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Abstract

AS the UK strives to reduce its impact on the environment, small and
medium sized enterprises (SMEs) face significant energy reduction

barriers which include high costs, the lack of expertise and significant time
limitations. Many energy management systems (EMS) do exist but they are
largely inaccessible to SMEs because they generally fit into three categories:
being complex and expensive; affordable but requiring expertise to fit and
manage; or affordable but overly simple and ineffective. Therefore, this
thesis focuses on the development of on an holistic occupant-centric EMS to
overcome the limitations of existing solutions to enable SMEs to overcome
the barriers they have experienced. The principle of the occupant-centric
EMS is to improve the temporal match between building occupants and
energy consuming systems. To meet this principle, a number of enabling
technologies are utilised including, Internet of Things (IoT), wireless sensor
networks (WSN) and machine learning (ML).

The major contributions of this work include the development of

• a WSN simulation tool

• a methodology to analyse different network deployment techniques

• creation of a large labelled multimodal data set

• a single mode and multimode ML architecture which is designed and
deployed on a constrained edge-based system to utilise binary
classification to determine occupancy

• a holistic low cost occupant-centric EMS which automates a significant
reduction of energy consumption within small commercial buildings

A number of node placement algorithms are developed to assess existing
WSN deployment techniques that are utilised for unobtrusive, privacy
protecting IoT data capture. The most suitable technique is determined to be
the sensor grid which uses 44% of the hardware of other deployments and
demonstrates an accuracy of 81% for occupancy monitoring.

To further improve the performance of occupancy monitoring, an
edge-based ML model which analyses thermal image data is designed and
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implemented demonstrating more than 96% accuracy in an office
environment. To improve the performance in a wider range of
environments, the ML model is extended to enable simultaneous analysis of
the IoT multimodal building data. This model achieves the same
performance in the office but demonstrates a 15% improvement in
sensitivity and 31% in precision in another environment. The utilisation of
additional low cost sensors and data fusion techniques enable an increase in
building coverage from 78% to 100%, whilst maintaining the quantity of IoT
nodes. The completed developed occupant-centric IoT-based EMS costs less
than a fifth of existing comparable systems. The experimental evaluation
results demonstrate more than 10% reduction in total building energy
consumption whilst maintaining a comfortable working environment.
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Chapter 1

Introduction

1.1 Research Motivation

Worldwide, energy consumption is rising and buildings are responsible for
a significant proportion of this consumption. According to the Department
for Business, Energy and Industrial Strategy (BEIS), in 2018 the UK’s energy
consumption was 143 million tonnes of oil equivalent (MTOE), where 31.2%
was consumed by the industry and service sector [1]. All buildings
consumed 40.3% of this total, with commercial buildings responsible
for 19.2% of the total. In 2015, there were 5.38M UK businesses, 99% of
which were small and medium-sized enterprises (SMEs) [2], which were
responsible for 48.4% of the commercial energy consumption.

Research shows that long term energy reductions can be achieved through
energy saving initiatives that include consumption monitoring and
providing feedback data to users [3]. Studies of SMEs [4] [5] [6] show that
the barriers to uptake of energy reduction initiatives include high costs,
significant time commitments and lack of expertise. Many commercial
building energy monitoring and reporting systems do exist, but these
systems are largely inaccessible to SMEs because they generally fit into three
categories; being complex and expensive, affordable but requiring expertise
to fit and manage, or affordable but overly simple and ineffective. In the
2008 Climate Change Act, the UK committed to an 80% reduction in its
carbon emissions by 2050 with respect to pre-1990 levels. Further to this, in
June 2019, the UK committed to “at least 100%” [7] reduction of GHG
emissions by 2050 compared to pre-1990 levels. If the UK is to meet these
ambitious targets, significant steps must be taken to enable more SMEs to
overcome the barriers they have faced in reducing their energy
consumption, so they may become part of the solution. The
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occupant-centric Internet of Things (IoT) based energy management
system (EMS) that is proposed and developed in this thesis can make
energy reductions accessible to SMEs, enabling individual enterprises to
achieve a reduction of more than 10%.

1.2 Research Aims

The aim of this research is to develop an occupant-centric IoT-based EMS,
which will enable SMEs that operate within small buildings to automate a
reduction in their energy consumption whilst still maintaining a comfortable
working environment1.

1.3 Research Objectives

In developing an occupant-centric IoT-enabled EMS specific to small
commercial buildings, a number of specific challenges (SC) were identified:

1. SC1: To understand the barriers that SMEs face when trying to reduce
their energy consumption.

2. SC2: To determine a route to enable these barriers to be overcome.

3. SC3: To define a methodology to unobtrusively monitor a building, its
occupants and their energy consumption without causing disruption,
privacy or security issues.

4. SC4: To outline a methodology to automate energy reductions whilst
maintaining a comfortable environment.

5. SC5: To evaluate the performance of the energy reduction methodology
with respect to overcoming barriers and enabling a reduction in energy
consumption.

As such, the following specific objectives (SO) will meet these challenges and
the aim of this thesis:

1. SO1: Study existing literature to gain a clear understanding of the
energy usage of SMEs that operate from small commercial buildings
and the existing energy-saving solutions.

1Comfortable working environment refers to the internal properties of the building
including thermal comfort, air quality, light levels and acoustic comfort.
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2. SO2: Design an energy management system which will enable SMEs to
reduce energy consumption whilst overcoming the identified barriers.

3. SO3: Assess existing sensor deployment techniques and multimodal
data fusion techniques utilised for building monitoring.

4. SO4: Define the requirements for an unobtrusive, accurate and low-cost
EMS based on the outcomes of SO1, SO2 and SO3.

5. SO5: Develop and evaluate an EMS in terms of its ability to reduce
energy consumption whilst maintaining a comfortable working
environment using the system requirements defined in SO4.

1.4 Key Contributions

The key contributions of this thesis were:

1. In Chapter 3, a smart building mapping and simulation tool is
developed and evaluated. This contribution also includes a journal
paper ‘MIoTs: A smart building mapping and simulation tool’, which
has been submitted to the Elsevier Journal of Simulation Modelling
Practice and Theory.

2. In Chapter 4, the optimal WSN deployment technique is identified to
meet the cost, layout and coverage requirements of a small commercial
building. This contribution also includes a journal paper
‘Optimisation of Wireless Sensor Network Deployments for
Occupancy Detection’, which has been submitted to the Elsevier
Journal of Building Engineering.

3. In Chapter 5 and 6, an edge-based deep neural network (DNN) is
defined and extended to enable the accurate determination of
occupancy. This contribution also includes a journal paper ‘A Deep
Neural Network for an Edge-Based Occupancy Detection System’,
which has been submitted to the IEEE Journal; IEEE Transactions on
Industrial Informatics, Special Section on Advanced Collaborative
Technologies for Artificial Intelligence of Things submission.

4. As part of Chapter 5, a large labelled multimodal building monitoring
data set is created. The data set has been made publicly available on the
Manchester Metropolitan e-space research repository and is accessible
at:
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• URL https://e-space.mmu.ac.uk/id/eprint/627856

• or DOI https://doi.org/10.23634/MMUDR.00627856

The multimodal data set is captured in a number of different internal
environments and includes infrared thermal data, passive infrared
data, CO2 data and temperature data. The data is captured at rate of
once per minute.

5. In Chapter 5 and 6, a multimodal IoT sensor node is developed and
deployed as part of a WSN to achieve coverage of a large area,
monitoring both occupancy and building conditions. This
contribution also includes a conference paper ‘Energy Monitoring
Solution for SMEs’, which has been published in the Proceedings of
the International Conference on Sustainable in Energy and Buildings
in Croatia, September 2020. Sustainability in Energy and Buildings
Journal, Volume 7.

6. In Chapter 7, using the EnergyPlus energy simulation tool a baseline
data generation model is developed. This model includes building’s
construction material and building usage patterns, such that the the
model significantly reduces the building’s energy monitoring lead time
by accurately predicting the baseline energy consumption.

7. In Chapter 7 an holistic occupant-centric IoT-based EMS for small
commercial buildings is developed, enabling SMEs to overcome the
barriers they have faced in reducing their energy consumption whilst
maintaining a comfortable environment.

1.5 Preliminaries

In this section, the concepts of the IoT and worldwide energy consumption
are introduced as preliminary concepts to this work.

1.5.1 Internet of Things

The IoT is a network of everyday items, connected together through the
Internet. The purpose of IoT is to improve quality of life by enabling the best
response to an environmental change [8], [9]. This purpose is achieved by an
IoT endpoint monitoring its environment to enable, assist with or automate
a response to a change in this environment [10], [11]. An IoT endpoint
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commonly referred to as the Thing, Device or Node, can be anything that
includes the technological components to enable the Thing to connect to the
Internet. An IoT end user can be a human, machine, or a combination [12].
IoT is not a specific device or technology, instead, it is the inter-working of
different technologies, which enables the connectivity of many Things.

IoT consumer applications such as smartwatches, smart heating and
voice-activated personal assistance, are now common. But IoT has also
expanded to many other areas such as: commercial IoT products which
include monitoring systems; Industrial IoT (IIoT) which enable the
automation of many industrial processes; medical IoT (MIoT) such as
applications used within medical procedures or biometric implants;
Military IoT (IoMT) which includes drones and combat-based wearables;
and Infrastructure-based IoT which includes smart city infrastructure for
buildings, energy and transportation. This is not an exhaustive list and IoT
is currently evolving with the addition of artificial intelligence (AI), machine
learning (ML), augmented reality (AR) and virtual reality (VR), in
applications from entertainment and infrastructure to environment
management. In the next section, the topic of worldwide energy
consumption will be discussed, followed by Chapter 2 which will introduce
how technology, specifically IoT and AI can be used to help to reduce
energy consumption.

1.5.2 Energy Consumption and Climate Change

Energy is a foundational commodity in modern society. To enable modern
society to function and improve, we need reliable, secure, sustainable,
affordable energy supply and distribution networks. In contrast to this
requirement, it is widely recognised that our main energy source, fossils
fuels, are limited. At present, fossil fuels, account for 81.2% of the
worldwide energy supply [13]. The current known supplies of oil, gas and
coal are only predicted to continue to meet energy requirements until
approximately 2090. Worldwide energy consumption is increasing,
particularly in emerging markets. Since the 1970s the energy demands of
Asia and Africa have increased seven fold [13]. Nations are aware that
unless significant changes are made to our energy usage, global energy
requirements will continue to increase [13]. In addition to diminishing
supplies, the use of these energy sources are causing catastrophic climate
change [14].
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In 2008, the Climate Change Act was passed in the UK. This committed the
UK to reduce greenhouse gas (GHG) emissions by 80% by 2050, compared
to 1990 levels. In 2015, 120 nations signed the Paris Agreement. The purpose
of this agreement was to “strengthen the global response to the threat of
climate change by keeping a global temperature rise this century well
below 2 degrees Celsius above pre-industrial levels and to pursue efforts to
limit the temperature increase even further to 1.5 degrees Celsius” [15]. The
agreement requires nations to submit their targets and to increase their
efforts towards this aim. In 2019, the UK increased its legal commitment
from its 2008 commitment, to reach net-zero GHG emissions by 2050. In
some countries, including the UK, the steps taken towards meeting these
commitments are beginning to take effect. The UK’s energy consumption
dropped by 1% from 2018 to 2019 [16]. However, a recent assessment by a
leading government think tank regarding the UK’s ability to meet these
targets is damning [17]. The assessment is summarised as “a lack of
coordinated policies, constant changes of direction, a failure to gain public
consent for measures and too little engineering expertise and delivery
capability has left the UK well off track to meet its target” [18].

According to a recent progress report from the Committee on Climate
Change to the UK government, their number one investment
recommendation was “Low-carbon retrofits and buildings that are fit for the
future” [19]. The report also highlights significant opportunities to (1) lead a
move towards positive lower-carbon behaviours in the UK workforce and
(2) target science and innovation funding [19]. Significant amounts of
research suggest that technology can be utilised in the climate change
fight [19]–[22]. One study suggests that information communication
technology (ICT) will reduce GHG emissions by 7.8 Gigatonnes of
CO2 equivalent; 15% of global 2020 GHG emissions [22]. In Chapter 2,
energy consumption in buildings will be considered in more detail, before
introducing how IoT technology can be utilised as a part of the solution to
target global warming.

1.6 Thesis Organisation

The remaining sections of this thesis are organised as follows:

Chapter 2 details the motivation for focusing this research on energy
reduction within small commercial buildings. It also introduces the enabling
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technologies, WSNs, which are utilised to deploy IoT hardware and AI,
which will be used to enhance the performance of the IoT endpoints.

Chapter 3 details the specification and evaluation of a smart building
mapping and simulation tool which is referred to as MIoTs. MIoTs is
evaluated against real building data, such that the tool is used in a number
of chapters to map sensor deployments and generate building data. In
Chapter 4, MIoTs is used to assess the WSN deployments, in Chapter 5 to
evaluate the deployment of the edge-based occupancy detection system, in
Chapter 6 to assess the reconfigured node hardware and Chapter 7 to model
and evaluate the occupant-centric EMS.

Chapter 4 presents a number of WSN deployment techniques, including
algorithms to determine IoT node positions, node density and node
coverage. The deployment techniques are assessed in terms of their cost,
space coverage and the ability of sensors within these deployments to
detect/count occupants and monitor building conditions.

In Chapter 5, an edge-based occupancy detection system is developed and
evaluated. This system utilises AI to improve the performance of the IoT
node deployments that were presented in Chapter 4. The system is evaluated
in terms of its ability to accurately detect the presence of occupants within a
monitored region. Also, the generalisation ability of the AI techniques are
assessed in a number of different building environments.

In Chapter 6, the IoT node hardware proposed in Chapter 4 and developed
in Chapter 5 is reconfigured to achieve a larger coverage area. Also, the AI
techniques developed in Chapter 5 are expanded to process multiple
heterogeneous inputs simultaneously.

In Chapter 7, the contributions of Chapters 4 to 6 are combined to create an
occupant-centric IoT-based EMS. As part of this system, a baseline model is
developed and a range of IoT nodes with different specifications are
proposed. The EMS is evaluated based on it cost and ability to reduce
energy consumption.

Chapter 8, the conclusions of this thesis are discussed, limitations are
highlighted and areas for further work are suggested.

Fig. 1.1 shows the organisation of this thesis based on the development of
concepts.
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FIGURE 1.1: Conceptual organisation of Thesis
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Chapter 2

Concepts and Literature Review

2.1 Introduction

Global energy consumption within buildings rose by more than 8% between
2010 and 2019 [14]. According to research by BEIS, in 2018, the total UK
energy consumption was very large at 143 MTOE. Where the domestic
sector consumed 28.9%, transport: 39.9%, industry and service sector
combined: 31.2% [1]. Within the UK, buildings are responsible for 40.3% of
all energy usage, with commercial buildings consuming 49.4% [1].
Considering solely commercial building consumption, 40.9% was consumed
for space heating, lighting, water processing and appliances, with a
further 33.2% consumed for industrial processes [1]. This means commercial
space heating, lighting, water processing and appliances1 account for 8.1%
of the UK’s national energy consumption.

In the subsequent sections, a number of concepts, the related issues and the
existing work will be introduced. These concepts include the use of
IoT-based building management systems to reduce energy consumption,
energy management within small commercial buildings and the enabling
technologies for building energy management.

2.2 Building Monitoring

Research into existing IoT systems has demonstrated that IoT is an ideal
technology for monitoring buildings [23], [24]. Commercial buildings, in
particular, have many requirements which can be monitored and managed
by IoT-based systems. Such systems are commonly known as building

1This includes laptop and desktop computers and office equipment such as kettles,
fridges and printers.
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management systems (BMS). These requirements include occupant comfort,
building usability, building security and energy consumption [23]. Due to
the huge and complex nature of energy consumption within commercial
buildings, it is an ideal sector for technical solutions which incorporate IoT
technology [23]. Such systems are referred to as EMS, which can be a
standalone system or a subset of a larger BMS.

There is already significant research into IoT-based EMS2 for commercial
buildings [25], with research demonstrating these systems can reduce
energy consumption in a single building by up to 42% [24]. Though there
are some gaps in this research, particularly research that is focused on small
commercial buildings. Also, some existing systems have oversimplified the
relationship between building users3 and energy consumption, whilst
others systems are complex and too expensive for many buildings.

An example of an oversimplified EMS includes the use of passive infrared
sensors (PIRS), commonly referred to as motion sensors, to indicate room
occupancy [26]. If there are no detected occupants the EMS will
automatically turn-off of energy-consuming systems such as lights and
heating. PIRS detect moving occupants but are unable to detect stationary
occupants [27]. In instances where building occupants are stationary for
long periods4, the selected sensors may not detect them. Additional
examples include sensors whose data are analysed using ML to indicate
occupancy [28]. If the accuracy of these systems is low, again occupants may
be undetected or may be falsely detected when they are not present. Both
examples can lead to a high rate of false responses. These false responses
can cause systems to be wrongly turned off when they are required, or
respectively, turned on when they are not required. Repeated false
negatives, i.e. not detecting occupants, can lead to frustration for building
occupants [29], who may respond by overriding the EMS causing a rise in
energy consumption. Repeated false positives, i.e. indicating occupants are
present when they are not can cause the unnecessary activation of systems,
also causing a rise in energy consumption.

In comparison, there are many examples of complex and expensive systems
designed specifically for large commercial buildings [30], [31]. The cost and
complexity of these systems mean they are unsuitable for a huge proportion

2Such systems will simply be referred to as EMS from this point forward.
3Building users or building occupant are the people who access a building.
4For example, carrying out sedentary work based at a work desk.
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of commercial buildings, particularly small commercial buildings which
will be introduced in Section 2.3. Even though small commercial buildings
make up a huge proportion of all commercial buildings, they are largely
ignored in energy reduction legislation and incentives [23], [25], which
creates a significant gap.

2.2.1 Occupant-centric EMS

The basis of an occupant-centric EMS is to improve the temporal match
between the presence of building occupants and when energy-consuming
systems are active5 [32], [33]. Occupant-centric EMS carry out three main
monitoring tasks: detecting occupants, monitoring energy usage and
monitoring the conditions inside the building. Energy monitoring includes
monitoring the amounts of energy that are consumed and its end use6. By
monitoring conditions inside a building, an EMS can vary settings to create
conditions that are comfortable for occupants. These conditions are referred
to as occupant comfort levels and include thermal comfort, air quality, light
levels and acoustic levels; though this is not an exhaustive list. For an office
building, the Health and Safety Executive (HSE) recommend the
temperature range is 20°C to 26 °C, humidity 30% to 60%, CO2levels
below 1000 ppm, light levels of 500 lux and acoustic levels of 30 dB
to 45 dB [34]–[36].

A comprehensive work by Akkaya et al. [37] surveyed existing occupancy
monitoring techniques based on accuracy, cost, intrusiveness and privacy.
Occupancy monitoring systems are generally split based on their detection
technology, for example establishing occupant levels using communication
technologies including WiFi [38] or RFID [39], establishing occupant levels
using sensors including phone-based sensors [32], image-based sensors [40]
and IoT-based sensors [41]. Some of these technologies create issues for
commercial systems. Many communication based systems require user
agreement [42] and some demonstrate low performance when occupant
levels are low [24], though others, such as RFID-based systems are highly
accurate, but have high upfront costs [39]. Phone-based systems require
user agreement and create privacy issues [43], [44]. Image-based systems
are expensive and create privacy issues [45].

5Simply put, this means only turning systems on when there are people present.
6Examples of end-use include lighting, space heating, appliances and industrial

processes.
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In contrast, IoT-based sensor systems vary significantly in performance, but
they can be low cost and accurate [41]. Data fusion techniques have also
been used to improve the performance of sensor-based systems, enabling
occupancy accuracy around 80% [46]. The costs and logistics of
sensor-based EMS vary significantly, dependant upon the type of sensors,
their quantity and the building environment [47]. Another benefit of
sensor-based occupancy systems is the data collected to determine
occupancy can also be used to monitor other building data. The use of
existing building infrastructures can further reduce system costs [37].
IoT-based sensors which have been utilised for occupancy and building
monitoring include temperature, humidity, light, CO2 [48], sound sensors,
PIRS, infrared sensors [49] and Doppler sensors [50].

Based on their cost, achievable performance and adaptability, this thesis will
study the application of sensors as part of an IoT-based EMS, which will
monitor occupancy and building conditions to reduce energy consumption
within commercial buildings.

2.3 Energy Management in Small Commercial

Buildings

Earlier in this Chapter, the level of energy consumption in commercial
buildings was summarised. In 2015, there were 5.38M UK businesses, 99%
of which were SMEs [2], responsible for consuming 48.4% of commercial
energy. In the UK there are 1.57M commercial buildings, 92% of which are
small premises that consume a third of all commercial energy. Of these
small premises, 65% are older buildings [51]. Small premises are defined as
buildings less than 1000m2, which is equivalent to 11 − 13 average-sized
homes [52] and older buildings are defined as pre-1990 constructions. Older
buildings are renowned for high levels of energy inefficiencies, due to low
levels of insulation, inefficient glazing, heating and lighting. Research has
shown that across the board, the energy consumption of commercial
buildings could be reduced by up to 25% through the application of no cost
and low-cost energy-saving measures [53]. This reduction could be more
than 45% based on deep retrofit energy saving measures [53]. If this level of
energy reduction could be achieved across all small commercial buildings
this would reduce the national energy consumption by 1.8%− 3.2%, which
is a significant step towards the net zero target [7].
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Most of the existing work on EMS is focused on domestic EMS or large,
complex commercial EMS [23], [54]. The specification of an EMS for a small
commercial building differs significantly from a domestic system or system
developed for a large commercial building. Firstly, domestic systems are not
suitable for commercial buildings since they are developed with different
privacy specifications which would not meet employee privacy protection
law [55]. Secondly, large enterprises have very different requirements than
the SMEs that typically inhabit small commercial buildings. Unlike large
enterprises, SMEs are not required to monitor or report their energy usage
or their level of energy efficiency. Therefore, as a result of limited
research [56], limited government support [23], lack of incentives, lack of
legal requirements and the significant barriers that these SMEs face [57], the
uptake of energy reduction technologies is much lower in small commercial
buildings than large commercial buildings.

2.3.1 Small Commercial Building User Requirements

To facilitate energy reduction in small commercial buildings, the
requirements of these buildings and their users must be studied. Generally,
an SME is defined as an enterprise with 0 − 249 employees. For specific
sectors including retail, office and hospitality, the inhabitants of small
commercial buildings are generally SMEs. This is illustrated in Fig. 2.1,
created from data collected in [16]. The figure shows the energy
consumption of enterprises based on employee numbers and building size.
Energy consumed by micro (0− 9 employees) and small enterprises (1− 49
employees) is shaded with red dots. The energy consumed by small
buildings less than 500m2 is marked with a red dotted line and square
markers. The energy consumed by medium-size enterprises (50 − 249
employees) is shaded with green horizontal lines. The energy consumed by
small to medium sized buildings 500 − 999m2 is marked with a green
dashed line and circular markers. Finally, the energy consumed by large
enterprises is shaded with a purple checked pattern and the energy
consumed by large buildings over 1000m2 is marked with a purple dashed
line with diamond markers.

The figure illustrates that for the retail and office sectors, the energy
consumption based on building size directly correlates with the size of the
enterprise, i.e. energy consumption in small buildings corresponds with
that of small enterprises; similarly with medium sized buildings
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FIGURE 2.1: Energy consumption based enterprise size and
building size

corresponding with medium sized enterprises; and large buildings
corresponding with large enterprises. This relationship demonstrates that
for the retail and office sector, small enterprises occupy small commercial
buildings. For the industrial sector, the energy consumption of small
buildings also corresponds to the energy consumption of small enterprises,
though as enterprise size increases to medium and large, the energy
consumption no longer directly correlates with the building size. This
change in relationship is due to the energy consumption of industrial
enterprises being linked with both the enterprise size and the energy
consumption of the industrial processes. Additionally industrial building
size is linked with enterprise size and the space required for industrial
equipment [16].

Similarly, for the leisure sector, there is a correlation between the energy
consumption of small and medium sized enterprises and that of small and
medium buildings, but not between large enterprises and large buildings.
For a significant number of large leisure buildings e.g. theatres and art
galleries, this difference is a result of energy consumption being heavily
dependant upon visitor numbers rather than the enterprise size. The
research in this thesis will focus on SMEs within the retail and office sector
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since it has been established that SMEs in these sectors inhabit small
commercial buildings.

SMEs are significantly different from large enterprises and have very
different needs and requirements. SMEs are sensitive to operational costs, of
which building rent or mortgage costs are a significant proportion,
averaging between 2− 20% of gross income [58]. The HSE 1992 Workplace
Regulations [59] defines a minimum floor space of 3.67 − 4.58m2 per
employee. So, a micro enterprise could occupy a building as small as
3.67− 33m2, plus space for facilities. The Total Office Cost Survey 2019 [60]
values an individual work area at £5, 408 − £18, 988 annually7, which is
calculated based on an individual area 2.5 times larger than HSE
requirements. Using HSE regulations the surveyed buildings would instead
cost £2, 130 − £7, 478 per work area. Research found that SMEs select
commercial buildings based on minimal spatial requirements and minimal
costs [58]. Based on these findings, this thesis will focus on small
commercial building occupied by retail, office and hospitality-based SMEs.

Surveys show that unlike larger enterprises, 89% of UK SMEs do not have a
centralised heating, ventilation and air conditioning (HVAC) system [61].
Similarly 80% of SMEs have a boiler and radiator based heating system that
is operated on a schedule. The output of boiler-based heating systems is
varied to meet occupant comfort levels, but are not varied dependant upon
the number of occupants. For the main source of ventilation, 56% of SMEs
rely on natural ventilation which is created by opening windows and
doors [61]. Interestingly, a large number of existing occupancy based
EMS [28], [39], [40], [43], [45], [47], [49], [50], [62]–[65] are developed for
buildings with centralised HVAC systems. In contrast to a boiler-based
system, these EMS vary the output of the HVAC system based on the
number of detected occupants and occupant comfort levels.

2.3.2 Energy Efficiency Barriers for SMEs

The energy consumption of SMEs is not regulated like that of large
enterprises. As a result, there is a limited amount of research which has
studied energy efficiency within SMEs, referenced studies include [4], [5],
[57], [66], [67]. Additionally, the clear lack of government policy focus has
led to low expectations with regards how much effect SMEs can have

7This values are based on work spaces in Norwich and London.
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towards net zero targets. An example of this is “the UK’s calculation of
expected energy savings from non-domestic energy efficiency policies
includes no specific contribution from SMEs” [56]. In comparison to this
position, the majority of SMEs want to reduce their energy
consumption [61], [67], with 70− 80% saying they are taking steps towards
this [68]. Though a large proportion of SMEs cite significant barriers as the
reason for not doing more [56]. There are a large number of barriers that are
highlighted by these surveys, though the number one barrier that SMEs cite
is cost. Cost barriers include both the upfront costs and lifetime costs that
are experienced when SMEs access expertise, retrofitting solutions, or
installing specific technologies [56], [67]. Across multiple surveys SMEs list
the next most significant barriers as a lack of expertise within their
enterprise and time constraints of the individual that is tasked with
improving energy efficiency, since improving energy efficiency is generally
additional to their main roles within the enterprise [56], [69].

2.3.3 Existing Research on SME Energy Efficiency

A number of policy-based research surveys include a comprehensive survey
by Fawcett et al. [56] which highlights the distinctive characteristics of
SMEs, the significant potential for energy savings and the current gaps in
government policy. Freshner et al. [4] undertook 280 SME energy audits,
evaluated them and based on these results, developed a process to make the
audits more flexible, enabling greater engagement with SMEs. Fleiter et
al. [5] used data from energy audits to propose solutions to overcome SME
energy efficiency barriers. Bunse et al. [6] studied the gap between energy
reduction measures and their implementation in SMEs. Marquez et al. [67]
created a detailed report which reviewed the barriers to energy efficiency
for existing Australian buildings and proposed steps to overcome these
barriers. These existing works each add to the knowledge in this field, and
some [4], [56], [67] make strong recommendations that could inform and
enable changes in government legislation.

EMS surveys include Jia et al. [70] that surveyed different aspects of EMS
including occupancy, data acquisition and modeling techniques. Akkaya et
al. [37] carried out a very comprehensive survey of energy monitoring and
occupancy monitoring within smart buildings. Sulistyanto et al. [71] carried
out a study of different IoT-based monitoring systems that could be
employed to support traditional energy auditing.
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There are a number of SME-focused developmental works, though they are
all limited in how effective they are since none of these work tackle the
barriers that SMEs face. These works include Cosgrove et al. [72] who
developed an SME monitoring and targeting plan based on utility bill
analysis. Dugay et al. [73] developed a system to reduce energy
consumption within micro enterprises by reducing phantom loads. Heilala
et al. [74] proposed a monitoring system specifically for SMEs within
manufacturing. Johnson et al. [75] and Yang et al [76] proposed systems to
monitor energy usage and present the consumption data to users in
real-time. Luna et al. [77] proposed a sensor for monitoring building energy
consumption. Al-Hassan et al. [78] proposed smart sockets to monitor
energy consumption.

2.3.4 Existing Commercial Solutions for SME Energy

Management

Existing commercial EMS cost between £20 − £50 per meter squared [79],
[80]. A number of lower cost systems are available, such as the Beringar IoT
Building Resource and Occupancy Tracking Module [81] costing £450 per
module for the hardware, with an annual subscription of £350 per module
for software-as-a-service data reporting. It is a plug-and-play system which
does not require significant setup time or energy management expertise. The
low starting costs and ease of use make Beringar’s solution suitable for SMEs.
Though it is noted that each hardware module has a coverage area up to 50m2

and subscription costs are relatively high, particularly if multiple modules
are required. The Pressac Smart Monitoring hardware module [82] costs £750
each. The Smart Citizen Starter Hardware kit [83] costs £100. Though these
systems are low cost, both require additional expertise to install, configure
and manage, meaning the SME might need to pay installation and support.
The Pressac kits include a WiFi, Ethernet and LTE gateway but do not include
software for data reporting, instead they are compatible with a number of
commercial cloud platforms. The Smart Citizen kits are Open Source and
compatible with a range of Open Source reporting tools. Alternate low cost
commercial systems which can be used to automate the control of lighting
and HVAC systems include PIR motion-based systems [84], though these
systems are generally overly simple and ineffective [26], [85].

Research has shown that energy saving initiatives can achieve long term
energy reductions [3]. Feedback from surveyed SMEs [5], [6], [25], [61]
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shows that barriers to the implementation of energy reductions include high
costs, significant time commitments and lack of expertise. Many
research-based and commercial EMS do exist but are inaccessible to SMEs
because they generally fit into three categories: being complex and
expensive; affordable but requiring expertise to fit and manage; or
affordable but overly simple and ineffective. Therefore, this thesis will focus
on an holistic solution to overcome the barriers that are highlighted above.
The enabling technologies which will be utilised are introduced in
Section 2.4.

2.4 Energy Management Enabling Technologies

The complexity and high cost of building retrofitting for improved energy
efficiency can be overwhelming for many SMEs. As such, IoT, WSNs and
ML will be utilised to develop a cost effective and accurate EMS to assist such
enterprises to achieve and maintain long term energy reductions. WSNs and
ML are introduced in this section.

2.4.1 Wireless Sensor Networks

A WSN is a network of spatially distributed sensor nodes that function
together to communicate the data that is captured in their environment
through wireless communication links [86]. WSNs were initially developed
for environments unsuitable for wired networks. But due to the demand for
greater network flexibility, research has paved the way for a huge
development in WSN technology. As a result, WSNs are now chosen for
their adaptability, flexibility and scalability, resulting in WSN being
deployed in environments where wired deployments would be costly,
impractical or difficult [86].

A WSN node can be an IoT endpoint8. A WSN node is illustrated in Fig. 2.2
and consists of three components: power unit, sensor or actuator and
communication unit. A sensor node can also include a processor and
storage. WSN nodes are generally constrained devices with limited power,
sensing capabilities, processing power, storage or communication
capabilities.

8It is important to differentiate, an IoT endpoint does not need to be a WSN node, since
an IoT endpoint can connect via wire or wirelessly.
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FIGURE 2.2: Components of Wireless Sensor Node

2.4.1.1 Existing WSN Deployment Techniques

There is a significant amount of research in the area of WSNs, according to
one survey, it is one of the most researched technologies of the last
decade [86]. The majority of work in this field is concerned with network
topology [87], [88], energy conservation [89], [90], routing protocols [91],
[92], data collection [90], [93] data fusion [94], [95] and network costs [96].
Significantly less work is focused on the physical placement of sensors.
However, as WSN are utilised in more applications, particularly for IoT and
Industrial IoT (IIoT) applications, efficient and effective deployment
techniques are required.

Existing work that is focused on WSN deployments including sensor
positions, sensor density or area coverage are discussed below. This
includes a survey by Plata-Chaves et al. [97], which reviews existing work
focused on optimising multimode WSN. Mini et al. [98] studied the problem
of M-coverage, such that each sensor is connected to ‘M’ number of other
sensors. Mini et al. [98] also proposed a solution to use the minimum
number of sensors to achieve M-coverage. Cheng et al. [99] developed an
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algorithm to control the movement of mobiles sensors to create a sensor
barrier and achieve coverage between two external points. Hammoudeh et
al. [100] developed a method to evaluate a WSN border crossing detection
system. This included determining the node density required to achieve
barrier coverage. They also proposed a WSN routing protocol. Zhoe et
al. [101] studied the deployment of mobile sensors into an existing WSN to
achieve improved network performance and proposed an algorithm to
achieve the maximum area coverage using the minimum number of sensors.

There are a number of existing works that utilise a virtual pattern to assist
with optimal positioning of nodes. This includes a study by Chakrabarty et
al. [102] that proposed an outdoor surveillance-based grid placement
technique, positioning multimode sensors with differing coverage areas.
Chakrabarty et al. [102] also studied deployment costs. Similarly, Dhillon et
al. [103] proposed a number of algorithms that utilised a grid to determine
optimal sensor positions whilst trying to achieve optimal coverage in an
external environment. Nazarzehi et al. [104] proposed an algorithm to
deploy and manage the movement of mobile sensors to enable the rapid
exploration of a 3D outdoor environment to find a target. The algorithm
utilised a grid system to manage the sensors. In comparison, Al-Turjman et
al. [105] proposed a hexagon-based WSN deployment algorithm and
modelled its energy consumption based on the Zigbee communication
protocol.

It is noted that the majority of literature studying the physical position of
WSN nodes are focused on external environments since indoor WSN are
generally WiFi based and well understood. The current work, which is
concerned with determining the optimal WSN deployment, based on the
minimum cost and maximum level of coverage to enable accurate
monitoring of an internal building environment. Additionally, the existing
literature does not compare network features such as total coverage or
coverage overlap. Based on this gap, Chapter 3 will study existing WSN
deployment techniques to determine the optimal technique for IoT-based
occupant and building monitoring. It will also propose algorithms to
determine the node density and area coverage of each technique.

