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Abstract

A new three-dimensional immersed boundary method combined with the level set method for the interface

capturing is developed to simulate the interaction between the fixed\moving structure and the two-phase

fluid flow. The concept of the forcing point searching scheme developed for the two-dimensional situations

in Yan et al. (2018) is extended in the present study to three dimensions, where the determination of inter-

sections between the arbitrary body surface and the Cartesian background grid system is the major issue.

This problem can be converted to the prediction of triangle-triangle intersection, which was traditionally

solved from the geometrical point of view. Here, an algebraic algorithm is adopted for the triangle-triangle

intersection, based on which the forcing points can be determined in the three-dimensional immersed bound-

ary method. This algebraic algorithm is robust for any body geometry and easy for implementation. To

demonstrate the accuracy and capability of the developed numerical model, three benchmark testing cases

for water impact problems are conducted, including dam break over a fixed obstacle, water entry of a wedge

and free decay of a bobber. Extensive comparisons with the experimental data and the numerical results

obtained by other immersed boundary methods suggest that the developed immersed boundary method is

accurate and effective for both fixed and moving bodies with complex geometries.

Keywords: Immersed boundary method, Level set method, Forcing point, Algebraic algorithm,

Triangle-Triangle intersection, Water impact

1. Introduction1

Fluid flow interaction with structures is a common problem in nature, which can find massive applications2

in various disciplines. In particular, with the increasing demand of modern society for energy, different types3

of marine structures have come into use in offshore and ocean engineering. Therefore, understanding the4

hydrodynamic performance of those structures under wave actions becomes an essential task for the safe5

design and efficient operation. Due to the geometry and character, some structures can be simplified to a6
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two-dimensional (2D) problem. However, the realistic marine structures are complex and certainly three-7

dimensional (3D), which makes the modelling of 3D structures in ocean waves a very interesting research8

problem.9

In a broad sense, there are two methods to model a structure in the computational domain in the10

mesh-based approach: body-fitted method and non-conforming method. The recently developed overset11

method (Ma et al., 2018; Chen et al., 2019) can be considered as a body-fitted method, which requires12

extensive interpolations to transfer information with the background grid. In the body-fitted method (Yan13

and Ma, 2007; Yang et al., 2008), curvilinear structured grids or unstructured grids that conform to the14

body boundary are generated. This method seems straightforward, however, it could require a heavy cost in15

computational time as well as manpower or even fail when dealing with a complicated body geometry with16

large displacement. In recent years, the non-conforming method becomes increasingly popular for simulating17

bodies in fluid-structure interactions. The cut cell method, one non-conforming method, may face difficulty18

in simulating irregular “interface-cells”, which requires different “special treatments”. Thus, the extension of19

cut cell method from 2D to 3D is sometimes prohibited if not impossible, although the limited successful work20

has been shown in Hu et al. (2013). The basic concept of another non-conforming method, the immersed21

boundary method (Wu et al., 2013; Wu and Young, 2014) is to add a body force to the momentum equations22

at certain points around the boundary, without the necessity of performing the mapping procedures, aiming23

to model the effect of investigated bodies in the flow. By means of this robust method, generation of grids24

can be greatly simplified. The immersed boundary method was firstly proposed by Peskin (1972) to simulate25

the cardiac flow with the feedback forcing scheme, which had one disadvantage of requiring small time step.26

To resolve such problem, Mohd-Yusof (1997) proposed a discrete forcing scheme, which was implemented27

successfully by Fadlun et al. (2000); Kim et al. (2001); Zhang et al. (2010); Wu (2019).28

For the 3D situation, the immersed boundary method was extended by Fadlun et al. (2000) on a staggered29

grid with volume fraction to determine the forcing point location, which is rather simple but inaccurate. Both30

Fadlun et al. (2000) and Kim et al. (2001) conformed the background grids to the sphere surface by the31

use of cylindrical coordinate system. They aimed to enable the forcing points to coincide with the sphere32

surface manually. In addition, unstructured triangular grid was adopted by Gilmanov and Sotiropoulos33

(2005) in their 3D immersed boundary method to approximate the sharp body interface, where the nodes34

near the boundary were utilized to determine whether a given point was an internal or external forcing35

point, according to the sign of scalar product between the position vector and the normal vector. Based on36

the work in Kim et al. (2001), Kim and Choi (2006) applied the immersed boundary method to simulate37

moving bodies via the non-inertial reference frame. As the non-inertial reference frame system was fixed on38

the body, the procedure for determining forcing terms was the same as that for a stationary case. Similar39

to Gilmanov and Sotiropoulos (2005), Mittal et al. (2008) also employed the concept of scalar product to40

determine the forcing points. However, the scalar product method requires many product iterations in the41

whole domain, which causes the computational effort increase dramatically in the 3D cases.42
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Borazjani et al. (2008) proposed a curvilinear immersed boundary method for modeling complex 3D rigid43

bodies represented by unstructured triangular grids. In their work, the point-in-polyhedron identification44

procedure was used to locate forcing points, which starts by emitting a line from a given point P (to be45

