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Abstract. With the growing public attention on sustainable development and green ecosystems, the efficient 13 

management of fuzzy sewage treatment processes (FSTP) has been a major concern in academia. Characterized 14 

by strong abstraction and analysis abilities, data mining technologies provide a novel perspective to solve this 15 

problem. In recent years, data-driven management for FSTP has been widely investigated, resulting in a number 16 

of typical approaches. However, almost all existing technical approaches consider FSTP a unidirectional, 17 

sequential process, ignoring the bidirectional temporality caused by backflow operations. Therefore, we propose 18 

a data-driven management mechanism for FSTP based on hybrid neural computing (IM-HNC for short). This 19 

mechanism attempts to capture the bidirectional time-series features of FSTP with the aid of a bidirectional long 20 

short-term memory model, and further introduces a convolutional neural network to construct feature spaces with 21 

a stronger expression capability. Empirically, we implement a series of experiments on three datasets under 22 

different parameter settings to test the efficiency and robustness of the proposed IM-HNC. The experimental 23 

results manifest that the IM-HNC has an average performance improvement of approximately 5% compared to the 24 

baselines. 25 

Keywords: data-driven management, fuzzy sewage treatment process (FSTP), hybrid neural computing, bidirectional time-26 

series features, green ecosystems 27 

1   Introduction 28 

As sustainable development is held in high regard today, green ecosystems will become an important prospect 29 

for future smart cities [1, 2]. This gives rise to the exploration of new techniques or management patterns in related 30 

fields, the most typical of which is the fuzzy sewage treatment process (FSTP) [3–6]. The FSTP is actually a kind 31 

of typical and complex industrial scenarios, in which treatment process is implemented accompanied with much 32 

fuzziness and uncertainty [7–9]. Owing to its importance to achieving green ecosystem, the realization of its 33 

optimal management is highly correlated to the sustainable engineering of cities [10–12]. The core of management 34 

for FSTP is to control the amount of dissolved oxygen (DO) in intermediate processes so that the index values of 35 

pollutants can be reduced [13–15]. Because it is difficult to directly determine an appropriate amount of DO, 36 



precise advance predictions for sewage treatment results will conversely contribute to decision making [16–18]. 37 

But the conventional fuzzy analysis method is not suitable to deal with this kind of problem [19–21]. To this end, 38 

modeling schemes that can well express the entire FSTP from input to output is of great significance [22–24]. 39 

However, there are great difficulties in achieving the efficient management for FSTP, and accurately predicting 40 

the results of FSTP is challenging [25, 26]. From the perspective of systems science, the complex biochemical 41 

processes inside FSTP are characterized by nonlinearity, uncertainty and hysteresis [27, 28]. In particular, 42 

chemicals must undergo unperceivable and continuous reactions during treatment processes, which makes efficient 43 

management dramatically challenging [29–31]. Currently, the popularity of the Internet of Things in FSTP 44 

facilitates the collection of a large amount of monitoring data during these industrial processes [32, 33]. The 45 

massive amount of data can be used to achieve more refined management for FSTP through high-performance 46 

computation [34–36]. In particular, in imagined future cities, intelligent-algorithm-embedded management 47 

mechanisms for FSTP are particularly important [37–39]. 48 

At present, many researchers have attached importance to data-driven management for FSTP. In general, the 49 

biochemical process of sewage treatment is regarded as a gray box system without considering the biochemical 50 

mechanisms inside [40, 41]. For instance, Pang et al. [42] proposed a management pattern to implement multi-51 

water quality monitoring based on a support vector machine. Cong et al. [43] suggested an adaptive learning 52 

method based on a wavelet neural network to optimize the management of FSTP. Some researchers have also 53 

managed to build models for FSTPs by considering time-series features [44, 45]. For example, Li et al. [46] 54 

proposed an intelligent management pattern based on the sparse auto-encoder and the long short-term memory 55 

model (LSTM). However, existing management patterns regarded FSTP as a unidirectional sequential process [47, 56 

48], ignoring the fact that time series features are actually bidirectional due to the existence of backflow in FSTP. 57 

Specifically, sewage flows in both the forward and backward directions during long-term treatment processes. 58 

To solve the aforementioned challenge, this paper uses the bidirectional long short-term memory (Bi-LSTM) 59 

model to capture the bidirectional time-series features of FSTP and introduces a convolutional neural network 60 

(CNN) model to enhance feature expression. Therefore, we propose a data-driven Intelligent Management 61 

mechanism based on Hybrid Neural Computing (IM-HNC) for FSTP. The core of this approach is to predict the 62 

treatment results of FSTP by formulating a data mining-based model. In particular, a CNN is developed to 63 

