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Abstract: Diabetic foot ulcers (DFUs) are a life-changing complication of diabetes that can lead to
amputation. There is increasing evidence that long-term management with wearables can reduce
incidence and recurrence of this condition. Temperature asymmetry measurements can alert to
DFU development, but measurements of dynamic information, such as rate of temperature change,
are under investigated. We present a new wearable device for temperature monitoring at the foot
that is personalised to account for anatomical variations at the foot. We validate this device on
13 participants with diabetes (no neuropathy) (group name D) and 12 control participants (group
name C), during sitting and standing. We extract dynamic temperature parameters from four sites on
each foot to compare the rate of temperature change. During sitting the time constant of temperature
rise after shoe donning was significantly (p < 0.05) faster at the hallux (p = 0.032, 370.4 s (C), 279.1 s
(D)) and 5th metatarsal head (p = 0.011, 481.9 s (C), 356.6 s (D)) in participants with diabetes compared
to controls. No significant differences at the other sites or during standing were identified. These
results suggest that temperature rise time is faster at parts of the foot in those who have developed
diabetes. Elevated temperatures are known to be a risk factor of DFUs and measurement of time
constants may provide information on their development. This work suggests that temperature rise
time measured at the plantar surface may be an indicative biomarker for differences in soft tissue
biomechanics and vascularisation during diabetes onset and progression.

Keywords: 3D printing; diabetes; diabetic foot; diabetic peripheral neuropathy; digital health;
personalised medicine; prevention; foot temperature monitoring; telehealth; wearables

1. Introduction

Diabetic foot ulcers (DFUs) are a life-changing complication of diabetes, affecting an
estimated 25% of those with diabetes [1]. The condition is complex, costly to treat, and
has a large impact on quality of life. In England, the cost of treatment is greater than
the combined cost of breast, prostate and lung cancers and the incidence is increasing
globally [2]. Worldwide it is estimated that a limb is lost every 30 s as a result of diabetes [3].
Improved foot care and prevention techniques, such as reducing the use of the foot if the
patient is at-risk [4], could reduce foot ulceration. For example, Bus et al. [5] estimate that
75% of ulcers are preventable with suitable care and preventative monitoring. Wearable
devices are becoming increasingly common for use in preventative medicine in areas
such as cardiovascular health [6], motivating the creation of wearables for monitoring risk
factors in DFU. In [7–9], the authors demonstrate that wearable and other smart devices
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could reduce the incidence of DFUs by providing continuous long-term monitoring and
feedback, which may allow better long-term management of DFUs. Wearable devices can
reduce the demand on clinics, the need to travel and the time lag between check-ups [8].

Risk factors to detect DFU formation include peripheral neuropathy (a loss of sensation
at the foot), foot deformities, and increased plantar pressures [10,11]. The monitoring of
plantar pressures, normal to the foot surface, is commonly used to generate in-clinic
evidence of ulcer formation [12–15], and plantar pressures can be monitored in wearable
devices including the SurroSense Rx [16]. For out-of-the-clinic use, Abbott et al. [17]
estimate that real-time pressure offloading alerts from a plantar pressure smart insole
reduced ulcer recurrence up to 86%. Recent review publications covering the common
wearable systems for foot pressure sensing and their performance are given in [18,19]
respectively. However, there is much debate on the utility of plantar pressure as a risk
factor for DFU [19]. Many works argue that monitoring shear pressure may provide more
information on ulcer formation [20–22]. Unfortunately, while new sensors are appearing to
enable this [23], shear pressure is costly and difficult to measure [24].

To overcome the above limitations, increasingly common in clinical practice is mea-
suring temperature asymmetry between the same site on opposite feet, with a common
alert threshold of 2.2 ◦C [25,26] used to indicate potential DFU risk. For example, the
point-of-care Podimetrics SmartMat can alert to the potential onset of ulceration if the
2.2 ◦C threshold between identical sites on opposite feet is exceeded [27]. The pressing
need for integrating this similar functionality into wearable devices has been highlighted
by Golledge et al. [9], who stated the need for more user-friendly sensors to automate home
foot temperature monitoring. This need can be achieved by implementing temperature
sensing into insole or shoe-based wearable devices; which can provide long-term and
continuous measurements of foot temperature. These devices will allow the temperature
dynamics of the foot, for example how quickly it heats up when shoes are put on, to be
studied for the first time.