identified) to a point S outside the polyhedron, and the number of intersections is counted to determine46

whether P is in the solid phase. Similarly, a ray-tracing procedure was adopted in Roman et al. (2009) to47

address situations involving multiple or concave immersed boundaries. However, both Borazjani et al. (2008)48

and Roman et al. (2009) did not show the procedure to handle the special situations when the ray passes49

through the vertices of a triangular cell. This special situation always causes confusion in the determination50

of intersection numbers, leading to the inaccurate forcing point positions.51

Recently, Seo and Mittal (2011) developed a sharp-interface immersed boundary method with a partial52

cut-cell based approach to strictly satisfy the boundary condition with geometric conservation. Spurious53

pressure oscillations can be reduced, but the treatment was always complicated and the simulations were54

limited to single-phase flows. To suppress the spurious force oscillations in the simulations of moving bodies,55

a fully-implicit ghost-cell immersed boundary method was developed in Lee and You (2013), based on the56

work in Mittal et al. (2008), by combining the mass source/sink algorithm and implicit discretizations. Fur-57

thermore, Calderer et al. (2014) developed a CURVIB immersed boundary method for calculating the forces58

on a body by imposing the pressure projection boundary condition (PPBC). To define forcing points, the59

point-in-polyhedron algorithm in Borazjani et al. (2008) was used to classify all nodes in the computational60

domain. Again based on Mittal et al. (2008), Nicolaou et al. (2015) proposed a robust immersed boundary61

method on the curvilinear grids with semi-implicit discretizations to solve the Navier-Stokes equations. How-62

ever, the force term applied in the solid phase required an iterative approach, which was time-consuming63

despite the smaller errors at the boundary. In Bihs and Kamath (2017), the approach for the geometry64

description with a local directional ghost cell method based on Berthelsen and Faltinsen (2008) was pro-65

posed. To determine the ghost cell, the extrapolation along the normal direction of the regular or irregular66

boundary was adopted, which needs to be conducted in the x-, y-, and z-directions, respectively.67

For the 2D problem, the authors have developed an efficient and straightforward scheme on the Cartesian68

background grid to identify forcing points in the immersed boundary method (Yan et al., 2018), which69

exhibits the advantage of ease of implementation with desirable accuracy. In addition, it locates the u70

and v forcing points precisely to ensure the accurate boundary enforcement rather than introducing any71

assumption or approximation in the determination of forcing points. However, the extension from 2D to72

3D problem requires tremendous effort. The discussion on past studies shows that approaches to locate 3D73

forcing points mainly include simplification for special bodies, scalar product of point vector and surface74

normal vector and ray-tracing scheme. They are all directed at adopting a geometrical view to obtain the75

positions of intersection and hence determine forcing points. Therefore, they may be more complicated and76

face more challenges when dealing with complicated 3D geometries. Different to the geometrical view, in77

the present study an algebraic algorithm for predicting triangle-triangle intersections is developed to locate78
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forcing points. The algebraic algorithm was originally proposed in the discipline of computational graphics79

(Tropp et al., 2006), with the good features of being robust and efficient. By following the basic concept80

developed for 2D situations, the main advantages of the immersed boundary method developed in Yan81

et al. (2018) can be carried over to 3D situations. With the combination of level set method, several water82

impact problems with complex breaking surface are investigated in the present study. To validate the newly83

developed 3D immersed boundary method, the present results are compared with other experimental and84

numerical results extensively for both the fixed and moving 3D structures with complex geometries.85

2. Two-phase flow model86

To simulate the 3D incompressible viscous flows, a two-phase flow model is adopted in the present study.87

This model was developed in Archer and Bai (2015) where more details have been discussed, and only the key88

information is provided in the following. The fluid motion can be described by the Navier-Stokes equations,89

∂ui
∂t

+ uj
∂ui
∂xj

=
1

ρ

(
− ∂p

∂xi
+
∂τij
∂xj

)
+ gi + fi, (1)

and the continuity equation,90

∂ui
∂xi

= 0, (2)

where i and j denote the x, y, z directions (i, j = 1, 2, 3), ui is the fluid velocity, xi is the spatial coordinate, t91

is the time, p is the pressure, gi is the gravitational acceleration, ρ is the fluid density and fi is the momentum92

forcing component used to enforce the desired boundary condition on an immersed boundary interface in93

the present study. τij are the viscous stress components, which is dependent on the dynamic fluid viscosity94

µ. Here the Cartesian tensor notation is used.95

The level set method is adopted to capture the interface (free water surface) between the two water-air96

phases. In the level set method, a signed distance function φ is defined throughout the domain to measure97

the shortest distance from the grid cell center to the interface. A positive value of φ indicates one phase while98

a negative value indicates the other. The zero value of level set function represents the interface position.99

The evolution of the level set function φ satisfies the following convective equation,100

∂φ

∂t
+ ui

∂φ

∂xi
= 0. (3)

As the two-phase flow model needs to consider air and water simultaneously, ρ and µ in the Navier-101

