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Abstraci— Body Area Networks (BAN) are wireless networks de-
signed for deployment on or within the human body. These net-

works are primarily intended for application within the medical e P p
domain due to their capabilities for enabling wireless monitoring

of physiological signals, and remote administration of medical

devices. Due to their intended use case, securing these devices is

paramount. In recent years, several key generation and agreement

schemes that rely upon physiological signals of the wearer are de-

veloped. However, we have found that the application of Electrocar- .
diogl:am (ECQG) signals in this context may ne)'t) be appropriate due to Iterate Gener'ate Acquu"e

a potential vulnerability, wherein previously recorded ECG signals Over All ECG Signal Target's
could be used against current and future key agreement attempts to Possible Using Peak Symmetric
compromise their security. This is a violation of temporal variance Peak Locations Key

which is one of a few properties that make ECG signals suitable Locations

for use in key agreement schemes. By extracting the QRS complex

from prior recordings and distributing them apart from one another
we can construct synthetic signals that have a high level of coherence, and thus allow for the key to be intercepted. Based
on the conducted experiments we have found that the proposed attack method yields a 0.7 coherence level regardless of
how far away the adversary is from the target. This makes the success of such an attack extremely likely and is therefore
a real threat to the security of these schemes.

Index Terms— Body Area Networks, Body Sensor Networks, Authentication, Key Generation, Synthetic Signals

. INTRODUCTION Network (BSN), is a wireless network composed of wireless
sensor devices that can be worn or even implanted within the
human body, this is only possible due their miniature size and
low-power consumption. These devices may be used as sensors
to collect information about the wearer, such as body temper-
ature, glucose level or fall detection, in addition to their use
as complex medical instruments such as a pacemaker. While
these use cases are medical, standards like IEEE 802.15.6 [3]
enable military and entertainment applications, but the primary
focus remains in the medical domain. These devices will play
a vital role in smart healthcare by enabling an improvement
of the quality of care provided, a reduction in operating costs
and number of deaths. According to [4], the global smart
healthcare market size was US$ 141 billion in 2019 and
is expected to grow at 14.5% through 2030, that is why
significant research interest has been devoted to improving
several aspects of BANs such as; power consumption, data
dissemination and security.

OWADAYS, sensing technology [1] represents an es-
sential source of data in many application domains,
such as transportation and smart healthcare, as it offers the
capability of real-time monitoring and reporting of various
events and parameters. To account for the specific constraints
of the tiny sensors used in this context and pave the way to
novel sensor-based applications, innovative energy-efficient,
lightweight and secure protocols are required. To that end,
this paper focuses on the smart healthcare application domain
and deeply analyses a key sensor technology used in it (i.e.,
body sensors or wearable sensors [2]), identifies a potential
vulnerability in the way the authentication between sensors is
performed, and proposes a novel attack method to exploit this
vulnerability.
Body Area Network (BAN), also known as Body Sensor
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Securing BAN miniature devices is essential to their suc-
cessful wide adoption by the industry and the public. This is
due to the significant risks associated with the disclosure of
the wearer’s private medical information or the potential for
physical harms to be inflicted to the wearer. Moreover, security
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is also a legal requirement in many countries and markets
such as the EU (General Data Protection Regulation (GDPR))
or USA (Health Insurance Portability and Accountability Act
(HIPPA)). Therefore, a significant research portfolio has been
established to secure BANs and major research activities are
still in progress to achieve this aim.

To secure BAN against potential attacks, several techniques
are proposed to facilitate security keys distribution between
BANSs sensors using Electrocardiogram (ECG) signals, such
as the fuzzy commitment and the fuzzy vault approaches,
where each of them presents unique performance limita-
tions and design trade offs [5]. Physiological Signal Based
Key Agreement (PSKA), Ordered Physiological Feature-based
Key Agreement (OPFKA) and ECG Linear Prediction key
Agreement (ELPA) [6]-[8] are examples of key generation
and agreement schemes that exploit the unique capability of
accessing physiological signals. Specifically, these schemes
use ECG to derive a symmetric key to secure all future
communications between compatible sensors. There exist also
other methods for securing medical devices that capture ECG
data such as [9] which uses random binary sequences derived
from the interpulse interval between heartbeats. This work has
been improved in [10] by enabling the scheme to variably
select more or less bits if the data allows for it, significantly
reducing execution times. Besides ECG, fingerprints were also
used in [11] to secure implantable medical devices and reduce
the resources consumption required in ECG based schemes.