2.4.2 Machine Learning

IoT was introduced in Section 1.5.1 as a collection of Things which can
collect data about their environment, process this data, automate a response
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and transmit data through the Internet. IoT can be further optimised by
integrating it with AI, which is the technique of training machines to
perform human tasks [106]. ML is a subset of AI and can be defined as the
process of training a machine how to learn from the data it is given. The
integration of ML enables an IoT network to apply advanced data analytics
to garner valuable insights from its data [107]. In short, ML algorithms and
techniques can significantly enhance the performance of an IoT system to
analyse and learn from the data it has captured [108]; detecting patterns or
anomalies in IoT data. ML is 20 times faster than other analysis techniques
and delivers a significantly higher level of accuracy [107]. Within this
research it was found that some ML algorithms require a significant amount
of processing power both during training and deployment, which may not
be compatible with resource constrained IoT endpoints. As such, ML
techniques need to be developed specifically for edge-based IoT endpoints.
A successful edge-based approach can significantly reduce the amount of
data that needs to be transmitted around a network [109], which in turn can
reduce system costs and improve latency, responsiveness and system
scalability [110].

2.4.2.1 Deep Learning Techniques

There are a number of ML techniques and in the current state-of-the-art
occupancy-based EMS, deep learning (DL) techniques demonstrate a good
level of performance. Within DL, there are a number of techniques to build
a DL model. These models include DNN, Recurrent Neural
Networks (RNN) and Convolutional Neural Networks (CNN). Unlike
shallow neural networks, deep learning models have two or more hidden
layers which helps the network to learn the hierarchical representations of
data using multiple levels of abstraction [111]. This architecture is scalable,
i.e. it maintains efficient classification performance even as the volume of
data becomes large without overfitting to the training data. When
comparing DL architectures, the complexity of DNN is lower than other DL
architectures such as CNN and RNN. Therefore, DNN models requires
minimal data pre-processing, shorter training time, lesser computation, and
smaller memory space. These characteristics make the DNN comparatively
more well suited to development on a constrained edge-based system. Also,
DNN increases detection accuracy and reduces false alarm rate.

This thesis will focus on a feed forward DNN deep learning model. Data that
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is fed into the DNN model will move from the input layer towards the output
layer without going in the opposite direction, whilst the loss calculation is
propagated backwards to allow weights to be altered. Due to selecting a feed
forward DNN, this model will require less processing power than some of
the alternative models. A DNN is a supervised learning model, meaning it
requires ground-truth labels in the training stage. The DNN model is trained
to learn the discriminative features in data. When the DNN model is given
unseen data, it will classify them into the predefined output categories.

A DNN comprises multiples layers, where each layer consists of a number
of neurons. Each neuron receives its input from the previous layer and
performs a single computation. The layers of neurons together implement a
complex nonlinear computation [112]. The DNN uses the training data to
define weight and matrix bias of each neuron based on the relationship
between the input features and the output labels. The structure of the DNN,
i.e. the number of hidden layers, nodes in each hidden layer, learning rate,
batch size and activation function are specified by the DNN’s
hyperparameters [113]. These hyperparameters can be varied to create an
optimal DNN model [114]. koutsoukas et al. [115] investigate which
hyperparameters to vary, including the number of hidden layers, activation
functions and the number of epochs over which the model is trained.
Techniques from this study [115] will inform the optimisation of the DNN
that is developed.

2.4.2.2 Deep Neural Network for Occupancy Detection

As part of this thesis, an ML model will be developed to process the IoT
building data to quickly and accurately determine whether occupants are
present. One measure of the model’s performance is its generalisation
ability, which is it ability to correctly categorise unseen data [116].
Throughout this thesis, generalisation ability will refer the model’s ability to
accurately interpret new and unseen data which has been captured in new
but similar building environments compared to the training environment.
Both the training and test environments must share similar characteristics
such as types of heating systems, temperature ranges and similar occupant
usage patterns and behaviours. For example, two similar environments
could include Offices A and B. In both environments, the occupants are sat
at desks, displaying minimal movement and dissipating low levels of
energy. An example of different environments could be Office A, Office C
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and Gymnasium D. Where Office A is an SME office with a boiler-based
heating system and open-able windows for ventilation. Office C is a large
enterprise office with a centralised HVAC system. Gymnasium D, is both a
totally different environment and its occupant display different usage
patterns. As such, A, C and D are considered too different to measure the
model’s generalisation ability.

For the proposed DNN model to demonstrate a high generalisation ability,
it will perform well when trained with data captured in Office A and tested
with unseen data captured in both Office A and B, without the need to
retrained with data captured in B. The benefit of a model demonstrating a
high generalisation ability within similar environments is, the trained model
can be replicated and deployed across multiple building environments with
a high level of confidence that the replica will also perform well. A model
demonstrating a low generalisation ability would need to be retrained for
each deployment environment, which is a complex and time consuming
process.

2.4.2.3 Existing IoT-based Occupancy Detection with Applied ML

There is a significant amount of literature in this field, but based on the gaps
that were highlighted in Section 2.3, the review will focus on the use of ML
to optimise the performance of infrared sensor (IRS) based occupancy
detection systems. IRS can accurately detect stationary and moving heat
sources and there are a number of existing occupancy detection systems that
utilise IRS. These systems incorporate a range of techniques to prevent the
systems from wrongly identifying stationary, non-occupant based heat
sources, for example a heater or computer, including data fusion [40], image
processing (excluding ML techniques) [28], [40], [49], [50], [64], [65],
ML [28], [40], [49], [50], [65], or a combination. The state-of-the-art in the
area of AI-enabled occupancy detection systems that use thermal data are
summarised in Table 2.1 and their performance is summarised in Table 2.2.

Existing work includes a highly referenced 2013 study [28], in which the
ThermoSense system was developed. Beltran et al. work compared the
performance of 3 ML algorithms, trained with data from an IRS and PIRS
and deployed the system to control building HVAC systems. Tyndall et
al. [49], further developed the ThermoSense study and considered the
temporal effect of collecting data more frequently. Similarly, Cao et al. [40]
studied the performance of an artificial neural network (ANN) model,
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TABLE 2.1: Overview of existing work utilising ML to
optimise IRS data for occupancy detection

Ref. AI technique Image processing Data
size Sensor

No. of
test
envir

Max
No. of
occup

[28] Compared
KNN, ANN
and LR

Background
removal
and feature
extraction

24
hours

IRS,
PIRS

1 3

[49] Compared
KNN, ANN,
LR, K*, C4.5,
SVM and 0-R

Background
removal
and feature
extraction

- IRS,
PIRS

1 3

[40] ANN HOG feature
extraction

3727 Fused
IRS &
camera

- -

[50] Compared DT
and DNN

Subtracted
mean room
temperature

1000 DRS,
IRS

1 1

[65] No ML Compared
2 image
processing
algorithms

923 IRS 1 3

[65] Compared LR,
SVM, KNN, DT,
RF

6 step image
processing

3273 IRS 1 3

*Abbreviations: K-nearest neighbour (KNN), artificial neural network (ANN),
linear regression (LR), K-star (K*), support vector machine (SVM), decision
tree (DT), random forest (RF), infrared sensor (IRS), Doppler radar
sensor (DRS), passive infrared sensor (PIRS)

trained with fused photographic and IR data. Mikkilineni et al. [64] did not
utilise ML, instead they demonstrated the performance of the blob detection
image processing, applied to data collected by multiple IRS. In addition,
they proposed an optimal sensor position algorithm. Abedi et al. [50]
compared the performance of a DNN trained with data from a Doppler
radar sensor and IRS. Singh et al. [65] compared the performance of image
processing algorithms applied to data collected by multiple IRS, installed in
a range of positions. Singh et al. also compared the performance of a
number of ML algorithms to predict the activity of each occupant.

The limitations of the existing work include [40] which fuses thermal and
image data, meaning it introduces privacy issues, such that it is not suitable
for a commercial environment. The other works [28], [49], [50], [64], [65] are
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developed and evaluated within a single environment, with very low
occupant numbers (a maximum of three). All of the studies used small data
sets (1000 − 3700 samples) and apply high computation image processing
techniques. Image pre-processing and ML algorithms need to be considered
in terms of the costs and benefits. Where costs include monetary, processing
power, storage and power consumption, compared to the benefit of high
performance. Two of the existing studies [50], [65] required ICT work
stations to execute the image pre-processing and model training, which
significantly increases system costs in comparison to a system which is
developed and deployed on a single edge device.

None of the state of the art were tested in multiple environments; each of
the existing studies train and test their classification model in a single
environment and do not demonstrate the generalisation ability of their
model to operate within multiple similar environments [28], [40], [49], [50],
[65]. This is true even in [28], where the ML model is deployed across
multiple buildings. It seems Beltran et al. [28] assume that their model
functions optimally in all of the deployment environments. Their work does
not demonstrate multi-environment generalisation, so it can not be verified
that the HVAC system is only switched off at the appropriate times, i.e.
when there are no occupants or occupant comfort level have been met9.

The performance of the state-of-the-art is shown in Table 2.2. The systems
that were developed as edge-based systems are [28], [40], [49] which achieve
precision of 77% to 82% and accuracy up to 96%. Two other systems [50]
and [65] achieve higher performance, but their classification models have
high computation requirements and were developed on high-end
workstations. To overcome the limitations and the gaps highlighted in the
state-of-the-art, this work will focus on developing a DNN model which is
low cost and demonstrates optimal performance. Linked with the
limitations on SMEs which may include not having access to high
specification computing equipment, the system will be both developed on
an edge-based system and deployed on an edge-based system, it will
achieve a high generalisation ability which will enable to it demonstrate a
high confidence regarding its performance in multiple environments.

9It should be noted that it is relatively easy to reduce energy consumption by turning off
HVAC systems, instead the aim is to reduce energy consumption by turning HVAC off when
it is not required.
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TABLE 2.2: Performance comparison with existing systems

System Classifier Accuracy
(%)

Precision
(%)

System hardware

[28] ANN - 77.14 Raspberry Pi and
Arduino

[49] K* - 82.56 Raspberry Pi and
Arduino

[40] ANN 96.00 - Raspberry Pi and
Arduino

[50] DNN 99.96 - Work station
[65] CCA 100 - Work station

*Abbreviations: artificial neural network (ANN), K-star (K*), deep
neural network (DNN), connected component algorithm (CCA)

2.5 Smart Building Mapping and Simulation

Tools

The design, deployment and evaluation of a building monitoring WSN is
expensive, complex and time consuming [86], [117]. Additionally, due to
Covid-19, there is currently a significant impact on normal commercial
building usage which adds further complexity to this research.

The design process includes visiting a building to study its layout and
meeting with building users to understand their requirements before
defining the network specifications [117]. Network costs are a function of
the hardware costs, installation costs, ongoing management costs,
maintenance costs and the cost of energy consumed by each node [102],
[118]. Hardware costs include nodes and communication components,
where node costs can vary significantly from around £3010 [119], to
hundreds or even thousands of pounds each. Installation costs vary
significantly dependant upon size and nature of the area to be monitored,
the number of nodes, the deployment technique and installation expertise.
The ongoing network management costs are dependant upon on how
frequently the network needs maintenance and the level of maintenance, for
example replacing batteries, or replacing node components such as sensors
or processors. Additionally, installation can be further complicated in
difficult to access or dangerous environments, for example a power station
or manufacturing site.

10Based on a Raspberry Pi 0 W and a number of low cost sensors.
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Simulation tools can achieve a similar result compared real-life deployments
when evaluating WSN [117]. Due to the costs and complexities described
above, simulating the WSN deployments within this thesis is the most
appropriate method of system development, analysis and evaluation. This
methodology will reduce the design time and costs related to hardware,
installation, management and maintenance [117], [120], [121]. It will also
enable multiple deployments to be compared in a single building and for
deployments to be evaluated in buildings which are not currently available
for real-life deployments [122].

2.5.1 Existing WSN Mapping and Simulation Tools

There is a significant number of WSN simulation tools [120]. Examples
include J-Sim [123], which can be used to simulate sensors to monitor a
specific condition, but is very complex to operate and has a significant
computational overheads. Another tool SENS [124] is limited since it can
only be used to simulate and monitor sound data. Some tools are
technology specific, including COOJA [125], which simulates Contiki nodes,
or TOSSIM [126] and Prowler [127] which both simulate TinyOS nodes.
Many tools focus heavily on a single aspect of the network, for example
CNET [128] is focused on the transport and network layers. Similarly,
SensorSim [129] is focused on the network protocol stack. According to a
recent survey, many of the existing tools include unrealistic, incomplete or
inaccurate simulation models [120].

Existing sensor network positioning tools include SOU, which was
developed to enable the monitoring of internal temperatures and reduce the
measurement uncertainty in large sporting venues [130]. The tool was built
to help HVAC engineers to determine the optimal number and position of
temperature sensors to improve the performance of the HVAC system. Wu
et al. [131] developed a sensor placement optimisation tool for bridge
structures to determine the quantity, type and position of sensors along the
structure. The tool was built upon an existing 3D simulation tool and
utilised strain gauge and accelerometer sensor APIs to building the sensor
models. A commercial 3D tool, SPOT, was developed by Persistent
Sentinel [132]. This tool can simulate radar or sonar sensor networks
deployed in external environments, assessing the effect of terrain or
obstacles on the network’s coverage and performance. There has also been
limited attempts to model and simulate indoor environments,
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including [133], which focused on modelling radio propagation and
communication protocols.

A number of CCTV-based tools focus on the physical position of image-based
sensors and the resulting coverage. This includes a 3D CCTV deployment
tool developed by Mitsubishi [134] which creates layout plans for different
environments. Similar Commercial CCTV positioning tools include JVSG
CCTV Design Software [135], VideoCAD [136] and D-Link Surveillance Floor
Planner [137]. These tool are all limited to positioning and do not include
sensor models or simulate monitoring data.

To the best of the author’s knowledge, there are currently no Open Source
smart building mapping and simulation tools that meet the two requirements
of this research. The first requirement is to determine sensors positions based
on building layout and deployment pattern. The second requirement is to
simulate the corresponding sensor data based on occupant movement in the
modelled building. Due to this gap, MIoTs a smart building mapping and
simulation tool is proposed.

2.5.2 Proposed WSN Mapping and Simulation Tool

The MIoTs tool will generate a number of outputs which include a 2D
model of a building environment/layout, 2D placement of sensors in the
modelled environment, simulation of the movement of occupants around
the environment and resulting data captured by a range of deployed
multimodal sensor models. The development and evaluation of MIoTs is
detailed in Chapter 3. The development life cycle of MIoTs was defined
in [117]. The tool was evaluated using the process established for SOU [130]
which included comparing the simulated data against data collected in a
number of real deployments. MIoTs mapping and simulation tool is used
throughout this thesis to simulate the deployment of a variety of WSNs.
Following the assessment of this thesis, the code for MIoTs will be made
publicly available.

2.6 Chapter Summary

In this Chapter, the motivation for the thesis, background theory, enabling
technologies and existing literature are introduced. Due to the
environmental impact of GHG, nations are taking action to reduce energy
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consumption. More than 7% of all energy consumed within the UK is
consumed in small commercial buildings and the literature review
highlights that these buildings are mostly ignored by government
legislation, government policy and academic research. Further to this, the
literature review highlights that SMEs, who are main the users of these
buildings experience significant barriers trying to reduce their energy
consumption. The motivation for this thesis is to enable SMEs overcome
these barriers and reduce their energy consumption. To achieve this, an
EMS is proposed in later chapters. Existing EMS which have been
developed for domestic buildings or larger commercial buildings are
unsuitable for small commercial buildings due to significantly different
requirements. The gaps in the state-of-the-art EMS developed specifically
for small commercial buildings include systems designed to manage
heating systems which are not typical to small commercial buildings; being
developed on expensive specialised workstations; based on very small
occupant numbers and only being tested in a single indoor environment.

In this chapter three of the enabling technologies; WSN, ML and simulation
tools were introduced. In the following chapters a simulation tool is
developed and evaluated, enabling it to be utilised throughout this research
for system development and assessment. This tool enables a significant
reduction in the research cost and complexity. Next, existing techniques to
model an indoor sensor network with wireless communication protocols are
studied and analysed. Additionally, DNN-based data analysis is developed
and integrated into IoT nodes to improve occupancy prediction based on
real-time building data. These contributions are combined to create an
occupant-centric energy management system.

In the following chapter the simulation tool is introduced.
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Chapter 3

Smart Building Mapping and
Simulation Tool

3.1 Overview of Smart Building Mapping and

Simulation Tool

The smart building, floor plan Mapping IoT simulation tool, referred to as
MIoTs, has been developed. MIoTs simulates a building that is monitored
by a WSN deployed throughout the building based on a number of
predefined sensor node deployment patterns that are detailed in Chapter 3.
It also simulates occupants throughout the building, and models the
behaviour of a range of multimodal sensors to capture the building data.

MIoTs was developed and evaluated using the process illustrated in Fig. 3.1,
similar to that defined in [117]. The sensor nodes and the WSN deployments
are based on the contribution of Chapter 3. MIoTs has been developed in
Python using a number of libraries including Numpy, SciPy, Matplot, and
Pillow and implements a number of purpose-built classes which include
Room, Person, Sensor_network and Measure. The Room class defines the size
of the building, internal rooms and the initial room conditions such as the
concentration of CO2 and the level of ventilation. The Sensor_network class
defines the physical attributes of the sensor network including the physical
deployment position and coverage range and of the three different types of
sensors. The Measure class defines the behaviour of the three different
sensors and the creation of the corresponding sensor measurement files. The
Person class defines the effect of a person in the simulation, including the
effect of the individual’s breathing on the number of CO2 particles, the heat
map of the individual and the movement of the individual in a room, and in
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FIGURE 3.1: Process of designing and evaluating simulation
tool

or out of a room. The user can define the duration of time to simulate over,
the size and layout the building and each of the internal rooms, the rate of
ventilation, including the choice of natural or mechanical ventilation, the
WSN deployment pattern, which types of sensors to deploy, the
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characteristics of the sensors and the frequency of sensor data collection.
Regarding building occupants, the user can vary the behaviour of the
people in the building including in and out times, for example 8am and
5pm, the maximum number of people and the probability that the people
will move around in a room, in and out of the rooms, or in and out of the
building.

For each simulation, MIoTs creates a number of output files including:

• A single 2D image file showing the building floor layout and the sensor
network deployment, including each sensor’s position and coverage
area.

• Two .csv files containing ground truth information which is updated
at each measurement time interval. The first file maintains a count of
the number of people in each room and the second file contains the
Cartesian co-ordinates of each person in the building.

• A .csv file for each different type of sensor. This file includes the
Cartesian co-ordinates and coverage range of all of the sensors. It is
also updated at each measurement interval with the data these sensors
collect.

• If IRS are deployed, for each IRS, a black and white thermal image file
is created at each measurement interval. These image files are contain
a timestamp and sensor ID,

MIoTs is defined in Sections 3.2 to 3.4 and evaluated in Section 3.5. The
modelling accuracy of MIoTs is evaluated by comparing the simulated data
against real data collected in a number of environments.

3.2 MIoTs User Interface

The user runs the simulation directly from the MIoTs python code. Many
aspects of the simulation can be defined by the user, including the building,
the sensor network, the number of building occupants and frequency of
their movement. Fig. 3.2 shows an example of the code to create a building
containing three rooms, including the position and size of the individual
rooms. Fig. 3.3 shows the code to create a sensor network, including the
sensor types, their specifications and deployment pattern.
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FIGURE 3.2: MIoTs Code: Defining building layout

FIGURE 3.3: MIoTs Code: Defining sensor network

Fig. 3.4 shows the user defined parameters for the building occupants,
defining their movements, the simulation duration and measurement
frequency. The specification of each of these parameters are optional since
they all have default values. The parameter definitions and default values
are detailed below:

• initial_n_people (integer): Initial number of people inside building at
simulation start. Defaults to 0.

• n_people_min (integer): Minimum number of the people in the
building. Defaults to 0.

• n_people_max (integer): Maximum number of people in the building.
Defaults to 200.

• moving_in_room_prob (float): The probability that a person moves
around inside a room. Defaults to 0.5(50%).

• change_room_prob (float): The probability that a person moves from
one room to other room. Defaults to 0.05(5%).

• in_prob (float): The probability that a person enters the building (at
in_time). Defaults to 0.9(90%).
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• out_prob (float): The probability that a person leaves the building (at
out_time). Defaults to 0.9(90%).

• in_time (integer): Time from which occupants can enter the building.
Defaults to 8(08 : 00).

• out_time (integer): Time at which occupants leave the building.
Defaults to 16(16 : 00).

• vent_min (integer): Minimal level of ventilation. Defaults to 5 for
natural ventilation, 60 for mechanical ventilation.

• vent_max (integer): Maximum level of ventilation. Defaults to 30 for
natural ventilation, 80 for mechanical ventilation.

• vent_mechanical (integer): Value 0 defines natural ventilation, 1 defines
mechanical ventilation. Defaults to 0.

• n_in_at_time (integer): The maximum number of people that can enter
to the building at the same time. Defaults to 5.

• n_out_at_time (integer): The maximum number of people that can leave
the building at the same time. Defaults to 5.

• random_in_out_prob (float): The probability of a person random
entering or leaving the building, it is a random event, it can happen
once per epoch. Defaults to 0.02(2%).

• n_measure_per_epoch (integer): The number of measurements per
epoch

• n_epoch (integer): Number of epochs per simulation, where an epoch is
equivalent to 1 hour. Defaults to 48

FIGURE 3.4: MIoTs Code: User defined parameters
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3.3 MIoTs Sensors

The sensors that can be simulated include a CO2S which measures the
concentration of CO2 particles in the air, returning number of CO2 particles
per million gas particles, denoted ppm. The next sensor is a PIRS which
detects the movement of heat, allowing detection of moving individuals.
This sensor returns a 1 when movement is detected, or a 0 when no
movement is detected. The third sensor is an infrared sensor (IRS) which
detects areas of heat, stationary or moving. For each reading the IRS creates
a 32 × 24 pixel black and white image file. Within this image, areas that
have the background temperature are shown with black pixels and areas
that are warmer are shown with white pixels. For all three sensors, the file
formats and the data that is simulated reflect the output of the real sensors.
All of the nodes are positioned on the ceiling of the building, creating a 2D
coverage area on the building floor. By default all of the sensors model a
circular coverage area as illustrated in Fig. 3.5. There is also the option for
the IRS to model a rectangular pyramid coverage volume, which results in a
rectangular coverage area on the floor, like that of IRS MLX90640. The
dimensions of the rectangular IRS coverage area is given in Eq. 3.1 and
illustrated in Fig. 3.6.

l = 2r

w = 0.75l = 1.5r (3.1)

where l and w are the length and width of the IRS coverage area and r is its
coverage range.

FIGURE 3.5: Default
sensor coverage
volume

FIGURE 3.6:
Rectangular IRS
coverage volume
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3.4 MIoTs WSN deployments

A number of WSN deployment patterns are available, these include a sensor
grid, overlapping sensor grid, sensor hexagons and overlapping sensor
hexagons deployment. Each of these deployments are defined in much
more detail in Chapter 3. They are all organised deployment patterns that
define the physical position and coverage range of the nodes. The sensor
nodes are all assumed to have a communication range equal to or greater
than their coverage range, also of the networks are based on simple ‘q’
coverage, such that each area of the building is monitored by a single node.
Figs. 3.7 and 3.9 show the layout of the simulated output files and
Figs. 3.20, 3.22 and 3.24, show some examples the simulated IR image files.

FIGURE 3.7: PIRS output file

FIGURE 3.8: CO2S output file

FIGURE 3.9: Ground-truth room data output file

3.5 Methodology to Evaluate MIoTs Simulator

The simulator’s behaviour will be validated by comparing its output data
against real data, such that “the conceptual model is an accurate
representation of the real system” [117]. The simulated building is based
upon a small building with three separate rooms and 0 − 5 occupants,
whose movements are simulated over a period of 24 hours. Sensor and
ground truth data is collected once per minute. Occupant in and out times
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FIGURE 3.10: PIRS
deployment

FIGURE 3.11: CO2S
deployment

FIGURE 3.12: IRS
deployment

FIGURE 3.13:
Combined
deployment

are specified as typical working hours, 8 : 00− 18 : 00. Real data is collected
by the DeNNOTE occupancy detection system which is proposed in
Chapter 5. The DeNNOTE system is a single IoT node containing a
Raspberry Pi, PIRS, IRS, CO2S, temperature sensor and a DNN which
processes the captured heterogeneous data to determine whether the
monitored areas is occupied or not. Within MIoTs, there are three
heterogeneous sensor types that can be simulated; PIRS, IRS and CO2S.
Each type of sensor can be given different parameters and deployed in
different patterns within a single simulation. During the verification of
MIoTs, all three types of sensors are grouped together into a single node,
and specified with the same coverage range so that the simulated data
resembles that collected by the DeNNOTE system. Room 1 is a simulation
of the Office, room 2 is a simulation of the Kitchen and room 3 is a
simulation of the Meeting room.

The steps to evaluate the MIoTs simulation tool include firstly, studying the
physical deployment of the sensor nodes, secondly, the correlation between
the real and simulated data and thirdly, a comparison of the performance that
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is achieved when the real and simulated data are processed by the DNN.

Regarding the deployment of the sensor network, MIoTs creates an image
which shows a 2D view of the deployment positions and coverage area of
the sensor network. Also, the Cartesian co-ordinates of each sensor are
given in the sensor output files. This sensor location information will be
compared with real positional information. The PIRS and CO2S are
simulated with a conical coverage volume. MIoTs positions the PIRS on the
ceiling of the building, which results in a corresponding circular coverage
area on the building floor.

When multiple sensors with different coverage areas are deployed together
in a single node, this work is concerned with the combined coverage area,
i.e., if all of the sensors have the same range, the combined coverage area is
assumed to be equal to the sensor that achieves the smallest coverage area,
which in this instance is the circular coverage area of the PIRS or CO2S. The
sensor deployment in this verification simulation is based on the sensor grid
technique with no overlap, as defined in Eq. 4.6. A significant number of low
cost IoT sensors achieve a range of 4m based on being positioned at a ceiling
height of 3m and having a FOV of 110, therefore all of the sensors are defined
with this coverage range of 4m. Based on room dimensions sensors may
be placed on the room perimeter meaning there may some sensor coverage
overlap.

Next, the correlation between the real and simulated data that is generated
by the three types of sensors will be evaluated. For the CO2S, there will be a
visual comparison of the trends in the CO2 levels due to the number of
occupants in a room and whether they stay for a prolonged period.
Similarly, for IRS, the real and simulated thermal images will be compared
visually. The data generated by the PIRS will be evaluated based on the real
and simulated data accuracy. The balanced accuracy (BA) is based on
measuring the true positive (TP), true negative (TN), false positive (FP) and
false negative (FN) occurrences for the different PIRS. A TP indicates when
the PIRS correctly detects the presence of an occupant by recording a ‘1’, TN
indicates when it correctly detects the absence of an occupant by recording
a ‘0’. A FP indicates when the PIRS incorrectly indicates an occupant is
present when they are not, wrongly recording ‘1’, and similarly, a FN is
when it incorrectly indicates the absence of occupants and records a ‘0’.
Generally, PIRS have a low level of accuracy when determining occupant
presence. This is because they do not detect occupants, but instead they
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detect the movement of a heat source. This means if an occupant is
relatively stationary, for example sitting at a desk working, they may not be
detected causing the PIRS to return a high number of FN. Finally, all of the
simulated data, including the CO2 data, motion data and the IR thermal
images are processed by the DeNNOTE DNN to determine whether
occupants are present. For all iterations, the DNN is first trained with real
data collected in the Office, then the performance of the simulated data will
be compared against performance of data collected in the Office, Kitchen
and the Meeting Room.

3.6 Evaluation of MIoTs Simulator

3.6.1 Position of the Nodes in the Network

Figs. 3.10 and 3.13 show three different versions of the MIoTs image file
which shows the building outline and its three rooms, the positions and
coverage areas of the PIRS, CO2S and IRS. For clarity, the edge of each IRS
coverage area is demarked with different types of dotted lines. The PIRS
and CO2S are shown to have circular coverage areas, in comparison, the IRS
has a rectangular coverage area. The coverage of each sensor is only
effective within the room where the sensor is located. The coverage overlap
that is visible in Fig. 3.10 between PIRS s1 and s2 (and CO2S s1 and s2 in
Fig. 3.11) is due to the dimensions of room 1. PIRS s1 is positioned at
Cartesian co-ordinates (4, 4) and based on the grid deployment, PIRS s2
should be positioned at co-ordinates (4, 12), but this is outside of the room,
so to reduce the creation of unmonitored areas the grid deployment
technique takes this into account and instead PIRS s2 is positioned on the
room perimeter at co-ordinates (4, 10). The simulated positions of each
sensor, denoted s1− s4, are shown as Cartesian co-ordinates in Table 3.1.

TABLE 3.1: Calculated sensor Cartesian co-ordinates

Sensor
s1

Sensor
s2

Sensor
s3

Sensor
s4

(4,4) (4,10) (8,3) (8,7)

To evaluate if the simulated sensor positions are correct, the positions are
calculated based on knowing the co-ordinates of each room and using the
grid technique defined in Section 4.3. Based on the grid technique, each
sensor is positioned within the centre of a grid square, where each square
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FIGURE 3.14: Room 1: simulated CO2 data

FIGURE 3.15: Office: real CO2 data

has a dimension 2r and each sensor has a range r = 4. Room 1 has x
co-ordinates [0, 0, 4, 4] and y co-ordinates [0, 10, 10, 0]. The calculated
positions are shown in Table 3.1 and the simulated positions are shown in
Figs. 3.10 and 3.13. By comparing both, it can be that the calculated and
simulated sensor positions are identical.
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FIGURE 3.16: Room 2: simulated CO2 data

FIGURE 3.17: Kitchen: real CO2 data

3.6.2 Correlation Between the Real and Simulated Data

Figs. 3.14 and 3.19 show the simulated and real CO2 data within rooms and
corresponding ground truth for the number of occupants in each room.
MIoTs has been set with a natural rate of ventilation of 5− 30% to match the
conditions in the Office, Kitchen and the Meeting room which have natural
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FIGURE 3.18: Room 3: simulated CO2 data

FIGURE 3.19: Meeting room: real CO2 data

ventilation not air conditioning. It can be seen that the variation in the
CO2levels based on occupancy is similar across both the real and simulated
data. These similarities include the lag between occupant numbers
changing, the rate at which the CO2 levels increase when the number of
occupants increase, or when occupants remain in the room for a prolonged
period. In comparison, the level of CO2decreases when the occupant
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number is reduced or occupants vacate the room entirely, returning
to 600− 800ppm when the room is vacated for 30 minutes or longer.

The lag between occupants entering a room and CO2 levels increasing is
approximately 15 minutes in both the real and simulated data. When
occupants remain in a room, in both the simulated and real data, it can be
seen that the CO2 levels continue to rise. In the smaller rooms, for example
the Kitchen, or room 2, it can be seen that the CO2 level does rise much
more quickly and reach higher levels. When the levels of CO2 in a room
reach XX, the room can feel uncomfortable and stuffy. This generally causes
occupants to take action to increase the level of ventilation in these rooms,
the occupants response is likely to include opening doors or windows
which can cause the CO2to decrease more quickly, as can be seen in the
Kitchen, around 8.35am. It is noted that the simulated data is slightly
smoother than the real data.

Figs. 3.20 and 3.25 show the black and white 32× 24 pixel images that are
created by the simulated and real IRS respectively. The images are labelled
as either “negative" which indicates that there are no occupants within the
monitored area or “positive" which indicates there are occupants. The
images show areas of heat as white pixels within a black image. In these
thermal images, a person appears as a well defined area of white that covers
an area just under 1m2. When an occupant has recently left a room, they
leave behind a small area of warm air causing a small thermal hot spot as
shown in Fig. 3.23. This warmth dissipates over a few minutes, causing the
thermal hot spot to also decrease in size until eventually it is gone, as shown
in Fig. 3.21.

The performance of the PIRS data that was captured in a number of different
real environments over a period of a month was assessed based on using
the data to indicate the presence of occupants. The PIRS demonstrated BA
of 69.26%. This rate is relatively low because PIRS only detect occupants
when they move, unlike IRS which detects stationary or moving occupants.
The simulated data for the PIRS consistently demonstrated a similar level of
performance to the real sensor. For the data simulated in room 1, the PIRS
achieved a BA of 69.88%, room 2 of 69.64%, and room 3 of 72.03%. The slight
increase in performance of the PIRS within room 3 was a result of increasing
the rate of movement within and in/out of a room for room 3. This resulted
in 45 movements of occupants in or out of the room over 24 hours, compared
with room 1 which had 29, and room 2 which had 38. The MIoTs setting that
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FIGURE 3.20:
Simulated
negative
image

FIGURE 3.21:
Real
negative
image

FIGURE 3.22:
Simulated
negative
image

FIGURE 3.23:
Real
negative
image

FIGURE 3.24:
Simulated
positive
image

FIGURE 3.25:
Real
positive
image

adjusts the level of occupant movement for each room was selected to mimic
the level of occupant movement within the corresponding real rooms.

3.6.3 Performance of Real and Simulated Data

The simulated data collected at each time instance is processed by the
DeNNOTE DNN to determine whether occupants are present. The DNN
has first been trained with data collected in the Office and evaluated with
data collected in the Office, Kitchen and Meeting room.

Table 3.2 shows the performance of the simulated and real data, where the
data collected in the Office and Meeting room achieves a high AUC
over 90%. Similarly, the simulated data for the corresponding rooms, room 1
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TABLE 3.2: Performance comparison of simulated and real
data processed by DNN

Simulated
Environ

DNN processing
simulated data:
AUC (%)

Real
Environ

DNN processing
real data:
AUC (%)

room 1 98.39 Office 95.65
room 2 94.70 Meeting 92.59
room 3 85.64 Kitchen 72.21

and room 2, also returned a high AUC. Though the simulated data
performed very slightly better, achieving approximately 2% better
performance. It is expected that the simulated data will perform slightly
better than the real data due to the simulated data containing less noise.
This is noted in the CO2which is slightly smoother than the real data, in the
simulated IR images, the heat images are slightly crisper around the edges.
For real data collected in the Kitchen, the performance that was achieved
was much lower than the other rooms, around 70%. This reduced
performance is due to the food warming equipment which distorted the
thermal images and caused a higher rate of FP. Room 3 was simulated to
reflect the Kitchen, particularly with respect to the room size, rate of
ventilation, number of occupants and level of occupant movement, but the
simulation did not include the food warming equipment. This explains why
the simulated data collected for room 1 achieved a lower performance than
rooms 2 and 3, but significantly better than the performance of data
collected in the Kitchen.

3.7 Chapter Summary

Due to costs and complexities involved in deploying a WSN, a smart
building mapping and simulation tool was developed. This tool is written
in Python and enables a 2D WSN deployment to mapped and the sensor
data to be simulated. The functionality of the tool is introduced along with
its user interface, user-defined parameters and the sensors whose behaviour
are simulated. To enable the simulation tool be used in throughout this
research, it was evaluated using real building monitoring data. The
simulated sensor data was compared to data that was collected in three real
environments. For all three sensors, the simulated data was very similar to
that generated in real life. MIoTs does include the generation of some sensor
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noise, but it was less than the noise exhibited in the real data. As a result,
the simulated data is smoother and achieves a slightly higher rate of
accuracy, about 2%, than the corresponding real life data. Due to these
strong evaluation results, the MIoTs smart building simulation tool is used
in the evaluation of other areas of this thesis.

In the following chapter a number of existing techniques for the deploying of
sensor networks are introduced and assessed in terms of hardware cost and
the coverage of an indoor environment.
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Chapter 4

Wireless Sensor Network
Deployments for Building
Monitoring

4.1 Introduction

Within commercial buildings, occupant monitoring and comfort level
monitoring can be used to inform the actions of an EMS. Historically, EMS
used a combination of pre-programmed building usage models and data
collected by a small number of sensors to predict this data. Due to
out-of-date models and limited sensor data, this often resulted in inaccurate
information, which resulted in ineffective EMS.