Fig. 1  Process structure of FSTP studied in this paper 



 

construct feature spaces for the initial features of an FSTP, and the Bi-LSTM is leveraged to express the long-term 64 

temporality of the FSTP. The proposed IM-HNC deeply represents both the forward and backward sequential 65 

features of the FSTP and thus more appropriately expresses the entire FSTP through hybrid neural computing. In 66 

addition, a series of experiments are carried out to test the performance of the proposed IM-HNC on three datasets 67 

split from a real dataset. 68 

The remainder of this paper is organized as follows: The questions and framework of this research are illustrated 69 

in Section 2. The detailed mathematical processes of the method are described in Section 3. In Section 4, data 70 

preprocessing and extensive experiments are implemented to assess the performance and stability for IM-HNC, 71 

and conclusions are presented in Section 5. 72 

2   General Outline 73 

2.1   Description of Problem 74 

The experimental dataset in this paper was collected via biochemical sensors from a sewage treatment plant 75 

using an A2/O process in Chongqing, China. The A2/O process is an industrial sewage solution technique that has 76 

evolved from the original activated sludge process [49]. And A2 refers to Anaerobic-Anoxic, O is Oxic [50]. Fig. 77 

1 presents the process structure of FSTP studied in this paper, and the core terms are defined as follows: 78 

Definition 1 (Inlet COD): The chemical oxygen demand (COD) amount before entering FSTP 79 

Definition 2 (Inlet NH3-N): The ammonia nitrogen (NH3-N) amount before entering FSTP. 80 

Definition 3 (DO): The DO amount added during the A2/O process. 81 

Definition 4 (Outlet COD): The COD amount after completion of FSTP. 82 

Definition 5 (Outlet NH3-N): The NH3-N amount after completion of FSTP. 83 

A long-term sewage treatment process can be viewed as a collection of operations at separate timestamps, and 84 

COD and NH3-N are selected as the major pollutants monitored in this case. The inlet conditions and outlet results 85 

with respect to these two pollutants are denoted as 𝑥1, 𝑥2 and 𝑦1, 𝑦2, respectively. It can be observed from Fig. 86 

1 that there are six main oxic tanks in the treatment process. The DO monitoring values inside the tanks are denoted 87 

as 𝑥3 to 𝑥8. Given the inlet conditions and the intermediate DO amount, the main goal of this paper is to develop 88 

a mapping model to calculate the outlet results in advance. Table 1 displays the main indicators of FSTP studied 89 

in this paper. 90 

Table 1  The main indicators of FSTP studied in this paper 

Variable Definition 

𝑥1, 𝑥2 Inlet COD and Inlet NH3-N 

𝑥3, 𝑥4 DO in oxic tanks of Series 1 

𝑥5, 𝑥6 DO in oxic tanks of Series 2 

𝑥7, 𝑥8 DO in oxic tanks of Series 3 

𝑦1, 𝑦2 Outlet COD and Outlet NH3-N 

 



2.2   Framework 91 

Fig. 2 describes the overall architecture of the IM-HNC pattern, which contains three main modules: the 92 

convolution module, the sequential characteristics module and the full connection module. The inlet conditions 93 

and DO at the 𝑡-th timestamp are expressed as 𝑥𝑖(𝑡) (𝑖 = 1,2, ⋯ ,8;  𝑡 = 1,2, ⋯ , 𝑇), where 𝑖 = 1,2 denote the 94 

inlet COD and the inlet NH3-N, respectively, and 𝑖 = 3, 4, … , 8 denote the DO density values. The total 𝑥𝑖(𝑡) and 95 

𝑦𝑗(𝑡) are subjected to correlation analysis, and the parts with strong correlations are selected. The retained 𝑥𝑖(𝑡) 96 

can be finally aggregated into a sequence feature 𝑋(𝑡) that will be inputted into the convolution module to be 97 

encoded into 𝐶𝑜𝑛(𝑡). Then, the 𝐶𝑜𝑛(𝑡) is regarded as the input of each timestamp in the sequential characteristics 98 

module and further encoded into 𝐻(𝑡). Subsequently, the output 𝐻𝐿(𝑡) of the sequential characteristics module 99 

undergoes dimension reduction and decoding through the full connection module. Finally, the real-world dataset 100 

is inputted the IM-HNC to make it predict sewage treatment results, and make recommendations for FSTP 101 

management. 102 

Therefore, given the inlet parameter indexes and the DO configuration at the same timestamp, the outlet 103 

parameter indexes will be generated according to the IM-HNC. 104 

3   Methodology 105 

3.1   Convolutional Neural Network Modeling 106 

The convolutional neural network is mainly responsible for feature extraction due to its strong ability of abstract 107 

information representation. As illustrated in Fig. 3, its architecture mainly contains two groups: a convolutional 108 

layer and a max-pooling layer. The former maps feature vectors of previous stages into higher-order feature 109 

representations via convolution operations, and the latter appropriately reduces the dimensionality of the feature 110 

representations by pooling operations [51]. 111 

Fig. 2  An overview of the architecture of the IM-HNC pattern 



 

