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Abstract: The design and preparation of polymers by using biobased chemicals is regarded as
an important strategy towards a sustainable polymer chemistry. Herein, two aromatic diols,
4-(hydroxymethyl)-2-methoxyphenol and 2-(4-(hydroxymethyl)-2-methoxyphenoxy)ethanol, have
been prepared in good yields through the direct reduction of vanillin and hydroxyethylated vanillin
(4-(2-hydroxyethoxy)-3-methoxybenzaldehyde) using NaBH4, respectively. The diols were submitted
to traditional polycondensation and polyaddition with acyl chlorides and diisocyanatos, and serials
of new polyesters and polyurethanes were prepared in high yields with moderate molecular weight
ranging from 17,000 to 40,000 g mol−1. Their structures were characterized by 1H NMR, 13C NMR
and FTIR, and their thermal properties were studied by TGA and differential scanning calorimetry
(DSC), indicating that the as-prepared polyesters and polyurethanes have Tg in the range of 16.2 to
81.2 ◦C and 11.6 to 80.4 ◦C, respectively.

Keywords: lignin; vanillin; green catalysis; full bio-based polyesters; polyurethane

1. Introduction

With the continuous exploitation of petroleum-based resources, energy and materials, humanity
faces serious challenges in terms of both climate change and the availability of useable resources [1].
In particular, the use and disposal of non-degradable plastics in our daily lives leads to serious
microplastic particle accumulation and pollution in both soil and aquatic environments [2]. Therefore,
it is of great importance to develop more sustainable polymer materials using renewable resources and
green chemistry technologies [3].

Lignocellulosic biomass is the most abundant biomass resources on the planet with more
than 75 billion tons available per year [4], and the use of them to produce energy, chemicals and
materials is anticipated to reduce our dependence on fossil resources, contributing to development
of bio-economy [5,6]. Lignocellulosic biomass is composed of cellulose, hemicelluloses and lignin,
in which lignin is mainly composed of aromatic units and is the most abundant natural aromatic
hydrocarbon on earth [7,8]. In recent years, there has been significant interest in the catalytic conversion
of lignocellulose to bio-based platform molecules [9,10]. For example, cellulose can be converted
to methanol, ethanol, ethylene glycol, glucose and 5-hydroxymethylfurfural [11]. A variety of
aromatic chemicals can be obtained by catalytic conversion of lignin, including eugenol, vanillin,
p-hydroxybenzaldehyde and terephthalic acid [1,12]. Traditionally, vanillin is one of the most important
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perfume compounds in foods, beverages, perfumes and pharmaceuticals and is originally isolated
from vanilla plants [13,14]. Vanillin can also be produced by various biotechnological approaches and
catalytic conversion of lignin, for example, using lignin-derived ferulic acid and glucose as substrates
for fermentation with bacteria, fungi or yeasts [13]. Given its useful structural features and the potential
for its large-scale production from lignin, vanillin is considered to be a promising bio-based building
block chemical for the preparation of sustainable aromatic polymers [15,16]. Vanillin derivatives with