Instead, multimodal building data such as temperature, light levels and
occupancy data can be accurately measured in real-time, or near real-time,
by IoT-based distributed WSN [102]. An IoT-based WSN is comprised of
tactically positioned multimode IoT sensors which utilise data fusion
techniques to combine the different data streams. The physical positioning
of the sensors is significant in relation to the area coverage that is
achieved [102]. There are two main types of coverage; area and target
coverage. Area coverage is the monitoring of an area or region of interest. In
comparison, target coverage is the monitoring of a specific mobile or
stationary target within a given area [138]. Inside a building, a target may be
a high-value object, for example, artefacts displayed inside a museum. Area
coverage can be broken down further into weak and strong coverage [99],
[139]. Weak coverage is defined as an area which is monitored by sensors
but also includes regions with coverage gaps. An area of weak coverage
can, in theory, be crossed without detection though it is difficult to cross
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since the gaps are not easily identifiable. An example of weak coverage is
deploying sensors only across windows or doorways or randomly within a
space. Strong coverage is defined as an area where sensors are used to
monitor the entire area, such that the area can not be crossed without
detection. An example of strong coverage is monitoring all of a building’s
floor space. In environments where a high performance is required, target,
weak and strong coverage techniques can be combined. Different types of
deployments require different amounts of hardware including but not
limited to sensors, processing units, communication units and power
supplies. This means that different sensor network deployments can vary
significantly in performance and cost.

The contributions of this chapter is the calculation and comparison of sensor
density and space coverage for a number of existing WSN deployments.

In this chapter, the problem of occupancy detection and building monitoring
will be studied through six different strong coverage sensor deployment
techniques. Equations and algorithms are proposed in Section 4.4 and
Section 4.5 to determine the sensor density and coverage respectively. In
Section 4.6, two deployments that include sensor coverage overlap are
examined. In Section 4.7, using simulated building data, the deployment
techniques are analysed and evaluated to determine which strong coverage
sensor deployment technique can deliver the optimal wireless sensor
network, to achieve accurate building monitoring data at low cost.

4.2 Preliminaries of WSN Deployment

Techniques

4.2.1 Strong and Weak Coverage

The combination of weak and strong coverage deployments are regularly
used to monitor commercial buildings. In such deployments, weak
coverage is commonly deployed in areas that are only accessed for short
periods, including doorways, corridors and public toilets. Motion detection
sensors, e.g. PIR or cameras, may be used to detect an occupant entering the
area. This event may be used to automate building services, for example
opening the door or controlling the light level. In the same building, a
strong coverage deployment may be used in areas where occupants dwell
or there are multiple entrances and exits, for example, public spaces, cafes
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or work areas. Strong coverage might be achieved using RF, gas, noise,
temperature, heat and humidity sensors or a combination. These sensors
can detect occupants, monitor comfort levels and automate the control
comfort levels when occupants are present and automate turning down or
off systems once an area is vacated.

4.2.2 Existing Physical Deployment Techniques

Packing is the mathematical method of filling a given area with the
maximum number of circles, without any overlap and minimal vacant
areas [140]–[142]. This method is commonly used in logistics to fit the
maximum number of solid cylindrical containers, for example food tins,
into a rectangular shipping container.

There are two well-accepted methods, square and hexagonal packing. For
square packing, the area to be packed is divided into virtual squares, each
identical in size, vertically and horizontally aligned. Next a circle is placed
inside each square of the grid with its centre also being the centre of the
square. The dimensions of the squares are (2R)2, where R is the radius of
the circles to be packed. The circle’s perimeter meets the perimeter of the
square at the middle of each of the squares’ vertices. This square packing
technique is commonly applied as a two dimensional (2D) view of indoor
space monitoring [102], [103] which will be referred to as the sensor grid
deployment, where the floor is divided into virtual squares which will each
be monitored by a single sensor node. A sensor node is comprised of m
sensors with a sensing radius range of r and a horizontal cumulative
horizontal angle of 360°. When positioned on the ceiling directly above the
centre of each square, these nodes create a spherical cone-shaped coverage
volume, such that it results in a 2D node coverage area on the floor. This 2D
node coverage area is given in Eqs. 4.1 to 4.3 and illustrated in Fig. 4.1. The
sensor grid technique is illustrated in Fig.4.2 as deployment (a).

Hexagonal packing is an alternative method of packing circles into a
rectangular space [140]–[142] and it begins in a similar way to square
packing; the first column of circles are placed along the perimeter on the
y-axis of the space. The next column of circles are moved vertically down by
distance r with respect to the first column and positioned beside the first
column, as close as possible. The third column is shifted back up distance r,
so as to be horizontally in-line with the first column. These steps are
repeated until the space is filled. This is referred to as hexagonal packing
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FIGURE 4.1: 2D
sensor coverage
area

lS = 2a (4.1)
AS = (lS)

2 = (2a)2 (4.2)
a = r

∴ AS = 4r2 (4.3)

since each circle will touch six other circles or the edge of the container,
creating repeating hexagonal patterns. This hexagonal packing technique
can also be utilised in sensor deployments and will be referred to as sensor
hexagons. Similar to the sensor grid, the sensor nodes are placed on the
ceiling in a hexagonal pattern which create 2D node coverage circles
positioned in a hexagon pattern on the floor below, illustrated as
deployment (c) in Fig. 4.2.

FIGURE 4.2: Overview of six proposed sensor network
deployment techniques
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FIGURE 4.3: Node coverage based on being positioned on
building ceiling

In a single sensing node there may be one or more sensors. The coverage
area and range of each sensor are defined by their specifications. Some
sensors have a 360° sensing angle, otherwise known as a field of
view (FOV). In comparison, other sensors, for example, PIRS typically have
a FOV between 90− 270°. To overcome these differences, it will be assumed
that each sensor, or a number of sensors in a single node that are monitoring
the same attribute, will together create a conical coverage area. Such that the
conical apex is positioned at the sensor node and the circular coverage area
will be positioned on the perpendicular surface. Throughout this work, the
sensor will be positioned on the ceiling and the corresponding coverage
circle will be positioned on the floor, as shown in Fig. 4.3. The coverage
range of sensors can vary significantly and when multimode sensors are
combined in a single node, it will be assumed that the node’s coverage
range is equal to that of the sensor with the minimum sensing range.



Chapter 4. WSN Deployments for Building Monitoring 53

4.3 Applying Packing Techniques to Develop

Strong Coverage WSN Deployment

Techniques

The proposed deployment techniques are based on the square packing and
hexagonal packing techniques. The focus will be on the physical positioning
of sensors and the resulting area coverage, rather than logical positioning or
connectivity. The proposed deployments are based on environment
monitoring within internal spaces. Therefore, simple coverage, such that
each building area is covered by one or more sensors, is considered
sufficient, instead of more complex solutions such as k-coverage or
q-coverage [98]. Additionally, it can be assumed that the areas being
monitored are sufficiently small that all sensors have a communication
range, rc, that is equal to, or greater than the sensing range radius r, such
that rc ≥ r. This means each sensor can transmit packets to other sensors or
directly to the base station [143].

This work proposes a second variation of the sensor grid technique, using
multiple virtual perimeters rather than a grid. The perimeters are created
perpendicular to the exterior walls of the space and nodes are positioned
along them, as shown in Fig. 4.2, deployment (b). This technique will be
referred to as sensor perimeters. These three identified techniques define the
diameter of the node coverage circles as equal to the length and width of the
original grid square, which results in a deployment technique without any
node-to-node coverage overlap. In comparison, the next three proposed
techniques do have node coverage overlap. The coverage overlap occurs by
changing the ratio between the coverage circle and grid square, such that
the circle encompasses the virtual grid square and the square is the
maximum size that can fit wholly inside the circle. When this new ratio is
applied to the sensor grid, sensor perimeters and sensor hexagons, the
results are three new deployment techniques: namely the ‘overlapping
sensor grid’, shown in Fig. 4.2, deployment (d); ‘overlapping sensor
perimeters’, shown in Fig. 4.2, deployment (e); and ‘overlapping sensor
hexagons’, shown in Fig. 4.2, deployment ( f ). All six of the sensor
deployment techniques will be discussed further in the following sections.
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4.4 Node Density

4.4.1 Sensor Grid Node Density

Within regularly shaped area e.g. internal rooms, specifically square and
rectangular spaces, the application of the sensor grid and the sensor
perimeters technique will create identical sensor deployments. The two
techniques may create different deployments in more complex-shaped areas
or areas with obstacles. The sensor perimeters technique offers greater
flexibility, compared to the sensor grid, to deploy a reduced number of
sensors. For example, deploying a single sensor perimeter as a weak barrier,
rather than achieving strong coverage throughout the whole area. As such,
a reduced number of sensor perimeters could be deployed instead of the k
perimeters that are required for strong coverage. In this scenario, the
additional sensors which would have been deployed up to perimeter k
could instead be deployed elsewhere, reducing the WSN cost and
complexity.

The steps to determine the sensor density for a square or rectangular shaped
space deployed with the sensor grid technique are shown below, followed by
Eqs. 4.4 to 4.6.

• determine constant λ, which defines whether to place an additional
sensor overlapping the space perimeter

• determine the number of sensors, based on space length, width, λ and
sensor range radius.

if (2ir ≥ l > (2ir− r)) then

λ = 0

else

λ = (2ir− l) (4.4)

SSG = m

⌈
l + λ

2r

⌉
2 (4.5)
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SRG = m

⌈
l + λl

2r

⌉⌈
w + λw

2r

⌉
(4.6)

where SSG is sensor density when deploying a sensor grid in a square-shaped
space, SRG is sensor density when deploying a sensor grid in a rectangular-
shaped space, m is the number of sensors in each node, d e the absolute value
of the figure inside, l and w are the space length and width, r is the node
range radius, λ, λl and λw are constants.

The node density of some irregularly shaped spaces, for example, a space
which is a right-angled polygon is comprised of one or more rectangular
areas, which means such a space can be split into the minimum number of
rectangles and Eq. 4.6 can be applied, with an additional step. The additional
step is to deduct any nodes which are deployed in overlapping areas, so as
to not count them twice. The sensor density of this deployment is given as
Eq. 4.7.

SPG = m
i=shapes

∑
i=1

⌈
li + λli

2r

⌉⌈
wi + λwi

2r

⌉
−m

j=overlaps

∑
j=1

⌈
loj + λloj

2r

⌉⌈
woj + λwoj

2r

⌉
(4.7)

where SPG is the sensor density when deploying a sensor grid in a polygon-
shaped space, li and wi are the length and width of shape i, λli and λwi are the
constants for shape i’s length and width, loj and woj are the length and width
of overlapping shape j, λloj and λwoj are the constants for shape j, shapes is
the (minimum) number of rectangles the space can be split into, overlaps is
the number of overlapping areas.

If the shape of the space gets more complex, or nodes need to re-positioned to
avoid obstacles, the application of Eq. 4.7 also gets more complex, requiring
a new calculation for each sub-shape. Instead, for such spaces, the sensor
perimeters technique is more appropriate since this technique determines the
number of nodes in each perimeter, one perimeter at a time, irrespective of
the size or shape of the rest of the space.

4.4.2 Sensor Perimeters Node Density

The sensor perimeters technique involves the creation of sensor perimeters
which will consist of multiple nodes, whose coverage area will meet that of
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neighbouring nodes, resulting in an unbroken perimeter of sensor coverage.
The sensor perimeters denoted as Pi, are created by starting at Cartesian
coordinates (0,0) of the space perimeter, for example, the interior walls, then
moving a distance equal to the node sensor range, r and starting to create a
virtual perimeter parallel to the interior wall, this virtual perimeter stops
distance r from the next wall or an obstacle. Then, turning parallel to the
next section of the interior wall (or obstacle), the next segment of the
perimeter is created. These steps are repeated for all interior edges of the
space until a virtual closed perimeter is created. Along this new
perimeter, P1, nodes are then positioned, starting at co-ordinates (0+r,0) and
separated by distance referred to as ‘node spacing’, denoted Ns. To create an
unbroken perimeter, the node spacing should be a minimum distance r and
a maximum distance of 2r. If the node spacing is equal to the distance r,
there is some overlap of node coverage areas, as illustrated in Fig. 4.2,
deployment (e). This deployment is referred to as overlapping sensor
perimeters. If the node spacing is equal to distance 2r, the next node’s
coverage area meets that of the previous node without any overlap, as
illustrated in Fig. 4.2, deployment (b). This deployment is referred to as
sensor perimeters.

Next, staying parallel to the first sensor perimeter P1, but moving
distance Ns towards the centre of the space, a second sensor perimeter,
denoted P2, is created. If distance Ns from the previous sensor perimeter is
beyond the centre of the space, no further perimeters will be created. If the
second perimeter is created, then nodes are positioned along it. This process
is repeated, creating a total of k sensing perimeters, the inner-most sensing
perimeter will be denoted Pk. The k perimeter, or partial perimeter, may be
positioned right at the centre of the space. Eq. 4.8 is the number of
perimeters. The sensor density for sensor perimeters deployed in a
square-shaped space is given by Eq. 4.9.

k =

⌈
l − 2r
2Ns

⌉
, f or k ∈N (4.8)

SSP = 4m
p=k

∑
p=1

⌈
l − 2r(2p− 1) + λ

2r

⌉
(4.9)

for l == (2r(2k− 1) + λ) : SSP = SSP + m
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where k is the number of sensor perimeters, Ns is the node spacing, SSP is
the sensor density when deploying a sensor perimeter in a square-shaped
space, p is the current sensor perimeter. Note the additional line of Eq. 4.9,
such that if the length of the space is equal to (2r(2k− 1) + λ), an additional
node is placed at the centre of the space.

An equation can be derived for other regularly shaped internal spaces,
including rectangular, circular and right-angled polygons. The node density
of a rectangular space is given in Eqs. 4.10 and 4.13.

SRl = m
p=k

∑
p=1

⌈
l − 2r(2p− 1) + λl

2r

⌉
(4.10)

for l == (2r(2k− 1) + λl) : SRl = SRl + m

SRw = m
p=k

∑
p=1

⌈
w− 2r(2p− 1) + λw

2r

⌉
(4.11)

for w == (2r(2k− 1) + λw) : SRw = SRw + m

SRP = 2SRl + 2SRw (4.12)

∴ SRP = 2m

(
p=k

∑
p=1

⌈
l − 2r(2p− 1) + λl

2r

⌉
+

p=k

∑
p=1

⌈
w− 2r(2p− 1) + λw

2r

⌉ )
(4.13)

for l == (2r(2k− 1) + λl) : SRP = SRP + m

for w == (2r(2k− 1) + λw) : SRP = SRP + m

where SRl and SRw are the sensor densities along the length and width of the
sensor perimeters respectively and SRP is the sensor density in a rectangular-
shaped space, based on a sensor perimeters deployment and p is the current
perimeter.
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The sensor density in a circular space, SCP, is given as Eq. 4.14.

SCP = m
p=k

∑
p=1

⌈
2πR− 2r(2p− 1) + λc

2r

⌉
for 2πR == (2r(2k− 1) + λc) : SCP = SCP + m (4.14)

where SCP is the sensor density when deploying a sensor perimeter in a
circular shaped space, C is the circumference of the circular space, R is the
radius of the circular space.

The sensor density for a right-angled polygon-shaped space is given as
Eq. 4.15. Three examples of a perimeter deployment are illustrated in
Fig. 4.4, where not all of the perimeters are complete closed perimeters like
those created in the previous spaces. In this figure, different coloured
squares denote the (2r)2 grid squares, into which each node is placed. Each
colour/shape is used to highlight a different perimeter. The numbers inside
the squares denote the number of nodes placed along each edge of the
perimeter, the numbers are not otherwise significant.

FIGURE 4.4: Pictorial view of sensor perimeter deployment in
different polygon shaped spaces
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SPP = m
p=k

∑
p=1

( x=Xtotal

∑
x=1

⌈
lx − 2r(2p− 1) + λx

2r

⌉ )
(4.15)

for lx == (2r(2k− 1) + λ) : SPP = SPP + m

where SPP is the sensor density when deploying a sensor perimeter in a
polygon-shaped space, x is the current edge, Xtotal is the total number edges
in the space, p is the current perimeter, lx is the length of edge x and λx is
the constant based on length of x.

To determine sensor density for the sensor perimeters deployment in spaces
that are right-angled polygons, Algorithms 1 and 3, are proposed.

Algorithm 1: Determine lambdaVector
Input: lengthVector, r
Result: lambdaVector, vectorSize

1 Initialisation: loopVector, lambdaVector = [ ]
2 Begin:
3 vectorSize = Size(lengthVector)
4 for element=0 to vectorSize -1 do
5 element = element + 1
6 l = lengthVector[element]
7 i = 1
8 while loopVector[element] = 0 do
9 if 2ir ≥ l > 2ir− r then

10 lambdaVector[element] = 0
11 loopVector[element] = 1
12 end
13 else if 2ir− r ≥ l > 2ir− 2r then
14 lambdaVector[element] = 2ir− l
15 loopVector[element] = 1
16 end
17 else
18 i = i + 1
19 end
20 end
21 end
22 return lambdaVector, vectorSize
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Algorithm 2: Determine the longest dimension in lengthVector
Input: lengthVector, vectorSize
Result: lengthMax

1 Initialisation: lengthMax = 0
2 Begin:
3 for i = 1 to vectorSize− 1 do
4 if lengthMax < lengthVector[i] then
5 lengthMax = lengthVector[i]
6 end
7 i = i + 1
8 end
9 return lengthMax

Algorithm 3: Determine total number of nodes
Input: lengthVector, r, lengthMax, vectorSize, lamdaVector, m
Result: SPP

1 Initialisation: SPP = Sx = 0
2 Begin:
3 k = lengthMax−2r

4r
4 for p = 1 to k do
5 Sp = 0
6 for x = 0 to vectorSize− 1 do
7 lx = lengthVector[x]
8 λx = lambdaVector[x]

9 Sx =

⌈
lx−2r(2p−1)+λx

2r

⌉
10 Sp = Sp + Sx
11 if lx == 2r(2p− 1) + λx then
12 Sp = Sp + 1
13 end
14 x = x + 1
15 end
16 SPP = SPP + Sp
17 p = p + 1
18 end
19 SPP = m SPP
20 return SPP
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4.4.3 Sensor Hexagons Node Density

The alternative hexagonal deployment is different from a sensor grid, or
sensor perimeter. The sensor hexagons technique positions sensor nodes
closer to each other, such that if the floor of a building is considered in terms
of the xy axis, it can be seen that along the y−columns, the nodes are spaced
as before, with y−axis node spacing, denoted Ns-y = 2r, but along the
x−rows, the nodes are closer together. The node spacing along the x−axis,
denoted Ns-x, is given as Eq. 4.16. Fig. 4.5 shows that the spacing between
two nodes is equal to distance c and a is equal to the node coverage range r.

c2 = a2 + b2 ∴ b =
√

c2 − a2

a = r; c = 2r; and b = Ns-x

∴ Ns-x =
√
(2r)2 − r2 = r

√
3 (4.16)

FIGURE 4.5: Spacing of nodes in sensor hexagons

Using different node spacing in the x and y dimensions, the sensor density
can be calculated for the sensor hexagons deployment. This equation is
derived from Eq. 4.12 and based on determining the number of nodes in
each column, multiplied by the number nodes in each row, plus an
additional node for every alternative row. The additional node is required
because the nodes in the even rows are shifted down a distance of r, creating
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a gap between the space’s interior perimeter and the top node’s coverage
area. The sensor density of the sensor hexagon deployment in a
rectangular-shaped space is given as Eq. 4.17. The constant λwH is defined
in Eq. 4.18.

SRH = m

(⌈
l + λl

2r

⌉⌈
w + λwH

r
√

3

⌉
+

[
w

2r
√

3

])
(4.17)

if ((2r + r
√

3(iwH − 1)) ≥ w > (r + r
√

3(iwH − 1))) :

λwH = 0

else (4.18)

λwH = r + r
√

3(iwH − 1)

where λwH is a constant and iwH is an incremental index, where iwH ∈N1.

4.5 Space Coverage

It is always useful to know what proportion of the building is being
monitored. This can be used as a measure of the quality of service of a
sensor network [99] and is referred to as ‘Space Coverage’. Space coverage
is based on the node coverage area, the number of nodes, denoted n and
their position with respect to neighbouring nodes and the space’s perimeter.
The number of nodes and their positions are directly related to the
deployment technique. As mentioned before, in this work, it has been
assumed that the nodes are positioned on the ceiling and have a conical
shaped coverage volume, which terminates on the floor in a circular
coverage area. All of the nodes are assumed to have the same node coverage
range, denoted r. Considering the non-overlapping deployments, the space
coverage, denoted SC, is based on the total coverage area delivered by n
divided by the total floor area, denoted Atot.

SC =
ACn
Atot

=
nπr2

Atot
(4.19)
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where AC is the area of a circle with radius r, which is assumed to be equal
to the coverage area of each node. The space coverage that can be achieved
by different deployments is examined in Subsection 4.5.1 for the sensor grid
and sensor hexagons deployments.

4.5.1 Sensor Grid Coverage

Based on a sensor grid deployment, the space coverage for a square space,
SCSG, is as Eq. 4.20 and for a rectangular space, SCRG, in Eq. 4.21.

SCSG =
ACn
AS

=
nπr2

l2 (4.20)

SCRG =
ACn
AR

=
nπr2

lw
(4.21)

In the following, an example deployment will be considered: If a square
shaped space with a length l = 2 units, is monitored with a sensor grid
deployment, where each node has a sensing range r = l/4 units, the
number of nodes, SSG, can be determined using Eq. 4.5 based on m = 1,
l = 2, r = l

4 and λ = 0.

Eq. 4.5:

SSG = m

⌈
l + λ

2r

⌉
2 = 1

⌈
4l + 0

2l

⌉
2 = 4

Now, using the space coverage Eq. 4.20, variable n is replaced with sensor
grid density, SSG, as shown in Eq. 4.22.

SCG =
nπr2

l2 =
4π(l/4)2

l2

SCG =
4πl2

16l2 =
4π

16
=

π

4
= 0.7854 = 78.54% (4.22)

In this example and Eq. 4.22, space coverage is shown to be 78.54% of the
space that is being monitored by the sensors, based on using the sensor grid
or sensor perimeter deployment. The sensor hexagon technique should



Chapter 4. WSN Deployments for Building Monitoring 64

theoretically achieve a higher rate of space coverage since it deploys more
sensor nodes, positioned more closely together. This theory will be
examined in Section 4.5.2.

4.5.2 Sensor Hexagons Coverage

In sensor hexagons deployment, sensors are packed more densely into the
monitored space. Using the space coverage Eqs. 4.19 and 4.21, the sensor
hexagons space coverage can be calculated. Here, it is assumed that the space
is infinitely large, or the sensors have infinitely small node radii. Although
these assumptions are not achievable, the conditions are effectively met if the
hexagonal node coverage is allowed to overlap the edges of the space. These
conditions mean that the monitored space is filled with hexagons, such that
Eq. 4.23 is true.

SCH =
AC n Circles within Hexagon

AH
(4.23)

A hexagon is comprised of 12 right angle triangles, as shown in Fig. 4.6.
Using the x−axis node spacing, Ns-x in Eq. 4.16, the area of a single triangle,
denoted AT, is given as Eq. 4.24, followed by the area of the hexagon,
denoted AH, in Eq. 4.25.

FIGURE 4.6: Spacing of nodes in sensor hexagons

AT =
1
2

B H =
1
2

ab =
1
2

ar
√

3 =
1
2

r2
√

3 (4.24)
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AH = 12AT = 12
1
2

r2
√

3 = 6r2
√

3 (4.25)

Again referring to Fig. 4.6, the node coverage areas are represented by circles.
It can be seen that in a hexagon, there is one full circle and one-third of six
additional circles, i.e., the partial node coverage areas of the six neighbouring
nodes. Eq. 4.26 determines the number of nodes, n, in a hexagon.

n = 1 +
6
3
= 3 (4.26)

Eqs. 4.23 and 4.26, are applied to create Eq. 4.27, the sensor coverage, SCH,
that can be achieved by the sensor hexagons deployment.

SCH =
3Acircle

6r2
√

3
=

3πr2

6r2
√

3
=

π

2
√

3
= 90.69% (4.27)

The maximum space coverage that can be achieved with the sensor hexagons
deployment is 90.69%, achieved based on using more sensors that the sensor
grid deployment, which only achieves space coverage of 78.54%. The ratio
of sensor density for each technique is explored in Section 4.5.3.

4.5.3 Node Density of Sensor Grid Versus Sensor Hexagons

Eqs. 4.28 to 4.31 are the ratio between the sensor density for the sensor grid
deployment and the sensor hexagon deployment, based on Eq. 4.6 and 4.17.

Eq. 4.6:

SRG = m

⌈
l + λl

2r

⌉⌈
w + λw

2r

⌉

∴

⌈
l + λl

2r

⌉
=

SRG

m

⌈
w+λw

2r

⌉ (4.28)
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Eq. 4.17:

SRH = m

(⌈
l + λl

2r

⌉⌈
w + λw

r
√

3

⌉
+

[
w

2.1r
√

3

])

∴ SRH = m

(⌈
SRG

m

⌈
w+λw

2r

⌉⌉⌈w + λw

r
√

3

⌉
+

[
w

2r
√

3

])

SRH = m

(
SRG

m

⌈
2r

w + λw

⌉⌈
w + λw

r
√

3

⌉
+

[
w

2r
√

3

])

SRH = m

(
SRG

m
2√
3
+

[
w

2r
√

3

])
(4.29)

∴ SRH =
2SRG√

3
+ m

[
w

2r
√

3

]
(4.30)

It should be noted, this ratio is now independent of the shape of the space,
such that:

SH =
2SG√

3
+ m

[
w

2r
√

3

]
(4.31)

The relationship between sensor density in the sensor hexagons and sensor
grid is approximately 2√

3
, or 115.47% that of the sensor grid. This means

approximately 15.47% more sensors are required for the sensor hexagon
deployment compared to the sensor grid or sensor perimeter deployment.
In Section 4.6, these three deployment techniques will be developed further
to include overlapping node coverage.
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4.6 Overlapping Node Coverage Deployment

Techniques

The sensor network deployment techniques investigated above did not allow
any overlap of the node coverage areas between neighbouring nodes. This
section will build upon the sensor grid, sensor perimeter and sensor hexagon
deployment techniques to allow node coverage area overlap. The advantage
of allowing overlap is that there will be less unmonitored area in the building.
The disadvantage is the increase in sensor density, resulting in an increase in
hardware cost and system complexity.

4.6.1 Overlapping Sensor Grid

For sensor grid and sensor perimeters deployments, the node
spacing, Ns = 2r. This spacing will now be altered to allow node coverage
overlap. The value of r, will remain the same, but the size of the grid
squares will be altered, such that the grid square will sit completely inside
the circular node coverage area, as illustrated in Fig. 4.7. The new node
spacing, Nso, is given as Eq. 4.32 and the sensor density, SRGo, in Eq. 4.33.

FIGURE 4.7: Spacing of nodes in overlapping sensor grid and
sensor hexagons deployments



Chapter 4. WSN Deployments for Building Monitoring 68

c2 = a2 + b2 = 2a2 ∴ a =
c√
2

a = b; c = r; Nso = 2a

∴ Nso = r
√

2 (4.32)

SRGo = m

(⌈
l + λl

Nso

⌉⌈
w + λw

Nso

⌉)

SRGo = m

(⌈
l + λl

r
√

2

⌉⌈
w + λw

r
√

2

⌉)
(4.33)

The ratio between the sensor density for a sensor grid and overlapping
sensor grid is shown in Eq. 4.34. The maximum space coverage that can be
achieved with all three of the overlapping deployment techniques is 100%
because there are no coverage gaps between neighbouring nodes.

m

(⌈
l + λl

r
√

2

⌉⌈
w + λw

r
√

2

⌉)
: m

(⌈
l + λl

2r

⌉⌈
w + λw

2r

⌉)
∴ SGo = 2SG (4.34)

4.6.2 Overlapping Sensor Perimeters

Eq. 4.35 is the sensor density for the overlapping sensor perimeters, SPPo.

SPPo = m
p=k

∑
p=1

( x=Xtotal

∑
x=1

⌈
lx − Nso(2p− 1) + λx

Nso

⌉ )
for lx == (Nso(2k− 1) + λ) : SPPo = SPPo + m

SPPo = m
p=k

∑
p=1

( x=Xtotal

∑
x=1

⌈
lx − r

√
2(2p− 1) + λx

r
√

2

⌉ )
for lx == (r

√
2(2k− 1) + λ) : SPPo = SPPo + m (4.35)
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The ratio between the sensor density of a sensor perimeter and an
overlapping sensor perimeter is given as Eq. 4.36.

SPo ∼ SP
√

2 (4.36)

4.6.3 Overlapping Sensor Hexagons

The relationship between the sensor density of sensor hexagons and
overlapping sensor hexagons is not linear like that of the grid and perimeter
techniques. This is because of the different x−axis and y−axis node spacing
in the sensor hexagons deployment. For the sensor hexagons, the y−axis
node spacing was Ns-y = 2r. The x−axis node spacing was Ns-x = r

√
3. For

the overlapping sensor hexagons deployment, the x−axis and y−axis node
spacing will be equal. To allow coverage overlap without any gaps, the
node spacing should be between r and r

√
3 as shown in Eq. 4.37.

r
√

3 ≥ NsHo ≥ r (4.37)

To achieve the minimum sensor density, there should be minimal coverage
overlap, so the node spacing is defined as NsHo = r

√
3. The sensor density,

SRHo, for the overlapping sensor hexagon deployment is given as Eq. 4.38.

SRHo = m

(⌈
l + λl

Ns-y

⌉⌈
w + λw

Ns-x

⌉
+

[
w

2Ns-x

])

SRHo = m

(⌈
l + λl

r
√

3

⌉⌈
w + λw

r
√

3

⌉
+

[
w

2r
√

3

])
(4.38)

The ratio between the sensor hexagons and overlapping sensor hexagons
deployments is shown in Eq. 4.39. Also, Eq. 4.40 is the ratio between the
density of the overlapping sensor grid and the overlapping sensor hexagons

deployment. The ratio is just over
√

2
3 , or 81.65% (plus the additional nodes

which are added to each even column of the overlapping sensor hexagons),
meaning the overlapping sensor hexagon deployment requires
approximately 81% of the sensors in the overlapping grid or overlapping



Chapter 4. WSN Deployments for Building Monitoring 70

sensor perimeters deployments.

SRHo : SRH

m

(⌈
l + λl

r
√

3

⌉⌈
w + λw

r
√

3

⌉
+

[
w

2r
√

3

])
: m

(⌈
l + λl

2r

⌉⌈
w + λw

r
√

3

⌉
+

[
w

2r
√

3

])
(4.39)

SRHo : SGo

m

(⌈
l + λl

r
√

3

⌉⌈
w + λw

r
√

3

⌉)
+ m

[
w

2r
√

3

]
: m

(⌈
l + λl

r
√

2

⌉⌈
w + λw

r
√

2

⌉)

∴ SHo = SGo

√
2
3
+ m

[
w
3r

]
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4.7 Evaluation of WSN Deployment Techniques

To evaluate the WSN deployment techniques, each of the networks are
simulated using the MIoTs building simulation tool. MIoTs was developed
for this work and is described in Chapter 3. MIoTs determines the position
of nodes, generates building data and captures building data using for a
number of sensors. Firstly, the simulated deployments are evaluated based
on the sensor density, space coverage and sensor coverage overlap.
Secondly, the deployments are evaluated regarding the ability to accurately
capture multimodal building data and detect occupants, both compared to
the simulated ground truth building data.

For this evaluation, two MIoTs variables are changed; pack_scheme and
overlapped. All of the other variables are kept constant. The MIoTs variables
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are detailed in Chapter 3, but for this evaluation they are defined as:

initial_n_people = 0 (4.41)

n_people_min = 0

n_people_max = 200

moving_in_room_prob = 0.1

change_room_prob = 0.08

in_prob = 0.8

out_prob = 0.8

in_time = 8

out_time = 17

n_in_at_time = 20

n_out_at_time = 20

random_in_out_prob = 0.05

n_measure_per_epoch = 30

n_epoch = 24

sensor_range = 4

r = Room([0, 0, 40, 40], [0, 40, 40, 0])

The different sensor networks are deployed in a large single room
measuring 40m × 40m. A room of this size is selected. Each sensor node
contains a single IRS, PIRS and CO2S. The simulated sensors are all
modelled with a conical sensor range r = 4m which is based on a sensor
with a FOV of 110° deployed at a height of 3m, like PIRS model
HC-SR501 [144]. Four different deployment techniques are compared
including the sensor grid and overlapping sensor grid using variables
packing_scheme = square, overlapped = False or True respectively; or sensor
hexagons and overlapping sensor hexagons using variable
packing_scheme = hexagon, overlapped = False or True respectively. The
sensor perimeters and overlapping sensor perimeters are not evaluated
since the deployment in a square-shaped space is identical to the sensor grid
and overlapping sensor grid, respectively. For all MIoTs evaluations, the
simulation is repeated ten times and average data are recorded.
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4.7.1 Evaluation 1: Node density, coverage and overlap

The aim of this first evaluation is to use MIoTs to compare the physical
differences of the network based on deployment techniques. The
characteristics that are compared include the simulated node density, node
position, total sensor coverage and total amount of sensor coverage overlap.

The four different network deployments are shown in Figs. 4.8a to 4.8d. The
shaded areas show the combined coverage areas of each node. The areas of
overlap are visible as slightly darker shaded regions. The sensor nodes are
only effective within the room that they are deployed, hence the areas of node
coverage that overlap the perimeter of the room are shown for illustration
purposes only.

(A) Sensor grid deployment (B) Overlapping sensor grid deployment

(C) Sensor hexagons deployment (D) Overlapping sensor hexagons
deployment

FIGURE 4.8: Horizontal view of 4 WSN deployments
illustrating regions of node coverage

Regarding the cost of the deployment for this 1600m2 room; the sensor grid
requires the lowest number of sensor nodes, 25. The sensor hexagons
requires 33 nodes, that is 32% more than the sensor grid deployment. The
sensor hexagons deployment requires 49 nodes, an increase of 96% and the
overlapping sensor hexagons deployment requires 56 nodes, an increase
of 124% on the sensor grid deployment. So, considering just the hardware
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costs, the overlapping sensor grid costs more than double that of the sensor
grid. The sensor grid achieves the lowest level of space coverage,
leaving 21% of the room unmonitored, but it also has no sensor coverage
overlap. This is followed by the sensor hexagon which achieves a higher
level of coverage, monitoring 88% of the room, also with no sensor coverage
overlap.

In comparison, the overlapping sensor grid and overlapping sensor
hexagons deployments both achieve very high space coverage, leaving just
3.2% and 2.3% of the room uncovered respectively. To achieve this high
coverage, both techniques also have a significant amount of sensor coverage
overlap, resulting in some coverage redundancy. Redundancy may be
necessary for some critical WSN deployments to ensure that no data are
missed. But for the purpose and nature of building monitoring, coverage
redundancy is not necessary.

