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Platelets are important players in thrombosis and haemostasis with their function being modulated by mediators in the blood and
the vascular wall. Among these, eicosanoids can both stimulate and inhibit platelet reactivity. Platelet Cyclooxygenase (COX)-1-
generated Thromboxane (TX)A2 is the primary prostanoid that stimulates platelet aggregation; its action is counter-balanced by
prostacyclin, a product of vascular COX. Prostaglandin (PG)D2, PGE2 and 12-hydroxyeicosatraenoic acid (HETE), or 15-HETE, are
other prostanoid modulators of platelet activity, but some also play a role in carcinogenesis. Aspirin permanently inhibits platelet
COX-1, underlying its anti-thrombotic and anti-cancer action. While the use of aspirin as an anti-cancer drug is increasingly en-
couraged, its continued use in addition to P2Y12 receptor antagonists for the treatment of cardiovascular diseases is currently
debated. Aspirin not only suppresses TXA2 but also prevents the synthesis of both known and unknown antiplatelet eicosanoid
pathways, potentially lessening the efficacy of dual antiplatelet therapies.

LINKED ARTICLES
This article is part of a themed section on Eicosanoids 35 years from the 1982 Nobel: where are we now? To view the other articles
in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.8/issuetoc

Abbreviations
AA, arachidonic acid; CYP450, cytochrome P450; EETs, epoxyeicosatrienoic acids; ECs, endothelial cells; HETE,
hydroxyeicosatraenoic acid; LOX, lipoxygenase; NSAIDs, nonsteroidal anti-inflammatory drugs; PGI2, prostacyclin; PUFAs,
polyunsaturated fatty acids; USPSTF, US Preventive Services Task Force
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Introduction
Platelets play a fundamental role inmaintaining haemostasis. A
fine balance exists in which platelets can be rapidly activated to
aggregate and form a plug that prevents bleeding. But when
platelets get inappropriately activated, thrombi form within
the vessel wall which can lead to thrombotic events such as
heart attack and stroke. The activation or inhibition of platelets
can be modulated by many agents with a central role being
played by eicosanoids. TXA2 and prostacyclin (PGI2) are the
main eicosanoids affecting the function of platelets. The groups
of Vane and Samuelsson were pioneers in their identification
and in establishing their action on platelets and on the vascula-
ture (Bunting et al., 1977; Bunting et al., 1983; Moncada et al.,
1976; Moncada et al., 1978; Needleman et al., 1976; Svensson
et al., 1975; Whittaker et al., 1976).

Since their discovery, and with the continued
development of analytical techniques such as mass
spectrometry-based lipidomics, hundreds of structurally and
stereochemically distinct eicosanoid families have been iden-
tified (Harkewicz and Dennis, 2011).

This reviewwill focus on the production of eicosanoids by
platelets and endothelium and their effect on platelet func-
tion in the cardiovascular system. We will discuss how
aspirin modulates the synthesis of these eicosanoids and
the consequences on its anti-thrombotic efficacy. Laboratory
techniques to evaluate response to aspirin will be also pre-
sented, and their ability to predict the occurrence of cardio-
vascular events will be examined. Finally, recent advances in
understanding the role of platelet-related eicosanoids in can-
cer will be presented.

Eicosanoids and the fine regulation of
platelet function and haemostasis
Eicosanoids are mainly derived from arachidonic acid (AA)
but can also be generated fromother 20 carbon polyunsaturated
fatty acids (PUFAs), such as dihomo-γ-linolenic acid, an
ω-6-derived PUFA, or eicosapentaenoic acid (Subhash et al.,
2007). These fatty acids are released from the cellular phospho-
lipid membrane via the action of the enzyme phospholipase
A2 (PLA2) and subsequently converted via the COXs into
TXA2 and PGs, such as PGI2, PGE2 and PGD2, via
lipoxygenases (LOXs) into hydroxyeicosatraenoic acids (e.g.
12-HETE), and via cytochrome P450 (CYP450) enzymes into
epoxyeicosatrienoic acids (EETs) (Dennis and Norris, 2015).

Platelets can produce significant amounts of TXA2, PGE2,
PGD2, 11-, 12- and 15-HETE dependent upon the activity of
cytosolic group IV A PLA2, a widely expressed PLA2

isoform (Kirkby et al., 2015; Rauzi et al., 2016). Below, we will
discuss platelet and non-platelet-derived eicosanoids whose
actions modulate platelet function and consequentially
haemostasis and thrombosis (Figure 1).