desirable functionalities for polymer synthesis can be obtained through carboxylation, hydroxylation,
olefination and amination [17]. Vanillin can be converted to acetyl dihydroferulic acid, which can
itself be polymerized to poly(dihydroferulic acid), having similar thermal properties to PET [18].
Meylemans et al. hydrogenated vanillin to prepare 2-methoxy-4-methylphenol, which was condensed
with an aldehyde under acid catalysis to give a substitute of bisphenol A, with potential utility in
epoxy resins and polyurethanes [19]. Bai et al. used vanillin and triphosgene to prepare a dialdehyde
monomer having a carbonate structure, which can be reduced to the corresponding diol, offering great
opportunities to prepare novel polyesters and polyurethanes incorporating a carbonate moiety in the
main chain [20]. Zhu et al. prepared a bisphenol structure via a one-pot method using vanillin, diamine
and diethyl phosphite, which was then reacted with epichlorohydrin to synthesize a novel bio-based
epoxy resin with excellent flame retardancy, as well as good thermal and mechanical properties [21].
Based on this idea, Zhu et al. prepared a vanillin derived mono-epoxide, which could react with
a diamine to form a recyclable and high performance thermosetting resin containing a Schiff base
structure, and then studied its application in carbon fiber composites [22]. Llevot et al. prepared both
a biphenyl bisphenol monomer and a biphenyl esterified monomer using vanillin, and synthesized a
series of amorphous thermoplastic polyesters with thermal stability up to 350 ◦C by transesterification,
showcasing the possibilities of new symmetrical bio-based monomers [23]. Firdaus et al. used a
vanillin derived monomer to prepare a series of polymers with molecular weights up to 50 KDa by
thiol-ene addition, polycondensation and ADMET polymerization [24]. Wang et al. obtained a resin
with a Tg of up to 184 ◦C and a Young’s modulus and hardness higher than those of conventional
bisphenol A epoxy resins [25]. Tao et al. introduced a trifluorovinyl ether group in vanillin and
polymerized the methoxy group in vanillin with disiloxane by the Piers-Rubinsztajn reaction, obtaining
a novel fluoro-containing polysiloxane thermoset material [26]. In most cases, a short aliphatic chain
was introduced into the polymer backbone in order to provide flexibility between more rigid aromatic
sections, thus improving the processability of the polymer [27–29]. For example, Mialon et al. prepared
monomers through the reaction of vanillic acid with chloroalkyl alcohols, which provided a tunable
aliphatic ‘spacer’ between aromatic units in the resulting polymers with higher thermal stability and
satisfactory Tg and Tm comparable to those of PET [30]. The shortcoming of this study lies with the
use of high cost and relatively environmentally unfriendly chloroalkyl alcohols. Chen et al. obtained
a series of new bio-based polyesters by the polycondensation of novel monomers with hydroxyl
and carboxyl groups prepared by aldol condensation of aromatic aldehydes with levulinic acid [31].
Although significant achievements have obtained during the past five years, some of studies still
suffered drawbacks of using complex, multiple synthetic steps and non-sustainable feedstocks to
prepare polymeric monomers. Therefore, there are still great interests in new approaches to prepare
vanillin-based aromatic monomers and their polymers.