Tables 4.1 summarises the physical features of the different network
deployments including the node density, sensor density, space coverage and
sensor overlap. This evaluation supports the findings of Section 4.4 to 4.6
and demonstrates that the sensor grid deployment requires the lowest
number of nodes, followed by and the sensor hexagons deployment which
required 32% more nodes. In comparison, the overlapping sensor hexagons
deployment required 96% more nodes and the overlapping sensor grid
124% more. Based solely on hardware costs, the sensor grid or sensor
hexagon deployment create the optimal network. The next evaluation, will
study the impact of the network deployment technique on data collection.

TABLE 4.1: Comparison of sensor network features based on
deployment techniques

Sensor Grid Overlapping
Sensor Grid

Sensor
Hexagons

Overlapping
Sensor
Hexagons

Node density 25 56 33 49

Sensor density 75 168 99 147

Space
coverage (m2)

1256.64
(78.54%)

1548.50
(96.78%)

1413.72
(88.36%)

1562.24
(97.64%)

Sensor
overlap (m2)

0 1139.52
(71.22%)

314.16
(19.64%)

900.77
(56.30%)
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4.7.2 Evaluation 2: Data collection

The aim of this second evaluation is to determine if different network
deployment techniques affect the accuracy of capturing building and
occupancy data. This is determined by comparing

1. the simulated ground truth building against the simulated captured
building data (PIRS and CO2S data) and

2. the simulated ground truth occupant data against the simulated
captured IRS data which is processed to determine occupancy.

4.7.2.1 Evaluation of PIRS data

PIRS detect the movement of heat particles, which enables them to be used
to detect occupants. As mentioned in Section 2.2, these sensors are not able
to detect stationary occupants. PIRS generally demonstrate an accuracy
around 60− 70% to indicate the presence of an occupant. In this evaluation,
during working hours, simulated occupant levels increase from 0 to 200
occupants very quickly. The level of occupants remains quite constant until
it drops back to 0 at the end of the day. This means that during working
hours, within the coverage area of each node there are between 4 − 16
occupants1. As such, based on this high level of occupancy there is a high
level of occupant movement, resulting in the the PIRS constantly detecting
this movement causing the PIRS to achieve 100% accuracy. This PIRS
performance is demonstrated by all of the deployments. This high level of
performance is more a reflection of the high density of occupants, rather
than the performance of PIRS or the deployment techniques. It is expected
that for a lower density of occupants, the performance of the PIR would be
more closely aligned with the expected level of performance.

4.7.2.2 Evaluation of CO2S data

For a large room with high maximum occupancy, a ventilation system is
required to maintain occupant comfort levels. This is particularly true for
CO2, which would quickly rise to dangerous levels if an unventilated room
was filled with 200 occupants. The behaviour of a mechanical ventilation
system is modelled by the simulation tool. As such, the simulated CO2 level
is dependant upon the level of ventilation, as well as the number of

1Where 4 is calculated based on 200 occupants being equally spaced between 49 nodes.
16 is based on each occupant requiring a workspace of 4m2.
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occupants in the room. In this evaluation, the level of ventilation and the
number of occupants are identical for each simulation. The
detected CO2 data are shown in Figs. 4.9a to 4.9d. These figures illustrate
that across all four deployments the CO2 levels rise throughout the day
until a maximum level is reached. This demonstrates that the level of CO2is
measured is not affected by the type of WSN deployment.

(A) Detected CO2 level in sensor grid (B) Detected CO2 level in overlapping
sensor grid

(C) Detected CO2 level in sensor
hexagons (D) Detected CO2 level in overlapping

sensor hexagons

FIGURE 4.9: Graphs showing the detected CO2 level and the
number of occupants for each WSN deployment

4.7.2.3 Evaluation of IRS data

To determine the level of occupancy, the simulated thermal IRS data that is
output by MIoTs is separately processed using the blob detection function
which is part of the Python OpenCV image processing library. The blob
detection process is utilised to count regions of heat within each IR image to
determine the detected occupant number within the IRS’s coverage
area [64]. The accuracy of the detected occupancy number, α, is calculated
based on xAi, which is the actual occupant number at each instance i, xDi,
the detected occupant number at each instance i and n the number of
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instances:

α = 1− 1
n

i=n

∑
i=1

|xAi − xDi|
xAi

(4.42)

The actual number of occupants and the detected number are shown in
Figs. 4.10a to 4.10d. The sensor grid deployment achieves an accuracy
of 81.2% when comparing the number of detected occupants against actual.
This deployment offers the lowest level of space coverage at 78% which
means that just over 21% of the room is unmonitored. As a result of these
unmonitored areas, occupants in these areas are not being detected, causing
under-counting. The hexagonal deployment achieves a higher accuracy
of 91.7%, but it is still slightly under-counting the occupants. The
improvement in occupant counting accuracy between the two deployments
is due to this deployment achieving higher space coverage, over 88%.

The overlapping hexagon deployment detects approximately 227 − 275
occupants, counting up to 37.5% more occupants than are present and
achieving an accuracy of 70.3%. The overlapping grid deployment detects
approximately 289 − 339 occupants, over-counting by as much as 69.5%,
achieving an accuracy of 40.9%. Generally, network redundancy improves
the accuracy of data capture, but in this scenario the drop in the accuracy is
a direct result of the sensor coverage overlap combined with the blob
detection process. For the network deployments with large areas of sensor
coverage overlap, the coverage overlap, combined with the blob detection
process has led to heat regions being counted multiple times, which in turn
has led to errors in determining the number of occupants. The sensor grid
and sensor hexagons deployments do not have any areas of coverage
overlap, but in comparison, the two overlapping deployments have a
significant amount of coverage overlap. To enable accurate occupant
numbers to be detected, for the sensor grid and sensor hexagons
deployments, the sensor coverage gaps need to be reduced. For the
overlapping deployment techniques, an alternative process to count
occupants would need to be developed which prevents the double-counting
of detected occupants.

Table 4.2 summarises the performance data collection for the different
sensor networks, demonstrating that the sensor grid and sensor hexagon
deployment achieve the best overall performance.
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(A) Detected occupants in sensor grid (B) Detected occupants in overlapping
sensor grid

(C) Detected occupants in sensor
hexagons

(D) Detected occupants overlapping
sensor hexagons

FIGURE 4.10: Graphs showing the actual number of occupants
compared with the detected number for each WSN
deployment

TABLE 4.2: Comparison of the performance of sensor data
based on deployment techniques

Sensor
Grid (%)

Overlapping
Sensor Grid
(%)

Sensor
Hexagons
(%)

Overlapping
Sensor
Hexagons (%)

IRS (blob
detection) 81.2 40.9 91.7 70.4

PIRS 100 100 100 100
CO2 100 100 100 100

4.8 Chapter Summary

In this chapter, a number of sensor network deployment techniques were
presented. Algorithms were proposed to determine the attributes of the
different deployments including the sensor node density and space
coverage. In addition, each WSN was simulated using the MIoTs simulation
tool to allow further analysis of the different deployment techniques. The
network performance was assessed by studying the simulated sensor data
from PIRS, IRS and CO2S and using this data to detect and count occupants.
The deployments were evaluated based on the hardware cost and network



Chapter 4. WSN Deployments for Building Monitoring 78

performance.

Based on the evaluation of the different WSN deployment techniques, the
sensor grid and sensor hexagons deployments were found to be optimal
both in terms of having the lowest hardware cost and for accurately
monitoring occupants and building comfort levels. The hardware cost was
similar for both deployments; for a room 40m × 40m the sensor grid
deployment required 25 nodes and the sensor hexagons deployment
required 32% more nodes. These deployments achieved more than 78%
and 88% space coverage respectively, with no coverage overlap between
neighbouring nodes. Both deployments did create a small amount of
redundant coverage overlap around the perimeter of the room. Utilising the
blob detection image processing function, both deployments achieved over
81% and 91% occupancy accuracy respectively. In comparison, the two
overlapping sensor deployments required significantly more hardware and
when the blob detection function was applied to the sensor data simulated
for these deployments, the processed data delivered a significant reduction
in occupancy accuracy. This reduction in performance is counter intuitive
due to increased in the amount of data that was captured, but was a result of
the blob detection function double counting occupants that were detected in
regions of coverage overlap between neighbouring nodes. To improve the
accuracy of detected occupancy levels a different method of processing the
IRS data would be required. The performance of the PIRS and CO2S were
not affected by the different deployment techniques.
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Chapter 5

A Deep Neural Network for
Edge-based Occupancy Detection

5.1 Introduction

In the previous chapter, a number of WSN deployment techniques were
evaluated. They demonstrated some errors when monitoring occupancy
levels. This chapter will investigate if ML techniques can be used to
improve the accuracy of occupancy detection. The system that has been
developed is the Deep Neural Network Occupancy detection Thermal
Edge-based system, referred to as DeNNOTE. It has been developed with
SMEs operating in small commercial buildings in mind, to enable a
reduction in energy consumption within their buildings. The DeNNOTE
system will enable an increased temporal match between occupant presence
and energy-consuming systems, including heating and lighting [64]. To
make the system accessible to SMEs, the system costs will be kept low. Also,
SMEs may not have access to a powerful workstation or server such as the
type of machine which are typically used to train and test a ML model. To
mirror these limitations the complete DeNNOTE life cycle will be carried
out on an edge device. This life cycle includes train and test data collection,
data preprocessing, ML model training, model testing, model optimisation,
DeNNOTE system testing and finally DeNNOTE system deployment. The
DeNNOTE system will determine whether occupants are present or not,
rather than counting occupants which complements the most common type
of heating systems found in SME buildings; a boiler and radiators. This
determination of occupants being present or absent will keep system
complexity to a minimum, further reducing system costs.

The DeNNOTE system is an IoT sensor-based system which utilises ML to
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determine occupancy using IR thermal data. The thermal data will be
captured using an IRS. IRS offer a number of significant advantages
compared to other sensors. Firstly, IRS do not require user agreement or
participation, unlike communication or phone based systems. Unlike other
image-based systems, IRS create IR thermal images not photographic
images and so do not introduce privacy issues. IRS can detect occupants in
real-time, in comparison to gas sensors which create a time lag. Finally, IRS
can detect occupants irrespective of whether they are stationary or moving,
in comparison to commonly used PIRS, which can only detect moving
occupants. As part of this research, a number of different ML techniques
were trialled on the edge device. It was determined that the most suitable
was a feed-forward DNN due to the vast amount of development support
available through edge-based Open Source software, the flexibility of DNNs
such that a model can be developed which performs well with thermal data
that has received minimal preprocessing and the edge device being able to
meet the processing requirements to define, compile, train, validate, test and
deploy a DNN. The software includes the TensorFlow Open Source AI tool
installed on the Raspberry Pi edge device. Python scripts executed on the
Raspberry Pi are used for data capture and once the system is deployed, to
enable control of building heating and lighting.

The DNN model is tested in multiple internal building environments, with
varying room layouts and occupancy patterns. Across these environments
the model demonstrates a high generalisation ability1, creating confidence
that it will also function optimally in new building environments.

This chapter makes a number of contributions which includes the
DeNNOTE occupancy detection system and the DNN model architecture to
solve the problem of occupancy detection within a building. The full data
set comprising of building monitoring and occupancy data from three
environments which will be published. The methodology to determine the
most suitable data set for DNN model training, validation and testing, as
well as the optimal DNN model hyperparameters to solve the given
problem.

The layout of the remainder of this chapter includes the proposed DNN
architecture, which is defined in Section 5.2. The process of occupancy

1Generalisation ability refers to a model’s ability to accurately interpret new and unseen
data. From this point onward, it will refer specifically to this model’s ability to interpret test
data that was captured in a new building environment relative to the training environment.
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classification is explained in Section 5.3 including the hardware, software,
data capture, data preprocessing and optimisation of the DNN. The
evaluation of the system is carried out in Section 5.4. In Section 5.5, the
DeNNOTE system is deployed using the WSN positioning techniques
introduced in Chapter 4 and the performance of the deployments are
evaluated. Section 5.6 is the Chapter Summary.

5.2 DeNNOTE Architecture

The concept of occupancy detection is introduced in Section 2.2. Here, it
is formulated as a binary classification problem and a DNN architecture is
used to learn the discriminating features of IR image data, X ∈ Ra×c×d×e, in
a supervised manner using the corresponding ground-truth labels, y ∈ Ra.
Throughout this work, boldface uppercase alphabets and boldface lower case
alphabets represent matrices and column vectors respectively; a batch size of
IR image data; c image width; d image height; and e image channels.

The proposed DNN architecture presented in Algorithm 4 is comprised of a
flatten layer, two dense hidden layers and a dense output layer. The flatten
layer transforms the dimension of a sample of X from 1× c× d× e into 1× g
as stated in Eq. 5.1. Different numbers of hidden layers were explored, but it
was determined that two hidden layers was optimal in terms of performance
and processing requirements.

f = β (X), (5.1)

where g = c × d × e; and β(·) is the flatten function. The first dense layer
transforms the flattened batch of IR image data using a weight matrix, W1 ∈
Rg×g, a bias vector, b1 ∈ R1×g and an activation function, σ1 (·), as stated in
Eq. 5.2.

h1 = σ1 (f ·W1 + b1), (5.2)

The second dense layer transforms the output of the first hidden layer using
a weight matrix, W2 ∈ Rg×g, a bias vector, b2 ∈ R1×g and an activation
function, σ2(·), as stated in Eq. 5.3.

h2 = σ2 (h1 ·W2 + b2), (5.3)
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The output layer transforms the output of the second hidden layer using an
activation function, φ (·), as stated in Eq. 5.4.

ỹ = φ (h2), (5.4)

where ỹ is the labels predicted by the DNN model. The difference between ỹ
and y is given by Eq. 5.5.

L =
n

∑
k=1

θ(yk, ỹk), (5.5)

where θ is a sparse categorical cross-entropy loss function; and n is the
number of samples in a batch of IR image data. In order to minimise loss,
the trainable parameters of the DNN model are adjusted over u epochs
based on the current loss score, L, using an efficient first-order stochastic
gradient descent function named Adam, ψ, [145] as stated in Eq. 5.6.

W
′
(·), b

′
(·) = ψ

(
L, W(·), b(·)

)
, (5.6)

where W(·) are the previous weight matrices; W
′
(·) are the new weight

matrices; b(·) are the previous bias vectors; and b
′
(·) are the new bias vectors.

Algorithm 4: DNN Algorithm
1 f = β(X)
2 for i = 1 to u do
3 for k = 1 to n do
4 h1i,k = σ1 (fk ·W1i + b1i)
5 h2i,k = σ2 (h1i,k ·W2i + b2i)
6 ỹi,k = φ (h2i,k)

7 Li,k = θ(yi,k, ỹi,k)

8 end

9 Li =
n

∑
k=1

Li,k W
′
i(·), b

′
i(·) = ψ

(
Li, Wi(·), b(i·)

)
10 end

11 L =
u

∑
i=1

Li

5.3 Process of Occupancy Classification

In this Section, we develop the process of occupancy classification which
includes IR image capturing, data preprocessing and optimisation of the
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DNN model. The system is implemented on a Raspberry Pi 3B+ and its
output signal is sent to the heating and lighting within the building. The
flowchart of the DeNNOTE system process is shown in Fig. 5.2.

5.3.1 System Hardware and Software

The DeNNOTE system includes four types of sensors and a processor. The
thermal data collected by the IRS will be used to train the DNN, the other
multimode data is not used by the initial DeNNOTE system, but in the later
versions which are detailed in Chapter 6. The sensors include the
MLX90640 24× 32 pixel IR thermal sensor [146], Raspberry Pi 5 MP 1080p
camera module [147], K30 1% 10, 000 ppm CO2 sensor (CO2S) [148] and
HC-SR501 PIR motion detection sensor [144]. The processor is a Raspberry
Pi 3B+ [149] with 128GB SD memory card and 1GB RAM. The system
hardware is shown in Fig. 5.1 and the architecture is shown within the IR
Image Capturing Module in Fig. 5.2.

FIGURE 5.1: System hardware

The MLX90640 has been selected due to its low cost and specifications
which include a range of 11m and a wide field of view of 110× 70°. Based
on being positioned at a height of 3m it creates a conical coverage area of
∼ 36m2. Within the DeNNOTE system, a single MLX90640 sensor can be
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FIGURE 5.2: Overview of the DeNNOTE occupancy detection
process

used or multiple MLX90640 sensors can be combined to create a larger
coverage area. Throughout this chapter, a single sensor is used. During the
data capture phase, simultaneously with the IRS, the Raspberry Pi camera
module captures a photographic image which is used to create the ground
truth label for the corresponding IR image. The photographic images are
only used for data labelling and will not be part of the published data set.

5.3.2 Data Capture

5.3.2.1 Monitored environment

This system was developed to be deployed within an SME in Greater
Manchester, capturing data in three similar environments; the office,
meeting room and kitchen. The environments are real building
environments, not highly regulated like that in [49]. As such, environment
variables including room temperature, light level, ventilation and occupant
levels vary. Indoor temperature is increased using a single radiator in each
environment or decreased by opening windows. The occupant levels in
each of the environments vary up to a maximum of six occupants.

5.3.2.2 Data capture method

A Python script run on the Raspberry Pi captures thermal IR and
photographic data at 60 second intervals. The IR image and the
photographic image are each saved as a timestamped JPEG file. When
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studying the state-of-the-art [28], [40], [49], [50], [65], it was noted that there
is a significant amount of building monitoring data which includes
monitored attributes such as motion, temperature, humidity, light and CO2,
but there is a shortage of published building data sets which include
thermal data. As such, the data that is collected for this research will be
published.

5.3.2.3 Data set creation

Using data captured within the office, five train/test data sets are created and
labelled Data.i1 to Data.i5. The data sets are differentiated based on when
the data was captured and data set size. Two additional test data sets are
created from data captured in two additional environments, the kitchen and
meeting room. Validation data, Xval, is created by extracting 20% of data from
the train data sets. The data sets are evaluated by comparing the performance
of the DNN, trained and tested with them. For the evaluation of the data sets
the DNN will be defined with activation functions σ1 and σ2 set to Relu in
both hidden dense layers and the model will be trained with 5 epochs.

Data.i1 to Data.i3 all comprise 1440 train samples and 717 test samples.
This data are captured over a 36 hour period. Data.i1 is captured
12 : 00 23/04− 23 : 59 24/04 and separated into train and test data based on
the image capture time:

• test data: 12 : 00− 23 : 59 on 23/04. The outdoor temperature varied
between a high of 18 °C to a low of 6 °C.

• train data: 00 : 00− 23 : 59 on 24/04. The outdoor temperature varied
from a high of 21 °C to a low of 9 °C.

Data.i2 is captured between 24/04 − 29/04. This data set differs from
Data.i1 because the train and test data are captured a few days apart when
the outdoor temperature varied significantly:

• test data: 12 : 00− 23 : 59 on 29/04. The outdoor temperature ranged
from a high of 11 °C to a low of 4 °C

• train data: 00 : 00− 23 : 59 on 24/04. The outdoor temperature varied
from a high of 21 °C to a low of 9 °C.

Data.i3 is comprised of the data previously captured for Data.i1,
randomly separated into a train and test data set. Data.i4 and Data.i5 are
large data sets and comprise 9300 train samples and 2675 test samples.
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Data.i4 is captured between 23/4-14/05 and separated into train and test
sets based on capture time:

• test data: 12 : 00 11/05− 23 : 59 on 14/05. The outdoor temperature
ranged between highs of 13− 10 °C and lows of 5− 3 °C.

• train data: 12 : 00 23/04− 23 : 59 on 03/05. The outdoor temperature
ranged between highs of 21− 10 °C and lows of 9− 4 °C.

Data.i5 is captured 12 : 00 23/04− 23 : 59 on 22/05 and separated into a
randomly mixed train data set, Xtrain.i5 and test data set, Xotest. The model
trained with this data set is referred to as Model.i5. Additional test data sets,
Xmtest and Xktest, are captured between 03/06− 05/06 in the meeting room
and 26/05− 30/05 in the kitchen.

5.3.3 Data Preprocessing

The DNN is developed so that it can classify IR data which has received
minimal preprocessing. There are two preprocessing steps applied to each
IR image as shown within the Data Preprocessing Module in Fig. 5.2. The
first step utilises the corresponding photographic image to determine its
ground truth label. Next, the labelled IR image is converted from a JPEG
image to a binary data array. The sensor deployments are shown in
Chapter 4 in Figs. 4.8a to 4.8d. Based on a room 40m × 40m and a sensor
coverage range r = 4, the number of sensor nodes were calculated
as 25, 33, 49 and 56 for the sensor grid, sensor hexagons, overlapping sensor
hexagons and overlapping sensor grid deployments respectively.
Additional hardware is

5.3.4 Optimisation of DNN Model

Research studying the performance of DNNs across a range of fields shows
that altering the model’s hyperparameters can have a significant effect on
the model’s performance [150]–[152], though the existing systems [28], [49],
[50], [65] do not demonstrate optimising their AI classifier using this process.
Specific hyperparameters are varied, including the number of dense hidden
layers, denote h, number of neurons per dense hidden layer, denoted η, loss
function, denoted θ, dense hidden layer activation functions, denoted σ and
number of training epochs, denoted u. The activation functions within each
of the dense hidden layers can differ from each other, they are selected from
the following list: Elu, Relu, Selu, Sigmoid, Softplus, Softsign and Tanh. The
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number of epochs used within model training is varied from 2− 10. For all
model evaluation within this work, the train and test steps are repeated 10
times and the mean results are reported.

Based on the evaluation of data sets Data.i1 to Data.i5; Data.i5 is used to
determine the generalisation ability of the proposed DNN. The model is
first trained and tested with data set Data.i5 which is comprised of train
data denoted Xtrain.i5 and test data denoted Xotest. Next, the model’s test
performance is compared against its performance with two new test sets,
Xktest and Xmtest, collected in the kitchen and meeting room respectively.

5.4 Performance Evaluation of DNN Model

We evaluate the performance of DNN model based on Accuracy, Balanced
Accuracy (BAcc), Sensitivity, Precision and F1, which are defined in Eq. 5.7
to 5.12. Accuracy is a measure of the proportion of true results, but it can be
misleading if there is an imbalance in the size of each data class [153]. BAcc
is a normalised measure of the proportion of the true results; less prone to
issues caused by class imbalance. Precision is a measure of how many true
results are correctly reported. Sensitivity is a measure of the proportion of
true results that are reported. F1 is a combination of sensitivity and
precision. Specificity is a measure of the proportion of negative results
correctly reported.

Accuracy =
TP + TN

TP + TN + FP + FN
(5.7)

Precision =
TP

TP + FP
(5.8)

Sensitivity =
TP

TP + FN
(5.9)

F1 =
2TP

2TP + TP + FP
(5.10)

Speci f icity =
TN

TN + FP
(5.11)
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BAcc =
TP

2(TP + FN)
+

TN
2(TN + FP)

(5.12)

BAcc =
Sensitivity + Speci f icity

2

where for this binary classification task, True indicates occupant(s) present
and False indicates occupant(s) absent. True Positive (TP) indicates the
frequency with which the model correctly classifies occupants as present,
False Positive (FP) indicates the frequency that the model wrongly classifies
occupants as present. Similarly, True Negative (TN) and False
Negative (FN) indicate the frequency that the model correctly and
incorrectly classifies occupants as absent. A FN is a more significant issue
than a FP because it will result in the DeNNOTE system switching off
heating and lighting when they are still required since there are occupants
present. This incorrect response could make the building environment
uncomfortable, or at worst, unusable for occupants. In comparison, a FP
result is a less significant issue because it will not create an unusable
environment, though it will cause the system to keep the heating and
lighting on when there are no occupants which is counter to the aim of the
system. As such, a FP result and will impact on the system’s ability to meet
its aim to reduce energy consumption. Improvements in sensitivity,
precision and F1 demonstrate an improvement in the correct detection of
occupants. In comparison improvements in specificity demonstrate an
improvement in the correct detection of the absence of occupants.

5.4.1 Evaluation of Data Sets

The aim of this evaluation is to determine which train and test data set,
Data.i1 to Data.i5, enable the DNN to achieve the best performance. For
this evaluation the DNN will be defined with activation functions σ1 and σ2

set to Relu in both hidden dense layers and the model will be trained with 5
epochs.

Fig. 5.3 illustrates the test performance of the DNN trained and tested with
Data.i1 to Data.i3 and Data.i5. It shows that all of these data sets achieve
BAcc above 96%. The model trained and tested with Data.i5 closely
followed by Data.i3 achieved the highest test performance, showing that
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FIGURE 5.3: Comparison of model performance achieved with
Data.i1, i2, i3 and Data.i5

the data sets which enable the best performance are the most diverse data
sets, created by mixing the dates of the train and test data. The model
trained with data set Data.i5 achieves better performance than Data.i3

since it is a larger data set, comprising more samples, providing the DNN
with the most data for it to learn from, resulting in a model with the highest
performance. The model trained and tested with Data.i4 achieved the
lowest BAcc of 93%. This lower performance occurred because the train and
test data were collected during periods with different external temperature
ranges, this temperature variation caused the occupants to change their use
of the heating system, which in turn affected the discriminating features in
the train data in comparison to the features in the test data, which
detrimentally affected the model’s performance.

5.4.2 Evaluation of DNN’s Generalisation Ability

The aim of this evaluation is to determine the generalisation ability2 of the
DNN model when it is tested with new and unseen data collected in a

2Generalisation ability refers to a model’s ability to accurately interpret new and unseen
data. From this point onward, it will refer specifically to this model’s ability to interpret test
data that was captured in a new building environment relative to the training environment.
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number of different environments, the office, meeting room and kitchen.
Unseen data refers to a data set which was not used during the training of
the DNN model and is therefore unseen by the DNN. For this evaluation the
DNN model Model.i5 will be defined with activation functions σ1 and σ2 set
to Relu in both hidden dense layers, trained over 5 epochs and with data set
Data.i5.

Table 5.1 shows the performance of Model.i5 when comparing the test data,
Xotest, Xmtest and Xktest captured in the office, meeting room and kitchen
respectively. It can be seen that the test accuracy is high for all three
environments (99.63% to 81.57%). Since there is data classification
imbalance, BAcc is a better metric than accuracy to give a more complete
picture of the model’s performance [153]. For the office, the BAcc
performance is above 99%, it is also high in the meeting room, above 87%,
but a little lower in the kitchen at 74%. So, the DNN model demonstrates a
relatively high generalisation ability across these different environments.
The reduction in performance for both the meeting room and kitchen data is
because the model returned a higher rate of FN in comparison to the office,
demonstrating a lower sensitivity.

TABLE 5.1: Generalisation ability of Model.i5

Environ Precision
(%)

F1
(%)

Sensitivity
(%)

Accuracy
(%)

BAcc
(%)

office 99.19 99.95 99.95 99.63 99.70
Meeting 98.33 90.21 90.21 89.72 87.68
kitchen 95.99 83.22 83.22 81.57 74.09

The slightly lower performance in the kitchen can be explained as a result of
this environment being quite different to the office environment where the
model was trained. The difference is particularly with respect to the
background temperature which is higher due to the regular use of kitchen
equipment, meaning there is a smaller difference between background and
body temperature, which makes it more difficult for the DNN to detect
occupants. Such results suggest that determining occupancy using a DNN
trained with thermal data works well in environments where the
background temperature is significantly lower than body temperature, for
example 18°C to 23°C, but it may not be well suited for warmer internal
environments such as server rooms or commercial kitchens.
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5.4.3 Evaluation of DNN’s Hyperparameters

The aim of this evaluation is to determine the hyperparameters which enable
the DNN to achieve the optimal performance in terms of high generalisation
ability demonstrated across different environments. For this evaluation the
model is trained with data set Data.i5. The initial hyperparameters will be
activation functions σ1 and σ2 set to Relu and u = 5 training epochs. The
results of varying the activation functions and number of training epochs are
shown below.

When the model is tested with office data, varying the hyperparameters
does not have a significant effect on its performance. The model achieves a
maximum BAcc of over 99% when both of the activation functions σ1 and σ2

are set to Sigmoid and the model has been trained over 10 epochs. The
maximum variation in the performance of the model with this data is less
than 1%, which is achieved with the same activation functions and the
model is trained over 5 epochs. In comparison, a large variation of 17% is
seen when the model is tested with data captured in the meeting room and
the model is defined with different hyperparameters. The maximum
performance is achieved when the model has been trained over 2 epochs
and the activation functions σ1 is set to Sigmoid, σ2 is set to Relu. In these
tests, the model achieved BAcc above 93%. The lowest performance, when
tested with the same meeting room data, is achieved when both activation
functions σ1 and σ2 are changed to Sigmoid and the model has been trained
over 10 epochs, achieving 76%. The variation in performance achieved by
the model when tested with data captured in the kitchen is similar, at
nearly 16%. The maximum performance, BAcc slightly above 80%, is
achieved when the model is defined with both activation functions σ1

and σ2 are set to Sigmoid and trained with 2 epochs. The lowest
performance is seen when both activation functions σ1 and σ2 are set to Tanh
and the model has been trained with 10 epochs.

Table 5.2 to 5.4 compare the model’s performance based on varying the
number of training epochs and testing the model with data captured in the
office, meeting room and kitchen respectively. Throughout these tests, the
Sigmoid activation function is used in both dense hidden layers. Varying
the number of training epochs has minimal effect on the model’s
performance when it is tested with office data. In comparison, when the
model is tested with meeting room data, it performs best when it is trained
with 2 epochs, closely followed by 5 epochs. When the model is tested with
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kitchen data, it performs best when trained with 2 epochs. These results
clearly demonstrate that a higher number of epochs causes this model to
overfit to the training data which was captured in the office and reduces the
model’s performance when it is tested with data captured in the other
similar environments. So, the optimal number of training epochs to enable
this model to achieve the highest generalisation ability is two epochs.

TABLE 5.2: Test performance of DNN based on varied epochs,
Sigmoid and Sigmoid activation functions and office test data

Epochs Precision
(%)

F1
(%)

Sensitivity
(%)

Accuracy
(%)

BAcc
(%)

2 99.32 98.92 98.51 98.60 98.63
5 98.16 98.93 99.71 98.63 98.24
8 99.37 99.06 98.75 98.79 98.80
10 99.32 99.32 99.32 99.13 99.05

TABLE 5.3: Test performance of DNN based on varied epochs,
Sigmoid and Sigmoid activation functions and meeting room
test data

Epochs Precision
(%)

F1
(%)

Sensitivity
(%)

Accuracy
(%)

BAcc
(%)

2 99.36 94.85 90.74 91.04 92.42
5 99.09 94.67 90.63 90.72 91.19
8 98.66 94.77 91.18 90.95 90.05
10 98.61 94.46 90.64 90.39 89.32

TABLE 5.4: Test performance of DNN based on varied epochs,
Sigmoid and Sigmoid activation functions and kitchen test
data

Epochs Precision
(%)

F1
(%)

Sensitivity
(%)

Accuracy
(%)

BAcc
(%)

2 99.32 88.97 80.57 80.57 80.56
5 95.36 89.37 84.09 82.11 74.71
8 94.23 90.35 86.77 84.12 77.52
10 96.29 88.76 82.32 80.76 72.26

Figs. 5.4 to 5.6 compare the model’s performance based on varying the
activation functions and testing it with data captured in each of the
environments. Throughout these tests, two training epochs are used. When
the model is tested with data captured in the office, varying the activation
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functions in the hidden layers has a minimal effect on the model’s
performance, resulting in a maximum variation of less than 0.5%. The
optimal performance was achieved with the Elu activation function in both
hidden layers. When the model was tested with data captured in both the
meeting room and the kitchen, the model achieved optimal performance
with the Sigmoid activation function in both hidden layers.

To summarise, the DNN model demonstrates the best overall performance,
also achieving highest generalisation ability when it is defined with
hyperparameters Sigmoid activation function in both dense hidden layers
and trained with 2 epochs. This configuration achieves BAcc of 98.63% with
office data, 92.42% with meeting room data and 80.56% with kitchen data.
This DNN model will be referred to as DNN-S2e based on these
hyperparameters. These results are summarised in Table 5.5.

TABLE 5.5: Test performance of DNN demonstrating highest
generalisation ability (Sigmoid activation function and 2
training epoch)

Environ Precision
(%)

F1
(%)

Sensitivity
(%)

Accuracy
(%)

BAcc
(%)

office 99.32 98.92 98.51 98.6 98.63
meeting
room

99.36 94.85 90.74 91.04 92.42

kitchen 99.32 88.97 80.57 80.57 80.56

5.5 Deployment of DNN using WSN Techniques

It has been established that the DeNNOTE system can achieve a high
performance when determining if occupants are present. But, the
DeNNOTE system is significantly limited since it is comprised of a single
IoT node which means it can only monitor a small area. Using the WSN
deployments that are defined in Chapter 4, this section will evaluate
whether multiple nodes can be combined to monitor a larger area of a
building. The cost and complexity of designing and deploying four WSNs
are significant as explained in Section 2.5. To reduce these overheads and
enable more resources to be dedicated to evaluating the deployments, a
smart building mapping and simulation tool was developed. The tool is
referred to as MIoTs and is described and evaluated in Chapter 3. The tool is
evaluated in terms of its ability to simulate sensor data which is similar to
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FIGURE 5.4: Test performance of DNN based on 2 training
epochs and varied activation functions using office test data

FIGURE 5.5: Test performance of DNN based on 2 training
epochs and varied activation functions and meeting room test
data

real-life data and the results demonstrate that the MIoTs simulator achieves
this. The different WSNs are simulated using MIoTs simulation tool.

This combination of multiple DeNNOTE nodes will be evaluated using two
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FIGURE 5.6: Test performance of DNN based on 2 training
epochs and varied activation functions and kitchen test data

different network architectures. The first architecture will comprise nodes
with different functions; sensor nodes which will capture both train and test
data and processing nodes which will house the DNN to process the
captured sensor data. The sensor data captured at multiple nodes will be
transmitted to a single processing node for processing. In contrast, the
second architecture will comprise multiple identical nodes; sensor nodes
which also include the DNN. In this second architecture, the train and test
data captured at each node will be processed locally on the same node by
the integrated DNN. From both architectures, the processed data output
from the DNN will be sent to a sink device to control the heating and
lighting in the building. This evaluation will compare the cost of each
architecture and the accuracy of occupancy and building monitoring data.

5.5.1 Evaluation of Deployment of Nodes with Separate

DNN

The aim of this evaluation is to determine if multiple DeNNOTE systems can
be combined to monitor a larger area of a building. The unprocessed sensor
data of 4 nodes will be transmitted to a single processing node where the
data is fused before being processed by the DNN. The processing node uses
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the DNN to carry out binary classification and determine if occupants are
present. The WSN configuration is illustrated in Fig 5.7.

MIoTs will be used to simulate each of the four WSN deployments defined
in Chapter 4. The setup of MIoTs will be the same as that defined in
Section 4.7. For each simulation two MIoTs variables are changed to define
the node deployment technique; pack_scheme and overlapped. All of the
other variables are kept constant. Each sensor node will include a PIRS, IRS
and CO2S. The simulation configuration is illustrated in Fig. 5.8. Each
simulation will be compared based on the cost and performance to
determine whether the network architecture affects the system’s
performance.

FIGURE 5.7: WSN architecture showing separate data capture
and data processing

The sensor deployments are shown in Chapter 4 in Figs. 4.8a to 4.8d, where
it was determined that the number of sensor nodes were 25, 33, 49 and 56
for the sensor grid, sensor hexagons, overlapping sensor hexagons and
overlapping sensor grid deployments respectively, based on a room
40m × 40m and a sensor coverage range r = 4. Additional hardware is
required for the sink node which comprises a Raspberry Pi 3B+ with WiFi
communication capabilities and sufficient memory to store the received
sensor data and for the DNN to process the data. The sensor grid
deployment requires 7 sink nodes, 9 for the sensor hexagon deployment, 13
for the overlapping sensor hexagons deployment and 14 for the overlapping
sensor grid deployment.