Convolution refers to an inner product operation between feature vectors or matrices and filtering matrices; the 112 

first convolutional layer has 24 filters, and the second convolutional layer has 48 filters. This can be expressed in 113 

the following formula: 114 

ℎ𝑖(𝑡) = 𝑟𝑒𝑙𝑢(ℎ𝑖−1(𝑡) ⊗ 𝜔𝑖(𝑡) + 𝑏1(𝑡)) (1) 

where  ℎ𝑖(𝑡) is the feature vector of the 𝑖-th convolution layer at the 𝑡-th timestamp, ⊗ is the convolution 115 

operation of the convolution kernel, 𝜔𝑖(𝑡) refers to weight vector of the 𝑖-th layer convolution kernel, and 116 

𝑟𝑒𝑙𝑢(∙) is the ReLU activation function, which is calculated as 117 

𝑟𝑒𝑙𝑢(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (2) 

The role of pooling is to select a rule to compress the input feature map, thereby reducing the dimension of the 118 

output values [52]. The pooling rule used in this article is max-pooling, which selects the maximum value output 119 

to the next level for the values within the 𝑚 × 𝑚-dimensional neighborhood in the feature map and is expressed 120 

as 121 

𝑝𝑖(𝑡) = max𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝑝𝑖−1(𝑡)) (3) 

where 𝑝𝑖(𝑡) is the feature vector of the 𝑖-th pooling layer at the 𝑡-th timestamp, and 𝑚𝑎𝑥𝑝𝑜𝑜𝑙𝑖𝑛𝑔(∙) is the 122 

pooling rule. The kernel of the two max-pooling layers in the convolution module is set to 2 × 2 dimensions. 123 

Finally, the output 𝐶𝑜𝑛(𝑡) of the convolution module at the 𝑡-th timestamp is inputted into the sequential 124 

characteristics module for encoding. 125 

3.2   Bidirectional Long Short-Term Memory Modeling 126 

The bidirectional long short-term memory model is an advanced form of the long short-term memory model. 127 

As represented in Fig. 4, the operation of the Bi-LSTM processes both forward and backward LSTMs at the same 128 

time. In addition, the LSTM updates the network status via three gating units, which are illustrated as follows: 129 

• Forget gate (FG): The forget gate determines the extent to which the current moment 𝐶(𝑡) retains the 130 

previous moment state of the unit 𝐶(𝑡 − 1). When the forget gate is in the open state, the data in the storage 131 

unit can be saved; when the gate is in the closed state, the data in the unit is cleared. 132 

Fig. 3  Structure diagram of the convolution module 



• Input gate (IG): The input gate determines the amount of network input at the current time 𝑋(𝑡) saved in the 133 

unit state 𝐶(𝑡). As the input gate is opened, the storage unit can identify the contents of other neurons as part 134 

of the memory; when the input gate is closed, the storage unit cannot recognize these contents as memory. 135 

• Output gate (OG): The output gate determines the value of the desired output H(t) via the unit state C(t). 136 

When the output gate is on, other neurons can discern the contents stored in the storage unit; when it is off, 137 

the other neurons cannot discern these contents. 138 

The LSTM takes the received signal 𝑋(𝑡) and output 𝐻(𝑡 − 1) at the 𝑡-1-th timestamp as inputs and obtains 139 

the forget factor 𝑓(𝑡) after FG, which is expressed as 140 

𝑓(𝑡) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑓[𝐻(𝑡 − 1), 𝑋(𝑡)] + 𝑏𝑓(t)) (4) 

where 𝑊𝑓 is the connection weight matrix between the input and the FG; 𝑏𝑓(𝑡) is the connection bias at the 141 

𝑡-th timestamp; and 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(∙) refers to the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑  activation function, which can be expressed as the 142 

following formula: 143 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 =
1

1 + 𝑒𝑥𝑝 (−𝑥)
 (5) 

