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Abstract

The development of multicellular organisms remains one of the most

enduring puzzles of science. While wet lab methods have proven effective in

unravelling multiple mechanisms, much is yet to be discovered. Computer

simulations are increasingly used in this context and present over wet lab

experiments the advantages of simplicity, reduced risk and total control over

experimental conditions and parameters. Hence the need for more computa-

tional models and studies establishing their usefulness for biologists. In this

work, we present a novel agent-based computational model of cell and tissue

mechanics (MG#) of the family of Deformable Cell Models, able to simulate

various phenomena in morphogenesis. Furthermore, we show that MG# can

be extended to couple mechanical and chemical variables describing the dy-

namics of a cell within a unified framework. Using MG#, we reproduce key

morphological events of mouse implantation and, for the first time, provide

theoretical evidence that trophectoderm morphogenesis can regulate epiblast

shape upon implantation. Moreover, enriching centre-based models with a

polarity term, we show that directed cell behaviours are a sufficient drive

for zebrafish fin development. Together, the results presented in this thesis

offer key insights into morphogenesis, highlight the usefulness of agent-based

modelling methods in the study of embryogenesis, and propose new math-

ematical models, and computational tools purposed for the investigation of

early development.
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Chapter 1

Introduction

Embryogenesis, which designates the formation and development of an em-

bryo, is home to spectacular and species-consistent morphological events that

gradually transform an organism from a single egg to a fully functional liv-

ing being [81]. Morphological changes in embryonic tissues are driven by the

coordinated dynamics of myriads of cells, the basic unit of biological life.

At the subcellular stage, an impressive machinery deploys intense activity

dominated by biomechanics, gene expression and molecular signalling that

regulates cell states. On the one hand, cell shapes change and their move-

ments generate the physical forces that shape the embryo. On the other

hand, differences in genetic activity lead to the synthesis of various proteins

that explain differentiation into distinct cell types [152]. Development is

therefore the result of the interplay between two mutually influencing pro-

cesses: “mechanical morphogenesis” and “chemical morphogenesis” [145]. To

adopt an artistic metaphor, these tightly coupled processes can also be de-

scribed as shaping, by which the embryo “sculpts” itself, and atlassing, by

which it “paints” itself [35].

5
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Following this description, modelling biological development becomes

a question of how much each of these processes can be integrated into a

unified mathematical and computational formulation to account for what

is being observed experimentally. The many different modelling techniques

currently in existence can be construed as different compromises to this prob-

lem. While approaches based solely on either mechanism have been proposed

[61, 116, 146], models that couple both mechanical and chemical variables

have been on the rise in recent years [15, 35, 64, 85, 90, 115, 125], and their

promising results justify further investigation. Grounded on the latter, we

aim in this project to build computational models that can account for both

mechanical and chemical aspects of tissues dynamics, and are able to repro-

duce key morphological events in the early development of living organisms.

Computer simulations present numerous advantages over traditional ex-

perimental techniques, one of which is their extreme modulability, both in

input and output [18]. “In silico”, the experimentalist has more control over

environmental conditions, and can measure any metrics of interest. Although

this desirable feature eliminates risks, ethical concerns and ideally allows a

more thorough investigation of the studied system, one however runs the dan-

ger of falling out of the biological domain. As a matter of fact, bio-inspired

models can be pushed beyond classical biology to explore alternative forms

of life [40]. This is the programme of Artificial Life, a discipline extending

theoretical biology by exploring “life-as-we-know-it” within the broader con-

text of “life-as-it-could-be”, and deriving from there innovative technologies,

e.g. robotic or biomedical. In real-world biological modelling however, it is

crucial to keep the model outcomes in accordance with experimental observa-

tions. In this context, microscopy imaging plays a central role: observations

and simulations interact in a feedback loop, whereby imaging data informs
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and refines the model, which in turn raises new questions and suggests new

data acquisitions [18].

In this thesis, we aim to apply this workflow to the study of key episodes

of vertebrate development: mouse embryo implantation, and zebrafish pec-

toral fin development. For each of these studies, and taking into account

their peculiarities, we propose novel approaches for modelling the biome-

chanics involved. For the former, we develop a novel model of cell and tissue

mechanics based on established approaches in which cells can exhibit various

shapes. This enables us to schematically reproduce the observed biological

phenomena and quest for new insights. For the latter, we extend an existing

modelling paradigm of cell mechanics to accommodate the specific require-

ments of the study. In order to showcase the work carried out, we propose

the following outline for the rest of the thesis.

Chapter 2: Computational models of biological development

A great diversity of models exist to simulate biological cells and tissues.

Depending on the biological realism they include, the spatio-temporal scale

they capture, or the nature of variables they manipulate (physical, chemical),

models exhibit different properties and suit different purposes. Here we

review computational models of biological development in the literature.

Chapter 3: MG#: A modelling framework and simulation

platform for cell and tissue mechanics Building on the fundamen-

tal principles of Sub-cellular Element Models, we introduce a novel model

(MG#) of cells and tissues biomechanics. In this model, a cohort of particles

on the membrane and a single intracellular particle represent the biological

cell. Non-linear elastic potentials between particles mimic the plasticity of

cell membranes and the activity of the cytoskeleton within the cell. With
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this model, cells are able to exhibit bio-realistic cell shapes and cell popula-

tions can reproduce biological tissue behaviours such as invagination of an

epithelial layer or the formation of multicellular rosettes.

Chapter 4: Modelling of epithelial morphogenesis Not many

biological entities are as much regulators of biological development in or-

ganisms as are epithelial tissues and their characteristic behaviours. In this

chapter, we explore different mechanisms of epithelial morphogenesis. In

particular, we use MG# to model and simulate epithelial processes at the

scale of individual cells and tissues, including planar polarised constriction,

apical constriction and its variants, epithelial folding and rosette formation.

This chapter also aims at showcasing what is possible with MG# and lays

foundations for the study in the next chapter.

Chapter 5: Computational modelling unveils how epiblast re-

modelling and positioning rely on trophectoderm morphogenesis

during mouse implantation Implantation is a critical milestone in mouse

embryogenesis. Upon implantation, the blastocyst undergoes significant re-

modelling from an oval ball to an egg-cylinder. A key feature of this transi-

tion is the symmetry breaking in the epiblast and its shaping into a “cup”. We

hypothesise that this event is the result of mechanical constraints originat-

ing from the trophectoderm, also going through significant transformations

in this time. Using MG#, we investigate this hypothesis. Our results sug-

gest that trophectoderm morphogenesis indeed dictates the cup shaping of

the epiblast, and fosters its movement towards maternal tissue.

Chapter 6: Quantification of cell behaviors and computational

modelling show that cell directional behaviors drive zebrafish pec-

toral fin morphogenesis How the zebrafish grows its pectoral fin from a

2D layer to a 3D structure remains a challenge in embryology. By analysing
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single cell dynamics from live imaging of zebrafish embryos, we find out

that during this development cells gradually align their long axis to the

proximal-distal axis (PD) of the zebrafish fin. Building on this observation,

we enhance the basic centre-based cell model with a polarity term and sim-

ulate fin growth, allowing proliferation. Our simulations results in 3D fins

similar with shape to real ones, suggesting that directed cell behaviours, are

essential to drive fin morphogenesis in zebrafish.

Chapter 7: Conclusion Here we review the landscape of the work

carried out, identify its strengths and weaknesses, and present future per-

spectives.





Chapter 2

Computational models of

biological development

2.1 A brief history of mathematical and com-

putational models of development

Only a handful, if any, of natural mechanisms could be considered as fascinat-

ing and inspiring as morphogenesis. The formidable challenge presented by

biological development, as described by Enrico Coen, is to “understand how

the complex pattern and arrangement of different cell types that make up a

mature organism can arise from a single cell in a consistent way each gener-

ation” [30]. In their efforts solving this self-organising puzzle, embryologists

have formulated theories spanning a vast range of the natural sciences. Early

attempts described it in terms of intuitive principles such as heat, wetness,

and “solidification”. After several centuries of enlightenment and progress,

D’Arcy Thompson formally postulated that anatomical complexity emerges

from the principles of physics and chemistry [143]. A major breakthrough

11
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occurred when in 1938, Nicolas Rashevsky pioneered the field of mathe-

matical biophysics, emphasising quantitative, metric aspects of the physical

manifestations of life. In particular, he proposed a framework to describe

organisms as networks in which vertices represented biological functions and

oriented edges the interactions between them [123], and showed that cell

polarity was possible even for spherical cells [122]. Another landmark of

mathematical modelling in biology was reached in 1952 when Alan Turing

showed that pattern formation in natural systems could be simulated using

reaction-diffusion equations [145]. Expanding on Turing’s hypothesis, Lewis

Wolpert introduced the concept of positional information, which postulates a

hidden geographical organisation of the embryo into regions of cells following

different fates [152]. Over the years, more theoretical hypotheses, for exam-

ple Holtfreter’s “selective affinity” further refined by Steinberg’s differential

adhesion hypothesis (DAH), appeared and inspired further translation into

mathematical biophysics [79, 138].

Parallel to the birth of mathematical formulations of developmental the-

ories, computers also appeared and their use for all sorts of scientific purposes

grew rapidly. Whilst handwritten equations could help solve the dynamics

of a small number of cells, or evaluate a few state variables characteristic of

a tissue, this new huge computational power allowed for the simulation of

more complex phenomena. One of the earliest computerised simulations of

vertebrate development can be attributed to Jacobson and Gordon, who de-

signed and simulated a mathematical model of neural plate formation [77].

Their virtual experiment, backed by mathematical analysis, validated the

hypothesis postulated upon experimental observation which stipulated that

shrinkage of the surface of the neural plate and displacement of the entire

sheet are necessary and sufficient to produce the transformation of the neural
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plate from a hemispheric sheet of cells to a keyhole shape. Since then, com-

putational modelling has gained considerable ground and positioned itself as

an instrument of choice in the biologist’s toolbox.

2.2 Models of biological development

Anatomical complexity in embryonic tissues emerges from the multiple in-

teractions in which cells are involved. The dynamics of a cell originate from

within itself, from the influence of surrounding cells, and from the extra-

cellular matrix (ECM). Cells have the intrinsic ability to initiate complex

movements and deformations, which they achieve through constant redeploy-

ments of their internal structures [152], first and foremost their cytoskele-

ton. As cell populations usually reside in densely packed arrangements,

any changes in shape and position has a direct influence on neighbouring

cells, which themselves undergo (passively) or trigger (actively) morpholog-

ical changes in response. Several studies have established that genes are

ultimately responsible for orchestrating the internal machinery of the cell by

defining the properties that drive its activity [84]. Through multiple molec-

ular pathways featuring complex networks of inhibitor/activator agents, ge-

netic regulation establishes an anisotropic functional atlas of cells and tis-

sues, e.g. inducing asymmetries in the distribution of force-related molecules

within a single cell, thus driving deformations and migrations. In the same

way that genetic activity produces forces, mechanical signals received by the

cell can also be translated back into chemical signal via a mechanism called

mechanotransduction.
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The above description highlights the double dynamics of cellular activ-

ity, biomechanics and genetic regulation, and their tight links. Computa-

tional modelling of development is deeply grounded in this framework. On

the one hand, models of cell mechanics investigate how physical forces shape

the embryo. On the other hand, models of gene expression and molecular

signalling examine how cells determine their states and behaviours. In the

next paragraphs, we review these different paradigms, including some of their

fundamental principles and results achieved.

2.2.1 Models of cell mechanics

Generally, there are two approaches when it comes to modelling cell me-

chanics: global or “continuum” approaches, and agent-based approaches.

Continuum models are well suited for capturing large-scale dynamics in de-

veloping organisms. These models have proven useful in studying develop-

ment mechanisms of various interest. Recent studies include investigating

the role of topology and mechanics in uniaxial growing cell networks [59],

unravelling how lumenal pressure and tissue mechanics control the embryo

size [22], showing that human organoids development rely upon the contrac-

tion of the inner core of the organoid and the microstructural remodeling of

its outer cortex[6], and combining muscular differentiation and differential

growth to reproduce morphological patterns observed in the vilification of

several species [137]. In continuum systems, however, single cells are over-

looked, and focus is put on larger regions of tissues. Hence, the emergence

of phenomena initiated by single cells acting in a cohort (the very essence of

morphogenesis) can therefore not be fully appreciated. Agent-based models

of tissue mechanics, on the other hand, allow the representation of single
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cells and their heterogeneities. They can be classified into three categories:

lattice-based models, centre-based models and deformable cell models.

Lattice-based models

In lattice-based models, cells reside on a fixed lattice and their dynamics

consists of swapping lattice sites under certain conditions with the goal of

minimising some defined global energy specific to the simulated phenomena.

Simple rules prescribed at lattice level guarantee that large populations of

cells can be simulated at a computationally low cost. Surprisingly, lattice-

based models have been able to successfully simulate complex tissue-level

behaviours including cell sorting, proliferation, cell death, differentiation

and polarisation [146]. Further distinctions can be made within this

category: models featuring one cell per lattice site in Cellular Automata

(CA); multiple cells per lattice site; or one cell occupying several lattice sites

in the Cellular Potts Models (CPM). CPM arguably constitutes the most

widely used class of lattice-based models today. Inspired by the success of

the large-q Ising model in reproducing the topological changes of metals

and soap foams, Graner et al. [60] adapted this approach to biological cells

and simulated cell sorting driven by differential adhesion, giving birth to

CPM. Niculescu et al. [104] showed that CPM could realistically reproduce

shape-driven migration of biological cells, in particular the crawling motion

and deformation of amoeboid cells, and gliding of half-moon shaped

keratocyte-like cells. Lattice-based models can also be extended to 3D, as

exemplified by Belmonte et al. [10] who used CPM in 3D to simulate the

in-plane elongation (in one direction) and simultaneous shortening (in the

perpendicular direction) of a planar-polarised epithelial tissue, an event also

known as convergent extension. Nevertheless, this class of models exhibit
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a few drawbacks. Due to their stochastic nature, time scales are not well

defined. Moreover, the simple rules that govern cell movements in these

models generally do not represent biomechanics in a physically meaningful

way and are hard to interpret.

Figure 2.1: A population of cells, initially randomly scattered, gradually
sorts itself into two regions due to differences in adhesion strength between

cell types.

Centre-based models

Another class of models, centre-based models (CBMs), represent cells or sim-

ply their centres as single particles embedded in a highly viscous 3D envi-

ronment. These models assume that, in analogy to physical particles, cell

trajectories in space can be described by an equation of motion [118, 146].

Similar to lattice-based models, CBMs enable physical properties such as

volume, surface area, internal pressure and mechanical stress to be defined

for simulated cells. Moreover, the gained physical realism allows the explicit

introduction of forces, well-defined time scales, and intuitive ways of mod-

elling cell-cell interactions. With these models, however, the evaluation of

mesoscale properties such as cell shapes remains a problem. Cells generally

have a constant geometric shape, in most cases spheres. Although cell bod-

ies usually display perfect symmetry, it is possible to simulate asymmetric

cell behaviours. In order to achieve this, Delile et al. [35] define ‘active’
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behavioural forces underlying at once polarisation, mesenchymal cell pro-

trusion, and epithelial cell-junction remodelling. In CBMs, cells generally

interact with one another through a spring-damper system applied in their

centre. This constitutes of course a crude simplification of biology, where

in reality adhesion molecules act at the surface of the cell membrane, but is

nonetheless sufficient in most simulations. In an attempt to improve precise

cell-cell adhesion and collisions, Disset et al. [39] proposed a force applied at

the centre of the contact surface of cell bodies and proportional to the area of

this surface. Further enhancements employ established methods of contact

mechanics, namely Hertzian or Johnson-Kendall-Roberts theories [118, 146].

Interesting experimentally observed phenomena have been simulated using

CBMs, ranging from proliferation within monolayers [41, 88] to complex

cellular rearrangements induced by intercalation observed in the enveloping

layer of the zebrafish during gastrulation [34, 35].

The advantages of force-based models are a well-defined time scale, and

a more intuitive way of taking into account complex interactions of cells

with other cells or their environment which is why they became the standard

approach.

Deformable cell models

At the higher end of biological realism integrated within a single cell are

deformable cell models (DCMs). In DCMs the cell body is discretised into a

number of vertices or ‘nodes’ connected by viscoelastic edges and interacting

via opposite conservative forces, creating a flexible scaffolding structure with

multiple degrees of freedom per cell [146].
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In some DCMs, it is common to make a distinction between internal

nodes, which mimic the activity of intracellular organelles, and external

nodes, corresponding to the cell membrane. Newmann et al. put forward

this modelling approach by introducing the subcellular element model (SEM)

where subcellular elements (SCEs) are subjected to forces derived from a

Morse potential [102]. Multiple extensions to the SEM have been proposed.

Of notable interest is the work of Milde et al. [98] which introduces several

new features: a modification of the potential function to increase adhesion

between SCEs; cell polarity; the smooth insertion and removal of SCEs to

simulate polymerisation and depolymerisation of the actin complex (leading

to shape change, migration and growth); novel methods for detection of the

cell membrane elements; and a special SCE representing the cell nucleus.

Although pairwise interactions between particles can accommodate cell-

cell adhesion and collisions, other ways of modelling these behaviours have

also been used. In addition to potentials, and to avoid overlapping between

cell membranes, some authors employ specular reflections of cell particles on

the membranes of other cells [50]. More accuracy may be attained through

the use of established theories of contact mechanics. This is the case of

Odenthal et al. [107] who rely on the Maugis-Dugdale theory of contacts

between elastic bodies to investigate cell-cell and cell-substrate adhesion.

However, SEM descriptions of the cell are generally too broad to take into

account the specificities of epithelial cells and tissues in terms of shape and

polarisation. Marin-Riera et al. [90] tackled this challenge by proposing a

unified model of development enabling the simulation of both mesenchymal

and epithelial cells. In their model, epithelial subelements, in contrast to

mesenchymal subelements represented by spheres, are assumed to be cylin-

drical entities, each consisting of an apical and a basal part that can move
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independently. More recently, Revell et al. [127] developed a SEM imple-

mentation able to predict the mechanical drivers of cell sorting in multicel-

lular aggregates. Combining this model with experimental observations, the

group was able to show that dynamic cell surface fluctuations, in addition to

static mechanical properties, played a crucial role in the spatial segregation

of the founding lineages in mammalian embryo [153]. Other SEM applica-

tions span a wide range of biological processes including the dynamics of red

blood cells [50, 107], cell sorting driven by differential adhesion [150], and

sea urchin gastrulation [90].

A particular class of DCMs that capture epithelial dynamics remark-

ably well consists of vertex models (VMs). VMs were created in response

to the poor performance of CBMs regarding the flexibility of cell shapes in

dense packings [101]. In VMs, a tissue is represented by a tiling made of

non-overlapping connected polygons (each polygon corresponding to a cell),

whose vertices are free to move. Vertex motion is driven by the minimisa-

tion of a potential energy of the tissue. Depending on the phenomenon to

simulate and the dimensionality of the system, this potential energy may

contain a certain number of terms such as: total edge length, area or volume

conservation, cavity volume in blastocyst formation, or directed elongation

in convergent extension [70]. VMs probably constitute the most popular

class of agent-based models currently in use. Extending the work of Honda

and coworkers, Okuda et al. thoroughly investigated morphogenesis using

VMs [110–114].

In general, the accuracy of the mechanics in DCMs is closely correlated

with the number of nodes in each cell. Depending on the application, a low

number of nodes can create unrealistic dynamics, whereas a high number of

nodes considerably increases the computational complexity of the model.
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2.2.2 Coupling mechanical and chemical variables

Many authors have identified the need for models accounting for both me-

chanical and genetic/molecular aspects of cellular life, as these are tightly

correlated in a feedback loop. In the context of VMs, Yu et al. [154] ex-

plain that forces might be proportional to the concentration of molecules

whose activity create them, as is the case with actin-myosin driven migra-

tion forces and E-cadherin driven adhesion forces. Additionally, they advo-

cate the necessity of using reaction-diffusion systems to model the dynamics

and transport of substances through the tissue. Okuda et al. [114, 115]

applied Turing’s activator/inhibitor system to 3D vertex models, correlat-

ing the concentration of activator with the growth rate of individual cells.

They showed that such coupling could reproduce spontaneous multicellular

morphogenetic patterns including undulation, tubulation, branching, arrest,

expansion, invagination and evagination.

Investigating how sharp boundaries between regions of different gene

expression appear in tissues, Wang et al. [150] simulate the dynamics of

an epithelium with a unified model coupling cell biomechanics through the

SEM approach (model S) and gene regulation via reaction-diffusion equa-

tions (model P). The tissue is composed of two cell archetypes characterised

by the preponderance of two genes (A and B), and a morphogen (M) dif-

fusing through the tissue. Gene expression levels influence the mechanical

properties of cells, and cells can ultimately differentiate into the other type.

Using a new “sharpness index” metric, they show that coupling models S

and P produces a better characterisation of boundaries than models S and

P applied separately. Another notable work combining SEMs to GRNs was

carried out by Marin-Riera et al. [90]. In their model, both mechanical and

chemical variables act directly at the subcellular element level. The model
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further distinguishes between enzymes, adhesion molecules and transcription

factors, the latter being restricted to the nuclear SCE of each cell.

Delile et al. [34, 35] implemented mechanogenetic behaviours by in-

tegrating mechanics, gene regulation and molecular signalling in a CBM.

Their model called MecaGen defines a cell behaviour ontology that relates

cell behaviours to specific levels of concentration of proteins within cells. In

this context, attraction forces are controlled by surface densities of adhesion

molecules; differentiation and specialised behaviours are influenced by gene

regulation; polarisation is determined by ligands and neighbouring cells; and

mechanotransduction affects gene regulation.

2.3 The validation feedback loop between ob-

servations and models

As mentioned in the introduction, the crucial difference between biologi-

cal modelling and bioinspired or artificial life approaches is the ultimate

comparison of the model’s predictions with actual biological observations.

During most of the history of biological modelling, models of development

have been validated or falsified based on a mere qualitative evaluation of

their predictions. For a model to be judged satisfactory, it had to visually

reproduce well-known morphological phenomena such as the neural plate

formation [77], cavity formation or convergent extension [70], DAH driven

cell sorting [58], or the sea urchin gastrulation [90]. While qualitative as-

sessment remains an important criterion, a major paradigm shift is now un-

derway. With the recent explosion of microscopy imaging data, models are

increasingly rated on their ability to infer results that quantitatively match
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experimental data. Generally, achieving acceptable levels of accuracy is a

matter of optimisation of model parameters with the goal of minimising a

given “fitness” energy. Different authors deal with this challenge in different

ways.

Farhadifar et al. [47] use metrics based on the topology of the tissue

to validate their simulations. Based on a vertex model, they investigate

the influence of cell mechanics, cell-cell interactions and proliferation on the

epithelial packing of the Drosophila wing disc. Simulating the dynamics

of a proliferating epithelial layer undergoing eight cycles of division, they

analyse the proportions of polygonal cell shapes and their average surface

areas in the resulting tissue, and compare them with experimental data.

This data consists of a network of apical junctions of 1,738 cells segmented

from microscopy images of wing discs using an automated image-processing

algorithm. By searching the parameter space, they discover regions where

calculated network morphologies match the experimentally observed ones.

Delile et al. [35] employ topological distances measured on the tissue to

validate their model and hypothesis. In examining the impact of protrusive

forces and cell polarisation on the dynamics of zebrafish enveloping layer

during epiboly, a parameter space search is conducted. At the end of each

iteration, they make use of a fitness function to compare key properties of the

simulated embryo (embryo height, yolk height, margin height, and margin

diameter) to those measured on a real embryo. Parameters for which calcu-

lated data fit experimental data are found, thus corroborate their hypothesis

that oriented protrusion of deep cells in the enveloping layer drives zebrafish

epiboly.

Kursawe et al. [83] propose a more informed approach for parameter
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space search. With the goal of determining whether vertex model parame-

ters can be calculated from imaging data, they use summary statistics from

cell packing and laser ablation experiments. With their method, the au-

thors show that data gathered across multiple experiments generate valid

parameter estimates. This data driven approach has the benefit that it fur-

ther allows an estimate of the uncertainties related to these parameters, thus

providing a means of evaluating confidence intervals associated with model

predictions.

In summary, and despite these advances, the validation of developmen-

tal models is still a grey area of research: understanding how to best in-

tegrate and interpret experimental data with cell-based models remains a

major challenge for the modelling community. In order to make the most

of the available data, Fletcher et al. [53] propose an end-to-end workflow

including data acquisition, analysis and fusion; model development, reduc-

tion and parametrisation; model validation/selection and guidance for future

experiments.

