐿𝑔 = 𝑉𝑔∑𝑉𝑛(𝐶𝑔𝑛 sin 𝜃𝑔𝑛 + 𝐵𝑔𝑛 cos 𝜃𝑔𝑛),

𝑁

𝑛=1

 

 

(8) 

where the 𝑃𝐿𝑔and 𝑄𝐿𝑔  are the active and reactive load connected to the generation unit g, N is the total number of 

buses, 𝑉𝑔 and 𝑉𝑛 are the voltage magnitudes at buses g and n, 𝐶𝑛𝑞 is the conductance between buses g and n, 𝐵𝑔𝑛  

is the transfer susceptance for buses g and n, 𝜃𝑔𝑛 is the variance of voltage angle for buses g and n. 

• Inequality Constraints for OPF problem: 

Generally, the power network operates under a number of limitations related to the physical network equipment 

and the operating conditions such as frequency, current and voltage. These limitations are mainly inequality 

constraints and can be described as following [1,3]: 

- Power generation limitations. 

𝑉𝑔 
min ≤ 𝑉𝑔 ≤ 𝑉𝑔 

max ,  
 

(9) 

𝑃𝑔 
min ≤ 𝑃𝑔 ≤ 𝑃𝑔 

max,   
 

(10) 

𝑄𝑔
min ≤ 𝑄𝑔 ≤ 𝑄𝑔 

max,  
 

(11) 

where 𝑉𝑔 
min and 𝑉𝑔 

max are the minimum and maximum voltage magnitude at unit g, 𝑃𝑔 
min and 𝑄𝑔

min   are the 

minimum active and reactive power at unit g, 𝑃𝑔 
max  and 𝑄𝑔 

max are the maximum active and reactive power 

generation at unit g, respectively.  

- The tap setting limitation at power transformer. 

𝑇𝑆𝑟 
min ≤ 𝑇𝑆𝑟 ≤ 𝑇𝑆𝑟 

ma𝑥,   (12) 

where the TS is the tap setting of power transformers for regulating tap r = 1,2,…,R and R is the number of taps, 

𝑇𝑆𝑟 
min  and 𝑇𝑆𝑟 

max are the minimum and maximum tap setting limitation, respectively. 

- The voltages level limitations  

𝑣𝑙 
min ≤ 𝑣𝑙 ≤ 𝑣𝑙 

max, 𝑙 =  1,2, … , L, 
 

(13) 

where 𝑣𝑙  is the magnitude of voltage at bus l, L is the total number of buses, 𝑣𝑙 
min and 𝑣𝑙 

max,  are the minimum 

and maximum voltages at the load bus l.  

- The transmission loading limitations 

𝐷𝑚 ≤ 𝐷𝑚 
max,  m= 1,2,…,M, 

 

(14) 

where the 𝐷𝑚 is the loading magnitude at transmission line m, M is the total number of transmission lines 

and 𝐷𝑚 
max is the maximum loading at line m. 

- Handling inequality constraints 

In this paper, the external penalties function is applied to handle inequality constraints and decline any 

infeasible solutions [2, 3].  The penalty function in Equation (15) aims to add penalties on any infeasible solutions, 

which will help to keep the dependent variables within the values of the constraints during solving the optimization 
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problem as an iterative searching process. In addition, the OPF cost functions (Cases 1 to 4) can be converted 

using a penalized cost function into an unconstrained optimization problem. The penalized objective function for 

the inequality constraints is defined as [3,13]: 

𝐹𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 𝐻𝑃(𝑃1 − 𝑃1
lim)

2
+ 𝐻𝑄∑(𝑄𝑔 − 𝑄𝑔

𝑙𝑖𝑚)
2

𝐺

𝑔=1

+ 𝐻𝑉∑(𝑣𝑙 − 𝑣𝑙
𝑙𝑖𝑚)

2
𝐿

𝑙=1

+   𝐻𝐷 ∑ (𝐷𝑚 −𝐷𝑚
𝑙𝑖𝑚)

2
𝑀

𝑚=1

, 

 

(15) 

where 𝐻𝑃, 𝐻𝑄 , 𝐻𝑉  and   𝐻𝐷 are the external penalties factors and they are assumed to be 100, 100, 100, and 

100,000, respectively as in [1-3], 𝑃1 is the active power magnitude at the slack bus,  𝑃1
lim is the limit value of 𝑃1, 

𝑄𝑔
𝑙𝑖𝑚 is the reactive power limit at 𝑄𝑔, 𝑣𝑙  is the voltage at bus l, 𝑣𝑙

𝑙𝑖𝑚  is the voltage limit value at bus l, the limit 

value of the transmission line loading 𝐷𝑚 is 𝐷𝑚
𝑙𝑖𝑚. 

 

2.3 The estimation model for renewable energy sources 
 

Nowadays, renewable energy resources have a significant impact on power networks and markets. Therefore, 

renewable energy resources need to be employed in power network models to improve the reliability and quality 

of the networks  [1,3]. However, renewable energy resources are naturally stochastic and depended on the weather 

conditions [37, 38]. This increase the challenging of accurately estimating the renewable energy resources and 

optimality solving OPF problem. To effectively, solve OPF for power networks with renewable energy resources, 

a probabilistic predicting model for the renewable energy resources profiles is essential instead of assuming 

accurate profiles or deterministic forecast profiles. The probabilistic predicting model aims to deal with the 

uncertainties in renewable energy resources profiles, in order to improve the performance of solving the OPF 

problem. In this paper, the IEEE 30-bus power network model equipped with wind and PV energy sources within 

different location scenarios is addressed. The wind and PV power generations have estimated using probabilistic 

algorithms (Weibull and lognormal). In the power network model, to give the priority to available renewable 

energy resources to be firstly fed to the power network than the rest of the thermal source units, the wind and PV 

generation profiles are utilized as negative load values [1-3]. In addition, this helps to reduce the total load demand, 

generation cost and power losses of the thermal units. 

2.3.1 PV generation units 

 

The power output of PV generation units are guided by weather condition such as the solar irradiance and clouds. 