To date, only a very limited number of works have investigated temperature sensing
wearables for DFU. The Siren Socks [28] are commercially available for wearable foot
temperature sensing. However, the monitoring of temperature in these commercial devices
has focused on singular, discrete measurements rather than investigating the more complex
dynamics of how temperature changes over time [29]. Recently, Niemann et al. [30]
investigated plantar temperatures at the foot in participants with diabetes (and neuropathy).
They investigated temperature at eight fixed sites on the foot (the hallux, the five metatarsal
heads, the lateral and the calcaneus), during repeated standing periods. Niemann et al.
identified that plantar temperatures followed a downward trend during standing, and did
not find significant differences between those with diabetes against controls. Niemann et al.
did not extract any metrics on the temperature dynamics during sitting or standing, and
this time-dependent information, which has been under-investigated, may provide more
information to detect DFU development sooner. More recently still, Leister et al. [31]
investigated temperature dynamics at the foot at a single fixed site during resting, walking
and cooling down periods in participants with type 2 diabetes with and without transtibial
(below knee) amputation. Leister et al. identified that those without amputation displayed
an increased rate of temperature change during walking. Further investigation is needed
to build on this work to identify if these differences in the rate of temperature change exist
between controls (without diabetes), and those with diabetes prior to any amputation or
developing any of the risk factors associated with DFUs, such as peripheral neuropathy.

Here, in this paper, we present a flexible 3D-printed wearable device to monitor
continuous foot temperatures and allow personalisation of the sensor placement to account
for differences in anatomy. As the main contribution of this paper, we also present a
feasibility study using our custom novel device to investigate the temperature dynamics at
the plantar foot during sitting and standing, with controls and participants with diabetes,
for the first time. These continuous measurements on rates of temperature change may
provide more information and thus better prevention of diabetic foot conditions. While
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previous work by Reddy et al. [32] has investigated temperature rise at the foot during
walking in healthy participants, this paper is the first, to the best of the authors’ knowledge,
to investigate the temperature rise time at the plantar foot in participants with diabetes
compared to controls. This work also considers the personalisation of the device to account
for variations in anatomy for the first time. By personalising the sensor positioning for each
participant, sensors can be aligned with the anatomy of each participant’s foot, enabling
results to be normalised as each sensor is located on identical anatomical locations between
participants. This personalisation may improve performance compared to previous devices,
which only account for variations in foot size rather than the differences in the internal
anatomy within the same foot size. In addition, this personalisation can allow sensing to
focus on the most high-risk areas which vary depending on the diabetic foot condition. For
example, the high-risk sites for DFU include the hallux and metatarsal heads [21], however,
for those with Charcot foot, the midfoot is a more common location for ulceration [33],
so it may be desirable to focus sensing around this area. There is considerable interest
in personalised and precision medicine in diabetes, where it is seen as a key enabler to
improved and more cost-effective treatments [34,35]. 3D-printing is a key tool to enable
this, due to its ability to rapidly produce customised devices, and we take advantage of this
in our new device. This work presents the creation of a new personalised device to monitor
the temperature at the plantar foot and aims to identify if the temperature dynamics at the
foot are different in participants with diabetes compared to controls.

2. Materials and Methods
2.1. Study Device

We fabricated custom circuitry and flexible insoles for use in this study. The circuitry
for the wearable device is summarised in Figure 1. This compromises of a four-channel
analogue front-end centred around a Wheatstone bridge to interface with flexible platinum
Resistance Temperature Detector (RTD) sensors (S3238, Minco Products, Inc., Minneapolis,
MN, USA), an instrumentation amplifier (TI INA33), multiplexer (Analog Devices ADG728)
and a Sallen–Key low-pass filter (TI OPA313) with a cut-off frequency of 10 Hz. This
circuitry interfaces with the 10-bit Analogue-to-Digital Converter (ADC) of an RFduino
(based around a Nordic Semiconductor nRF51822). The nRF51822 features an Arm™
Cortex-M0 and Bluetooth Low Energy (BLE) radio, which we make use of here to transmit
data from the device to an accompanying smartphone app. Our device also features an
accelerometer for activity detection and an 2 Mb EEPROM for long-term data storage, but
we do not make use of either of these features in this work. The device is powered from
a 300 mAh lithium polymer (LiPo) cell, a 3 V LDO regulator (MIC5301), and a charge
controller (MCP73812). The RTD sensors we make use of are developed for industrial
applications, such as measuring the temperature of motor windings, a more mechanically
challenging environment than the environment the sensors will be exhibited to in this study.