Stokes equations should be determined by the properties of the local fluid phase. However, the interface102

between the air and water is sharp, so the sudden change in the values of ρ and µ between two phases could103

cause instabilities when solving the Navier-Stokes equations. To overcome such problem, a smeared form of104

Heaviside function H is applied in a small band around the interface to smooth out ρ and µ between two105

phases. Therefore, ρ and µ can be calculated by106
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ρ (φ) = ρair +H (φ) (ρwater − ρair)

µ (φ) = µair +H (φ) (µwater − µair)
(4)

where the subscripts air and water denote the values of air and water, respectively.107

The Navier-Stokes equations are solved numerically by the finite difference method on a staggered grid108

system. The level set equation (Eq. 3) is descritised by a fifth-order scheme to ensure the accuracy of the109

calculation. For the detailed numerical descritisation and implementation, the reader can refer to Archer110

and Bai (2015).111

To calculate the responses of a 3D moving body in 6 degrees of freedom, the motion equations for the112

translational and rotational responses can be adopted based on the Newton’s second law. As the body only113

undergoes translational motions in the present study, the motion equations in the translational directions114

are considered, which take the following general form for a body with the damping and spring system,115

M
∂2Y i

∂2t
+ C

∂Y i

∂t
+KY i = F i

fluid + F i
ext, (5)

where the superscript i denotes the direction as in Eq. 2, Y i is the displacement in the ith direction, M116

the mass of the moving body, C the damping coefficient, K the spring stiffness coefficient, F i
fluid the force117

exerted by the fluid, and F i
ext the external force. In the following cases, C is required to be determined118

by the numerical simulation, and the spring system is not considered. Furthermore, the structure is only119

subjected to the force exerted by the fluid F i
fluid, which can be expressed as120

F i
fluid =

∫
Ω

(−pni)dΩ +

∫
Ω

(τijnj)dΩ, (6)

where the first and second parts on the right of the equation represent the pressure force and shear force121

obtained by the integration over the body surface Ω. Based on the obtained displacement, the velocity of122

the structure can be predicted by123

ui =
∂Y i

∂t
, (7)

where ui is the velocity component at the ith direction.124

3. 3D immersed boundary method125

In the present method, the triangle to triangle intersection is solved algebraically that can locate the u,126

v, and w forcing points respectively. It guarantees the precise body boundary in a relatively coarser grid127

compared to other methods, such as the simplification for special bodies, a scalar product of point vector128

and surface normal, and the ray-tracing scheme. The scalar product and ray-tracing scheme require much129

computational cost for iterations, while the algebraic algorithm adopted here is easy for the speed-up in the130
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matrix solution. Meanwhile, by solving the matrix the accuracy of forcing points can be ensured and the131

missing forcing points can be avoided.132

3.1. Solid geometry description133

Firstly, structures in the computational domain need to be defined and described in a certain way. In134

the present study, the surface of a solid body is descritised by a series of unstructured triangular grids. The135

unstructured triangular grids are generated by means of the open source software “NETGEN” (Schőberl,136

1997). NETGEN is an automatic mesh generation tool in both the 2D and 3D spaces, and it can generate137

triangular or quadrilateral grids, as well as tetrahedral grids. To generate unstructured triangular grids on138

the curved surface of a 3D solid body, the constructive solid geometries (CSG) or the standard template139

library (STL) file format is created first and then imported into NETGEN. Once the geometry of the solid140

body is defined by NETGEN, the information of nodes on the body surface is provided to the present141

numerical model for the subsequent determination of forcing points near the body surface.142

3.2. Triangle-triangle intersection in 3D space143

With the description of a solid body, it is possible to find the forcing points. In the present study, the144

forcing points locate outside the solid phase (surface mesh), which has been demonstrated to give better145

performance in Yan et al. (2018) for the 2D situation. In order to apply the basic concept of the improved146

forcing point searching scheme developed for the 2D case in Yan et al. (2018) to the present 3D problem, the147

key is to project the body surface onto the corresponding plane, so that the 3D problem can be converted to148

the 2D problem to some extent. To construct the projection area, three bounded planes are adopted, which149

are shown in Fig. 1(a) as red squares. Those three bounded planes are denoted as the uv, uw, vw planes,150

respectively, according to the directions of two velocity components that belong to the plane, each of which is151

also perpendicular to a particular coordinate axis. For the convenience of capturing the intersection between152

the plane and the body surface, each bounded plane is further divided into two triangles. Therefore, the153

problem is transferred to the determination of 3D triangle-triangle intersections, before the forcing points154

can be found.155

For the purpose of further demonstration, one triangle on the body surface (4ABC shown in Fig. 1(a))156

is taken as an example. To search the forcing points, one needs to find the interaction between 4ABC and157

the uv bounded plane (for example), which is the line segment cd as shown in Fig. 1(a). Fig. 1(b) shows158

the sketch of 4ABC, uv bounded plane and intersection line segment cd only. It should be noted that the159

bounded plane is divided into two triangles by a diagonal line. By using the triangle-triangle intersection160

algorithm, the intersection line cd can be found. As a result, the dimension of the problem is reduced from161

three to two in a sense.162

As the intersection between the edge of one triangle with another triangle can be described by a linear163

equation, there are in total six such equations to be solved for the triangle-triangle intersection problem. A164

few fast representative algorithms (Moller, 1997; Held, 1997; Guigue and Devillers, 2003) were proposed by165
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Figure 1: Triangle-triangle interaction in the simulation: (a) overall view (b) 4ABC for clear demonstration.