Therefore, the power profile of PV units can be descried as stochastic and volatile, especially during unclear sky 

conditions. In general, solar irradiance, S, can be described by lognormal probability distribution function, L (𝑆), 

as common and standard model [3,37] to present the solar irradiance as random variable, as presented in Equation 

(16) [3,37]: 

𝐿(𝑆) =
1

𝑆𝜎√2𝜋
exp (

−(ln 𝑆 − 𝜇)2

2𝜎2
) , 𝑆 > 0, 

 

(16) 

where 𝜇  is the mean and 𝜎 is the standard deviation of the lognormal probability function. The PV system works 

on converting the solar irradiance, S, to electrical power, P(𝑆), by using Equation (17), based using the 

probabilistic estimating in Equation (16) [3,38]. 
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P(𝑆) =

{
 
 

 
   𝑃𝑛𝑜𝑚

𝑆2

𝑆𝑠𝑡𝑆𝑐
, 𝑓𝑜𝑟   0 < 𝑆 < 𝑆𝑐

  𝑃𝑛𝑜𝑚
𝑆

𝑆𝑠𝑡
, 𝑓𝑜𝑟           𝑆 ≥ 𝑆𝑐 ,

 

 

(16) 

 

where the nominal power output of the PV unit is   𝑃𝑛𝑜𝑚 , 𝑆𝑠𝑡 is the standard solar irradiance, 𝑆𝑐 is the irradiance 

critical point. Furthermore, the total generation cost for PV units is calculated as presented in [3,37,38].  

2.3.2 Wind Power Units 
 

       The output of wind power units are guided by wind speed as one main variable. Therefore, the power profile 

of wind power units can be descried as stochastic quantity. In general, wind speed, W, can be described by Weibull 

probability distribution function, V (𝑊), to present it as random variable, as presented in [3]:  

𝑉(𝑊) =
𝑑

𝐾
(
𝑊

𝐾
)
𝑑−1

𝑒−
(
𝑊
𝐾
)
𝑑

, 

 

(19) 

where 𝑊 is the wind speed, K is the scale factor of the Weibull function, and 𝑑 is the dimensionless shape factor. 

The wind unit works on converting the kinetic energy at wind to electrical power by using Equation (19), based 

using the probabilistic estimating of the wind speed in Equation (19) [3,37]. 

𝑉𝑃(𝑊) =

{
 

 
0, 𝑊 < 𝑊𝑖𝑛 𝑎𝑛𝑑 𝑊 > 𝑊𝑜𝑢𝑡

𝑉𝑛𝑜𝑚  (
𝑊 −𝑊𝑖𝑛

𝑊𝑟 −𝑊𝑖𝑛

) , 𝑊𝑖𝑛 ≤ 𝑊 ≤ 𝑊𝑟

𝑉𝑛𝑜𝑚, 𝑊𝑟 < 𝑊 ≤ 𝑊𝑜𝑢𝑡 ,

 

 

(19) 

 

where 𝑉𝑛𝑜𝑚  is the nominal power value of the wind unit,𝑊𝑟, 𝑊𝑖𝑛 and 𝑊𝑜𝑢𝑡  are the rated, cut-in and cut-out wind 

speed, respectively, for the proposed wind generation unit. In this paper, the generation cost of wind power 

generation units is calculated as presented in [3,37,38]. 

 

3. Proposed method: New metaheuristic optimization algorithms 
 

In this article, the new metaheuristic optimization algorithms MPA, JS, SMA and AEO [30-33] are adapted 

and employed to solve OPF problems and handle the high uncertainty level in the power network due to equipping 

the renewable energy sources and FACT devices. In general, the new metaheuristic optimization techniques 

designed to handle stochastic, volatile and complex optimization problems [30-33]. In addition, the new 

algorithms are easier to developed and implement with lower computational cost, where they required less 

adjustable parameters compared to other metaheuristic techniques [30-34]. Therefore, the proposed new 

metaheuristic optimization algorithms can be beneficial for solving complex power flow problems (single and 

multi-objective functions) for a power network system integrated with stochastic renewable energy resources and 

FACTS Devices. Adequate new optimization models for power network applications have a worldwide interest 

due to the significant benefits of reducing gas emission, energy losses and generation cost. To the author's 

knowledge, there are no works on solving OPF and energy optimization problems that have used the MPA, JS, 

SMA and AEO algorithms and considering the impact of the volatile nature of renewable energy resources or 

FACT devices.  Furthermore, this paper introduces a comprehensive analysis of the literature utilizing one of the 



11 

most powerful, common and recent metaheuristic algorithms, PSO, MFO and GWO [14,16-18]. The simulation 

models for all proposed metaheuristic optimization algorithms have been implemented based on optimal 

parameters and the details will be presented within Section 4.1. 

 

3.1.1 MPA and JS algorithms 

 

In 2020, new bio-inspired metaheuristic optimization algorithms called Marine Predators Algorithm (MPA) 

and Jellyfish Search (JS)  have been introduced by Faramarzi et al. [30] and Chou and Truong [31], respectively.  

Firstly, the main aim of MPA is to introduce an alternate metaheuristic algorithm for handling stochastic 

optimization problems. The basic idea of MPA is inspired by the intelligent activities and movements of ocean 

predators to creating widespread foraging strategies [30]. The MPA follows the unique ocean predator's 

movements, Lévy and Brownian movements, in line with an optimal rate policy for the attacking interaction 

between predator and prey [30]. The MPA algorithm for solving stochastic and complex optimization problems 

is summarized and described through main three phases in Figure 1. In the first optimization phase, the search 

domain in initial iterations is determined based on the Brownian motion for the prey. The search domain in the 

first stage is are uniformly distributed, where the Brownian motion helps preys to separately explore their 

neighborhood and lead to good searching of the domain. In this first step, the distance between predator and prey 

will be assumed relatively large. Then, the new searching position is evaluated using the fitness function and the 

new searching position is replaced by the previous position if it is more fitted. The fitted positions in MPA 

algorithm are inspired by the prey movement for abundant food areas, which including also saving procedures for 

the new and old positions. Here, phase two of MPA optimization starts, where predators start looking for foraging 

while the prey also looking for food.  Therefore, half of the domain population is in charge of predators looking 

for prey in Brownian motion and the other half is for prey which switches to Lévy strategy. The  Lévy strategy 

aims to effectively search in neighborhood area and in case there is, no solution (food) will take a long jump, 

which helps to avoid the trip with a locally optimal solution. Here, the two searching strategies ( predator and prey 

locations) will become close to each other, as the final optimization stage. In this stage, the predator will switch 

from Brownian to Lévy strategy to follow the prey movement and be more effective neighborhood searching. 

Furthermore, a convergence factor will be used in this stage to help predators to limit the search areas and non-

promising regions of the domain, which will help to minimize the computational complexity (time search effort) 

and achieve the global solution. 