Diols are important for polymer synthesis, and vanillin can be readily converted to vanillyl
alcohol, a diol, by the reduction of the aldehyde with sodium borohydride. The phenolic alcohol can
also, if desired, be functionalized to introduce an aliphatic alcohol. Reza et al. functionalized this
phenolic position on vanillin by reacting it with 2-chloroethanol with catalytic potassium carbonate
at reflux in DMSO for 6 h obtained 75% yield of 4-(2-hydroxyethoxy)-3- methoxybenzaldehyde [32].
Yang et al. performed a similar reaction in dimethylformamide (DMF) at 100 ◦C for 5 h to obtain a
yield only of 57% [33]. Yosuke et al. used acetonitrile as solvent at reflux for 48 h to obtain a yield only
of 42% [34]. Each of these solvents has problematic aspects from a green chemistry perspective, with
DMSO being relatively low-toxicity but having issues with the generation of SOx when incinerated, and
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both acetonitrile and especially DMF have problematic toxicity issues. Ethylene carbonate, by contrast,
is regarded as a non-toxic and “green” solvent or reagent produced by the cyclic addition reaction
of carbon dioxide with ethylene oxide [35–37]. Ethylene oxide can itself can also be attained from
renewable resources [38].

Herein, vanillin was firstly converted into 4-(2-hydroxyethoxy)-3-methoxybenzaldehyde using
ethylene carbonate as a hydroxyethylation reagent under solvent-free conditions catalyzed by
cheap ionic liquids, and then the hydroxyethylated vanillin was reduced to 2-(4-(hydroxymethyl)-
2-methoxyphenoxy) ethanol using green reducing agent sodium borohydride, giving a useful monomer
for the synthesis of series of new polyesters (PE) and polyurethanes (PU). For comparison, the direct
reduction of vanillin to produce 4-(hydroxymethyl)-2-methoxyphenol and hence its polymers is also
discussed. The structure and thermal properties of as-prepared polyesters and polyurethanes were
confirmed and evaluated by various characteristics.

2. Materials and Methods

2.1. Materials

Vanillin, ethylene carbonate (EC), tetrabutylammonium iodide (TBAI), oxalyl chloride (OC),
succinyl chloride (SC), terephthaloyl chloride (TC), vanillyl alcohol (VA), 2.5- furandicarboxylic
acid, thionylchloride, dimethylformamide (DMF), pyridine, hexamethylenediisocyanate (HDI),
isophoronediisocyanate (IPDI), diphenylmethanediisocyanate (MDI) and 1,8-diazabicyclo [5.4.0]undec-
7-ene (DBU) were purchased from Aladdin. Sodium borohydride (NaBH4) was purchased from Kemel.
Tetrahydrofuran (THF) and pyridine were distilled from over calcium hydride before use. Other
chemicals were used as received.

2.2. Procedure for the Synthesis of HMBD

Vanillin (6.147 g, 40 mmol) was dissolved in ethylene carbonate (7.116 g, 80 mmol) at 80 ◦C in a
100 mL two-neck round bottom flask. Tetrabutylammonium iodide (2.985 g, 8 mmol) was added and
the reaction heated at 110 ◦C for 12 h. When the reaction was cooled to room temperature, deionized
water (20 mL) was added into the mixture and then the mixture was extracted with ethyl acetate
(3 × 50 mL). The combined organic layers were dried over anhydrous Na2SO4 and concentrated in
vacuo. The crude product was purified by silica gel column chromatography (eluting with ethyl
acetate/petroleum ether = 1:1) to afford 4-(2-hydroxyethoxy)-3-methoxybenzaldehyde (HMBD) with
yield of 95%.

2.3. Procedure for the Synthesis s of HMEO

Sodium borohydride (1.25 g, 9 mmol) was added portion wise to a solution of HMBD (1.961 g,
10 mmol) in 20 mL of methanol and the resulting mixture was stirred at room temperature for 1 h. The
crude product was purified by silica gel column chromatograph (eluting with ethyl acetate/petroleum
ether = 1:1) to afford 2-(4-(hydroxymethyl)-2-methoxyphenoxy) ethan-1-ol (HMEO) with a yield of 81%.

2.4. Procedure to Prepare PEs

The diacyl chloride (2.0 mmol) was dropwise added to a stirred solution of HMEO (0.396 g,
2.0 mmol) and anhydrous pyridine (0.354 mL, 4.4 mmol) in anhydrous THF (10 mL) under nitrogen
at 0 ◦C. The reaction was allowed to warm to room temperature and stirred for 24 h, after which
the reaction mixture was precipitated in methanol. The solid polymer was isolated by filtration, and
washed three times with cold methanol, and dried at 40 ◦C under vacuum for 24 h (Scheme 1).
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Scheme 1. A green and sustainable pathway to prepare bio-based polyesters from vanillin and
ethylene carbonate.

2.5. Procedure to Prepare PUs

To a solution of HMEO (0.396 g, 2.0 mmol) in anhydrous THF (10 mL) was added diisocyanate
(2.0 mmol) and DBU (3 mol%, based on HMEO), the mixture was stirred at 30 ◦C for 24 h, after which
the reaction the mixture was precipitated into methanol. The polymers were obtained after three times
washing with methanol and drying at 40 ◦C under vacuum for 24 h (Scheme 2).
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Scheme 2. (A): The reaction of HMEO with diisocyanatos to prepare PUs; (B): the reaction of vanillyl
alcohol (VA) with diphenylmethanediisocyanate to prepare polyurethane.