COX-dependent eicosanoids
COX, more precisely known as PGH synthase, converts AA first
into PGG2, via a COX function and then to PGH2 following a
peroxidase reaction (Smith and Dewitt, 1996). PGH2 is an
unstable molecule and, in platelets, undergoes further transfor-
mations catalysed by TX synthase, PGD isomerase or PGE
synthase to form TXA2, PGD2 or PGE2 respectively.

Figure 1
Diagram of the biosynthesis of the main eicosanoids that affect platelet function and where it occurs. The yellow, green and red boxes represent
the origin of the eicosanoids as platelets, ECs and leukocytes respectively. The receptors for each eicosanoid are shown as well as the associated
effects on platelet activation.
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Two different isoforms of COX exist in the cardiovascular
system, namely, COX-1 and COX-2 (Hla and Neilson, 1992;
Kujubu et al., 1991; Masferrer et al., 1992; O’Banion et al.,
1992; Xie et al., 1991). COX-1 is usually considered a consti-
tutive form (Kirkby et al., 2012; Langenbach et al., 1997),
while COX-2 is considered to be an inducible enzyme, al-
though a role for constitutive COX-2 has been shown in the
kidneys and the central nervous system (Herschman et al.,
1997; Mitchell and Warner, 2006). Platelets mainly express
COX-1, but traces of COX-2 have been detected, possibly car-
ried over frommegakaryocytes, the platelet precursor cells, or
as a result of the transcription of residual mRNA into protein
(Rocca et al., 2002; Warner et al., 2011).

Thromboxane A2
The most directly important prostanoid for platelet function
is COX-1-generated TXA2. It was first identified by Vane as a
‘rabbit-aorta-contracting substance’ (RCS) produced by the
lungs during anaphylaxis (Piper and Vane, 1969). Later,
TXA2 was shown to be synthesized by activated platelets
and to act in an autocrine and paracrine manner to induce
thrombosis (Smith and Willis, 1971). On platelets, TXA2

binds to the thromboxane prostanoid (TP) receptor and
initiates an amplification loop leading to further platelet
activation, aggregation and TXA2 formation (Reilly and
Fitzgerald, 1993). The TP receptor can couple with several
G proteins, such as G12/13, leading to platelet shape change
via phosphorylation of the myosin light chain, platelet gran-
ule release and irreversible aggregation (Smyth, 2010). In the
vasculature, TXA2 induces vasoconstriction and the prolifera-
tion of vascular smooth muscle cells.

PGI2 (prostacyclin)
When first discovered as an autacoid produced by vascular
tissue, PGI2 or prostacyclin was named as PGX and was de-
scribed as a substance which, in contrast to TXA2, inhibited
the clumping of platelets and relaxed vascular strips
(Moncada et al., 1976). Now known to be predominantly pro-
duced by the endothelium within blood vessels, there has
been strong debate as to which isoform of COX catalyses
the vascular production of PGI2. Although still controversial,
research by ourselves and colleagues strongly suggests that, in
the healthy vasculature, PGI2 production is driven by COX-1
(Bolego et al., 2009; Evangelista et al., 2006; Kirkby et al.,
2012; Yu et al., 2012). This is discussed in more detail
elsewhere in this issue (Mitchell and Kirkby, 2018).

Endothelium-produced PGI2 binds to the Gs-coupled
PGI2 receptor (IP) on platelets and generally reduces plate-
let reactivity, which can be critical to minimizing the risk for
atherothrombotic events (Midgett et al., 2011). Binding of
PGI2 to the IP receptor results in the activation of adenylate
cyclase and a subsequent rise in cAMP levels in platelets
(Yang et al., 2002). This stimulates phosphorylation of
PKA, which suppresses various signalling pathways involved
in platelet function such as adhesion, aggregation and gran-
ule secretion. With regard to the subject of this review, PKA
activation decreases the release of Ca2+ from internal stores,
reducing the activation of cytosolic PLA2 (cPLA2) and the lib-
eration of AA from the phospholipid membrane, and so
diminishing the production of platelet-derived eicosanoids,
such as TXA2 (den Dekker et al., 2002).

PGD2
PGD2 is well established as a macrophage product but, in
lesser amounts, is also synthesized by platelets. By interaction
with platelet DP1 receptors, PGD2 increases adenylyl cy-
clase activity and so, like PGI2, inhibits platelet activation
(Bushfield et al., 1985; Oelz et al., 1977; Whittle et al., 1978).