12 

 

Fig. 1. The Marine Predators Algorithm (MPA) procedures. 

In another algorithm, the behavior of jellyfish in the ocean is motivated [31] to develop a novel metaheuristic 

algorithm called artificial Jellyfish Search (JS).  The JS optimization is used the jellyfish nature movements from 

the ocean current motions, the swarm motions. Furthermore, a time control mechanism is employed to switch 

between these movements and achieve convergences. The JS optimization algorithm can be described by three 

main Jellyfish movement rules, which close to MPA algorithm. 

o Jellyfish movements in the ocean aims to search for food and the best movement's location where the 

more quantity of food is available.  

o Finding the high quantity of food is determined based on an objective function. 

o Jellyfish moves with the ocean current or the swarm, and time control mechanism works on switching 

between them to find best food location (solving the objective function).  

The artificial Jellyfish Search (JS) algorithm for solving complex and stochastic optimization problems is 

summarized below: 
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Step 1 Define the objective and initialize the population: this step aims to select the cost function for the proposed 

problem, OPF in our work, set the search space and size of population and number of iterations. Furthermore, in 

this step, a random population in the domain will be generated.  

Step 2 Calculate the quantity of food (the cost function value for OPF problems) by solving the objective function 

and determine the best location where most of the food (best objective function result) is available. Here, the 

iteration will be set equal to 1.   

Step 3 Searching steps (time control mechanism): at each iteration, a time control function as a random value 

between 0 to 1 is compared to a constant time value. This process aims to regulate the jellyfish movement between 

ocean current and swarm motions. In case the time control function value is larger than the set constant time, the 

ocean current moves will be followed otherwise the swarm motions will be followed to select the new position. 

Step 4 Recalculate the quantity of food (cost function value) by solving the objective function at the new position 

and determine the best location where most of the food (best objective function result) is available. Here, the 

iteration will be updated.   

Step 5: Repeat steps 2–4 until the maximum iterations number, which is the stop criterion here. 

3.1.2 SMA and AEO algorithms 

New nature-inspired metaheuristic optimization algorithms  called Slime Mould Algorithm (SMA) and 

Artificial Ecosystem-based Optimization (AEO) have been introduced in 2019 by Li et al. [32] and Zhao et al. 

[33], respectively. Firstly, the proposed SMA aims to introduce an alternate metaheuristic algorithm for solving 

complex and stochastic optimization problems based on the life cycle of SMA and its morphological changes in 

foraging. The SMA algorithm for solving stochastic optimization problems is summarized in Table 2. 

Table 2: The Slime Mould Algorithm (SMA) algorithm procedures. 

Step Description 

1 Initialize the population: set the search space and size of population and number of iterations. Furthermore, in this step 

a random population in the domain will be generated. 

2 Define the objective (cost function of OPF) and Initialize the first slime mould positions. Here, the iteration will be set 

equal to 1 

3 Calculate the the fitness of all SM positions by solving the objective function and determine the best location where the 

best fitness. 

4 Searching where the high quantity of food (the cost function value) connected to the SM, at each iteration. This process 

aims to regulate the SM movement towards the best cost function values. Then, the update positions is selected and the 

fitness value is calculated.  

5 Repeat steps 2–4 until the maximum iterations number, which is the the stop criterion here. 

 

In another algorithm, the flow of energy in an ecosystem is motivated [33] to develop a novel metaheuristic 

algorithm called artificial ecosystem-based optimization (AEO). AEO algorithm high ability in solving complex 

problems with less convergence rate and computational costs. The AEO optimization uses three behavior levels 

of living organisms, which are production, consumption, and decomposition. The AEO optimization algorithm 

can be described by following energy movement's rules in an ecosystem: 

o The ecosystem is the population search area, which includes the following living organisms: producer, 

consumer, and decomposer. 

o The population (ecosystem) will only include one producer and one decomposer as an individual in the 

population. 
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o The rest of the individuals in the population will be consumers (carnivore,  herbivore, or omnivore). 

o Each of the individual in a population will have an energy level. This energy level will be evaluated by 

using cost function (fitness value), where the higher fitness value pointed to higher energy level. 

The AEO algorithm for solving complex and stochastic optimization problems is summarized below: 

Step 1 Initialize the population of an ecosystem: this step aims to select the cost function for the proposed 

problem, set the search space and size of population and number of iterations.  

Step 2 Identify the objective cost function (fitness function) and calculate the best fitness (solution) for initial 

populations by solving the objective function.   

Step 3 Searching steps: at each iteration, a mimics food (cost function) searching process is applied, where each 

consumer may eat (search move) a random producer, or consumer with a lower level of energy or both.  This 

process is a random walk searching steps aims to effectively explore the search space with neighborhood and 

long-run movements close to JS algorithm, which help to the global optimum and avoid local ones. 

Step 4 Update the position of each individual for the producer, consumer, and decomposer and then recalculate 

the fitness by solving the objective function at the new positions and determine the best available solution. Here, 

the iteration will be updated.   

Step 5: Repeat steps 2–4 until the maximum iterations number, which is the stop criterion here. 

4. Results and discussion 
    

In order to examine and validate the performance of the proposed new metaheuristic optimization algorithms, an 

IEEE 30-bus with renewable energy resources and FACT devices has been used. Firstly, the description of case 

studies is presented; then, the proposed optimization algorithms evaluated and tested under different network 

operation scenarios and for different OPF problems (single and multi-objective functions).  Throughout this 

section, the proposed new metaheuristic optimization techniques (MPA, JS, SMA and AEO) are comparable to 

the common heuristics optimization algorithms from the literature, specifically: PSO, MFO and GWO [14,16-18]. 

 

4.1 The power network system: Case studies 
   

The IEEE 30 power network is obtained from [3,37,38] as a reference network model, as described in Table 

3, with 6 thermal generation units, 30 buses, 41 branches, 24 control variables  and load equal to 100 MVA single 

swing bus which is bus 1. 

 

 

Table 3: The main characteristics of IEEE 30-bus system. 

Characteristics Value 

Thermal generations Located at buses number 1, 2, 5, 8, 11 and 13. 