Chapter 5. A DNN for Edge-based Occupancy Detection 97

FIGURE 5.8: Simulation process illustrating creation, capture,
fusion and processing of sensor data based on separate data
capture and processing

Once per minute every sensor node will transmit sensor data to its
corresponding sink node. Considering just the payload data and excluding
control data; payload data includes a 32× 24 pixel image and two pieces of
numeric data. This is approximately 100 bytes (B) for the image, 2B for the
CO2 data and 1B for the PIR data, which is equal to ∼ 148KB per node per
day. For the sensor grid deployment, this is ∼ 3.7MB data transmitted
around the network each day, or ∼ 8.8MB for the overlapping sensor grid
deployment. Based on receiving data from 4 sensor nodes, the memory card
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on the sink node will require the sensor data to be wiped every few weeks.
If data are not removed regularly, the reduced memory will inhibit the
operation of the DNN and eventually disable the node entirely.

Similar to the single node PIRS data and the CO2 data that was evaluated in
Section 4.7.2, the fused PIRS data achieves 100% accuracy indicating the
presence of occupants and the CO2 data are only effected by the ventilation
rate and the number of occupants. In comparison, fused IR images differ
based on the different WSN deployment. Figs. 5.9a to 5.9h illustrate the
fused sensor data and the corresponding room maps that illustrate the
ground truth position of the occupants. The ground truth room maps were
generated from the occupant position data generated by MIoTs. For the
sensor grid and the sensor hexagon deployment, it can be seen that the
number of occupants in the room map is identical to the number of hot
zones in the corresponding IR images, but this is not true for the other
deployments, as shown in Table 5.6. The overlapping deployments create
errors within the fused IR images, which has the effect of increasing the
number of heat regions. If blob detection was being used to count
occupants, this would create errors. In comparison, the DNN does not count
the number of occupants, instead, it determines whether occupants present
or absent. This combined erroneous image data may change the heat
patterns within the image, ie the nature of the features that the DNN is
trained to find. This can result the DNN incorrectly detecting occupants,
particularly if the heat regions were not generated by occupants but by
inanimate objects such as radiator or computers. These combined erroneous
images can reduce the accuracy of the DNN to determine whether
occupants were present. The simulated data does include some regions of
heat that are generated by a radiator, but not heat regions generated by a
computer at each work station. It is difficult to test if duplication of
non-occupant based heat regions affect the accuracy of the DNN.

TABLE 5.6: Number of actual occupants compared to detected
occupants

Sensor
grid

Overlapping
sensor grid

Sensor
hexagons

Overlapping
sensor
hexagons

Actual 8 10 8 12
Detected 8 13 8 14

The average DNN performance for the different WSN deployments is
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(A) Sensor grid
deployment

(B) Sensor grid

(C) Overlapping
sensor grid

(D) Overlapping
sensor grid

(E) Sensor hexagons

(F) Sensor hexagons

(G) Overlapping
sensor hexagons

(H) Overlapping
sensor hexagon

FIGURE 5.9: Room maps (top) and corresponding 4 fused IR
images (bottom) for each WSN deployment

shown in Fig. 5.10. It can be seen that all four deployments achieve a very
similar level of accuracy (93% to 96%) and BAcc (94% and 97%). The
hexagonal deployment achieves the highest performance and the
overlapping hexagonal deployment achieves the lowest performance. It is
noted that the overlapping sensor hexagon deployment generates almost
double the data of the sensor grid deployment and the overlapping sensor
grid deployment generates more than double the amount of data compared
to the sensor grid deployment. This significant increase in data does not
produce an improvement in the DNN’s performance compared to the
sensor grid deployment. But the additional data transmissions and data
processing may cause issues including increased power, processing time
and data storage. Since the monitoring and processing are carried out on
edge devices, the whole system is resource-constrained and therefore
consideration of how these resources are used is important.

All four deployment techniques achieve a similar level of accuracy when



Chapter 5. A DNN for Edge-based Occupancy Detection 100

FIGURE 5.10: Graph showing the performance of the DNN
based on processing data fused from 4 sensor nodes,
comparing 4 WSN deployments

their simulated data are processed by the DNN to determine whether
occupants were present or absent.

5.5.2 Evaluation of Deployment of Nodes with Integrated

DNN

The cost of deploying a DNN within each sensor node significantly reduces
the hardware cost in comparison to architecture with the DNN in a separate
sink node. This is because the DNN does not require any hardware to be
added to the existing sensor node since it already includes a suitable
processor and sufficient memory. For this evaluation, the trained DNN
model, DNN-S2e, is integrated in the sensor node. The WSN configuration
is illustrated in Fig 5.11.

Again, MIoTs will be used to simulate each of the four WSN deployments
and the setup of MIoTs will be the same. The simulation configuration is
illustrated in Fig. 5.12. Each simulation will be compared based on the cost
and performance to determine whether the network architecture affects the
system’s performance.
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FIGURE 5.11: WSN architecture showing integrated data
capture and data processing

The sensor data are processed on the same node where it is captured. The
result of this integration is that unprocessed sensor data are not transmitted
across the network, instead only the processed data will be transmitted. The
processed data will include the output of the DNN indicating the presence
of occupants and whether the building monitoring data meets the occupant
comfort levels. The building data including CO2 levels and temperature are
evaluated against the occupant comfort levels by a program installed on the
sensor node processor. The processed data will include a single byte of
payload data. The first bit will indicate occupant / no occupant. The next
four bits will indicate CO2 levels and temperature levels, where 00, 01 or 10
will indicate levels are correct / too high / too low respectively. Each sensor
node will transmit 1B of payload data (excluding control data) every
minute, totalling ∼ 1.44KB per node per day. This 1.44KB is in comparison
to ∼ 148KB transmitted per sensor node per day in the alternate architecture
with separate sensor and sink nodes. For both architectures, to prevent the
node’s memory becoming full, sensor data can be cleared as soon as it has
been processed by the DNN.

The average performance of the DNN for the different WSN deployments
based on capturing and processing data on the same node is shown in
Fig. 5.13. The deployments all achieve high performances, with
accuracy (95% to 98%) and BAcc (96% to 98%). This performance is slightly
better than what was achieved when the data was processed on a separate
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FIGURE 5.12: Simulation process illustrating creation, capture
and processing of sensor data based on integrated data capture
and processing

sink node. The overlapping sensor hexagon achieved the highest
performance with an accuracy of 98% and BAcc of 98%.

Tables 5.7 and 5.8 summarise the performance of the two different
DeNNOTE architectures, simulated in four different WSN deployments. It
can be seen that the architecture with the DNN integrated into each sensor
node requires significantly less hardware. This integrated architecture
creates less duplicated data and less data traffic. It also achieves the highest
level of performance compared to the alternate architecture. The alternate
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FIGURE 5.13: Graph showing the performance of the DNN
based on processing data locally on sensor node, comparing 4
WSN deployments

architecture, with a sensor data transmitted from 4 sensor nodes to a
separate sink node, requires more hardware and generates significantly
more data. It seems that the duplication errors created when four IR images
are fused has also slightly reduced the performance of the DNN.
Comparing the networks based on the WSN deployment techniques; for
both the separate DNN and integrated DNN architectures, the overlapping
sensor grid and sensor grid consistently achieve the highest levels of
performance. The sensor grid requires less than half the hardware of the
overlapping sensor grid.
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TABLE 5.7: Comparing 4 WSN deployments; each comprising
groups of 4 sensor nodes transmitting data to separate sink
node with DNN

Sensor Grid Overlapping
Sensor Grid

Sensor
Hexagons

Overlapping
Sensor
Hexagons

Node density 32 70 42 62

Daily data
transmissions
(payload data)

3.7MB 8.2MB 4.8MB 7.2MB

DNN
performance
(BAcc)

96.19% 96.91% 97.16% 94.59%

TABLE 5.8: Comparing 4 WSN deployments; each comprising
DeNNOTE nodes with both sensors and integrated DNN

Sensor Grid Overlapping
Sensor Grid

Sensor
Hexagons

Overlapping
Sensor
Hexagons

Node density 25 56 33 49

Daily data
transmissions
(payload data)

36KB 80.1KB 47.5KB 70.6KB

DNN
performance
(BAcc)

96.61% 97.77% 96.10% 98.63%

5.6 Chapter Summary

Based on the financial barriers and IT limitations that SMEs face, a low cost
and high-performance occupancy detection system comprising of a single
input DNN has been developed and deployed on an edge-based system.
The DNN is trained and tested with thermal IR data that was collected in a
number of real building environments. The evaluations in Section 5.4.2
and 5.4.3 demonstrate that this system can be deployed across many similar
building environments to control the heating and lighting, enabling the
automation of reducing energy consumption, whilst maintaining occupant
comfort levels. The DNN carries out binary classification to determine
whether occupants are present. It has been developed to function well when
trained with a large data set that does not require high computation image
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processing, feature reduction or additional multimode monitoring data. By
determining the optimal hyperparameters, the DNN (model DNN-S2e) has
been optimised to achieve a high generalisation ability, demonstrating BAcc
between 81% − 99% in different environments. These hyperparameters
include two hidden dense layers, the Sigmoid activation function in the
dense hidden layers and the number of training epochs is kept low during
DNN training to reduce overfitting to the training data, which was observed
while evaluating performance between 2− 10 epochs.

The DNN model, DNN-S2e, performed well in two similar environments,
though its performance dropped slightly in a third kitchen environment.
This was due to the rise in ambient temperature causing an increased rate of
false negatives. As such, this demonstrates that an occupancy detection
system wholly dependant on thermal data is not the most suitable system
for warm environments such as kitchens or server rooms. The limitation of
this work is that the DNN is only tested within three environments, with a
maximum of six occupants. Due to cost and logistical limitations, it was not
possible to deploy multiple DNN node simultaneously. Instead, eight
different multi-node deployments were simulated, where four deployments
were based on all of the sensor nodes transmitting their data to a separate
sink node housing the DNN. The other four deployments were based on
each sensor node having the DNN integrated for local data processing. The
WSN deployment techniques that were introduced in Chapter 4 were used
to define the positions of the simulated sensor nodes. This evaluation
demonstrated that the sensor grid deployment with the DNN integrated
with the sensor node is the optimal network architecture. This is because the
architecture requires the minimum hardware, 25 nodes for a 40m × 40m
room, additionally, the DNN demonstrates a high rate of accuracy
indicating whether occupants were present.
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Chapter 6

IoT Node Optimisation

6.1 Introduction

In Chapter 4, a number of WSNs were evaluated, and the results showed
that the sensor grid and the sensor hexagons deployments were optimal for
occupant and building monitoring. In Chapter 5, the DeNNOTE system was
developed for edge-based occupancy detection, and it achieved a high level
of performance. In this chapter, these contributions will be further advanced
to improve the performance of the system at a lower cost, by the addition of
more sensors in each node and extending the DNN. In Chapter 7, these
components will be combined to create an EMS to monitor a small
commercial building and automate its energy reduction.

The remainder of this chapter includes Section 6.2, which details the
reconfiguration of the node sensors. Section 6.3 describes the architecture of
the two multimode (MM) DNNs In Section 6.4, four sensor configurations
are assessed. In Section 6.5, the deployment of the sensor configurations are
evaluated and in Section 6.6, the two MM DNNs are evaluated.

6.2 Reconfiguration of Node Sensors

The WSN deployments in Chapter 4 incorporated nodes with one PIRS, IRS,
CO2S and temperature sensor. It was assumed the combination of sensors
enabled the node to form a circular coverage area. This section proposes the
reconfiguration of the sensors in the node and presents how the combined
sensor coverage area can be determined. The aim of this reconfiguration is
to achieve a larger node coverage area and reduce coverage gaps that occur
when the nodes are deployed in a WSN.
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The CO2S, PIRS and IRS all have defined coverage areas. In an enclosed
environment, the K30 CO2S has an approximate coverage area
of 115m2 [154]1. The HC-SR501 PIRS has a maximum coverage range of 7m
and a FOV of 110° [144]. The MLX90640 IRS has a maximum coverage range
of 11m and a FOV of 110× 70° [146]. Multiple PIRS or multiple IRS can be
combined together in an OR configuration to create a larger single-mode
coverage area. These single-mode sensors can then be combined together in
an AND configuration to create a larger combined coverage area. The
combined coverage area of the node is given in Eq. 6.1.

Ac = ACO2

⋂
(APi

mP−1⋃
i=1

APi+1)
⋂

(AIk

mI−1⋃
k=1

AIk+1) (6.1)

where Ac is the combined coverage area of the sensors in the node; ACO2
1, AP

and AI are the coverage areas of a single CO2S, PIRS and IRS respectively; mP

and mI are the number of PIRS and IRS in a single node.

The combined multimodal data that are captured by the node, xCc
1, xPc

and xIc respectively, are given in Eqs. 6.2 to 6.4.

xCc = xC (6.2)

xPc = xPi

mP−1⊕
i=1

xPi+1 (6.3)

xIc = xIk

mI−1⊕
k=1

xIk+1 (6.4)

where xC, xP and xI are the individual data samples captured by a single
CO2S, PIRS and IRS respectively. Symbol ⊕ indicates that the individual
samples are concatenated together.

A shape that can be repeated without the creation of any gaps is a
tessellating shape [155]. A square is one of the simplest tessellating shapes.
Most rooms inside buildings are rectangular [156], therefore combining the
sensors in a node, such that they form a rectangular coverage area will

1Due to the large coverage area of the CO2S, a single sensor will be included in each node.
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enable a WSN deployment to have no coverage gaps2. The combined
coverage area will be redefined in Eq. 6.5 to determine the size of the
rectangular region encapsulating the combined coverage area. This region
will be referred to as the tessellating coverage area.

At = {Ac} (6.5)

where At is the tessellating node coverage area and Symbol { } indicates the
sample is transposed with its tessellating rectangle.

In Section 6.4, a number of sensor configurations are assessed to find the
maximum tessellating node coverage area. In the next section, the DNN that
was developed in Chapter 5 will be expanded.

6.3 Multimode DNN

The DNN that has been proposed and evaluated thus far is a
single-mode (SM) model, i.e., it analyses a single type of input data. The
input is thermal data, which is analysed to determine whether occupants
are present. The DNN achieved a high level of performance across a
number of environments, though the performance was lowest in the
environment with a higher ambient temperature. In this Section, the DNN
architecture is further developed to create two MM DNN architectures
which will process both IR data and additional data. This will improve the
performance of the DNN model when the discriminating features in the IR
data are distorted by the ambient room temperature.

The state of occupancy will still be defined as a binary classification
problem. The two MM DNN architectures will be developed and assessed,
with respect to their ability to learn the discriminating features of
multimodal sensor data. The DNN models will learn the discriminating
features in a supervised manner using the corresponding ground-truth
labels, y ∈ Ra. The multimodal data inputs include XN ∈ Ra×j

and XI ∈ Ra×c×d×e. The data input XN is comprised of j single dimension,
standardised numeric inputs xN, captured by a CO2S, PIRS and temperature
sensor. Before being processed and analysed by the DNN, each dimension
of numeric data is standardised as stated in Eq. 6.6.

2A rectangle is not a tessellating shape, but it can be used to create repeatable coverage
regions that do not create coverage gaps based on keeping all of the rectangles identically
orientated.
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xN =
xNi − xN

s
(6.6)

where xNi is a single numeric data point from xN, xN is the mean value of xN

and s is the standard deviation of xN.

As it was earlier stated in Section 5.2, XI is the multi-dimension thermal
image data that is captured by a single IRS; a is the batch size of input
data; c the thermal image width; d the thermal image height; and e the
thermal image channels.

Based on the high performance of the DNN which was developed in
Chapter 5, this DNN architecture is adapted to enable it to simultaneously
process multimode building data. This purpose of adapting the existing
DNN is to determine if additional building data can further improve the
performance of the DeNNOTE system which has been developed and
deployed as a low cost edge-based system, without significantly increasing
the system’s computational requirements or hardware requirements.
DNN-2 and DNN-3 differ from each other based on when the two modes of
data are combined; i.e. in DNN-2, image and numeric data are combined
before they are processed, in comparison, in DNN-3, both the image data
and numeric data are processed separately before being combined and
processed further. The DNN-2 architecture is presented in Algorithm 5 and
shown in Fig. 6.1. DNN-2 has a single analysis branch and is comprised of a
flatten layer, a concatenation layer, a number of NN layers and a dense
output layer. The DNN-3 architecture is presented in Algorithm 6 and
shown in Fig. 6.2. This DNN has two NN analysis branches, a concatenation
layer and a number of neural network (NN) layers.

6.3.1 DNN-2: Single-branch Multimode DNN Architecture

The proposed single-branch MM DNN architecture presented in Algorithm 5
is comprised of two input branches and a DNN which is similar to the SM
DNN proposed in Section 5.2. The branch shown on the left of Fig. 6.1 is
comprised of a flatten layer. The flatten layer transforms the dimension of a
sample of XI from 1× c× d× e into 1× g as stated in Eq. 6.7.

f = β (XI), (6.7)

where g = c× d× e; and β(·) is the flatten function.



Chapter 6. IoT Node Optimisation 110

FIGURE 6.1: DNN-2: Single-branch Multimode DNN Block
Diagram

A sample of numeric data, XN, has dimensions 1× j. Both the numeric data
and the flattened IR image data are single dimension vectors. The
concatenation layer combines the vectors as stated in Eq. 6.8.

cc = f + xN (6.8)

The first hidden dense layer transforms the concatenated batch data using
a weight matrix, W1 ∈ Rq×q, a bias vector, b1 ∈ R1×q and an activation
function, σ1(·), as stated in Eq. 6.9.

h1 = σ1 (cc ·W1 + b1), (6.9)

where q = g + j. The next hidden dense layer transforms the output of the
previous hidden layer using a weight matrix, W2 ∈ Rq×q, a bias vector, b2 ∈
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R1×q and an activation function, σ2(·), as stated in Eq. 6.10.

h2 = σ2 (h1 ·W2 + b2), (6.10)

The dense output layer transforms the output of the second hidden layer
using an activation function φ(·) as stated in Eq. 6.11.

ỹ = φ (h) (6.11)

The difference between ỹ and y is given by Eq. 6.12.

L =
n

∑
k=1

θ(yk, ỹk), (6.12)

where θ is the sparse categorical cross-entropy loss function; and n is the
number of samples in a batch of data.

Similar to the SM DNN model, to minimise the loss, the trainable parameters
of the MM DNN model are adjusted over u epochs, based on the current
loss score L and the optimiser named Adam, denoted ψ, [145] as stated in
Eq. 6.13.

W
′
(·), b

′
(·) = ψ

(
L, W(·), b(·)

)
, (6.13)

where W(·) are the previous weight matrices; W
′
(·) are the new weight

matrices; b(·) are the previous bias vectors; and b
′
(·) are the new bias vectors.

6.3.2 DNN-3: Multi-branch Multimode DNN Architecture

The proposed multi-branch MM DNN architecture presented in Algorithm 6
is comprised of two branches. The branch shown on the left of Fig. 6.2 is a
replica of the SM DNN proposed in Section 5.2, which analyses the multi-
dimension thermal image data. This branch is comprised of a flatten layer
and two dense hidden layers. The flatten layer transforms the dimension of
a sample of XI from 1× c× d× e into 1× g as stated in Eq. 6.14.

f = β (XI), (6.14)

where g = c× d× e; and β(·) is the flatten function.
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Algorithm 5: DNN-2: Single-branch Multimode DNN Algorithm
1 f = β(XI)
2 for i = 1 to u do
3 for k = 1 to n do
4 cci,k = fk + xNk
5 h1i,k = σ1 (cci,k ·W1i + b1i)
6 h2i,k = σ2 (h1i,k ·W2i + b2i)
7 ỹi,k = φ (h2i,k)

8 Li,k = θ(yi,k, ỹi,k)

9 end

10 Li =
n

∑
k=1

Li,k

11 W
′
i(·), b

′
i(·) = ψ

(
Li, Wi(·), bi(·)

)
12 end

13 L =
u

∑
i=1

Li

The hidden dense layer, denoted h2, transforms the flattened batch of IR
image data using a weight matrix, W2 ∈ Rg×g, a bias vector, b2 ∈ R1×g and
an activation function, σ2 (·), as stated in Eq. 6.15.

h2 = σ2 (f ·W2 + b2), (6.15)

The next hidden dense layer, denoted h3, transforms the output of the
previous hidden layer using a weight matrix, W3 ∈ Rg×g, a bias
vector, b3 ∈ R1×g and an activation function, σ3(·), as stated in Eq. 6.16.

h3 = σ3 (h2 ·W3 + b3), (6.16)

The concurrent branch, that is shown on the right, is a MLP branch which
analyses j single dimensions of numeric data. The MLP is comprised of a
single dense hidden layer denoted h1, which transforms a sample of XN using
a weight matrix, W1 ∈ Rj×j, a bias vector, b1 ∈ R1×j and an activation
function, σ1 (·), as stated in Eq. 6.17.

h1 = σ1(xN ·W1 + b1) (6.17)

The outputs of the DNN branch and the MLP branch have been transformed
into single dimension vectors. The concatenation layer, denoted cc, combines
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FIGURE 6.2: DNN-3: Multi-branch Multimode DNN Block
Diagram

these vectors as stated in Eq. 6.18.

cc = h1 + h3 (6.18)

The next hidden dense layer transforms the concatenated data using a weight
matrix, W4 ∈ Rq×q, a bias vector, b4 ∈ R1×q and an activation function, σ4(·),
as stated in Eq. 6.19.

h4 = σ4 (cc ·W4 + b4), (6.19)

where q = g + j. The transformed concatenated data is further transformed
by the dense output layer using an activation function, φ (·), as stated in
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Eq. 6.20.

ỹ = φ (h4), (6.20)

where ỹ is the vector of labels predicted by DNN model. The loss, updated
weight and bias remain the same as for DNN-2 and are stated in Eqs.6.12
to 6.13.

Algorithm 6: DNN-3: Multi-branch multimode DNN Algorithm
1 f = β(XI)
2 for i = 1 to u do
3 for k = 1 to n do
4 h1i,k = σ1 (xNk ·W1i + b1i)
5 h2i,k = σ2 (fk ·W2i + b2i)
6 h3i,k = σ3 (h2i,k ·W3i + b3i)
7 cci,k = h1i,k + h3i,k
8 h4i,k = σ4 (cci,k ·W4i + b4i)
9 ỹi,k = φ (h4i,k)

10 Li,k = θ(yi,k, ỹi,k)

11 end

12 Li =
n

∑
k=1

Li,k

13 W
′
i(·), b

′
i(·) = ψ

(
Li, Wi(·), bi(·)

)
14 end

15 L =
u

∑
i=1

Li

The MM DNNs are both specified with the Sigmoid activation function in
all dense hidden layers and are trained over 5 epochs. The MM DNNs are
evaluated with the Data.i5 train and test data set, which was defined in
Section 5.3.2 to evaluate the SM DNN model. The numeric data, XN, has j = 3
dimensions, such that the numeric data includes three multimodal inputs:
captured by a PIRS; CO2S; and temperature sensor. Before training the MM
DNN models, the data was processed to ensure that each sample included
both an IR image and the corresponding numeric data. Where either the IR
image or the numeric data were not available, the sample was removed from
the MM data set. The numeric data includes normalised PIR data, CO2 data
and temperature data.

Following processing, the resulting multimodal train and test data sets were
significantly smaller than those used to assess the SM DNN. The
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multimodal train data set comprised 1100 samples and the multimodal test
data sets, collected in the Office, Meeting room and Kitchen, each
comprise 770 samples. Due to the significant reduction in the size of the
train and test data sets, the SM DNN is also retrained with the
corresponding 1100 IR data samples. This retrained version of the SM DNN
will be referred to as DNN-1.

The performance of the MM DNNs will be evaluated in Section 6.6. In
Section 6.4, the reconfiguration of the sensors in the IoT node is evaluated.

6.4 Evaluation of Reconfigured Node Sensors

In Section 6.2, the reconfiguration of the sensors in the node was proposed.
The aim was to increase the coverage of each node and reduce coverage
gaps that occur in a WSN deployment. This section analyses five sensor
configurations. Applying Eqs. 4.3 and 6.5, the node’s tessellating coverage
area, At and space coverage are determined for each configuration. It will be
assumed that the nodes will be positioned on a ceiling at a height of 3m.

6.4.1 Node Sensors: Single PIRS

The first node configuration that is assessed is that of a single PIRS. The
coverage of a single PIRS is shown in Fig. 6.3. The resulting coverage circle
and tessellating coverage square are shown in Fig. 4.1. The coverage area
and tessellating coverage area are given in Eq. 6.21 and 6.22 respectively.

AP,1 = π(r)2 (6.21)

At{P,1} = {AP,1} (6.22)

At{P,1} = lp . wp = (2r)2

At{P,1} = (2h tan(
f P

2
))2

At{P,1} = (6 tan 55)2

At{P,1} = 73.4m2

where lp and wp are the length and width of the PIRS coverage
square, lp = wp = 2r, r is the radius of the PIRS coverage area,
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FIGURE 6.3: 3D coverage of a single PIRS

r = (h tan fp
2 ), h is the height at which the node is positioned above the

ground, h = 3, f P is the FOV of the PIRS, f P = 110°. This node
configuration achieves a tessellating coverage area which is a square of
dimensions 8.57 × 8.57m. This configuration achieves space coverage
of 78.54%, resulting in 21.46% coverage gaps.

6.4.2 Node Sensors: Single IRS

The second node configuration that is assessed is that of a single IRS, which
is shown in Fig. 6.4. The coverage area and tessellating coverage area are
given in Eq. 6.23 and 6.24 respectively.

AI,1 = lI . wI (6.23)
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At{I,1} = {AI,1} = AI,1 = lI . wI (6.24)

At{I,1} = 2(h tan
f Il

2
) . 2(h tan

f Iw

2
)

At{I,1} = 2(3 tan 55) . 2(3 tan 35)

At{I,1} = 36.0m2

FIGURE 6.4: 3D coverage of a single IRS

where lI and wI are the length and width of the IRS coverage
area, lI = 2(h tan f Il

2 ) and wI = 2(h tan f Iw
2 ), f Il and f Iw are the length-way’s

and width-way’s FOV of the IRS respectively, f Il = 110° and f Iw = 70°. This
configuration achieves a tessellating coverage area which is a rectangle of
dimensions 8.57× 4.20m. This is less than half the tessellating coverage area
of the single PIRS. This configuration achieves space coverage of 100%.

6.4.3 Node Sensors: Combine Single PIRS and Single IRS

The third node configuration that is assessed is a single PIRS and single IRS.
This is the original node configuration that was deployed in Chapter 4 and 5.
The coverage is shown in Fig. 6.5. The combined coverage area is given by
Eq. 6.25 and the tessellating coverage area is given and Eq. 6.26.



Chapter 6. IoT Node Optimisation 118

FIGURE 6.5: 3D coverage of a single PIRS and IRS

Ac = AP,1
⋂

AI,1 (6.25)

At{P,1
⋂

I,1} = {Ac} = lP . wI (6.26)

At{P,1
⋂

I,1} = 2(h tan
f P

2
) . 2(h tan

f Iw

2
)

At{P,1
⋂

I,1} = 2(3 tan 55) . 2(3 tan 35)

At{P,1
⋂

I,1} = 36.0m2

It can be seen from Eq. 6.24 and 6.26 that the combined tessellating coverage
area of this configuration, with a single PIRS and a single IRS, is equal to the
tessellating coverage area of a single IRS. This is because the tessellating
rectangle that encapsulates the combined coverage area is equal to the IRS
coverage area. This configuration achieves a tessellating coverage rectangle
of dimensions 8.57 × 4.20m. This configuration achieves space coverage
of 95.9%.
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6.4.4 Node Sensors: Combine Single PIRS and Two IRS

The next configuration that is assessed is a single PIRS, combined with two
IRS. The coverage of this configuration is shown in Fig. 6.6. To enable the
coverage areas of the two IRS to be combined, the direction of the IRS is
varied; one IRS is angled by 35°, the other by −35° with respect to the zy
axis. This results in their coverage areas being positioned side-by-side along
their lengths. The combined coverage area and tessellating coverage area are
given in Eq. 6.27 and 6.28.

FIGURE 6.6: 3D coverage area of a single PIRS and two IRS

Ac = AP1
⋂

(AI1
⋃

AI2) (6.27)

Ac = πr2
⋂

((lI1.wI1) + (lI2.wI2))
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At{P,1
⋂

I,2} = {Ac} (6.28)

At{P,1
⋂

I,2} = (2r)2 = (2h tan
f P

2
)2

At{P,1
⋂

I,2} = (6 tan 55)2

At{P,1
⋂

I,2} = 73.4m2

where lI1, wI1, lI2 and wI2 are the length and width of the first and second
IRS’s coverage area. It can be seen from Eq. 6.22 and 6.28, the combined
tessellating coverage area of this configuration is equal to the tessellating
coverage area of the single PIRS. This is because the region where both of
the sensor coverage areas overlap is equal to the PIRS coverage area. This
sensor configuration achieves a tessellating coverage square of
dimensions 8.57 × 8.57m. It also achieves space coverage of 78.54%,
resulting in 21.46% coverage gaps.

6.4.5 Node Sensors: Combine Four PIRS and Two IRS

A final node configuration, comprising 4 PIRS combined with 2 IRS, is
assessed. In this configuration, rather than directing all of the sensors
towards the ground, they are positioned at an angle, as shown in Fig. 6.7.
Two of the PIRS sensors are angled at ±55° along the zy axis, the other two
at ±55° along the zx axis. The two IRS are angled at ±35° along the zy axis.
The coverage of this configuration is shown in Fig. 6.8. The combined
coverage area is given by Eqs. 6.29 and the tessellating coverage area is
given by Eq. 6.30 to 6.34.

Ac = (AP1
⋃

AP2
⋃

AP3
⋃

AP4)
⋂

(AI1
⋃

AI2) (6.29)

At = {Ac} = (lP1 + lP3).lI1 = 2lP1.lI1 (6.30)

where lP1 and lP3 are the length of coverage rectangle of PIRS1 and PIRS3

respectively and are equal to each other. These lengths can be determined
using the dimensions of a right angled triangle positioned in the xy plane
at z = 03. As shown in Fig. 6.9, the first triangle vertex is positioned

3i.e. at ground level.
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FIGURE 6.7: 3D side view of a single PIRS angled at
-55° along zy axis

FIGURE 6.8: 3D coverage of four PIRS and two IRS (side view)

vertically below the sensors, denoted q. The next vertex is the intersection of
the coverage of PIRS1 and IRS1, denoted s. The final vertex, t, is the
intersection of two legs of the triangle, positioned is at x = -4.2 and y=0.
Length |qs| is given in Eq. 6.31, length |qt| is given in Eq. 6.32, length |st| is
given in Eq. 6.33, rmax is the maximum range of the PIRS and rmax = 7.

|qs| = h tan(cos−1 h
rmax

)

|qs| = 3 tan(cos−1 3
7
)

(6.31)
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FIGURE 6.9: 3D coverage of four PIRS and two IRS (top view)

|qt| = h tan
fP

2
|qt| = 3 tan 55

lI1 = 2|qt|

(6.32)

|st| = lP1 = lP3

|st| = |qs| cos (sin−1 |qt|
|qs| ) (6.33)
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The tessellating coverage area is given in Eq. 6.34.

At = 2lp1 . lI1

At = 2(3tan(cos−1 3
7
) . cos(sin−1 3tan55

3tan(cos−1 3
7)
) . 2(3tan55) (6.34)

At = 9.30× 8.57 = 79.73m2

This configuration, comprising four PIRS and two IRS, achieves the
maximum tessellating coverage area of 79.73m2, a rectangle 9.30m × 8.57m.
It also achieves space coverage of 100%, resulting in no coverage gaps. In
Section 6.5, a number of WSN deployments will be simulated to assess three
of these sensor configurations.

6.5 WSN Deployments to Evaluate the

Reconfigured Node Sensors

In this section, three of the combined node configurations will be deployed
as part of a WSN simulation with the aim evaluating the node
configurations in terms of the hardware cost. The optimal WSN
configuration is the network which has a low hardware cost but delivers a
high level of space coverage. It is noted that the most expensive hardware
component in each node is the processor and memory card. In comparison,
the cost of the selected sensors are low. Therefore, it is more cost-effective to
deploy fewer nodes containing more sensors, in comparison to deploying
more nodes with fewer sensors. Based on the results achieved in
Section 4.7.1, the sensor grid WSN deployment technique will be used
throughout this evaluation. The coverage range of each node is defined in
the previous section. Also, a range of different building layouts will be
considered.

The MIoTs smart building mapping and simulation tool is used to determine
the node density and the node positions. The node density and positions
are based on the building size, building layout, deployment technique and
tessellating node coverage area. MIoTs was developed for this research to
generate WSN deployment maps. The tool is detailed in Chapter 3. The
different The node configurations that are simulated include:

• config-1: 1× PIRS and 1× IRS.
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• config-2: 1× PIRS and 2× IRS.

• config-3: 4× PIRS and 2× IRS.

Three small commercial buildings will be simulated in this evaluation.
Building A and B are similar sized small offices, Building C is a slightly
larger small office. Building A is 10m × 10m and open-plan except for the
toilet facilities. Based on the HSE regulations regarding minimum working
areas, this building can accommodate 20 − 25 employees [59]. Node
config-1 requires the most nodes, 8, in comparison to config-3, which only
requires 5 nodes. config-2 achieves space coverage of 78.54%, config-1 and
config-3 both achieve 100% space coverage. Building B is a similar size to
the previous building, 9m × 13m, though it is configured differently. It
includes a separate entrance area, an open-plan office area and a number of
smaller rooms which could be used as offices or meeting rooms. Again,
node config-1 requires the most nodes, 7 and config-3 requires the least, 5.
Building C is a slightly larger office, approximately three times larger than
the previous buildings. It measures 18m× 18m and is open-plan, except for
the entrance and toilet facilities. This building can accommodate
approximately 60− 70 employees [59]. Based on the significant increase in
floor area, node config-1 requires double the number of nodes, i.e. 15,
compared to the previous buildings. In comparison, node config-3 only
requires 7 nodes to achieve strong internal coverage. Again, config-2
achieves space coverage of 78.54%, config-1 and config-3 both achieve 100%
space coverage.

Illustrations of these buildings, including their floor map and WSN
deployment using node config-3, are given in Figs. 6.10a to 6.10c4. The node
density for each node configuration is summarised in Table 6.1. Based on
using the sensor grid deployment technique, the node sensor config-3,
which includes 4 PIRS and 2 IRS, achieves optimal WSN since it consistently
requires the minimum node density and achieves 100% coverage of the
building. Config-1 also achieves 100% coverage but requires 40% − 114%
more nodes than config-3, based on deployments in Building A - C.

In Chapter 7, node config-3 will be used as part an EMS which will be used to
automate the reduction of energy consumption in a real commercial building.