In the area of model development, although many computational stud-

ies still rely on tailored implementations of models, there have been ad-

vances in the uniformisation in the field with the emergence in recent years

of multipurpose modelling and simulation software tools. These software usu-

ally offer implementations of either single or multiple model families within

open-source frameworks which modellers are able to use and extend for

the benefit of their studies. The most notable packages include Chaste[99],

CompuCell3D[142], VirtualLeaf[96], LAMMPS[36], Yalla [57], MecaGen[35].

With the exception of a few, most notably CompuCell3D [142], these plat-

forms are often aimed at audiences with strong mathematical and program-

ming skills, hence limiting the participation of stakeholders across the board
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in model development. Subsequent advances will require standardisation

and simplification of communication practices between scientists of various

domains contributing to the field, including biologists, physicists, mathe-

maticians and computer scientists.



Chapter 3

MG#: A modelling framework

and simulation platform for cell

and tissue mechanics

In this chapter, we present our model of cell and tissue mechanics, the open

source simulation framework developed, and preliminary experiments of sim-

ulated morphological events. The necessity of a model featuring deformable

cells arose from the need to simulate drastic cell shape changes involved

morphological events such as mouse embryonic implantation (Chapter 5).

As discussed in the previous chapter, two family of models are suitable for

these specific modelling requirements: Subcellular Elements Models (SEM)

and Vertex Models (VM). These classes of models however presented obvious

limitations for our targeted use cases. On the one hand, SEM approaches

often use a large number of particles, to discretise the cell, increasing the

computational time and power requisite for simulations. On the other hand,

Vertex Models, by using fewer particles representing in most cases only apical

and basal faces of cell, are unable to account for a vast breadth of biological

25
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cell shapes. We therefore aimed at developing a model which metaphorically

bridges the gap between the two frameworks.

MG#: A Computational Model

Based on the fundamental principles of DCM, our abstraction of the biolog-

ical cell features particles in interaction under the influence of conservative

forces. Emphasis is put on particles at the surface of the cell membrane,

bringing our model close to VM [71], while at the same time we also include

a single intracellular particle reminiscent of the cell’s microtubule organising

centre (Fig. 3.1A,B).

On the cell membrane, we define a topological neighbourhood based

on a triangulation of vertices. Two same cell particles are deemed internal

neighbours if they both belong to one of the mesh triangles (Fig. 3.1C,F). We

also define an external neighbourhood based on distances between particles

of different cells (Fig. 3.1C,F). To minimise the computation time required,

we introduce cell-cell neighbourhood relationships where particles of different

cells are tested for external neighbour links only when the cells to which they

belong were already approved as neighbours. The implementation of cell-cell

neighbourhoods depends on the geometry of the problem at hand. In dense

tissues with little variation of cell positions, depending on the geometry of

cells, we opt for either a Moore neighbourhood, where a cell is surrounded by

eight neighbours in its plane, or a hexagonal neighbourhood, a configuration

in which most cells have six neighbours. In other cases, a metric-based cell-

cell neighbourhood may be favoured.
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Figure 3.1: Computational model (MG#). A,B. 3D representa-
tion of cells: The cell is abstracted by an agglomeration of particles (small
white spheres), whose triangulation (white edges) forms the membrane,
and by an intracellular particle (big white sphere). Interactions between
the intracellular and membrane particles (blue lines) mimic the cytoskele-
ton. Membrane particle 𝑖 is under forces from neighbouring particles (𝑗,
𝑘, ...), and from the intracellular particle 𝜒. A. Cell with 42 vertices. B.
Columnar cell with 34 vertices. C. A view of particle neighbourhoods in
a square arrangement of four cells (nuclei not displayed). white: internal
neighbourhood links. Yellow: external neighbourhood links. In this case,
diagonal cells are not touching. D,E. Forces acting on a cell. Membrane
particle 𝑖 is under forces from neighbouring particles (𝑗, 𝑘, ...), and from
the intracellular particle 𝜒. F. External forces acting on a cell via its
particles. Here,

−→
𝐹 ext

𝑖2
=

−→
𝐹 ext

𝑗2𝑖2
= (

−→
𝐹 int

𝑗1𝑗2
+

−→
𝐹 int

𝑗3𝑗2
) +

−→
𝐹 𝜒

𝑗2
. G. Plots of the

magnitude of Morse forces under different values of 𝐽 , with 𝜌 = 1 and
𝑟eq = 0.5.
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In order to induce intrinsic mechanical behaviours within cells, we as-

similate internal particle neighbourhood links to non-linear springs, which

have been shown to faithfully emulate living matter [108]. These springs

mimic the activity of actomyosin and microtubule networks in the cytoskele-

ton, and forces are derived from their elastic potential (Fig. 3.1D,E). In the

cell’s resting state, the equilibrium distance of each spring coincides with

the length of the segment formed by its nodes. Cell dynamics arise from

alterations to these equilibrium distances.

Equation of motion

Acting on a given membrane particle 𝑖, we distinguish four main types of

forces: internal forces
−→
𝐹 int

𝑗𝑖 , cytoskeleton forces
−→
𝐹 𝜒

𝑖 , external forces
−→
𝐹 ext

𝑗𝑖 ,

and specific forces
−→
𝐹 spe

𝑖 . Biological media are often characterised by a low

Reynolds number, due to their high viscosity, which minimises the effects of

inertia [146]. We therefore subject particles to an over-damped, first-order

equation of motion:⎛⎝ ∑︁
𝑗∈𝒩int(𝑖)

−→
𝐹 int

𝑗𝑖

⎞⎠+
−→
𝐹 𝜒

𝑖 +

⎛⎝ ∑︁
𝑗∈𝒩ext(𝑖)

−→
𝐹 ext

𝑗𝑖

⎞⎠+
−→
𝐹 spe

𝑖 = 𝜆med
−→𝑣 𝑖 (3.1)

Here, 𝒩int(𝑖) and 𝒩ext(𝑖) represent the sets of internal and external neigh-

bours of particle 𝑖, and 𝜆med is the coefficient of friction exerted on all par-

ticles.

In line with Newton’s third law of motion, membrane particles enter-

tain reciprocal forces equal in magnitude and opposite in direction with the

intracellular particle. Therefore, the dynamics of the intracellular particle
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are dictated by: ∑︁
𝑖

−
−→
𝐹 𝜒

𝑖 = 𝜆𝜒
−→𝑣 𝜒 (3.2)

Here, 𝜆𝜒 is the coefficient of friction exerted on the intracellular particle.

Internal and cytoskeleton forces

The internal force created by a particle 𝑗 on a neighbouring particle 𝑖 derives

from a Morse potential (Fig. 3.1G). Previous studies have used Morse po-

tentials to represent forces in a biological context [98, 102]. The expression

of this force is given by:

−→
𝐹 int

𝑗𝑖 = 2𝐽𝜔𝜌 (𝑒2𝜌(𝑟−𝑟eq) − 𝑒𝜌(𝑟−𝑟eq)) −→𝑢 𝑖𝑗 (3.3)

Here, 𝐽𝜔 represents the interaction strength between particles 𝑖 and 𝑗, both of

cell type 𝜔, 𝑟eq is the equilibrium of the spring force between 𝑖 and 𝑗, and −→𝑢 𝑖𝑗

is the unit vector along the direction formed by 𝑖 and 𝑗. Similar forces dictate

interactions between the intracellular particle and the membrane particles.

External forces

As discussed in the previous chapter, there are several approaches to im-

plementing cell-cell interactions in the wider family of sub-cellular elements

models [108]. In the scope of this work, inspired by vertex models [47], we

developed a simple method to account for cell-cell interactions in epithelial

tissues.

Given the tight packing in epithelial tissues, a cell membrane is always in

contact with neighbouring cell membranes. Thus local action on a membrane
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produces an equivalent deformation on the surrounding cells. In other words,

a particle always transmits the force received to its external neighbours. To

account for this behaviour, we submit particles and their external neighbours

to equal forces. This is done by setting the external force acting on a particle

to be equal to the sum over all its external neighbours of their internal and

nucleus forces:
−→
𝐹 ext

𝑖 =
∑︁

𝑗∈𝒩ext(𝑖)

−→
𝐹 ext

𝑗𝑖 (3.4)

−→
𝐹 ext

𝑗𝑖 =

⎛⎝ ∑︁
𝑘∈𝒩int(𝑗)

−→
𝐹 int

𝑘𝑗

⎞⎠+
−→
𝐹 𝜒

𝑗 (3.5)

Specific forces

Generally speaking, it is possible to include specific forces in DCM to account

for desired behaviours. A few studies have taken advantage of this possibility

to enable for example cell surface bending resistance [108] or cell surface area

and volume conservation [49]. Specific forces can be defined to complement

the other three main forces when a particular behaviour is expected. Their

implementation depends on the modelled event.

3.1 Computational implementation and Pre-

liminary results

In summary, cells are represented by an intracellular particle and membrane

particles. The cell shape emerges from a triangulation of membrane parti-

cle positions. Nonlinear springs between particles obey a Morse potential

between nodes (membrane particles and the intracellular particle) and drive
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shape changes. These springs mimic the activity of actomyosin networks in

the cytoskeleton. In the cell’s resting state, the equilibrium distance of each

spring coincides with the length of the segment formed by its nodes. Cell

dynamics arises from alterations to these equilibrium distances. Based on

this principle, a number of cellular and tissue behaviours were simulated and

are described here.

The computational implementation of the described model requires a

time discretisation of the equation of motion. Given
−→
𝑋 𝑡

𝑖, 𝜆 and
−→
𝐹 𝑡

𝑖 =(︁−→
𝐹 int

𝑖

)︁𝑡
+
(︁−→
𝐹 𝜒

𝑖

)︁𝑡
+
(︁−→
𝐹 ext

𝑖

)︁𝑡
+
(︁−→
𝐹 spe

𝑖

)︁𝑡
, respectively the position, friction

coefficient and total force applied on a particle 𝑖 at time point 𝑡, an explicit

Euler scheme is used to calculate the position
−→
𝑋 𝑡+1

𝑖 of the particle at the next

time point. If 𝑑𝑡 is the time lapse between instants 𝑡 and (𝑡 + 1), particles

update their configuration based on the following rule (Eq. 6.2).

−→
𝑋 𝑡+1

𝑖 =
−→
𝑋 𝑡

𝑖 +
−→
𝑉 𝑡

𝑖 × 𝑑𝑡 (3.6)

−→
𝑉 𝑡

𝑖 is neither given, nor determined in (Eq. 6.2). An expression of
−→
𝑉 𝑡

𝑖

can however be drawn from the equation of motion (Eq. 6.3).

𝜆
−→
𝑉 𝑡

𝑖 =
−→
𝐹 𝑡

𝑖 (3.7)

Hence we update particle positions in simulations according to the for-

mula in equation (Eq. 6.4).

−→
𝑋 𝑡+1

𝑖 =
−→
𝑋 𝑡

𝑖 +

−→
𝐹 𝑡

𝑖

𝜆
× 𝑑𝑡 (3.8)

In the next section, we provide preliminary results of simple biology
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phenomena that can be simulated with our model. We also use one of the

examples (red blood cells) to show that the adopted Euler scheme is stable

and converges when the time laps 𝑑𝑡 is refined.

3.1.1 Cell shapes

As the embryo develops, cells gradually lose the perfect symmetry of the ini-

tial zygote. Active phenomena such as protrusion, Epithelial-Mesenchymal

Transition (EMT), or Mesenchymal-Epithelial transition (MET) [128] among

others, and passive behaviours such as mechanical response to physical stress

in multicellular settings foster single shape changes. For example, during gas-

trulation, several mechanisms of large-scale morphological change are due to

cell intercalation driven by the elongation of individual cells along a partic-

ular axis [35, 102].

Accounting for various cell shapes constitutes an important requirement for

our model. Globally, specific cell shapes can be obtained in two ways: either

by setting particles’ positions to preferential coordinates and triangulating

the cell membrane accordingly, or by transitioning from an initial cell shape

to a target shape. For the latter, we distinguish between two cases. Regular

shapes like spherical cells, cylindrical cells or red blood cells can be modelled

with analytical equations that set new equilibrium lengths for cell springs. In

the next sections, we show how new equilibrium lengths for desired regular

shapes can be computed. For less target regular shapes, stochastic methods

such the Ising model [76] in combination with Monte Carlo methods such as

the Metropolis-Hastings algorithm [11], and body similarity metrics like the

Hausdorff distance [74] can be used .
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3.1.1.1 Red blood cell shapes

Here, we model the relaxation of a red blood cell from a spherical shape to

the biconcave shape characteristic of red blood cells. Evans et al. [46] put

forward an equation to describe this shape (eq. 3.9). This equation expresses

the new 𝑦 coordinate changes as a function of coordinates 𝑥, 𝑦 and 𝑧, with

parameters 𝑎0, 𝑎1, 𝑎2.

𝑦′(𝑥, 𝑦, 𝑧) =

⎧⎪⎨⎪⎩𝐷
√︁

1 − 4(𝑥2+𝑧2)
𝐷2

(︁
𝑎0 + 𝑎1

𝑥2+𝑧2

𝐷2 + 𝑎2
(𝑥2+𝑧2)2

𝐷4

)︁
𝑖𝑓 𝑦 ≥ 0

−𝐷
√︁

1 − 4(𝑥2+𝑧2)
𝐷2

(︁
𝑎0 + 𝑎1

𝑥2+𝑧2

𝐷2 + 𝑎2
(𝑥2+𝑧2)2

𝐷4

)︁
𝑖𝑓 𝑦 < 0

(3.9)

Hence, we deduce the following equations for new equilibrium lengths⎧⎪⎨⎪⎩𝑟𝜒𝑖eq =
√︁

𝑥2
𝑖 + (𝑦′(𝑥𝑖, 𝑦𝑖, 𝑧𝑖))

2 + 𝑧2𝑖

𝑟𝑖𝑗eq =
√︁

(𝑥𝑖 − 𝑥𝑗)
2 + (𝑦′(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) − 𝑦′(𝑥𝑗, 𝑦𝑗, 𝑧𝑗))

2 + (𝑧𝑖 − 𝑧𝑗)
2

(3.10)

Figure 3.2B demonstrates this shape change.

With this example, we have an opportunity to highlight how MG# dif-

fers from other vertex-based approaches. Generally, vertex models do not

feature intracellular particles. Hence, the forces that shape the cell emanate

exclusively from membrane particles interactions. In order to emulate this

behaviour in this context, we ran new simulations of cell shape transfor-

mation from spherical to RBC shape, this time suppressing the action of

cytoskeleton forces and allowing the cell to remodel under the sole influence

of membrane forces. We observed that particles did not rearrange in the

previous configuration that outlined the biconcave shape. Rather, though

the cell relaxes to a steady state, it maintains a convex shape (Fig. 3.2C).
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We also take advantage of this example to examine the numerical sta-

bility and convergence of our model. To test these properties, we conducted

further simulations in which we varied the time step (𝑑𝑡) over multiple level

of magnitude. Additionally, we introduce the notion of the elastic energy of

a cell (𝐸) to measure how well the cell has reached the equilibrium state of

the target shape. This energy is defined as the sum over all cell springs of

the squared difference between equilibrium and actual lengths (Fig. 3.11).

In their resting states, cells springs have the same elongation as their equi-

librium lengths. Hence, cells exhibit the property that their elastic energy

equals zero at rest.

𝐸 =
∑︁
𝑠≤𝑁𝑘

(𝑟𝑘𝑠eq − 𝑟𝑘𝑠)2 (3.11)

Here 𝑁𝑘 is the number of springs in the cell (𝑘).

For each simulation, we plotted the evolution of the elastic energy per

time. Figure 3.3 shows the outcomes of these simulations. Whereas higher

time steps (𝑑𝑡 = 0.35, 𝑑𝑡 = 0.3, Fig. 3.3B, blue, yellow) yielded unstable

simulations where the elastic energy indefinitely oscillated around non zero

values, lower time steps (𝑑𝑡 = 0.25, 𝑑𝑡 = 0.1, 𝑑𝑡 = 0.01, 𝑑𝑡 = 0.005, Fig. 3.3B,

green, red, purple, brown) not only produced simulations where the elastic

energy converged towards zero, but the curve also exhibited stability. In the

latter category, smaller time steps (𝑑𝑡 = 0.01, 𝑑𝑡 = 0.005) however needed

more simulation time to fully converge.

3.1.1.2 Cell elongation

Here, we model the elongation of a cell from a spherical shape to that of

a cylinder. Because of the spherical symmetry of the initial cell, we can
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use the parametric representation of a sphere (eq. 3.12), with coordinates

(𝑥, 𝑦, 𝑧) relative to the cell centre.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑥 = 𝑅 sin 𝜃 cos𝜙

𝑦 = 𝑅 cos 𝜃

𝑧 = 𝑅 sin 𝜃 sin𝜙

(3.12)

If we assume that the new ellipsoidal cell will be characterised by radius

and height (ℎ, 𝑟), the shape change from spherical to cylindrical will require

that new positions of particles in the elongated cell satisfy equation 3.13.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑥′ = 𝑎

𝑅
𝑥

𝑦′ = 𝑏
𝑅
𝑦

𝑧′ = 𝑐
𝑅
𝑧

(3.13)

Combining (eq. 3.12) and (eq. 3.13), we then have the following rela-

tionships between initial and target coordinates.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑥′ = 𝑎

𝑅
𝑥

𝑦′ = 𝑏
𝑅
𝑦

𝑧′ = 𝑐
𝑅
𝑧

(3.14)

We can therefore compute required equilibrium lengths for springs 𝑖𝑗

and 𝜒𝑖 by computing particle distances from their new positions.
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⎧⎪⎨⎪⎩
𝑟𝜒𝑖eq =

√︁(︀
𝑎𝑥𝑖

𝑅

)︀2
+
(︀
𝑏𝑦𝑖
𝑅

)︀2
+
(︀
𝑐𝑧𝑖
𝑅

)︀2
𝑟𝑖𝑗eq =

√︂(︀𝑎𝑥𝑖−𝑎𝑥𝑗

𝑅

)︀2
+
(︁

𝑏𝑦𝑖−𝑏𝑦𝑗
𝑅

)︁2
+
(︀ 𝑐𝑧𝑖−𝑐𝑧𝑗

𝑅

)︀2 (3.15)

Figure 3.2A demonstrates this shape change.

3.1.1.3 Epithelial cell shapes

Here, we model the transformation of a cell from a spherical shape to that

of a cylinder. Because of the spherical symmetry of the initial cell, we can

use the parametric representation of a sphere (Eq.3.16), with coordinates

(𝑥, 𝑦, 𝑧) relative to the cell centre.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑥 = 𝑅 sin 𝜃 cos𝜙

𝑦 = 𝑅 cos 𝜃

𝑧 = 𝑅 sin 𝜃 sin𝜙

(3.16)

If we assume that the new cylindrical cell will be characterised by radius

and height (ℎ, 𝑟), the shape change from spherical to cylindrical will require

that new positions of particles in the elongated cell satisfy equation (3.17).⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑥′ = 𝑟 cos𝜙

𝑦′ = ℎ𝑦

𝑧′ = 𝑟 sin𝜙

(3.17)
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From equations (eq. 3.16) and (eq. 3.17), we deduce that:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑥′ = 𝑟√

𝑥2+𝑧2
𝑥

𝑦′ = ℎ𝑦

𝑧′ = 𝑟√
𝑥2+𝑧2

𝑧

(3.18)

We can therefore compute required equilibrium lengths for springs 𝑖𝑗

and 𝜒𝑖 by calculating particle distances from their new positions.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑟𝜒𝑖eq =

√︃(︂
𝑟√

𝑥2
𝑖+𝑧2𝑖

𝑥𝑖

)︂2

+ ℎ2𝑦2𝑖 +

(︂
𝑟√

𝑥2
𝑖+𝑧2𝑖

𝑧𝑖

)︂2

𝑟𝑖𝑗eq =

√︃(︂
𝑟√

𝑥2
𝑖+𝑧2𝑖

𝑥𝑖 − 𝑟√
𝑥2
𝑗+𝑧2𝑗

𝑥𝑗

)︂2

+ ℎ2 (𝑦𝑖 − 𝑦𝑗)
2 +

(︂
𝑟√

𝑥2
𝑖+𝑧2𝑖

𝑧𝑖 − 𝑟√
𝑥2
𝑗+𝑧2𝑗

𝑧𝑗

)︂2

(3.19)

Figure 3.2D demonstrates this shape change.
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Figure 3.2: Regular cell shapes obtained by shape metamorpho-
sis. A. Top: initial spherical cell. Bottom: Ellipsoid cell shape represent-
ing an elongated cell. Parameter values: 𝑎 = 0.707, 𝑏 = 1.25, 𝑐 = 1 B. Top:
initial spherical cell. Bottom: Biconcave cell shape characteristic of Red
Blood Cells. Parameter values: 𝑎0 = 0.0518, 𝑎1 = 0.0518, 𝑎2 = −4.491.
C. Top: initial spherical cell. Bottom: Red Blood cells biconcave shape is
not attained when radial forces are suppressed, though simulation time is
10 times longer than in C. Parameter values: 𝑎 = 0.707, 𝑏 = 1.25, 𝑐 = 1.
D. Top: initial spherical cell. Bottom: Cylindrical cell shape characteristic

of epithelial cells. Parameter values: ℎ = 1, 𝑟 = 0.5.
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Figure 3.3: Convergence of Red Blood cell Shapes. A. Cell shapes
obtained for different values of the simulation time step. B. Elastic en-
ergy charts for different simulation scenarios. Higher time steps con-
verge towards non-zero values, but yield unstable simulations (blue, yel-
low). Lower time steps converge towards zero and yield stable simulations
(green, red, purple, brown). In each of these simulations, we use parameter

values 𝑎0 = 0.0518, 𝑎1 = 0.0518, 𝑎2 = −4.491.

3.1.2 Apoptosis

Biological life is an equilibrium between life and death. In order for organisms

to live and develop, new cells need to be born, while old cells need to die.

Apoptosis, which designates the programmed death of biological cells, is one

the mechanisms that mediate the right balance between life and death in

living beings. Dysfunctional control of cell birth and death mechanisms lead

to several physiological diseases including cancers [33, 89]. Apoptosis is also

very instrumental in other development processes such as the separation of

digits [140].

Here, we propose to simulate apoptosis by gradually reducing the vol-

ume of the cell. For this, we shrink all cell spring equilibrium lengths to
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zero. As a response, the cell spring lengths decrease until the cell reaches a

negligible volume (Fig.3.4).

Figure 3.4: A cell undergoing apoptosis. A cell decreases in volume
until it vanishes

3.1.3 Cell polarity

Polarity is an important property of biological cells. In epithelial tissues, cells

exhibit an apico-basal polarity with a strict distinction between their basal

and apical faces. This type of polarisation enables absorptive epithelia to

extract materials from a particular side of the sheet [55], or form multicellular

structures such as tubes [28], or rosettes [65]. Mesenchymal cells, on the

other hand, feature polarity through mechanisms such as protrusion, which

induce directed shape changes and cell movement [57]. Polarisation, along

with apoptosis, appears to play a critical in lumenogenesis [33, 155].

In MG#, we propose to model polarity by assigning to a membrane

particle the lead role in the cell. In this way, the said particle defines the

orientation and polarity of the cell. Figure 3.5 shows different scenarios of

orientation for apico-basal polarity of an epithelial cell. The different cells

have been obtained by shape transformation of the same initial spherical cell.
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Figure 3.5: Cell Polarity. Different spatial orientations for the api-
cobasal polarity of an epithelial cell. In each case, the epithelial cell has
been obtained by shape metamorphosis of an initial spherical cell. A dif-

ferent polarity orientation has been specified for each cell.

3.1.4 Cell cycle and division

Cell cycle is a mechanism at the heart of morphogenesis. From the zygote

stage to the adult vertebrate, cell growth and division ensure that the or-

ganism develops and renews its organs. We implement a simple cell cycle

with a cycle period for each cell. While going through their cycle, each cell

increments its internal clock, then divides into two cells when their counter

reaches the cycle period.