Load voltage  0.95–1.05 p.u 

Generator voltage 0.95–1.1 p.u 

Transformers with tap changer Located at buses number 11,12,15 and 36; varying the voltage from 0.9 to 1.1 p.u 

Swing bus Bus 1 

Active and reactive demand  2.834 p.u and 1.262 p.u 

Limits of voltage automatic regulator 0- 0.5 p.u 

 



15 

This reference network model is adjusted by incorporating two-variable PV and wind generation units. The 

PV and wind systems are presented in Section 2.3 and the model's data is presented in Tables 4 [3]. Throughout 

this section, the results of the proposed optimization algorithms will be compared for specific power network 

models based on the following configurations: 

• The IEEE 30-bus system –(1): The IEEE 30-bus system is modified in this model by adding PV and wind 

generation units at bus 24 and 28, respectively, and replacing the thermal generation units at buses 5 and 

13 with PV units and replacing the thermal generation at bus 11 by wind system, as presented in Figure 2.  

• The IEEE 30-bus system –(2): to explore the impact of the PV and wind generation units on the 

performance of the power network and proposed optimization algorithms, the IEEE 30-bus system is 

modified by adding PV and wind units at buses 17 and 25, respectively, and replacing thermal generation 

at buses 5 and 13 by PV units and at bus 5 by wind unit at bus 11. 

  

In this paper, to investigate and evaluate the impact of incorporating FACT devices to the power network 

system on the optimization algorithm performance and solving the OPF problems, the proposed IEEE 30-bus 

systems (1) and (2) are modified by inserting FACT devices.  The optimal location and sizing of FACTS devices 

have been founded based on achieving the maximum improvement at each cost function.  

The proposed IEEE power network models (1) and (2) are used to formulate the single and multi-objective 

functions for the OPF problem, as presented in Section 2. Table 5 presents the coefficients of the proposed cost 

function for the OPF in Section 2 [3].  In order to solve the cost functions in Section 2 and achieve the best optimal 

solution, the parameters of the proposed new metaheuristic optimization techniques (MPA, JS, SMA and AEO) 

need to be first selected.  In general, the optimization algorithm's performance relies on different factors such as 

the optimization solver parameters, the OPF complexity, the problem constraints and the availability of the data 

[3.30-33]. Furthermore, each optimization algorithms has a number of advantages and drawbacks and there is no 

optimization solver that can be suitable for all engineering problems. Therefore, we evaluated and compared 

different new metaheuristic optimization algorithms. The parameters of the proposed new metaheuristic 

optimization algorithms are selected and verified by using empirical tests based on previous studies model data. 

In this article, the proposed optimization algorithms are simulated over a wide range of values for each parameter 

and the optimal value for each parameter (i.e., which achieves the best solution) is selected. Table 6 presents the 

range and the optimal values of the main parameters for each metaheuristic optimization algorithms. In this work, 

the simulation models for the proposed metaheuristic optimization algorithms have been developed on MATLAB 

2016 using 2.8-GHz i7 PC with 16 GB of RAM. 
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Fig. 2. The proposed IEEE 30-bus system – (1). 
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Table 4: The PV and wind systems data. 

Wind system. 

Unit Bus 

Modified 1 

Bus 

Modified 2 

No. of turbines 𝑉𝑛𝑜𝑚  𝐾 𝑑 𝑊𝑖𝑛  (m/s) 𝑊𝑜𝑢𝑡  (m/s) 𝑊𝑟  (m/s) 

1 11 11 10 2 9 1.65 4 25 13 

2 28 17 12 2 10 1.7 4 25 13 

PV system. 

Unit Bus 

Modified 1 

Bus 

Modified 2 

  𝑃𝑛𝑜𝑚  (MW) 𝑆𝑠𝑡  (W/m2) 𝑆𝑐  μ σ   

1 5 5 25 800 120 6 0.6   

2 13 13 30 800 200 6 0.6   

3 24 25 30 800 170 6 0.6   

 

 Table 5: The generation operational cost coefficients. 

The generation cost coefficients 

Generator bus 𝜆𝑔 𝛿𝑔 𝜑𝑔 

1 1 0 2 0.00375 

2 2 0 1.75 0.0175 

4 8 0 3.25 0.00834 

 

Table 6: The proposed new metaheuristic optimization optimization parameters. 

 

 

 

 

 

 

 

 

 

 

4.2 OPF problems results with single and multi objective function  
 

This section aims to present the performance of the proposed metaheuristic optimization algorithms using 

IEEE 30-bus system – (1) for all objective function cases, as presented in Section 2. The objective function values 

Algorithm Parameters Values Testing Range 

PSO [7,8,23] Coefficient of inertia Decreasing from 0.9 to 0.4 (linearly) ---- 

Search agents number  50 25-100 

Maximum iteration number 100 50-200 

Coefficient of acceleration  1 and 2  

MFO [14] Size of population 50 25-100 

 Maximum iteration number 100 50-200 

GWO [16] Size of population 50 25-100 

 Maximum iteration number 100 50-200 

MPA [30] Size of population  50 25-100 

Maximum iteration number 100 50-200 

JS [31] Size of population 50 25-100 

Maximum iteration number 100 50-200 

SMA [32] 

 

 

Maximum iteration number 100 25-100 

Size of population 50 50-200 

AEO [33] 
 

Maximum number of iterations 100 50-200 

Size of population 50 25-100 
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for each metaheuristic optimization solver are used to compare the results, where the transmission network loss, 

generation cost and voltage deviation are given in MW, $/h and p.u, respectively.  In Figure 3, the proposed new 

metaheuristic optimization algorithms outperformed the PSO, GWO and MFO algorithms, as a common and new 

algorithms in the literature, in all OPF cases. In addition, the result showed that the AEO algorithm outperformed 

all other metaheuristic optimization algorithms for Cases 1 and 2 with the minimum cost function value. For 

example, the AEO obtained 752  $/h in case 2 compared to 778 $/h and 765 $/h for PSO and SMA, respectively. 

However, the SMA outperforms the AEO algorithm and all other metaheuristic optimization algorithms in Case 

3 by achieving the lower cost function equal to 0.123689 p.u.  The SMA and MPA algorithms have obtained close 

results for the multi-objective function problem (Cases 4). In Case 4, the AEO algorithm handled multi-function 

in a better way and outperformed other algorithms and achieved the lower cost function value equal to 1109.49. 

  

  

Fig. 3: Results of the proposed metaheuristic optimization algorithms for IEEE 30-bus system – (1). 

 

 

In order to investigate how the proposed optimizations algorithm converges, the convergence curves for all 

cases are presented in Figure 4. The convergence curves aim to introduce the relationship between the number of 

model iterations and the value of the cost function. Figure 4 shows that the AEO algorithm has the smoother and 

most speedy convergence curve compared to the other proposed metaheuristic optimization algorithms, where the 

AEO reached the optimal values for all cases with the less number of iterations. This presented the AEO algorithm 

as the most efficient algorithm in terms of lower computational cost and higher efficiency in CPU utilization. 