When 𝑓(𝑡) is equal to 0, the historical information in the unit is completely forgotten; when the value of 𝑓(𝑡) 144 

is 1, the historical information is remembered. Therefore, the IG updates the status according to the input. The unit 145 

history information is calculated as follows: 146 

𝑖(𝑡) = 𝛿(𝑊𝑖[𝐻(𝑡 − 1), 𝑋(𝑡)] + 𝑏𝑖(t)) (6) 

𝐶̃(𝑡) = 𝑡𝑎𝑛ℎ (𝑊𝑐[𝐻(𝑡 − 1), 𝑋(𝑡)] + 𝑏𝑐(t)) (7) 

𝐶(𝑡) = 𝑓(𝑡) ⋅ 𝐶(𝑡 − 1) + 𝑖𝑡 ⋅ 𝐶̃(𝑡) (8) 

Among Equations (6-8), 𝑊𝑖 and 𝑊𝑐 are the IG connection weight and the 𝑡𝑎𝑛ℎ layer weight, respectively; 147 

𝑏𝑖 and 𝑏𝑐 refer to the corresponding offsets; and 𝐶̃(𝑡) is the candidate value generated by the 𝑡𝑎𝑛ℎ layer that 148 

Fig. 4  The structure of the sequential characteristics module 



 

participates in the update process of unit information 𝐶(𝑡). The output control factor 𝑂(𝑡) is obtained from the 149 

OG, as expressed in Equation (9), which decides whether or not to unite the output information. The output 𝐻(𝑡) 150 

at the 𝑡-th timestamp is illustrated in Equation (10): 151 

𝑂(𝑡) = 𝛿(𝑊𝑜[𝐻(𝑡 − 1), 𝑋(𝑡)] + 𝑏𝑜(𝑡)) (9) 

𝐻(𝑡) = 𝑂(𝑡) ⋅ 𝑡𝑎𝑛ℎ (𝐶(𝑡)) (10) 

Based on the increased accuracy of the combined prediction determined by the previous input and the future 152 

input, a bidirectional recurrent neural network is proposed. Although the Bi-LSTM requires multiple trainings with 153 

input information to obtain convergence, it has a high accuracy and the same gate unit as the LSTM. To understand 154 

the Bi-LSTM, imagine an input sequence 𝐿 with 𝑛 elements. The order of the forward LSTM is expressed as 155 

{𝐿1, 𝐿2, … , 𝐿𝑛−1, 𝐿𝑛}, while that of the backward LSTM is the opposite. The forward and backward LSTMs 156 

separately undergo the training process first. The training results of these LSTMs are integrated through fusion, 157 

which can be expressed as 158 

𝐻(𝑡) = 𝐻𝐹(𝑡) ⊛ 𝐻𝐵(𝑛 − 𝑡 + 1) (11) 

where 𝐻𝐹  and 𝐻𝐵  refer to the outputs of the forward and backward LSTMs, respectively, and ⊛ is any 159 

integration operator, such as a simple accumulation. The outputs of the sequential characteristics module are fed 160 

in the fully connection module to predict sewage treatment results. 161 

The proposed IM-HNC in this paper is an intelligent management pattern based on a hybrid neural computing 162 

of the CNN and the Bi-LSTM. The configuration details of this pattern are shown in Table 2. 163 

Table 2  Parameter setting details of the IM-HNC 164 

#NO Layer Type Output Shape Param 

1 Convolution1D (None,6,24) 192 

2 MaxPooling1D (None,3,24) 0 

3 Convolution1D (None,3,48) 1200 

4 MaxPooling1D (None,1,48) 0 

5 Bi-LSTM (None,1,128) 57856 

6 Dropout (None,1,128) 0 

7 Bi-LSTM (None,64) 41216 

8 Dropout (None,64) 0 

9 Fully connected layer (None,32) 2080 

10 Fully connected layer (None,1) 33 

3.3   Decoding and Optimization 165 

The output vector 𝐻(𝑡) generated by each group in the sequential characteristics module is summarized as 166 

𝐻𝑙(𝑡) = {𝐻1(𝑡), 𝐻2(𝑡), … , 𝐻𝐿(𝑡)} (12) 

Then, the full connection module is exploited as a part of the decoding to predict sewage treatment results. 167 

𝜙
𝑙
(𝑡) = 𝑟𝑒𝑙𝑢{𝛿[𝐻𝑙(𝑡)]} (13) 