PGE2
PGE2 is released by endothelial cells (ECs) and, to some ex-
tent, by activated platelets. It acts on a range of prostanoid re-
ceptors, EP1 - EP4, that differently modulate second
messengers, such as cAMP and free Ca2+, within platelets
and exert contrasting effects on platelet function (Deeb
et al., 2008; Yang et al., 2002). The effects on platelets of
PGE2 acting through EP receptors are concentration depen-
dent. At low concentrations (0.1–10 μmol·L�1), PGE2 binds
to Gi-coupled receptors (EP3) to enhance aggregation,
whereas at higher concentrations (100 μmol·L�1), it activates
Gs-coupled receptors (EP2, EP4) to inhibit aggregation
(Friedman et al., 2015; Glenn et al., 2012; Petrucci et al.,
2011). Stimulation of EP3 receptors by PGE2 decreases cAMP
levels, thus favouring platelet aggregation, but the full effect
is only seen in the presence of another platelet agonist (Fabre
et al., 2001; Friedman et al., 2015). On the other hand, the
increased cAMP levels which accompany EP4 receptor activa-
tion correlate with suppressed platelet aggregation (Glenn
et al., 2012).

In addition to PGE2, PGE1, PGF2α and PGD2 can also
bind to EP3 and EP4 receptors but with lower affinity and re-
versible effects (Armstrong et al., 1985; Friedman et al.,
2015; Glenn et al., 2012).

As well as the well-characterized effects of PGE2 mediated
through EP3 and EP4 receptors, EP1 receptors are also
expressed on platelets (Kauskot and Hoylaerts, 2012; Petrucci
et al., 2011). Although the signal transduction pathway is not
clear, studies in several cell lines expressing EP1 receptors sug-
gest that its activation increases Ca2+ influx and might
thereby stimulate platelet aggregation (Whittle et al., 2012).

While PGE2 seems to both inhibit and potentiate platelet
aggregation in vitro, a study by Gross et al. has elegantly
shown that, in vivo, PGE2 is produced by the vessel wall or af-
ter the rupture of a plaque. Under these conditions, PGE2 ac-
tivates the EP3 receptors on platelets and clearly enhances,
rather than reduces, thrombus formation in the arterial vessel
wall (Gross et al., 2007).

LOX-dependent 12-HETE
12-HETE is the major 12-LOX-catalysed metabolite and the
most abundant eicosanoid produced by platelets upon
stimulation (Kirkby et al., 2015; Rauzi et al., 2016), but its
effects on platelet function are not completely understood.
Initial studies suggested that both 12-HETE and
14-hydroxy-docosahexaenoic acid (14-OH-DHA), the
12-LOX-derived metabolite of DHA, inhibit platelet aggrega-
tion initiated by the TP receptor agonist U46619 (Croset
et al., 1988). In agreement with these data, platelet-specific
knockout of 12-LOX in mice resulted in hypersensitivity to
ADP-induced aggregation, which was reversed by incubation
with exogenous 12-HETE. However, lack of 12-LOX did not
affect collagen-induced aggregation or platelet adhesion
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(Johnson et al., 1998). Interestingly, another study reported
that inhibition of 12-LOX led to decreased platelet aggrega-
tion that correlated with a significant reduction of 12-HETE
in response to collagen (Maskrey et al., 2014). A
recent review concluded that 12-HETE can exert both pro-
and anti-aggregatory effects on platelets that depend
crucially on 12-HETE concentration, stereospecificity and
co-incubation with different agonists (Porro et al., 2014).
Platelets also produce hepoxilins from the precursor
12-hydroperoxyeicosatetraenoic acid. Hepoxilin has
shown to exert anti-thrombotic effects in platelets (Margalit
et al., 1995), most likely via inhibition of TXA2 formation
and blockade of the TP receptor (Reynaud, 2002).

Platelet-cellular crosstalk and
eicosanoid biosynthesis
Transcellular routes through which platelets exchange eicos-
anoids with ECs or leukocytes are important to vascular ho-
meostasis as well as to processes such as vascular
inflammation. Some of these cellular crosstalk pathways are
depicted in Figure 2 and discussed below. For example, ECs
can utilize PGH2 released from platelets to produce PGI2. This
suggests a counteractive mechanism in which activated
platelets that are in direct contact with the vessel wall

produce endoperoxide that can in turn be used by ECs to in-
hibit platelet functions and stimulate the return to homeo-
stasis (Marcus et al., 1980; Porro et al., 2014).

