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Acquisition and Development of the Extremely Preterm

Infant Microbiota Across Multiple Anatomical Sites
�Gregory R. Young, yChristopher J. van der Gast, �Darren L. Smith, zJanet E. Berrington,

zNicholas D. Embleton, and �Clare Lanyon

ABSTRACT

Objectives: Microbial communities influencing health and disease are being

increasingly studied in preterm neonates. There exists little data, however,

detailing longitudinal microbial acquisition, especially in the most

extremely preterm (<26 weeks’ gestation). This study aims to characterize

the development of the microbiota in this previously under-represented

cohort.

Methods: Seven extremely preterm infant-mother dyads (mean gestation

23.6 weeks) were recruited from a single neonatal intensive care unit. Oral

and endotracheal secretions, stool, and breast milk (n¼ 157 total), were

collected over the first 60 days of life. Targeted 16S rRNA gene sequencing

identified bacterial communities present.

Results: Microbiota of all body sites were most similar immediately

following birth and diverged longitudinally. Throughout the sampling

period Escherichia, Enterococcus, Staphylococcus, and an

Enterobacteriaceae were dominant and well dispersed across all sites.

Temporal divergence of the stool from other microbiota was driven by

decreasing diversity and significantly greater proportional abundance of

Bifidobacteriaceae compared to other sites.

Conclusions: Four taxa dominated all anatomical sampling sites. Rare taxa

promoted dissimilarity. Cross-seeding between upstream communities and

the stool was demonstrated, possibly relating to buccal colostrum/breast

milk exposure and indwelling tubes. Given the importance of dysbiosis in

health and disease of extremely preterm infants, better understanding of

microbial acquisition within this context may be of clinical benefit.

Key Words: enterocolitis, extremely low birth weight, gastrointestinal

microbiome, neonatal intensive care units, premature infant

(JPGN 2020;70: 12–19)

What Is Known

� Microbial colonization in early life can affect later
health status with preterm infants at greater risk of
microbially impacted disease states such as necrotiz-
ing enterocolitis and late-onset sepsis.

� Preterm infants within the neonatal intensive care
unit do not face typical colonization exposures.

� Previous comparative studies show conflicting findings
with either individual patient in closer-to-term infants, or
sampling site inmorepreterm infants explaininggreatest
difference between microbial communities.

What Is New

� This study represents the first to characterize micro-
bial acquisition and development exclusively in a
cohort of extremely preterm infants born <24 weeks
gestational age.

� Development of microbial communities in intubated,
extremely preterm infants occurs holistically, across
all body-sites with longitudinal specialization toward
divergent communities.

� Breast milk and oral and endotracheal microbiota
shows decreasing associations with stool communi-
ties over time, with oral communities exhibiting
greatest impact and substantial environmental
influence.
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T he 24 months after birth represent a period of turbulent
microbiota development as neonates transition to a more

stable state (1,2). This turbulence is even more apparent in preterm
infants at risk of disease states such as late-onset infection and
necrotizing enterocolitis (NEC).

Neonatal exposures essential to preterm infant care impact
microbiota development. Exposures include increased time to full
milk feeds, parenteral nutrition, administration of antibiotics or
antifungals (3–6), and use of indwelling medical devices (7).
Extremely preterm infants also have a naı̈ve immune system and
intestinal function (8). All such factors contribute to a proinflam-
matory state (9), increasing likelihood of NEC development. In
addition, indwelling medical devices increase the likelihood of
biofilm formation which may provide a source of persistent,
pathogenic, antibiotic resistant bacteria (10).

Previous studies in more mature infants have identified indi-
vidual-specific signatures, irrespective of body-site sampling (11,12).
This is in agreement with the findings of the human microbiome
project, which included exclusively term infants (13). Few studies
have attempted to identify environmental sources of microbial colo-
nization in preterm infants (14,15), although results highlight simi-
larities between ward surfaces and infants’ microbiota.