 

2.2

2.25

2.3

2.35

2.4

2.45

2.5

Case 1

P
o

w
er

 lo
ss

 (
M

W
)

MPA

SMA

PSO

JS

AEO

GWO

MFO

735

740

745

750

755

760

765

770

775

780

785

Case 2

C
o

st
 (

$
\h

)

0.12

0.122

0.124

0.126

0.128

0.13

0.132

Case 3

V
o

lt
ag

e 
d

ev
ia

ti
o

n
  (

p
.u

)

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

Case 4

C
o

st
 f

u
n

ct
io

n
 v

al
u

e 
fo

r 
th

e 
m

u
lt

i-
o

b
je

ct
iv

e 
fu

n
ct

io
n



19 

 

 

 

  

 

Fig. 4. Convergence curves of the proposed metaheuristic optimization models for IEEE 30-bus system – (1). 
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4.2.1 The impact of Renewable energy sources locations on the OPF problem 
 

In order to introduce and investigate the impact of the renewable energy source locations on the OPF solvers, 

the IEEE 30-bus system– (1) has been used in this section. In the previous section, the AEO outperformed all 

other algorithms for Cases 1,2 and 4 for the IEEE 30-bus system– (1).  Table  7 presents the results of the proposed 

metaheuristic optimization models for the IEEE 30-bus system – (1) and IEEE 30-bus system – (2) for all cases. 

The metaheuristic optimization results in Table 7 indicate that the renewable energy sources and their locations 

have a significant impact on the optimization solver performance and OPF solutions. In Table 7, the proposed 

new metaheuristic optimization algorithms outperformed the PSO, GWO and MFO algorithms, as a common and 

new algorithms in the literature, in all operation scenarios.  The results also show that there is a difficulty for a 

specific metaheuristic optimization to a suitable and optimal solver for all case and operation generation scenarios. 

For example, the AEO algorithm in case 1 for the IEEE 30-bus system– (1) with 2.288 MW outperformed all 

other algorithms but for the IEEE 30-bus system– (2) was not the case and the MPA algorithm achieved the lower 

losses result with 2.5 MW. 

 

Table 7: Results of the proposed metaheuristic optimization models for (A) the IEEE 30-bus system – (1) and (B) the IEEE 30-bus system – 

(2) for all cases. 
 

Case 1 Case 2 Case 3 Case 4 

 (A) (B) (A) (B) (A) (B) (A) (B) 

MPA 2.306 2.500 757.663 767.532 0.1246 0.1389 1134.19 1121.98 

SMA 2.381 2.621 765.360 767.991 0.1236 0.1398 1134.41 1146.68 

PSO 2.424 2.635 778.975 764.061 0.1288 0.1335 1156.86 1143.22 

JS 2.322 2.570 754.027 758.408 0.1274 0.1408 1120.66 1138.76 

AEO 2.288 2.535 752.468 767.306 0.1245 0.1314 1109.49 1140.63 

GWO 2.464 2.681 779.360 768.968 0.1294 0.1410 1159.89 1151.68 

MFO 2.435 2.659 779.745 767.561 0.1300 0.1409 1160.86 1142.53 

4.3 FACT devices results 
 

To explore the impact of incorporating FACT devices to the power networks on the power network and OPF 

problems solvers performance, FACT devices have been added to the IEEE 30-bus system – (1) and IEEE 30-bus 

system – (2).  In this paper, the optimal location and sizing of FACTS devices have been determined based on 

achieving the maximum improvement at each cost function. The proposed new metaheuristic algorithms results 

by using IEEE 30-bus model – (1) are presented in Figure 5 and compared to the results from IEEE 30-bus model 

– (2) in Table 8. The result of the IEEE 30-bus system - (1) with FACT devices showed that the proposed new 

metaheuristic optimization algorithms (MPA,SMA,JS,AEO) are more effective solvers for the OPF problems 

cases compared to the PSO, GWO and MFO algorithms. In Figure 5, the AEO algorithm outperformed all other 

metaheuristic optimization algorithms for all OPF cases. For example, the AEO obtained 0.0844  p.u in case 3 

compared to 0.1155 p.u for PSO, which means that the AEO algorithm improved the voltage deviation term by 

27% compared to the PSO algorithm. The AEO and JS algorithms have obtained close results for all OPF cases. 

In Case 4, the PSO algorithm was not able to handle the multi-functions in and complexity compared to other 

algorithms, where it achieved the higher cost function value. 
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Fig. 5. Results of the proposed metaheuristic algorithms for IEEE 30-bus system - (1) with FACT devices. 

 

In order to present the efficiency in CPU utilization for the proposed metaheuristic optimizations algorithms, 

Figure 6 shows the convergence curves for IEEE 30-bus system – (1) with FACT for all cases. Figure 6 shows that 

the AEO algorithm is the most efficient algorithm in term of lower computational cost and higher efficiency in 

CPU utilization, where the AEO curve was the smoother and most speedy compared to the other proposed 

metaheuristic optimization algorithms and achieved the optimal values for all cases with the less number of 

iterations.  
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Fig. 6. Convergence curves of the proposed metaheuristic optimization models for IEEE 30-bus system – (1) with FACT. 
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4.3.1 The impact of Renewable energy sources locations and FACT devices on the OPF problem  
 

In this subsection, firstly we will investigate the impact of the renewable energy sources locations on the OPF 

solvers, the IEEE 30-bus system– (1) equipped with FACT devices.  Then, the results will discuss the impact of 

adding FACT devices into the power network. In the previous section, the AEO outperformed all other algorithms 

for all OPF cases for the IEEE 30-bus system– (1) with FACT devices.  Table  8 presents the results of the 

proposed metaheuristic optimization models for the IEEE 30-bus system – (1) with FACT and IEEE 30-bus 

system – (2) with FACT for all cases. The proposed MPA,SMA,JS and AEO algorithms introduced as more 

effective solvers for the OPF problems cases compared to the PSO, GWO and MFO algorithms, as shown in Table 

8. In the power networks (1) and (2) with FACT devices, the AEO outperformed all other optimization (MPA, 

SMA, PSO and JS) by decreasing the cost function, for example the cost function reduced by 6.1%, 6.0%, 20.7% 

and 4.7%, respectively, for Case 1 OPF problem using network– (1). This indicates that the location of renewable 

energy sources locations on the power network with FACT devices has a limited impact on the optimization 

algorithm compared to the power network without FACT devices as presented in Section 4.2.1.  However, the 