CYP450 epoxygenases can convert AA into the biologi-
cally active EETs. The main producers of EETs are vascular
ECs which not only release EETs following stimulation and
contribute to vasodilation but also promote anti-
inflammatory effect in the vascular system (Yang, 2015). EETs
also have potent anti-adhesive and anti-aggregatory activities
which they exert by causing hyperpolarization of the platelet
membrane (Sudhahar et al., 2010).

In the cardiovascular system, leukocytes represent the
main source of 5-LOX-derived LTs. These metabolites poten-
tiate adrenaline and thrombin-induced platelet aggrega-
tion, probably by increasing the activity of TXA2 synthetase
and thereby TXA2 formation (Mehta et al., 1986). On the
other hand, platelets can utilize leukocyte-derived LTA4 as
a precursor for lipoxin production. Following release,
lipoxin A4 acts on platelets via the FPR2/ALX receptor
(Czapiga et al., 2005) and mediates protective functions by
suppressing platelet adhesion, TXA2 formation and
platelet–neutrophil interaction (Ortiz-Muñoz et al., 2014).
With regard to inflammation, platelets can transfer eicosa-
noid precursors to leukocytes which are fundamental for the
formation of pro-resolving mediators. A prominent example
is the epoxy-resolvins, which are produced by platelet 12-

Figure 2
Main pathways of eicosanoid-mediated crosstalk between platelets and other cells. The eicosanoid exchanges between platelets and ECs and their
effects on the vessel homeostasis are illustrated in (A) and (B). Some of the PGH2 released by platelets may be used by COX-1 in the ECs to produce
PGI2 which induces vasodilation and prevents further platelet activation (A). ECs, on the other hand, can synthesize EETs starting from AA, through
the action of CYP450. EETs reduce platelet activation (B). (C) and (D) represent some routes of platelet-leukocyte crosstalk. LTs are synthesized in
leukocytes by 5-LOX and act together with other agonists to potentiate platelet activation. However, platelets can also use LTs to make lipoxins
which reduce the activation of platelets (C). 12-LOX in platelets also produces epoxy-resolvins that can be used by the leukocytes to make
maresins, molecules important for the resolution of inflammation (D).
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LOX and transferred to neutrophils where they are trans-
formed into maresins, which are molecules with important
roles in terminating acute inflammatory responses
(Abdulnour et al., 2014).

Modulation of eicosanoid production
by platelets and the anti-thrombotic
efficacy of aspirin
John Vane reported for the first time that aspirin inhibits the
production of PGs (Vane, 1971). This mechanism was
identified as the basis of the therapeutic action of nonsteroi-
dal anti-inflammatory drugs (NSAIDs) (Vane, 1971) and was
confirmed in platelets by Smith and Willis (1971). Many
NSAIDs have been developed since then, and we know now
that these compounds affect eicosanoid biosynthesis
through the inhibition of both COX-1 and COX-2. COX-1
and COX-2 are expressed to differing levels in different tissues
and under different conditions of health and disease. Such
differences and their significance has been reviewed
extensively (Khan et al., 2002; Mitchell and Warner, 2006;
Wallace and Devchand, 2005).

In the context of platelet function, only aspirin produces
irreversible inhibition of COX-1 through its ability to cova-
lently modify the enzyme (Cerletti et al., 1982; Loll et al.,
1995). Consequently, aspirin impairs the synthesis of TXA2

for the entire platelet lifespan, and this explains its general
antithrombotic action (Ferreira et al., 1971; Smith and Willis,
1971; Vane, 1971), although under some circumstances
aspirin-treated platelets may be able to recover the ability to
synthesize TXA2 afterde novo synthesis of COX-1 (Evangelista
et al., 2006). Because of its irreversible action, the antiplatelet
effects of aspirin are seen with low doses of 50–100 mg·day�1