The process of division takes as input the cell’s mesh and outputs two

meshes corresponding to the daughter cells (Fig. 3.6). It starts with comput-

ing the division plane, which is fully determined by a normal vector (−→𝑛 ) and

a characteristic point (𝑂). The normal vector is either explicitly given as a

parameter, or numerically determined by computing the elongation axis of

the cell. For symmetric division, we use the centre of the cell as characteristic

point. Our model may also account for asymmetric division by choosing a

point different from the centre of the cell to compute the division plane. Hav-

ing set the division plane, each particle’s position relative to this plane (𝑃𝑖)
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is determined by evaluating the sign of the dot product
−−→
𝑂𝑃𝑖 · −→𝑛 , and using

the terminology ‘above’ if it is positive and ‘below’ otherwise. This operation

partitions the cell mesh into two distinct sets: the ‘upper mesh’, made of all

particles whose relative position to the plane is above, and the ‘lower mesh’,

consisting of particles which are below the plane. However, these meshes are

not equivalent in terms of number of particles and topology. In order to pre-

serve these characteristic features of our model, we extend each mesh with

new particles obtained by an orthogonal projection on the division plane of

the other mesh’s vertices.

In the cleavage simulation below (Fig. 3.6), a single cell (zygote) goes

through a series of successive divisions. At each division, the division plane

is chosen such that its normal vector maximises the dispersion of the cloud

point (formed by the cell particles) around their centre of mass. The vector

is determined by calculating the co-variance matrix of the cloud point and

then computing the eigen vector corresponding to the minimal eigen value.

Figure 3.6: A simulated cell going through a series of successive divisions
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3.2 MG#: The open simulation framework

To produce simulations based on our model, we initially built a modelling

platform within the game engine Unity1. It had the advantage of offering

a unique environment for programming, running and viewing simulations.

However, combining at every time step the computation of particle config-

urations together with their rendering significantly slowed down the whole

process. In addition, once a simulation was done, all results were lost and

should the same experiment be run again, it was not possible to reuse or

play back the previous calculations. Furthermore, a unity-based simulation

platform could not allow us to run simultaneously multiple variants of a

simulation.

To overcome these limitations, and following the lead of Chaste, an open

source library for computational biology and physiology [99], we adopted a

design principle driven by Dijkstra’s separation of concerns [37]. We opted

for a separation of computing and visualisation into two distinct programs.

On the one hand, we developed in C# a custom back-end physics engine spe-

cific to our model, and independent from any graphical interface, based on

implementations of algebraic and geometric primitives described by Hardy

and Steeb in their book [66]. Figure 3.7 gives a brief overview in UML rep-

resentation of the class diagram of MG#. This new physics engine updates

at every time frame cell particles’ positions and thus the spatial configura-

tion of simulated cell populations. At the end of simulations, the physics

engine logs these configurations to log files using either the well established

VTK format, or our custom format (.MG files), which has the advantage

of producing overall more compact logs. On the other hand, we developed

a Unity-based viewer to render simulations logged in our custom (Fig. 3.8).
1https://unity3d.com
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VTK log files can be rendered with open source visualisation tools such as

paraview [1].

Figure 3.7: MG# Class Architecture. An MG# user experiment
*.UserExperiment (blue) is implemented in the form of a simulation class
which inherits from the base simulator class (MGSharp.Core.Simulator).
A simulation is performed on a population of cells (*.BiologicalEnti-
ties.CellPopulation), which may be partitioned into tissues (*.Biologi-
calEntities.Tissue), which themselves are specific cell populations. Each
cell population or tissue is made of cells (*.BiologicalEntities.MGCell),
whose representation in the 3D space are geometric meshes (*.Geomet-
ricPrimitives.Mesh). The generic mesh class is built upon more el-
ementary geometric classes not shown here (vector, face, etc.) and
extended from Hardy and Steeb implementations [66]. The generic
MGCell can be specialised further into child classes with specific be-
haviours (*.BiologicalEntities.UserClass). Helper classes and methods
(MGSharp.Core.Helpers.* ), and the generic model class (*.MGMod-
els.MGModel) that contains the definition of most generic model parame-
ters, are transversal to this architecture, and can be used at any level. An
instance of a user experiment class (green, underlined) implements inher-
ited methods from the Simulator class, and may define custom methods.
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Figure 3.8: Simulation framework: GUI-less physics engine and viewer





Chapter 4

Modelling of epithelial

morphogenesis

Epithelial sheets can be defined as densely packed arrays of cells tightly

connected at their junctions to form layers of cells. Their inherent rigid

topology confers them natural functions of acting as barriers and selective

filters [55]. Epithelial sheets are intensely present in adult organisms. They

form the tissues that absorb nutrients and metabolites from the environment,

and make up the tubes, canals and cavities of glandular organs. They are

responsible for transport, filtration, the synthetic functions of endocrine and

exocrine, and for maintaining different electric potentials between parts of

the body [82]. However, of much more interest to us, epithelia play a central

role in morphogenesis: the complex geometry of embryos and organs can

often be traced back to biomechanical processes occurring within epithelial

sheets [32, 69]. Spectacular cellular arrangements during key morphogenesis

events such as Neural Tube Closure in Xenopus [25], the formation of the

ventral furrow during Drosophila gastrulation [19], or the remodelling of

mouse embryonic and extraembryonic tissues during implantation [8, 9, 26],

47
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are all driven by epithelia. In general, epithelial tissues present a set of

canonical behaviours from which proceed the basic structure of most organs.

These include tissue elongation or shortening, folding, spreading, budding,

cavitation, and delamination of epithelial sheets [69, 82]. Here, we would

like to show how we can use the model presented in the previous chapter to

simulate a subset of these canonical behaviours.

In biological development, higher scale processes often emerge as a re-

sult of lower scale dynamics. This key feature of morphogenesis is present

in epithelial sheets, where tissue morphogenesis is inextricably linked with

questions of cell behaviour[55]. However, cell shape changes may proceed

from either active or passive response to the mechanical stress or chemical

signals they receive [32]. For instance, Apical Constriction (AC), which is

known to be one of the mechanisms driving bending in epithelial sheets, has

been shown to be a result of lower scale cellular biochemical processes [131].

On the other hand, cells transition from squamous to columnar shape might

be tributary to stresses imposed by tissues’ boundaries [26, 32]. However, in

both scenarios, understanding the processes by which shape changes in ep-

ithelial tissues are brought about require the study of how their elementary

units, epithelial cells, behave. Furthermore, even when the action of indi-

vidual cells trigger epithelial morphogenesis, the coordination of such action

remains essential to the formation of coherent tissues[55]. In the first part

of this chapter we will focus on modelling the behaviours of single epithelial

cells. From there, we will move on to address the coordinated implementation

of these behaviours in epithelial sheets to simulate emergent phenomena.
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4.1 Morphological changes in single epithelial

cells

In this section we show how we can use MG# to model single epithelial

cell shape changes. Here, we consider modelling the mechanics of Planar Po-

larised Constriction (PPC), Apical Constriction (AC) and Expansion, Apical

Constriction with volume conservation. Finally, we examine how we can in-

tegrate chemical variables to simulate Apical Constriction.

To describe single cell shape changes in epithelial tissues, we use the

MG# mechanical framework presented in the previous chapter. Epithelial

cell shapes can be abstracted as cells with a cylindrical geometry and apical-

basal polarity. In MG#, cell shape changes emanate from alterations to

equilibrium lengths of cell springs. Hence, triggering these behaviours re-

quires setting new equilibrium lengths for each cell. Because, in addition to

their simple geometry, elementary shape changes in epithelial cells may also

exhibit straightforward geometry, we will establish analytical equations to

describe these changes. In the following equations, cell dimensions are as-

sumed to be normalised by a standard distance, making them dimensionless,

and the equations non-dimensionalised.

4.1.1 Planar Polarised Constriction

4.1.1.1 Biological motivation

Planar Polarised Constriction (PPC) is the process by which epithelial cells

constrict their lateral domain. PPC exists as a consequence of Planar Polar-

ity, which, unlike the characteristic apicobasal polarity of epithelial sheets,
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is generated within the plane of the sheet[12]. This type of polarity co-

ordinates the asymmetric distribution of molecules within individual cells,

creating forces that break the symmetry of the cell and causes it to constrict

laterally. Planar Polarised Constriction is known to play a role in multicel-

lular rosette formation, convergent extension and the elongation of epithelial

sheets [12, 65, 87].

4.1.1.2 Computational modelling

In this section, for purposes of simplification, we consider an epithelial cell

with a square base. In analogy to biology, we simulate planar polarised

constriction by shrinking the equilibrium lengths of cell springs. The closer

the springs are to the constricting side, the greater we reduce their resting

lengths. Here, we show how we obtain new equilibrium lengths when we

target to reduce the width of the constricting face by a total length of 2𝑑.

We consider a 2D cut of the constricted cell as in figure 4.1B. In addition,

let us consider sub-cellular vertices 𝑀𝑖(𝑅, 𝑦𝑖, 𝑧𝑖) and 𝑀𝑗(𝑅, 𝑦𝑗, 𝑧𝑗) located

on the lateral side of the cell. Once the cell constricts by reducing one of

its lateral sides by 𝑑, vertices 𝑀𝑖 and 𝑀𝑗 will have moved respectively to

positions 𝑀 ′
𝑖(𝑥

′
𝑖, 𝑦𝑖, 𝑧𝑖) and 𝑀 ′

𝑗(𝑥
′
𝑗, 𝑦𝑗, 𝑧𝑗).

Equilibrium lengths of membrane spring 𝑖𝑗 and 𝜒𝑖 in the constricted

cell are given by equation (4.1).

⎧⎪⎨⎪⎩ 𝑟𝜒𝑖eq(𝑑) = ||
−−→
𝑂𝑀 ′

𝑖 ||

𝑟𝑖𝑗eq(𝑑) = ||
−−−→
𝑀 ′

𝑖𝑀
′
𝑗||

(4.1)
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Finding equilibrium lengths necessary to constraint the cell to undergo

planar polarised constriction is therefore equivalent to computing the coor-

dinates of vertices 𝑀 ′
𝑖 and 𝑀 ′

𝑗. Given that the same process can be used to

calculate the coordinates of 𝑀 ′
𝑖 and 𝑀 ′

𝑗, we will show the steps for 𝑀 ′
𝑖 , and

use equivalent results for 𝑀 ′
𝑗.

We define point 𝑂𝑖(0, 𝑦𝑖, 𝑧𝑖) as the centre of the disc formed by the

intersection of the cell and the plane containing 𝑀𝑖 and parallel to the base

of cell (see figure 4.1). Using the Chasles theorem for vectors
−−−→
𝑂𝑖𝑀

′
𝑖 ,
−−−→
𝑂𝑖𝑀𝑖

and
−−−→
𝑀 ′

𝑖𝑀𝑖, we can write:

−−−→
𝑂𝑖𝑀

′
𝑖 =

−−−→
𝑂𝑖𝑀𝑖 −

−−−→
𝑀 ′

𝑖𝑀𝑖 (4.2)

The Thales theorem applied to the triangle (𝐴′𝐵𝐴) yields

||
−−−→
𝑀 ′

𝑖𝑀𝑖||
||
−−→
𝐴′𝐴||

=
||
−−→
𝑀𝑖𝐵||
||
−→
𝐴𝐵||

(4.3)

Hence

||
−−−→
𝑀 ′

𝑖𝑀𝑖|| =
||
−−→
𝑀𝑖𝐵||
||
−→
𝐴𝐵||

||
−−→
𝐴′𝐴|| (4.4)

Meanwhile,
−−−→
𝑂𝑖𝑀𝑖 and

−−→
𝐴′𝐴 are co-linear, and

−−→
𝐴′𝐴 =

𝑑

𝑅
×
−−−→
𝑂𝑖𝑀𝑖 (4.5)

Combining equations (4.2), (4.3), (4.4) and (4.5), we can deduce

−−−→
𝑂𝑖𝑀

′
𝑖 =

−−−→
𝑂𝑖𝑀𝑖 −

𝑑

𝑅
× ||

−−→
𝑀𝑖𝐵||
||
−→
𝐴𝐵||

−−−→
𝑂𝑖𝑀𝑖 (4.6)
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Hence,
−−−→
𝑂𝑖𝑀

′
𝑖 =

(︃
1 − 𝑑

𝑅
× ||

−−→
𝑀𝑖𝐵||
||
−→
𝐴𝐵||

)︃
−−−→
𝑂𝑖𝑀𝑖 (4.7)

One can easily verify that

||
−−→
𝑀𝑖𝐵||
||
−→
𝐴𝐵||

=
𝑧𝑖 + 𝑅

2𝑅
(4.8)

Hence
−−−→
𝑂𝑖𝑀

′
𝑖 =

(︂
1 − 𝑑 (𝑧𝑖 + 𝑅)

2𝑅2

)︂
−−−→
𝑂𝑖𝑀𝑖 (4.9)

Hence, in the coordinates system, we get

−−−→
𝑂𝑖𝑀

′
𝑖 =

⎛⎜⎜⎜⎝
(︁

1 − 𝑑(𝑧𝑖+𝑅)
2𝑅2

)︁
𝑥𝑖

0

0

⎞⎟⎟⎟⎠ (4.10)

Hence the coordinates of 𝑀 ′
𝑖 , the new position of particle 𝑖 in the con-

stricted cell is given by equation (4.11).

𝑀 ′
𝑖

(︂(︂
1 − 𝑑 (𝑧𝑖 + 𝑅)

2𝑅2

)︂
𝑥𝑖, 𝑦𝑖, 𝑧𝑖

)︂
(4.11)

Similarly, for a particle 𝑗 with position 𝑀𝑗 on the cylindrical cell, its

position on the constricted cell will be given by equation (4.12).

𝑀 ′
𝑗

(︂(︂
1 − 𝑑 (𝑧𝑗 + 𝑅)

2𝑅2

)︂
𝑥𝑗, 𝑦𝑗, 𝑧𝑗

)︂
(4.12)

From this and equations (4.1) and (4.2), we deduce new equilibrium

lengths for all springs 𝑀𝑖𝑀𝑗 and 𝑂𝑀𝑖 required to constrict apically our
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epithelial cell.⎧⎪⎪⎨⎪⎪⎩
𝑟𝜒𝑖eq(𝑑) =

√︂(︁
1 − 𝑑(𝑧𝑖+𝑅)

2𝑅2

)︁2
𝑥2
𝑖 + 𝑦2𝑖 + 𝑧2𝑖

𝑟𝑖𝑗eq(𝑑) =

√︂(︁(︁
1 − 𝑑(𝑧𝑖+𝑅)

2𝑅2

)︁
𝑥𝑖 −

(︁
1 − 𝑑(𝑧𝑗+𝑅)

2𝑅2

)︁
𝑥𝑗

)︁2
+ (𝑦𝑖 − 𝑦𝑗)

2 + (𝑧𝑖 − 𝑧𝑗)
2

(4.13)

Figure 4.1C showcases a simulation of planar polarised constriction.

Figure 4.1: Planar Polarised Constriction. A. Apicobasal polari-
sation of a planar polarised constricted cell B. A 2D cut of a constricted
cell. The cell underwent planar polarised constriction by reducing its
lateral width by a length of 2𝑑. C. Simulation of planar polarised con-
striction using an epithelial cell with square base. Parameter values:

𝑅 = 0.5, 𝑑 = 0.35

4.1.2 Apical Constriction & Apical Expansion

4.1.2.1 Biological motivation

Apical constriction can be defined as the shrinkage of the apical surface of

an epithelial cell. AC is the result of the contraction of actomyosin networks



Modelling of epithelial morphogenesis 54

near the apical face of the cell[93]. This seemingly simple behaviour of indi-

vidual cell may induce dramatic changes in a sheet’s morphology [92, 131].

Apical Constriction is involved in many processes driving morphogenesis in

development, including the formation of tubes [3, 28], neurulation [25, 75],

or during gastrulation in several species [129]. The roles and regulation of

AC in development has been extensively reviewed in [91–94, 131].

Apical Expansion is the increase of the apical surface area in an epithe-

lial cell. By definition, it appears to be the reverse process of Apical Con-

striction. However, several morphogenesis events involve Apical Expansion.

It has been shown that Apical Expansion, under the influence of Cadherin

99C, fosters epithelial tube elongation [29]. Apical Expasion has also been

found to be a driver of ascidian gastrulation [32]. Hence, we propose to

simulate apical expansion, in addition to apical constriction.

4.1.2.2 Computational modelling

We simulate apical constriction (resp. expansion) by shrinking the equilib-

rium lengths of membrane springs. To obtain conic shapes, the new resting

lengths among nodes at a given height are set to decrease (resp. increase)

with the distance from the basal face. Here we will establish the expres-

sions for new equilibrium lengths when we target to reduce (resp. increase)

the apical radius (𝑅) by a total amount of 𝑑. In order to account for both

Constriction and Expansion, we allow 𝑑 to be negative, however, with the

constraint that −𝑅 < 𝑑.

We will consider a 2D projection of an epithelial cell as described in

figure 4.2B. In addition, we consider sub-cellular vertices 𝑀𝑖(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) and

𝑀𝑗(𝑥𝑗, 𝑦𝑗, 𝑧𝑗) located on the lateral side of the cell. Once the cell constricts
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by reducing its apical radius by 𝑑, vertices 𝑀𝑖 and 𝑀𝑗 would have moved

respectively to positions 𝑀 ′
𝑖(𝑥

′
𝑖, 𝑦

′
𝑖, 𝑧

′
𝑖) and 𝑀 ′

𝑗(𝑥
′
𝑗, 𝑦

′
𝑗, 𝑧

′
𝑗).

Equilibrium lengths of membrane spring 𝑖𝑗 for the constricted cell is

given by equation (4.14).

⎧⎪⎨⎪⎩ 𝑟𝜒𝑖eq(𝑑) = ||
−−→
𝑂𝑀 ′

𝑖 ||

𝑟𝑖𝑗eq(𝑑) = ||
−−−→
𝑀 ′

𝑖𝑀
′
𝑗||

(4.14)

Hence, finding equilibrium lengths necessary to constraint the cell to

undergo apical constriction is equivalent to computing the coordinates of

vertices 𝑀 ′
𝑖 and 𝑀 ′

𝑗. The same process can be used to calculate the coordi-

nates of 𝑀 ′
𝑖 and 𝑀 ′

𝑗. Therefore, we will show the steps for 𝑀 ′
𝑖 , and use the

similar result for 𝑀 ′
𝑗.

We define point 𝑂𝑖(0, 𝑦𝑖, 0) as the centre of the disc formed by the in-

tersection of the cell and the plane containing 𝑀𝑖 and parallel to the base

of cell (see figure 4.2B). Using the Chasles theorem for vectors
−−−→
𝑂𝑖𝑀

′
𝑖 ,
−−−→
𝑂𝑖𝑀𝑖

and
−−−→
𝑀 ′

𝑖𝑀𝑖, we can write:

−−−→
𝑂𝑖𝑀

′
𝑖 =

−−−→
𝑂𝑖𝑀𝑖 −

−−−→
𝑀 ′

𝑖𝑀𝑖 (4.15)

Using the property of Thales applied to the triangle (𝐴′𝐵𝐴)

||
−−−→
𝑀 ′

𝑖𝑀𝑖||
||
−−→
𝐴′𝐴||

=
||
−−→
𝑀𝑖𝐵||
||
−→
𝐴𝐵||

(4.16)

Hence

||
−−−→
𝑀 ′

𝑖𝑀𝑖|| =
||
−−→
𝑀𝑖𝐵||
||
−→
𝐴𝐵||

||
−−→
𝐴′𝐴|| (4.17)
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Meanwhile,
−−−→
𝑂𝑖𝑀𝑖 and

−−→
𝐴′𝐴 are colinear, and

−−→
𝐴′𝐴 =

𝑑

𝑅
×
−−−→
𝑂𝑖𝑀𝑖 (4.18)

Therefore,
−−−→
𝑂𝑖𝑀

′
𝑖 =

−−−→
𝑂𝑖𝑀𝑖 −

𝑑

𝑅
× ||

−−→
𝑀𝑖𝐵||
||
−→
𝐴𝐵||

−−−→
𝑂𝑖𝑀𝑖 (4.19)

Hence,
−−−→
𝑂𝑖𝑀

′
𝑖 =

(︃
1 − 𝑑

𝑅
× ||

−−→
𝑀𝑖𝐵||
||
−→
𝐴𝐵||

)︃
−−−→
𝑂𝑖𝑀𝑖 (4.20)

One can easily verify that

||
−−→
𝑀𝑖𝐵||
||
−→
𝐴𝐵||

=
𝑦𝑖 + ℎ

2

ℎ
(4.21)

Hence
−−−→
𝑂𝑖𝑀

′
𝑖 =

(︃
1 −

𝑑
(︀
𝑦𝑖 + ℎ

2

)︀
𝑅ℎ

)︃
−−−→
𝑂𝑖𝑀𝑖 (4.22)

In the Cartesian coordinates system, we get

−−−→
𝑂𝑖𝑀

′
𝑖 =

⎛⎜⎜⎜⎜⎜⎝

(︂
1 − 𝑑(𝑦𝑖+ℎ

2 )
𝑅ℎ

)︂
𝑥𝑖

0(︂
1 − 𝑑(𝑦𝑖+ℎ

2 )
𝑅ℎ

)︂
𝑧𝑖

⎞⎟⎟⎟⎟⎟⎠ (4.23)

Hence the coordinates of 𝑀 ′
𝑖 , image of 𝑀𝑖 by the transformation that

transforms the cylindrical cell to the cone-shaped apical constricted cell is
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given by equation (4.24).

𝑀 ′
𝑖

(︃(︃
1 −

𝑑
(︀
𝑦𝑖 + ℎ

2

)︀
𝑅ℎ

)︃
𝑥𝑖, 𝑦𝑖,

(︃
1 −

𝑑
(︀
𝑦𝑖 + ℎ

2

)︀
𝑅ℎ

)︃
𝑧𝑖)

)︃
(4.24)

Similarly, for a particle 𝑀𝑗 on the cylindrical cell, its position on the

constricted cell will be given by equation (4.25).

𝑀 ′
𝑗

(︃(︃
1 −

𝑑
(︀
𝑦𝑗 + ℎ

2

)︀
𝑅ℎ

)︃
𝑥𝑗, 𝑦𝑗,

(︃
1 −

𝑑
(︀
𝑦𝑗 + ℎ

2

)︀
𝑅ℎ

)︃
𝑧𝑗

)︃
(4.25)

From this and equations (4.14) and (4.15) we deduce the new equilib-

rium lengths for all springs 𝑀𝑖𝑀𝑗 and 𝑂𝑀𝑖 required to constrict apically our

epithelial cell.

𝑟𝜒𝑖eq(𝑑) =

√︁
(𝐴(𝑥𝑖))

2 + 𝑦2𝑖 + (𝐴(𝑧𝑖))
2 (4.26)

𝑟𝑖𝑗eq(𝑑) =

√︁
(𝐴(𝑥𝑖) − 𝐴(𝑥𝑗))

2 + (𝑦𝑖 − 𝑦𝑗)2 + (𝐴(𝑧𝑖) − 𝐴(𝑧𝑗))
2 (4.27)

Here, 𝐴(𝑡𝑘) =
(︁

1 − 𝑑(ℎ
2
+𝑦𝑘)

𝑅ℎ

)︁
𝑡𝑘 and 𝑥𝑖,𝑗, 𝑦𝑖,𝑗, 𝑧𝑖,𝑗 are relative to the centre of

the cell.

An interesting feature of these equations is that they are independent

of the topology of the initial mesh, which also needs to be cylindrical in

shape. Figures 4.1C and 4.1D show examples of apical constriction with two

different types of cylindrical meshes, respectively with square and hexagonal

base.
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Figure 4.2: Apical Constriction. A. Schema of an apically constricted
epithelial cell with hexagonal base. B. A 2D section of a constricted cell.
The cell underwent apical constriction by reducing its apical radius by a
length of 𝑑. Initial cylindrical section in white, constricted cell in red.
C. Simulation of apical constriction with an epithelial cell with square
base. Parameter values: 𝐻 = 2, 𝑅 = 0.5, 𝑑 = 0.35. D. Simulation of
apical constriction with an epithelial cell with hexagonal base. Parameter

values: 𝐻 = 2, 𝑅 = 0.5, 𝑑 = 0.35.
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4.1.3 Apical constriction with volume conversation:

basal-lateral modulation

4.1.3.1 Biological motivation

In several situations during their shape changes, cells attempt to maintain

their volume unchanged. This feature has been observed in certain cases of

Apical Constriction, where the cell, while constricting, simultaneously em-

ploys volume conservation mechanisms to compensate the loss of volume

induced by the constriction of the apical side. These mechanisms involve

basal modulation, in which the epithelial cell enlarges it basal face, and

lateral lengthening, where the cell increases its lateral height [32, 136, 151].