Custom 3D-printed flexible insoles were created for this study, with a pair provided to
each participant. The insoles were printed from flexible thermoplastic polyurethane (TPU)
material with shore hardness of 85A (NinjaFlex, Fenner Drives, Inc., Manheim, PA, USA)
and containing cut-outs (sized at 12.7 × 31.8 × 1.3 mm) for mounting the RTD temperature
sensors. The locations of the sensor mountings were personalised for each participant’s
foot, matching sensor positions to the most common locations for ulceration at the foot
(the hallux, first and fifth metatarsal heads and calcaneus) [10]. The process for identifying
these locations is detailed later in Section 2.3. An example of the flexibility of these insoles
is demonstrated in Figure 2.
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Figure 1. Block diagram of the main electronic components in the smart insole system developed
in this work. Lines denote signal flow between components of the schematic. Abbreviations: Low
Dropout (LDO), Resistance Temperature Detector (RTD), Wheatstone Bridge (Wht. Br.), Instrumenta-
tion Amplifier (IA), Analogue-to-Digital Converter (ADC), Bluetooth Low Energy (BLE), Electrically
Erasable Programmable Read-Only Memory (EEPROM).

Figure 2. Demonstration of the flexibility of the 3D-printed insoles used in this study.

The insoles were passivated by coating in a layer of 0.3 mm, 30◦ shore silicone (Translu-
cent Silicone, Silex Silicones Ltd., Hampshire, UK) laser cut to the size of the insole and held
in place with double-sided tape. Both the RTD sensors and the 3D-printed insole are flexi-
ble, to improve comfort and reduce the risk of causing damage to participants, particularly
in those with diabetes where neuropathy may have affected sensation at the foot.

To validate the complete system performance we compared measurements from each
sensor against gold standard temperature measuring equipment. Each temperature sensor
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was placed on a glass plate and surrounded by two reference temperature sensors (Minco
S3230) and connected to temperature measurement equipment (NI-9219). We heated the
glass plate to at least 20 discrete temperatures over the range 22–42 ◦C (covering the range
of temperatures measured at the foot) and compared the temperature recorded by each
sensor against the two reference temperature sensors. Each sensor was measured over a
24-h period, and then repeated three times for each sensor over a period of three weeks.
Within this, we were able to quantify the accuracy of the sensors as 0.3 ◦C, derived from
measuring the largest temperature deviation from the gold standard temperature measure-
ment. With this validation protocol repeated over three weeks, the accuracy measurement
captures both the worst-case drift (as each sensor was tested multiple times over an ex-
tended time period) and systematic/random errors of the sensors.

The complete system performs with a precision of 0.036 ◦C, accuracy 0.3 ◦C, sample
rate 1 Hz and temperature response time constant of 19 s. An iPhone app was also
developed to collect the data from the insole devices, shown in Figure 3a. We refer to
this device as the smart insole system in this paper, with the complete system shown in
Figure 3b where it is configured for a participant.

Figure 3. New wearable sensor insole system developed in this work for the continuous monitoring of plantar foot
temperatures. (a) The iPhone app used for real-time visualisation and logging of data; (b) The smart insole system used by
participants with the devices fitted inside shoes.

2.2. Participants

A total of 25 participants were recruited to take part in an exploratory study to investi-
gate the temperature dynamics at the foot in participants with diabetes. Participants were
recruited through advertisements at the University of Manchester (rather than a hospital
clinic or diabetes support group) and invited by email. Given the exploratory nature of
this study, participant numbers were chosen by convenience sampling. Participants were
split into two groups, a control group with no diagnosis of diabetes (C) and a group with
diabetes but no peripheral neuropathy (D). The participant demographics are detailed in
Table 1.
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Table 1. Demographics of participants in this study. Control group participants (C) are those with no
diagnosis of diabetes, participants with diabetes (D) only include those with no peripheral neuropathy.
Values are mean ± standard deviation. Body mass index (BMI).