4It should be noted, the sensor symbols have been manually added to the simulated
deployment images to illustrate their position
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(A) 10 x 10m building (B) 9 x 13m building

(C) 18 x 18m building

FIGURE 6.10: Floor maps and simulated reconfigured node
deployments for 3 small commercial buildings

TABLE 6.1: Comparison of node density based on different
sensor combinations

config-1 config-2 config-3
Building A 8 6 5
Building B 7 6 5
Building C 15 10 7

6.6 Evaluation of the Multimode DNNs

The aim of this evaluation is to compare the performance performance of
the SM DNN, denoted DNN-1, against the performance of the two MM
DNN models, denoted DNN-2 and DNN-3. All of the DNNs are specified
with the Sigmoid activation function throughout the dense layers and
trained over 5 epochs with a reduced train data set selected from Data.i5
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and comprising 1100 multimodal samples. Tables 6.2 to 6.4 and Fig. 6.11
to 6.13 illustrate the performance of DNN-1 to DNN-3. Model DNN-S2e is
the SM DNN model that was evaluated in Section 5.4.3 and demonstrated
the highest generalisation ability across three different environments. This
model was specified with the Sigmoid activation function in both hidden
dense layers and was trained over 2 epochs with Data.i5 comprising 9300
IR data samples. The performance of DNN-S2e is included for reference and
is highlighted with a dashed yellow line on the graphs.

TABLE 6.2: Comparison of Performance of DNN-1, DNN-2
and DNN-3 with Office data (%)

Model Precision F1 Sensitivity Accuracy BAcc
DNN-1 99.00 99.05 99.10 99.17 99.16
DNN-2 99.13 99.20 99.28 99.10 99.08
DNN-3 99.16 99.19 99.22 99.08 99.07
DNN-S2e 99.32 98.92 98.51 98.6 98.63

TABLE 6.3: Comparison of Performance of DNN-1, DNN-2
and DNN-3 with Meeting room data (%)

Model Precision F1 Sensitivity Accuracy BAcc
DNN-1 51.37 64.41 86.64 90.68 88.90
DNN-2 98.39 94.18 90.32 89.84 87.63
DNN-3 97.55 94.36 91.38 90.25 86.42
DNN-S2e 99.36 94.85 90.74 91.04 92.42

TABLE 6.4: Comparison of Performance of DNN-1, DNN-2
and DNN-3 with Kitchen data (%)

Model Precision F1 Sensitivity Accuracy BAcc
DNN-1 78.67 66.27 58.04 83.24 75.98
DNN-2 94.03 90.75 87.75 84.75 77.80
DNN-3 92.69 91.19 89.86 85.77 78.95
DNN-S2e 99.32 88.97 80.57 80.57 80.56

Fig. 6.11 illustrates the performance of the SM and two MM DNN models,
all trained with the small multimodal train data set and tested with the
multimodal Office test data set. It can be seen that across all metrics, all
three DNN models achieve a very similar level of performance, with BAcc
between 99.1% to 99.2%. Both of the MM models achieve 0.1% higher
precision, F1 and sensitivity metrics, compared to the SM model DNN-1. All
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FIGURE 6.11: Test performance of single and multimode
DNNs using Office test data

FIGURE 6.12: Test performance of single and multimode
DNNs using Meeting room test data
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FIGURE 6.13: Test performance of single and multimode
DNNs using Kitchen test data

of three of the DNN models, including the MM models and the SM DNN-1,
all achieve 0.4% to 0.7% better BAcc and accuracy, compared to optimal SM
DNN DNN-S2e.

Fig 6.12 illustrates the performance of the three DNN models based on the
multimodal Meeting room test data. The SM DNN and both of the MM
DNNs achieve similar BAcc (86.4% to 88.9%) and accuracy (88.3%
to 90.7%). Considering the other performance metrics, both of the MM
models achieve higher precision, F1 and sensitivity, compared to the SM
model. This is particularly true for precision, where the MM DNNs improve
upon the SM DNN’s precision by more than 46%. Similarly, the F1
performance of the MM DNNs is almost 30% higher than the SM DNN.
Considering the optimal SM DNN DNN-S2e, it achieves very similar
performance to the MM DNNs, which is significantly better than the SM
DNN DNN-1. A number of studies demonstrate that increasing the size of
the train set also increases the performance of a DNN model. An increased
train data set enables a DNN model to better learn the discriminating
features of the data and reduces the effect of overfitting [157]–[159]. As
such, based on training the MM DNNs with a larger data set, comparable in
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size with Data.i5, the MM DNNs will achieve better performance in this
environment than the SM DNN.

Fig 6.13 illustrates the performance of the three DNN models using the
Kitchen test data. Across all metrics, the MM DNNs achieve better
performance than the SM DNN. Considering the BAcc and accuracy,
DNN-2 achieves 1.8% and 1.5% more respectively and DNN-3
achieves 3.0% and 2.5% more respectively, compared to the SM DNN. For
precision, DNN-2 and DNN-3 achieve 15.3% and 14.0% more. For F1,
DNN-2 and DNN-3 achieve 24.5% and 24.8% more. For sensitivity DNN-2
and DNN-3 achieve 29.7% and 31.8% more, all compared to the SM DNN.
Due to improvements in precision, F1 and sensitivity demonstrated with the
Kitchen test data, both of the MM DNNs significantly improve the
performance of occupancy detection, compared to the SM DNN. Compared
to the optimal SM DNN, DNN-S2e, both of the MM DNNs slightly improve
upon the performance in this environment. Therefore, if the MM DNNs are
trained with a larger data set, they will both achieve significantly better
performance than the SM DNN [157]–[159], with DNN-3 achieving the best
performance.

Both SM DNNs demonstrated lower performance in the environment with
higher ambient temperature because the discriminating features in the IR
thermal data were distorted and less distinguishable. In comparison, the
MM DNNs are not solely dependant upon the thermal data, but also on the
PIR data, CO2 data and temperature data. This increase in data modes also
increases the number of distinguishable features, which enables an
improvement in the MM DNN performance. A further evaluation could
investigate whether all four modes of data are required, or if less modes of
data can achieve a similar high level of performance.

To summarise, considering the Office and Meeting room test data, all three
DNNs achieve very similar BAcc and accuracy. The MM DNNs achieve
better performance across the other metrics for these two environments. In
comparison, for the kitchen test data, both of the MM DNNs perform better
than the SM DNN, across all metrics. Therefore, based on training the MM
DNNs with a larger data set, both of the MM DNN models will achieve
similar or better performance in all environments, compared to the SM
DNN. The increase in performance will be most significant in environments
with a higher ambient temperature, such as a kitchen or server room.
Overall when all of the DNN models are trained with a large data set, the
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MM DNNs will demonstrate a higher generalisation ability than the SM
DNN.

6.7 Chapter Summary

In this chapter, the sensor configuration of each node was altered by
increasing the quantity of each type of sensor. The method to combine data
and to determine the combined coverage area were proposed and assessed.
Then the MIoTs tool was used to simulate the deployment of three of the
sensor configurations. This enabled these configurations to be assessed by
comparing node density and space coverage. The configuration that
achieved the maximum coverage with the minimum number of sensor
nodes included 4 PIRS and 2 IRS. Based on a 324m2 open-plan office, this
configuration required less than half the number of nodes compared to the
original sensor configuration with a single PIRS and a single IRS. This
sensor configuration will significantly reduce the cost of EMS that is
proposed in Chapter 7.

Additionally, the SM DNN was expanded to create two MM DNN models.
The evaluation train data set contained less than 12% of the samples in the
train data set that was used to evaluate the optimal SM DNN. For a fair
evaluation, the MM DNNs needed to be evaluated against a comparable SM
DNN that was trained with a similar-sized data set. To create a comparable
SM DNN, the optimal SM DNN was retrained with the small data set. The
evaluation of the three DNNs demonstrated that the MM DNNs performed
slightly better than the comparable SM DNN in the Office and Meeting
room and significantly better in the Kitchen. This improvement was due to
the MM DNN using the discriminative features of the numeric data in
addition to the features of the IR data. When the MM DNNs are trained
with a large data set, they will demonstrate a significant improvement in
their generalisation ability.

Since a large multimodal train data set is currently not available, the optimal
SM DNN, DNN-S2e, will be part of the EMS that is proposed in Chapter 7.
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Chapter 7

Occupant-centric IoT-based Energy
Management System

7.1 Introduction

In this chapter, the contributions of Chapters 3 to 6 will be combined to
inform the design of a complete real-world application. This application is
an occupant-centric IoT-based energy management system which is
designed specifically for SMEs based in small commercial buildings.

The Occupant-Centric IoT-based EMS referred to as OcCEMS, is a holistic
solution which includes a network deployment strategy, data fusion, data
analysis, data visualisation and user feedback. The network deployment
strategy is the sensor grid WSN deployment technique which was analysed
in Chapter 4. The sensor grid technique enables minimal IoT hardware to be
deployed whilst achieving full building monitoring coverage. The
DeNNOTE node, developed in Chapter 5 and improved in Chapter 6, is a
high-performance IoT node which will be deployed using the sensor grid
technique to monitor the building and its occupants through the use of
non-intrusive thermal IR, PIR, CO2and temperature sensors. This node
utilises concatenation based data fusion techniques to combine multimodal
data captured by the IoT sensors. The fused data are analysed by the
integrated DNN model employing binary classification to determine
whether occupants are present. The analysed data enables management of
the building’s heating and lighting systems to reduce energy consumption.
In addition, energy consumption data are compared against a baseline and
fed back in real-time to building users. The baseline model is proposed in
Section 7.4 of this chapter. A functional representation of OcCEMS is given
in Fig. 7.1, illustrating data collection, communication and management.
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FIGURE 7.1: Graphical representation of the OcCEMS system

The remainder of this chapter includes a system overview in Section 7.2 and
the integration of the constituent parts of OcCEMS in Section 7.3. In
Section 7.4, the concept of the energy baseline is introduced and
methodology to create a baseline is proposed. In Section 7.5 a range of IoT
nodes are proposed and in Section 7.6, the deployment of OcCEMS is
discussed. The evaluation of the baseline model and the OcCEMS
deployment are in Sections 7.7 and 7.8. Finally, the chapter is summarised in
Section 7.9.

7.2 OcCEMS Overview

Fig. 7.2 is a flow chart illustrating the OcCEMS energy management process,
applying the information it generates regarding the presence of occupants
and building conditions to increase the temporal match between the heating
and lighting systems. This increased temporal match will reduce the
duration that these energy-consuming systems are active, causing a
reduction in energy consumption. The energy consumption data which is
fed back to the building users will enable further long-term reductions in
energy consumption.
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FIGURE 7.2: OcCEMS Process

Learning from existing works [4] [5] and existing systems [81] [83], OcCEMS
has been developed to overcome barriers faced by SMEs. These barriers
include high costs, lack of expertise and significant time requirements.
OcCEMS has been developed to be low cost by combining low-cost sensors
so that each node can achieve a large coverage area, integrating a
high-performance DNN in each node to enable local data analysis; utilising
smart meters which are available free of charge to SMEs; connecting all
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components through the SME’s preexisting WiFi network to an Open Source
EMS integration platform with a user interface (UI). To enable OcCEMS to
be quickly and easily installed and managed by non-experts, it is designed
as a plug-and-play system which can be installed straight out of the box.
The system will be configured and managed through an Open Source EMS
integration platform which will be accessed through an intuitive UI. Time
requirements are minimised by the inclusion of a baseline model which
requires a short monitoring period of 3 months to determine the energy
consumption baseline.

To further minimise costs, the system will be hosted locally, isolated from
the Internet. Where users want a cloud-based system to enable remote
access, this would be available for an additional cost. The cloud-based
system will have the necessary security module embedded. The building
data will be presented to the building users in real-time in the form of a
reporting application which users can view on a computer, tablet or
smartphone within the local area network.

7.3 OpenEMS Integration Platform

The pre-existing Open Source platform OpenEMS [160] is used to integrate
the various components of OcCEMS. OpenEMS is a platform developed by
a number of research institutes and corporations. OpenEMS is available
with an Eclipse Public License which allows the platform to be modified
and redistributed [161]. It is modular, highly adaptable and compatible with
a large number of protocols and existing devices. It also includes a
user-friendly UI and an optional cloud-based backend.

OpenEMS comprises three Java-based modules, OpenEMS Edge, OpenEMS
UI and OpenEMS Backend. OpenEMS Edge is the local management
module which integrates the smart meters, DeNNOTE nodes and the
lighting/heating systems. Additionally, it houses the baseline model. This
module can enable many additional compatible components to be
connected with OcCEMS, including additional sensors, smart sockets,
electric vehicle charging point, energy storage systems, renewable energy
systems, the energy grid and many more. OpenEMS UI is the front end
which enables the user to configure and manage OcCEMS. OpenEMS UI can
be accessed locally within the monitored building, or remotely if the
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OpenEMS Backend cloud-based module is activated. At this stage, OcCEMS
is only configured for local access and the OpenEMS Backend is not utilised.

A mock-up of the homepage of OcCEMS UI is shown in Fig. 7.3. On the
homepage, the DeNNOTE nodes, gas and electricity meters, temperature
and CO2 gas level are displayed in the input panels. The other panels
include control of the lighting, heating and manual override. On the
‘Current Usage’ page users can view their recent energy consumption and
compare current consumption against the baseline.

FIGURE 7.3: Mock-up of OcCEMS homepage built on
OpenEMS UI

In Section 7.4, the concept of an energy baseline is introduced and a baseline
model is proposed.

7.4 Energy Consumption Baseline

For an energy system to indicate a reduction in energy consumption, a
baseline is required. The baseline is the measurement of normal energy
consumption before energy reduction actions are applied. Traditionally, the
creation of a baseline comprises collecting 18+ months of metering and
monitoring data. Where possible, the same system should be used to collect
baseline energy consumption data and consumption data after this baseline
period. The advantage of the traditional method is data completeness since
the data are collected over two winter and summer seasons are generated
using the same method as the data that it will be compared against. The
disadvantage, particularly for SMEs, but also for the environment, is the
long lead time before the enterprise can begin to reduce their energy
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consumption. Research has highlighted that this significant lead time can
cause SMEs to disengage, particularly due to a change in company interests
or finances [61], [67].

Instead, the proposed baseline strategy reduces this lead time to 3 months.
The strategy is to develop a building model to simulate the energy baseline
data. The baseline building model will be incorporated into the
management system and will use the metering/monitoring data that is
collected over a period of three months in combination with additional
indirect building data. Research shows building models can be inaccurate
due to significant differences between the building model and the real
building [162]. Additional data are used to reduce the differences and
improve the performance of the model so it can deliver predictions
within 3% of actual [162]. The indirect building data that will be used to
improve the model will include:

• Preexisting building energy performance specifications e.g.
post-occupancy evaluation (POE) and display energy certification
(DEC)

• 12+ months’ historical billing data.

• 12+ months’ weather data corresponding to the billing period.

• Normal building usage information e.g. operating hours, occupancy
levels.

Additionally, during the three month baseline data collection period, it is
recommended that an energy consumption profiling survey is carried out.
This survey will help the enterprise to understand where and how energy is
consumed and to be informed with respect to other relevant energy-saving
measures [4].

7.4.1 Baseline Model

Using the EnergyPlus building simulation tool [163], a model has been built
to simulate the baseline energy consumption. The model is based upon an
existing Manchester-based SME building comprising 130m2 across two
storeys. The model is shown in Fig. 7.4. The first iteration of the building
model, denoted Model1, includes internal and external dimensions, generic
building materials, generic lighting, heating system and energy-consuming
devices. A pre-defined EnergyPlus ‘open office occupancy’ schedule is
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selected to simulate when the building is occupied, which in turn defines
when heating, lighting and electrical devices are switched on. Local weather
data is also included.

FIGURE 7.4: Ground (left) and first (right) floor baseline
building model

Following the plan for the baseline model, the second iteration of the model,
denoted Model2, is developed with additional information. This
information includes a 2017 DEC certificate with information about
building’s insulation, heating and environment conditioning. Also,
improved glazing, energy-saving light bulbs and information regarding the
energy-consuming devices are added, to match the systems in the real
building. The third iteration of the model denoted Model3, includes 12
months of billing data and more accurate occupancy, heating and lighting
schedules. These schedules highlight the minimal use of the downstairs
areas, which includes the operations room and meeting room. Additionally,
the heating schedule is changed from the pre-defined ‘open office
occupancy’ schedule to a time-based schedule, such that the whole building
is heated between 9am− 5pm to meet occupancy comfort levels. Occupancy
comfort levels are set to 23°C and 500 lux. EnergyPlus can simulate energy
consumption for a range of time periods including daily, monthly and
annually. The performance of the model is assessed by comparing existing
historical data collected from the period 1st January to 31st December 2019,
against the model’s predicted baseline energy consumption. Throughout
2019, the actual gas consumption was 6564 kWh and electricity
consumption was 6721 kWh.

The baseline model will be evaluated in Section 7.7. In the following Section,
a number of IoT nodes with similar specifications are proposed.
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7.5 Range of DeNNOTE Nodes

To further reduce system costs, a range of DeNNOTE nodes is proposed.
The range is based on node config-3 that was assessed in Section 6.4 and
each node has different specifications. Node config-3 will now be referred
to as DeNNOTE1.0 and includes a Raspberry Pi 3B+ processor [149], a 128GB
SD memory card, 4× HC-SR501 PIRS [144], 2×MLX90640 IRS [146], 1× K30
CO2 & temperature sensor [148] and 1× SI1132 light sensor (LS) [164]. The
SI1132 LS has been added to enable the node to measure the ambient light
level. This node has a coverage area of 9.30× 8.57m.

DeNNOTE0.9 includes all of the same components as DeNNOTE1.0, except
without the K30 CO2S. The K30 CO2S has a coverage range of
approximately 116m2 [154]. It is unnecessary to deploy multiple K30 sensors
within an area smaller than this. This node is ideal for deployment
alongside the DeNNOTE1.0.

DeNNOTE0.5 is similar to DeNNOTE1.0, but it includes less PIRS and IRS and
achieves a coverage area just under half that of DeNNOTE1.0, i.e. 4.20× 8.57m.
This node is ideal for monitoring smaller spaces.

DeNNOTE0.4, is similar to DeNNOTE0.5, but without the CO2S. This node is
ideal for deployment alongside the DeNNOTE1.0, e.g. around the perimeter
of the room to reduce the coverage overlap that would occur if multiple
DeNNOTE1.0 or DeNNOTE0.9 nodes were deployed instead.

DeNNOTE0.1 is a minimal version of the node and does not include AI. It
includes just the Raspberry Pi 0 W, 8GB memory card, 4× PIRS and 1× LS.
This node has been developed for areas such as toilet facilities which are
accessed for very short periods of time. Since it does not include the DNN, it
determines if occupants are present based on detecting their movement.
When this node detects an occupant, it will automate turning the light on
for 5 minutes. This time period can be modified through the OcCEMS UI.

Table 7.1 states the cost of each component in the DeNNOTE nodes. These
costs are based on purchasing small quantities of each component. If the
system is manufactured on a large scale, the component costs will be
substantially reduced. Table 7.2 details a summary of each node’s
specifications and cost.

In the next section, the deployment of the OcCEMS system is discussed.
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TABLE 7.1: Cost of DeNNOTE node components

Component Function Cost
Raspberry Pi 3B+ Processor £33 [165]
Raspberry Pi 0W Processor £12 [166]
128GB SD Memory card Memory £14 [165]
8GB SD Memory card Memory £5.10 [165]
83-17540 Raspberry Pi 3 case £3.66 [25]
MC-RP001 Raspberry Pi 0 case £1.66 [25]
MLX90640 IRS £24 [165]
K30 CO2 and temperature

sensor
£64 [167]

HC-SR501 PIRS £0.42 [168]
SI1132 LS £1.46 [165]

TABLE 7.2: DeNNOTE node specifications and cost

Node Specifications / sensors Cost

DeNNOTE1.0

Coverage area: 9.30× 8.57m
Monitors: Occupants, CO2,
temperature, light
Sensors: 4× PIRS, 2× IRS,
1× CO2S, 1× LS

£165.80

DeNNOTE0.9

Coverage area: 9.30× 8.57m
Monitors: Occupants, light
Sensors: 4× PIRS, 2× IRS,
1× LS

£101.80

DeNNOTE0.5

Coverage area: 4.20× 8.57m
Monitors: Occupants, CO2,
temperature, light
Sensors: 3× PIRS, 1× IRS,
1× CO2S, 1× LS

£141.38

DeNNOTE0.4

Coverage area: 4.20× 8.57m
Monitors: Occupants, light
Sensors: 3× PIRS, 1× IRS,
1× LS

£77.80

DeNNOTE0.1
Coverage area: 9.30× 9.30m
Monitors: Occupants, light
Sensors: 4× PIRS, 1× LS

£20.64

7.6 Deployment of OcCEMS

Due to Covid-19 restrictions throughout 2020, the SME that has been
participating in this research has not been open for normal operation. This
means it is not possible to deploy OcCEMS in this building. Instead, the
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MIoTs simulation tool, detailed in Chapter 3, is used to simulate the
deployment of OcCEMS in this same building. The simulation is based on
the sensor grid WSN deployment technique and the DeNNOTE1.0 node.
MIoTs is used to simulate the upstairs and downstairs of the SME office,
based on working hours 9am− 5pm, a maximum of 6 occupants and natural
ventilation. The sensor data that is simulated for each node is processed by
the single-mode DNN, DNN-S2e, to create an occupancy schedule for each
region inside the building.

Next, the EnergyPlus Energy Management System (EnergyPlus-EMS) is
used to create sensor and actuator-based control modules [169]. A new
EnergyPlus model denoted OcCEMS-EP, is created by installing the sensor
and actuator control modules in the existing EnergyPlus model of the SME
(Model3). Using EnergyPlus-EMS, EnergyPlus is able to simulate when and
where the occupants are in the building model. When occupants are present
in any part of the building, the OcCEMS-EP model will simulate heating the
whole building to meet occupant comfort levels of 23°C. When there are no
occupants, the model will turn the heating off. In comparison to the heating,
the management of the lights is based on the occupancy of each room.
When one or more occupants are present in a room, the OcCEMS-EP model
will turn the lights on in the respective room to meet comfort levels
of 500 lux. When there are no occupants in a room, the OcCEMS-EP model
will turn the lights off. The 2019 local weather data is part of this model.
The OcCEMS-EP EnergyPlus model is used to simulate the energy
consumption for a period of 1 year.

In Section 7.8, this deployment will be evaluated. In the next section, the
baseline model that was proposed in Section 7.4 is evaluated.

7.7 Evaluation of Baseline Model

The baseline models that were developed in Section 7.4 are assessed by
comparing their simulated energy consumption against the actual 2019
energy consumption, based on monthly utility bills. In Fig. 7.5 and 7.6 the
actual and simulated baseline energy consumption are shown.

The simulated energy consumption of Model1 varies significantly from the
actual energy consumption of the building. The annual simulated gas
consumption is 49% lower than the actual gas consumption and follows an
inverted bell curve, with some similarities to the actual month-on-month
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FIGURE 7.5: Gas consumption simulated by 3 iterations of the
energy consumption baseline model

FIGURE 7.6: Electricity consumption simulated by 3 iterations
of the energy consumption baseline model
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consumption levels. In comparison, the electricity consumption is 60%
higher than the actual electricity consumption and does not correlate with
the actual, showing significant and random fluctuations in its monthly
consumption.

The next iteration of the model, Model2, demonstrates an improvement
compared to Model1. The total simulated gas is reduced to 5671 kWh, which
is 14% less than actual and correlates much more closely with the
month-on-month trends in the actual consumption. The simulated
electricity consumption is reduced to 6054.31 kWh, 10% lower than actual.
The electricity no longer models significant month-on-month fluctuations,
but the consumption also does not correlate with the actual consumption.
Instead, the simulated electricity consumption is almost constant across the
year, with a slight reduction over the summer months.

Model3 shows a significant improvement in reflecting the actual gas and
electricity consumption and month-on-month trends. It achieves annual gas
consumption of 6889 kWh, 5% above actual and closely following the trends
in the actual consumption. The simulated electricity consumption
is 6492 kWh, 4% below actual and includes some similarity with the actual
month-on-month consumption. These improvements in the model result
from the changes in the occupancy schedule and the reduction in utilisation
of the downstairs areas. Additional granular data captured hourly by the
SMET2 electricity and gas meters and minutely by the IoT nodes will enable
this model to demonstrate further improvement.

EnergyPlus Model3 will be the baseline model that will be used in further
analysis of the OcCEMS system. In Section 7.8, a deployment of OcCEMS
will be simulated and its performance will be assessed.

7.8 Evaluation of OcCEMS Deployment

It Section 7.6, it was proposed that deployment of the OcCEMS system
should be simulated by the MIoTs tool. Figs. 7.7 and 7.8 show the mapping
of the OcCEMS deployment within the Manchester-based SME1. In both the
downstairs and upstairs floor plans, there are regions which do not have
sensor coverage. This is intentional, two of the regions are storage, one on
each floor. The third region, shown in grey in the first floor deployment, is

1It should be noted, the sensor symbols have been added manually to the simulated
deployment images to illustrate the nodes’ positions
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the stairs. The stairs region is common to both the ground floor and first
floor. For this region, the sensors are illustrated on the ground floor plan.
Across both of the floors, a total of 8 DeNNOTE nodes are deployed, 5 on
the ground floor and 3 on the first floor.

FIGURE 7.7: Floor map and simulated OcCEMS deployment in
ground floor of Manchester-based SME
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FIGURE 7.8: Floor map and simulated OcCEMS deployment in
first floor of Manchester-based SME

7.8.1 Evaluation of OcCEMS Hardware Cost

In the MIoTs simulation, the IoT nodes are all the DeNNOTE1.0 node. The total
hardware cost to deploy DeNNOTE1.0 throughout the building is £1326.40.
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For a real deployment in this building, to further reduce system costs and
network redundancy, a selection of nodes from the DeNNOTE range would
be used. The full range is defined in Section 7.6. Both Tables 7.3 and 7.4
summarise which nodes would be deployed where on the ground floor and
the first floor respectively. The deployment would include a single
DeNNOTE1.0 in each room and DeNNOTE0.1 in the toilet areas. Based on using
these specific DeNNOTE nodes, the total hardware cost would be reduced
to £1036.08, which is 22% less than using DeNNOTE1.0 throughout. For
further assessment of OcCEMS, only DeNNOTE0.1 is used in the simulations.

TABLE 7.3: Key of DeNNOTE nodes for a real-life deployment
on the ground floor

Node
Configuration

Deployed node
label

Total cost

DeNNOTE1.0 s1, s3, s4, s5 £663.20
DeNNOTE0.1 s2 £20.64

TABLE 7.4: Key of DeNNOTE nodes for a real-life deployment
on the first floor

Node
Configuration

Deployed node
label

Total cost

DeNNOTE1.0 s2, s3 £331.60
DeNNOTE0.1 s1 £20.64

7.8.2 Evaluation of OcCEMS Simulated Performance

EnergyPlus has been used to simulate the annual energy consumption of a
Manchester-based SME with the OcCEMS system installed. The building
occupancy levels used by the EnergyPlus model were generated from the
OcCEMS sensor data that was simulated using the MIoTs simulation tool.
The actual 2019, baseline and OcCEMS energy consumption are compared in
Figs 7.9 and 7.10 for gas and electricity respectively.

Both the gas and electricity consumption show a significant reduction over
the period of a year. In comparison to the actual energy consumption in
2019, the simulated gas consumption is reduced by 10.4% and the electricity
consumption is reduced by 10.6%. The trends in the OcCEMS gas
consumption data are very similar to the trends in the actual and the
baseline energy consumption data. This shows that with OcCEMS installed,
the heating system continues to be used in a very similar way, but for
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FIGURE 7.9: The actual gas consumption compared to the
simulated gas consumption of Model3 and OcCEMS

FIGURE 7.10: The actual electricity consumption compared to
simulated electricity consumption of Model3 and OcCEMS
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shorter periods. In comparison, the OcCEMS electricity consumption data
does not follow the same trend as the actual energy consumption data.
Instead, it shows a more significant reduction of up to 20% in the winter and
Autumn months, particularly February, March and October. There is also a
reduction across the summer months, but it is closer to 5% in May to
August. These different levels of reductions are a result of two things, firstly
a closer temporal match between occupants and light usage throughout the
year and secondly the monitoring of ambient light levels which has more
impact on the energy reduction in February, March and October. The result
of monitoring ambient light levels is when the natural light level meets the
occupant comfort level, OcCEMS will automatically turn the lights off.
Throughout winter, due to darker mornings, building users generally turn
the lights on upon arrival to work. But they may unaware of the natural
light level increasing throughout the day [170]. As such, during winter
months, OcCEMS enables a more significant reduction in electricity
consumption by turning the lights off when the natural light level meets the
occupant comfort level.

A real-life deployment of OcCEMS can achieve this energy reduction. In
addition to automating switching off the heating and lighting systems, the
system will use the smart metering data to generate real-time consumption
data which will be fed back to building occupants. This feedback will enable
further energy reductions to be achieved and maintained for the long term
by encouraging positive behaviour changes and without any further cost to
the SME [23]. Using the baseline and current data consumption, building
occupants can trial other low-cost energy-saving measures to assess if they
can further reduce their energy consumption, for example, reducing the
occupant comfort level down from 23°C to 21°C, changing to energy-saving
bulbs, or using smart sockets.

7.9 Chapter Summary

An occupant-centric IoT-based EMS, OcCEMS, was proposed using the
contributions of earlier chapters. The OcCEMS components were combined
using the pre-existing OpenEMS integration platform and a WiFi network.
A baseline model was created using indirect building data including energy
bills, building construction materials and approximate occupancy
schedules. The baseline model will be integrated into the OcCEMS system
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to enable current energy consumption to be compared to the baseline. This
comparison will enable building users to assess whether there is a reduction
in energy consumption. The baseline model was also used in the evaluation
of OcCEMS. A range of DeNNOTE nodes with different specifications were
proposed. This range of nodes enabled a further reduction in the system
cost by not over-specifying the system’s hardware.

The MIoTs tool was used to simulate a deployment of OcCEMS in a real
SME building. The hardware cost for the OcCEMS system is £1036.08,
which is 16% of the cost of comparable existing commercial systems, which
could cost between £2600 and £6500 for a building spanning 130m2 [79],
[80]. This cost is based on achieving strong coverage with no coverage gaps
and minimal network redundancy. The MIoTs simulation data and the
EnergyPlus baseline building model were combined to model how OcCEMS
would reduce energy consumption in an SME. The simulations
demonstrated that OcCEMS increased the temporal match between
occupants and energy-consuming systems. It also demonstrated that
OcCEMS monitored occupant comfort levels more accurately that
occupants, such that when occupants were present, it correctly switched off
the lights when the natural light level was sufficient. In summary, OcCEMS
demonstrated a reduction of 10.4% in annual gas consumption and a
reduction of 10.6% in annual electricity consumption. OcCEMS also enables
further long term energy reductions through the feedback of real-time
energy consumption data to building users.
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Chapter 8

Conclusion and Recommendations

This chapter concludes the thesis, presents the technical limitations and
outlines possible areas of future research activities.

8.1 Conclusion

Chapter 2 considered the motivation for this work, that worldwide energy
consumption is increasing, causing an increase in GHG emissions and
damaging the environment. Significant efforts are being made across most
nations to reduce this impact, but assessments of the UK’s progress are
damning. Small commercial buildings are responsible for 7.1% of the UK’s
energy consumption and research has shown that low-cost energy-saving
measures could reduce this by 25%. But the SMEs that are largely
responsible for these small commercial buildings are experiencing
significant barriers when trying to reduce their energy consumption, i.e.
high costs, lack of expertise and time constraints. IoT was introduced in
Chapter 1 as a low cost, versatile and ideal technology for building
monitoring and three enabling technologies (WSN, ML and simulation
tools) were introduced and the existing work was reviewed.

A number of existing WSN deployment techniques were assessed. For each
technique, algorithms were developed to determine the sensor density and
space coverage. The deployments were simulated and assessed in terms of
their ability to accurately capture building monitoring data. It was shown
that for a range of different environments, the sensor grid deployment
required the minimal number of sensors and achieved a good level of data
capture accuracy, demonstrating 81.20% accuracy in occupancy monitoring
based on utilising the blob detection function. This deployment did create
sensor coverage gaps, resulting in 21.80% of the building to be
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unmonitored. The hardware in the IoT node was optimised by increasing
the quantity of each multimodal sensor and using concatenation-based data
fusion techniques to combine the data. This enabled a significant increase in
node coverage range and reduced the coverage gaps when the nodes were
deployed in a sensor grid WSN. Based on the sensor grid deployment
technique and a constant number of IoT nodes, the building coverage was
increased from around 78.54% to 100% by increasing the number of sensors
in each node and varying their configuration.

Building upon the IoT-based WSN, machine learning was utilised to
improve its performance. A deep learning, feed-forward DNN architecture
was developed and integrated into the IoT node. The DNN utilised IR data
that was captured by the IoT node and was processed locally to determine
whether occupants were present. The inclusion of the DNN improved the
performance of the IoT node from 81.20% based on a WSN deployed in
sensor grid and utilising blob detection to determine occupancy, to 98.63%
based on the same WSN deployment technique, but using the single mode
DNN DNN-S2e and binary classification to determine occupancy. The
hyperparameters of the DNN model were studied to determine the optimal
hyperparameters to create a model with a high generalisation ability;
demonstrating binary classification performance of 80.56%− 98.63% across
three different environments, two of which were unseen environments,
different from the training environment.

In an effort to improve the generalisation ability of the DNN model by
improving the sensitivity of the DNN model on unseen data in a more
challenging environment where the ambient temperature and thermal
occupancy sensor data were too similar, the DNN architecture was
expanded. The DNN was already achieving a high level of accuracy in
office-based environments, so the focus of this development was on
environments where ambient room temperature was slightly higher and the
performance of the DNN was reduced. Such environments could include a
server room or kitchen. As such, the architecture of the DNN was expanded
to enable it to process multimodal sensor inputs. Based on a smaller
multimodal train and test data set, a SM and two MM DNNs were
evaluated. The MM DNNs both demonstrated comparable behaviour to the
SM DNN in the office-based environments, but a significant improvement
in the environment with a higher ambient temperature due to the inclusion
of CO2, PIR and temperature data in the DNN model. When the MM DNN



Chapter 8. Conclusion and Recommendations 151

is trained with a larger multimodal data set, the generalisation ability of the
MM DNN will be improved compared to the SM DNN.

All of these technical contributions were brought together to deliver a
real-life application that can be deployed within a small commercial
building to reduce energy consumption. This application is a non-intrusive,
occupant-centric IoT-based EMS. All of the components were integrated
using a pre-existing energy management application OpenEMS. The
proposed system integrated smart meters, IoT nodes, machine learning and
control of building heating and lighting systems. The building occupants
are provided with an intuitive UI to manage the system and monitor
real-time energy usage. The EMS is ISO50001 compliant since a baseline is
integrated, enabling building occupants to view their real-time consumption
and compare it with the baseline consumption. The IoT node was further
developed to create a range of nodes with different specifications. The EMS
was simulated within a real SME building and the cost of the system to be
determined. The building comprised 2 floors, 8 separate rooms and a total
floor area of 130m2. The total hardware cost of the EMS was £1036.80 which
very low for such a high performance system, deployed within a building of
this size. The deployment included 8 IoT nodes, connectivity with a smart
gas and electricity meter and a user application for system configuration
and management. The simulation demonstrated that the EMS will automate
a significant reduction of energy consumption, achieving 10.5% reduction
compared to the actual energy consumption.

In summary, this work has utilised IoT, WSN and machine towards
resolving the barriers faced by SMEs when trying to reduce their energy
consumption. The presented system is low cost, demonstrates a high
performance regarding occupancy and building monitoring, increases the
temporal match between building occupancy and energy consuming
systems, maintains occupant comfort levels and automates a 10.5% energy
reduction.