These variants to AC are present in multiple morphogenesis events in epithe-

lial tissues. For instance, there is evidence that coordination between apical

and basolateral contractility is necessary for ascidian endoderm invagination

[32, 136]. As in simple Apical Constriction and Planar Polarised Constric-

tion, these shape changes are dependent on the differential localisation of

activated actomyosin networks within the cell.

4.1.3.2 Computational modelling

In the scenario presented in figure 4.3B, the cell reduces its apical radius by a

given amount 𝑑, and, as a consequence of volume conservation, increases its

lateral height by 𝐻0, and its basal radius by 𝑅0. In order to enforce volume

conservation on the constricting cell, we need to compute appropriate values

𝐻0 and 𝑅0.
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Computing 𝑅0 and 𝐻0

We consider an epithelial cell with cylindrical shape. In its initial state, the

volume of the cell is given by

𝒱0 = ℬ ×𝐻 (4.28)

Here, ℬ is the surface area of the cylinder base, the specific formula

for ℬ depending on the actual shape of the base. In regular cylinders (with

regular base), the formula for ℬ will be given by

ℬ = 𝛾 ×𝑅2 (4.29)

Here, 𝛾 is a multiplicative factor. For a square base, 𝛾 = 4, for the

inscribed circular base 𝛾 = 𝜋 , for the inscribed hexagonal base (inside the

circle) 𝛾 = 3 etc.

Hence, the volume of the cell at its initial resting state is

𝒱0 = 𝛾 ×𝑅2 ×𝐻 (4.30)

On the other hand, once the cell is fully constricted having reduced its

apical radius by 𝑑, increased its height by 𝐻0 and its basal radius by 𝑅0, the

volume is given by

𝒱 =

∫︁ 𝐻
2

−𝐻
2
−𝐻0

𝛾𝑟′2(𝑦′)𝑑𝑦′ (4.31)

Here, 𝑟′(𝑦′) is the radius of the constricted cell at height 𝑦′. If the cell

radius decreases in an homogeneous way, 𝑟′(𝑦′) takes the form of an affine
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function such that

𝑟′(−𝐻

2
−𝐻0) = 𝑅 + 𝑅0 and 𝑟′(

𝐻

2
) = 𝑅− 𝑑 (4.32)

Solving 𝑟′(𝑦′), we get

𝑟′(𝑦′) = − 𝑅0 + 𝑑

𝐻 + 𝐻0

𝑦′ + 𝑅− 𝑑 +
(𝑑 + 𝑅0) ×𝐻

2(𝐻 + 𝐻0)
(4.33)

Hence

𝑑𝑦′ = −𝐻 + 𝐻0

𝑅0 + 𝑑
𝑑𝑟′ (4.34)

By a change of variable, we get the following equation for the volume

𝒱 =

∫︁ 𝑅−𝑑

𝑅+𝑅0

𝛾𝑟′2
(︂
−𝐻 + 𝐻0

𝑅0 + 𝑑
𝑑𝑟′
)︂

(4.35)

= −𝛾 × 𝐻 + 𝐻0

𝑅0 + 𝑑

∫︁ 𝑅−𝑑

𝑅+𝑅0

𝑟′2𝑑𝑟′ (4.36)

= −𝛾

3
× 𝐻 + 𝐻0

𝑅0 + 𝑑

[︀
𝑟′3
]︀𝑅−𝑑

𝑅+𝑅0
(4.37)

= −𝛾

3
× 𝐻 + 𝐻0

𝑅0 + 𝑑

(︀
(𝑅− 𝑑)3 − (𝑅 + 𝑅0)

3
)︀

(4.38)

= −𝛾

3
× 𝐻 + 𝐻0

𝑅0 + 𝑑
(−𝑑−𝑅0)

(︀
(𝑅− 𝑑)2 + (𝑅− 𝑑)(𝑅 + 𝑅0) + (𝑅 + 𝑅0)

2
)︀

(4.39)

=
𝛾

3
× (𝐻 + 𝐻0)

(︀
(𝑅− 𝑑)2 + (𝑅− 𝑑)(𝑅 + 𝑅0) + (𝑅 + 𝑅0)

2
)︀

(4.40)

Hence,

𝒱 =
𝛾

3
× (𝐻 + 𝐻0)

(︀
𝑅2

0 + (3𝑅− 𝑑)𝑅0 + 3𝑅2 − 3𝑅𝑑 + 𝑑2
)︀

(4.41)
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The volume conservation hypothesis dictates that 𝒱0 = 𝒱 . Hence, the

right hand terms of equations (4.30) and (4.41) are equal. Therefore,

𝛾𝑅2𝐻 =
𝛾

3
× (𝐻 + 𝐻0)

(︀
𝑅2

0 + (3𝑅− 𝑑)𝑅0 + 3𝑅2 − 3𝑅𝑑 + 𝑑2
)︀

(4.42)

Hence the following equation describing volume conservation in a con-

stricting epithelial cell. This equation is quadratic in 𝑅0, and linear in 𝐻0.

(𝐻 + 𝐻0)
(︀
𝑅2

0 + (3𝑅− 𝑑)𝑅0 + 3𝑅2 − 3𝑅𝑑 + 𝑑2
)︀
− 3𝑅2𝐻 = 0 (4.43)

Therefore, for given values of 𝑑 and 𝑅0 such that 𝑑 ≤ 𝑅, 𝑅0 >= −𝑅 and

(𝑑,𝑅0) ̸= (𝑅,−𝑅), equation (4.43) gives the resulting lateral modulation.

𝐻0 =
3𝑅2𝐻

(𝑅2
0 + (3𝑅− 𝑑)𝑅0 + 3𝑅2 − 3𝑅𝑑 + 𝑑2)

−𝐻 (4.44)

Conversely, for given values of 𝑑 and 𝐻0 such that 𝑑 ≤ 𝑅 and 𝐻0 >

−𝐻, one can easily show that the expected basal modulation is given as in

equation (4.45).

𝑅0 =

√︂
(3𝑅− 𝑑)2 − 4

(︁
3𝑅2 − 3𝑅𝑑 + 𝑑2 − 3𝑅2𝐻

𝐻+𝐻0

)︁
− (3𝑅− 𝑑)

2
(4.45)

Special case 1: Basal modulation

Here, in order to compensate for volume loss induced by apical constric-

tion, the epithelial cell strictly increases its basal radius, keeping its height
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unchanged. In this case, 𝐻0 = 0 and 𝑅0 is given by equation (4.46).

𝑅0 =

√︀
3(3𝑅− 𝑑)(𝑅 + 𝑑) − (3𝑅− 𝑑)

2
(4.46)

Special case 2: Lateral modulation

Here, in order to compensate for volume loss induced by apical constric-

tion, the epithelial cell strictly increases its height, keeping its basal radius

unchanged. In this case, 𝑅0 = 0 and 𝐻0 is given by equation (4.47).

𝐻0 =
3𝑅2𝐻

(3𝑅2 − 3𝑅𝑑 + 𝑑2)
−𝐻 (4.47)

Having computed values for 𝐻0 and 𝑅0, we can now proceed with cal-

culating new equilibrium distances for springs connected to point 𝑀 ′
𝑖 .

Computing the coordinates of 𝑀 ′
𝑖

We will consider a 2D section of an epithelial cell going through apical

constriction with basal-lateral modulation (Fig.4.3B). In addition, we con-

sider sub-cellular particles 𝑖 and 𝑗 with respective positions 𝑀𝑖(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) and

𝑀𝑖(𝑥𝑗, 𝑦𝑗, 𝑧𝑗) located on the lateral side of the cell. Once the cell constricts by

reducing its apical radius by 𝑑, particles 𝑖 and 𝑗 will have moved respectively

to positions 𝑀 ′
𝑖(𝑥

′
𝑖, 𝑦

′
𝑖, 𝑧

′
𝑖) and 𝑀 ′

𝑗(𝑥
′
𝑗, 𝑦

′
𝑗, 𝑧

′
𝑗).
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Equilibrium lengths of membrane spring 𝑀𝑖𝑀𝑗 for the constricted cell

is given by equation (4.48).

⎧⎪⎨⎪⎩ 𝑟𝜒𝑖eq(𝑑) = ||
−−→
𝑂𝑀 ′

𝑖 ||

𝑟𝑖𝑗eq(𝑑) = ||
−−−→
𝑀 ′

𝑖𝑀
′
𝑗||

(4.48)

Hence, finding equilibrium lengths necessary to constraint the cell to

undergo apical constriction is equivalent to computing the coordinates of

vertices 𝑀 ′
𝑖 and 𝑀 ′

𝑗. The same process can be used to calculate the coordi-

nates of 𝑀 ′
𝑖 and 𝑀 ′

𝑗. Therefore, we will show the steps for 𝑀 ′
𝑖 , and use the

similar result for 𝑀 ′
𝑗.

Here we use a different approach to the previous sections. Because ep-

ithelial cells, thanks to their shape, have a cylindrical symmetry, We consider

the coordinates of points 𝑀𝑖 and 𝑀 ′
𝑖 in the cylindrical system of coordinates,

respectively 𝑀𝑖(𝑟𝑖, 𝜙𝑖, 𝑦𝑖) and 𝑀 ′
𝑖(𝑟

′
𝑖, 𝜙

′
𝑖, 𝑦

′
𝑖).

To switch between cylindrical and Cartesian coordinates systems, we

have the following relationships:⎧⎪⎨⎪⎩ 𝑥𝑖 = 𝑟𝑖 cos𝜙 and 𝑥′
𝑖 = 𝑟′𝑖 cos𝜙′

𝑧𝑖 = 𝑟𝑖 sin𝜙 and 𝑧′𝑖 = 𝑟′𝑖 sin𝜙′
(4.49)

While constricting, if the cell does not rotate, we can assume that the

angle 𝜙 is not changed by the process.

𝜙′
𝑖 = 𝜙𝑖 (4.50)
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Hence, combining equations (4.49) and (4.50), we have the following

equations for 𝑥′
𝑖 and 𝑧′𝑖: ⎧⎪⎨⎪⎩ 𝑥′

𝑖 = 𝑟′𝑖
𝑥𝑖

𝑟𝑖

𝑧′𝑖 = 𝑟′𝑖
𝑧𝑖
𝑟𝑖

(4.51)

We have already established that 𝑟′𝑖 can be expressed as an affine func-

tion of the 𝑦 coordinate of 𝑀 ′
𝑖 as in equation (4.33). We found

𝑟′(𝑦′) = − 𝑅0 + 𝑑

𝐻 + 𝐻0

𝑦′ + 𝑅− 𝑑 +
(𝑑 + 𝑅0) ×𝐻

2(𝐻 + 𝐻0)
(4.52)

Furthermore, 𝑦′ can be expressed as an affine function of 𝑦, such that

𝑦′(−𝐻

2
−𝐻0) = −𝐻

2
and 𝑦′(

𝐻

2
) =

𝐻

2
(4.53)

We therefore get

𝑦′(𝑦) =

(︂
1 +

𝐻0

𝐻

)︂
𝑦 − 𝐻0

2
(4.54)

Hence, We can write 𝑟′ as a function of 𝑦

𝑟′(𝑦) = −𝑑 + 𝑅0

𝐻
𝑦 + 𝑅− 𝑑 +

𝑑 + 𝑅0

2
(4.55)
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Therefore, we get the following equations for 𝑀 ′
𝑖 coordinates:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑥′
𝑖 =

(︀
−𝑑+𝑅0

𝐻
𝑦𝑖 + 𝑅− 𝑑 + 𝑑+𝑅0

2

)︀
× 𝑥𝑖√

𝑥2
𝑖+𝑧2𝑖

𝑦′𝑖 =
(︀
1 + 𝐻0

𝐻

)︀
𝑦𝑖 − 𝐻0

2

𝑧′𝑖 =
(︀
−𝑑+𝑅0

𝐻
𝑦𝑖 + 𝑅− 𝑑 + 𝑑+𝑅0

2

)︀
× 𝑧𝑖√

𝑥2
𝑖+𝑧2𝑖

(4.56)

For a particle 𝑗 on the cylindrical cell, its position 𝑀 ′
𝑗 on the constricted

cell will be given by a similar equation (Eq.4.57).

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑥′
𝑗 =

(︀
−𝑑+𝑅0

𝐻
𝑦𝑗 + 𝑅− 𝑑 + 𝑑+𝑅0

2

)︀
× 𝑥𝑗√

𝑥2
𝑗+𝑧2𝑗

𝑦′𝑗 =
(︀
1 + 𝐻0

𝐻

)︀
𝑦𝑗 − 𝐻0

2

𝑧′𝑗 =
(︀
−𝑑+𝑅0

𝐻
𝑦𝑗 + 𝑅− 𝑑 + 𝑑+𝑅0

2

)︀
× 𝑧𝑗√

𝑥2
𝑗+𝑧2𝑗

(4.57)

From these equations (4.28) and (4.29) we deduce the new equilibrium

lengths for all springs 𝑖𝑗 and 𝜒𝑖 required to enforce volume conservation

during the apical constriction of an epithelial cell.⎧⎪⎨⎪⎩ 𝑟𝜒𝑖eq(𝑑) =
√︀

𝑥′
𝑖
2 + 𝑦′𝑖

2 + 𝑧′𝑖
2

𝑟𝑖𝑗eq(𝑑) =
√︁

(𝑥′
𝑖 − 𝑥′

𝑗)
2 + (𝑦′𝑖 − 𝑦′𝑗)

2 + (𝑧′𝑖 − 𝑧′𝑗)
2

(4.58)
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Figure 4.3: Apical Constriction with volume conservation. A.
Schema of an apically constricted epithelial cell with hexagonal base. B.
A 2D section of a constricted cell. The cell underwent apical constriction
by reducing its apical radius by a length of 𝑑. Initial cylindrical section
in white, constricted cell in red. C. Simulation of apical constriction with
volume conservation using an epithelial cell with hexagonal base. Param-
eter values: 𝐻 = 2, 𝑅 = 0.5, 𝑑 = 0.4, 𝐻0 = 0.25. Using equation (4.45),

we find 𝑅0 = 0.2618908.

4.1.4 Integrating chemical variables: 𝐶𝑎-controlled

Apical Constriction

4.1.4.1 Biological motivation

Several studies have provided evidence for correlation of Apical Constriction

events with high concentrations of 𝐶𝑎2+ within epithelial cells. In partic-

ular, these studies have shown that periodic spikes of calcium levels pre-

ceding the enrichment in apical actin, result in pulsed contractions of cells’

actomyosin networks which drive apical constriction [25, 93, 141]. In this
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dynamic system, cells do not constrict all at once. Rather, AC manifests

as a continuous process involving alternative phases of apical surface area

shrinkage and expansion [25]. Although these studies evidenced strong cor-

relations between the spikes and apical contractions, and established the

precedence of Ca2+ spikes, the detailed chain of causation remains to be

elucidated. Christodoulou et al. hypothesised that these could involve the

calcium-driven activation of RhoA which in turn activates ROCK, responsi-

ble for the contraction of actin filaments [25]. Moreover, it was shown that

calcium regulates the cytoskeletal dynamics of AC during mouse neural tube

closure through the secretory pathway calcium ATPase-1 [20].

Furthermore, it has been established that calcium levels in Xenopus

are regulated by inositol 1,4,5-triphosphate [5]. Building on these studies,

Kaouri et al. [78] proposed a simple mechanochemical model capturing the

dynamics of 𝐶𝑎2+ and 𝐼𝑃3, as well as the interplay between their levels of

concentration and changes in the apical surface area of cells. In order to

demonstrate how chemical modelling can be coupled with cell mechanics in

MG#, we propose an application to the control system of calcium levels

during apical constriction.

4.1.4.2 Computational modelling

Calcium signalling within single cells involves the storage and release of cal-

cium cations in and from cellular stores such the Endoplasmic Reticulum

(ER) or the Sarcoplasmic Reticulum. Several conceptual modelling attempts

aiming at capturing these dynamics have been put forward over the years

[44]. Among those, the Atri model [5] presents the advantage of strong

agreement with experimental findings [45].
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Kaouri et al. [78] propose an enhancement of the Atri model which

accounts for the mechanochemical feedback loop between calcium concen-

trations and the apical surface constriction. This model takes the form of

a system of three ODEs describing the evolution over time of the molecular

concentrations of 𝐶𝑎2+ (𝑐) and 𝐼𝑃3 (ℎ), a receptor molecule in the ER, and

the dynamics of the apical surface area of the cell (𝜃).

Here, the variations of calcium concentrations are influenced by the re-

lease of calcium from ER stores into the cytoplasm through IP3 receptors

(first term in (Eq. 4.59)), the flux of calcium out of the cytoplasm (negative

term in (Eq. 4.59)), and the apical surface area (third term in (Eq. 4.59)). Re-

ciprocally, the variations of 𝐼𝑃3 concentrations and of the apical surface area

are influenced by the concentration of calcium cations in the cell. This results

in the following non-dimensionalised equations ((Eq. 4.59) - (Eq. 4.61)).

𝑑𝑐

𝑑𝑡
= 𝜇ℎ𝐾1

𝑏 + 𝑐

1 + 𝑐
− Γ𝑐

𝐾 + 𝑐
+ 𝜆𝜃 = 𝑅1(𝑐, 𝜃, ℎ;𝜇, 𝜆) (4.59)

𝑑ℎ

𝑑𝑡
=

𝐾2
2

𝐾2
2 + 𝑐2

− ℎ = 𝑅3(𝑐, ℎ) (4.60)

𝑑𝜃

𝑑𝑡
= −𝐾𝜃𝜃 + ̂︀𝑇 (𝑐) = 𝑅2(𝑐, 𝜃) (4.61)

In (Eq. 4.59)-(Eq. 4.61), 𝐾1 = 𝑘𝑓
𝜏ℎ
𝑘1
,Γ = 𝛾𝜏ℎ𝑘1, 𝐾 = 𝑘𝛾

𝑘1
and 𝜆 = 𝜏𝑆/𝑘1.

𝑘𝜃 = 𝜏ℎ𝐸
′(1 + 𝜈 ′)𝜉1 + 𝜉2 and 𝑇 (𝑐) = 𝜏ℎ

𝜉1+𝜉2
𝑇𝐷(𝑐) and 𝐾2 = 𝑘2/𝑘1. Using

the parameter values of Atri et al. [5], they obtain 𝐾2 = 1,Γ = 40
7
, and

𝐾 = 1
7
. Also, taking values of 𝐸, 𝜈 and of the viscosity from Zhou et

al. [156] (𝐸 = 8.5𝑃𝑎, 𝜈 = 0.4 and 𝜉1 + 𝜉2 = 100Pa.s) they find that 𝑘𝜃 is

0.4. Furthermore, 𝑇 (𝑐) = 𝜏ℎ
𝜉1+𝜉2

𝑇𝐷(𝑐) = 𝜏ℎ
𝜉1+𝜉2

𝑇0𝐷
̂︀𝑇 (𝑐), where ̂︀𝑇 (𝑐) is non-

dimensional, and they also fix 𝜏ℎ
𝜉1+𝜉2

𝑇0𝐷 = 1.
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Integrating the work of Kaouri et al. [78] into our model of cell me-

chanics, we propose here a mechanochemical model of apical constriction,

linking molecular regulation within epithelial cells to contractile forces caus-

ing apical constriction, i.e. making the mechanical parameters 𝑟eq functions

of certain protein concentrations ℎ (molecular concentration of Inositol 1,4,5-

triphosphate), and 𝑐 (molecular concentration of 𝐶𝑎2+).

In the previous section on apical constriction, we established for our

model a mathematical link between the apical radius of a constricting cell

and the mechanical forces driving the constriction (Eq.4.25). From this, we

can deduce a relationship between the surface area of a constricting cell and

those mechanical forces.

For an hexagonal epithelial cell with initial apical radius 𝑅, the apical

surface area is given by 𝐴0 = (3
√

3/2)𝑅2, and, for a constricted cell, whose

apical radius has been reduced by 𝑑, the apical surface area is given by

𝐴(𝑑) = (3
√

3/2)(𝑅 − 𝑑)2. One can easily establish the relationship between

𝜃, the normalised surface area, and 𝑑, given by equation (4.62) - (4.63).

𝑑 =
1

2

(︁
1 −

√
𝜃
)︁

(4.62)

𝜃 =
𝐴(𝑑)

𝐴0

(4.63)

Hence, we can express the contractile forces required to reduce cells

radius by a length 𝑑 as a function of the apical surface area via the constricted

cells springs’ equilibrium lengths 𝑟𝑖𝑗eq(𝑑) and 𝑟𝑖𝜒eq(𝑑), themselves functions of

𝑑 (See equation (4.25)).

With these equations, we are able to establish a direct feedback loop

between the chemical and mechanical variables that control the cell shape.
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For a given initial state (𝑐0, 𝜃0, ℎ0), we can solve this system of ODEs and

infer the evolution of the system over the whole simulation length. Having

computed the apical surface area for each simulation frame, we can calcu-

late the corresponding quantity 𝑑 (eq. 4.62) periodically and trigger apical

constriction/expansion. Figure 4.4 shows an example simulation of apical

constriction regulated by AC levels.

Figure 4.4: 𝐶𝑎2+ regulated Apical Constriction. A. Levels of con-
centrations of 𝐶𝑎2+ (orange) and IP3 (grey) within an epithelial under-
going AC. The yellow curve shows the theoretical evolution of the apical
cell area through time. The apical faces goes through alternative phases
of growth and decrease as reported in [25]. B. Plots of theoretical and em-
pirical apical surface area as yielded by our simulation. Observed slight
differences are caused by the Euler explicit scheme used C. Snapshots of
the constricting cell at different time points showing the evolution of the
apical surface area. Parameter values: 𝐻 = 2, 𝑅 = 0.5. From (eq. 4.59 -

eq. 4.61), we fix 𝑐0 = 1, 𝜃0 = 1, ℎ0 = 1, 𝜆 = 0.5, 𝜇 = 0.289, 𝑘1 = 0.7.

4.2 Morphogenesis in epithelial tissues

The bulk of epithelial morphogenesis can be broken down into interactions

of a few canonical epithelial behaviours [69]. In this section, we describe and
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simulate using MG# some of these canonical behaviours, notably epithelial

folding and the formation of multicellular rosettes. In order to simulate these

development episodes, we implement the single cellular behaviours described

in previous sections in the context of multicellular epithelial sheets.

4.2.1 Folding of epithelial sheets

4.2.1.1 Biological motivation

Epithelial folding is undoubtedly one of the most common regulators of shape

in development across living organisms [119]. It can be defined as the process

during which a flat epithelial sheet goes out of plane by acquiring a curved

shape. Folding is the main mechanism at the heart of important morpho-

genesis events such as gastrulation [75], Neural Tube Closure [25, 95, 141]

and the formation of epithelial tubes [3, 28]. A plethora of single epithelial

cells changes are able to drive the bending of epithelial sheets including dif-

ferent shades of apical constriction, basal expansion, and lateral modulation

[119, 139, 151]. More details on epithelial folding can be found in reviews by

Wen et al. and Pearl et al [32, 119, 151].

4.2.1.2 Computational modelling

Founded on the biological background of the previous section, we propose

to simulate the folding of a single epithelial layer. However, here we limit

ourselves to epithelial folding driven by apical constriction, the principle

being the same for other drivers of folding.

It has often been suggested in litterature that during epithelial folding,

single cell mechanisms at work are activated in discriminatory ways both in
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space and time. Suzuki et al. [141] confirmed observations by Christodoulou

et al. [25] that 𝐶𝑎2+ pulses, the biochemical metabolism fuelling AC in

single cells during Xenopus Neural Tube Closure, occurred in neural plate

cells rather than in the non-neural epidermis, which surrounds the Neural

Plate. Hence, epidermis cells, located at the boundary of the neural plate,

did not undergo AC, nor folding morphogenesis. Furthermore, Ogura et

al.[109] evidenced the requirement of a timely wave of cellular contractility

during epithelial invagination in Drosophila tracheal placode.

In order to account for this behaviour in our modelling, we speculate the

presence of an “epicentre” within the sheet where cells actively undergo apical

constriction (Fig. 4.5A). Cells beyond the epicentre (a region of space that

we shall name the “boundary”) do not constrict apically, and only respond to

the mechanical action of cells in the epicentre. In other words, the distance

𝑑 by which we reduce the apical radius of a cell is a function of the position

of the cell within the sheet. In this case of epithelial folding, equation (4.64)

describes this function.