the utilization of the intersection line between the planes supported by the two triangles. In addition to the166

above-mentioned algorithms to solve the intersection problem geometrically in the conventional view, Tropp167

et al. (2006) proposed an algebraic approach. As there is a strong relationship among the linear equations,168

this relationship can be applied to expedite computational efficiency of the solution. In other words, the169

algebraic algorithm requires fewer arithmetic operations than those geometric algorithms, and the accurate170

intersection coordinates could be obtained with a much lower effort than before. Thus, we introduce the171

algebraic algorithm into the development of 3D immersed boundary method.172

For completeness, we recapitulate the theory for the intersection between two triangles presented in Tropp173

et al. (2006) in the following. In this algorithm, Tri A and Tri B are defined as two triangles. The intersection174

between Tri A and Tri B means that the edges belonging to one triangle intersect the other triangle. With175

all possible edge being examined, the intersection could be determined. To demonstrate, define −→p 1 and −→p 2176

as the edges of Tri B sharing the same vertex P1, and the edges of Tri A originating from vertices Qi as177

−→q i (1 ≤ i ≤ 3) (see Fig. 2). To reside the intersection coordinates between two supporting planes of two178

triangles, the following set of equations is solved:179

P1 + α1 ×−→p 1 + α2 ×−→p 2 = Qi + βi ×−→q i (8)

where α and βi are the scalar factor to be determined in the following content.180

As the intersection point is inside the triangle, Eq. 8 should be solved with considering the inequalities:181

0 ≤ βi ≤ 1, α1α2 ≥ 0 and α1 +α2 ≤ 0. Six such intersection tests ought to be carried out: three to examine182
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Figure 2: Problem setting for triangle-triangle intersection.

whether Tri A intersects the edges of Tri B, and three to examine whether Tri B intersects the edges of Tri183

A. By reusing the common elements and utilizing the linearity of matrix operations, the algebraic algorithm184

is applied only to three equations.185

In the beginning, three linear equations can be partially solved to determine the parameters βi, 1 ≤ i ≤186

3, namely the three edges of Tri A intersecting with the supporting plane of Tri B (Eq. 8). The values of187

βi can determine whether a fast rejection could occur, concluding no intersection. If such rejection does not188

happen, the values of βi are combined with the vertices and edges to construct the intersection line between189

Tri A and the supporting plane of Tri B (vector
−→
t shown in Fig. 2). Thus, the 3D problem is reduced to a190

planar intersection between the intersection line segment
−→
t and Tri B. The flow chart of different stages of191

this algorithm is shown in Figure 3.192

At the first step, Eq. 8 can be rewritten in the matrix form with ri = Qi − P1,193

(−→p 1
−→p 2

−→q i)


α1

α2

−βi

 = (ri). (9)

Letting the matrix A(−→q i) = (−→p 1
−→p 2

−→q i), Eq. 9 can be written in the simplified form,194

A(−→q i)xi = ri (10)

where xi = (α1, α2,−βi). As the intersection point always resides on the edge −→q i, the legal βi is subjected195

to the inequality 0 < βi < 1. βi is obtained via the determinants, βi = −|A(−→q i)|/|A(ri)|. Thus, the196

equivalent inequality condition becomes 0 < βi|A(ri)|2 < |A(−→q i)|2 mathematically. As a result, 0 <197

−|A(ri)||A(−→q i)| < |A(ri)|2 can be employed to examine whether the division is required.198
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Use determinants to 
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i
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Exit

Otherwise 

No interaction Exit
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the intersection line 
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Obtain the exact coordinates of 
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Figure 3: The flow chart for triangle-triangle intersection.

At the second stage, if all the values of βi are illegal, Tri A is located on one side of the supporting plane199

of Tri B without any intersection or parallel to the supporting plane of Tri B. This situation concludes200

no intersection directly. If |A(−→q i)| = 0 is always satisfied, Tri A and Tri B are overlapped in one plane.201

Otherwise, discussion on the common situation continues as follows.202

At the third step, the following equations can be utilized to obtain the intersection point T and the line203

segment
−→
t . For instance, if the legal parameters (β1, β2) exist, T and

−→
t can be written as,204

T = Q1 + β1q1,
−→
t = β2q2 − β1q1. (11)

At the stage four, two cases occur when the two triangles intersect each other: 1) there is at least one205

intersection between the surface of Tri B and the line segment
−→
t ; 2) the line segment

−→
t is fully enclosed206

by Tri B. Thus, the following equations for intersection coordinates shall be solved:207


P1 + δ1

−→p 1 = T + γ1
−→
t

P1 + δ2
−→p 2 = T + γ2

−→
t

P1 + δ3(−→p 2 −−→p 1) = T + γ3
−→
t

 . (12)