Each of ECG-based schemes takes advantage of several
qualities that make the application of ECG suitable for key
generation. One such quality is temporal variance — the
knowledge of the wearer’s past physiological signal will not
provide the adversary with any advantage into discovering the
keys being agreed upon at present or in the future. However,
as this work will demonstrate, this is no longer the case as
an adversary may use historical ECGs data to synthesize a
new signal to compromise keys that have been agreed upon
using the schemes. The method for producing synthetic ECGs
signals is a novel approach involving the reconstitution of
QRS complexes which are the major positive deflection on
the ECGs produced by ventricular depolarization.

The remainder of this paper is organized as follows. Section
IT will review the most important key generation and agree-
ment schemes that could be vulnerable to our proposed attack
method. In Section III, we will present the threat model and
the details of our proposed Synthetic Electrocardiogram Attack
Method (SEAM). In Section IV, we will evaluate the success
rate and practicality of SEAM. Finally, we conclude the paper
and outline potential future work in Section V.

[1. OVERVIEW ON ECG-BASED KEY GENERATION AND
AGREEMENT SCHEMES IN BANS

Many key generation and agreement schemes have been
developed in recent years, such as PSKA [6], OPFKA [7],
ELPA [8] and Multi-Biometric and Physiological Signal-Based
Key Agreement (MBPSKA) [12]. Each of these schemes
provides the participating devices with the capability to derive
a symmetric key from the shared physiological signal (i.e.,

ECG in this context). Although each of these schemes is
distinguished by its feature extraction and key reconstruction
stages, they all share a common weakness (i.e., they rely upon
the ECG signal remaining a secret) that an adversary may
target to compromise the secret key that has been agreed upon.
In the following, we will briefly present the working principle
of each of these schemes.

PSKA [6] is a key agreement scheme that uses a crypto-
graphic primitive known as the fuzzy vault [13] to achieve
symmetric key generation and agreement between compatible
BAN devices. The fuzzy vault conceals a secret using some
of the properties found within error-correction codes. Such
a secret can only be retrieved if there is significant overlap
between two sets of elements. Any secret hidden within a
fuzzy vault shall be encoded within a polynomial as its
coefficients. Elements from the first set, known as the locking
set, shall be projected onto the polynomial which will be
disguised by the presence of chaff points which are indistin-
guishable from the elements of the locking set. Any attempt
to reveal the secret within the vault will require sufficient
knowledge of the elements contained within the locking set,
anyone with possession of enough elements may reconstruct
the secret contained within. PSKA uses the fuzzy vault to
transmit the symmetric key from the sender to receiver. To
enable unlocking the vault by the receiver, both devices must
have their own set of elements that overlap, that is why a
physiological signal such as ECG is used. The authors of
this scheme, therefore, propose an ECG feature extraction
method which allows for two devices measuring ECG from
the same body to agree upon a symmetric key securing all
future communications. The results presented in this paper
show that two ECG sensing BAN devices can generate and
agree upon a key in a timely manner with little computation
required when compared to Diffie-Helman.

MBPSKA [12] is another scheme that uses the fuzzy vault
primitive and relies on multiple biometrics to improve the
security of the key generation and agreement process. The
usage of multiple biometrics, such as fingerprint or iris,
increases the security level of MBPSKA as an adversary needs
to compromise all biometrics and physiological signals used.
However, there remains a concern about the feasibility of
such a scheme as templates of the patient’s biometric must be
uploaded beforehand in a secure manner, which could prove
costly both in terms of time and money. Finally, biometrics,
such as fingerprints, do not vary over time unlike ECG signals.
Therefore, once a user’s fingerprint is known to an adversary
it will forever be compromised, weakening schemes that may
rely upon it in the process.