𝑑(
−−→
𝑋𝑐𝑒𝑙𝑙) =

⎧⎪⎨⎪⎩ 0 if cell is on boundary

𝑅 if cell is on epicentre
(4.64)

The coordinated movement of cells induced by these positional laws

causes the tissue to bend and fold (Fig. 4.5A,B).
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Figure 4.5: Epithelial Folding. A. Top view of a single epithelial
layer folding under the influence of single cells at the centre of the sheet
(coloured in yellow) constricting apically. The sheet is composed of 81
epithelial cells with hexagonal base. The epicentre is represented by the
25 yellow cells at the centre of the sheet. B. Lateral view of the folding
process in A. The sheet goes out of plane. Parameter values: ℎ = 2, 𝑅 =

0.5, 𝑑 = 0.5

4.2.2 Morphogenesis of multi-cellular rosettes

4.2.2.1 Biological motivation

Multi-cellular rosettes are concentric biological structures formed by agglom-

erations of polarised cells in epithelial tissues. These epithelial structures

have observed across many species during development, including mouse

[8, 24], Drosophila, chick and zebrafish [65]. Multi-cellular rosettes play an

important role in several cellular behaviours: tissue elongation [3], lumen for-

mation and maintenance of cell pluripotency [65]. In mammalian embryos

for instance, they mediate the formation of a lumen in the early epiblast

[8, 9, 132–134], and later the pro-amniotic cavity, bridging through embry-

onic and extra-embryonic tissues [24].
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Like many processes in epithelial sheets, mechanisms of multicellular

rosettes formation find their source in the contraction of actomyosin networks

within individual cells. However, depending on the localisation of these

contractions within the cell, two fundamental mechanisms have been found

to drive multicellular rosette formation. On the one hand, polarised apical

constriction, where actin-myosin networks localised near the apical surface

of the cell constricts leading to the narrowing of the apical domain of cells.

Here, polarity regulators (such as Par-3, Par-6, and atypical protein kinase

C) adherens junction proteins (cadherins), and tight junction proteins (ZO-1)

are responsible for the actin-myosin network localisation [8, 65]. On the other

hand, polarised apical constriction [8, 65], where the network is localised near

the apical surface of the cell, and planar polarised constriction, where the

network is localised near the constricting lateral face of the cell [12, 65]. In

both cases, cell polarity is critical to the formation of the rosette [8, 12].

4.2.2.2 Computational modelling

Founded on the biological background of the previous section, we propose to

simulate rosette formation on the basis of the distinct single cell mechanisms

that have been put forward as regulators of multicellular rosette formation.

The first scenario we simulate is the formation of planar rosettes

(Fig. 4.6A). Here, an epithelial sheet with a relatively small amount of cells

(8 cells) metamorphoses into a planar rosette by the action of single cells

triggering planar polarised constriction. In the second scenario, cells in a

single layered epithelial sheet constrict apically, prompting the sheet to turn

into a rosette (Fig. 4.6B). Finally, in a polarised epithelial tissue with two

layers, cells undergo apical constriction. This results in the emergence of a
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near spherical epithelial rosette, reminiscent of mammalian embryonic tissues

[132–134] (Fig. 4.6C).

In a pure mathematical sense, we can extend the idea of the positional

shrinking function defined for positional folding by noticing that here also,

whether a cell constrict or not depends on the position of the cell. How-

ever, in all three cases, this function is homogeneous over the tissue, and

the presented simulations is equal to the initial apical radius of the cells.

(eq. 4.65).

𝑑(
−−→
𝑋𝑐𝑒𝑙𝑙) = 𝑅 (4.65)



Computational modelling unveils how epiblast remodelling and positioning
rely on trophectoderm morphogenesis during mouse implantation 77

Figure 4.6: Morphogenesis of multi-cellular rosettes. A. Sim-
ulation of the morphogenesis of a multicellular rosette through planar
polarised constriction of single cells. The cell population is made of 8
epithelial cells with square base. B. Simulation of the morphogenesis of
a multicellular rosette via apical constriction of cells in a single-layered
epithelial sheet. C. Simulation of the morphogenesis of a multicellular
rosette via apical constriction of polarised cells in a double-layered epithe-
lial sheet. In B and C, the the sheets are respectively composed of 25 and
50 hexagonal epithelial cells. Parameter values: ℎ = 2, 𝑅 = 0.5, 𝑑 = 0.5





Chapter 5

Computational modelling unveils

how epiblast remodelling and

positioning rely on

trophectoderm morphogenesis

during mouse implantation

Understanding the processes by which the mammalian embryo implants in

the maternal uterus is a long-standing challenge in embryology. New insights

into this morphogenetic event could be of great importance in helping, for

example, to reduce human infertility. During implantation the blastocyst,

composed of epiblast (EPI) and trophectoderm (TE) and the primitive en-

doderm (PE), undergoes significant remodelling from an oval ball to an egg

cylinder. A main feature of this transformation is symmetry breaking and

79
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reshaping of the epiblast into a “cup”. Based on previous studies, we hy-

pothesise that this event is the result of mechanical constraints originating

from the trophectoderm, which is also significantly transformed during this

process. In order to investigate this hypothesis we propose MG#, an orig-

inal computational model of biomechanics able to reproduce key cell shape

changes and tissue level behaviours in silico. With this model, we simulate

epiblast and trophectoderm morphogenesis during implantation. First, our

results uphold experimental findings that repulsion at the apical surface of

the epiblast is sufficient to drive lumenogenesis. Then, we provide new the-

oretical evidence that trophectoderm morphogenesis is sufficient to dictate

the cup shape acquisition by the epiblast and to foster its movement to-

wards the uterine tissue. We also conduct a sensitivity analysis, where we

show how different sets of model parameters influence simulation outcomes.

Together, these results offer mechanical insights into mouse implantation and

highlight the usefulness of agent-based modelling methods in the study of

embryogenesis.

5.1 Introduction

A critical milestone of mouse development is reached when the embryo im-

plants in the maternal uterine tissue [132, 149]. Prior to implantation, a

series of cell fate decisions concomitant with multiple rounds of divisions

gradually transform the initial zygote into a blastocyst featuring three dif-

ferent cell lineages: a spherical embryonic epiblast (EPI) wrapped into two

extraembryonic tissues, the trophectoderm (TE) and primitive or visceral en-

doderm (PE/VE) [4, 8]. Upon implantation, the embryo moves towards ma-

ternal sites, and undergoes significant remodelling, culminating in the case of
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the mouse in an egg cylinder, a body structure essential to post-implantation

phases such as gastrulation [8, 24? ]. A key feature of this blastocyst-to-egg-

cylinder transition, still poorly understood, is the appearance of symmetry

breaking within the epiblast and its reshaping into a cup [8, 9], which occurs

roughly between stages E4.5 and E4.75 of embryonic development.

Many of the important structural changes that occur during implanta-

tion have been explained in terms of chemical signals within and between

embryonic and extraembryonic compartments [117, 149]. For instance, it

was shown that at the onset of implantation epiblast cells exit their naive

pluripotency state, self-organise into a highly polarised rosette, and initiate

lumenogenesis under the influence of 𝛽1-integrin signalling [9, 133]. Shortly

after implantation, 𝛽1-integrin enables pro-amniotic cavity formation along

the entire egg cylinder via the resolution of multiple rosettes both in extraem-

bryonic cell populations and at their interface with the embryonic tissue [24].

Moreover, differentiation of the primitive trophectoderm into polar and mu-

ral trophectoderm leading to the formation of a boundary between the two

tissues was traced back to fibroblast growth factors (FGFs) signalling [26].

As D’Arcy Thompson already noted about genetics, however, develop-

ment cannot be construed solely in terms of biochemical signals either: the

mechanical interactions between cells and tissues equally and reciprocally

contribute to embryogenesis [68, 143]. On the subject of the epiblast remod-

elling into a cup, a series of biological works have paved the way and triggered

further investigation into the mechanics involved. Because it was observed

that the EPI did not initiate specific tissue-level symmetry-breaking be-

haviours, one study stated that after the basement membrane disintegrated

between the EPI and TE, the membrane between the EPI and the PE acted

like a basket that moulded the epiblast into its cup shape [8] (Fig. 5.1A).
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Although this hypothesis put the spotlight on the basement membrane, it

also suggested that the TE in direct contact with the EPI could play a

role in this shape change. Evidence supporting this hypothesis grew when

“ETS-embryoids” (ETS: embryonic and trophoblast stem-cell) assembled in

vitro from EPI and TE stem cells, surrounded by the extracellular matrix

(ECM) acting as the basement membrane, replicated embryonic transition

from blastocyst to egg cylinder [67] (Fig. 5.1B). Furthermore, a recent study

highlighted more clearly the role of the trophectoderm [155]. In this study,

ExE-embryoids (ExE: extra-embryonic ectoderm), cultured from EPI and

PE stem cells separated by an ECM basement membrane, did not break the

symmetry of their initial spherical shape (Fig. 5.1C). In contrast, both ETS-

and ETX-embryoids (ETX: embryonic, trophoblast and extra-embryonic en-

doderm) made from all three blastocyst lineages did reproduce the symmetry

breaking observed in real embryos. Together, these studies established the

necessity of the trophectoderm for the remodelling of the epiblast [67, 155].
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Figure 5.1: Review of epiblast symmetry breaking theories.
A. The basement membrane separating the epiblast and the primitive en-
doderm moulds the epiblast into a cup while it disintegrates between the
epiblast and the trophectoderm in mouse embryos [8]. B. Embryoid struc-
tures featuring epiblast and trophectoderm stem cells surrounded by an
ECM acting as a basement membrane (ETS-embryoids) replicate mouse
embryogenesis by forming body structures similar to those observed in
normal embryonic development [67]. Here the presence of the trophecdo-
derm shows that this tissue might be required for symmetry breaking in
the epiblast and cup shape acquisition. C. Embryoid structures featuring
epiblast and primitive endoderm stem cells surrounded by an ECM acting
as a basement membrane (EXE-embryoids) do not break symmetry in the
epiblast, but initiate lumenogenesis [155]. This evidences the requirement
of the trophectoderm for the remodelling of the epiblast. D. Trophecto-
derm morphogenesis during mouse implantation. Trophectodermal cells
elongate, then undergo apical constriction, resulting in the tissue folding
and invaginating the epiblast [26]. This suggests that epiblast remodelling
into a cup might be a mechanical response to trophectoderm dynamics
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On the other hand, how exactly trophectoderm morphogenesis influ-

ences shape change in the epiblast has not been elucidated yet because very

little is known on trophectoderm morphogenesis during implantation. In

the light of recent detailed descriptions of extra-embryonic tissue morpho-

genesis during implantation [26], it appears increasingly plausible that tro-

phectoderm morphogenesis regulated epiblast remodelling via mechanical

interactions at their common boundary. This study showed that polar tro-

phectodermal cells exhibited drastic morphological changes throughout the

implantation period. Whereas early implanting blastocysts featured squa-

mous cells in the polar trophectoderm, these cells, driven by a high mitotic

and space restrictions due to the formation of a boundary with the mural

trophectoderm, later transited to cuboidal, then elongated to acquire colum-

nar shapes. These changes were followed by apical constriction resulting in

the folding of the whole tissue, and invagination of the epiblast (Fig. 5.1D).

Moreover, this study provided experimental evidence that other structural

changes, most notably the stretching of PE (Primitive Endoderm) cells, re-

sulted from TE (Trophectoderm) morphogenesis [26]. Hence, we want to

investigate the hypothesis that trophectoderm morphogenesis drives the re-

modelling of the epiblast into a cup via mechanical interactions at their

common boundary.

Building on the increasing power of computational modelling in devel-

opmental biology [17, 35, 135, 147], we examine the influence of trophecto-

derm morphogenesis on the epiblast. The requirement of dramatic cell shape

changes in trophectodermal cells, notably apical constriction [26], orients

modelling options toward the family of deformable cell models (DCM) [146].

In this category, two classes of models have been predominant in recent

research: vertex models (VM) and sub-cellular element models (SEM).
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Although vertex models were used extensively to study epithelial dynam-

ics [2, 52], accounting for various mechanical behaviours of individual cells

remains challenging in a global energy-based approach. Hence, we set our

choice on SEM, where cells are represented by an agglomeration of com-

putational particles interacting with one another via short-range potentials

emulating the viscoelastic properties of their cytoskeleton [98, 102, 130].

However, in order to exhibit realistic cell shapes, SEM generally involve an

important number of particles, many of which reside within the cell, thus do

not have a direct influence on cell shape. This leads to increased computa-

tional complexity, limiting the size of cell populations that can be simulated.

Here, using MG#, we first reproduce the experimental observation that

repulsion at the apical surface is sufficient for lumenogenesis in the epiblast.

Then, we reproduce trophectoderm morphogenesis during implantation and

we provide theoretical support that epiblast remodelling into a cup shape and

its movement towards the maternal uterine tissue can be explained by tro-

phectoderm morphogenesis. We also conduct a sensitivity analysis, where we

show how different sets of model parameters influence simulation outcomes.

5.2 Results

In this section, we applied our model to the study of mouse embryo morpho-

genesis during implantation. Here we focused on epiblast and trophectoderm

tissues. First, we tested the hypothesis of whether repulsion at the apical

surface of the epiblast was sufficient to account for lumenogenesis. Then, we

simulated both tissues’ morphogenesis and showed that the epiblast remod-

elling into a cup shape and its movement towards the maternal uterine tissue

could be explained by trophectoderm morphogenesis. Next, we conducted
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a sensitivity analysis, to show how different sets of parameters influenced

simulation outcomes.

5.2.1 Repulsion at the apical surface of the epiblast is

sufficient for lumenogenesis

The study of how lumens arise in epithelial tissues has revealed two predomi-

nant mechanisms: cavitation mediated by apoptosis, and hollowing, in which

the lumen is formed by exocytosis and membrane separation [31, 152]. In

the case of highly polarised epithelia, it was shown that cavitation was not

necessary for lumenogenesis [94]. Hence, the hollowing mechanism was privi-

leged in epiblast lumenogenesis, which features highly polarised cells spatially

organised in the shape of a rosette. Moreover, it was hypothesised that repul-

sion mediated by anti-adhesive molecules such as podocalyxin (PCX) drove

lumen formation in the epiblast [8, 9, 133, 155]. Furthermore, evidence for

hollowing in the epiblast was observed in a recent study [155], where apop-

tosis was found not to regulate lumenogenesis, but PCX was discovered to

be predominant at the apical surface of cells facing the lumen.

Using our model, we sought to determine theoretically whether hollow-

ing via repulsion at the apical surface of the epiblast rosette was a viable

mechanism for lumenogenesis in this tissue. First, we built a 3D rosette-

shaped epiblast by submitting polarised epithelial cells to apical constric-

tion [9] (Fig. 5.2A,B, Supplementary Fig. 5.6A). Then, inspired by the anti-

adhesive role of PCX, we broke adhesive links between cell membranes in

contact at the apical surface of the rosette, meaning that certain neighbour-

ing pairs of particles were not more submitted to the exact same forces, but

rather could be repelled in different directions.
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Figure 5.2: Lumenogenesis in the epiblast. A. A 3D model of a
rosette-shaped epiblast. B. A 2D slice of the epiblast in A showing apically
constricted cells of the building block of the epiblast rosette. C. Creation
of the lumen cavity by repulsion at the apical surface of the epiblast. Green
arrows represent the direction of repulsive forces. The snapshots (from
left to right) were taken respectively at 𝑡 = 0, 500 and 2000. D. Lateral
view of the sliced epiblast showing the lumen volume. E. Dynamics in
time of the volume of the lumen. Values of the equation parameters:

𝐽EPI = 2.5, 𝜆med = 𝜆𝜒 = 2, 𝜌 = 1, 𝑅lum = 0.25.

We then created a virtual source (𝑂) at the centre of the lumen to exert

repulsive forces on apical particles. Bedzhov et al. argue that these repulsion

forces are driven by electrical charges [9], a possibility also explored in [43].

To model these effects, we used conservative forces from a Morse potential
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(Eq. 5.1).
−→
𝐹 rep

𝑖 = 2𝐽EPI𝜌 (𝑒2𝜌(𝑟
𝑂𝑖−𝑅lum) − 𝑒𝜌(𝑟

𝑂𝑖−𝑅lum)) −→𝑢 𝑂𝑖 (5.1)

Here, 𝑅lum is the radius of the lumen. These forces prompted neighbour-

ing apical particles and surfaces to drift apart from each other, initiate the

creation of a lumen at the centre of the rosette (Fig. 5.2C-E). This result,

upholding experimental data, suggests that hollowing via apical repulsion is

sufficient to drive the onset of lumenogenesis in the mouse epiblast.

5.2.2 Mechanical constraints imposed by TE morpho-

genesis on the epiblast drive cup shape acquisition

A key feature of the blastocyst-to-egg-cylinder transition is the symmetry

breaking within the epiblast and its shaping into a cup [8, 9]. During this

transformation, the epiblast remodels from an oval ball to a tissue with a flat

surface at its boundary with the trophectoderm. Previous studies have estab-

lished the requirement of the trophectoderm in this shape change [67, 155].

Using the presented model, we investigated how trophectoderm morphogen-

esis influenced the cup shape acquisition by the epiblast. Our simulation

protocol consisted of reproducing the sequence of morphological events ob-

served in the trophectoderm as described in [26] (elongation followed folding

via apical constriction), and keeping track of the consequent changes in the

epiblast. For simplicity and to keep the model computationally efficient, we

assumed that there were no cell divisions in the tissue.

We built a virtual embryo consisting of a TE sheet with initial cuboidal

cells laying on top of an oval rosette-shaped epiblast (Supplementary

Fig. 5.6B). At the initial stage (Fig. 5.3A,E), new equilibrium lengths were

computed for all TE cells, with the goal of triggering a transition from
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cuboidal cells to more elongated columnar shapes with smaller apical surface.

These cells lost their resting state and regained it by gradually aligning their

actual springs lengths with the calculated equilibrium lengths (Fig. 5.3B,F).

After that, we initiated invagination in the TE. Single cell mechanisms at

work are often activated in discriminatory ways both in space and time

[25, 109, 141]. In our simulations, the distribution over the entire sheet of

the length 𝑑 by which the apical radius of cells 𝑅 was shrunk depended on the

position of the cell in relation to the centre of the sheet via a step function:

cells in the middle of the sheet were set to constrict completely (𝑑 = 𝑅), while

cells on the boundary did not constrict (𝑑 = 0, Supplementary Fig. 5.7). The

coordinated movement of cells induced by these positional laws caused the

tissue to fold and invaginate the epiblast. Short after TE invagination begins,

we initiated lumenogenesis in the epiblast (Fig. 5.3G). In order to highlight

the requirement of the TE, following TE folding (Fig. 5.3C,G), we broke

the contacts between the TE and the epiblast for the remaining time of the

simulation, inhibiting any mechanical interactions between the two tissues,

but maintaining both tissues’ own mechanics (Fig. 5.3D,H). We noted that

throughout the experiment, with the exception of lumenogenesis, epiblast

cells did not initiate any behaviours, the epiblast as a whole simply reacted

to the mechanics induced by either the presence or the absence of the TE.
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Figure 5.3: Trophectoderm morphogenesis regulates epiblast
shape. A-D. 3D snapshots of the simulation of TE and EPI morphogen-
esis during mouse implantation, and the regulation of EPI shape, taken
respectively at 𝑡 = 0, 3000, 6000 and 9000. E-H. Corresponding 2D slices
of the cell population at the same stages. (A,E). The initial stage features
a single layered TE with cuboidal cells resting upon the rosette-shaped epi-
blast. (B,F). TE cells have transited to a columnar shape. (C,G). The
TE has folded by apical constriction of single cells. Concomitantly, lu-
menogenesis was initiated in the epiblast (the process starts at 𝑡 = 4000).
(D,H). After adhesive links were broken between TE and EPI, the EPI
bounces back to its near spherical shape. I. Definitions of the metrics used
to evaluate the model, involving the curvature 𝜃, TE/EPI interface diame-
ter 𝐷, TE/EPI interface length 𝐿, and interface ratio 𝐿/𝐷. J. Plot of the
population’s elastic energy 𝐸. Discontinuities mark the start of new mor-
phological events at 𝑡 = 0, 3000, 4000, and 6000). After removal of the TE,
𝐸 falls closer to zero than ever before, meaning that cells are closer to their
resting stage, hence less externally constrained. K. Plot of the interface
curvature 𝜃. During TE morphogenesis, 𝜃 rises towards a flat angle, then
sharply drops when the TE is removed. L. Plot of the interface ratio 𝐿/𝐷.
During TE morphogenesis, the interface curvature decreases towards 1,
then sharply increases when the TE is removed. Values of the equation

parameters: 𝐽EPI = 𝐽TE = 2.5, 𝜆med = 𝜆 = 2, 𝜌 = 1, 𝑅lum = 0.25.
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To appreciate the impact of the TE on the epiblast, we used the elastic

energy 𝐸𝑖 of a cell 𝑖 as the sum over all cell springs of the squared difference

between equilibrium and actual lengths. We extended this notion by defining

the total elastic energy of a tissue or an entire population of cells as the sum

of 𝐸𝑖’s in the population (eq. 5.2).

𝐸 =
∑︁
𝑘≤𝑁

(︃∑︁
𝑠≤𝑁𝑘

(𝑟𝑘𝑠eq − 𝑟𝑘𝑠)2

)︃
(5.2)

Here, 𝑁 is the number of cells in the population and 𝑁𝑘 the number of

springs in cell 𝑘.

Cells always tended to minimise this energy, which can also be viewed

as the degree of relaxation of cell: the closer it is to zero, the closer the

cell is in its resting state, the more relaxed it is, hence the less constrained.

In addition, we monitored the curvature of the epiblast, i.e. the inclination

angle 𝜃 of the epiblast surface covered by the trophectoderm (Fig. 5.3I). An

increasing curvature, trending towards a flat surface, was characteristic of the

epiblast’s transition from an oval rosette to a cup. Moreover, we measured

the length (𝐿) and diameter (𝐷) of the interface between EPI and TE, and

considered their interface ratio (𝐼𝑟 = 𝐿/𝐷) as our third evaluation metric

(Fig. 5.3I). It was expected that this ratio would decrease towards 1 as the

epiblast flattened. We plotted the profiles of the curvature, the interface

ratio and the elastic energy throughout our simulation.

Our model matched biological expectations by replicating, on the

one hand, an increasing curvature and a decreasing interface ratio, with

ultimately a flat TE/EPI interface just before we removed the TE

(Fig. 5.3C,G,K,L). On the other hand, as soon as the TE was removed, the

epiblast bounced back to its original shape (Fig. 5.3D,H,K,L). This result
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agrees with the experimental observation that without the TE, the epiblast

does not break symmetry [155]. The elastic energy profiles tie these be-

haviours to the mechanical influence of the TE over the epiblast. Actually,

breaking mechanical interactions between the TE and the EPI not only re-

sulted in a sharp drop in elastic energy, but this energy also plateaued at a

value significantly lower than in other stages (Fig. 5.3J), demonstrating that

cells were more mechanically constrained when both tissues were in contact.

These observations suggest that the presence of the TE imposes me-

chanical stress on epiblast cells, hinting to the necessity of this tissue’s mor-

phogenesis in the remodelling of the epiblast.

5.2.3 Trophectoderm morphogenesis fosters epiblast

movement towards the uterine tissue

An important requirement of implantation is close contact between the em-

bryo and the uterine tissue. As soon as the three pre-implantation lineages

are specified, the blastocyst hatches out of the zona pellucida and initiates

the process of implantation [8]. However, there exists a gap between the

hatched blastocyst and attachment sites in the uterus. In order to close

this gap, the embryo needs to move towards the uterus. It was recently

established that this movement of the embryo towards maternal sites occur

concomitantly to the drastic morphological changes observed in the TE [26].

Furthermore, it was observed in that same study that primitive endoderm

expansion over the whole embryo is driven by TE morphogenesis. Given that

the trophectoderm keeps close contact with the epiblast during these events,
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we hypothesised that epiblast positioning could also be affected by TE mor-

phogenesis. We employed computational modelling to examine whether TE

morphological changes could influence the trajectory of the epiblast.

Here, as previously, we reproduced the sequence of TE morphogenesis

(elongation followed by folding via apical constriction), and observed how it

affected the position of the epiblast (which also undergoes lumenogenesis).