C D

Number of participants 12 13
Gender (female/male) 5/7 7/6

Age (years) 42.1 ± 17.7 44.4 ± 22.8
Height (cm) 172.1 ± 8.8 169.7 ± 7.7
Mass (kg) 76.9± 17.1 77.4 ± 16.6

BMI (kg/m2) 25.6 ± 3.6 26.9± 5.9

Participants were excluded from the study if they reported any foot conditions which
included: history of foot ulceration, a major or minor foot amputation, peripheral arterial
disease, charcot foot, damaged skin tissue on their feet, any other skin conditions associated
with the diabetic foot as well as severe eczema or skin allergies. Participants were tested
for lack of sensation in their feet with the 10 g monofilament test at the hallux, first and
fifth metatarsal heads and calcaneus [4]. Any participants who demonstrated a lack of
sensation in this test were not invited to take part in the study (zero participants).

2.3. Experimental Protocol

The experimental protocol consisted of two sessions. The first was used to inform the
sensor placement by collecting anatomical information from the participant’s feet. This
was undertaken by instructing participants to use a plantar pressure mat (HR Mat, Tekscan
Inc., Boston, USA), sampling at 128 Hz for 8 s. Each participant was asked to sit in a chair
in front of the mat and align their feet with an insole outline matching their shoe size.
Participants performed four stances: standing stationary on both feet, standing stationary
on their left foot, standing stationary on their right foot, and rocking back and forward on
both feet. The data from the pressure mat was used to generate customised 3D-printed
insoles for each participant, containing mounting points for the temperature sensors which
were matched to the anatomical landmarks for that participant. The anatomical landmarks
were manually identified by overlaying the pressure data over the insole outline, as shown
in Figure 4. The centre of the sensors was placed on the area of the highest pressure near
the desired anatomical landmark. In some cases, this would lead to the edges of the sensor
being outside the insole. These cases were manually altered until the edges of the sensor
were inside the insole. In all cases, the sensors were still covering the identified landmark.

The second session was used to collect temperature data from the participant, with the
insoles printed between the two sessions (mean of 37 days between sessions). The insoles
were fitted in synthetic knitted running trainers (Kuako Keep Running, Amazon.com, Inc.,
Washington, DC, USA) matching the participant’s reported shoe size and connected to the
smart insole system described in Section 2.1. The temperature of the room was logged
using a Digital Multimeter and a K-type thermocouple (34465A, Keysight Technologies,
Santa Rosa, CA, USA), precision 0.01 ◦C, accuracy 2.5 ◦C. The temperature of the room
was regulated using a fan heater to keep temperatures consistent between participants,
with the temperature during testing sessions recorded as 23.70 ± 1.01 ◦C (mean ± SD).
At the start of the second session, participants performed a 10-min acclimatisation phase,
sitting barefoot with their feet reclined to allow the temperature of their feet to stabilise.
Participants were then asked to place their feet inside the shoes containing the smart insole
system, which was set to start recording. Participants were asked to sit stationary with
their legs at an approximate 90◦ angle at the knee joint for a period between 15–20 min.
Following this, participants were asked to stand stationary (while still wearing the shoes
and sensing insoles) for a period between 10–15 min. This protocol is summarised in
Figure 5.



Sensors 2021, 21, 1717 7 of 14

Plantar pressure mat data Extracted sensor positions
to match anatomical data

Fabricated insole 3D-printed
for a participant

10 15 20 25 30
X / pixels

20

30

40

50

60

70

slexip / Y

0

24

48

72

96

120

144

168

192

216

Pr
es

su
re

 / 
a.

u.

Hallux

1st Met.

5th Met.

Calcaneus

Figure 4. The process to generate a personalised insole for a participant, showing the steps to convert
the plantar pressure mat data into a 3D-printed insole.

StandingSittingAcclimatisation

Foot Temperature Measurements

10 minutes 15 – 20 minutes 10 – 15 minutes

Figure 5. Experimental protocol for the second session of the experimental protocol which was used
to collect the temperature data.