OPFKA [7] is another key generation and agreement scheme
that uses a similar combination of the fuzzy vault and physi-
ological signals as its foundation. However, OPFKA aims to
generate a symmetric key with reduced communication over-
head compared to other schemes like PSKA. This is because
the vault used in both schemes is composed of thousands of
two-dimensional points which consumes a significant amount
of communication bandwidth. OPFKA remedies this issue
by removing the order-invariance property of the fuzzy vault
scheme. Order-invariance enables unlocking the vault using
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an unlocking set that has sufficient overlap with the locking
set but the order in which the elements are recalled is not
required for it to succeed. The authors of OPFKA determined
that with an appropriate ECG feature extraction process the
features that form both sets will occur in the same position, and
thus do not require order-invariance to function. By dropping
order-invariance OPFKA benefits from an increase in security
because an adversary needs to identify points from the locking
set in addition to the order in which they occur. This reduces
the number of chaff points used to conceal the secret and in
turn reduces the communication overhead incurred as the vault
size has decreased overall.

ELPA [8] is a key generation and agreement scheme that,
unlike the above works, does not use the fuzzy vault primitive
and instead uses Linear Prediction Coding (LPC). ELPA al-
lows two BAN devices measuring ECG from the same person
to agree upon the same symmetric key. It achieves this by
using LPC which attempts to reproduce the same signal by
identifying parameters for a linear model. Before LPC can
be used features must be extracted from the source signal,
however, unlike the previous schemes, ELPA uses Discrete
Cosine Transformation (DCT) of the Autocorrelation (AC)
of the signal. The coefficients gathered from the DCT are
used by the sender within the linear prediction stage of this
scheme. This stage will produce a set of errors and coefficients.
The errors are converted by the sender to generate a 128-bit
key using pulse-code train transformation. These errors are
never transmitted, however, the LPC coefficients are sent to
the receiver who will attempt to recover the errors via a key
decoding and error correction process. This process requires
that the receiver possesses both the source signal and the
LPC coefficients. If successful, both the sender and receiver
will have generated a symmetric key that can be used to
secure all future communications. As ELPA only transmits
a small number of coefficients the communication overhead is
greatly reduced compared to schemes that use the fuzzy vault
primitive.

[11. OUR PROPOSAL

In this section we will present the threat model considered
and the detailed working principle of our proposed attack
method against ECG-based key generation and agreement
schemes.

A. Overview of Electrocardiogram Signals

ECG is a physiological signal that is of interest to medical
professionals as it enables them to diagnose serious health
conditions such as arrhythmia, heart attack, or coronary heart
disease [15]. These conditions may be identified by an ECG as
it observes the electrical activity of the heart, this is achieved
by placing sensors, on the surface of the skin, capable of
measuring the few millivolts that the heart emits. Figure 1
shows a simplified diagram of an ECG signal in which a
normal sinus rhythm is present. Whilst it is referred to as
the QRS complex it should be understood that the complex
will not always contain each wave. The Q wave represents
depolarization of the interventricular septum, R wave reflects

Q

Fig. 1: Annotated ECG signal demonstrating the location of
the components that make up the QRS complex (derived from

[14])

depolarization of the main mass of the ventricles and the S
wave observation of the final depolarization of the ventricles
as it setups for the next cycle [16].

As discussed in Section II there are several key generation
and agreement schemes that are designed to take advantage of
ECG for either deriving or concealing the key being agreed
upon. These schemes are designed to be used by BAN sensors
capable of measuring ECG. The application of physiological
signals such as ECG in this manner has been deemed appro-
priate as they exhibit certain properties as highlighted in [6].
These properties are the following,

o Temporal Variance: knowledge of the wearer’s past
physiological signal will not provide the adversary with
any advantage into discovering the keys being agreed
upon at present or in the future.