To highlight how the TE influences the trajectory of the epiblast, we defined

what we designated as the “pushing distance”. We computed this distance at

any given time point of the simulation by calculating the difference in height

between the lowest point of the epiblast at that time point and the lowest

point at the initial stage (Fig. 5.4A). We plotted the profiles of this metric and

observed an increasing pushing distance as the TE transited from cuboidal

to columnar, then as the TE folded (Fig. 5.4B). The sudden soar observed at

𝑡 = 4000 reflects the slight elongation of the tissue due to hollowing-driven

lumenogenesis in the epiblast.
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Figure 5.4: Trophectoderm fosters epiblast movement towards
maternal sites. A. Snapshots of the simulation of TE and EPI morpho-
genesis during mouse implantation, and their influence on EPI positioning,
taken respectively at 𝑡 = 0 and 6000. B. Plot of the pushing distance,
which increases with time. C. Plot of the elastic energy 𝐸. Discontinuities
mark the start of new morphological events (𝑡 = 0 and 3000). The sudden
soar observed at 𝑡 = 4000 reflects the slight elongation of the tissue due
to hollowing-driven lumenogenesis in the epiblast. D. Plot of the pushing
distance on the epiblast Centre of Mass (CoM), which also increases with
time. E. Plot of the pushing distance on the cell population Centre of
Mass (CoM), which also increases with time. Values of the equation pa-
rameters: 𝐽EPI = 𝐽TE = 2.5, 𝜆med = 𝜆𝜒 = 2, 𝜌 = 1, ,d=0.5, 𝑅lum = 0.25.

We chose to monitor the lower end of the epiblast because it is via this

pole that the epiblast attaches to maternal sties. However, To ensure that
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the observed changes did not merely represent an elongation of the epiblast,

we also tracked the trajectory of the Centre of Mass (CoM) of both the

epiblast (Fig. 5.4D) and the entire cell population (Fig. 5.4E). Similarly,

these metrics reaffirmed that the epiblast indeed engages in a downwards

movement. Furthermore, we checked that lumenogenesis in the epiblast was

not necessary to foster this motion (Fig. 5.8). These results suggest that

TE morphogenesis, while reshaping the epiblast, also fosters the embryo’s

movement towards maternal sites.

5.2.4 Sensitivity analysis

Physical properties are generally a segregating factor between differentiated

cells in development [14, 120]. Although the mouse trophectoderm and epi-

blast form distinct cell lineages, we have so far assumed similar characteris-

tics for both types of cells. The nature of our cell model allows for global

physical properties such as mechanical stiffness to emerge from lower scale

interactions between subcellular elements. In order to characterise cells by

their stiffness and thus differentiate trophectoderm and epiblast cells, we first

needed to establish how this property depended on intrinsic model parame-

ters. In the following case study, we set out to determine how cell stiffness

relates to parameter 𝐽 , the scaling factor of the elastic force between neigh-

bouring particles.

We used an “in Silico” adaptation of the experimental protocol described

in [97] to estimate cell stiffness based on the computation of a measure

of their elasticity modulus (also known as Young modulus). For a given

value of 𝐽 , we perform a series of simulations consisting of applying forces

of increasing magnitudes (𝐹 ) on the apical and basal faces of an epithelial

cell (Fig. 5.5A). For each force, we calculate the associated stress (𝜎 = 𝐹
𝑆
,
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where 𝑆 is the surface area of each face) and note the resulting deformation

(strain, 𝜖 = Δ𝐿
𝐿0

). We then plotted the stress-strain curve and estimated the

Young modulus (𝑌 ) as the slope of the curve using a linear regression model

(fig. 5.5B). Using this protocol, we ran simulations with 50 different values

of 𝐽 uniformly distributed between 0 and 5, recording estimated values of

𝑌 after every simulation. The plot in (fig. 5.5C) suggests that 𝑌 relates to

𝐽 in a measurable way. More broadly, 𝑌 increases with 𝐽 . In other words,

the interaction strength between subcellular particles regulates cells global

stiffness: the stronger this interaction is, the stiffer the cell.

We conducted the same analysis on how friction forces coefficients 𝜆𝜒

and 𝜆med affect cell mechanical properties. We fixed 𝜆med (𝜆med = 2), var-

ied 𝜆𝜒, and observed the evolution of cells elasticity modulus as a function

of 𝜆𝜒

𝜆med
. Simulated show that above a certain threshold ( 𝜆𝜒

𝜆med
≥ 0.161),

cells elasticity modulus was constant (fig. 5.9A,B). Below this threshold,

the structure of the cell was compromised (fig. 5.9C). Overall, these observa-

tions suggested that cell mechanical properties did not depend on differences

between friction parameters within and without the cell. Furthermore, we

refined the cell mesh, taking the number of vertices to 42 (fig. 5.9D), and

repeated the experiments, varying values of parameter 𝐽 (fig. 5.9E,F). Re-

sults show that mechanical properties changed with mesh refinement (For

𝐽42 = 2.5 → 𝑌42 = 2.75). However, while refining the mesh, parameters can

be tuned in order maintain cell stiffness (𝐽42 = 2.6 → 𝑌42 = 2.90) to allow

similar responses to external stress.
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Figure 5.5: Mechanical properties of EPI and TE determine
mouse implantation. A. In“Silico” experimental protocol used to de-
termine cells elastic modulus. B. Stress-Strain curve (black) for a single
epithelial cell (34 vertices) with 𝐽 = 2.5. (blue) Linear approximation of
the Stress-Strain curve. The elastic modulus of the cell is determined by
the slope of this line (𝑌 = 2.92). C. Plot of the Elastic (Young) modulus
of cells as a function of parameter 𝐽 , the interaction strength between sub-
cellular particles. D,E,F. Respective Plots of the Interface curvature, the
Interface ratio and the Pushing Distance as functions of the mechanical
stiffness of TE cells (determined by 𝐽TE as in C). G. Plot of the fitness
metric as functions of the mechanical stiffness of TE cells (determined by
𝐽TE as in C). H. Snapshots of the epiblast shape at the end of simula-
tions for different values of 𝐽TE. With equal stiffness (middle, 𝐽TE = 2.5,
𝐽EPI = 2.5), trophectoderm morphogenesis flatten the epiblast, which
acquires a cup shape. However, with significantly lower stiffness (left,
𝐽TE = 0.3, 𝐽EPI = 2.5), trophectoderm morphogenesis barely reshape the
epiblast; meanwhile, with considerably higher stiffness (right, 𝐽TE = 4.9,
𝐽EPI = 2.5), the trophectoderm invaginates the epiblast, forcing a concave
interface with the epiblast. Other parameter values, 𝜆med = 𝜆𝜒 = 2, 𝜌 = 1,

𝑑 = 0.5.
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Having established how model parameters regulate cell stiffness, we were

able to discriminate between cell types based on parameter values we set for

each. We then sought to investigate how differences between physical proper-

ties of trophectoderm and epiblast cells would influence mouse implantation.

For this, we conducted a parameter space exploration in the one dimensional

space of values of parameter 𝐽TE, maintaining the value of 𝐽EPI constant to

a value of 2.5. This series of experiments consisted of running 50 different

simulations of mouse implantation, with values of 𝐽TE ranging from 0 to 5

with a step of 0.1. To better appreciate the impact of the trophectoderm

on the epiblast, we do not trigger lumenogenesis in the epiblast. For every

simulation, we recorded the curvature, interface ratio and pushing distance

as defined in previous section, and plotted their values against values of 𝐽TE

(fig. 5.5D, E, F). In order to determine which values of 𝐽TE perform best

overall for these metrics, we defined a normalised fitness measure consisting

of a combination of these metrics as previously done in [35]. If we denote by

𝜃(𝐽TE), 𝐼𝑟(𝐽TE) and 𝐻(𝐽TE) the respective values of the curvature, interface

ratio and pushing distance for a given value of 𝐽TE, and 𝜃min,max, 𝐼𝑟min,max

𝐻min,max their optimal values in the simulated data, the fitness metric (𝑀)

is defined by equation (5.3).

𝑀(𝐽TE) =
1

3

(︃(︂
𝜃(𝐽TE) − 𝜃max

𝜃max − 𝜃min

)︂2

+

(︂
𝐼𝑟(𝐽TE) − 𝐼𝑟min

𝐼𝑟max − 𝐼𝑟min

)︂2

+

(︂
𝐻(𝐽TE) −𝐻max

𝐻max −𝐻min

)︂2
)︃

(5.3)

It can be observed that function 𝑀 admits a minimum and its values

are constrained in [0, 1]. We plotted this metric against values of 𝐽TE and

considered that areas where the fitness fell below 0.1 represented simulations

featuring a good compromise between curvature, interface ratio and pushing
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distance (fig. 5.5G, green points). The plotted data hint the existence of

a preferential range of values that yield optimal fitness with respect to the

three metrics involved (fig. 5.5G green points, fig. 5.5H middle). Within this

range, the strength of subcellular interactions is always always higher for

trophectoderm cells (𝐽TE ∈ [2.5, 3.5]) than for epiblast cells (𝐽TE = 2.5). As-

suming that cell stiffness remain constant through implantation, this result

suggest that mouse implantation requires trophectoderm cells to be generally

stiffer than epiblast cells. However, outside of this range, simulations appear

to perform poorly. For instance, below this range i.e. with TE cells more

ductile than EPI cells, the epiblast is not sufficiently remodelled into a cup

(fig. 5.5H, left), as attested by moderate performances of the interface cur-

vature and ratio (fig. 5.5D,E)). Above this range i.e. simulations featuring

TE cells significantly more rigid than EPI cells, the trophectoderm consider-

ably invaginates the epiblast, creating a concave interface ((fig. 5.5H, right)).

This reflects poorly on the pushing distance as highlighted by the negative

slope of its curve (fig. 5.5F)).

5.3 Discussion and Conclusion

Understanding the processes by which the mammalian embryo implants in

the maternal uterus is crucial to many breakthroughs in embryology [149].

New insights into these morphogenesis events could be of great importance in

helping for example to reduce human infertility [56]. Although advances have

been made by studying biochemical cues involved in these events, we focused

here on the mechanical basis at the cellular level of epiblast morphogenesis.

In order to study the physical dynamics of mouse implantation, we have

designed a novel, computationally efficient model of biological cells and tissue
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mechanics able to simulate key episodes of vertebrate morphogenesis. With

this model, we were able to schematically reproduce lumenogenesis in the

epiblast, trophectoderm morphogenesis driven by single cells elongation and

apical constriction, as well as provide theoretical support to the fact that

this morphogenesis regulates the remodelling and positioning of the epiblast

during implantation.

A well-known shortcoming of agent-based modelling is the risk to intro-

duce disputable artefacts in the simulations. Within the scope of this work,

we have shown that our model adhered well to biology by successfully simu-

lating tissue-level morphological changes based solely on changes triggered at

the cellular level, in a bottom-up, emergent fashion. We did this in particular

for epithelial bending through apical constriction [131], rosette formation via

polarised apical constriction [65], and repulsion-driven lumenogenesis [8, 9].

Nonetheless, some nuance should be added to certain quantitative features of

the simulations. For instance, although it is a biological fact that the epiblast

lumen’s volume increases as a result of cells drifting apart, the rate of this

growth as exhibited in the graph of Fig. 5.2E may not reflect the actual rate

curve in mouse embryos. The same could be said of the rate at which the epi-

blast reshapes (Fig. 5.3K,L), or the trophectoderm-induced epiblast velocity

in its motion towards maternal sites (Fig. 5.4B). While not invalidating our

main conclusions, these quantitative outputs are essentially contingent upon

the choice of the potential function (here the Morse potential) and parameter

values. This limitation could be overcome by experimenting with other po-

tential functions, searching parameter space, and comparing results against

real biological data.

Another weakness of computational modelling is its inability to inte-

grate all possible details of a real-world problem, as this would inevitably
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increase complexity and demand unavailable computing power. Clearly, effi-

ciency in our simulations was achieved by stripping the model of noticeable

features of biological development. One important approximation is that

we ignored the hypothetical impact of proliferation, although it is a per-

vasive phenomenon in both tissues. However, while it may be argued that

proliferation plays a non-trivial role in the elongation of trophectodermal

cells [26], it is difficult to make a case that proliferation would be central

in reshaping the epiblast, or the folding of the trophectoderm. In fact, this

particular lack in our approach could even be considered an advantage, since

neglecting proliferation also allowed isolating, hence highlighting the effects

of pure mechanical interactions within and between the trophectoderm and

the epiblast. Another simplification is that we neglected stochastic effects

related for example to cell movements during these embryogenesis episodes.

Although it was shown that cell membrane blebbing influenced cell differ-

entiation [153], in many epithelial settings, stochastic effects are often com-

pensated by strong interactions between cells [54]. Furthermore, in general,

deterministic models, still exhibit good predictive power while remaining

computationally practical [78].

In summary, although relatively abstract and schematic, our computa-

tional model and simulations offer new insights into mouse embryo implanta-

tion. Looking forward, refinements could combine the effects of mechanical

interactions with proliferation and the stochasticity of biological processes to

further investigate tissue shape changes. Then, the variables and parameters

in these simulations could be tuned to fit quantitative metrics based on real

measurements gathered from implanting embryos.
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Figure 5.6: Epiblast and trophectoderm population reconstruc-
tion. A. The rosette-shaped EPI tissue is built by submitting polarised
cells in a double epithelial layer to apical constriction. Green arrows in-
dicate the apical surface of the cells, where constriction occurs. B. The
initial cell population (TE and EPI) is built by adding an epithelial layer

to the forming the EPI.

Figure 5.7: Top view of trophectoderm morphogenesis. A. Initial
stage with cuboidal cells. B. Columnar TE initiating apical constriction.
Red arrows highlight cells undergoing apical constriction. In this case,
only cells in the middle constrict (light blue) to enable folding. C. Folded

TE. D. Folded TE after separation from the EPI.
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Figure 5.8: Trophectoderm fosters epiblast movement towards
maternal sites (Without lumenogenesis in epiblast). A. Snapshots
of the simulation of TE and EPI morphogenesis during mouse implanta-
tion, and their influence on EPI positioning, taken respectively at 𝑡 = 0
and 6000. B. Plot of the pushing distance, which increases with time.
C. Plot of the elastic energy 𝐸. Discontinuities mark the start of new
morphological events (𝑡 = 0 and 3000). D. Plot of the pushing distance
on the epiblast Centre of Mass (CoM), which also increases with time.
E. Plot of the pushing distance on the cell population Centre of Mass
(CoM), which also increases with time. Values of the equation parame-

ters: 𝐽EPI = 𝐽TE = 2.5, 𝜆0 = 𝜆𝜒 = 2, 𝜌 = 1.
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Figure 5.9: Sensitivity analysis (Supplementary). A. Stress-Strain
curve (black) for a single epithelial cell (34 vertices) with 𝐽 = 2.5 and
𝜆med = 𝜆𝜒 = 2. (blue) Linear approximation of the Stress-Strain curve.
The elastic modulus of the cell is determined by the slope of this line
(𝑌 = 2.92). B. Plot of the Elastic (Young) modulus of cells as a function
of the parameter ratio ( 𝜆𝜒

𝜆med
). Young’s modulus is defined and constant for

values of 𝜆𝜒

𝜆med
greater or equal to approximately 0.161. Below this value,

simulated cells do not behave as physical materials, and the elasticity
modulus cannot be defined as illustrated in the next plot. C. Stress-
Strain curve (black) for a single epithelial cell (34 vertices) with 𝐽 = 2.5,
𝜆med = 2 and 𝜆𝜒 = 0.25. The discontinuity in the curve shows that the set
of parameters is not suitable for a cell. D. 3D rendering of an epithelial
cell with square basis and 42 vertices. E. Stress-Strain curve (black) for a
single epithelial cell (42 vertices) with 𝐽 = 2.5 and 𝜆med = 𝜆𝜒 = 2. (blue)
Linear approximation of the Stress-Strain curve. The elastic modulus of
the cell is determined by the slope of this line (𝑌 = 2.75). F. Plot of
the Elastic (Young) modulus of a cell (42 vertices) as a function of the
parameter 𝐽 , the interaction strength between subcellular particles. In
order for such a cell (42 vertices) to have equivalent stiffness with the
previous type of cell (34 vertices, 𝐽34 = 2.5, 𝑌34 = 2.92), the parameter

𝐽42 needs to be set to approximately 2.6 (𝑌42 = 2.90).



Chapter 6

Quantification of cell behaviors

and computational modelling

show that cell directional

behaviors drive zebrafish pectoral

fin morphogenesis

Understanding the mechanisms by which the zebrafish pectoral fin develops

is expected to produce insights on how vertebrate limbs grow from a 2D cell

layer to a 3D structure. Two mechanisms have been proposed to drive limb

morphogenesis in tetrapods: a growth-based morphogenesis with a higher

proliferation rate at the distal tip of the limb bud than at the proximal side,

and directed cell behaviors that include elongation, division and migration in

a nonrandom manner. Based on quantitative experimental biological data

at the level of individual cells in the whole developing organ, we test the

105
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conditions for the dynamics of pectoral fin early morphogenesis. We found

that during the development of the zebrafish pectoral fin, cells have a pref-

erential elongation axis that gradually aligns along the proximodistal axis

(PD) of the organ. Based on these quantitative observations, we build a

center-based cell model enhanced with a polarity term and cell proliferation

to simulate fin growth. Our simulations resulted in 3D fins similar in shape to

the observed ones, suggesting that the existence of a preferential axis of cell

polarization is essential to drive fin morphogenesis in zebrafish, as observed

in the development of limbs in the mouse, but distal tip-based expansion is

not.

6.1 Introduction

Vertebrate limb development is a classical model system for understanding

pattern formation: the process in which spatial organization of differentiated

cells and tissues is generated in the embryo. Various tissue types contribut-

ing to the mature limb are derived from several embryonic tissues including

the lateral plate mesoderm, the somites and the ectoderm [16, 21, 23, 62, 73].

How the pectoral fin lateral plate mesoderm (LPM), which gives rise to skele-

tal elements and tendons, grows outward from the body trunk and acquires

its particular shape remains unclear. The in vivo observation of the whole

process and the quantification of cell behaviors underlying morphogenesis are

still open challenges. The formation of the zebrafish pectoral fin is a model

for limb development, as it is especially suited for long-term imaging owing

to its external embryonic development and translucent body. The formation

of the pectoral fin initiates at 18 hours post fertilization (hpf), when LPM

cells condense at the prospective fin location as a flat 2D cell layer under a
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single layer of ectodermal cells. Over the course of the next 30 hours, the fin

bud grows and forms a 3D structure. LPM cells proliferate and myoblasts

coming from neighbouring somites enter the fin, where they will give rise to

muscle bundles. At the distal tip of the fin, ectodermal cells align to form

the so-called apical ectodermal ridge (AER) known to act as a source of

molecular signaling required for the fin growth.

Over the past 40 years, the “proliferation gradient” model has been the

dominant hypothesis to explain the limb bud elongation. This model sug-

gests that a diffusible signal from the AER sets up a spatial concentration

gradient. This molecule “signals the mesenchyme immediately underlying it,

termed the ‘progress’ or ‘proliferative’ zone, to proliferate, resulting in di-

rected proximodistal outgrowth” [105]. The AER indeed was shown to have

mitogenic properties [126]. On the other hand, a few studies hypothesized

that directionally oriented cell behaviors drive limb elongation. Li et al. [86]

demonstrated that some mesenchymal cells in the chick wing bud are capable

of migrating toward an ectopic source of Fgf4 (one of the molecules produced

by the AER) implanted in the center of the bud. This work directly sup-

ported the idea that mesenchymal cells could consider the Fgf gradient as a

chemoattractant rather than as a mitogen.

A number of computer simulations of limb bud elongation have been

produced over the last decade, most of which are in two dimensions and

based on the proliferation gradient hypothesis but do not incorporate real

quantitative data into their model [38, 100, 121]. Recently, Boehm et al. [13]

proposed a new three-dimensional computer model based on the actual shape

of the mouse limb bud captured by optical projection tomography imaging.

They found that the proliferation gradient would have to be extreme from the

distal end to the proximal end and subsequently too unrealistic to account
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for the bud shape. Similarly, Gros et al. [63] concluded that uniform cell

division distribution and focal regions of cell death in the chick limb bud are

unlikely to be sufficient to drive the anisotropic nature of its growth. Both

studies observed that cell shapes were oriented toward the nearest ectoderm,

rather than distally toward the apical ectodermal ridge. They have also

demonstrated the presence of filopodia suggesting active cell movement.

With improvements in in vivo imaging setups and data processing, a re-

cently available complete 3D tracking of the different cell types in the early

fin bud reveals their heterogeneous and complex cellular rearrangement dur-

ing the transition from 2D to 3D. The quantitative analysis of cell behaviors

during the first 20 hours of the zebrafish pectoral fin formation are used to

build a model of fin growth. The comparison between simulated and bio-

logical data highlights the pattern of cellular rearrangement underlying the

pectoral fin morphogenesis.

6.2 Methods

6.2.1 Data acquisition workflow

For this study, 4D imaging data of developing zebrafish pectoral fins were

acquired and pre-processed by our partners at the CNRS/Bioemergences lab
1. Here we give a brief overview of the data acquisition workflow.

1http://bioemergences.iscpif.fr/bioemergences/index.php
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Figure 6.1: Geometry of the pectoral fin based on live imaging
and image processing data. (a) 3D rendering of raw data nuclear
staining at 𝑡=47.7 hpf: dorsal view of the zebrafish body with detection of
approximate nuclear centers of the pectoral fin cells highlighted by colored
dots, where the color code depends on the cell type; scale bar: 20 𝜇m.
Imaging data and individual cell tracking have been generated by the
CNRS/Bioemerges lab. (b-d) After applying cell detection methods: 3D
rendering of the approximate nucleus centers of LPM cells in the pectoral
fin at different stages of development, respectively 𝑡=28 hpf, 𝑡=37.9 hpf
and 𝑡 = 47.7 hpf (AP: anteroposterior axis; DV: dorsoventral axis). (e-
g) 3D rendering of the pectoral fin at the same times along the AP axis
and PD (proximodistal) axis. (h-j) Evolution over time of the fin size
in 𝜇m along the PD, AP and DV axes respectively. Fin expansion occurs
mainly along PD. It undergoes a slight compaction along the other two

axes, more pronounced along the DV axis.
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6.2.1.1 Zebrafish husbandry

Adult zebrafish (Danio rerio) were maintained at 28∘C according to stan-

dard procedures as described in [80]. Embryos were kept at 0.3% Danieau’s

medium at 28.5∘C. The transgenic line Tg(X1a.Eef11:H2B-mCherry) was

used to visualize nuclei [124].

6.2.1.2 Imaging pectoral fin growth

Fin growth was monitored using the protocol described in [103]. Briefly, this

was achieved on the upright Zeiss LSM780 confocal microscope equipped

with 20x water dipping lens objective (Zeiss Objective W “Plan-Apochromat”

20x/1.0 DIC). The embryos were kept at 28.5∘C and the chorion was re-

moved using forceps prior imaging. Embryos were anaesthetized with 0.04%

of tricaine methanesulfonate (Sigma) in embryo medium and mounted us-

ing agarose molds. The mounting strategy immobilized the embryo while

allowing pectoral fin to develop unperturbed. The imaging plane was paral-

lel to the plane formed by the anteroposterior (AP) and dorsoventral (DV)

axes (Fig. 6.1a). Images of the developmental process were taken at a time

invertal of 2 minutes and 18 seconds.

6.2.1.3 Image processing and reconstruction

The first analysis steps were performed using Fiji, an open source Java-based

image processing (ImageJ ) package. Raw datasets needed to undergo regis-

tration to keep the region of interest at about the same XYZ location, despite

the embryos undergoing significant morphological changes during overnight

imaging. To compensate for possible photo-bleaching, bleach correction by
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histogram matching was also performed. Finally, images were uploaded into

the Bioemergences workflow [48], an online software platform integrating

original mathematical methods and algorithms to perform image filtering,

nucleus center detection, and cell tracking (Fig. 6.1b-g). The outcome of cell

detection was then manually validated using Mov-IT, an interactive visual-

ization and editing tool complementing Bioemergences.

6.2.2 Tracking zebrafish pectoral fin growth along PD,

AP and DV axes

The quantitative analysis required for this work necessitated that we track

the fin’s dynamics along its main axes: proximal-distal (PD), anterior-

posterior (AP), dorsal-ventral (DV). Precise tracking of the fin’s size along

these axes is a challenge due to the fact that the embryo body moves during

imaging, most likely due to growth. Embryo movements mean that its main

axes do not always maintain a static orientation. This in turn poses the

problem of precise identification of the fin’s main axis for every time point.