2.4. Data Analysis and Model Fitting

All data were analysed in Python 3.7 using the Anaconda Distribution v2019.03. The
data was filtered with an eighth-order zero-phase Butterworth low-pass filter with cut-off
frequency of 0.02 Hz, to remove quantisation noise. This cut-off was selected as a value low
enough to remove the quantisation noise while sufficiently far below the time constants
seen at the foot in this study. Initial analysis of the data found that the temperature of each
sensor followed a general trend; once the shoes were worn the temperature change followed
an increasing exponential decay function with most participants not reaching a steady-state
temperature within the sitting period. When the participants stood up, generally the
temperature of each of the sensors tended to decrease, following an approximately linear
straight line and again did not tend to reach steady-state within the duration of the standing
period. The general trend of this is shown in Figure 6 for an illustrative participant.

To allow comparison of these dynamic temperature measurements between partici-
pants, the temperature data from each sensor during sitting and standing was fitted to two
mathematical functions which describe the general trends seen in the data.
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Figure 6. Example raw data from a single participant, showing data for both feet in the sitting and
standing stages. Vertical dashed lines indicate the point when the participant put the shoes on. Note
that the standing period immediately follows the sitting period (without a break) and therefore the
data is continuous between the sitting and standing panels in this plot.

During the sitting period, the data for each sensor, for each participant, were fit to an
increasing exponential decay function described in (1),

y(t) = b + A(1 − e−t/τ), (1)

where b is the initial temperature of the foot, A is the change in temperature of the foot
during the mathematical fitting period, τ is the time constant and y(t) is the temperature
at time t. Data were fit using non-linear least squares to the middle section of the sitting
period, removing 240 s from the beginning and end of the sitting record to remove both the
effect of the system itself reaching steady-state (which takes around 95 s) and the effect of
noise at the end and the start of the record as some participants became restless, leading to
more motion artefacts to be seen. Bounds on the fit were provided, limiting the initial value
(b) within ±0.02 ◦C of the temperature at the start of the fitting period (for this specific
sensor), and bounding the time constant (τ) between 0 and 1500 s. All values with a poor
fit (r2 < 0.98) were excluded from the analysis. Finally, all fits that gave impracticably long
times to reach steady-state (τ > 1000 s) were discarded.

During the standing period, the data for each sensor, for each participant, was fitted
to a straight line function described in (2),

y(t) = mt + c, (2)

where m is the gradient of the line, t is time, c is the initial fitted temperature, and y(t) is
the measured temperature at time t. Again non-linear least squares were used to fit the
function and the function was fit near the beginning of the standing period, 60 s after the
participant had stood up with a total analysis time of 120 s.

We also calculated the absolute temperature differences between sites on the two
feet. These are calculated during the sitting period of the experiment, taken at the time 2τ



Sensors 2021, 21, 1717 9 of 14

(in (1)). The difference between the temperature on the left and right foot was calculated at
this point, and then the absolute (magnitude) of this value was found.

2.5. Statistical Analysis

Tests were performed using the stats functions in the SciPy library (Anaconda Python
v2019.03), with α = 0.05. As an exploratory analysis, we did not correct p for multiple
comparisons, and therefore results should be interpreted with due caution. Datasets were
initially tested for a Gaussian distribution using the Shapiro–Wilk and D’Agostino-Pearson
tests. Given the relatively small number of participants in this study, many of the resultant
datasets were not Gaussian, or if one group was Gaussian the other was not. Therefore, we
made use of the non-parametric Mann–Whitney U test. We note that non-parametric tests
provide less statistical power than parametric tests, therefore providing less confidence
that identified differences are actually statistically different and not due to chance alone.
The use of non-parametric tests is a limitation of this work but was required due to the
non-Gaussian distribution of the data. Tests for significance were performed between the
time constant (τ) during sitting, the rate of change (m) during standing and the absolute
temperature differences. For statistically different results, effect sizes were calculated using
Cohen’s d, using the levels for small, medium and large effect sizes of >0.2, >0.5 and >0.8
respectively [36].