« Distinctiveness: knowledge of one individual’s physio-
logical signal does not provide the adversary with any
advantage in obtaining another’s.

o Length and randomness: any key being agreed upon
is random with adequate length to prevent attempts at
brute-forcing.

o Low latency: the number of samples required is small.

Each of the above properties contributes to the success of
any key generation and agreement scheme such as PSKA or
ELPA. These schemes exploit features that are present within
two separate readings of the same signal.

B. Threat Model

Before we introduce our method of attack we must first
outline the capabilities of an adversary in order to under-
stand what is required to carry out such an attack and the
likelihood of its success. We assume that the adversary has
access to Commercial-off-the-shelf (COTS) hardware, such
as a modest powered laptop with wireless communication
capabilities. With such a device the adversary will need to
observe the key agreement taking place which can be achieved
by configuring their device to listen in promiscuous mode.
In this mode, the adversary can capture all network traffic
including the pertinent and related key agreement data such as
LPC coefficients and Bose—Chaudhuri-Hocquenghem (BCH)
coding for ELPA. However, the adversary would need to also
acquire prior ECG recordings of their target which could
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be accomplished by compromising the data storage location
where the ECG data is being stored. The required skills and re-
sources for the adversary to acquire the ECG data will depend
on the security configuration and sophistication level of the
storage solution used. As highlighted in [17], existing medical
devices in the healthcare market are vulnerable to a myriad
of security attacks due to the lack of built in sophisticated
security mechanisms by their manufacturers. Example of such
vulnerabilities include weak encryption, lack of authentication,
and unpatched and obsolete operating systems [17]. Therefore,
these vulnerabilities would enable the adversary to capture the
necessary data to perform the aforementioned attack.

Once the adversary has acquired both the transmitted key
agreement data and the prior ECG recordings, the attack can
be mounted to compromise the key agreement scheme. This
attack will be outlined in the next subsection.

C. Synthetic Electrocardiogram Attack Method (SEAM)

=y — ECG Signal

Extracted Region
2.5 g

2.0
15

1.0

Millivolts [mV]

0.5

o P A A A

-1.0

0 100 200 300 400 500 600
Samples

Fig. 2: 640 sample ECG plot with the highlighted regions
demonstrating the segments that shall be extracted and utilized
by SEAM

Based on the threat model analysis, we propose a SEAM,
which is a new attack technique that could enable the adversary
to intercept the symmetric keys being agreed upon in ECG
based schemes.

The QRS complex is a segment of the signal that is expected
to occur a number of times within the section used by the
legitimate parties of a key agreement scheme. Therefore,
SEAM operates by extracting the QRS complexes from the
prior recorded signal data already obtained (stolen) by the
adversary. This prior recorded signal data can be anywhere
from a few seconds old or many hours. In Section IV, we
explore the effectiveness of the scheme to at most 12 hours,
beyond this limit we have no data to suggest if our method
continues to perform as well as it does due to limited long term
datasets available. This extraction allows for the construction
of synthetic signals that can imitate valid or relevant signals
used in a specific instance of a key agreement scheme. In
addition, the adversary has to ascertain that the distance
between peaks in the synthetic signal is equal to that of the
target signal. Indeed, having the QRS complex only does not
lead to a successful attack because the distance between each
complex has significant impact on the synthetic signal’s ability
to imitate the target legitimate signal.

Specifically, SEAM can be broken up into a number of steps
as described below,

1) Identify the location of all QRS complexes within the
stolen signal data. This can be achieved by utilizing an
automatic QRS detection method [18]-[20], however if
the stolen signal data length is short then it could be
achieved manually.

2) Extract the QRS complexes sample data ensuring that
an equal amount from either side of the peak has
been taken. This is done to ensure that only the QRS
complexes are used when constructing the signal, the
gaps between the complexes can be filled in with zeros.
Figure 2 demonstrates this process.

3) Split the extracted complexes into equally sized groups.
The number of groups should be equal to the number of
complexes that are expected to occur within the target
signal.

4) Reduce each group of complexes down into a single
complex by averaging the population of each group. This
is done to lower the number of complexes being used by
the scheme. However, since we average the complexes
we therefore maintain the common features found within
each of the complex groups.