Typically, studies have used stool as a proxy for the gut
lumen to compare microbiota between delivery modes (16), and in
cases of NEC (17), and late-onset sepsis (LOS) (18), increasing our
understanding of the gut microbiota in health and disease states.
This study explores further the acquisition of the gut microbiota by
supplementing stool microbial profiling with identification of
exclusively viable bacterial communities in several other sampling
sites. These include oral (ORS), and endotracheal (ETS), samples,
as well as maternally expressed breast milk (EBM), samples taken
from the feeding tubes to generate a more holistic view of micro-
biota development and track succession of microbiota acquisition
throughout the gastrointestinal tract. Our sample salvaging method
facilitated use of suctioned samples from these areas, performed as
part of routine clinical care. We focused on the most immature
infants since they are currently least well represented in the
literature and most vulnerable to the preterm associated diseases
NEC and LOS. This cohort includes both infants who developed
these diseases and those who did not.

METHODS

Sample Collection
Longitudinal samples from 4 distinct sites (oral and endo-

tracheal secretions, maternal breast milk from feeding tubes and

stool) were collected from a cohort of extremely preterm (<26
weeks gestational age (GA), at birth), infant-mother dyads (n¼ 7),
meeting the inclusion criteria (Methods, SDC1, Supplemental
Digital Content, http://links.lww.com/MPG/B740), including 1
twin pair, over the first 60 days of life (figure, SDC2, Supplemental
Digital Content, http://links.lww.com/MPG/B740). All were cared
for simultaneously in the neonatal intensive care unit (NICU), at
the Royal Victoria Infirmary, Newcastle upon Tyne, England,
ventilated from birth and received breast milk feeds. The NICU
employs standardized approaches to nutrition including adminis-
tration of maximal amounts of maternal EBM progressed at
standard rates as far as infant tolerance permits and standardized
management of sepsis. Infants routinely received probiotic sup-
plementation consisting of a liquid preparation of Lactobacillus
acidophilus, Bifidobacterium bifidum, and B infantis (Labinic,
Biofloratech, UK), as soon as minimal enteral nutrition was
tolerated (Fig. SDC3, Supplemental Digital Content, http://
links.lww.com/MPG/B740). Samples were collected under ethical
permission granted by NRES Committee North East—Newcastle
& North Tyneside 2 (10/H0908/39), and analysed with written
parental consent.

Maternal EBM collected from either the nasogastric feeding
tube or from residual volume in bottles and syringes was collected
into sterile cryovials. Oral and endotracheal secretions were col-
lected in a sterile catheter via routine suction when clinically
indicated. Stool samples were collected from the nappy in a sterile
glass pot. Sample collections were opportunistic rather than pre-
defined. All samples were stored frozen at �208C until transfer to
�808C, usually within 7 days, until processing.

Relevant clinical details were collected from each infant’s
medical notes and are displayed in Table 1. NEC and sepsis were
diagnosed and categorized by agreement of senior research
clinicians by reviewing clinical, laboratory, x-ray, and operative
findings.

Propidium Monoazide Treatment and DNA
Extraction

Samples were processed within randomized batches to
reduce confounding effects of contaminant DNA. All samples
were treated with propidium monoazide to exclude nonviable
bacterial cell DNA before extraction of microbial DNA, as
previously described (19). Microbial DNA was extracted from
breast milk, oral and endotracheal suction samples using QIA-
GEN PowerFood DNA Microbial Isolation Kits (Hilden, DE), and
from stool samples using QIAGEN PowerLyzer PowerSoil DNA

TABLE 1. Patient Demographics

Gestational
age

Birth
weight

Mode of
delivery

DoL full
feeds

DoL
probiotic
start

Breast
milk fortifier
start (DoL) Key disease

DoL NEC
onset

DoL þve
BC

Antibiotics
(DoL
administered)

Total
days Abx
administered

Survival to
discharge

Patient
1 24þ3 600 Vaginal 11 4 56 Medical NEC 41 - 0,9,38,40,41 23 Yes
2 25þ2 700 Vaginal 14 7 21 - - - 0,4,14,26 14 Yes
3 23þ3 520 Vaginal 13 3 17 - - - 0,3,18,41,51 23 Yes
4 23þ2 580 Vaginal 10 4 44 Sepsis - 40 0,40 16 Yes
5 23þ1 520 Vaginal 50 3 NR Surgical NEC,

sepsis
14 (op18) 23 0,7,14,15,18,

25,37,40
38 No

6 23þ1 590 Vaginal 21 7 40 - - - 0,25,37 41 Yes
7 23þ4 500 Caesarean 15 6 NR Sepsis - 7 0,7,15 9 Yes

Mean 23.4 573

Patient demographic data for all 7 patients sampled longitudinally in this study. Averages for continuous variables are expressed as the mean. Abx ¼
antibiotics, BC ¼ Blood culture, DoL ¼ Day of life, þve ¼ Positive, NEC ¼ Necrotising Enterocolitis, NR ¼ not received, op ¼ operated, dashes used to
represent no diagnosed diseases.
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Microbial Isolation Kits. All DNA extractions were done as
per manufacturers’ instructions but supplemented with a pro-
longed bead beating step, to ensure lysis of Gram-positive
bacteria.