To tackle this issue, at each time point, we computed new orientations for

the PD, AP, DV axes as functions of both the cloud of points (cell centers)

at the current time and their orientations at the previous time step. First,

we applied the Principal Component Analysis (PCA) algorithm to the cell

centers in order to determine the three main directions of the point cloud.

Then, we compared each of PCA output axes with the PD axis at the pre-

vious time step and kept the most parallel one as our new PD axis. Given

that PCA does not keep track of the orientation at previous time steps, the

basis formed by the two remaining PCA axes could be significantly rotated

compared to the previous AP-DV basis. To correct this issue, we projected

onto the plane formed by these two vectors the AP and DV axes computed



Quantification of cell behaviors and computational modelling show that cell
directional behaviors drive zebrafish pectoral fin morphogenesis 112

at the previous time steps, and considered these projections to be our new

AP and DV axes. When the movement of the fin as a whole between two

time steps is not significant enough to change the orientation of the axes,

we keep the orientations computed in the previous time step. Here, notic-

ing that the fin as whole, although still growing, is relatively stable as from

about 43.3hpf, we stopped computing new axes orientations as from about

that time point.

6.2.3 Computational model

In order to test our data-derived hypothesis, we turned to computational

modelling. Although MG# was a good candidate model to perform this

study, other factors made it more appealing to look for different models.

As reviewed in chapter 2, when it comes to spatially explicit simulations

of biological development, several computational approaches stand out. De-

pending on the biological realism they include, the spatiotemporal scale they

capture, or the nature of variables they manipulate, models exhibit different

properties and suit different purposes. In this case, the interest of our study

did not lie in lower scale cell changes, but rather in the tissue morphogene-

sis emerging from their collective dynamics. Moreover, our datasets featured

cells represented solely be their centre. Hence, we found it suitable to set our

choice on the family of centre-based models (CBM). In this way, not only did

we gain in computational efficient in comparison to deformable cell models

(MG#), but this choice also meant that we could simulate cells using the

initial states provided from the dataset, and use same metrics to compare

our results against the biological data.
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Figure 6.2: Center-based computational model of multicellular
dynamics. (a) Schema of a local cell neighborhood and the abstract forces
on cell centers.

−→
𝐹 AR

𝑗𝑖 is the passive attraction-repulsion force exerted on
a cell 𝑖 by a cell 𝑗.

−→
𝐹 Pol

𝑖 is the active migration force driven by the cell’s
polarity (specified in Section 6.3.4). (b) Plot of the Morse force profile
(derivative of the Morse potential) defining

−→
𝐹 AR, for different parameter

values. This curve presents two regimes: a positive regime (attraction)
below an equilibrium distance 𝑟eq and a negative regime (repulsion) above.

6.2.3.1 Model description

In CBM, cells are described by simple geometrical shapes whose represen-

tation can be reduced to their centers [146]. These models assume that cell

trajectories in space can be assimilated to the motion of particles, which are

governed by an equation of motion. CBMs have been used extensively to

study the development of multiple organisms [35, 57, 146, 147]. We used a

simplified mechanistic formulation of a CBM approach to simulate pectoral

fin growth (Fig. 6.2a).
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Cells are subjected in their center to forces governing their behavior.

Similar to Julien Delile’s MecaGen model [35], here we distinguished two

main types of forces acting on a cell. On the one hand, passive attraction-

repulsion (AR) forces
−→
𝐹 AR regulate interactions between cells and their local

neighborhoods. AR forces translate the biophysical property that individ-

ual cells occupy a certain volume in space, hence their centres cannot be

indefinitely close or indefinitely apart from each other. In the literature,

these forces often derive from elastic potential mimicking linear or non-linear

springs [7, 42]. Here, we followed this rule and derived AR forces from a

Morse potential, a curve exhibiting a quadratic minimum framed by vertical

and horizontal asymptotes (see its derivative in Fig. 6.2b). Moreover, we

also defined a neighborhood for each cell by computing the 3D Delaunay

tetrahedralization of the system. Two cells are deemed neighbors if their

centers belong to the same tetrahedron.

On the other hand, cells also exhibit an active migration force which

shapes their motion. Informed by empirical evidence, we constructed a

polarity-driven migration force
−→
𝐹 Pol governing cells’ intrinsic mechanics (ex-

plained in Results, Section 6.3.4). Finally, we neglected the effects of inertia

due to a low Reynolds number [35, 106], and only considered viscosity-driven

friction via a constant coefficient 𝜆. Altogether, the equation of motion for

a cell 𝑖 with neighborhood 𝒩𝑖 reads:

𝜆−→𝑣 𝑖 =

(︃∑︁
𝑗∈𝒩𝑖

−→
𝐹 AR

𝑗𝑖

)︃
+
−→
𝐹 Pol

𝑖 (6.1)

Here, −→𝑣 𝑖 is the velocity of cell 𝑖.

In CBM, cell divisions are often simulated by adding daughter cells

to the system at appropriate positions, notably in the neighborhood of the
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mother cell. Here, we assumed that cells divide along their long axis and

added new cells such that mother and daughter cells were aligned along this

axis. Furthermore, we dealt with cell cycles by setting a global cycle period

for all cells, and assigning random initial phases to individual cells. Using

this model, we simulated zebrafish pectoral fin morphogenesis starting from

the initial cell arrangement provided by the imaging data.

6.2.3.2 Computational implementation

The computational implementation of the described model requires a time

discretisation of the equation of motion. Given
−→
𝑋 𝑡

𝑖, 𝜆 and
−→
𝐹 𝑡

𝑖 =
(︁−→
𝐹 AR

𝑖

)︁𝑡
+(︁−→

𝐹 Pol
𝑖

)︁𝑡
, respectively the position, friction coefficient and total force applied

on the centre of cell 𝑖 at time point 𝑡, an explicit Euler scheme is used to

calculate the position
−→
𝑋 𝑡+1

𝑖 of the cell at the next time point. If 𝑑𝑡 is the

time laps between instants 𝑡 and (𝑡 + 1), cells update their configuration

based on the following rule (Eq. 6.2).

−→
𝑋 𝑡+1

𝑖 =
−→
𝑋 𝑡

𝑖 +
−→
𝑉 𝑡

𝑖 × 𝑑𝑡 (6.2)

In Equation (6.2),
−→
𝑉 𝑡

𝑖 is nor given, neither determined. An expression

of
−→
𝑉 𝑡

𝑖 can however be drawn from the equation of motion (Eq. 6.3).

𝜆
−→
𝑉 𝑡

𝑖 =
−→
𝐹 𝑡

𝑖 (6.3)

Hence we update cell positions in simulations according to the following

rule (Eq. 6.4).
−→
𝑋 𝑡+1

𝑖 =
−→
𝑋 𝑡

𝑖 +

−→
𝐹 𝑡

𝑖

𝜆
× 𝑑𝑡 (6.4)
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This model has been implemented from scratch using the C# program-

ming language, and the code source has been published on the code sharing

platform Github2.

6.3 Results

6.3.1 Zebrafish pectoral fin morphogenesis is proximal

distal oriented

Using the approach described in the methods, we computed the pectoral

fin’s main axes for each time point. Then, we proceeded with calculating

the size of the fin along each direction (Fig. 6.1h-j). Our data suggests that

the fin expands principally along the PD axis with a quasi-linear slope, after

an initial oscillatory behavior (Fig. 6.1h). This result aligns with previous

observations which has consistently shown that a common property of limb

development in vertebrates is the distal orientation of their growth [13, 72].

Furthermore, in this dataset, while fin’s length along the AP axis oscillates

somewhat, no significant overall change is recorded (Fig. 6.1i). Along the

DV axis, however, the fin seems to contract slightly over the length of devel-

opment (Fig. 6.1j), but seems to recover in the latest time steps.

6.3.2 Distal tip-based growth does not account for ze-

brafish pectoral fin morphogenesis

We sought to determine the role of proliferation in zebrafish pectoral fin

growth. For this, we computed for every time point of development the
2https://github.com/guijoe/MaSoFin
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bounding box encapsulating the pectoral fin. Then, we discretized this

bounding box using the same volume unit everywhere. Next, we calculated

the cumulative number of cell divisions in each volume unit of that space

over the duration of fin growth. In order to understand the distribution of

proliferation in 3D space, we proceeded with plotting the marginal distribu-

tions of cumulative divisions along the three main axes of the pectoral fin

(Fig. 6.3d-e). To avoid the possibility of a frequency accumulation bias due

to fact that the fin grows over time, we also analysed proliferation over a rel-

ative bounding box fitting the fin size at all time points. With this method,

the last few layers of the PD axis always represented the actual distal end of

the fin. We then also evaluated the cumulative number of division in each

of these layers along the fin’s axis (Fig. 6.3g-i).

Marginal distributions of proliferation along the AP and DV axes show

that during pectoral fin morphogenesis, the bulk of proliferation is concen-

trated at the center of the fin, while only a few divisions are observed near

the lateral surfaces (Fig. 6.3a-i, see supplementary figure S1 a,c). Differen-

tial behaviors of cells based on their location is a well-established biological

mechanism, reminiscent of the so-called “French flag” model of Wolpert’s

positional information [? ]. Furthermore, histogram plots of these marginal

distributions may suggest that proliferation along the AP and DV axes can

be assimilated to Gaussian processes (Fig. 6.3d-f, see supplementary figure

S1 d-f). Although it could be expected that such behavior facilitates the

development of the fin toward its known shape, it is not clear whether it is

sufficient to drive this growth. However, it is also likely that the accumula-

tion of cell division in the inner volume of the fin (Fig. 6.3g-i, see supplemen-

tary figure S1 g-i) is merely a consequence of the fin’s geometry, namely its

overall conic shape, favoring higher number of cells in the middle than near

the lateral surfaces. This interpretation seems to be favoured by the data in
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Fig. 6.3j,l (also see supplementary figure S1 j,l), which present quasi-uniform

histograms of number of divisions per time step over the length of AP and

DV axes.

Figure 6.3: Analysis of proliferation in the zebrafish pectoral fin. (a-
c) Frequencies of divisions along the AP, PD and DV axes respectively,
highlighted by a yellow-red color gradient coding for differences in prolif-
eration rates across the fin. (a,c) The preponderance of red at the center
of the fin shows where the bulk of cell divisions takes place, with only a
few of them occurring near the lateral surfaces (yellow). (b) A decreas-
ing gradient of proliferation rates from the proximal pole to the distal tip
characterizes the PD axis. (d-f) Marginal distributions of proliferation
along the AP, PD and DV axes respectively, expressed in numbers of cells
with respect to the absolute distance in 𝜇 m along the axis. (g-i) Same
distributions with respect to the relative distance on the axis. (j-l) Same
distributions expressed in proportions of cells with respect to the absolute

distance.
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Along the PD axis, the marginal distribution of proliferation shows a

decreasing gradient of cell division from the proximal pole to the distal tip

of the fin (Fig. 6.3b, see supplementary figure S1 b). This simply translates

into the fact that proximal layers of the fin, which form early, host more

divisions than distal regions, which develop later. This observation stands

in contradiction with the growth-based morphogenesis hypothesis that stip-

ulates higher proliferation rates at the distal tip of the fin. Hence, this result

suggests that growth-based morphogenesis might not be the main drive for

zebrafish fin pectoral morphogenesis.

6.3.3 Zebrafish pectoral fin cells exhibit preferential di-

rectional behaviors

Next, we looked whether cells exhibited peculiar behaviors along preferential

directions that could influence the shaping of the zebrafish fin. To this

goal, we decided to analyse the dynamics over time of the elongation axis of

each cell. We determined the elongation axis of a cell 𝑖 by computing the

direction of maximum variance of the cloud of points consisting of cell 𝑖 and

its Delaunay neighborhood 𝒩𝑖. This direction was given by the eigenvector

corresponding to the maximum eigenvalue of the covariance matrix of 𝒩𝑖.

We denote this vector by −→𝑒 Max
𝑖 , which we also consider to be the polarity

vector of the cell (Fig. 6.4a).
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Figure 6.4: Analysis of directional cell behaviors in the zebrafish
pectoral fin. (a) Schematics in 2D of the method used to analyse direc-
tional cell behaviors: for each cell 𝑖, 𝜃𝑖 denotes the polarity angle that this
cell forms between its elongation axis −→𝑒 Max

𝑖 (extracted from the maxi-
mum eigenvalue of the covariance matrix of its neighborhood 𝒩𝑖) and the
PD axis −→𝑢 . (b-d) Lateral view of the pectoral fin at different stages of
development, respectively 𝑡 = 28 hpf, 𝑡 = 37.9 hpf and 𝑡 = 47.7 hpf. (e-
g) Vector field of the cells’ elongation axes −→𝑒 Max

𝑖 in the pectoral fin at
the same stages. (h-j) Distribution of the polarity angles 𝜃𝑖 of the cells in
the pectoral fin at the same stages, compared with the standard distribu-
tion of random angles formed by two arbitrary vectors in 3D (red curve).
(k) Evolution over time of the average polarity angle 𝜃 of the fin cells ±

its standard deviation Δ𝜃 shown in red.

Having computed the elongation axis of each cell through every time

point of development, we observed that cells at initial stages are elongated
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perpendicularly to the PD axis. We further noticed that, during develop-

ment, cells gradually bring their long axis in closer alignment to the PD axis

(Fig. 6.4e-g). This result is consistent with previous studies reporting high

polarisation during limb development [72].In order to confirm this qualita-

tive observation, we measured the angle that cells form via their long axis

with the PD axis of the pectoral fin, and called it the “polarity angle” with

notation 𝜃𝑖 (Fig. 6.4a). At the initial time point, the distribution of polarity

angles was clustered around 90∘, confirming the previous observation that

cells were elongated perpendicular to the PD axis (Fig. 6.4h). During de-

velopment, this distribution spread in a nonrandom way between 0 and 90∘,

where the average polarity angle decreased toward a value of 60∘, meaning

that cells exhibited preferential directionality by orienting their long axis

toward the PD axis (Fig. 6.4i,j). To ensure that our observations were not

mere features of a single developing fin, we applied the same analysis to a

different dataset which lead to a similar dynamics (see supplementary figure

S2).

6.3.4 Directional cell behaviors are essential to drive

zebrafish pectoral fin morphogenesis

We wanted to find out whether directional behaviors of cells were sufficient

to drive fin morphogenesis. In the previous analysis, we observed that cells

tended to align their long axis in the direction of the PD axis, eventually

forming an average polarity angle 𝜃 = 60∘. We noticed that such behavior

could explain the overall conic shape of the fin. Based on this observation,

we designed the polarity force term
−→
𝐹 Pol of the 3D model as follows. First,

we defined a global polarity energy of the cell population, denoted by 𝐻Pol.

Models in which forces derive from problem-specific global energy have been
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used in different contexts such as cell sorting, molecular signaling, or epithe-

lial morphogenesis in the developing Drosophila [52, 116]. Germann et al.

[57] also use an energy term conjointly with CBM by defining a tissue po-

larity potential and an apicobasal polarity to distinguish between epithelial

and mesenchymal tissues.

Here 𝐻Pol is expressed over all 𝑁 cells by:

𝐻Pol =

(︃
1

𝑁

∑︁
1≤𝑖≤𝑁

arccos
(︀−→𝑢 · −→𝑒 Max

𝑖

)︀
− 𝜋

3

)︃2

(6.5)

Here, −→𝑢 denotes the unit vector of the PD axis, which constitutes the direc-

tion of fin growth. It has been suggested that this axis is defined by the body

plan at the onset of fin growth (AP, DV axis). Moreover, cells can sense this

axis through molecular cues originating from determined mesoderm cells,

involving for instance gradients of Wnt or FGF [144].

Although 𝐻Pol is defined globally, individual cells contribute to this

potential only to the extent of their local neighborhood. This energy was

designed such that its minimum corresponds to 𝜃 = 60∘. Then, we set the

polarity force to be proportional to the opposite of the gradient of 𝐻Pol with

respect to each cell:
−→
𝐹 Pol

𝑖 = −𝜈
−→
∇ 𝑖𝐻

Pol (6.6)

Having defined these laws governing cell interactions, we proceeded to sim-

ulating limb morphogenesis. In order to highlight the influence of the po-

larity force, we used a uniform cell cycle period with a random initial phase

for each cell. Our virtual limb featured similar properties to the imaged

limb (Fig. 6.5). Driven by the polarity force
−→
𝐹 Pol and constrained by the

elastic force
−→
𝐹 AR defined in Section 6.2.3, cells moved and reshaped their
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neighborhoods to minimize the polarity energy 𝐻Pol, resulting in 𝜃 effec-

tively decreasing throughout development toward 60∘ (Fig. 6.5n), in a way

similar to the real fin. The polarity angle distribution 𝜃𝑖, which clustered

around 90∘ at the initial time point, progressively spread between 0 and

90∘ (Fig. 6.5h-j). Although the decrease of 𝜃 towards 60∘ was predictable

from the definition of the polarity force, a striking result is that this force

restricted the fin growth toward the distal pole, as observed in development.

Furthermore, over the same period of time as in our dataset, the virtual fin

grew to a size comparable to that of the real fin, from about 12.71 𝜇m to

about 52.94 𝜇m (Fig. 6.5k), presenting over imaged fin an increase of just

below 7%. Finally, our simulated fin acquired a global conic shape similar to

that of the real fin (Fig. 6.5b-d,e-g). In order to get this quantitative agree-

ment, a right balance between the forces in presence (
−→
𝐹 AR,

−→
𝐹 Pol) needed to

be achieved. Proper scaling of these forces was done through model param-

eters (𝐽 = 0.001, 𝜈 = 1, 𝜆 = 0.2). Taken together, these results suggest that

directional cell behaviors, in particular alignment toward the PD axis of the

zebrafish pectoral fin, could be an essential drive for its morphogenesis.
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Figure 6.5: Simulation of pectoral fin morphogenesis based on
directional cell behaviors. Values of the equation parameters: 𝐽 =
0.001, 𝜆 = 0.2, 𝜈 = 1. (a) 3D view of the simulated fin at the final stage
𝑡=47.8 hpf. (b-d) Lateral view of the simulated fin at different stages of
development, respectively 𝑡 = 28 hpf, 𝑡 = 37.9 hpf and 𝑡 = 47.7 hpf. (e-
g) Vector field of the cells’ elongation axes −→𝑒 Max

𝑖 in the simulated fin at the
same stages. (h-j) Distribution of the polarity angles 𝜃𝑖 of the cells in the
simulated fin at the same stages, compared with the standard distribution
of random angles formed by two arbitrary vectors in 3D (red curve). (k-
m) Evolution over time of the simulated fin size in 𝜇m along the PD, AP
and DV axes respectively. We observe roughly the same behavior as the
real fin in Fig. 6.1h-j. (n) Evolution over time of the average polarity angle
𝜃 of the simulated fin cells ± its standard deviation Δ𝜃 shown in red. This

curve is more scattered than Fig. 6.4k.
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6.4 Discussion

The question of how vertebrates make their limbs is a fascinating problem in

embryology that has been widely investigated across multiple species [144].

Although the study of molecular patterns underlying this morphogenesis

has provided rich insights, the cellular basis of limb formation has not been

completely elucidated. The availability of in toto imaging with resolution at

the single cell level provides quantitative data for cells’ behavior along their

trajectory. New methods need to be developed to analyze such data, to use

it to feed realistic models and evaluate hypotheses through a quantitative

comparison between in vivo and in silico data. This work brings insights

into the development of the zebrafish pectoral fin using quantitative analysis

of imaging data and computational modelling.

Here, we investigated zebrafish pectoral fin development under the prism

of the two dominant hypotheses of cellular behavior during limb growth. On

the one hand, we analyzed proliferation behaviors in different regions of the

fin, and found that proliferation gradients could not account for the observed

growth. On the other hand, analysis of cellular elongation directions showed

that cells tended on average to lower the angle they formed with the PD

axis via their long axis, an indication of preferential polarity. To test this

hypothesis, we formulated a simple mechanistic model of cells and simulated

pectoral fin morphogenesis.

Our model of fin development based on quantitative biological data

derived from live imaging and image processing accounts for the directional

growth and the shape of the fin. However, due to some differences in compar-

ison with imaging data, it also helps refine hypotheses concerning additional
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constraints that were not integrated here. The simulated fin does not ex-

hibit the same amplitude of slight compaction along the DV axis as the one

measured in the biological data. In addition, the simulated fin shows a first

phase of fast growth not quite observed in the zebrafish where the fin growth

rate is closer to linear. We hypothesize that constraints imposed by the out-

side cell layers (i.e. ectodermal layer and enveloping layer) also contribute to

the regulation of the fin growth and shaping, as observed in chick limb mor-

phogenesis [121]. Chemical signalling from the outside cell layers, or other

sources including for example electrical fields [72], could precisely play a role

in the emergence of the cell polarization axes implemented in our model.

Additionally, we considered the contribution of somitic cells that invade the

fin bud during the time course of our observation as neutral regarding the

overall growth and shaping. Both an in vivo and in silico experimentation

are needed to support this view.

The biomechanical aspects privileged in our study are part of a com-

plex interplay of genetic and mechanical cues characteristic of biological de-

velopment. On the mechanical side, the requirement for cellular directional

behaviours has been highlighted. However, local growth, evidenced by sig-

nificant rise in cell population over the observed time span, is a key factor,

serving to provide enough cells for the development of the organ, a con-

clusion also reached in mouse limb morphogenesis [13]. Moreover, other

mechanisms such as cells coalignment or cell competition, which was shown

to be preponderant in polarised tissues and organ size control, could equally

be at play in pectoral fin morphogenesis [148]. To test the latter, a cor-

relation analysis between cell polarisation and cell death would need to be

performed. If the response of LPM cells during early fin development may

mainly involve mechanical interactions, it is certainly required to integrate
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genetic and molecular interactions as well in the transformation of the ecto-

derm that leads to shape the AER. Further studies may be integrate these

mechanisms for more insights into zebrafish pectoral fin morphogenesis.
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Supplementary figure 1

Figure S1: Analysis of proliferation in the zebrafish pectoral fin
(supplementary dataset). (a-c) Frequencies of divisions along the AP,
PD and DV axes respectively, highlighted by a yellow-red color gradient
coding for differences in proliferation rates across the fin. (a,c) The pre-
ponderance of red at the center of the fin shows where the bulk of cell
divisions takes place, with only a few of them occurring near the lateral
surfaces (yellow). (b) A decreasing gradient of proliferation rates from the
proximal pole to the distal tip characterizes the PD axis. (d-f) Marginal
distributions of proliferation along the AP, PD and DV axes respectively,
expressed in numbers of cells with respect to the absolute distance in 𝜇𝑚
along the axis. (g-i) Same distributions with respect to the relative dis-
tance on the axis. (j-l) Same distributions expressed in proportions of cells

with respect to the absolute distance.
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Supplementary figure 2

Figure S2: Analysis of directional cell behaviors in the zebrafish
pectoral fin (supplementary dataset). (a) Schematics in 2D of the
method used to analyse directional cell behaviors: for each cell 𝑖, 𝜃𝑖 denotes
the polarity angle that this cell forms between its elongation axis −→𝑒 Max

𝑖

(extracted from the maximum eigenvalue of the covariance matrix of its
neighborhood 𝒩𝑖) and the PD axis −→𝑢 . (b-d) Lateral view of the pectoral
fin at different stages of development, respectively 𝑡=28.0 hpf, 𝑡=36.1 hpf
and 𝑡=44.2 hpf. (e-g) Vector field of the cells’ elongation axes −→𝑒 Max

𝑖 in the
pectoral fin at the same stages. (h-j) Distribution of the polarity angles
𝜃𝑖 of the cells in the pectoral fin at the same stages, compared with the
standard distribution of random angles formed by two arbitrary vectors
in 3D (red curve). (k) Evolution over time of the average polarity angle 𝜃

of the fin cells ± its standard deviation Δ𝜃 shown in red.





Chapter 7

Conclusion

Our goal in this research journey was to address the question of how com-

putational models can contribute in unravelling the mysteries of biological

development. Practically, the bulk of our work consists in formulating the-

oretical models that capture the dynamics of living tissues and simulating

these models to investigate, in close collaboration with biologists, morpho-

genesis events in living systems. During our doctoral studies, this programme

has been implemented through the development of agent-based models of cell

and tissue mechanics, which were then used to gain valuable insights into

the regulation of the epiblast shape and motion during mouse implantation,

and the morphogenesis of the zebrafish pectoral fin.