(Patrignani et al., 1982; Patrono, 2005; Warner et al., 2011).
Aspirin is commonly given in combination with antagonists
of ADP, acting at P2Y12 receptor, such as clopidogrel,
prasugrel or ticagrelor (Bhatt, 2009; Gargiulo et al.,
2016; Investigators TCIUaTPRET, 2001; Patrono et al., 2011;
Wallentin et al., 2009; Windecker et al., 2014; Wiviott et al.,
2007). Despite the proven anti-thrombotic efficacy of this
dual therapy, many studies are currently investigating the
benefits of single antiplatelet-drug therapy, using newer
drugs such as ticagrelor (Gargiulo et al., 2016). The hope is
to retain the anti-thrombotic effects of dual antiplatelet ther-
apy while lessening the unwanted side effects. This rationale
is not only based on the need to reduce the bleeding risk asso-
ciated with the dual antiplatelet therapy (Du et al., 2016;
Maree and Fitzgerald, 2007) but also because evidence sug-
gests that P2Y12 antagonists alone can decrease platelet
TXA2 production and reduce aggregation mediated by TP re-
ceptor activation (Armstrong et al., 2010; Armstrong et al.,
2011; Bhavaraju et al., 2010; Kirkby et al., 2011). Furthermore,
the ability of aspirin to reduce the production of vascular
PGI2 directly by inhibiting COX-1 in ECs or indirectly by
inhibiting COX-1 in other cells supplying precursors of
PGI2, such as PGH2, could produce a pro-thrombotic effect
that reduces the overall efficacy of dual antiplatelet therapy
(Björkman et al., 2013; FitzGerald et al., 1983; Franchi et al.,
2016; Mahaffey et al., 2011; Maree and Fitzgerald, 2007;

Warner et al., 2010; Warner et al., 2016). Therefore, it is
necessary not only to seek therapeutic strategies apart from
aspirin, but also to extensively re-evaluate the effects of
aspirin in vivo. This last goal could be achieved by using
more recently developed techniques such as liquid
chromatography–tandem mass spectrometry or the genetic
manipulation of animals. For example, we have recently
found, through the use of mass spectrometry analysis, that
aspirin prevents not only the synthesis of TXA2 by platelets
but also the production of PGD2, PGE2, 11-HETE and 15-
HETE. PGD2 and PGE2 are PGs with antiplatelet actions
and their inhibition can further contribute to a reduced effi-
cacy of the antithrombotic treatments (Rauzi et al., 2016).
In addition, our own recently developed animal models
where the expression of COX-1 is specifically ablated in ECs
or in megakaryocytes/platelets will be useful in dissecting
the effects of eicosanoids on the cardiovascular system and
the outcomes of aspirin treatment.

Eicosanoid measurements and platelet
function tests to evaluate the efficacy of
aspirin in cardiovascular patients
The way platelets respond to treatment with aspirin can be
monitored in the laboratory either by techniques that specif-
ically measure platelet COX-1 activity or by tests assessing
other platelet activation pathways besides COX-1.

The measurement of platelet-generated eicosanoids, in
particular of TXB2, the stable form of TXA2, either in serum
or after in vitro stimulation of platelets, falls in the first cat-
egory of techniques. With a strong stimulus, the levels of
TXB2 can be taken as reflecting the maximal capacity of
platelets to synthesize TXA2 via the COX-1 pathway and
this can be regarded as a sensitive measure of the response
to aspirin, in the laboratory (Cattaneo, 2007; Maree and
Fitzgerald, 2007; Ohmori et al., 2006). On the other hand,
the levels of the main TXA2 metabolite found in urine,
11- dehydro TXB2, reflect systemic TXA2 generation
and may not only reflect the effect of aspirin on platelet
COX-1 (Kirkby et al., 2012; Kirkby et al., 2015; Smith
et al., 2012).

Another standard test for studies of platelet inhibition by
aspirin is light transmission aggregometry, which measures
the ability of platelets to aggregate after being stimulated.
Different stimuli can be used in this test to explore different
aspects of platelet activation. AA is a substrate for COX-1, so
the aggregation response to this agonist closely reflects
platelet COX-1 activity, while ADP or collagen induces plate-
let aggregation through pathways that are not exclusively
dependent on COX-1 activation (Thiagarjan and Wu, 2002).
Other methodologies, such as flow cytometry evaluation of
markers of platelet activation and secretion or of the
formation of platelet-leukocyte aggregates, can also be used
to assess platelet inhibition by aspirin. Moreover, semi-
automated point-of-care platelet function assays, such as
the PFA-100® system and RPFA-Verify-Now Aspirin, have
been introduced (Frelinger et al., 2006).

The prevalence of aspirin resistance, that is, lack of effect
of aspirin, reported in the literature is largely based on various
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non-specific laboratory techniques and, in general, aspirin re-
sistance is much lower when measured with COX-1 specific
methods (Gurbel et al., 2007; Lordkipanidzé et al., 2007).