Library Preparation and Sequencing

Because of high variability in extracted bacterial DNA
yield (figure, SDC4, Supplemental Digital Content, http://
links.lww.com/MPG/B740), presequencing normalization of sam-
ple DNA content was performed by quantitative PCR (Methods,
SDC5, Supplemental Digital Content, http://links.lww.com/MPG/
B740). Following normalization, nested, full-length 16S
rRNA gene PCR was performed to maximize nonviable DNA
exclusion (19).

Sequencing libraries were prepared for targeted sequencing
of the V4 region of the 16S rRNA gene from PCR amplicons as per
the Schloss standard operating procedure (SOP), (20), using pri-
mers 515F and 806R (21), (table, SDC6, Supplemental Digital
Content, http://links.lww.com/MPG/B740). Libraries were
sequenced on the Illumina MiSeq platform (CA), using V2
(2� 250), chemistry.

Paired end reads were trimmed, merged, and processed by
alignment to the SILVA database, followed by de novo clustering in
to operational taxonomic units, and taxonomic assignment in
Mothur, following the MiSeq SOP (20).

Extraction kit and sequencing negative controls were pre-
pared and sequenced simultaneously with all samples (Methods,
SDC7, Supplemental Digital Content, http://links.lww.com/MPG/
B740).

Statistical Analysis

To compare microbial community compositions alpha and
beta diversity indices (Shannon diversity, weighted Bray-Curtis
dissimilarity), were calculated using the vegan community ecol-
ogy package in R (22). Kruskal-Wallis rank-sum test and pair-
wise Mann-Whitney-Wilcoxon test were employed to compare
means of continuous data. Adonis PERMANOVA was used to
identify metadata variables impacting microbiota composition.
Multivariate comparisons were performed by pairwise PERMA-
NOVA. To stratify dominant and rare taxa within sampling site
communities, distribution abundance relationships were calcu-
lated (23) (methods explained in figure, SDC8, Supplemental
Digital Content, http://links.lww.com/MPG/B740). Differentially
abundant bacteria between anatomical sites were identified by
LEfSe. Influence of the microbiota of upstream anatomical sites
on that of the stool was performed using SourceTracker (24), and
linear regressions of bacterial relative abundances. Bonferroni
correction was applied during pairwise comparisons across
all sites.

RESULTS

Patient Demographics
EBM (n¼ 40), oral secretions (ORS: n¼ 40), endotracheal

secretions (ETS: n¼ 35), and stool (n¼ 38), samples were
analysed. Both mean birth weight (584 g, standard deviation
[SD]¼ 66 g), and mean gestational age (23.6 weeks, SD¼ 0.8
weeks), were lower than in previous preterm infant microbiota
studies (11,15,17,18,25). Two patients developed NEC, 3 patients
developed LOS, and 3 patients developed neither. Patient demo-
graphics are described in Table 1.

Sequence Data Analysis

A total of 7.74� 106 sequence reads from 3109 operational
taxonomic units were observed in 153 PMA-treated samples (mean
reads per sample¼ 4.90� 104, SD¼ 5.91� 104). Filtering of any
taxa not classified to at least the class level and 86 potential
contaminant taxa yielded 6.72� 106 reads (mean per
sample¼ 4.39� 104, SD¼ 4.72� 104) (table, SDC9, Supplemental
Digital Content, http://links.lww.com/MPG/B740). Remaining
reads were normalized by expression of total counts as relative
abundances per sample. Comparisons of results obtained from
PMA-treated samples with non-PMA-treated samples are available
as supplementary materials (table, SDC10; Figure, SDC11, Sup-
plemental Digital Content, http://links.lww.com/MPG/B740).

Stool Microbiota Diverges From Upstream
Microbiota Over Time

Longitudinal progression of microbiota composition was
observed, with multiple shared taxa observed between different
patients (Fig. 1).