The legal values of βi lead to the residence of intersection on the edge −→p i. Only when 0 < γi < 1 the208

intersection points are on the line segment
−→
t . Only when both the inequalities (0 < γi < 1, 0 < βi < 1) are209

satisfied, the intersection exists between the edge −→p i and the line segment
−→
t , with the coordinate of Xi,210

Xi = Pi + δi
−→p i (13)
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At the final optional fifth stage, the parameters (βi) and vectors can be combined to obtain the exact211

intersection coordinates. T and T +
−→
t or Xi and T +

−→
t shall be the required endpoints of the line segment.212

3.3. Determination of forcing points and forcing terms213

After the determination of the intersection line segment (such as cd shown in Fig. 1), the forcing points214

can be predicted. Here, take the uv plane as an example for the purpose of illustration. In Fig. 4(a), the215

red solid line is an intersection line segment that has been determined by the algorithm discussed in the last216

section, and n is the unit normal vector pointing outwards. If the slope of the line segment is smaller than217

that of the diagonal line, the line segment is extended to a new grid in the y direction. However, if the line218

segment has already touched both two vertical sides of the present grid, the extension is not required. It is219

noted that the direction of extension of the line segment depends on the normal vector direction. The u and220

v positions closest to the line segment can be calculated by the linear equation of intersection line segment.221

According to the normal direction, u and v forcing points are located in the same direction of n, shown as222

the red u and v arrows in Fig. 4(a). Otherwise, the forcing points are located at the black u and v positions223

if the normal direction is in the opposite way. On the other hand, if the slope of the line segment is larger224

than that of the diagonal line, the extension of line segment is in the horizontal direction, as shown in Fig.225

4(b). Similar to Fig. 4(a), the u and v positions closest to the line segment can be determined. Based on226

the normal direction, the u and v forcing points are located in the same direction of n, shown as the red u227

and v arrows in Fig. 4(b). Otherwise, the forcing points are the black u and v if the normal vector direction228

is opposite. The following equation is aimed to represent such procedure,229

forcing point position =

 (xi, yj+1), if nj > ni

(xi+1, yj), if ni > nj
(14)

where ni, nj are the x-,y- components of the normal vector n.230

It is the same to determine the information of u, w forcing points in the uw plane and v, w forcing points231

in the vw plane, respectively. Based on our developed algorithm for the 2D case in Yan et al. (2018), the232

forcing points closest to the body surface are selected and stored for the interpolation procedure.233

Upon the location of forcing points is determined, the velocity at the forcing point vf needs to be predicted234

by the interpolation (more details are also given in Yan et al., 2018). Once the velocity at the forcing point235

is available, the forcing term component at the forcing point is predicted based on the method described in236

Mohd-Yusof (1997),237

fi =
vf − vni

∆t
−RHSn

i . (15)

where RHS is the sum of the convective, viscous, pressure gradient and body force terms in the governing238

equations, and the superscript n denotes the values taken from the previous time step.239
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Figure 4: Sketch of determination of forcing points in a 2D plane: (a) slope is smaller than diagonal line; (b) slope

is larger than diagonal line.

4. Validations and applications240

To validate the effectiveness and accuracy of the proposed 3D immersed boundary method, three cases241

are conducted: 3D dam break over a cuboid, free fall of a 3D wedge, and free decay of a bobber. It aims to242

demonstrate the capability of our model to simulate fixed and moving 3D complex bodies in the fluid flow243

with complicated free surface.244

4.1. 3D Dam break over a cuboid245

In this case, the numerical model is adopted to simulate a physical experiment carried out in a short tank246

of 3.22m × 1.0m × 1.0m, at the laboratory of Maritime Research Institute Netherlands (MARIN), which247

was reported in Kleefsman et al. (2005). To simulate the dam break, a door encloses a water column with248

1.22m width and 0.55m height on the right side of the tank. After the door is pulled up, the water column249

breaks and flows to the other side of the tank. A cuboid is fixed to resemble a scaled model of a deck-house250

on the deck of a vessel in the tank. Water heights and pressures were measured at the specified positions as251

shown in Fig. 5. As the behaviour in the middle of the z plane is more concerned, the pressure gauges are252

all set in the symmetrical plane in the z direction. The coordinates (x, z) of the water gauges H1 and H2253

are (0.56, 0.5) and (2.22, 0.5). The coordinates (x, y, z) of the pressure gauges P1 ∼ P4 are (2.4, 0.025, 0.5),254

(2.4, 0.01, 0.5), (2.425, 0.16, 0.5) and (2.45, 0.16, 0.5). The unit of the coordinates is meter.255
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Figure 5: Sketch of 3D dam break over a cube and measured positions.