8.2 Limitations of Work

The most significant limitation of this work is that the final system was not
deployed in a real environment to evaluate its ability to reduce energy
consumption. This was mainly due to the current Covid-19 restrictions
which have significantly effected all UK enterprises. As part of these
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restrictions, enterprises had to enable employees to work from home where
possible [122]. This meant for the majority of 2020, occupancy levels within
many commercial building was significantly effected. To reduce the impact
of this limitation, the single DeNNOTE node was deployed and evaluated
in a number of real environments. Additionally, each stage of the work was
modelled using either EnergyPlus [163] or MIoTs1 simulation tools.

8.3 Further Work

When the current Covid-19 restrictions are eased and the utilisation of small
commercial buildings returns to normal, further work could include the
deployment of the OcCEMS system in a number of small commercial
buildings. These deployments would demonstrate whether OcCEMS can
improve upon its simulated performance. Further developments could
include using machine to evaluate occupancy patterns to predict occupancy
usage schedules [171] to further reduce energy consumption by detecting
device faults and automating turn-off of idle devices such as computers, IT
peripherals, industrial machinery, etc.

Further work could be carried out to capture a larger multimodal train and
test data set. This will enable the two MM DNNs to be evaluated against the
optimal SM DNN. Additionally, optimisation of the MM DNN
hyperparameters should be studied. The hyperparameters that were used
were optimal for an image-based SM DNN. In comparison, the MM DNN
also processes numeric data so its hyperparameters, particularly the
Sigmoid activation functions, may no longer optimal. This analysis will
enable improvement of the model’s generalisation ability delivering better
performance across a wider range of environments.

The MIoTs simulation tool is relatively limited in its current modelling
capabilities. This includes 2D building modelling, a limited range of sensor
models, no consideration of network protocols and no graphical user
interface (GUI). Further work could be carried out to develop this tool to
enable 3D building modelling and more sensor models: e.g., temperature;
light; humidity; and sound. The addition communication protocols would
significantly improve the scope of the tool. The addition of a GUI would
make the tool accessible to other users.

1Developed as part of this research and described in the Chapter 3
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Internet of Things: Evolution and Technologies from a

Security Perspective

Abstract

In recent years, IoT has developed into many areas of life including smart homes,
smart cities, agriculture, offices, and workplaces. Everyday physical items such as
lights, locks and industrial machineries can now be part of the IoT ecosystem. IoT
has redefined the management of critical and non-critical systems with the aim of
making our lives more safe, efficient and comfortable. As a result, IoT technology is
having a huge positive impact on our lives. However, in addition to these positives,
IoT systems have also attracted negative attention from malicious users who aim
to infiltrate weaknesses within IoT systems for their own gain, referred to as cyber
security attacks. By creating an introduction to IoT, this paper seeks to highlight
IoT cyber security vulnerabilities and mitigation techniques to the reader.

The paper is suitable for developers, practitioners, and academics, particularly
from fields such as computer networking, information or communication technol-
ogy or electronics. The paper begins by introducing IoT as the culmination of two
hundred years of evolution within communication technologies. Around 2014, IoT
reached consumers, early products were mostly small closed IoT networks, followed
by large networks such as smart cities, and continuing to evolve into Next Generation
Internet; internet systems which incorporate human values. Following this evolution-
ary introduction, IoT architectures are compared and some of the technologies that
are part of each architectural layer are introduced. Security threats within each
architectural layer and some mitigation strategies are discussed, finally, the paper
concludes with some future developments.

1. Introduction

The Internet of Things (IoT) is a network of everyday things, connected together
through the Internet. The function of an IoT system is to monitor the world around
itself, to enable and assist, or to automate a response to changes in the system’s
environment [118, 25]. In comparison, the purpose of an IoT system is to improve
the quality of life by enabling the best response to an environmental change [79] by
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providing responsive services which are specific to the end-users’ needs [88]. An IoT
device can be ‘any thing’ in the world that includes the technological components to
enable the Thing to connect to the Internet through a wired or wireless network. IoT
users can be a human, or machine, or a combination [20]. IoT is not a specific device
or technology, instead, IoT is the inter-working of different technologies enabling the
connectivity of many Things.

Generally, IoT networks comprise of many connected Things connected together
through a management platform. The platform has a number of roles including man-
aging the connected Things, system threats and security, data analysis, processing
and storage, and managing the response of any Things [46]. IoT Things can either
have all of their electronic components included in them at conception, or added
later. Examples of systems where smart functionality is added after conception [81]
include a pet with a tracking tag, external or implanted human biometric systems,
or older high value legacy vehicles such as an aircraft. Smart conceptualised systems
include smart home heating and self-driving vehicles.

2. Evolution of ICT Culminating in IoT

Figure 1 is a time-line showing the evolution of Information Communication
Technologies (ICT) starting from the 1830s, highlighting some of developments and
culminating in IoT. The telegraph is considered as the first major invention of wireless
communication technology. Following this hugely significant invention, comes the
creation of the telephone, closely followed by the birth of computers. The invention
of computers in the 1920s enabled the solving of complex computations, including the
breaking of previously unbreakable codes and calculations including code breaking
at Bletchley Park during WWII. The architecture of this early machine became
the foundation for the computing theory that followed [92]. This led on to the
development of the Personal Computer (PC) in the 1970s, and their unprecedented
uptake in the 1980s. The PC totally revolutionised the lives of individuals in the
home and workplace due its reduction in size and cost, and the addition of new
software such as word processing and spreadsheet tools [75]. Computer technology
has developed relatively slowly over 90 years to the computers we recognise today,
from large powerful servers, to PCs and more versatile mobile computers, including
the laptop, tablet and smart phone.

The next development along the time-line was the networking of computers, in-
cluding US Defence Department project ARPNET, through to the WWW, developed
by Tim Bernes-Lee and launched in 1991 as a tool to share documents. The combi-
nation of the Internet and WWW are the most significant milestone within the IoT
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Figure 1: Time-line: The Evolution of ICT Culminating in IoT
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time-line. Similar to computers, the Internet has developed relatively slowly, over 50
years from closed connectivity projects to the powerful tools that we all know and
use today.

The release of the Raspberry Pi microcontroller in 2011 was another major IoT
breakthrough and was in-part responsible for the swift uptake of IoT technology.
This low-cost, versatile microcontroller suddenly opened up IoT to hobbyists and
end users. Other microcontrollers did exist, but due its low cost, low complexity
and relatively large processing power and significant amount of free on-line support,
including tutorials, videos, educational DIY websites, blogs and forums, IoT was
no longer limited to commercial projects. The time-line continued onto 2014 when
IoT technology was widely presented to the consumer market by companies like
Google, as they acquired Nest, Apple introducing the Apple Watch, and Siemens
as they introduced SmartThings, an affordable smart home starter kit and software
platform.

Since this consumer introduction, IoT has continued to develop significantly, in-
cluding the creation of more than 400 IoT platforms, many commercial IoT devel-
opers and thousands of products. In 2016, large tech companies including Amazon,
Apple and Google have release voice activated personal assistants. In addition to
consumer IoT, there is Industrial IoT (IIoT) enabling the automation of many in-
dustrial processes. The concept of IoT has also continued to evolve; initially IoT
systems comprised of lots of small closed networks, but this concept has evolved to
incorporate larger more connected networks, for example smart cities with smart
transport infrastructures. But large infrastructure is not the end of this evolutionary
journey, the concept of IoT is currently evolving into the Next Generation Internet
(NGI). NGI is the vision of IoT which seeks to encompass human values within Inter-
net based systems, enabling “human potential, mobility and creativity at the largest
possible scale while dealing responsibly with our natural resources... we shape a
value-centric, human and inclusive Internet for all” [60]. These NGI concepts are be-
ing integrated into existing and new IoT systems through the inclusion of advanced
technologies such as artificial intelligence, machine learning, augmented reality and
virtual reality, are others, whilst “making the future internet more human-centric”.
In many areas, NGI concepts match the smart sustainable city concept, the main
difference is NGI includes human values of well being, rather than just environmental
and economical well-being.

Alongside of this evolutionary journey, in 2016 and 17, there were a number of
very significant security attacks, particularly the Mirai Dyn attack and WannaCry
NHS attack. In response, world wide Governments have begun developing strategies,
initiatives, and in some instances, laws to strive to reduce IoT security vulnerabili-
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ties. Other technologies including Artificial Intelligence (AI), machine learning and
Blockchain are being combined with IoT to produce more powerful tools. Similarly,
Augmented Reality (AR) and Virtual Reality (VR) technology are being combined
to with IoT to create a more interactive user experience.

This evolution of ICT technology, which culminated in IoT has taken 200 years.
In comparison, from the initial concepts of IoT in 1999, through to introduction of
IoT to the consumer around 2014, which has led onto widespread adoption of IoT
technology. The IoT development cycle is just 15-20 years and as a result of this
rapid development, IoT faces major issues, the most significant of which are secu-
rity vulnerabilities. The severity of IoT security vulnerabilities are because security
has been a developmental afterthought. Designers, developers and policy makers
worldwide are now looking for ways to reduce this issue. In 2018 the British Govern-
ment released the world’s first IoT code of practice entitled ‘Secure by Design’ [36].
This code aims to “remove the burden from consumers to securely configure their
devices and instead ensure that strong security is built into IoT devices and services
by design” [35], also the British Government is currently consulting over whether to
mandate security laws for IoT consumer products [37]. Other related methodologies,
strategies and technologies are also being researched and developed [121, 104, 23, 80].
Additionally, the British Government is investing 30.6 million into ‘Security of Digital
Technology as part of the the Periphery’ (SDTaP) research program. This invest-
ment has included the opening in March 2019 of The PETRAS (privacy, ethics,
trust, reliability, acceptability, and security) National Centre of Excellence for IoT
Systems Cybersecurity. The national centre of excellence is a collaboration between
a number of universities, including Imperial College London, Bristol University and
150 industrial partners.

3. Related Work

There is a large number of tutorials, surveys and research studies in the area of
IoT. Significant surveys [16, 5, 77] consider IoT concepts and technologies as a whole,
including the architectures, technologies and principal applications of IoT. Atzori et
al. [17], develops his earlier survey [16], challenging the popular idea that IoT can
be used to solve any issue. Many real IoT smart city deployments are detailed and
analysed, including these works [2, 126, 83].

Further works focus on technologies or challenges within IoT systems, these in-
clude works comparing IoT architectures [127, 85, 5, 125]. Specific communication
technologies [5] are defined and compared. Hejazi et al. [54] compare IoT cloud plat-
forms defining strengths, weakness and where they each fit within the IoT sector.
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Similarly, IoT Operating Systems (OS) are detailed and compared [24, 30]. Bu-
jari [26] considers current challenges including interoperability, security, privacy, and
business models. Security challenges are studied [124, 44, 7] and Alaba [7] surveys
existing security solutions. Stergiou [115] surveys IoT and Cloud Computing from
the perspective of security, Yang et al. [124] and Granjal et al. [47] both study IoT
security vulnerabilities and analyse the effectiveness of security strategies. Gupta et
al. [50, 51] have created a number of security books including a practical and detailed
handbook which surveys security across a range of ICT including wired and wireless
systems, ad-hoc networks, human wearables and cloud computing. The second [51] is
a comprehensive book covering security trends, cyber risk, vulnerability assessments,
the human factor, smart phone protection, critical infrastructure protection. It also
introduces security policies and techniques including cryptography, standards and
modelling.

The contributions of this paper relative to existing literature can be summarised
as this paper is written with:

• Consideration of practitioners and researchers from neighbouring fields.

• A brief history and overview of the evolution of IoT, demonstrating where IoT
sits within ICT and current trends including Industrial IoT, Smart Cities and
Next Generation Internet.

• Consideration of IoT security vulnerabilities.

• Recommendations to reduce security threats.

• Architecture and technologies are considered from the perspective of designing,
developing and securing large Next Generation Internet IoT systems, this in-
cludes quick reference technology comparison tables (Tables Table 1, Table 2,
and Table 3).

4. IoT Technologies

IoT is not a single technology, but a system or framework comprised of many
technologies. This section will begin by considering some definitions of IoT and
then introduce three IoT architectures, before looking in more detail at one specific
architecture, considering the the technologies and security vulnerabilities within each
of its layer. Some security attacks that can be applied to IoT systems including
node capture, eavesdropping, malicious control, IP Spoofing, Ping of death, sniffing,
malicious code injection and denial of service. These attacks will be discussed and
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mitigation techniques suggested. Technologies within IoT systems including Things,
communication technologies, management platforms, data management tools and
user applications will also be introduced.

4.1. Definitions and Concepts

The IEEE has developed two definitions of IoT [87, 56], the first is with respect
to simple IoT networks, and states:

“An IoT is a network that connects uniquely identifiable “things” to the Inter-
net. The “things” have sensing/actuation and potential programmability capabil-
ities. Through the exploitation of unique identification and sensing, information
about the “thing” can be collected and the state of the ‘thing’ can be changed from
anywhere, anytime, by anything.”

The second definition is specific to larger networks, for example smart cities, and
it states:

“Internet of Things envisions a self-configuring, adaptive, complex network that
interconnects ‘things’ to the Internet through the use of standard communication pro-
tocols. The interconnected things have physical or virtual representation in the dig-
ital world, sensing/actuation capability, a programmability feature and are uniquely
identifiable. The representation contains information including the thing’s identity,
status, location or any other business, social or privately relevant information. The
things offer services, with or without human intervention, through the exploitation
of unique identification, data capture and communication, and actuation capability.
The service is exploited through the use of intelligent interfaces and is made available
anywhere, anytime, and for anything taking security into consideration.”

From both of the definitions, a number of characteristics can be highlighted:

1. IoT is a system that incorporates and connects ‘Things’

2. Things sense or monitor their environment

3. Things connect to the Internet to communicate

4. Things are uniquely identifiable

5. The system can potentially compute data, for example use, process, store or
transmit data onward

6. The system should present information to a user or multiple users

7. The system responds to input from connected Things and, or users

.
The National Institute of Standards and Technology (NIST) do not define IoT,

instead they state some of the characteristics of IoT. These characteristics resemble
the IEEE definitions. NIST state that IoT systems “involve sensing, computing,
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communication, and actuation” [120]. Inline with these definitions [56], and oth-
ers [120, 12, 43, 59, 16, 42, 91, 40, 33], Internet connected enterprise infrastructures,
PCs, laptops, tablets and smart phones will be considered part of IoT.

IoT has use-cases in many areas of life, but in the last few years the focus of IoT
has been moving away from small, independent and unconnected networks towards
more joined-up infrastructures and networks, particularly with a focus on smart
cities. In 2016, the ITU-T SG20 IoT working group changed its name to ‘ITU-
T SG20: Internet of things (IoT) and smart cities and communities (SCC)’. This
group is currently developing 83 smart city standards, each focused on a different
aspect of smart city infrastructure such as architecture [65, 66, 69], data sharing [64]
or security [67, 68]. Similarly, the IEEE P2413 IoT working group has created a
smart city group, IEEE P2413.1. They are currently developing ‘P4213.1 Standard
for a Reference Architecture for Smart City (RASC)’ [13].

The concept of smart cities and sustainable cities have been around since the mid
1990s [70]. Initially, smart cities simply referred to cities with economic improvement
strategies, next the concept included use of ICT within city infrastructures, later the
concept became more citizen centric. Today, most stakeholders would agree that
smart cities include technology in their infrastructures, enabling them to serve their
citizens, providing “more efficient services to citizens, to monitor and optimize exist-
ing infrastructure, to increase collaboration amongst different economic actors and
to encourage innovative business models in both private and public sector” [82].
In addition to the well being of citizens and city infrastructure, the environmental
sustainability of a city’s operations has also become an important feature, “Cities
become smart sustainable when smart ICT is employed for making them (the cities)
more sustainable” [22]. A more recent concept is that of Next Generation Internet, in
combination with smart sustainable cities, resulting in ‘Next Generation Sustainable
Cities’. There are a number of important characteristics of these cities. Firstly, next
generation sustainable cities seek to “shape the future internet as an interoperable
platform ecosystem that embodies the values .... openness, inclusivity, transparency,
privacy, cooperation, and protection of data” [60]. Secondly, next generation sustain-
able cities are ‘next generational’, the technology they are comprised of is developed
based upon the analysis of previous and existing generations of the technology [95].
Thirdly, next generation sustainable cities are built with next generation technolo-
gies, for example, 5G telecommunications, intelligent technologies including machine
learning and AI. Thirdly, NG sustainable cities are are citizen centric, promoting
the health and well-being of all citizen, the city and its environment impact and
sustainability.

154



4.2. Architectures

A technical architecture is a framework created to allow designers and devel-
opers to consider the system as a whole and also to break it down into sections.
According to Global Standards 1 (GS1),“a reference architecture is an essential
foundation to enable integrating the diverse technologies into IoT applications” [48].
There are many groups working on developing IoT architectures and other standards.
These groups include IEEE P4213 Working Group, IEEE 802.24 Technical Advisory
Group (TAG), IEEE P4213.1 Working Group, The National Institute of Standards
and Technology (NIST) IoT Working Group, International Standard Organisation
/ International Electrotechnical Commission (ISO/IEC) 30141 JTC1 IoT Working
Group 10, International Electrotechnical Commission Strategic (IEC) Group8, In-
ternational Telecommunication Union Telecommunication (ITU-T) Group, oneM2M
Consortium, Open Connectivity Foundation (OFC), Industrial Internet Consortium
(IIC), and Internet Engineering Task Force (IETF). Though currently, none of these
architectures are universally accepted, so below three architectures will be considered
and compared.

Figure 2: IoT architectures: (A) IEEE P4213 Three Layer Architecture [14]. (B) Zhong [127], Miao
Wu [85] and Montagero’s [90] Five Layer Architecture. (C) ITU-T Y.4000 Four Layer Architec-
ture [41].

Historically, the most common IoT architecture is the Three Layer Architec-
ture, illustrated in Figure 2-A. This framework is currently being developed fur-
ther as part of the IEEE P4213 IoT architecture standard [14] which is based on
the SO/IEC/IEEE 42010-2011 systems and software engineering architecture de-
scription standard [63]. The same framework is expanded upon within the IIC’s
industrial internet of things reference architecture [78]. Similar architectures are
discussed [16, 85, 5]. This architecture comprises of the Things, Abstract and Appli-
cation Layers [14, 107, 10]. The IEEE P4213 standard is open source and is a widely
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accepted and supported standard which has been in development for a number of
years, and is still being developed. The standard is very detailed, comprising over
100 pages with the aim of creating an architectural framework which is relevant to
any industry or use case. Though, some researchers [127, 6] suggest the Three Layer
Architecture is too high level and does not allow the different components of the IoT
system to be separated out sufficiently to enable system development or protection.
For the purpose of this paper, considering IoT from a security perspective, the au-
thors agree with this conclusion, that further division of the IoT system will enable
easier consideration of the security vulnerabilities. The next architecture considered
is the ITU-T Y.4000 Overview of the IoT [41]. This standard comprises of a 4 layer
architecture, with separate over-arching management and security capabilities, as
shown in Figure 2-C. Again, for the purpose of this paper, it is more helpful to con-
sider security within each architectural layers, rather than separating security out.
In 2015 a group of researchers, Zhong et al. [127], introduced a Five Layer Architec-
ture comprising of the Perception, Network Access, Network, Application Support
and Application Presentation Layers, illustrated in Figure 2-B. Similarly in 2017,
Montagero et al. [90] and Miao Wu et al. [85] developed an architecture based on
the computer networking Open System Interconnect (OSI) technology architecture.
Montagero et al.’s architecture resembled that developed by Zhong et al. Miao et
al.’s architecture comprised of the same five layers as Zhong et al.’s, plus an addi-
tional Business Layer. From this point forwards, this architecture will be referred to
as Zhong’s Five Layer Architecture

Summary of the Architecture Layers:

1. The lowest layer, commonly referred to as the Perception Layer is the same
across all three architectures and comprises of the physical layer that interfaces
between the physical and information world, monitoring the environment and
collecting data. The layer comprises of hardware devices including sensors and
actuators. In this layer, the collected data is converted into digital data, ready
for transmission up, to the next layer.

2. As can be seen from Figure 2, the Abstract Layer in Model A is subdivided in
Model B and C. The Network Access Layer (Model B) is concerned with moving
the digital data from the perception layer to an access node or gateway. The
data is transmitted using access technologies like Ethernet, Wi-Fi, Bluetooth
or Zigbee. The data is then ready to be used in the Network Layer.

3. The Network Layer (Model B) is concerned with transmitting data received at
the access node throughout the whole IoT network, including the Application
Support Layer and the Application Presentation Layer. These transmission
technologies can include wired and wireless Internet protocols, for example
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HTTP, MQTT and CoAp. In ITU-T’s architecture (Model C), the Transport
Layer is a combination of the Network Access Layer and Network Layer of
Zhong’s architecture (Model B).

4. The Application Support Layer (Model B), also referred to as the Processing
Layer (Model C), is responsible for processing data. Dependant upon the size
of the IoT system, this layer can be very complicated as it is responsible for
processing and combining data from many different sensors and other devices
and presenting it ready for use in the Application Layer. Technologies within
this layer can include management platforms and technologies responsible for
data processing, analysis and storage, this can include cloud technologies.

5. The Application Layer allows the end-user to make use of the collected data.
The layer comprises of tools to develop and manage end-user applications.
These applications are commonly referred to as ‘Apps’ which deliver IoT end-
user services, for example health monitoring tools, smart homes or smart city
applications.

6. Miao Wu et al.’s Architecture differs slightly from Zhong’s Architecture because
it includes an additional layer, the Business Layer. This layer can be considered
as the “manager of the Internet of Things” [85], concerned with business and
profit models, management of data sharing [5], software updates and system
interoperation. This layer is very important and must be considered in the
design and development of an IoT system, particularly within large systems
such as smart cities. Miao Wu et al. explain that the success of a technology
does not only depend on development of the technology, but also the innovation
and development of the business models that manage how the technology will
be used. Based on this point, the Internet of Things may not have long-term
future without the significant development of its business models [85]. This
layer is outside of the scope of this paper.

.
Throughout the rest of the paper, when an architecture is referred to, it is Zhong’s

Architecture, labelled Model B in Figure 2. When considering the movement of data
throughout all of the layers of the architecture, it is important to highlight that data
can move in the opposite direction to that explained above, from the Application
Layer back down to the Perception Layer, enabling actuators to respond to collected
data, system instructions or end-user instructions.

Other well referenced architectures include the oneM2M IoT architecture [117],
cloud centric architecture [49], software stack architecture [113], TCP/IP architec-
ture, OSI reference architecture [85] and Representational State Transfer Services
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(RESTFUL) architectural style linked to HTTP [72]. Next, the paper will look in
more detail at the technologies that exist within each of layer of Zhong’s architecture.

4.3. IoT Technologies within the Perception Layer

As defined earlier, the end point of an IoT system is the ‘Thing’ that interacts
with itself, other Things or its environment [14]. Generally, the Thing is collecting,
responding data from the physical world or responding to instructions from the IoT
system. The technology in is this layer is shown in Figure 3 and comprises of the
hardware and software components that enable any physical object to act as an IoT
Thing.

Figure 3: Components of an IoT Thing

4.3.1. Sensor & Actuator Unit

Sensors and Actuators are electrical components that connect the real and digital
world by monitoring or responding respectively. Sensors are input components that
monitor environmental characteristics and convert changes in this characteristic into
an electrical signal. The relationship between environmental characteristics and elec-
trical signal outputs can be linear or non-linear, this relationship is defined within
the sensor’s specifications.
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Actuators are output components. They create a physical response to a change
in their electrical input. Generally actuators fall into four categories based on the
nature of their physical response:

• Hydraulic - moving under pressure liquids through a defined space

• Pneumatic - using gas stored under pressure

• Electric - generating electricity

• Mechanical - operating machinery

Similar to sensors, the relationship between electrical signal and actuator output
is defined within its specifications. Generally, IoT sensors and actuators are small
in size, low complexity and low unit cost. In some system, particularly critical
infrastructure systems, higher specification sensors or actuators may be required,
this can increase the cost of these components. Examples of component specifications
include fault tolerance, sensing resolution, sensing rate, response rate, sensing range,
magnitude of response, accuracy, security, storage or processing capabilities. When
designing a system, component specifications and cost are important considerations.

4.3.2. Processing Unit

The processing unit is comprised of hardware and software that manage the
behaviour of the Thing. This unit is commonly a microcontroller; a small, simple,
programmable, self-contained computer on a single integrated circuit comprising of a
processor, ROM, RAM and IO. Some microcontrollers that are commonly used with
IoT projects and have significant amounts of development support.

A microcontroller is usually built and programmed to carry out simple tasks
related to a single simple function, for example, controlling a smart fridge. They can
be built into more complex devices, for example smart phones, then they are referred
to as ‘embedded’. Due to their constrained specifications, microcontrollers can not
run traditional operating systems, instead they use constrained operating systems,
for example mBed, TinyOS or rasbarian [102]. A microcontroller can have additional
memory added to enable it to execute additional processing tasks, for example, to
carry out data processing or data analysis at the sensor to reduce the amount of data
transmitted from the sensor to the IoT network. This is sometimes referred to as
’edge’ analysis. Additionally, the microcontroller can include security features such
as data encryption and endpoint authentication.
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4.3.3. Communication Unit

This unit is responsible for transferring or receiving data. If data is collected at
the sensor, the communication unit will transfer the data to the IoT network. Alter-
natively, if data is received from the IoT network, it will then be acted upon by the
actuator. Communication technologies are considered in more detail in Section 4.4.
Generally microcontrollers have communication unit inbuilt, so when choosing a mi-
crocontroller, the communication and security requirements of the IoT system must
be considered, for example, the desired data transfer rate and transfer distance.
These requirements will also affect which communication technology is most suitable,
for example for a contactless card payment system, the most suitable technology is
Near-Field Communication (NFC) RF technology with a transfer distance of 10cm.
Within the IoT endpoint, communication consumes the largest proportion of power,
therefore the communication technology also affects the power supply requirements.

4.3.4. Power Supply

Endpoint power requirements vary significantly dependant upon the energy re-
quirements of all of the above components. If the Thing is connected to a mains
power supply, the power requirements of the Thing can be considered nearly neg-
ligible in comparison. If the Thing is fixed in one location, for example a smart
fridge, the power supply would generally be wired, for example to the mains power
supply. Often though, IoT endpoints are mobile, meaning a wired power supply
may not be suitable. Instead for mobile endpoints, power could be supplied from a
portable source, for example batteries or a renewable source, for example solar panels
or an energy harvesting unit. According to Andersen, for a wireless IoT system to
be commercially viable, each Thing should have a power supply lifetime of 5 − 10
years [11].

The criticality of an IoT system must be considered when selecting a power
supply. For a highly critical system, for example a warning system within a power
plant, the reliability, redundancy and security of the power supply and its connection
must be considered. In this example, solar power is unlikely to be selected as the
only power supply. Instead, multiple power supplies may be connected via multiple
techniques to provide sufficient confidence.

4.4. IoT Technologies within the Network Access Layer and Network Layer

The movement of data within a network is referred to as communication, sim-
ilarly, terms ‘connect’, ‘transfer’ or ‘transmit’ can be used. Within Zhong et al’s
architecture, the communication of data is be broken into two categories; access
communication technology which sits within the Network Access Layer, and network
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Figure 4: IoT Short to Medium Range Communication Configurations

communication technology which sits within the Network Layer. Access communi-
cation technologies connect the IoT Thing to the IoT network, usually achieved by
transmitting data from the IoT endpoint to a network access gateway. The net-
work communication technologies transmit data around the rest of the IoT network,
from the access gateway all the way to the Application Layer. These communication
technologies are the where most IoT security vulnerabilities exist. Figure 4 is an
illustration of some short to medium range communication configurations, demon-
strating technologies from the Perception, Network Access Layer and Network Layer.
This illustration is not an exhaustive list of technologies or configurations.
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4.4.1. Access Communication Technologies

Sometimes IoT networks are oversimplified to only include wireless networks, but
this is wrong, IoT networks can be wired too. Wireless networks are commonly used
in hard to reach or hard to install environments, or where wired network installation is
more costly. Conversely, wired networks may be used where the wired infrastructure
already exists, higher data throughput or increased security is required.

Due to power supply restrictions, wireless networks should be designed to have
low power requirements. This means wireless networks are well suited to systems with
short transmission distances and low transfer rates. The choice of which communica-
tion technology and protocol to choose is generally based on the system requirements,
including:

• Wired / wireless

• Data rate

• Data reliability

• Data security

• Proximity of the Thing to receiving node

• Nature of environment

• Ease of access / maintenance

• Number of connected Things

• Number of simultaneously active Things

• Overall system size and complexity

TECHNOLOGIES

Bluetooth Bluetooth
Low En-
ergy

ANT Wi-Fi NFC Zigbee Z-Wave

Range
(m)

100 m 50-100 m 30 m 30-50 m 5-10 cm 10-100 m 30 m

Table 1: Wireless Short to Medium Range Communication Technologies (Continued over page)
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Bwidth
(Hz)

2.4 GHz 2.4 GHz 2.4 GHz 2.4 /
5 GHz

13.6 MHz 2.4 GHz 2.4 GHz

Data
Rate
(bps)

1-
3 Mbps

125 Kbps
- 1 Mbps

12-
60 Kbps

150-
200 Mbps

100-
420 Kbps

250 Kbps 9.6,
40 or
100 Kbps

Battery
Lifetime

0.6 Ah:
Standby:
3 mnth.
Mixed:
5 dy

1 Ah:
Mixed:
1-2 yr.
2xAA:
14 yr

1 Ah:
Mixed:
15 yr

2xAA:
Lis-
tening:
2 dy

Initiator
trf:
15 mAh.
Passive:
0 mAh

2xAA:
Mixed:
5 yr

2xAA:
Mixed:
1 yr

Authenticn Yes ProblematicYes Yes Yes No Yes

Encryptn Yes Yes No Yes Yes Yes Yes

Standard Based
on IEEE
802.15.1

Bluetooth
4.2

ProprietaryIEEE
802.11

ISO/IEC
14443,
18092

IEEE
802.15.4

Z-Wave
Alliance
Propri-
etary

Scalability Yes Yes Yes No No Yes Yes

Topology P2P,
Star (Pi-
conets)

P2P,
Star (Pi-
conets)

P2P,
Star,
Tree,
Mesh

P2P,
Star

P2P Mesh Mesh

No

Nodes
(Mst :
Slv)

8 (1:7),
(200
inactive
slv)

8 (1:7)
(32K
inactive
slv)

65533
(per 8
chan-
nels)

255 2 232 232

Table 1: Wireless Short to Medium Range Communication Technologies [21] [1] [114] [123]

Defining a communication technology typically defines two elements; firstly, the
nature of the transmitted data signal, and secondly the material through which the
signal is transmitted. For example, Ethernet technology comprises of an electrical
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signal transmitted along an Ethernet cable. For Bluetooth technology, an electromag-
netic RF signal is transmitted through air at 2.4GHz. Communication technologies
that do not require a wired medium are referred to as wireless.

Communication protocol refers to the rules that define how the data should be
transmitted, for example, the number of bits in a data packet, which bits are real
data and which are management data. Management data is generally transmitted
as a data header or footer, and used to control the flow of data, including, defining
the destination address, and how the data should travel to the destination.

TECHNOLOGIES

Cellular
3G

Cellular
4G

SigFox LoRa NB-IoT LTE-M

SPECS
Urban
Range
(Km)

5 - 8 km 15 km 3 - 10 km 2 - 5 km 9 km 11 km

Rural
Range
(Km)

50 - 70 km 45 km 30 - 50 km 15 km unavailable unavailable

Transmn

Band-
width
(Hz)

800 MHz -
2.4 GHz

800 MHz -
2.6 GHz

868 MHz 850 MHz -
1 GHz

200 KHz,
700 -
900 MHz

700 -
900 KHz,
1.4 MHz

Data Rate
(Kbits/s)

Mobile:
128,
144 Kbps.
Fixed:
2 Mbs

Mobile: 20
- 100 Mbps

0.3 Kbs 0.3 -
50 Kbs

150 Kbs 64 -
128 Kbs

Power
(mAh)

460 mAh 600 mAh 32 -
51 mAh

40 mAh unavailable 80 mAh

Table 2: Wireless Wide Area Communication Technologies (Continued over page)
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Standards UMTS,
HSPA, W-
CDMA,
WLAN,
WiMAX,

OFDM,
CMDA,
WiMAX,
LTE, LTE
Adv

Proprietary Proprietary SC-
FDMA,
PRACH

OFDM,
PRACH

Uses Messaging,
Internet,
VoIP,
IPTV

Messaging,
Internet,
VoIP,
Games,
Cloud

IoT sys-
tems

IoT sys-
tems

IoT sys-
tems

IoT sys-
tems

Battery
Life

hours -
days

hours -
days

5 - 10 years 10 years >10 years >10 years

Table 2: Wireless Wide Area Communication Technologies [15] [76] [97] [94] [122] [119] [31]

For an IoT network spanning a few meters, across a single building, or collection
of buildings, short to medium-range communication technologies should be selected.
Communication technologies can be categorised based on their network range and
use. These categories include the body area network (BAN), personal area network
(PAN), local area network (LAN) and wide area network (WAN) technologies. BAN
technologies include Ant, PAN technologies include NFC, Bluetooth, Bluetooth Low
Energy, Zigbee and Z-wave. LAN technologies include Wi-Fi and Wi-Fi Low Energy,
additionally Ethernet is a wired LAN technology. Some wireless short to Medium
range technologies are compared in Table 1.

Many IoT systems, particularly larger networks, utilise numerous access commu-
nication technologies to connect multiple Things to the network. For an IoT system
that covers a larger area, for example a Smart City, short and medium-range com-
munication technologies may not be suitable to connect all of the endpoints to the
network [29, 110]. Wired and wireless WAN technologies can be used. Significant
work by Centenaro et al. considers cellular and low power WAN technologies, creat-
ing networks that span 10− 50km in rural areas and 3− 5km in urban areas. Their
work demonstrates these technologies can be suitable for relatively harsh outdoor
environments. Some Wireless WAN communication technologies, including Cellular
(3G and 4G), Sigfox, LoRa, NB-IoT and LTE-M, are compared in Table 2. Other
WAN technologies include Neul, NWave, PLC, Ethernet, Weightless -N, Weightless
-P.
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4.4.2. Network Communication Technologies

Once data is transferred from the Thing to the access node, the data is available
to the Internet to be transported throughout the top three layers of the network
using Internet protocols (IP). HTTP and its secure variant HTTPS are the most well
known IP, but due to large control data overheads ensuring data reliability, HTTP
and HTTPS may not be the most suitable protocols for constrained IoT systems.
So alternative and lighter protocols have been developed that are more suitable
for constrained IoT systems. Examples include Constrained Application Protocol
(CoAP), Advanced Message Queuing Protocol (AMQP), Extensible Messaging and
Presence Protocol (XMPP), Message Queue Telemetry Transport (MQTT) and Data
Distribution Service (DDS). Some of these protocols offer security feature similar to
HTTPS.

Platform Focus / Tools Local/
Cloud

Language Cost ($): Free Vs 10,000
Connected Devices

Ayla
Network

E2E. Compatible: AMAP.
Tools: embedded agents,
Phone-as-a-Gateway, ADP

PaaS C, Java Custom pricing

Arm
MBED
IoT
Platform

Compatible: MBED OS. Sup-
port: ARM/ARMcommunity.
Tools: security E2E, easy in-
tegration, open standards

PaaS,
local
OS

C/C++ Custom pricing

AWS IoT E2E. Focus: extreme scala-
bility, many partners. Tools:
recognition registry for

IaaS NET,
Java,
JVM,
Node.