Over the first 60 days of life a general increasing trend in
alpha diversity was observed in all upstream sites, but stool
diversity decreased over this time (Fig. 2A and B). During the first
6 weeks of life all body site microbiota showed similar diversity, but
by week of life (WoL) 7 and 8 significant differences were observed
in diversity between the breast milk, oral (P¼ 0.05), and stool
(P¼ 0.001) communities (table, SDC12, Supplemental Digital
Content, http://links.lww.com/MPG/B740). Stool microbiota
showed significantly lower bacterial alpha diversity than both
breast milk and endotracheal communities when all time points
were considered (P< 0.05).

At earlier time points the microbiota of upstream sampling
sites and stool show much greater similarity (combined similarity
with stool: 49% at WoL 1 and 2), than at later time points (combined
similarity with stool: 27% at WoL 8) (Fig. 2C). Over time stool
microbiota showed increasing similarity to previous stools (13% at
WoL 2; 57% at WoL 5 and 7). The oral microbiota was the most
similar to the stool microbiota, with an average similarity of 26%
compared to breast milk (6%), and endotracheal samples (10%).
Unknown, likely environmental, sources, also play a substantial
role in shaping the stool microbiota, comprising as much as 51% at
WoL 1. Established stool microbiota had greater average similarity
(32%), than any upstream or unknown sources. The greater simi-
larity of upstream and unknown sources in the immediate neonatal
period suggests community plasticity diminishes with time and may
have important implications for timing of interventions designed to
influence the microbiota.

Substantial overlap of community composition was observed
between separate sampling sites (Fig. 2D/E). Greatest overlap
between site microbiota was observed between breast milk/feeding
tube and endotracheal communities, suggesting seeding of the
respiratory microbiome by breast milk (Figure SDC14, Supplemen-
tal Digital Content, http://links.lww.com/MPG/B740).

Adonis PERMANOVA based on Bray-Curtis dissimilarity,
identified both sampling site (R2¼ 14%, P¼ 0.001), and day of life
(R2¼ 18%, P¼ 0.02), as the main individual factors impacting
microbiota dissimilarity (table, SDC10, Supplemental Digital Con-
tent, http://links.lww.com/MPG/B740). When combined these 2
factors demonstrated the greatest impact on community composi-
tion (R2¼ 30%, P¼ 0.04) (table, SDC10, Supplemental Digital
Content, http://links.lww.com/MPG/B740). Despite small sample
sizes, NEC and LOS had an insignificant impact on community
composition when stratified by sampling site (R2¼ 1%, P¼ 0.04),
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suggesting no difference was observed within site microbiota
between diseased babies and controls.

Few Dominant Taxa Are Well Dispersed Across
All Sampling Sites

Four dominant taxa were shared across all sampling sites:
Escherichia, Enterococcus, Staphylococcus, and an unclassified
Enterobacteriaceae. These 4 conserved dominant taxa were the
only dominant taxa found in the stool microbiota. Significant
positive relationships identified between distribution and abun-
dance (P< 0.001), of bacterial taxa enabled classification of all
taxa in the upper quantile of occupancy as dominant and all other

taxa as rare community members (figure, SDC8, Supplemental
Digital Content, http://links.lww.com/MPG/B740).

Multiple other taxa were shared between sampling sites
(Fig. 1), with a Rhodococcus spp. identified by both culture and
sequencing as dominant in all upstream mucosal sites despite not
having been previously associated with such environments.

Homogenizing Effects of Dominant Taxa Masks
Differential Influence of Rare Community
Members

The prevalence and abundance of the 4 dominant taxa within
all anatomical sites obscured the divergent impact of the rare taxa

FIGURE 1. Longitudinal microbiota development of the top 20 most abundant bacterial taxa across all patients and body sites on a weekly scale.

Where multiple samples were collected in the same week relative abundances were summed before rescaling.

JPGN � Volume 70, Number 1, January 2020 Preterm Infant Microbiota Acquisition Across Multiple Anatomical Sites

www.jpgn.org 15

http://links.lww.com/MPG/B740


within the microbiota. Despite the apparent overlap in microbiota
observed by ordination, significant differences between all anatom-
ical site communities were identified by pairwise PERMANOVA
(P.adj¼ 0.006 [table, SDC13, Supplemental Digital Content, http://
links.lww.com/MPG/B740]).