In our initial project, we built upon the fundamental principles

of Sub-cellular Element Models (SEM) to develop MG#, a multi-purpose

novel model of cells and tissues biomechanics. In this model, a biologi-

cal cell is abstracted by a cohort of particles whose triangulation form the

cell membrane, and a single intracellular particle represent the biological

cell. Non-linear elastic potentials between particles mimic the plasticity of
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cell membranes and the activity of the cytoskeleton within the cell. These

characteristics enable simulated cells to exhibit key behavioural properties

of biological cells, such as division, apoptosis, bio-realistic shapes, and the

feedback loop between biomechanical and biochemical effects, making MG#

suitable for a broad range of morphological phenomena. In particular, we

have shown that cell populations simulated with MG# can reproduce living

tissue behaviours such as epithelial folding or the formation of multicellular

rosettes.

In our next endeavour, we leveraged MG# to investigate the driv-

ing factor behind the symmetry-breaking in the mouse embryo epiblast dur-

ing mouse implantation. At the onset of implantation, the mouse embryo

consists of three cell lines: the embryonic tissue (epiblast), and two extra-

embryonic tissues (trophectoderm and primitive endoderm). Building on

previous studies, we hypothesised that epiblast remodelling into a cup re-

sults from mechanical constraints imposed by the polar trophectoderm, also

undergoing significant morphogenesis in this time. We investigated this hy-

pothesis by simulating both tissues with MG#.

In our latest project, we used computational modelling to study the

morphogenesis of the zebrafish pectoral fin. More specifically, in collabora-

tion with experimental biologists at the French CNRS BioEmergences lab,

we sought to understand how this 3D organ develops from an initial layer of

the cells. By analysing quantitative data resulting from the automatic track-

ing of single fin cells, we were able to rule out growth-based morphogenesis

as the predominant factor for fin expansion along the PD axis. This result

aligned with previous observations in mouse limbs, which also pointed us in

the direction of examining cell elongation patterns in the fin. We found out

that, during fin growth, cells aligned their long axis to the proximal-distal
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axis (PD) of the zebrafish fin overtime. Building on this quantitative result,

we enhanced the basic centre-based model by adding a polarity force term

and specified proliferation rules based on cell cycle time. With this enhanced

CBM model simulated fin growth.

In summary, the studies presented in this document highlight the effec-

tiveness of mathematical and computational models in developmental biology

and provide new insights in this field. Furthermore, the formulated models

have been implemented as open source tools that were made available to

the wider community by publishing their code on the open source sharing

platform Github.

7.1 Future perspectives

The work carried out in this thesis can be further developed or adapted to

accommodate more investigations of biological phenomena.

First, the models developed could be adapted for the purpose of studying

other biological phenomena in development including differential-adhesion or

differential-tension induced cell sorting, or pathological behaviours such as

the growth of tumors. Although MG# simulations presented in this the-

sis were mostly limited to the scope of epithelial tissues, MG#, because of

its deformable nature, can be enhanced to capture the dynamics of more

complex cell arrangements and tissue topologies, making it suitable for both

epithelia and mesenchyme. A step in this direction could be to graft onto

MG# a theory of cell external contacts that accounts for cases where there

may not exist an ideal mapping between external neighbouring particles.

In order to achieve this, established contact mechanics methods such as

Hertzian contact, Johnson-Kendall-Roberts or Maugis-Dugtale can be used
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[27, 146]. To simulate differential-adhesion cell sorting for instance, single

cells entourage would need to be updated periodically through their particles

external neighbourhoods. In addition, contact surfaces, instead of punctual

particle-particle contacts, would need to be defined around interacting parti-

cles of neighbouring cells. Moreover, different physical properties such as the

modulus of elasticity of cells or the Poisson ratio would need to be defined

in other to resolve adhesions on these contact surfaces.

In Chapter 6, we used a data-driven approach to examine the morpho-

genesis of the zebrafish pectoral fin. In this approach, we derived biological

hypothesis directly from the analysis of the cell tracking data of fin cells and

tested these hypothesis through simulations when necessary. However, more

information, going from the subcellular activities of proteins, or genetic regu-

lation, to cellular and tissue level like mechanical stresses, can be drawn from

biological data. This data can then be integrated in the modelling workflow

to infer model parameters or test model predictions [51].
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specialised further into child classes with specific behaviours
(*.BiologicalEntities.UserClass). Helper classes and meth-
ods (MGSharp.Core.Helpers.* ), and the generic model class
(*.MGModels.MGModel) that contains the definition of most
generic model parameters, are transversal to this architecture,
and can be used at any level. An instance of a user experi-
ment class (green, underlined) implements inherited methods
from the Simulator class, and may define custom methods. . 44

3.8 Simulation framework: GUI-less physics engine and viewer . 45

4.1 Planar Polarised Constriction. A. Apicobasal polarisa-
tion of a planar polarised constricted cell B. A 2D cut of
a constricted cell. The cell underwent planar polarised con-
striction by reducing its lateral width by a length of 2𝑑. C.
Simulation of planar polarised constriction using an epithelial
cell with square base. Parameter values: 𝑅 = 0.5, 𝑑 = 0.35 . 53

4.2 Apical Constriction. A. Schema of an apically constricted
epithelial cell with hexagonal base. B. A 2D section of a
constricted cell. The cell underwent apical constriction by
reducing its apical radius by a length of 𝑑. Initial cylindrical
section in white, constricted cell in red. C. Simulation of
apical constriction with an epithelial cell with square base.
Parameter values: 𝐻 = 2, 𝑅 = 0.5, 𝑑 = 0.35. D. Simulation
of apical constriction with an epithelial cell with hexagonal
base. Parameter values: 𝐻 = 2, 𝑅 = 0.5, 𝑑 = 0.35. . . . . . . 58
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4.3 Apical Constriction with volume conservation. A.
Schema of an apically constricted epithelial cell with hexag-
onal base. B. A 2D section of a constricted cell. The cell
underwent apical constriction by reducing its apical radius by
a length of 𝑑. Initial cylindrical section in white, constricted
cell in red. C. Simulation of apical constriction with volume
conservation using an epithelial cell with hexagonal base. Pa-
rameter values: 𝐻 = 2, 𝑅 = 0.5, 𝑑 = 0.4, 𝐻0 = 0.25. Using
equation (4.45), we find 𝑅0 = 0.2618908. . . . . . . . . . . . 67

4.4 𝐶𝑎2+ regulated Apical Constriction. A. Levels of con-
centrations of 𝐶𝑎2+ (orange) and IP3 (grey) within an epithe-
lial undergoing AC. The yellow curve shows the theoretical
evolution of the apical cell area through time. The apical
faces goes through alternative phases of growth and decrease
as reported in [25]. B. Plots of theoretical and empirical
apical surface area as yielded by our simulation. Observed
slight differences are caused by the Euler explicit scheme used
C. Snapshots of the constricting cell at different time points
showing the evolution of the apical surface area. Parameter
values: 𝐻 = 2, 𝑅 = 0.5. From (eq. 4.59 - eq. 4.61), we fix
𝑐0 = 1, 𝜃0 = 1, ℎ0 = 1, 𝜆 = 0.5, 𝜇 = 0.289, 𝑘1 = 0.7. . . . . . . 71

4.5 Epithelial Folding. A. Top view of a single epithelial layer
folding under the influence of single cells at the centre of the
sheet (coloured in yellow) constricting apically. The sheet
is composed of 81 epithelial cells with hexagonal base. The
epicentre is represented by the 25 yellow cells at the centre of
the sheet. B. Lateral view of the folding process in A. The
sheet goes out of plane. Parameter values: ℎ = 2, 𝑅 = 0.5, 𝑑 =
0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6 Morphogenesis of multi-cellular rosettes. A. Simulation
of the morphogenesis of a multicellular rosette through pla-
nar polarised constriction of single cells. The cell population
is made of 8 epithelial cells with square base. B. Simula-
tion of the morphogenesis of a multicellular rosette via apical
constriction of cells in a single-layered epithelial sheet. C.
Simulation of the morphogenesis of a multicellular rosette via
apical constriction of polarised cells in a double-layered ep-
ithelial sheet. In B and C, the the sheets are respectively
composed of 25 and 50 hexagonal epithelial cells. Parameter
values: ℎ = 2, 𝑅 = 0.5, 𝑑 = 0.5 . . . . . . . . . . . . . . . . . 77
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5.1 Review of epiblast symmetry breaking theories.
A. The basement membrane separating the epiblast and the
primitive endoderm moulds the epiblast into a cup while it
disintegrates between the epiblast and the trophectoderm in
mouse embryos [8]. B. Embryoid structures featuring epiblast
and trophectoderm stem cells surrounded by an ECM acting
as a basement membrane (ETS-embryoids) replicate mouse
embryogenesis by forming body structures similar to those ob-
served in normal embryonic development [67]. Here the pres-
ence of the trophecdoderm shows that this tissue might be
required for symmetry breaking in the epiblast and cup shape
acquisition. C. Embryoid structures featuring epiblast and
primitive endoderm stem cells surrounded by an ECM acting
as a basement membrane (EXE-embryoids) do not break sym-
metry in the epiblast, but initiate lumenogenesis [155]. This
evidences the requirement of the trophectoderm for the re-
modelling of the epiblast. D. Trophectoderm morphogenesis
during mouse implantation. Trophectodermal cells elongate,
then undergo apical constriction, resulting in the tissue folding
and invaginating the epiblast [26]. This suggests that epiblast
remodelling into a cup might be a mechanical response to tro-
phectoderm dynamics . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Lumenogenesis in the epiblast. A. A 3D model of a
rosette-shaped epiblast. B. A 2D slice of the epiblast in A
showing apically constricted cells of the building block of the
epiblast rosette. C. Creation of the lumen cavity by repulsion
at the apical surface of the epiblast. Green arrows represent
the direction of repulsive forces. The snapshots (from left to
right) were taken respectively at 𝑡 = 0, 500 and 2000. D. Lat-
eral view of the sliced epiblast showing the lumen volume.
E. Dynamics in time of the volume of the lumen. Values of
the equation parameters: 𝐽EPI = 2.5, 𝜆med = 𝜆𝜒 = 2, 𝜌 =
1, 𝑅lum = 0.25. . . . . . . . . . . . . . . . . . . . . . . . . . . 87
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5.3 Trophectoderm morphogenesis regulates epiblast
shape. A-D. 3D snapshots of the simulation of TE and
EPI morphogenesis during mouse implantation, and the reg-
ulation of EPI shape, taken respectively at 𝑡 = 0, 3000, 6000
and 9000. E-H. Corresponding 2D slices of the cell popula-
tion at the same stages. (A,E). The initial stage features a
single layered TE with cuboidal cells resting upon the rosette-
shaped epiblast. (B,F). TE cells have transited to a columnar
shape. (C,G). The TE has folded by apical constriction of
single cells. Concomitantly, lumenogenesis was initiated in
the epiblast (the process starts at 𝑡 = 4000). (D,H). Af-
ter adhesive links were broken between TE and EPI, the EPI
bounces back to its near spherical shape. I. Definitions of
the metrics used to evaluate the model, involving the cur-
vature 𝜃, TE/EPI interface diameter 𝐷, TE/EPI interface
length 𝐿, and interface ratio 𝐿/𝐷. J. Plot of the popula-
tion’s elastic energy 𝐸. Discontinuities mark the start of new
morphological events at 𝑡 = 0, 3000, 4000, and 6000). Af-
ter removal of the TE, 𝐸 falls closer to zero than ever be-
fore, meaning that cells are closer to their resting stage, hence
less externally constrained. K. Plot of the interface curva-
ture 𝜃. During TE morphogenesis, 𝜃 rises towards a flat an-
gle, then sharply drops when the TE is removed. L. Plot of
the interface ratio 𝐿/𝐷. During TE morphogenesis, the in-
terface curvature decreases towards 1, then sharply increases
when the TE is removed. Values of the equation parameters:
𝐽EPI = 𝐽TE = 2.5, 𝜆med = 𝜆 = 2, 𝜌 = 1, 𝑅lum = 0.25. . . . . . 90

5.4 Trophectoderm fosters epiblast movement towards
maternal sites. A. Snapshots of the simulation of TE and
EPI morphogenesis during mouse implantation, and their in-
fluence on EPI positioning, taken respectively at 𝑡 = 0 and
6000. B. Plot of the pushing distance, which increases with
time. C. Plot of the elastic energy 𝐸. Discontinuities mark
the start of new morphological events (𝑡 = 0 and 3000). The
sudden soar observed at 𝑡 = 4000 reflects the slight elongation
of the tissue due to hollowing-driven lumenogenesis in the epi-
blast. D. Plot of the pushing distance on the epiblast Centre
of Mass (CoM), which also increases with time. E. Plot of the
pushing distance on the cell population Centre of Mass (CoM),
which also increases with time. Values of the equation param-
eters: 𝐽EPI = 𝐽TE = 2.5, 𝜆med = 𝜆𝜒 = 2, 𝜌 = 1, ,d=0.5, 𝑅lum =
0.25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
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5.5 Mechanical properties of EPI and TE determine
mouse implantation. A. In“Silico” experimental protocol
used to determine cells elastic modulus. B. Stress-Strain curve
(black) for a single epithelial cell (34 vertices) with 𝐽 = 2.5.
(blue) Linear approximation of the Stress-Strain curve. The
elastic modulus of the cell is determined by the slope of this
line (𝑌 = 2.92). C. Plot of the Elastic (Young) modulus of
cells as a function of parameter 𝐽 , the interaction strength
between subcellular particles. D,E,F. Respective Plots of the
Interface curvature, the Interface ratio and the Pushing Dis-
tance as functions of the mechanical stiffness of TE cells (de-
termined by 𝐽TE as in C). G. Plot of the fitness metric as
functions of the mechanical stiffness of TE cells (determined
by 𝐽TE as in C). H. Snapshots of the epiblast shape at the
end of simulations for different values of 𝐽TE. With equal
stiffness (middle, 𝐽TE = 2.5, 𝐽EPI = 2.5), trophectoderm mor-
phogenesis flatten the epiblast, which acquires a cup shape.
However, with significantly lower stiffness (left, 𝐽TE = 0.3,
𝐽EPI = 2.5), trophectoderm morphogenesis barely reshape the
epiblast; meanwhile, with considerably higher stiffness (right,
𝐽TE = 4.9, 𝐽EPI = 2.5), the trophectoderm invaginates the
epiblast, forcing a concave interface with the epiblast. Other
parameter values, 𝜆med = 𝜆𝜒 = 2, 𝜌 = 1, 𝑑 = 0.5. . . . . . . . 97

5.6 Epiblast and trophectoderm population reconstruc-
tion. A. The rosette-shaped EPI tissue is built by submitting
polarised cells in a double epithelial layer to apical constric-
tion. Green arrows indicate the apical surface of the cells,
where constriction occurs. B. The initial cell population (TE
and EPI) is built by adding an epithelial layer to the forming
the EPI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.7 Top view of trophectoderm morphogenesis. A. Initial
stage with cuboidal cells. B. Columnar TE initiating api-
cal constriction. Red arrows highlight cells undergoing apical
constriction. In this case, only cells in the middle constrict
(light blue) to enable folding. C. Folded TE. D. Folded TE
after separation from the EPI. . . . . . . . . . . . . . . . . . 102
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5.8 Trophectoderm fosters epiblast movement towards
maternal sites (Without lumenogenesis in epiblast).
A. Snapshots of the simulation of TE and EPI morphogen-
esis during mouse implantation, and their influence on EPI
positioning, taken respectively at 𝑡 = 0 and 6000. B. Plot
of the pushing distance, which increases with time. C. Plot
of the elastic energy 𝐸. Discontinuities mark the start of
new morphological events (𝑡 = 0 and 3000). D. Plot of
the pushing distance on the epiblast Centre of Mass (CoM),
which also increases with time. E. Plot of the pushing dis-
tance on the cell population Centre of Mass (CoM), which
also increases with time. Values of the equation parameters:
𝐽EPI = 𝐽TE = 2.5, 𝜆0 = 𝜆𝜒 = 2, 𝜌 = 1. . . . . . . . . . . . . . 103

5.9 Sensitivity analysis (Supplementary). A. Stress-Strain
curve (black) for a single epithelial cell (34 vertices) with
𝐽 = 2.5 and 𝜆med = 𝜆𝜒 = 2. (blue) Linear approximation
of the Stress-Strain curve. The elastic modulus of the cell is
determined by the slope of this line (𝑌 = 2.92). B. Plot of the
Elastic (Young) modulus of cells as a function of the param-
eter ratio ( 𝜆𝜒

𝜆med
). Young’s modulus is defined and constant

for values of 𝜆𝜒

𝜆med
greater or equal to approximately 0.161.

Below this value, simulated cells do not behave as physical
materials, and the elasticity modulus cannot be defined as il-
lustrated in the next plot. C. Stress-Strain curve (black) for a
single epithelial cell (34 vertices) with 𝐽 = 2.5, 𝜆med = 2 and
𝜆𝜒 = 0.25. The discontinuity in the curve shows that the set
of parameters is not suitable for a cell. D. 3D rendering of
an epithelial cell with square basis and 42 vertices. E. Stress-
Strain curve (black) for a single epithelial cell (42 vertices)
with 𝐽 = 2.5 and 𝜆med = 𝜆𝜒 = 2. (blue) Linear approxima-
tion of the Stress-Strain curve. The elastic modulus of the cell
is determined by the slope of this line (𝑌 = 2.75). F. Plot
of the Elastic (Young) modulus of a cell (42 vertices) as a
function of the parameter 𝐽 , the interaction strength between
subcellular particles. In order for such a cell (42 vertices) to
have equivalent stiffness with the previous type of cell (34 ver-
tices, 𝐽34 = 2.5, 𝑌34 = 2.92), the parameter 𝐽42 needs to be
set to approximately 2.6 (𝑌42 = 2.90). . . . . . . . . . . . . . 104
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6.1 Geometry of the pectoral fin based on live imaging
and image processing data. (a) 3D rendering of raw data
nuclear staining at 𝑡 = 47.7 hpf: dorsal view of the zebrafish
body with detection of approximate nuclear centers of the
pectoral fin cells highlighted by colored dots, where the color
code depends on the cell type; scale bar: 20 𝜇m. Imaging
data and individual cell tracking have been generated by the
CNRS/Bioemerges lab. (b-d) After applying cell detection
methods: 3D rendering of the approximate nucleus centers of
LPM cells in the pectoral fin at different stages of develop-
ment, respectively 𝑡 = 28 hpf, 𝑡 = 37.9 hpf and 𝑡 = 47.7 hpf
(AP: anteroposterior axis; DV: dorsoventral axis). (e-g) 3D
rendering of the pectoral fin at the same times along the AP
axis and PD (proximodistal) axis. (h-j) Evolution over time of
the fin size in 𝜇m along the PD, AP and DV axes respectively.
Fin expansion occurs mainly along PD. It undergoes a slight
compaction along the other two axes, more pronounced along
the DV axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Center-based computational model of multicellular
dynamics. (a) Schema of a local cell neighborhood and the
abstract forces on cell centers.

−→
𝐹 AR

𝑗𝑖 is the passive attraction-
repulsion force exerted on a cell 𝑖 by a cell 𝑗.

−→
𝐹 Pol

𝑖 is the
active migration force driven by the cell’s polarity (specified
in Section 6.3.4). (b) Plot of the Morse force profile (derivative
of the Morse potential) defining

−→
𝐹 AR, for different parameter

values. This curve presents two regimes: a positive regime
(attraction) below an equilibrium distance 𝑟eq and a negative
regime (repulsion) above. . . . . . . . . . . . . . . . . . . . . 113
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6.3 Analysis of proliferation in the zebrafish pectoral fin. (a-
c) Frequencies of divisions along the AP, PD and DV axes
respectively, highlighted by a yellow-red color gradient coding
for differences in proliferation rates across the fin. (a,c) The
preponderance of red at the center of the fin shows where the
bulk of cell divisions takes place, with only a few of them oc-
curring near the lateral surfaces (yellow). (b) A decreasing
gradient of proliferation rates from the proximal pole to the
distal tip characterizes the PD axis. (d-f) Marginal distribu-
tions of proliferation along the AP, PD and DV axes respec-
tively, expressed in numbers of cells with respect to the abso-
lute distance in 𝜇 m along the axis. (g-i) Same distributions
with respect to the relative distance on the axis. (j-l) Same
distributions expressed in proportions of cells with respect to
the absolute distance. . . . . . . . . . . . . . . . . . . . . . . 118

6.4 Analysis of directional cell behaviors in the zebrafish
pectoral fin. (a) Schematics in 2D of the method used to
analyse directional cell behaviors: for each cell 𝑖, 𝜃𝑖 denotes
the polarity angle that this cell forms between its elongation
axis −→𝑒 Max

𝑖 (extracted from the maximum eigenvalue of the
covariance matrix of its neighborhood 𝒩𝑖) and the PD axis
−→𝑢 . (b-d) Lateral view of the pectoral fin at different stages
of development, respectively 𝑡 = 28 hpf, 𝑡 = 37.9 hpf and
𝑡 = 47.7 hpf. (e-g) Vector field of the cells’ elongation axes
−→𝑒 Max

𝑖 in the pectoral fin at the same stages. (h-j) Distribu-
tion of the polarity angles 𝜃𝑖 of the cells in the pectoral fin
at the same stages, compared with the standard distribution
of random angles formed by two arbitrary vectors in 3D (red
curve). (k) Evolution over time of the average polarity angle
𝜃 of the fin cells ± its standard deviation ∆𝜃 shown in red. . 120
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6.5 Simulation of pectoral fin morphogenesis based on di-
rectional cell behaviors. Values of the equation parame-
ters: 𝐽 = 0.001, 𝜆 = 0.2, 𝜈 = 1. (a) 3D view of the simulated
fin at the final stage 𝑡 = 47.8 hpf. (b-d) Lateral view of the
simulated fin at different stages of development, respectively
𝑡 = 28 hpf, 𝑡 = 37.9 hpf and 𝑡 = 47.7 hpf. (e-g) Vector field
of the cells’ elongation axes −→𝑒 Max

𝑖 in the simulated fin at the
same stages. (h-j) Distribution of the polarity angles 𝜃𝑖 of the
cells in the simulated fin at the same stages, compared with
the standard distribution of random angles formed by two ar-
bitrary vectors in 3D (red curve). (k-m) Evolution over time
of the simulated fin size in 𝜇m along the PD, AP and DV
axes respectively. We observe roughly the same behavior as
the real fin in Fig. 6.1h-j. (n) Evolution over time of the aver-
age polarity angle 𝜃 of the simulated fin cells ± its standard
deviation ∆𝜃 shown in red. This curve is more scattered than
Fig. 6.4k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

S1 Analysis of proliferation in the zebrafish pectoral fin
(supplementary dataset). (a-c) Frequencies of divisions
along the AP, PD and DV axes respectively, highlighted by a
yellow-red color gradient coding for differences in proliferation
rates across the fin. (a,c) The preponderance of red at the cen-
ter of the fin shows where the bulk of cell divisions takes place,
with only a few of them occurring near the lateral surfaces
(yellow). (b) A decreasing gradient of proliferation rates from
the proximal pole to the distal tip characterizes the PD axis.
(d-f) Marginal distributions of proliferation along the AP, PD
and DV axes respectively, expressed in numbers of cells with
respect to the absolute distance in 𝜇𝑚 along the axis. (g-
i) Same distributions with respect to the relative distance on
the axis. (j-l) Same distributions expressed in proportions of
cells with respect to the absolute distance. . . . . . . . . . . 128
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S2 Analysis of directional cell behaviors in the zebrafish
pectoral fin (supplementary dataset). (a) Schematics in
2D of the method used to analyse directional cell behaviors:
for each cell 𝑖, 𝜃𝑖 denotes the polarity angle that this cell forms
between its elongation axis −→𝑒 Max

𝑖 (extracted from the maxi-
mum eigenvalue of the covariance matrix of its neighborhood
𝒩𝑖) and the PD axis −→𝑢 . (b-d) Lateral view of the pectoral fin
at different stages of development, respectively 𝑡 = 28.0 hpf,
𝑡 = 36.1 hpf and 𝑡 = 44.2 hpf. (e-g) Vector field of the cells’
elongation axes −→𝑒 Max

𝑖 in the pectoral fin at the same stages.
(h-j) Distribution of the polarity angles 𝜃𝑖 of the cells in the
pectoral fin at the same stages, compared with the standard
distribution of random angles formed by two arbitrary vec-
tors in 3D (red curve). (k) Evolution over time of the average
polarity angle 𝜃 of the fin cells ± its standard deviation ∆𝜃
shown in red. . . . . . . . . . . . . . . . . . . . . . . . . . . 129
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