AEO and the other proposed optimization algorithm results for the IEEE 30-bus system – (2) with FACT has been 

increased compared to the IEEE 30-bus system – (1) with FACT, for example the cost functions values obtained 

by AEO  for Case 1 to 4 increased by 10.5%, 0.07%, 3.2% and 0.3%, respectively. Table 9 presents the results of 

the proposed metaheuristic optimization models for the IEEE 30-bus system – (1) with and without FACT devices 

for all cases. The metaheuristic optimization results in Table 8 indicate that adding FACT devices to the network 

will have a significant impact on the OPF solutions in all cases. The results also showed that the power network 

with FACT devices achieved better and lower cost function values for all cases except case 4 (multi functions) 

compared to network without FACTS. This is mainly related due to the increase in the complexity of the system 

and cost functions by adding FACTS and solving multi cost function. As result, adding FACT devices to the 

network improved the voltage profile, decreased power losses, generation cost and consequently increased 

stability the power network operation condition. 

Table 8: Results of the proposed metaheuristic optimization models for (A) the IEEE 30-bus system – (1) with FACT and (B) the IEEE 30-

bus system – (2) with FACT for all cases. 
 

Case 1 Case 2 Case 3 Case 4 

 (A) (B) (A) (B) (A) (B) (A) (B) 

MPA 2.307 2.757 763.339 764.094 0.0924 0.1084 1126.462 1140.011 

SMA 2.300 2.554 770.772 749.549 0.1117 0.0970 1133.841 1149.381 

PSO 2.626 2.898 777.041 780.591 0.1155 0.1045 1171.485 1153.269 

JS 2.278 2.587 756.213 755.658 0.0930 0.1096 1124.101 1132.627 

AEO 2.176 2.404 751.130 751.625 0.0844 0.0871 1120.285 1123.203 
GWO 2.672 2.9351 783.041 783.576 0.1187 0.1084 1180.565 1147.011 
MFO 2.626 2.6437 779.453 781.609 0.1159 0.1098 1186.537 1153.381 

 

Table 9: Results of the proposed metaheuristic optimization models for (A) the IEEE 30-bus system – (1) without FACT and (B) the IEEE 

30-bus system – (1) with FACT for all cases. 
 

Case 1 Case 2 Case 3 Case 4 

 (A) (B) (A) (B) (A) (A) (A) (B) 

MAP 2.306 2.307 757.663 763.339 0.1246 0.0924 1134.19 1126.462 

SMA 2.381 2.300 765.360 770.772 0.1236 0.1117 1134.41 1133.841 

PSO 2.424 2.626 778.975 777.041 0.1288 0.1155 1156.86 1171.485 

JS 2.322 2.278 754.027 756.213 0.1274 0.0930 1120.66 1124.101 

AEO 2.288 2.176 752.468 751.130 0.1245 0.0844 1109.49 1120.285 
GWO 2.464 2.672 779.360 783.041 0.1294 0.1187 1159.89 1180.565 
MFO 2.435 2.626 779.7459 779.453 0.1300 0.1159 1160.86 1186.537 
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4.3.2 The FACT devices settings and locations  

In this paper, the common types of FACTS devices are employed, which are: shunt controllers (SVC) and series 

controllers (TCSC and TCPS) to increase the power transfer capability and the overall power network efficiency. 

The significance of integrating FACTS devices in the power network depends on the location and sizing of the 

FACTS devices and coordination between them. Therefore, the optimal location and sizing of FACTS devices 

have been founded based on achieving the maximum improvement at each cost function (Cases 1 to 4) using the 

proposed new metaheuristic optimization techniques, as shown in Tables 10 and 11. Table 10 presents an example 

for the placement and ratings details for all FACT devices in the IEEE 30-bus system –(1). The results in Table 

10 presented the optimal location, L, at the network (bus for SVC and line for TCSC and TCPS) and the 

magnitude, M, of FACT devices and the objective function value, O.F, for two optimal power flow problems, 

voltage deviation (case 3) and power losses (Case 1), with load 100% and 120%. In Table 10, the impact of the 

renewable energy sources locations on the placement of FACT devices and the OPF solvers is presented.  Table 

11 presents the results of the optimal location, L, at the network (line/Bus number) and the magnitude, M, of 

FACT devices the IEEE 30-bus system– (1) and 2 with 120% load using the proposed metaheuristic optimization 

models for the multi-objective function (Case 4). Overall, the proposed metaheuristic optimization models 

determined the placement and ratings for the FACT device, which help the OPF to achieve the minimum value 

cost function for each case or operation scenario. This leads to conclude that there is no fixed and best location 

for FACT devices suitable for all operation and OPF cases. 

 

Table 10: Results the optimal location, L, at the network (bus for SVC and line for TCSC and TCPS) and the magnitude, M, of FACT devices 

the IEEE 30-bus system– (1) with 100% and 120% load using of the proposed metaheuristic optimization models for cases 1 and 3. 

 
Techniques 

SVC    TCSC  TCPS  O.F value 

Load L M L M L M L M L M L M Case 3 

1
0
0
%

 

MPA 19 7.601 15 6.786 26 0.227 41 0.498 22 2.836 20 0.092 0.09248 

SMA 9 1.967 20 3.074 11 0.282 22 0.316 27 0.122 33 3.775 0.11179 

PSO 19 9.698 3 -9.524 23 0.377 34 0.500 1 -2.763 1 -5.000 0.11556 

JS 17 2.925 19 9.204 26 0.238 34 0.342 29 0.447 15 1.487 0.09300 

AEO 22 5.494 19 9.993 23 0.345 26 0.114 26 -0.681 20 -1.468 0.08443 

              Case 1 

1
0
0
%

 

MPA 13 1.130 21 9.250 13 0.197 39 0.292 7 -4.989 41 -0.333 2.30747 

SMA 19 2.313 24 2.278 23 0.305 30 0.244 33 1.634 29 1.592 2.30030 

PSO 21 10.00 27 8.927 35 0.422 8 0.006 28 1.589 41 -1.597 2.62646 

JS 21 3.796 19 1.849 32 0.259 22 0.259 25 0.590 20 1.154 2.27883 

AEO 19 7.663 17 9.369 33 0.442 14 0.173 17 3.562 24 -3.846 2.17632 

              Case 3 

 1
2
0
%

 