Stratification of the microbiota into common and rare com-
munities enabled identification of rare features of the microbiota
responsible for the significant dissimilarity observed between ana-
tomical sites. LEfSe analysis (Fig. 3), identified proportionally

greater Actinobacteria (P< 0.001), specifically the Nocardiaceae
(P< 0.001) in breast milk. The Rhodococcus spp., already identi-
fied as being ubiquitous throughout upstream mucosal samples in
this study belongs to the family Nocardiaceae. The absence of
Rhodococcus from stool microbiota indicates that it is unable to
survive passage through either the (acidic) stomach or the
hypoxic gut.

The obligate anaerobic family of Bifidobacteriaceae were
observed in significantly greater proportional abundance

FIGURE 2. Longitudinal community differences between breast milk (red), oral (blue), endotracheal (green), and stool (purple), microbiota. Stool

was significantly less diverse (Shannon diversity), than breast milk (MWW: P.adj¼ 0.009), endotracheal (MWW: P.adj¼0.014), and oral (MWW:

P.adj¼0.024) communities (A), with longitudinally decreasing diversity (B). Potential sources of the stool microbiota, including unknown sources

(grey), as calculated by SourceTracker are illustrated longitudinally (C). Beta diversity (Bray-Curtis dissimilarity) between microbiota is illustrated in
ordinations (D, E), and explains 74.5% of sample variance. Point size in ordinations depicts week of life. Results of the respective pairwise

PERMANOVA are available online (table, SDC13, Supplemental Digital Content, http://links.lww.com/MPG/B740). PC ¼ principle component;

WoL¼week of life.
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(P< 0.001) in the anaerobic gut environment than the aerobic
environments of the upper sampling sites or breast milk (Fig. 3).
The greater proportional abundance of Bifidobacteriaceae in the gut
may be due to the administration of probiotics to the patients studied
here and specialization of the genus for colonization of the human
milk oligosaccharide rich, hypoxic environment of the infant gut.

DISCUSSION
The majority of studies in extremely preterm infants explore

the relationship between gut microbiota and disease states (17,18),
nosocomial surfaces (14,15,26), or maternal breast milk (27,28).
None have previously focused exclusively on such an extremely
premature infant cohort (11,15,17,18,25,29). To our knowledge this
is the first study to characterize microbial acquisition in a cohort of
infants with a mean GA <24 weeks. This study also represents the
first to utilize viability determination to explore holistic gastroin-
testinal microbiota assembly. We deliberately included both clini-
cally well infants and those with LOS and NEC since up to 1 in 3 of
extremely preterm infants will experience these complications
of prematurity.

Despite considerable overlap between the gut microbiota and
upstream sites, divergence is already apparent within the first
60 days of life. We highlight strong homogenizing influences of
4 dominant taxa, which persist from initial sampling, throughout
this study. These results reflect the findings of previous studies
(11,12), which describe ubiquitous communities across preterm

anatomical sites, and the Human Microbiome Project, which
observed patient-specific microbial signatures in healthy, term
infants (13). In contrast, but in agreement with Costello et al
(30), we observed sitewise and longitudinal differences to be the
major determinant of variation between extremely preterm
infant microbiota.

The longitudinal sampling performed in this study highlights
site microbiota are more similar during early life and diverge over
time, thus suggesting bacterial seeding at birth is ‘‘body wide,’’ not
site specific. Individual site microbial communities then evolve
toward adult-like profiles over time. We build upon the work of
previous studies by demonstrating the potential of rare members of
the microbiota to drive processes of environmental selection,
expanding divergence between patient and site microbiota.

This study shows anatomical sites in closer proximity share
more similar bacterial communities than those anatomically dispa-
rate from one another. Indeed, breast milk and endotracheal micro-
biota shared the greatest similarity in abundance of individual taxa,
whereas the least similarity was observed between the microbiota of
breast milk and stool. Transit through the acidic stomach environ-
ment may be a factor in the selectivity and limited dispersal from the
upstream sites to the lower gut microbiota. This could also explain
the greater observed similarity between the sites at earlier time
points (31).