2.6. Molecular, Thermal and Structural Characterization

NMR spectra were recorded on a JOEL ECX500 spectrometer referenced to tetramethylsilane
(400 MHz for 1H NMR and 101 MHz for 13C NMR). Fourier-transform infrared (FTIR) spectra
were collected on a Thermoscientific Nicolet iS50 instrument at room temperature in the range of
500–4000 cm−1. Polymer molecular weight was measured by gel permeation chromatography (GPC)
with DMF with 0.01 M LiBr as the eluent, at 40 ◦C against polystyrene (PS) calibration standards. GPC
was performed on a Shimadzu Prominence-i LC-2030C 3D equipped with both a refractive index (RI)
and a photo-diode array (PDA) detector, using a Shodex PGC KD-804 column. Thermogravimetric
analyses (TGA) were performed on a TA Instruments Q500 instrument at a heating rate of 10 ◦C/min
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under nitrogen atmosphere. Differential scanning calorimetry (DSC) analyses were performed on
a TA Instruments Q2000 using hermetically-sealed T-zero aluminum pans. The glass transition
temperature (Tg) and melting point were taken from the second heating cycle at a rate of 10 ◦C/min
under nitrogen atmosphere.

3. Results and Discussion

3.1. Structural Analysis of Monomers

It was found that the vanillin reacted with ethylene carbonate with no additional solvent, catalyzed
by cheap and recyclable tetrabutyl ammonium iodide, producing hydroxyethylated vanillin (HMBD)
in 95% yield. Subsequently, the formyl group in HMBD was reduced with sodium borohydride
giving vanillin-based diol monomer (HMEO) in 81% yield. The formation of HMBD and HMEO were
confirmed by 1H NMR and 13C NMR. In the 1H NMR spectrum of HMBD the chemical shift at 4.09
and 3.75 ppm are assigned to the newly formed methylene groups from ethylene carbonate (Figure
S1). Meanwhile in the 13C NMR spectrum the chemical shift of newly formed methylene appeared
at 70.4 and 59.2 ppm (Figure S2). After reduction, the formyl group transformed to hydroxyl group
which was demonstrated by the disappearance of the peak at 9.83 ppm and the appearance of 5.08
and 4.42 ppm in the 1H NMR spectrum of HMEO (Figure S3). In addition, in the 13C NMR spectrum
(Figure S4), the complete disappearance of 191.4 ppm and the formation of 62.9 ppm indicated the
successful reduction. The obtained HMBD and HMEO were also characterized by FTIR (Figure 1).
Compared with vanillin the HMBD shown new peak at 2931 cm−1 which can be attributed to the
stretching vibration of newly formed methylene. After reduction, the sharp peak at around 1690 cm−1

assigned to stretching vibration of the carbonyl vanished completely. Meanwhile the strong peak at
around 3374 cm−1 can be assigned to the stretching vibration of the hydroxyl in HMEO. The results of
NMR and FTIR illustrated the successful synthesis of vanillin-based diol monomer.Polymers 2020, 12, x FOR PEER REVIEW 5 of 15 
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Figure 1. FTIR spectra of vanillin 4-(2-hydroxyethoxy)-3-methoxybenzaldehyde (HMBD) and 2-(4-
(hydroxymethyl)-2-methoxyphenoxy) ethan-1-ol (HMEO).

3.2. Structural Analysis of PEs

With the vanillin-based diol monomer in hand, we prepared polyesters and polyurethanes with
diacyl chlorides and diisocyanatos, respectively according to the literature methods [20,39]. A series
of polyesters were obtained via direct acylation between HMEO and acyl chlorides including oxalyl
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chloride (OC), succinyl chloride (SC) [40], terephthaloyl chloride (TC) [41] and 2,5-furandicarbonyl
dichloride (FC) [42,43]. The 2,5-furandicarboxylic acid has been extensively studied in bio-based
polymers [44–46]. For example, Mou et al. prepared a series of furan-based polyester prepared using
furyl diol, and found that these polyesters had good thermal properties [47]. Genovese et al. prepared
a furan-based polyester through a solvent-free process, starting directly from 2,5-furandicarboxylic
acid, the polyester was shown to have excellent oxygen barrier performance superior to PEF [48].
Therefore, we decided to introduce the furan ring into the vanillin-based polyester, in the hope of
obtaining bio-based polyesters benefiting from similarly enhanced properties. The 2,5-furandicarbonyl
dichloride was prepared according to the literature method [49], and used immediately in the
polymerization reaction.