It is generally held that aspirin should inhibit platelet
TXA2 synthesis by at least 95% to reach a functional effect,
and this assumption is mainly based on the observation that
there is a non-linear relationship between inhibition of plate-
let TXA2 synthesis and inhibition of platelet aggregation
(Kidson-Gerber et al., 2010; Santilli et al., 2009). However,
due to the technical limitations of the tests employed, plate-
let response to aspirin is usually evaluated using one or two
agonists, often at fixed concentration that does not make it
possible to properly characterize biological variations in drug
response. Recently, we have developed a test using optical
multichannel platelet aggregometry in a 96-well-plate, that
can explore platelet function in response to a broad range of
agonists and agonist concentrations (Chan et al., 2011;
Lordkipanidzé et al., 2014). This test has indicated that there
is a linear relationship between TXA2 synthesis and TXA2-me-
diated platelet aggregation, in the presence of different levels
of COX-1 inhibition and could represent a valid alternative
method of reliably identifying responders to treatment with
aspirin (Armstrong et al., 2008).

The association between a high platelet reactivity while
on treatment, and the risk of patients having a thrombotic
event is uncertain (Consuegra-Sánchez et al., 2013; Depta
et al., 2012; Li et al., 2014; Tantry et al., 2013). However, four
different meta-analyses have so far indicated that the lack of
response to aspirin, as detected in the laboratory, may predict
clinical recurrences (Crescente et al., 2008a; Crescente et al.,
2008b; Krasopoulos et al., 2008; Reny et al., 2008; Snoep
et al., 2007). It also appears, from some of the studies
performed in this area, that a combination of tests and of
different agonists is better than one single test to establish

this type of association (Armstrong et al., 2008; Crescente
et al., 2011; Gremmel et al., 2015; Smith et al., 2012) and a
summary of these observations is provided in Figure 3. How-
ever, it is essential that additional biomarkers of response to
aspirin are identified and larger epidemiological studies per-
formed, before any change of an antiplatelet treatment is
made on the basis of laboratory test results. Notably, there
have been no clinical trials demonstrating that tailoring anti-
platelet therapy to results from ex vivo platelet testing,
produces an improvement in patient outcomes (Collet et al.,
2012; Depta et al., 2012).

Anti-cancer effect of aspirin: role for
platelet eicosanoids
In 1988, Kune et al. reported for the first time an association
between the intake of aspirin and a reduced risk of colorectal
cancer, thus extending the therapeutic potential of aspirin
beyond its use as an anti-inflammatory or anti-thrombotic
drug. This observation was confirmed by many subsequent
epidemiological studies and by a large meta-analysis which
also showed that aspirin reduced the risk of gastrointestinal
cancers in general (Algra and Rothwell, 2012; Burn et al.,
2008; Burn et al., 2011; Cole et al., 2009; Cuzick et al., 2015;
Rothwell et al., 2012). As well as aspirin, non-aspirin NSAIDS
and, in particular, COX-2 selective inhibitors, such as
celecoxib and rofecoxib, were widely reported to prevent
colonic tumourigenesis (Arber et al., 2006; Arber et al., 2011;
Baron et al., 2006; Bertagnolli et al., 2006; Cao et al., 2016;
Steinbach et al., 2000). However, concerns about the pro-
thrombotic effects of non-aspirin NSAIDs including COX-2
inhibitors (Baron et al., 2006; Baron et al., 2008; Collabora-
tion CaTNTC, 2013) have ended cancer prevention trials

Figure 3
Schematic representation of platelet function tests used to monitor responses to aspirin in cardiovascular patients.
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using COX-2 inhibitors , and the US Preventive Services Task
Force (USPSTF) no longer supports the use of non-aspirin
NSAIDs for the prevention of colorectal cancer.

In contrast, aspirin is the only drug with no cardiovascu-
lar risk that is effective in both primary and secondary pre-
vention of colorectal cancer and also reduces the incidence
and risk of all-cause cancer mortality (Cuzick et al., 2015;
Rothwell et al., 2011). As aspirin is used in prevention of car-
diovascular diseases and the most colorectal cancer cases are
diagnosed after the age of 50, the last guidelines from the
USPSTF recommend low-dose aspirin for the primary preven-
tion of colorectal cancer in patients at increased cardiovascu-
lar risk (Bibbins-Domingo, 2016).