3. Results

Table 2 shows the absolute temperature differences between feet at each site. Differ-
ences in absolute temperatures between groups were small, with participants with diabetes
having marginally higher mean temperature differences at all sites apart from the calcaneus.
When comparing absolute temperature differences, no significant differences were found
between groups at any of the sites.

Table 2. Values of temperature differences between groups during the sitting stage. Control group
participants (C), participants with diabetes (D). Values are mean ± SD. * p < 0.05.

Site
Temperature Difference/◦C

p
C D

Hallux 1.19 ± 0.83 1.33 ± 1.39 0.393
1st Metatarsal Head 0.56 ± 0.49 0.60 ± 0.42 0.388
5th Metatarsal Head 0.76 ± 0.69 0.77 ± 0.34 0.298

Calcaneus 0.62 ± 0.75 0.57 ± 0.58 0.477

Table 3 gives the values for the time constants (τ) during sitting at each location, with
participants with diabetes having faster time constants compared to the control group,
except at the 1st metatarsal head where differences were small. When comparing time
constants, significant differences were seen at the hallux and 5th metatarsal head between
groups, corresponding to a medium effect size.

The rates of change in temperature during the standing period are shown in Table 3,
calculated from the gradient (m) of the straight-line function. In general, the temperature
of each site decreases during the standing period, indicated by the negative gradient,
except for group D at the calcaneus site, which shows a small, but positive, gradient. No
significant differences were found for the rate of temperature change during standing.
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Table 3. Results from the sitting and standing stages. Control group participants (C), participants with diabetes (D). Values
are mean ± SD. * p < 0.05.

Sitting

Site
Time Constant (τ)/s

p Effect Size
C D

Hallux 370.4 ± 172.1 279.1 ± 154.1 0.032 * 0.55
1st Metatarsal Head 322.3 ± 200.9 329.6 ± 134.9 0.299 –
5th Metatarsal Head 481.9 ± 225.4 356.6 ± 165.0 0.011 * 0.62

Calcaneus 483.9 ± 148.6 422.5 ± 189.7 0.081 –

Standing

Site
Rate of Temperature Change (m) / m ◦C

s p Effect Size
C D

Hallux −0.87 ± 1.54 −0.80 ± 1.50 0.430 –
1st Metatarsal Head −0.77 ± 1.06 −0.97 ± 1.22 0.324 –
5th Metatarsal Head −0.74 ± 1.11 −0.91 ± 1.18 0.299 –

Calcaneus −0.07 ± 0.79 0.00 ± 1.18 0.286 –

Some fitted parameters were discarded before analysis due to poor fitting with the
model. During the sitting stage, a total of 32 time constants out of 200 were excluded from
the analysis (16% of the data, 14.5% from the control group, 17.3% for the diabetes group).
During the standing stage a total of 31 gradients from a possible 200 were excluded (15.5%
of the data, 14.6% from the control group, 16.3% for the diabetes group).

4. Discussion

Foot temperature rise times, identified by extracting time constants, are significantly
faster during sitting, at the hallux and 5th metatarsal head, in participants with diabetes
compared to controls. To our knowledge, this is the first quantification of the temperature
dynamics of the foot between participants with diabetes and controls. The general trend of
results shown here are in line with those identified by Niemann et al. [30], who showed
similar trends of an exponential rise during sitting followed by a decrease when standing
in both participants with diabetes and their control group. Niemann et al. [30] used a
longer protocol, with participants sitting and standing for multiple repeated periods, as
opposed to a single sitting and standing transition used in this study. However, the authors
did not extract fitted parameters on the data such as time constants to allow a quantitative
comparison. We note that differences were not seen during the standing stage of our study,
which is likely a result of the standing phase following a reasonably long sitting period,
and therefore the rate of temperature change during standing is measuring a different
biological parameter of the participant, rather than the effect of temperature change after
shoe donning. It is possible that if the participant began the study with a standing period
rather than a sitting period immediately after putting the shoes on, differences would
be seen in the rate of temperature change during standing. The general trend of the
data seen here is also in line with those demonstrated by Leister et al. [31]. Leister et al.
demonstrated slow exponential rises in temperature during sitting, that did not reach
a steady-state value within their experimental protocol. While the protocol is different,
Leister et al. identified slower temperature rise times in participants with diabetes with
amputation (during walking) compared with diabetes but no amputation. This suggests a
pathway where temperature rise times get faster with the development of diabetes, and
then potentially decrease again after an amputation. However, the protocols between
Leister et al. and this study are different, which is a substantial factor in how temperature
dynamics manifest. In particular, Leister et al. identified differences demonstrated during
walking rather than sitting. Further, Leister et al. did not identify differences during their
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sitting period, but this is possibly due to not having a long enough acclimatisation period
before the start of the data collection. There is also no comparison to healthy controls, or
consideration of personalisation of the sensor placement.