The polymerization was carried out in THF at room temperature for 24 h using pyridine as a
catalyst. After precipitation, all of the polyesters were obtained in high yields (82–97%) except PE-1
(62%). Of the polyesters derived from TC, PE-3 show higher yield than PE-5, which may be attributed
to the lower reactivity of the phenolic hydroxyl as compared to the aliphatic alcohol.

The structures of obtained polyesters were characterized by NMR and FTIR. Taking PE-2 as a
represented example, the chemical shift of hydroxyl at 5.08 and 4.84 ppm disappeared completely
while the chemical shift belonging to newly formed methylene appeared at 2.67 ppm in the 1H NMR
spectrum (Figure 2A). This result was affirmed by the 13C NMR spectrum (Figure 2B), in which the
newly formed methylene appeared at 29.0 ppm while the -C=O appeared at 172.4 ppm. In the FTIR the
newly formed strong peak at around 1740 cm−1 is due to the stretching vibration of -C=O. (Figure 3).

3.3. Molecular, Thermal and XRD Analysis of PEs

The GPC and NMR results demonstrated the formation of polyesters with high molecular weight.
The Mn of obtained polyesters were in the range of 17 to 36 KDa with PDI ranging from 1.05–1.14.
The Mn increased as the hindrance of acyl chloride decreased and the use of SC resulted in the highest
Mn of 36 KDa (Table 1).

Table 1. Characterization of polyesters prepared from HMBO and vanillyl alcohol (VA) with a range of
acyl chlorides.

Sample Monomer Acyl
Chloride

Yield
(%)

Mn
(g mol−1)

PDI
(Mw/Mn)

Tg (DSC)
(◦C)

Td (5%)
(◦C)

Td (50%)
(◦C)

PE-1 HMEO OC 62.0 22,000 1.06 73.4 153 393
PE-2 HMEO SC 88.1 36,000 1.14 16.2 214 392
PE-3 HMEO TC 97.0 17,000 1.05 58.4 257 408
PE-4 HMEO FC 87.9 19,000 1.10 57.5 264 407
PE-5 VA TC 82.0 21,000 1.11 81.2 293 460

The thermal properties of the PEs were examined by TGA (Figure 4A, Table 1) and DSC (Figure 4B,
Table 1). PE-2, PE-3 and PE-4 showed higher thermal stability with 5% mass loss occurring at 214, 257
and 264 ◦C, respectively, and the thermal properties of PE-3 and PE-4 are very similar. While PE-1
exhibited lower thermal stability with 5% mass loss occurred at 153 ◦C. Compared with PE-5, due to
the presence of short fatty segments in PE-3, the thermal stability with 5% mass loss occurring at 257 ◦C,
PE-5 showed higher thermal stability with 5% mass loss increased to 293 ◦C. All polyesters underwent
at least two stages of decomposition, likely due to the breakdown of ester bonds and benzene rings.
The residual weight at 700 ◦C decreased as follow: PE-5 >PE-4 >PE-3 > PE-2 >PE-1, implying that
residual weight is related to the rigid aromatic group content for the polyester. The Tg increased from
16.2 to 73.4 ◦C as the carbon number of acyl chloride decreased from 4 to 2, which may due to the
decreased flexibility of the aliphatic chain (Table 1, PE1 and 2). While using TC or FC, polyesters
with high Tg were obtained (Table 1, PE3 and 4), the Tg of PE-4 is similar to PE-3 indicating that the
furan-based polyester has similar properties to the benzene-based polyester, and their Tgs are much
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higher than that of PBT (38 ◦C). Compared with PE-3, PE-5 showed increased Tg as the rigidity of the
diol increased and both their Tgs are comparable or even higher than those of PBT and PET (38 and
67 ◦C, respectively) [31]. Although no melting point was observed for any of these polyesters, the XRD
results indicated that the PE-2 is amorphous, whilst the other polyesters contain partial crystalline
regions (Figure 5).
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3.4. Structural Analysis of PUs