5) Construct the synthetic signal by placing a QRS complex
at each of the peaks locations used within this instance
of the attack. The construction requires nothing more
than inserting the sample points of the QRS complex at
the desired locations. The gaps between complexes can
be zeroed.

6) Attempt to utilize the synthetic signal against the key
agreement data, if no success then repeat Step 5 with
new peak locations until success has been found or
possible solutions are exhausted.

The steps described above detail how an adversary would
extract the QRS complexes from the stolen data in their
possession and use it to construct a synthetic signal. One thing
omitted from this would be how to decide where the QRS
complexes should be placed in relation to one another. As
stated earlier, the distance between each complex determines
the success of a given attack. Therefore, it is vital to have
an efficient method for placing QRS complexes in order to
provide the opportunity for a successful attack. Currently,
we apply the brute force method [21] to construct a signal
where the complexes and the distances between one another
are fully explored. This method requires the construction of
Cartesian product of a range of samples to search for the
perfect placement of complexes. With such a set, the adversary
could explore the placement of complexes in an iterative
manner constructing new synthetic signals with each grouping
of sample points. The search space (i.e., complexity) of this
method can be expressed as s”, where s is the range of
samples to explore, and r is the number of peaks assumed
to take place within the target signal. However, the range of
samples to explore could increase due to the occurrence of
more complexes and the fact that the target signal could be
sampled at a higher rate. To overcome this, prior ECG data
could be used again to inform the placement of complexes in
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the synthetic signal using some form of statistical analysis.

IV. PERFORMANCE EVALUATION

In this section we will evaluate the efficiency of our
proposed attack method known as SEAM. This will cover
what the evaluation’s purpose is, the evaluation metrics and
main settings used, and the analysis of the obtained results
in addition to evaluating the effectiveness of SEAM against
ELPA scheme.

A. Experimental Purpose

To evaluate the capabilities of the attack proposed within
this paper we have designed an experiment that can measure
the similarity level of the synthetic signal when compared
against the target signal. The purpose of this is to understand if
the proposed method can generate signals that can adequately
impersonate a target signal in order to enable interception of
the key being agreed upon between two BAN sensors. We
also look at what impact an increase in the delay between
the target and the stolen data has on the attack’s success.
The experiments designed provide information on whether the
attack can succeed in addition to how frequently the attack can
be expected to succeed. This is important in evaluating the
efficiency of the attack and the potential of using it against
real targets.

B. Evaluation Metrics

Algorithm 1 Evaluate the coherence between the target and
synthetic signal

> Where x is the target signal and y is the synthetic signal

> Where P is the power spectrum density

> Where d is sample spacing and n is signal length

> Where Trapz() is the trapezium rule

1: function SIGNALCOHERENCE(x, ¥)

2: a <+ abs(Pxy)?/(Pxx * Pyy)

3: f<10,1,...,n/2—-1,-n/2,...,—1]/(d * n)
4: n + Scale(f,0,1)
5
6
7:

s < n[1] — n[0]
: return Trapz(a, s)
end function

In order to evaluate SEAM efficiency we have decided
to use the signal coherence [22] between the target and
synthetic signals as the main performance metric. This is
a measurement that discloses the relationship between two
signals in the frequency domain as it identifies correlation
between the signals’ frequency and phase. However, we must
adapt the output of such a function in order to quantify how
strong the correlation is overall. This can be achieved by
calculating the area under the curve of the signal coherence
output. This allows for the output to be reduced down into a
single value between 0 and 1, where 1 indicates the highest
level of coherence and the O indicates the lowest level. See
Algorithm 1 for more details on how this measurement was
implemented. In our experiments, we found that legitimate
signals could expect to achieve a coherence level of greater
than 0.7 on average.