𝜍
𝑙
(𝑡) = 𝑟𝑒𝑙𝑢{𝛾[𝜙

𝑙
(𝑡)]} (14) 



where 𝛿(∙)  and 𝛾(∙)  are two full connection layers to output a single value. The output is a linear 168 

transformation of 𝜍𝑙(𝑡), which is calculated as 169 

𝑦̂𝑙(𝑡) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑{𝑊𝑙(𝑡) ∙ 𝜍𝑙(𝑡) + 𝑏𝑙(𝑡)} (15) 

where 𝑊𝑙(𝑡) and 𝑏𝑙(𝑡) are the weight vector and the bias vector at the 𝑡-th timestamp, respectively, and 170 

𝑦̂𝑙(𝑡) refers to the output of from the full connection module. To avoid overfitting, the loss function is the 171 

following optimization objective: 172 

𝑄 =
1

2
∑(𝑦̂𝜃(𝑡) − 𝑦(𝑡))2

𝑇

𝑡=1

 (16) 

𝜃𝑗 ← 𝜃𝑗 − 𝛼
𝜕

𝜕𝜃𝑗
𝐽(𝜃) (17) 

where 𝑦̂𝜃(𝑡) and 𝑦(𝑡) denote the prediction values and the observed values of sewage treatment results, 173 

respectively, 𝜃 denotes a conventional parameter in gradient descent method, 𝛼 is the learning rate, and 174 
𝜕

𝜕𝜃𝑗
𝐽(𝜃) is the partial derivative of the loss function (𝑄) to the parameter 𝜃𝑗. The purpose of the optimization 175 

is to screen out the parameters set that minimizes 𝑄. The optimization method exploited here is the stochastic 176 

gradient descent (SGD) [53]. SGD randomly selects a group from the sample, updates it by gradient after training, 177 

and then selects a group and updates it again. Details of the iterative process are omitted due to the limited space 178 

of the paper. 179 

After that, a complete intelligent management pattern is established for the outlet parameter indexes in the 180 

FSTP. Therefore, once the inlet parameter indexes and the DO configuration are inputted, the predicted results of 181 

the outlet parameter indexes at the same timestamp will be acquired correspondingly. 182 

Table 3  Statistical analysis and summary of sewage treatment data 183 

Variables Min Max Mean S. D C. V 

𝑥1 (mg/L) 9.339 1061.544 441.008 195.165 0.443 

𝑥2 (mg/L) 0.156 110.467 27.283 9.889 0.362 

𝑥3 (mg/L) 1.002 9.562 2.810 1.519 0.540 

𝑥4 (mg/L) 1.000 9.287 3.293 1.861 0.565 

𝑥5 (mg/L) 1.001 9.413 2.607 1.117 0.429 

𝑥6 (mg/L) 1.000 9.088 2.691 1.109 0.412 

𝑥7 (mg/L) 1.003 9.956 5.571 2.604 0.467 

𝑥8 (mg/L) 1.241 9.973 6.152 3.118 0.507 

4   Experiments 184 

4.1   Data Pre-processing  185 

During the operation of a sewage treatment plant, data anomalies are often caused by technical problems that 186 

cannot be ruled out in time or by monitoring equipment failure. Therefore, it is necessary to preprocess the original 187 

data of the sewage treatment plant. The specific steps states are as follows: 188 

• Data review: Analyze whether or not the distribution of the data falls on a reasonable interval and whether 189 

or not the data values are consistent with the actual situation. 190 



 

• Missing statistics and processing: For data missing due to equipment failure is executed by adding random 191 

number. The range of the random number is set to the maximum value of the sensor's monitoring data for the 192 

same day. 193 

• Data summarization: The processed data are summarized, and the statistical analysis and summary are 194 

illustrated in Table 3. Fig. 5 shows the DO density distribution of the six oxic tanks in the A2/O craft. The six 195 

subgraphs in the graphic represent Tank1-A, Tank1-B, Tank2-A, Tank2-B, Tank3-A and Tank3-B, 196 

respectively. 197 

   
(a) Tank1-A (b) Tank1-B (c) Tank2-A 

   
(d) Tank2-B (e) Tank3-A (f) Tank3-B 

Fig. 5  The DO density distribution of the six oxic tanks in the A2/O process 198 

   

(a) Hourly dataset (b) Daily dataset (c) Weekly dataset 

Fig. 6  The fluctuation of the outlet parameter indexes (𝒚𝟏, 𝒚𝟐) in the three datasets 199 

• Data timing summary: The aggregated datasets obtained in the third step are refined into hourly, daily, and 200 

weekly datasets. The fluctuations of the outlet parameter indexes (𝑦1, 𝑦2) in the three datasets are shown in 201 