The surface of the cuboid needs to be described first. In the present numerical simulation, the cuboid256

is discretized with 12 vertices and 20 triangular surface elements, as shown in Fig. 6. To test the mesh257

convergence, three grids around the structure are examined with intervals of 0.04m × 0.04m × 0.04m258

(coarse mesh), 0.02m × 0.02m × 0.02m (medium mesh) and 0.01m × 0.01m × 0.01m (fine mesh) in the x, y259

and z directions respectively. In the other area, the uniform grids of 0.04m × 0.04m × 0.04m are generated.260

The pressures at the gauges P1 and P3 are presented for those three grids in Fig. 7. From the figure, it can261

be observed that the results for the medium and fine meshes are close to each other, while the result for the262

coarse mesh deviates much from the other two results. Therefore, the convergent results are achieved when263

the medium mesh is used.264

Figure 6: Mesh details of the surface of a cube (12 nodes and 20 surface elements).

Fig. 8 presents a comparison of time histories of water height with the experimental data and other265

numerical results. The results in Kleefsman et al. (2005) were computed using the model Comflow and Gu266
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Figure 7: Time history of pressures at P1 and P3 for the mesh convergence test.
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et al. (2013) adopted the partial cell technique. In general, all the three numerical results deviate a little from267

the experimental one with a phase lag. However, the present results seem to capture the magnitude better,268

while the numerical results of both Kleefsman et al. (2005) and Gu et al. (2013) underestimate the peak269

value in Fig. 8(a) and overestimate the peak value in Fig. 8(b). At the wave gauge H1, the present result270

shows a delay in the peak value, which means the reflected water from both the cuboid and the end wall271

arrives the wave gauge slightly later. This is probably due to the fact that one disadvantage of the level set272

method adopted in the present study for the interface capturing lies in the poor guarantee of conservation273

of mass for the complex water surface with the fluid-structure interaction. The developed 3D immersed274

boundary method seems to perform well, as the free surface elevation at the gauge H2 which is just in front275

of the cuboid shows a good agreement with the experimental data.276

To further demonstrate the capability, the time histories of pressures at four positions are presented in277

Fig. 9. It can be seen that there are suspicious spurs in the results of Kleefsman et al. (2005), while the278

present results and the results of Gu et al. (2013) shows the good feature of stability. Compared to the279

results of Gu et al. (2013), the present results agree better with the experimental data, as their results280

underestimate the first peak. Fig. 10 shows the water surface profiles at t = 0.0s, 0.5s, 0.75s, 1.0s, 1.25s and281

2.0s respectively, with the grid of 0.01m × 0.01m × 0.01m. As the water impacts on the cuboid, the water282

surface exhibits the process of separation, breaking and mixing. The splashing water jets occur between the283

time instants t = 0.75s and t = 1.25s. The complicated water surface is generated mainly when the water284

impacts on the front side of the obstacle and the end wall of the tank, as shown in Figs. 10(c) and 10(d).285

Fig. 10(e) captures the most chaotic and breaking features of the water surface.286
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Figure 8: Comparison of water heights in the gauges H1 and H2 with the experimental and other numerical results.
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Figure 9: Comparison of time history of pressures at P1, P2, P3, and P4 with the experimental and other numerical

results.

4.2. Free falling of a 3D wedge287

In this section, a freely falling 3D wedge is investigated, which is more challenging than the dam break288

past a fixed body studied in the last section, as shown in Fig .11. Free falling of the 3D wedge was investigated289

experimentally in Yettou et al. (2006), where the position and velocity of the wedge were measured. Calderer290

et al. (2014) and Bihs and Kamath (2017) also worked on the same problem numerically using the immersed291

boundary method. The differences between the present and the previous immersed boundary methods mainly292

lie in the search of forcing points and the implementation of boundary condition.293

This symmetric wedge with a 25 degree dead-rise angle weights 94kg, equivalent to a body with the294

density of 466 kg/m3. Initially, the wedge falls freely from the position 1.3m above the still water. For295

simplification, we set the velocity of the wedge as 5.0m/s (
√

2gs, where the distance s = 1.3m) at the initial296

instant of wedge penetrating the still water in the numerical simulation. The dimension of the wedge in the297

numerical simulations is taken as 1.2m in both the spanwise and longitudinal directions. Correspondingly,298

the length and width of the channel (fluid domain) are 4.0m and 2.0m. It ensures that there is a 0.4m gap299

between the wedge and each channel wall in the spanwise direction. The gap in the longitudinal direction is300
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(a) t = 0.0s (b) t = 0.5s

(c) t = 0.75s (d) t = 1.0s

(e) t = 1.25s (f) t = 2.0s

Figure 10: Water surface profiles at six different time instants for the dam break.
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Figure 11: 2D sketch of water entry of the free falling wedge.