Polyurethane has been widely used in various applications including upholstery, building
materials, and transportation [50,51]. The traditional method to prepare polyurethanes is via the
polyaddition of polyols and polyisocyanates [52]. Due to the high atom economy of this polyaddition,
the use of bio-based polyols is particularly interesting to replace the use of less sustainable petroleum
based monomers in these applications [53,54]. Therefore, a series of vanillin-based polyurethanes were
prepared by polyaddition of HMEO monomer and diisocyanatos catalyzed by DBU in THF, including
hexamethylenediisocyanate (HDI), isophoronediisocyanate (IPDI), diphenylmethanediisocyanate
(MDI). In contrast, PU-4 was prepared from vanillyl alcohol (VA) and diphenylmethanediisocyanate
(MDI). It is worth mentioning that isocyanates do have significant issues with their toxicity and
hazardous, vigorous reactivity with moisture, and we acknowledge that much important work is being
done (including by these authors) on non-isocyanate polyurethanes (NIPUs) [55,56]. However, these
technologies, whilst safer, are not yet mature. The development of bio-based polyols offers a more
sustainable alternative (compared conventional methods) that might realistically be brought into use
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in a far shorter timescale, indeed soybean-derived polyols have been used commercially in car seat
foams for many years [57].
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The structures of PUs were determined by 1H NMR and 13C NMR (Figures S15–S22). Taking
PU-3 as an example, there are no peaks of hydroxyl group at 5.08 ppm and 4.84 ppm, while the
typical chemical shifts of amide proton appears at 9.64 ppm and 9.74 ppm. The multiple peaks at
7.38–7.05 ppm represent the characteristic peaks of benzene ring (Figure 6A). In the 13C NMR spectrum
of PU-3 (Figure 6B) the chemical shift at 153.4 ppm can be assigned to the new carbonyl environment
of the urethane functionality.

The formation of these PUs were further confirmed by FTIR (Figure 7). In the FTIR spectra of PUs
the hydroxyl peak at 3374 cm−1 is replaced by the amino at 3317 cm−1. The new strong signal at 1698
cm−1 further demonstrates the presence of the urethane backbone.

3.5. Molecular, Thermal and XRD analysis of PUs

The yields of those PUs obtained from HMEO are above 80%, except PU-1 which give a more
modest yield of 66% (Table 2). PU-4 derived from vanillic alcohol exhibits a lower yield of 81.3% as
compared with PU-3, which may due to the lower activity of phenolic hydroxyl. The GPC results
reveal that PUs of high Mn are successfully prepared, with Mn and PDI in the range of 21–40 KDa
and 1.10–1.23, respectively. Compared with PU-3, PU-4 show lower Mn, which may be attributed
to the lower reactivity of the phenolic hydroxyl as compared to the aliphatic alcohol. The thermal
properties of the PUs are examined by TGA (Figure 8A, Table 2) and DSC (Figure 8B, Table 2). TGA
reveals that all of these polyurethanes have excellent thermal stability, with an initial decomposition
temperature (5% weight loss) between 229–280 ◦C. The initial decomposition temperature of PU-2 is
higher than that of PU-3, indicating that the thermal stability of this IPDI-based polyurethane is higher
than the aromatic-based polyurethane. Due to the presence of flexible aliphatic segments in PU-3%
mass loss occurred at 229 ◦C, whereas PU-4 with a more rigid vanillic diol derived backbone shows
higher thermal stability with 5% mass loss increases to 280 ◦C and no observed Tg.
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Table 2. Test data based on the PUs.