The follow-up studies of many clinical trials indicate that
the chemoprotective action of aspirin can be detected at a
dose as low as 75 mg·day�1. Furthermore, it is saturable at
these low doses and is present when using a controlled-
release aspirin formulation that mainly targets platelet
COX-1 (Patrignani and Patrono, 2016). These findings have
been confirmed by studies showing that small doses of
aspirin, by blocking the formation of platelet TXA2, PGE2,
PG-containing oxidized phospholipids and sphingosine
1-phosphate, reduce the exchange of lipid mediators be-
tween platelets and cancer cells in the tumour micro-
environment (Aldrovandi et al., 2013; Dovizio et al., 2013;
Ulrych et al., 2011).

Strong evidence also suggests that eicosanoids linked to
COX-1 activity act as pro-angiogenic factors and therefore
the anti-cancer effects of aspirin are also related to a reduction

of angiogenesis (Etulain et al., 2013; Rauzi et al., 2016). For ex-
ample, we have recently found that platelet COX-1-derived
15(S)-HETE induces an angiogenic response in HMEC-1 cells
and rat aortic rings and this effect disappears in presence of
aspirin, when the synthesis of 15(S)-HETE is blocked (Rauzi
et al., 2016). In addition to the eicosanoids, platelets can re-
lease a variety of pro-angiogenic factors from their α-granules
and this release can be modulated by treatment with aspirin,
as well (Coppinger et al., 2004).

Platelets promote cancer progression also by favouring
the metastatic process. In particular, platelets will form aggre-
gates around tumour cells in the bloodstream, that protect
tumor cells from being cleared by the immune system (Gay
and Felding-Habermann, 2011). Also, when COX-1 activity
is blocked by aspirin or when a PGE2 antagonist is used, plate-
lets lose the ability to transform human colon carcinoma cells
into mesenchymal-like cancer cells. Moreover, the adminis-
tration of aspirin to mice prevents the platelet-induced for-
mation of metastases in the lungs, and this is associated
with a reduced systemic synthesis of TXA2 and PGE2
(Guillem-Llobat et al., 2016).

This evidence suggests that the anti-cancer efficacy of
aspirin resides in its ability to block the biosynthesis of
platelet-derived eicosanoids, which not only serve as
substrates for other cells present in the tumour micro-
environment but also promote angiogenesis and themetasta-
tic progression of the tumour (Figure 4). While there is strong
evidence for aspirin having beneficial effects in gastrointesti-
nal cancers, the efficacy of aspirin in other cancer types such

Figure 4
Effects of platelet COX-1-derived eicosanoids and of aspirin treatment in the progression of cancer. The preventive role of aspirin in the progres-
sion of cancer depends at least in part on its ability to block the formation of eicosanoids by platelet COX-1. TXA2 and PGE2 are released in the
tumour micro-environment and favour the transformation of cells from a normal to a cancerous phenotype (A). 15-HETE is another eicosanoid
synthesised by COX-1 in platelets that promotes angiogenesis, a process that further promotes cancer progression (B). TXA2 and PGE2 mediate
the formation of platelet aggregates around the metastatic cancer cells, protecting them from the immune system and assisting their spread
throughout the body (C).
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as gastroesophageal, breast and prostate cancers has still to be
evaluated, as well as the most appropriate timings and doses
that can be used to maximize its anti-carcinogenic effects
(Patrignani and Patrono, 2016).

Conclusions
Eicosanoids produced by platelets, or made from other cells,
are important modulators of platelet function and regulate
the fine balance between haemostasis and thrombotic dis-
ease. The eicosanoid-mediated crosstalk between platelets
and other cells also regulates pathophysiological processes
such as cancer. Low doses of aspirin, through their ability to
inhibit platelet COX-1 and the synthesis of pro-aggregatory
TXA2, is still nowadays considered as a first choice treatment
to reduce the risk of thrombotic events. Ongoing research
may lead to the replacement of aspirin in this role by P2Y12

receptor antagonists, while aspirin continues to be used for
protection against the development of a range of cancers.

Nomenclature of targets and ligands
Key protein targets and ligands in this article are hyperlinked to
corresponding entries in http://www.guidetopharmacology.org,
the common portal for data from the IUPHAR/BPS Guide to
PHARMACOLOGY (Harding et al., 2018), and are permanently
archived in the Concise Guide to PHARMACOLOGY 2017/18
(Alexander et al., 2017a,b).
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