C. Evaluation Settings

Dataset MIT-BIH Normal Sinus Rhythm Dataset
Selected Records All 18
Target (Samples) 640
Adversary (Samples) 38400

1, 5, 10, 15, and 30 Minutes

Delays [1, 12] Hours

TABLE I: Evaluation parameters setting used in SEAM’s
experiments

A number of evaluation parameters have been selected
which have an impact on the results of any experiments
carried out, these parameters have been summarized in Table
I. Firstly, the experiments have been carried out on COTS
hardware (i.e., a Desktop machine with CPU specifications:
AMD Ryzen 7 3700X 8/16 (Cores/Threads) @ 4.4 GHz) that
is reasonable to assume that any adversary would have easy
access to. The experiments have used the ECG and annotations
data from the Normal Sinus Rhythm Dataset [23] via the
Physionet Project [24]. This dataset is composed of 18 long-
term ECG recordings in which no significant arrhythmias were
identified. All 18 patients ECG recordings were used in the
experiments, with target data being selected at random. For the
stolen data, it is selected based on the target’s starting point
minus the delay, which is the time between target and stolen
data. This has been varied within the experiments looking at
the effects of an increase in the distance (delay) between the
target’s starting point and adversary’s end point of their ECG
data. This has been varied from 60 seconds, 5 minutes, 10
minutes, 15 minutes, 30 minutes, 1 hour and every hour up-to
and including 12 hours. Over 30,000 experiments have been
carried out.

D. Results Analysis

---- Target Signal

1.00 Synthetic Signal

0.75
0.50

0.25

Millivolts [mV]

M
000 i

=0.25

-0.50

0 100 200 300 400 500 600
Samples

Fig. 3: Comparison of the target and synthetic signal in the
time domain

During our investigations, we were able to construct a
large number of synthetic signals made up of only prior
recorded data and the current peak locations from the target. A
significant number of the synthetic signals produced do well
to mirror the target signal as evidenced in Figure 3. Whilst
there is not perfect alignment between the two signals the
synthetic does well to mirror the target to the extent that it
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does. This alignment translates over into the frequency domain
which is where feature extraction takes place in a scheme
such as PSKA. Figure 4 shows these similarities within the
frequency domain, for example the zoomed inset shows high
similarity due to their proximity between the peaks’ location
and magnitude. This figure demonstrates that not only do the
peaks occur at the same frequency but they also share similar
magnitude which means that the synthetic signal has the ability
to deceive a fuzzy key agreement scheme.

40 ---- Target Fourier Series 1
\

Synthetic Fourier Series n

35 ¢
i

i

30

N
w
—

Magnitude
- ~
w (=]

-
o

00 20 40 60 80 100 12.0 14.0 16.0 18.0 20.0 22.0 24.0

Frequency [Hz]

Fig. 4: Comparison of the target and synthetic signal in the
frequency domain

Looking at the coherence values between the target and
the synthetic signal it is clear that a majority of all signals
produced a coherence of greater than 0.7, which is something
that the intended parties of the key agreement schemes are
capable of achieving. The coherence levels between delays
also shows little to no change as the delays get larger. This
implies that SEAM is capable of generating signals that
achieve a high level of coherence without losing performance
as the delay widens. Figure 6 shows two histograms providing
a look at the distribution of coherence achieved within the
experiments for a delay of 60 seconds and 12 hours. This
distribution is found within all delays attempted within the
experiments, which would mean that regardless of the distance
(delay) between the target and adversary the key to success
lies within the positioning of peaks and the structure of the
QRS complexes used. This is further reinforced in Figure 5
which statistically insignificant variation between the various
delays and the average coherence obtained.