Sample Monomer Diisocyanate Yield
(%)

Mn
(g mol−1)

PDI
(Mw/Mn)

Tg
(DSC)
(◦C)

Td
(5%)
(◦C)

Td
(50%)
(◦C)

PU-1 HMEO Hexamethylenediisocyanate
(HDI) 66.0 39,000 1.23 11.6 259 351

PU-2 HMEO Isophoronediisocyanate
(IPDI) 81.9 29,000 1.11 66.8 252 325

PU-3 HMEO Diphenylmethanediisocyanate
(MDI) 92.8 40,000 1.11 80.4 229 373

PU-4 VA MDI 81.3 21,000 1.10 - 280 364
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Figure 8. TGA curves (A) and DSC traces (B) of PUs.

The Tg of PUs increases from 11.6 to 80.4 ◦C with increased chain rigidity. The Tg of IPDI- based
PU-2 and MDI-based PU-3 is 66.8 ◦C and 80.4 ◦C, respectively (Table 2, Run 2 and 3) and this is
likely because the MDI-based polyurethane backbone has higher rigidity than the aliphatic-isocyanate
IPDI-based polyurethane [58]. The initial decomposition temperature of PU-3 is lower than PU-4 due
to the presence of two methylene soft segments on the main chain of PU-3. PU-4 shows no Tg before
the initial decomposition temperature. No melting point was detected for any of these PUs, indicating
that they were amorphous, which was also consistent with the XRD data (Figure 9).
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4. Conclusions

In this paper, HMBD and HMEO have been synthesized in high yields starting from bio-based
vanillin and ethylene carbonate via an environmentally sustainable catalytic method. HMEO was
employed for the preparation of polyesters and polyurethanes. The results of 1H NMR, 13C NMR, FTIR
and GPC confirmed the successful preparation of high Mn polyesters and polyurethanes demonstrating
their potential as sustainable polymer materials. The DSC analyses revealed that the Tg of obtained
polymers were closely correlated with the degree of flexibility (or rigidity) present in the polymer
chain. Through PE-3 with PE-5 and PU-3 with PU-4 performance comparison showed that the higher
reactivity of the aliphatic hydroxyl group and the flexibility of the alkyl segment had a great influence
on the yield, molecular weight and thermal properties of polymer, which provided an important
reference for the design of new materials. These two families of lignin-derivable polymers have
bio-based content between 44% and 100%, and are therefore of extreme interest as more sustainable
future materials.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/3/586/s1,
Figure S1. 1H NMR spectrum of HMBD; Figure S2. 13C NMR spectrum of HMBD; Figure S3. 1H NMR spectrum
of HMEO; Figure S4. 13C NMR spectrum of HMEO; Figure S5. 1H NMR spectrum of PE-1; Figure S6. 13C NMR
spectrum of PE-1; Figure S7. 1H NMR spectrum of PE-2; Figure S8. 13C NMR spectrum of PE-2; Figure S9. 1H
NMR spectrum of PE-3; Figure S10. 13C NMR spectrum of PE-3; Figure S11. 1H NMR spectrum of PE-4; Figure
S12. 13C NMR spectrum of PE-4; Figure S13. 1H NMR spectrum of PE-5; Figure S14. 13C NMR spectrum of PE-5;
Figure S15. 1H NMR spectrum of PU-1; Figure S16. 13C NMR spectrum of PU-1; Figure S17. 1H NMR spectrum of
PU-2; Figure S18. 13C NMR spectrum of PU-2; Figure S19. 1H NMR spectrum of PU-3; Figure S20. 13C NMR
spectrum of PU-3; Figure S21. 1H NMR spectrum of PU-4; Figure S22. 13C NMR spectrum of PU-4, which provide
1H and 13C NMR spectra of monomers and polymers.
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