MPA 3 -9.82 19 9.999 8 0.289 10 0.495 30 -0.013 9 -2.138 0.10721 

SMA 19 8.397 30 3.918 24 0.485 28 0.310 34 -1.513 20 0.002 0.10162 

PSO 19 10.00 3 7.085 34 0.015 30 0.004 16 -3.119 1 5.000 0.13403 

JS 22 1.568 19 9.884 36 0.307 37 0.293 26 -0.135 24 -1.184 0.11855 

AEO 20 4.488 19 6.228 8 0.096 29 0.211 11 1.855 33 -2.955 0.10669 

              Case 1 

1
2
0
%

 

MPA 16 0.783 21 10.000 35 0.225 24 0.255 18 2.063 35 0.884 3.62043 

SMA 28 3.993 27 5.540 9 0.033 19 0.124 31 2.342 13 0.469 3.60788 

PSO 3 8.132 4 10.000 1 0.497 1 0.000 6 4.165 30 3.170 3.93822 

JS 20 6.684 23 2.423 25 0.279 33 0.317 26 0.227 26 2.237 3.69841 

AEO 18 -1.82 19 4.764 33 0.241 8 0.133 24 1.508 16 -1.476 3.58927 
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Table 11: Results the optimal location, L, at the network (bus for SVC and line for TCSC and TCPS) and the magnitude, M, of FACT devices 

the IEEE 30-bus system– (1) and 2 with 120% load using of the proposed metaheuristic optimization models for case 4. 

 

Techniques 

SVC    TCSC  TCPS  O.F value 

Load L M L M L M L M L M L M Case 4 

IE
E

E
 3

0
-b

u
s 

sy
st

em
–
 

(1
) 

MPA 
8 5.129 22 -3.881 13 0.002 23 0.038 38 1.030 35 -0.341 1126.4629 

SMA 
17 2.524 19 2.610 27 0.371 27 0.317 34 1.603 23 1.288 1133.8412 

PSO 
12 -2.060 12 5.101 21 0.411 35 0.500 29 5.000 36 0.387 1171.4858 

JS 
13 1.234 19 4.456 26 0.233 28 0.270 20 1.128 28 0.419 1124.1010 

AEO 
9 -1.180 16 6.997 11 0.217 12 0.231 24 -1.946 33 0.286 1120.2850 

               

IE
E

E
 3

0
-b

u
s 

sy
st

em
–
 

(2
) 

MPA 
22 -5.504 8 4.227 24 0.279 35 0.422 28 0.144 37 0.069 1140.0112 

SMA 
19 3.660 3 9.915 1 0.414 23 0.210 8 1.927 18 0.180 1149.3819 

PSO 
4 6.650 17 9.423 40 0.348 37 0.235 1 -4.265 1 -4.312 1153.2694 

JS 
14 0.961 16 3.689 23 0.218 21 0.199 16 1.475 23 1.389 1132.6270 

AEO 15 9.905 13 
-2.243  

18 0.447 19 0.186 6 -0.651 34 2.60 1123.2038 

 

4.4 Power network stability : Increase demand results 

Every year, the electricity energy consumption is significantly increasing worldwide due to the moving towards 

using electrical vehicles, increasing of using electricity heating and air conditioning at homes and growing 

population. This increased the stress on the existing networks, energy suppliers and network operators. To explore 

the impact of the proposed metaheuristic optimization algorithms on the power network stability, the proposed 

algorithms are tested on IEEE 30-bus system - (1) with FACT devices and 20% load increasing for OPF cases 1 

and 3. Figure 7 indicates that the increase in electricity energy consumption has a significant impact on the OPF 

solutions. The proposed optimization algorithms results (objective function values) for 120% load demand has 

been increased for all algorithms compared to the power network with 100% load demand, except only for the 

SMA algorithm in Case 3.  As an example, the objective function value obtained by the JS algorithm for case 1 

was dramatically increased from 2.278 MW with 100% load demand to 3.698 MW for the 120% load demand 

scenario. In Case 3, the impact of increasing the load demand on the optimization solver results was limited 

compared to Case 1. This mainly due to that the power loss term (Case 1) is linked to the increment in the power 

consumption (current), while this increment  have a lower impact on voltage deviation (Case 3). Furthermore, the 

proposed MPA,SMA,JS and AEO algorithms have the ability to handle the demand increasing compared to the 

PSO, GWO and MFO algorithms, as shown in Figure 7. 
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Fig. 7. Results of the proposed metaheuristic algorithms for IEEE 30-bus system - (1) with FACT devices and 100% and 120% load demand 

for Case 1 and Case 3. 

4.5 Statistical analysis for the proposed metaheuristic optimization algorithms 
 

In the previous sections, the proposed new metaheuristic optimization algorithms results were presented for 

different power network scenarios and OPF problem cases. This section aims to provide further analysis and 

evidence on the performance of the proposed metaheuristic optimization algorithms were used to solve Case 1 

and Case 4 problems for IEEE 30-bus system - (1) with FACT model over 30 runs of simulations. Table 12 

presents the statistical analysis which includes the minimum and maximum values of the cost function (Case1 and 

4), median and standard deviation for all methods. The results show that the AEO is the most effective 

metaheuristic optimization algorithm compared to other algorithms where it achieved the lower value of cost 

function in both cases 1 and 4 for the minimum, maximum and median values. For example, the median value for 

the AEO algorithm in Case 2 was 777 $/h in case 2 and 1137 in case 4 compared to 798 $/h and 1193 for the PSO 

algorithm. 

In this work, the results analysis for the proposed new metaheuristic optimization algorithms (MPA, SMA, JS, 

AEO) for different OPF problems (single and multi cost functions) showed a high ability to handle simple and 
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complex problem and cost functions compared to the PSO, GWO and MFO algorithms. Furthermore, the proposed 

methods have been tested under different network scenarios (different renewable energy reassures locations and 

with and without FACTS) and they showed high performance compared to PSO, which mean more capability to 

solve complex operation scenarios. Table 13 presents the proposed new metaheuristic optimization algorithms 

(MPA, SMA, JS, AEO) results for IEEE 30-bus system – (1) with FACT for case 4 as example. In Table 13, the 

PG, V and T are the optimal values for the generators active power, the generator voltage magnitude and the tap 

changer voltage, respectively.  The next step after having successful and more effective solvers for the OPF 

problems is in to implement the proposed models in real power system (physical system). This implementation 

will required a central control system in the power generation operator center. This central control system needs 

to be connected via high efficient communication way with the respective generating units.  In addition, the 

forecasted load demand is feed to the central control system, where the control system will analysis the data and 

calculated the optimal values for each generating units within the real time sensing. The implementation of the 

optimal control model will be part of our future work.  