Fig. 6. Taking the daily dataset as an example, the sequence trend of the DO density values in group A and 202 

group B for each series of tanks can be observed from the three subgraphs in Fig. 7. 203 

• Correlation comparison: The correlation analysis requires the correlation coefficient between each pair of 204 

variables to form a correlation coefficient matrix 𝑅 = [𝑟𝑖𝑗]𝑝∗𝑞 , where 𝑟𝑖𝑗  represents the correlation 205 

coefficient between the 𝑖-th variable 𝑥𝑖 and the 𝑗-th variable 𝑦𝑗. A correlation coefficient greater than 0.1 206 

was set as the threshold for selecting input variables. The results are shown in Table 4, and bold characters 207 

indicate compliance. 208 



   
(a) The sequential trend of the DO in 

Tank 1 

(b) The sequential trend of the DO in 

Tank2 

(c) The sequential trend of the DO in 

Tank3 

Fig. 7  The sequential trend of the DO density values 209 

Table 4  The correlation coefficients (𝐑) between individual dependent variables and 𝐲𝟏, 𝐲𝟐 210 

Variables 
𝑅 value between dependent 

variable and 𝑦1 

𝑅 value between dependent 

variable and 𝑦2 

𝑥1 0.284 0.160 

𝑥2 0.099 0.142 

𝑥3 0.417 0.212 

𝑥4 0.116 0.139 

𝑥5 0.286 0.226 

𝑥6 0.130 0.098 

𝑥7 0.058 0.087 

𝑥8 0.107 0.118 

4.2   Experimental Settings  211 

In this phase, the generated prediction results in the previous step is evaluated. This article selects two 212 

performance metrics to assess the proposed intelligent management pattern IM-HNC: mean absolute error (MAE), 213 

root mean square error (RMSE). Their expressions are listed as follows: 214 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦̂

𝜊
− 𝑦𝜊|

𝑁

𝜊=1

 (18) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦̂

𝜊
− 𝑦𝜊)2

𝑁

𝜊=1

 (19) 

where 𝑦𝜊 and 𝑦̂𝜊 denote the observed values and the prediction values of outlet indexes, respectively, and 𝑁 215 

is the total number of test set in data-driven pattern studied. For the above metrics, smaller values mean better 216 

model performance and accuracy. To compare the IM-HNC with several baseline methods from the perspective 217 

of stability and reliability. The selected several existing data-driven management methods are as follows: 218 

1) Multi-layer Preceptor (MLP): It is a feedforward artificial neural networks in which every neuron is 219 

fully connected. 220 

2) CNN: It is a kind of feedforward neural network with deep structure that includes convolution 221 

calculation. 222 

3) LSTM: It is a kind of sequential neural network model specially designed to solve the long-term 223 

dependence problem. 224 

4) CNN-LSTM: It is a hybrid neural network model combining CNN and LSTM in order to capture 225 

more complete features. 226 



 

4.3   Results and Discussion 227 

Two sets of experiments are carried out in this paper, one of which is to adjust the learning rate under the 228 

condition of given training set proportions and parameter values, and the other of which is to alter the training set 229 

proportion with fixed learning rates and parameter values. 230 

In one group of experiments, the training set proportion and parameter value were set as default values, and the 231 

learning rate values were set to 0.01, 0.005 and 0.001.Table 5, Table 6 and Table 7 demonstrate the experimental 232 

results for the three datasets with different learning rate values. It can be observed in Table 5 that the IM-HNC 233 

predicts the outlet COD with a learning rate of 0.01, and the MAE and RMSE are 0.069 and 0.126, respectively; 234 

with a learning rate of 0.005, the MAE and RMSE are 0.068 and 0.106, respectively; with a learning rate of 0.001, 235 

the MAE and RMSE are 0.070 and 0.125, respectively. The prediction results of the outlet COD and outlet NH3-236 

N for the three datasets indicate that the values of the measurement indicators MAE and RSME were the lowest 237 

when the learning rate was 0.005. The data from the above table readily show that regardless of how the learning 238 

rate is adjusted, the IM-HNC proposed in this paper is superior to the other baselines methods in terms of both 239 

evaluation indicators. 240 

Table 5  The performance of the four experimental methods for the hourly dataset with different learning rates 241 

Dataset 
Learning 

rate 
Metrics 

Outlet COD (𝒚𝟏) Outlet NH3-N (𝒚𝟐) 