1.4m to each channel wall to avoid the influence of walls. The channel length in the present simulations is301

smaller compared to those in the experiment (Yettou et al., 2006) and other numerical simulations (Calderer302

et al., 2014, Bihs and Kamath, 2017). However, as the time duration is very short before we terminate the303

simulation, the wave reflection from the longitudinal walls cannot affect the central fluid area of interest.304

The uniform grid interval is 0.04m, and it is reduced to 0.01 around the structure in both the horizontal and305

vertical directions.306

The wedge velocity at the initial stage is presented and compared with the experimental and the numerical307

results in Calderer et al. (2014), as shown in Fig. 12. In Calderer et al. (2014), the combination of a point-308

in-polyhedron algorithm for defining forcing points and the PPBC correction is adopted. Despite the PPBC309

improvement in Calderer et al. (2014) made to the standard method of Borazjani et al. (2008), the present310

numerical results of wedge velocity are still in a better agreement with the experimental data. At this stage,311

the present results and the experiment data show the evident inflection point around t = 0.013s, which is312

not well captured in the results of Calderer et al. (2014). Before t = 0.013s, the numerical results based313

on the proposed method agree much better with the experimental data than the other published results.314

In addition, Calderer et al. (2014) used much smaller grid spacings, which can further demonstrate the315

advantage of the present algebraic algorithm for the forcing point searching.316

To extend the time duration in the comparison, both the wedge position and velocity in the whole process317

are compared with the experimental data and the numerical results in Calderer et al. (2014) and Bihs and318

Kamath (2017), as shown in Fig. 13. It is noted that the wedge position is recorded at the keel. In Bihs and319

Kamath (2017), a ray-tracing algorithm was adopted to locate forcing points. According to the comparison,320

it can be observed that the present numerical results almost override the results of Calderer et al. (2014),321
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Figure 12: Comparison of the wedge velocity at the initial stage between the present, experimental, and other

numerical results.

both of which agree well with the experimental data. However, one should note that much coarser grids322

are adopted in the present numerical simulations, compared to that in Calderer et al. (2014). Moreover, it323

is evident that the results for both the wedge position and velocity in Bihs and Kamath (2017) show more324

discrepancies with the experimental data, in the comparison with the present numerical simulations.325
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Figure 13: Comparison of the wedge position and velocity between the present, experimental, and other numerical

results: (a) wedge position; (b) wedge velocity.

Fig.14 shows the time history of slamming force on the whole wedge. The peak value of the slamming326
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force is about 23525N, occurring at the time instant t = 0.013s. The largest slamming force corresponds327

to the largest acceleration according to the Newton’s law. At this instant, the wedge velocity in Fig.13(b)328

decreases most sharply. In addition, the water surface profiles at several time instants are given in Fig. 15,329

where the position of the wedge and the water jet are shown. The wedge penetrates the water initially and330

floats upwards after t = 0.5s. A weak water jet around the wedge appears at t = 0.7s. The water surface331

looks similar to the ”shipping-wave” with two wave crests. According to the comparison with the numerical332

results of the other two immersed boundary methods in Calderer et al. (2014) and Bihs and Kamath (2017),333

it can be seen that the surface profile is similar in all the studies when the 3D wedge is fully submerged.334

The surface profile from Bihs and Kamath (2017) looks more complicated than the other two, which seems335

unreal due to the errors in the predicted wedge velocity and position, as indicated in Fig. 13.336
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Figure 14: Time history of slamming force on the wedge.

Finally, numerical results of the vector field at the middle vertical section are shown in Fig. 16. It can337

be seen that around t = 0.025s, the velocity magnitude approaches the maximum at about 10m/s, which338

is consistent with the value reported in Bihs and Kamath (2017). The wedge penetrates the water sharply339

at t = 0.2s, as shown in Fig. 16(c). At the following time instants, the complicated water jet occurs and340

propagates to the walls. In addition, the vorticity appears and develops around the two tips of the wedge.341

4.3. Decay of a bobber342

To further demonstrate the capability of the developed 3D immersed boundary method in simulating a343

complex body geometry, a free decay bobber is considered in this section. In this test, a bobber undergoing344

oscillatory heavy motions is considered, which is controlled by its own weight mf and a counterweight mc. A345

pulley system is adopted to connect those two weighting systems, as shown in Fig. 17(a). According to the346
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(a) t = 0.1s (b) t = 0.3s

(c) t = 0.5s (d) t = 0.7s

Figure 15: Water surface profiles at four different time instants for the free falling of the wedge.

(a) t = 0.025s (b) t = 0.1s (c) t = 0.2s

(d) t = 0.3s (e) t = 0.4s (f) t = 0.5s

(g) t = 0.6s (h) t = 0.7s (i) t = 0.8s

Figure 16: Vector field at different time instants for the free falling of the wedge.
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Newton’s second law, the motion of the system is described by the formula (mf +mc)ay = Fy +(mf −mc)g,347

where ay is the acceleration of the whole system in the vertical direction and Fy is the slamming force acting348

on the bobber. It is noted that the positive direction of force, displacement, acceleration is pointing upwards.349

Based on Thomas et al. (2008) and Hu et al. (2013), the geometry of the bobber is the combination350

of a flat-bottomed cylinder of the radius 74mm, a 30◦ cone, and a cylinder with the radius 25mm. The351

flat-bottomed cylinder is unsharpened around the corner with the radius 33mm. The height of the bottom352

cylinder is 85mm, and the grids to describe the bobber surface are shown in Fig. 17(b). Initially, the bobber353

is placed 0.01m above the still water (0.5m water depth) before the free motion. The whole fluid domain is354

2m × 1m × 2m, with a grid of 0.01m × 0.01m × 0.01m around the bobber. To locate the forcing points,355

the bobber is discretized by 116 triangular surface elements.356

mc

mf
33mm85mm

625mm

MWL

(a) (b)

Figure 17: Sketch of bobber (a) and its surface mesh (b).