The dynamic temperature differences identified in participants with non-neuropathic
diabetes suggest that there are differences in temperature at the foot that are identifiable
even before the development of neuropathy, or before displaying differences in temper-
ature asymmetry. This is in contrast to other studies which examine static temperature
differences (rather than the continuous data by extracting time constants) in groups who
have already developed neuropathy [27,30]. The potential demonstration of much earlier
temperature difference between groups is a new contribution here, indicating the potential
use of temperature rise time to inform our understanding of DFU development. Tempera-
ture monitoring for DFUs focuses on a single snapshot of temperature differences [27,37,38],
which may not represent the more complex dynamics of temperature change present in
those with diabetes. We highlight that we did not identify differences in the absolute
temperatures but did identify differences in dynamic temperatures, captured by extracting
the time constant. The dynamic temperature differences could be related to the changes
that occur during diabetes onset and progression, such as the changes in soft-tissue biome-
chanics, where higher shear and elastic moduli are seen in diabetic plantar foot tissue [39],
and the vascularisation that occurs from microcirculatory changes through the progression
of diabetes [40].

Stratifying clinical grouping could show the stronger significance of temperature rise
time differences. In this study, all participants with a diagnosis of diabetes were grouped
without stratifying for severity or date of diagnosis. As some participants may have
recently been diagnosed or have well-controlled diabetes, they may exhibit a much smaller
effect on temperature measurements. In contrast, a participant who has had diabetes for a
substantial period of their life or has poor control over their diabetes, may show a larger
effect. Therefore, grouping all these participants could limit or exaggerate the size of the
effects seen here. However, we note that many participants in this study reported that they
did not have any substantial complications from their diabetes. In addition, in this study,
we did not control for the tightness of the shoelace. It has been shown that both laces that
are too tight and too loose can lead to an increase in temperature [41], and this may have
had an impact on the results presented here. Not controlling for tightness of shoelaces is
taken as a limitation of this study.

Personalised anatomical sensor positioning through 3D-printing was utilised to de-
velop the device in this study. To the best of our knowledge, no other temperature sens-
ing works in the literature personalise temperature measurement location to account for
differences in anatomy. Personalised medicine is an important trend in the academic
literature [42,43] and evolving diabetic foot treatment guidance [35]. It comes at the cost of
the requirement to collect anatomical information, additional design stages and increased
manufacturing time, but may be more effective at detecting the onset of a potential DFU, as
sensing can be focused on the key sites of interest. Additionally, given the personalisation
aspects presented here, it may also be possible for clinicians to pre-determine the site of
a potential DFU using our device, as the sensing is localised to individual areas on the
foot. It would be beneficial to compare the results here with those in [30] using the same
protocol other than the personalisation, to demonstrate its utility and if the identification
of significant differences prior to ulceration highlighted in this paper were a result of the
personalised design.

5. Conclusions

This paper has presented a new wearable sensor insole for the monitoring of dynamic
temperature changes at the foot. 3D-printing was utilised to personalise the insole fit to
each user placing sensors at key anatomical locations. While the results are at the proof
on concept stage, they suggest that temperature rise times may inform our understanding
of DFU development risk, especially as these differences were identified in this study
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with participants who had no neuropathy. This study suggests that temperature rise
time measured dynamically in-shoe at the plantar surface could be a new biomarker
related to differences in soft tissue biomechanics and vascularisation during diabetes
onset and progression. Our early results show that temperature rise times are faster in
participants with diabetes than in healthy controls. We thus recommend more research
is undertaken to investigate temperature dynamics, specifically temperature rise times at
the foot, in participants with diabetes, which could be linked to the precursors of risk of
ulcer development.
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