MLP CNN LSTM 
CNN-

LSTM 

IM-

HNC 
MLP CNN LSTM 

CNN-

LSTM 

IM-

HNC 

Hourly 

datasets 

0.01 

MAE 0.587 0.263 0.163 0.143 0.069 0.545 0.256 0.132 0.124 0.074 

RMSE 0.935 0.325 0.272 0.234 0.126 0.887 0.335 0.214 0.188 0.148 

0.005 

MAE 0.455 0.243 0.156 0.141 0.068 0.404 0.251 0.125 0.123 0.072 

RMSE 0.778 0.305 0.237 0.210 0.106 0.748 0.329 0.193 0.164 0.142 

0.001 

MAE 0.535 0.257 0.174 0.148 0.070 0.576 0.259 0.127 0.124 0.074 

RMSE 0.867 0.325 0.264 0.265 0.125 0.889 0.337 0.196 0.169 0.144 

Table 6  The performance of the four experimental methods for the daily dataset with different learning rates 242 

Dataset 
Learning 

rate 
Metrics 

Outlet COD (𝒚𝟏) Outlet NH3-N (𝒚𝟐) 

MLP CNN LSTM 
CNN-

LSTM 

IM-

HNC 
MLP CNN LSTM 

CNN-

LSTM 

IM-

HNC 

Daily 

datasets 

0.01 
MAE 0.558 0.283 0.182 0.153 0.074 0.563 0.264 0.137 0.124 0.064 

RMSE 0.749 0.375 0.325 0.255 0.153 0.650 0.346 0.234 0.195 0.127 

0.005 
MAE 0.449 0.226 0.151 0.137 0.061 0.428 0.244 0.123 0.115 0.056 

RMSE 0.674 0.296 0.229 0.206 0.095 0.703 0.330 0.204 0.154 0.092 

0.001 
MAE 0.533 0.254 0.165 0.149 0.071 0.525 0.247 0.128 0.169 0.060 

RMSE 0.729 0.314 0.286 0.225 0.144 0.755 0.368 0.215 0.185 0.117 

Table 7  The performance of the four experimental methods for the weekly dataset with different learning rates 243 



Dataset 
Learning 

rate 
Metrics 

Outlet COD (𝒚𝟏) Outlet NH3-N (𝒚𝟐) 

MLP CNN LSTM 
CNN-

LSTM 

IM-

HNC 
MLP CNN LSTM 

CNN-

LSTM 

IM-

HNC 

Weekly 

datasets 

0.01 
MAE 1.853 0.635 0.463 0.244 0.163 1.573 0.578 0.423 0.220 0.149 

RMSE 3.053 0.844 0.623 0.364 0.278 2.368 0.733 0.533 0.343 0.235 

0.005 
MAE 1.683 0.536 0.357 0.189 0.138 1.274 0.426 0.329 0.153 0.113 

RMSE 2.415 0.744 0.533 0.275 0.195 2.147 0.634 0.473 0.238 0.176 

0.001 
MAE 1.685 0.589 0.433 0.218 0.159 1.426 0.524 0.383 0.183 0.139 

RMSE 2.851 0.784 0.593 0.327 0.239 2.632 0.715 0.568 0.293 0.203 

In another set of experiments, the learning rate and parameter value were set to default values, and the training 244 

set proportions were separately set to 30%, 50%, 70%, and 90%. Fig. 8, Fig. 10 and Fig. 12 illustrate the 245 

experimental results for predicting the outlet COD with different training set proportions for the three datasets. 246 

Fig. 9, Fig. 11 and Fig. 13 demonstrate the experimental results for predicting the outlet NH3-N with different 247 

training set proportions for the three datasets. From Fig. 9, it can be clearly observed that the prediction results of 248 

the four models on the outlet NH3-N always increase first and then gradually decrease with the increase of the 249 

training set proportion, and the proposed IM-HNC has the best prediction effect. The prediction results of the 250 

outlet COD and outlet NH3-N for the three datasets show that the MAE and RMSE values for the four models 251 

were the lowest when the training set proportion was 70%, followed by 90%. The experimental results of this set 252 

were similar to those of the previous one: no matter how the training set proportions were adjusted, the IM-HNC 253 

had the best performances for both evaluation indicators. 254 

    

(a) training set:30% (b) training set:50% (c) training set:70% (d) training set:90% 

Fig. 8  Comparison of the experimental results of predicting the outlet COD with different training set proportions for the 255 

hourly dataset 256 

  

(a) Evaluation index: MAE (b) Evaluation index: RMSE 

Fig. 9  Comparison of the experimental results of predicting the outlet NH3-N with different training set proportions for 257 

the hourly dataset 258 

    