In the numerical simulation, mf and mc are set as 2.1kg and 1.2kg, respectively. Due to the difference in357

the weights of bobber and counterweight, the bobber could penetrate the water. In the water, the bobber is358

subjected to the hydrodynamic force, which leads to the oscillation of the bobber. In Calderer et al. (2014)359

and Bihs and Kamath (2017), the artificial damping was added into the motion equations for the heave360

motion by introducing the damping coefficient C = 0.275 in Eq. 5, in order to account for the friction of361

the experimental apparatus. However, as there is no friction of the experimental apparatus in the numerical362

simulation, the damping coefficient could be different. Thus, different values of damping coefficient are tested363

in the present study to evaluate the influence of damping, and the numerical results of vertical displacement364

of the bobber with different damping coefficients are compared in Fig. 18. The larger damping coefficient365

results in the smaller oscillation amplitude, and for the present case the damping coefficient C = 1.5 seems366
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to best fit with the experimental data.367
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Figure 18: Numerical results of vertical displacement of the free decay bobber under different artificial damping

coefficients.

The comparison of vertical displacement is shown in Fig. 19, in which the experimental data in Thomas368

et al. (2008), the numerical result from Hu et al. (2013) and the present results are included. In the first 4369

periods, it shows that the present numerical result obtains a obviously better agreement with the experiment370

than that in Hu et al. (2013). With further increase of time, both numerical results show some discrepancies371

with the experiment. However, the present results show no phase lag with the experimental data, while there372

is an evident delay in the numerical results from Hu et al. (2013). In addition, the numerical result from Hu373

et al. (2013) are severely over-predicted compared to the present numerical results, as the damping was not374

considered in Hu et al. (2013).375

For a further comparison, the heave force and vertical velocity of the bobber are shown in Fig. 20(a) and376

Fig. 20(b). It can be seen that the agreement is not very satisfactory both for the phase and amplitude,377

especially after t = 2.5s. It seems that the present numerical results may be more reliable, as a better378

agreement has been achieved between the present numerical results and the experimental data for the379

displacement shown in Fig. 19. Finally, the snapshots of water surface closed to the bobber are presented in380

Fig. 21. The figure shows the oscillation of the bobber and the surface profile around the bobber at different381

time instants. The free surface is irregular, especially at t = 0.9s when the discrete water volume appears.382

At t = 0.5s, there is a step-shape free surface profile due to the bobber geometry. From this case, the present383

new immersed boundary method is demonstrated to be robust and accurate even for a relatively complex384

body geometry.385

Fig. 22 shows the pressure distribution at six different time instants at the central vertical section of the386
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Figure 19: Comparison of time history of vertical displacement with the experimental data and other numerical

results.
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Figure 20: Time history of heave force (a) and vertical velocity (b) for the bobber undergoing heave motions.
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(a) t = 0.1s (b) t = 0.3s (c) t = 0.5s

(d) t = 0.7s (e) t = 0.9s (f) t = 1.1s

Figure 21: Water surface profiles at different time instants for the bobber decay.
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domain. It can be seen that the hydrostatic pressure is dominant in most part of the domain. As the zero387

pressure is defined on the free surface, the free surface profile is represented by the zero-pressure contour388

approximately in the figure. Due to the geometry of the bobber, the splashing water jets are not very obvious389

during the water entry process. However, the water can run onto the shoulder of the bobber in Figs. 22(c)390

and 22(d). In Figs. 22(a), 22(e) and 22(f), the hydrostatic pressure field is not disturbed much by the bobber391

motion, while the dynamic pressure is visible around the bobber surface at t = 0.3s in Fig. 22(b).392

(a) t = 0.1s (b) t = 0.3s (c) t = 0.5s

(d) t = 0.7s (e) t = 0.9s (f) t = 1.1s

Figure 22: Pressure distribution at different time instants for the bobber decay.

5. Conclusions393

In this paper, a new algebraic algorithm is incorporated to the forcing point searching scheme in the 3D394

immersed boundary method, which differs from the traditional geometrical approaches. The conventional395

way employs the concept of the geometrical method to locate the forcing points. However, the algebraic396

algorithm adopted to determine the triangle-triangle intersection is robust, easy to implement and efficient.397

For the purpose of validation of the developed 3D immersed boundary method, three test cases are carried398

out, including dam break over an obstacle, free falling of a 3D wedge and free decay of a bobber. In the dam399

break case, the present immersed boundary method converges fast and can capture the pressure magnitude400

better than other numerical methods. For the water entry of the wedge, the present results reveal that the401

overall wedge displacement and velocity obtained by the present immersed boundary method are superior to402
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other two immersed boundary methods. Lastly, after finding the most-fitted damping coefficient by matching403

the experimental data, for the free decay bobber the developed immersed boundary method can provide the404

better vertical displacement compared to other numerical method. All the numerical results suggest that405

the present numerical model is robust and accurate for both fixed and moving bodies with irregular complex406

geometries.407
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