E. Performance Against Existing Works

The focus of this evaluation so far has been on the coherence
or similarities between the target and the synthetic signal
within the frequency domain. Whilst the results demonstrate
the potential of our attack method we recognize the need to
apply this against existing works. To that end, we have imple-
mented the key generation and agreement scheme known as
ELPA which utilizes linear prediction coding applied against
features obtained from the AC /DCT method presented in
[25]. Our implementation of the scheme achieves similar
performance results with regards to false rejection rate (FRR)
and false acceptance rate (FAR) and therefore is suitable for
applying our attack method against.
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Fig. 5: The impact of the delay on the achieved coherence
level of synthetic signals

When SEAM is applied by an adversary against a scheme,
such as ELPA, such an adversary needs first to obtain the
prediction coefficients and error correction codes which are
transmitted by Alice during the agreement phase of ELPA.
This can be achieved with relative ease by the adversary as
they would configure the on board WiFi to listen in promiscu-
ous mode, enabling the capture of all packets including those
not addressed to it. This will then allow the adversary to
perform an offline brute force attack until they acquire the
key. The offline attack will use SEAM to produce synthetic
signals which can be tried until they either identify the key
agreed upon by Alice and Bob or they exhaust the solution
space. The outcome of this attack will be communicated to the
adversary by the error correction process; if it succeeds then
the error correction will return the correct key; otherwise, the
adversary would simply try the next synthetic signal. The steps
involved in this attack scenario are summarized in Figure 7.

In our experiment we used all patients found within the
MIT-BIH Normal Sinus Rhythm dataset, however we only
looked at a delay of one minute as the previous experiments
(see Figure 6) demonstrate little to no variation within the
coherence between delays. Therefore, it is safe to assume that
the performance obtained with a one minute delay can be
experienced with larger delays.

To evaluate the performance of SEAM when applied against
ELPA we need a metric that can inform not only on the success
of these synthetic signals but also their quality. We decided
to use the number of bit flips that occurs when attempting
to repair the key within the error correction phase of ELPA,
which can also be viewed as the “hamming distance” between
the key the target has generated versus the key the adversary
has produced. A number of errors are expected to occur even
in legitimate attempts due the discrepancies between sensors
and their observation of the signal; however, a balance must
be struck between tolerating the errors and enabling false
acceptance of attempts made by an adversary. Therefore, the
authors of ELPA have decided upon requiring that the number
of errors should be below a reasonable threshold as defined in
their paper being 36. Based on this threshold, when attempting
to use stolen signals, without any prior modification applied to
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the two extremes (i.e., 60 seconds and 12 hours)
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Fig. 7: Attack scenario demonstrating the approach an adver-
sary may take to compromise a scheme such as ELPA

them, as input within ELPA the number of attempts below 36
is 12.74% only, however when applying SEAM to those same
signals the number of attempts below 36 increases significantly
to reach 71.97%. This is substantial improvement that places
schemes, such as ELPA and alike, at risk of compromise by
an adversary.

The histogram plotted on Figure 8 shows the number of bit
flips that occur when the adversary attempts to compromise
the key agreement scheme during the experiment. Therefore,
it is capable of demonstrating the significant improvement that
SEAM makes when compared to using past signals without
any modification. We can see that almost three-quarters of
SEAM attempts are below the error correction threshold,
implying that these attempts would successfully agree upon the
key that the target has generated. As for the attempts above the
threshold, most of them are very close with only a few errors
away from passing unlike the vast majority that fail without

SEAM. Modifications to SEAM could be made in future which
may enable the 25% that fail to succeed further exposing this
vulnerability with ECG based key agreement schemes.

80

Error Correction Threshold
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Fig. 8: Impact of SEAM on increasing the success rate of
attack attempts against ELPA

V. CONCLUSION

This paper presented a novel attack technique, named
SEAM, that takes advantage of a newly identified vulnerability
in ECG based key generation and agreement schemes. SEAM
relies on the use of prior recordings of ECG data, in combina-
tion with the perfect placement of peaks, to construct synthetic
signals that imitate valid signals used in the key agreement
process. The performance evaluation results highlighted that
these synthetics can achieve a high level of coherence with
the target signal, which translates into high probability of
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success (72 %) in compromising key agreement schemes, if
the adversary could place the peaks in the correct locations.
This, therefore, raises serious concerns about the security
implications of using physiological signals within the key
generation phase in BANs, and immediate actions are needed
to mitigate potential attacks. In our future work, we will
explore alternative methods, to a brute force approach, for
peaks placement in order to reduce the cost of producing
synthetic signals.
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