(a) training set:30% (b) training set:50% (c) training set:70% (d) training set:90% 



 

Fig. 10  Comparison of the experimental results of predicting the outlet COD with different training set proportions for the 259 

daily dataset 260 

  

(a) Evaluation index: MAE (b) Evaluation index: RMSE 

Fig. 11  Comparison of the experimental results of predicting the outlet NH3-N with different training set proportions for 261 

the daily dataset 262 

    

(a) training set:30% (b) training set:50% (c) training set:70% (d) training set:90% 

Fig. 12  Comparison of the experimental results of predicting the outlet COD with different training set proportions for 263 

the weekly dataset 264 

  

(a) Evaluation index: MAE (b) Evaluation index: RMSE 

Fig. 13  Comparison of the experimental results of predicting the outlet NH3-N with different training set proportions for 265 

the weekly dataset 266 

A series of experimental results have confirmed the superiority of the performance of the proposed IM-HNC. 267 

The superior performance of the IM-HNC can be attributed to two factors. First, the CNN model was utilized to 268 

extract the underlying abstract features of the original data, and an effective feature space expression ability was 269 

acquired. Second, the Bi-LSTM model was adopted to accurately capture long-term bidirectional time-series 270 

features and generate a comprehensive representation of the global feature space. 271 

In addition, another special set of experiments was performed to assess the parameter sensitivity for IM-HNC. 272 

In this set of experiments, the IM-HNC was not compared with any foundation model; rather, its own results were 273 

compared after changing the learning rate and training set proportion. The MAE and RMSE results of the IM-274 

HNC for predicting the outlet COD under different parameters are illustrated in Fig. 14 and Fig. 15, respectively. 275 

Fig. 16 and Fig. 17 show the MAE and RMSE results, respectively, of the IM-HNC for predicting the outlet NH3-276 

N under different parameter situations. Each of these four figures have three subgraphs, which correspond to the 277 

three types of datasets. It is obvious from the numerous subplots that the experimental results hardly changed after 278 

adjusting the parameters and datasets, which proves the stability of the proposed IM-HNC. The foremost reason 279 

for this phenomenon is that the IM-HNC integrates the effective characteristics of the FSTP, making it less 280 

susceptible to parameter changes. 281 



   
(a) Changing of the learning rate and 

training set proportion for the hourly 

dataset 

(b) Changing of the learning rate and 

training set proportion for the daily 

dataset 

(c) Changing of the learning rate and 

training set proportion for the weekly 

dataset 

Fig. 14  MAE results of the IM-HNC for predicting the outlet COD under different parameter situations 282 

   
(d) Changing of the learning rate and 

training set proportion for the hourly 

dataset  

(e) Changing of the learning rate and 

training set proportion for the daily 

dataset  

(f) Changing of the learning rate and 

training set proportion for the weekly 

dataset 

Fig. 15  RMSE results of the IM-HNC with respect to the outlet COD under different parameter situations 283 

   
(a) Changing of the learning rate and 

training set proportion for the hourly 

dataset 

(b) Changing of the learning rate and 

training set proportion for the daily 

dataset 

(c) Changing of the learning rate and 

training set proportion for the weekly 

dataset 

Fig. 16  MAE results of the IM-HNC with respect to the outlet NH3-N under different parameter situations 284 

   
(a) Changing of the learning rate and 

training set proportion for the hourly 

dataset 

(b) Changing of the learning rate and 

training set proportion for the daily 

dataset 

(c) Changing of the learning rate and 

training set proportion for the weekly 

dataset 

Fig. 17  RMSE results of the IM-HNC with respect to the outlet NH3-N under different parameter situations 285 



 

In summary, the proposed IM-HNC in this paper had an excellent efficiency and stability for the forecast based 286 

on the hourly, daily, and weekly datasets and can effectively predict the relevant data of sewage treatment. 287 

5   Conclusion 288 

It is feasible to predict the results of sewage treatment via data analysis. However, the existing data-driven 289 

management pattern ignores the bidirectional time-series feature of FSTPs. Therefore, a new intelligent prediction 290 

and control management pattern, IM-HNC, is proposed in this paper to solve this problem. First, the convolutional 291 

module was exploited to automatically extract and encode the features of the FSTP. Next, the bidirectional time-292 

series features of the FSTP are deeply expounded by the sequential characteristics module. Then, many 293 

experiments were implemented to verify the effectiveness and stability of the proposed IM-HNC on three datasets 294 

split from a real dataset. Finally, according to the experimental results, suggestions are provided for decision-295 

making related to the intermediate process of the FSTP. 296 
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