Free: 50 Devices.
Daily: 300 msg, 130
registry actions, 150
exceptions

Things, device SDKs, rules
engine - message evaluation

js,
Python,
Ruby,
PHP

10,000 Devices:
1 KB msg/min =
$560/month [18]

Bosch
IoT Suite

E2E. Focus: cost, lo-
cal&cloud, security. Tools:
analytics, open standards

PaaS,
local

Unknown Custom pricing

Table 3: Enterprise IoT Management Platforms (Continued over page)
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Platform Focus / Tools Local/
Cloud

Language Cost ($): Free Vs 10,000
Connected Devices

Carriots Focus: customer access hier-
achy, easy tool/app integra-
tion. Tools: debug/logs, data
export, SDKs, API design

PaaS Groovy Free: 2 Devices, 500
msg/day, 5 KB/msg
10,000 Devices:
$2/Device (up
to 1 MB/day) =
$20,000/month [28]

Cisco
IoT
Cloud
Connect

Focus: agriculture, customer
relations. Tools: Devices con-
nect through cellular (sim)
network , voice/data connec-
tivity

PaaS Unknown Custom pricing

Datav by
Bsquare

Tools: predict/analyse
issues, automate mainte-
nance/repairs, max utilisa-
tion

PaaS Unknown Custom pricing

General
Electric’s
Predix

Compatible: GE apps,
products, partners. Focus:
healthcare, transport, energy.
Tools: asset digital twin
modelling

PaaS Java,
Ruby,
Node.js,
Python

Custom pricing

Google
Cloud

E2E. Tools: partnerships with
device /app providers, big
data analytics,

IaaS PHP,
Java,
Node.js,

Free: 50 Devices, 2800
msg/day (upto 250 MB,
then charged minutely)

Google’s fast fibre network .Net,
Ruby,
Go,
Python

10,000 Devices:
1 KB msg/min =
$1940/month. [45]

Universal
of Things
HP

Focus: scalability. Tools:
‘market place’ for billing, easy
app design, analytics

PaaS,
local

Unknown Custom pricing

Table 3: Enterprise IoT Management Platforms (Continued over page)
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Platform Focus / Tools Local/
Cloud

Language Cost ($): Free Vs 10,000
Connected Devices

IBM
Wat-
son IoT
Platform

Compatible: IBM Bluemix.
Focus: beginners. Tools:
ADP, security, weather

PaaS Java,
C, C#,
mBed-
C++,

Free: 50 Devices,
1920 msg/day
(100 MB/month)

data, real-time data, signifi-
cant storage

Python,
Node.js/
RED

10,000 Devices:
1 K msg/min =
$421.68/month [55]

Kaa IoT
Platform

Focus: open source, scal-
ability, industry, low R&D
time/cost. Tools: SDKs

PaaS Java, C,
C++
Objec-
tiveC

Free

LTI’s
Mosiac

Focus: oil/gas, security/risk
compliance, manufacturing.
Tools: analytics, insight

PaaS Unknown Custom pricing

Microsoft
Azure
IoT

E2E. Focus: AWS competi-
tor. Tools: rule evaluation en-
gine, device security shadow-
ing, real-time analytics

IaaS C,
Node.js,
Java,
.NET,
Python

Free: 50 Devices, 144
msg/day (8 K/day)
10,000 Devices: (Tier
S3) 1 KB msg/min =
$3726.55/month [86]

Mocana Focus: Military level security
and tools

PaaS Unknown Customised pricing

Oracle
Inte-
gration
Cloud

Focus: manufacturing, lo-
gistics, security, scalability.
Tools: device virtualisation,
big data analytics, fast mes-
saging.

PaaS Java,
Java
Script,
Node.js

10,000 Devices:
from $1.6129/hour =
$1161.28/month [96]

PTC
Thing-
Worx

Focus: fast develop/deploy.
Tools: big data analytics, ma-
chine learning, deployable in
Device/local/cloud

PaaS,
local

C, Java,
.NET,
iOS,
Android

Custom pricing

Table 3: Enterprise IoT Management Platforms (Continued over page)
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Platform Focus / Tools Local/
Cloud

Language Cost ($): Free Vs 10,000
Connected Devices

Salesforce
IoT
Cloud

Focus: capture sales leads,
customer relations. Tools: CS
management, automate: ser-
vice request, repair, feedback

PaaS Rubyon
Rails,
Java,
Node.js,
Python,

$4000/month

Samsung
Artik

Focus: security, easy to use,
optimum system performance

PaaS PHP,
Java,
Swift,
C++

Free: 50 Devices,
72 msg/day (100 K
msg/month)

Cloud Ruby,
Java-
Android,
Python,
C

10,000 Devices:
(Small Business
Tier) 1 msg/min =
$6480/month [105]

Siemens
Mind-
sphere

Focus: cost-effective, open
source based, security. Tools:
machine data, confidential
storage, embedded agents, li-
braries

PaaS Unknown Custom Pricing com-
prised of Connectivity,
Access and Data

Table 3: Enterprise IoT Management Platforms

4.5. IoT Technologies within the Application Support Layer

Device management, data analysis and processing is handled within the appli-
cation support layer. For systems with more than a few connected Things, a man-
agement platform can handle these tasks. In 2017 more than 450 companies offered
IoT Platforms [62]. Platforms can specialise in End-to-End (E2E) solutions, system
security, application enablement, device management, analytics, cloud storage and
back-end connectivity.

A management platform should enable the following actions or services:

• Synchronise with and monitor connected Things

• Control and retrieve data from Things

• Respond to received data
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• Manage system security

• Offer device dashboards to review analytics

Table 3 compares 20 enterprise IoT platforms [111], considering their focus, tools,
development languages, and what IoT system can be developed and operated using
any free allowance, versus the cost to run a system with 10, 000 connected devices.
The cost comparison for a 10, 000 device system includes each device sending a mes-
sage once per minute, but excludes data processing, data analysis, device shadowing,
rule triggering and other actions which can add additional costs. Developers might
need to do further research and testing to determine which platform is best to manage
their network.

4.6. IoT Technologies within the Application Presentation Layer

The technology within the Application Presentation Layer includes the Applica-
tion Development Platform (ADP), which is a tool to enable developers to create
and manage end-user software applications. The end-user applications consume the
data that was collected by connected sensors and processed in the previous layers,
and then present it to the user in a usable format. Some management platforms
considered in Section 4.5 include ADPs, for example ThingWorx, Carriots and Kaa.
Other management platforms interface with specific ADPs, for example IBM’s Wat-
son Management Platform interfaces with IBM’s IoT ADP. Additionally, many man-
agement platforms also integrate with third party ADPs.

The ADP tools are briefly introduced below. A detailed review is carried out by
Ray et al. [101]. Within an ADP, tools can include an Application Programming
Interface (API) and Software Development Kits (SDK). In general terms, an API is
a block of code acting as an interface between two different objects to enable them
to communicate. The API usually comprises of commands, functions and protocols.
Within IoT, an API is the code which acts as a logical connector and translator
between the connected Thing and an end-user software application enabling easy
integration of the Thing into the IoT system and end-user application. Essentially,
the API allows the application to access useful processed data. Generally, APIs are
created by the manufacture of the IoT Thing.

In some literature, the terms API and SDK are used interchangeably, but they are
very different. An SDK is not just code, but instead it is comprised of a whole set of
development tools for example libraries, instruction documentation, APIs, samples of
code and examples of processes. It may also include ADP guides to help a developer
build end-user applications on a specific platform. Additional documentation within
the SDK can include industry or user-specific guides. Comparatively, if an API is
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thought of as a building block, an SDK can be thought of as a complete workshop full
of all of the tools, instructions and building blocks. An API, or multiple APIs can be
part of an SDK. Generally, manufacturers create the initial SDK for an IoT device,
and developers can contribute to the SDK. Developer contributions are particularly
common in an open source environment.

Many ADPs require the developer to be familiar with some programming lan-
guages, for example Node.js, Perl, Python, Java or C. Though some platforms have
been developed to encourage non-technical developers to create end-user Apps. An
example of two such platform include IBM’s IoT platform which uses Node-RED
visual modelling layout tool employing drag-and-drop methods to connect hardware
devices, APIs and on-line services [93]. Secondly, Mendix ADP also uses simple web
and desktop based visual modelling tools [84]. Both platforms state that their tools
reduce development complexity, time and cost.

4.7. IoT Security Throughout the Architecture Layers

Historically, IoT security has been an after-thought, rather than being considered
throughout the design and development of a system. This after-thought approach
has led to huge security problems within IoT networks due to no, or low security in
IoT endpoints, within network gateways, and throughout the communication layers
[103]. These vulnerabilities have led to attacks such as the 2016 Distributed Denial
of Service (DDoS) attack against a small jewellery shop, who were under attack from
more than 25000 IoT cameras. This attack was found and mitigated by security
firm Sucuri [32]. Another very well known example is the Mirai DDoS attack in
2016 [39, 58] which caused Dyn, a large US network provider to temporarily cease
providing IT services to its business customers including Amazon, Twitter, PayPal
and Netflix, and as a result disabling customer websites. During both the Sucuri and
Mirai attacks, hackers used active attack methods [53] to infiltrate a huge number of
no-security, or low-security IoT devices and converted them into remotely controlled
robots, known as botnets. These botnets were then used to look for other low security
IoT devices before all of the botnets were then directed to carry out a DDoS cyber
attack on both the Jewellers and Dyn causing the systems to overload with too
much traffic. In order to understand the security challenges within IoT systems, this
section will consider some common security weaknesses, where the weaknesses sits
within the IoT Architecture [127] shown in Figure 2B, the nature of attacks and a
range of solutions.

Two important definitions are that of passive and active security attacks. A
passive attack can be defined as activity where an unauthorised user, referred to as
an attacker, attempts to read data within a network. This action is passive since the
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attacker does not attempt to make changes to the data. In comparison, an active
attack is when an attacker makes efforts to change data within the network. In both
passive and active attacks, the behaviour is unauthorised and for malicious purposes.

4.7.1. Security within Perception Layer & Network Access Layer

The Perception Layer comprises of the sensors and actuators. The Network Ac-
cess Layer comprises of transmission nodes that allow the access of data into the
IoT gateway. Security attacks within these layers are typically the easiest to exe-
cute and are generally focused on the acquisition of data. The purpose of attacks in
these layers are (1) to snoop on and collect data, (2) to stop sensor from functioning,
which can cause a partial denial of service (3) replace sensor data with false data.
Sensor snooping is generally a passive attacks, for example employing node capture
and eavesdropping techniques [77]. In comparison, active attacks such as hardware
jamming can be applied to stop sensors from functioning, or false data injection [53]
can be used to replace the sensor data with false data, this in turn may affect the
response of the IoT system.

Tools such as Attify can be used to intercept data that is collected by a sensor
and transmitted to its node, or from the node to gateway. The attacker may use
this data for reconnaissance enabling them to learn about the environment that the
sensor is monitoring, or to enable the attacker to perform attacks in other layers of
the network.

Another attack method is hardware jamming. Constrained IoT sensors are partic-
ularly susceptible to this type of attack which can be achieved in two ways; firstly by
remotely injecting the sensor with code or secondly, by physically attaching unau-
thorised hardware to the sensor to jam it. Hardware jamming is applied for two
purposes, to permanently damage the hardware sensor which will reduce or remove
its computational power and stop the sensor from collecting data or converting its
analogue data into digital data, known as actuating. In this way, hardware jamming
can effectively remove sensors from the network, resulting in a sensor DoS. Alterna-
tively, hardware jamming can be used to get vital data such as the cryptographic key
or routing table, or to insert false sensor data into the system to affect the behaviour
of the IoT system.

A sensor battery-depletion attack is another attack method which is similar to
hardware jamming. An attacker can purposely reduce a sensor or actuator’s power
level, enabling the attacker to reduce its computational power, this can affect the sen-
sor or actuator’s ability to function, for example affecting reliable sensing, actuation
or communication [108, 109] enabling an attacker to create a sensor or actuator DoS
or. Alternatively, if a battery-depletion attack is applied to a sensor, the attacker
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can insert false code, which could in turn affect the behaviour of the IoT system.
A relay attack is when an attacker eavesdrops on the communication between

the sensor and its node or node and connected gateway. The compromised data is
then relayed to another system, a victim system, to make the victim system carry
out actions defined by the attacker [99]. Due to the significant growth of constrained
IoT devices, this type of attack is increasing in frequency.

Security techniques and strategies to defend against all of these attacks include
changing default passwords, device/system authentication, strict firewall rules, static
code analysis (SCA) executed within the IoT system or applications and network
intrusion detection mechanisms. Authentication of all connected IoT devices is a
mitigation method used to reduce the likelihood of malicious devices infiltrating the
network. Similarly, safe booting is the technique of checking the integrity of the
different operating system (OS) in connected IoT devices, it uses cryptographic hash
algorithms. For IoT devices with limited power and computation power, WH and
NH cryptographic algorithms are the most appropriate for safe booting [9].

4.7.2. Security within Network Layer

The Network Layer routes data around the IoT network. This layer is embedded
deeper than the Perception and Network Access Layer so infiltrating this layer is
more difficult [73]. Within this layer, the purpose of attacks is to breach the network
to intercept the data within it, this is generally done with active attacks [53] and can
include gateway attacks, Man-in-the-Middle, ARP cache poisoning, ICMP attacks,
Ping of death, Pong attacks and IP spoofing [57, 52].

A gateway attack is similar to a relay attack applied in the perception layer, it can
be used to block the connection between the sensors and the internet infrastructure,
thus deleting sensor data or redirecting the sensor data, causing damage to the system
and causing a DoS [100]. A Man-in-the-Middle attack is widely used to secretly
intercept system data and then alter this data, giving the attacker the ability to
capture and manipulate data in real time [34]. A sinkhole attack is related to a Man-
in-the-middle attack, the attacker employs a vulnerability within the network layer
to cause the dropping of delivery packets, thus preventing the packets from reaching
their destination. These dropped packets can then be destroyed or redirected to a
different destination which is harmful in an IoT environment resulting in a system
wide DoS.

In addition to the interception attacks above, malicious control of this layer can
enable sophisticated attacks on services within the next layers the Application Sup-
port Layer and the Application Layer, including attacking end-user services or ap-
plications.

173



Security techniques to mitigate these attacks include using firewall rules to insti-
gate device white and black lists, enabling randomized algorithms for TCP sequence
numbers, using short time to live (TTL) durations for the DNS cache, blocking appli-
cations with weak authentication features or forged packet discovery mechanisms [57].
Secure routing is the technique of routing data via multiple paths securely, this can
which reduces the error exposure and acts as a network mitigation technique.

4.7.3. Security within Application Support Layer

The Application Support Layer is the brains of the IoT network because it is
responsible for the management of devices and data. Many of the attacks within this
layer are as a result of security attacks in the lower layers, also attacks not related
to the layers below are sometimes similar in nature to the attacks described in lower
layers, but some attacks are also independent of other layers. This layer is vulnerable
to a broad range of attacks, including sniffing, malicious code injection [116] and
particularly denial of service.

Denial of service is the most common attack here due to the significant number
of network resources being used in this layer. This means there are many different
types of DoS attacks that can be applied to prevent genuine users from being able
to access IoT devices, the complete system or specific applications. DoS attacks
typically occur by the attacker flooding a victim device, or multiple victim devices,
with redundant requests or null sessions, making it impossible for genuine users to
access the victim device, just like the famous Mirai attack [98].

This layer is also known to be vulnerable to malicious insider attacks which are
performed by an authorised system user who tries to access information from other
users or other devices in the IoT network [106]. Once the insider has access to other
user accounts or devices, they can carry out unauthorised actions, for example issue
unauthorised commands or access system credentials and vital system information,
thus enabling the malicious insider to carry out more higher level attacks.

The Application Support Layer contains many of the shared resources, for exam-
ple routing tables which can serve as an attack vector for attackers to observe shared
resources and get the required information to enable them to carry out attacks on
other areas of the IoT system. Similarly, third-party tools such as a Platform as
a Service (PaaS) based management platform, or cloud computing data process-
ing tools, they provide a third-party web service component which can be used by
attackers to breach the IoT environment remotely.

Malware attacks are executed in this layer. Malware is a security program which
is secretly placed inside a network to monitor the traffic without the system admin-
istrator being aware of it presence. There are a number of different techniques that
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an attacker can use to install malware, including phishing emails, but once malware
is in place, the data it collects generally enables further higher level attacks.

Many of these different attacks can be mitigated by enforcing robust security
features such as strong authentication, intrusion detection mechanisms, traffic en-
cryption and regularly checking that all of the technologies within the system have
up-to-date software, and particularly that patches are applied where required [89].
Data fragmentation is also useful as a mitigation technique in which data within
this layer can be split into various fragments and stored on different servers or other
system locations, thereby reducing the risk of data theft, or rendering the theft as
useless [112]. The hyper-safe lock-down of the write memory files and device boot-up
and configuration files mitigates against the unauthorised customisation of the files
that control the behavior of the IoT system. This lock-down is achieved by using
point indexing which constrains changes in data into the pointer indexes [74]. When
all of these measures are implemented and regularly checked, this should act as a
good security barrier against external attacks.

4.7.4. Security within Application Layer

The Application Layer manages the user applications and provides services from
the rest of the IoT system to the user applications. It is through these applications
that an IoT system interacts with its users. These applications include smart home
systems, smart healthcare, smart tracking and logistics, and smart city infrastruc-
tures and applications, to name a few. All of the services provided by this layer
are dependent on the data actuated from sensors, communicated by the Network
Layer, and, managed and processed by the Application Support Layer. Lots of data
is handled by this layer, so vulnerabilities and threats exist from both within the
IoT system and from the applications. Most of these threats are focused on manipu-
lating the IoT application for the attacker‘s purposes. Many of the attacks that can
be experienced in the previous layers can occur in this layer, but in addition to the
previous attacks, there are also client-side application attacks.

Cross Site Scripting (XSS) is an injection attack during which attackers insert
a client-side script such as java script to modify the application‘s web interface,
enabling the attacker to trigger unwanted behavior and actions in the application, for
example the attacker has the ability to completely change the content and behaviour
of the user application [8].

A malicious code attack [53] is another attack vector used by attackers to disrupt
the services provided by the application layer. It is sent by an attacker and can
sometimes be executed by itself or triggered by the victim through another medium,
for example through a phishing emails. The purpose of this attack can be to change
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the data within a user application or to gain application credentials or other vital
system information.

Intentional data loss is a vulnerability that can affect the application layer. Due to
the large amount of data transmitted between the devices, an attacker can orchestrate
a disruption in the network which can lead to data loss. In these circumstances, low-
cost sensors and actuators are most affected as they generally do not have storage,
error checking or redundancy features due to their constrained nature.

Another kind of phishing attack is prevalent in this layer. The attack is dis-
tributed through infected user emails with the purpose of tricking a victim into
revealing their login credentials, or to tricking the application into accepted spoofed
user credentials.

Many of the attacks experienced within the Application Layer occur due to non-
standard application code which is written by the application programmer. Gen-
erally application programmers are concerned with application functionality rather
than security, therefore secure coding techniques may not be employed. This non-
standard code increases application vulnerabilities allowing malicious attackers to
take advantage and cause damage to the IoT system.

The majority of these attacks can be mitigated with ‘user validation’ using in-
tegrity and encryption mechanisms to authenticate user interactions. The use of
system anti-virus, firewalls and anti-malware programs are crucial. Finally, incom-
ing and outgoing network traffic can be monitored, also, for a large scale IoT system,
all of the sensor and actuator connections within the system can be monitored. All of
these interactions can be monitored using systems such as a Network Intrusion De-
tection (NID) system. For most networks and IoT systems there are ‘normal traffic’
patterns, and the NID system can be trained to recognise normal traffic and detect
outliers or anomalies.

5. Future Developments

As discussed throughout this paper, IoT can be used to target challenges and
improve quality of life. In the opinion of the authors, one of the largest international
challenges that we face today is this that of reducing energy consumption. Energy
has become a very important human commodity. Yet, it is widely recognised that
our main energy resources, that of coal, gas and oil are limited. So, there is the need
to find alternative sustainable energy resources and to reduce energy consumption.
Instead though, Worldwide, energy consumption is currently increasing, particularly
in the world’s emerging markets. Since the 1970s Asia and Africa’s energy demands
have increased approximately 7 fold [61]. In addition to these factors, at present,
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“most people spend 90% of their daily lives indoors relying on mechanical heating and
air conditioning, thus leading to buildings becoming the largest energy consumers
worldwide” [27]. Within the US and the EU, buildings account for a staggering 40%
of all of the energy that is consumed this those regions.

Existing Building Energy Management Systems (BEMS) generally measure and
monitor energy usage. Some systems also offer automated control of the Heating,
Ventilation and Air Conditioning (HVAC) Systems. These BEMS have been demon-
strated to reduce energy consumption by up to 30%. An area of further future
development of IoT technology is within advanced BEMS using the concepts of Next
Generation Internet, to achieve further energy reductions of 30−40% [19]. Such sys-
tems could include additional control, for example to automate opening or closing
of windows, doors and other building assets, control of appliances or machinery, for
example, turning off domestic appliances when energy consumption passes a usage
threshold, or turning industrial machinery from ‘stand-by’ to ‘off’ outside work-
ing hours. Developments could also include data fusion techniques [3] to combine
different IoT data sets, including weather data, zoned heating linked to room occu-
pancy [38, 71], or lighting systems which respond to external daylight conditions [27].
Such system could manage windows and blinds causing windows to tilt slightly to
reflect away sunlight during warm conditions, or blinds to open fully to make op-
timal use of external light conditions. Also, the consideration of the people using
these buildings; their comfort and their building interaction expectations [4] AI, ma-
chine learning and gamification techniques could be employed to make these systems
more intelligent, human-centric and energy conscience, allowing us to reduce energy
consumption further. AI and machine learning are methods of increasing system
intelligence, including human ethics and improving user experience. Gamification is
the mechanics of gaming, applied in a real-life context to improve a user’s experience
of a system and increase their engagement with it.

Many different and often unrelated IoT BEMS are currently being developed, but
future developments that focus on user engagement by including system resilience,
delivering sustainability and combining more of these different techniques are most
likely to result in consumer and industrial uptake, enabling ae significant reduction
in energy consumption within buildings, which will in turn result in a significant
reduction in worldwide energy consumption.

6. Conclusion

This paper seeks to be an introduction, overview, and reference guide for IoT
systems, particularly considering security issues. Within this paper the authors
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demonstrate that IoT is the culmination of advances within computing, communi-
cation technologies and the Internet, all combined with the human drive to improve
our quality of life. Next, IoT architectures and technologies are introduced includ-
ing a number of quick reference technology comparison tables. Following this, the
significant IoT security vulnerabilities, which have appeared as a result of the rapid
development of IoT are described and some mitigation techniques are discussed.
Finally, a future area of development is introduced.
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Abstract. The complexity and high cost of building retrofitting for im-
proved energy performance can be overwhelming for many SMEs. Tailor-
made frameworks, are therefore, required to deliver long term energy re-
duction benefits, for relatively small commercial buildings. This paper
presents a low cost energy monitoring and reporting solution for SMEs,
which includes a system architecture, a baseline data generation strategy
that significantly reduces the retrofitting timeline and a sensor network
strategy that incorporates existing ICT infrastructure and minimises the
number of IoT sensors. The system reports the energy monitoring data
to building users in real time in an easy to understand format allowing
building users to quickly analyse the affect of changes in their energy
behaviour, encouraging them to try different low cost energy reduction
strategies, before choosing more expensive solutions.

Keywords: IoT, data fusion, sensor, sensor node, energy consumption, energy
reduction, buildings, energy monitoring

1 Introduction

This work proposes an energy monitoring solution for micro, small or medium
sized enterprises (SMEs), developed to help such organisations overcome bar-
riers faced when trying to reduce building energy consumption. According to
the Department for Business, Energy and Industrial Strategy (BEIS), in 2018,
the UK’s energy consumption was 143MTOE, where 28.9% was consumed by
the domestic sector, 39.9% by the transport sector and 31.2% by the industry
and service sector [1]. Buildings consumed 40.3%, with commercial buildings
responsible for 49.4%, of which, 62% was for lighting and heating. Due to the
significant cost of operating commercial buildings, there is a clear link between
the size of an enterprise and the size of building they occupy. This is illustrated
by a correlation in the energy consumed by small commercial buildings and by
SMEs. In 2015, there were 5.38M UK businesses, 99% were SMEs [2], responsi-
ble for consuming 48.4% of commercial energy. Simultaneously, the commercial
building stock included 1.57M buildings, of which 92% were classified as small
buildings; 1,000 m2 or less [2], and consumed 35.6% of all commercial energy.
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Generally, SMEs are defined as enterprises with 0-249 employees. The en-
ergy consumption of enterprises based on employee numbers and building size
are shown in Figure 1, created with data from [1]. The graph shows that for
retail, office and hospitality, there is a clear correlation between energy con-
sumption, enterprise size and building size. For the industrial sector, building
size and energy consumption is instead dependant upon industrial equipment
and processes. Similarly within the leisure sector some public buildings, includ-
ing theatres and art galleries, the building size and energy consumption are more
dependant upon size of audience or community served.

Fig. 1. Energy consumption based organisation size and building size

2 Related Work

The Health & Safety Executive’s (HSE) 1992 Workplace Regulations [3] defines
a minimum floor space of 3.67 - 4.58m2 per employee. So, a micro enterprise
with 1-9 employees, could occupy a building 3.67 - 33m2, plus toilets. The Total
Office Cost Survey 2019 [4] values an individual work area at £5,408 - £18,988
annually (based on Norwich and London) using an individual area 2.5 times
larger than HSE requirements. Using HSE regulations, the surveyed buildings
would cost £2,130 - £7,478 per person. SMEs are sensitive to overhead costs,
so will tend towards supplying employees with the minimal working area and
occupy commercial spaces which are as small and low cost as possible.

Worldwide, building energy consumption is rising, but research shows that
energy saving initiatives that include monitoring consumption and giving feed-
back to users can achieve long term energy reductions [5]. Feedback from sur-
veyed SMEs [6] [7] [8] shows that barriers to the uptake of energy reduction
initiatives include high upfront or lifetime costs, significant time commitments
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and expertise. Many commercial building energy monitoring and reporting sys-
tems do exist, but these systems are inaccessible to SMEs because they generally
fit into three categories, being complex and expensive, affordable but requiring
expertise to fit and manage, or affordable but overly simple and ineffective.

Previous research carried out in this area includes a number of surveys, such
as [6] which audited 280 SMEs, [7] used data from energy audits to propose
solutions to overcome SME energy reduction barriers, and [8] studied the gap
between energy reduction measures and their implementation. Developmental
work includes management of energy demand [9] using energy disaggregation
techniques to turn off appliances, [10] developed an SME monitoring and target-
ing plan based on utility bill analysis, and [11] a monitoring system specifically
for SMEs within manufacturing. These works highlight the barriers that SMEs
face and offer a number of specific solutions but a solution suitable for a wide
range of SMEs has not be offered.

Based on lesson learned, this paper presents a building monitoring and re-
porting solution designed specifically for SMEs based in small commercial build-
ings, to accurately monitor and report real-time energy usage. The system mea-
sures energy consumption and additional features including weather, occupant
presence and occupant comfort levels. The data is analysed and fed back to the
building users in an understandable format with the aim of encouraging users to
test small changes to quickly and significantly reduce energy consumption, with
no cost, or low costs to the SME.

3 Proposed System Specifications

Energy consumption is dependent upon many conditions and to create a com-
plete picture for building users the system needs to measure energy usage, re-
ferred to as ‘metering’, and the additional conditions referred to as ‘monitoring’.

3.1 Baseline Generation Strategy

For a monitoring and reporting system to indicate a reduction in energy con-
sumption, a baseline is required, this is the measurement of normal energy con-
sumption before energy saving initiatives are applied. Traditionally, this com-
prises 18 months of metering and monitoring data. The advantage of this method
is data completeness since it is generated using the same method as the data that
it will be compared against. The disadvantage, particularly for SMEs, is the long
lead time before implementing ESMs. Recent research from a study carried out
in Manchester on behalf of the ‘Boosting access for SMEs to energy efficiency’
(BASEE) competition, this significant lead time can cause SMEs to disengage,
resulting in a loss of company interest or finances. Instead, the proposed baseline
generation strategy reduces the lead time to 3 months. The strategy is to create
baseline data using metering/monitoring data collected for a period of 3 months,
and combine it with building model data. Research shows building models can
be inaccurate [12] due to significant differences between the building model and
the real building. To improve the model, indirect building data will be added:
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– pre-existing building energy performance specifications e.g. post occupancy
evaluation (POE) and display energy certification (DEC),

– 12+ months’ historical billing data,
– normal building usage information e.g. operating hours, occupancy levels,
– energy performance data collected from similar smart buildings,
– data collected from pre-installed sensors, security systems or BMS

This improved model can deliver consumption predictions within 3% of ac-
tual [12]. Additionally, during the baseline monitoring period, energy consump-
tion profiling can be completed to determine where energy is consumed to inform
the SME which additional ESMs may be most effective.

3.2 Proposed System Architecture

As discussed in the introduction, the cost of monitoring systems and their com-
plexity can be prohibitive to SMEs, some lower cost solutions are available such
as the Beringar IoT building resource and occupancy tracking module [13] cost-
ing £450 per module for the hardware, with an annual subscription of £350
for software-as-a-service data reporting. The Pressac smart monitoring hard-
ware [14] costs £750 each and the Smart Citizen starter hardware [15] costs
£100 each and both solutions offer a range of IoT sensors but require additional
expertise to install, configure and manage. The Pressac kits include a Wi-Fi,
Ethernet and LTE gateway but do not include software for reporting, instead
they are compatible with commercial cloud platforms. The Smart Citizen kits
are open source and connect to a range of open source reporting tools. Alternate
low cost solutions typically include installation of motion detectors to automate
lights and other services but this is generally overly simple and ineffective.

Learning from previous work [6] [7] and existing systems [13] [15], the pro-
posed solution is simple enough that a user can set the system up straight out of
the box, connecting pre-installed smart meters and other pre-installed systems
using the existing WiFi network. Additional IoT sensor nodes can then be fitted
around the building and connected, also using the WiFi network. The objectives
of the proposed architecture are to:

1. accurately measure energy consumption,
2. accurately and reliably monitor the building,
3. use pre-installed ICT infrastructures such as WiFi, smart meters, BMS etc,
4. use minimal additional communication / metering / monitoring equipment,
5. feedback real-time understandable information to building users to enable

changes in energy usage behaviour,
6. keep system simple for easy installation, set-up and maintenance,
7. keep system costs to a minimum.

The proposed architecture is shown in Figure 2 and is split into 3 sections;
the monitoring system, communication network and reporting system. The mon-
itoring system is comprised of the energy metering and the building monitoring.
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Fig. 2. Proposed System Architecture

The energy metering will be completed by the smart metering equipment tech-
nical specifications version 2 (SMET2) gas and electricity smart meters. These
meters are available without charge for SMEs from their utility company. The
metering data from the SMET2 meters will be collected by a consumer access
device (CAD) and transmitted to the processing and analysis module.

As discussed in the introduction, traditional building monitoring systems are
expensive mainly due to high specification hardware. Inline with the low cost
objective of the proposed solution, it has been designed to incorporate any pre-
viously installed building monitoring systems for example camera, heat imaging
or RFID based security systems, clocking-in systems or BMS etc. The proposed
system will combine data from these pre-installed systems with data collected by
additional low-cost IoT sensor nodes. All of the data will be transmitted using
the existing building WiFi network to the data processing and analysis module.
Next the data will be processed and combined using data fusion techniques and
analysed to determine if occupants are within specific building zones and if oc-
cupant comfort levels are being achieved, such as room temperature and light
levels. The number of WiFi gateways will be kept to a minimum, dependant
upon the size and layout of the building. In order to keep system costs to a min-
imum, data processing and analysis will carried out locally and isolated from the
internet. Where users want a cloud-based solution, this will be available for an
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additional cost, the cloud-based solution will have the necessary security mod-
ule embedded. The building monitoring results will be delivered to the building
users in real time in the form of a reporting application which users can view on
a computer, tablet or smartphone.

3.3 Sensor Network Strategy

Sensors are required to adequately monitor the features affecting energy con-
sumption. Traditionally, building monitoring is achieved by installing a large
number of IoT sensors around a building, where each IoT sensor includes a sen-
sor, communication unit and power supply. This work proposes an alternative
sensor network strategy which reduces installation time, installation complexity,
the amount of repeated hardware, operating power and system costs. The strat-
egy is implemented using accurate low cost sensors which have a large sensor
range. Multiple heterogeneous sensors will be combined into a single sensor node
which will also include a WiFi communication unit and power supply, resulting
in a single sensor node which can monitor multiple features across a wide area.

The proposed sensor nodes have a combined circular coverage area, shown as
the blue circle in Figure 3. The coverage range of the node is the coverage radius
labelled c in the figure. If a square, of maximum dimensions, is drawn inside the
circular coverage area, shown in black, an equilateral triangle can also be drawn,
shown in green in Figure 3. Using Pythagoras’ Theorem, the size of the node
coverage square can be determined. Labels a, b, c denote the equilateral triangle:

Fig. 3. IoT node coverage area

c2 = a2 + b2 = 2a2 (1)

a =
c√
2

(2)

Lsquare = 2a =
2c√

2
= c

√
2 (3)

Asquare = (Lsquare)
2 = 2c2 (4)

To create reliable monitoring data, the sensor network strategy must offer
complete coverage of the building. As such, the strategy defines the sensor cov-
erage square, shown in black in Figure 3, as its coverage area. Additionally, the
strategy stipulates that the sensor nodes should be positioned such that each
node coverage square should either meet a building wall or a neighbouring node
coverage square. Where two neighbouring node coverage squares meet, overlap
should be kept to a minimum to reduce the number of nodes required. The pro-
posed nodes have been designed with a coverage range of 7m, and the length of
the node coverage square can be calculated as 9.9m.

Using the sensor network strategy, building size and layout, the required
number of sensor nodes can be calculated. Typically, for an open plan building,
less nodes will be required since the functionality of the sensor nodes is inhib-
ited by building walls. If a small open-plan commercial building 10m x 10m is
considered, based on the HSE regulations [3], the building can accommodate up
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Fig. 4. A: 10m x 10m open plan building, B: 9m x 13m building with multiple areas

to 20 employees. Using the sensor network strategy, each node can cover an area
up to 98m2, so just 2 sensor nodes achieve full coverage of the building, one in
the open plan area and a second for the toilet area, as shown in Figure 4a. A
similar sized building, 9m x 13m, configured with multiple internal spaces would
require 5 sensors nodes to achieve full building coverage, as shown in 4b.

4 Conclusion

This paper proposes a energy monitoring and reporting solution, which is specif-
ically designed to overcome barriers SMEs face when trying to reduce energy
consumption. Though monitoring and reporting systems do exist, research has
shown that existing systems fit into three categories, either being too complex
and expensive, affordable but requiring additional expertise to fit and manage,
or affordable but overly simple and ineffective. The design of this energy moni-
toring and reporting solution makes it accessible to SMEs because it is low-cost,
requires no expertise to install and operate and has a short lead time before
reporting on improvements in energy behaviour, enabling SMEs to develop and
test energy reduction strategies and quickly see the effects.
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