 

Table 12: An example of the statistical analysis for the metaheuristic optimization algorithms. 

IEEE 30-bus system - (1) with FACT (Case 2) 

  Minimum Maximum Median Standard deviation 

MPA 764.0944212 827.6935279 778.1959756 17.52491818 

SMA 749.5494199 814.2483846 790.0545993 19.30104853 

PSO 780.5919434 816.002263 798.3366146 10.41263946 

JS 755.658667 804.0993203 782.9635723 14.65774005 

AEO 751.625188 799.5335415 777.7425605 12.91117797 

GWO 783.041372 832.4576209 798.2466997 16.3903049 

MFO 779.4530062 831.4342224 785.3670284 16.74506701 

IEEE 30-bus system - (1) with FACT (Case 4) 

  Minimum Maximum Median Standard deviation 

MPA 1126.462918 1163.607485 1151.974092 13.01650462 

SMA 1133.841221 1166.586344 1147.253348 10.21013379 

PSO 1171.485865 1218.246118 1193.230814 14.52953599 

JS 1124.101015 1172.156689 1138.665991 14.52826773 

AEO 1120.285054 1162.130096 1137.830899 14.13981913 

GWO 1180.565865 1216.903826 1196.755997 11.09601208 

MFO 1186.537627 1227.246118 1196.740404 13.45301569 
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Table 13: Results of the proposed new metaheuristic optimization algorithms (MPA, SMA, JS, AEO) for IEEE 30-bus system – (1) with 

FACT over Case 4. 

Parameters  Min Max AEO JS SMA  MPA PSO GWO  MFO  

PG2 (MW) 20 80 60.91590074 61.75439726 59.1589857 50.66387545 53.0141836 69.95356678  58.0882959  

PG5 (MW) 15 50 38.86379597 35.09899276 38.13127567 47.46714526 42.34352238 15.0012478  49.88826941  

PG8 (MW) 10 35 31.02593299 27.51352351 18.25423341 34.33809228 29.71446607 35.0102357  10.00471378  

PG11 (MW) 10 30 19.24021631 25.62443086 24.07287831 29.06903483 29.46654127 30.011785  30.0054231  

PG13 (MW) 10 40 29.06308837 28.41005394 32.11575496 25.71477374 30.91206419 34.42460375  39.9820039  

PG24 (MW) 10 40 31.08996052 29.15786141 25.09889601 23.06182076 34.43814828 14.43228539  10.0011789  

PG30 (MW) 10 40 23.28022569 25.96990342 25.17768462 25.80002554 29.85067365 27.00338789  27.30842714  

V1 (p.u.) 0.95 1.1 1.027171101 1.05620988 1.067212132 1.031378457 1.037852309 1.10078521  1.033414137  

V2 (p.u.) 0.95 1.1 1.021959573 1.046154317 1.06587831 1.012041209 1.017129991 1.081552392  1.009320154  

V5 (p.u.) 0.95 1.1 0.996665931 1.013067307 1.03182639 0.99431944 0.976508666 1.016130962  0.973710352  

V8 (p.u.) 0.95 1.1 1.004713358 1.032821269 1.047164574 1.006129423 0.957250041 1.029020865  0.95010047  

V11 (p.u.) 0.95 1.1 1.041945288 1.053985009 1.001603553 1.065567198 0.982000793 0.985809577  1.042131812  

V13 (p.u.) 0.95 1.1 1.043220276 1.029773296 1.003870344 1.024509111 1.024986989 1.033621204  1.018703925  

V24 (p.u.) 0.95 1.1 1.019101157 1.027296875 1.007721629 1.006897391 1.03595268 1.01463105  1.007281203  

V30 (p.u.) 0.95 1.1 1.001708492 1.030688211 1.048237654 1.004723209 0.960408344 1.03924616  0.962066795  

T11 (p.u.) 0.9 1.1 0.972353335 1.041330495 1.038901981 0.984948871 0.900147 1.099999997  0.90016977  

T12 (p.u.) 0.9 1.1 1.000748841 1.005308415 0.993247369 0.94239339 0.90232755 0.910539756  0.917339616  

T15 (p.u.) 0.9 1.1 1.032562343 1.001704502 1.002087402 0.947895542 0.901590 0.90100852  0.900402839  

T36 (p.u.) 0.9 1.1 0.973470462 0.994348396 1.003857876 0.953914139 0.902273908 0.969580494  0.946880002  

Objective function 1109.49 1120.66 1134.41 1134.19 1156.86 1159.89  1160.86  

 

 

5. Conclusions  
 

In this work, new metaheuristic optimization algorithms have been developed and employed to find the optimal 

placement and ratings for the FACT device in line with solving different OPF problems. The OPF problems for 

IEEE 30-bus equipped with renewable energy sources (wind and PV) and FACTS have been formulated as single 

and multi-objective functions through four cases considering the power line loss, power generation cost and 

voltage deviation. In this article, a probabilistic estimation model developed as a realistic model to generate the 

wind and PV power generation profiles.  Then, new optimal solvers (MPA, SMA, JS, AEO) have been used to 

improve the power grid quality by determining the optimal location and size of FACT devices to achieve cost-

effective and environmentally friendly power supply solutions. In the result and discussion section, the new 

metaheuristic optimization algorithms have been evaluated and compared to common and powerful algorithms, 

PSO, GWO and MFO.  The results show that the AEO is the most effective metaheuristic optimization algorithm 

compared to other algorithms where it achieved the lower value of cost functions due to the high ability of solving 

complex OPF problems with less convergence rate and computational costs. For example, the AEO outperformed 

MPA, SMA, PSO and JS algorithms by decreasing the cost function around 6.1%, 6.0%, 20.7% and 4.7%, 

respectively, for Case 1 OPF problem using network–(1). The proposed new metaheuristic optimization 

algorithms have been developed and compared in this work to provide the network operator and the decision-
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maker different suitable optimization solvers by considering different operation cases such as increasing the load 

demand, with and without FACTS and renewable energy sources, different renewable energy sources locations 

on the network. The implementation of proposed new metaheuristic optimization algorithms in real power systems 

and including energy storage systems with different PV system model in the power network will be part of our 

future work. 
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