The 4 taxa conserved between all body sites (Enterococcus,
Enterobacteriaceae, Staphylococcus, and Escherichia), were the
only dominant taxa identified in the stool by distribution abundance

FIGURE 3. Results of LEfSe analysis, identifying the discriminative rare taxonomic features between the 4 sampling sites investigated (A), and

describing the effect size of each discriminative feature (B). The cladogram is rooted at the kingdom level and discriminative features identified

following removal of 4 dominant common taxa are coloured by site as described in Figure 2. Where space was not available to plot the taxon name
on the cladogram (A) a letter was assigned. These correspond to the taxa, as detailed in (B).
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relationship and largely responsible for observed homogenisation
between sample microbiota. This may suggest a bi-directional
translocation of bacteria between upstream and downstream gas-
trointestinal environments, potentially contributed to through NICU
practices and handling by parents and staff (26). Moossavi et al (32)
recently demonstrated that indirect breast-feeding may be linked
with greater abundance of environmental microbes such as Enter-
obacteriaceae and Enterococcaceae. Given NICU feeds are all
delivered indirectly this provides an explanation for the dominance
of such bacteria observed in this study.

The large impact of unknown sources on stool microbiota
composition identified here suggests the sampling strategy employed
failed to capture all possible influences of the infant gut microbiota.
Likely unsampled sources of bacteria are well summarized in a
review by Hartz et al (26), including care givers and their equipment,
maternal and paternal skin, and nosocomial surfaces.

Stratification of communities in to common and rare mem-
bers highlighted several discriminative taxa between sampling site
microbiota. More specifically, the Nocardiaceae family exhibited
differentially greater relative abundance in breast milk samples.
This is of interest because of the prevalence of Rhodococcus within
the upstream microbiota of all infants despite no previous identifi-
cation of this.

To our knowledge, Rhodococcus has not been previously
reported in breast milk, nor is it archived within the Human Oral
Microbiome Database. Rhodococcus is usually associated with the
environment (33,34), although member species have been identified
as potential human pathogens (35–37), especially in immunocom-
promised individuals, with whom immunologically naı̈ve
extremely preterm infants may share similar features.

A 737 bp sequence of DNA extracted from isolated colonies
cultured from breast milk showed greatest similarity to a type strain
of Rhodococcus quingshengii via Nucleotide BLAST (Methods,
SDC7, Supplemental Digital Content, http://links.lww.com/MPG/
B740). Rhodococcus quingshengii has previously been shown to
have azole degrading capacity (38). Fluconazole is a triazole
antifungal agent routinely orally delivered in this NICU for pro-
phylactic prevention of candidiasis (39). Failure to isolate Rhodo-
coccus from the probiotics suggests it is not a contaminant of the
probiotic supplements. Instead, isolation from breast milk fed to
these infants through in situ feeding tubes highlights the need for
further studies to explore links between Rhodococcus, antifungal
prophylaxis, and use of in-situ feeding tubes in preterm infants.

As with any observational study there exist several limita-
tions to these findings. Firstly, patient numbers are relatively small.
This is due to the high rates of morbidity and mortality of such an
extremely premature infant cohort (mean GA¼ 23.4 weeks; mean
BW¼ 576 g), which restricted the number of patients able to
provide sufficient samples to fulfil the inclusion criteria. In addi-
tion, the opportunistic sampling employed restricts the power of
comparisons regarding longitudinal microbiota development. Sys-
tematic sampling may facilitate further insights in future studies.

Importantly, this study represents the first to exclusively
characterize such an extremely preterm population. Although
nuances of care and individual circumstances dictate there may
not be a ‘‘typical’’ infant born <24 weeks GA, we demonstrate
within individual hospital wards there may be a typical pattern of
colonization, characterized initially by few dominant bacterial
genera and temporally developing dissimilarity driven by rare
community members.

Larger cohort studies would help validate and further explore
these findings. Inclusion of neonates from multiple NICUs, exposed
to different clinical approaches, such as different approaches to
probiotic and nutritional care may substantially impact the results
and should be explored further. Greater sequencing resolution may

also elucidate directionality of microbial transfer. Access to
resected gut lumen tissue would enable further validation of the
‘‘multiple-site’’ hypothesis. All these form part of our ongoing
programme of work.

The gestational age and longitudinal sampling of infants in
this study are unique in the current literature, despite extremely
preterm infants being the most sick and complex. This study
demonstrates several associations between the microbiota of stool
and multiple upstream mucosal and other environmental commu-
nities within the first 60 days of life. Given the importance of
dysbiosis in health and disease of extremely preterm infants better
understanding of microbial acquisition and development arising
from standard NICU exposures and practices may be of clinical
benefit.
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