
Please cite the Published Version

Akbar, A, Ibrar, M, Jan, MA, Bashir, AK and Wang, L (2021) SDN-Enabled Adaptive and Reliable
Communication in IoT-Fog Environment Using Machine Learning and Multiobjective Optimization.
IEEE Internet of Things Journal, 8 (5). pp. 3057-3065. ISSN 2327-4662

DOI: https://doi.org/10.1109/JIOT.2020.3038768

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/627682/

Usage rights: In Copyright

Additional Information: "(c) 2020 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, including reprinting/ republishing this material for
advertising or promotional purposes, creating new collective works for resale or redistribution to
servers or lists, or reuse of any copyrighted components of this work in other works."

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://doi.org/10.1109/JIOT.2020.3038768
https://e-space.mmu.ac.uk/627682/
https://rightsstatements.org/page/InC/1.0/?language=en
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines


1

SDN-enabled Adaptive and Reliable
Communication in IoT-Fog Environment Using

Machine Learning and Multi-Objective Optimization
Aamir Akbar, Muhammad Ibrar, Mian Ahmad Jan*, Ali Kashif Bashir, Lei Wang**

Abstract—The Internet of Things (IoT) has inspired the
development of emerging new applications. Backed by the re-
sourceful fog computing, the IoT devices are capable to meet
the demands of tasks, even the most computationally-intensive
ones. However, many existing IoT applications are unable to
perform well, while communicating with the fog server due to
different QoS requirements. Constantly changing traffic demands
of applications is another challenge to consider. The demand
for real-time applications includes communicating over a path
that is less prone to delay. Moreover, applications that offload
computationally-intensive tasks to the fog server need a reliable
path that has lower probability of link failure. This results
in a trade-off among continuously changing objectives, i.e.,
minimizing the end-to-end delay and maximizing the reliability
of paths between IoT devices and the fog server. To tackle this
problem, we propose a novel approach that considers an SDN-
enabled multi-hop scenario for the IoT-Fog environment. We
evaluated the reliability level of links by employing the real-life
network statistics recorded for a period of over 5 months. We
use a multi-objective optimization (MOO) algorithm to search
the Pareto-optimal paths by considering the two conflicting
objectives. Our experimental evaluation considers two different
applications - a real-time application (App-1) using UDP sockets
and a task offloading application (App-2) using TCP sockets.
Our results show that: (i) using MOO, the trade-off between
the two objectives can be optimized, and (ii) the SDN controller
was able to make adaptive decision on-the-fly to choose the best
path from the Pareto-optimal set. The App-1, communicating
over the selected path finished its execution in 13% less time
than communicating over the shortest path. The App-2 had 41%
less packet loss using the selected path compared to using the
shortest path.

Index Terms—IoT, Multi-Objective Optimization (MOO), Ma-
chine Learning, Fog Computing, Software Defined Networks
(SDN).

I. INTRODUCTION

THE rapid use of gadgets linked with the Internet fosters
the influence in different juncture of life. To connect the

physical world with the digital world, the Internet of Things
(IoT) [1] plays an important role. Numerous IoT applications
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are running in practice such as smart cars, smart industry,
smart cities [2], and smart health [3], [4], [5]. The overall
growth of IoT in terms of global market share in 2020 was
estimated to reach $250B [6]. The application layer of IoT is
comprised of custom applications that continuously generate
data streams for real-time processing and analysis. However, at
the things layer, the resources available are limited in terms of
computation and storage. To make IoT applications virtually
unbounded in terms of storage and processing power, the
integration of IoT devices with cloud computing has played
a vibrant role [7]. Even though cloud computing supports
the execution of computationally-intensive tasks, it lacks to
provide reliable communication. Therefore, techniques that
involve machine learning can be used to find a reliable path
and provide reliable communication for IoT devices [8], [9].
In particular, a reliable communication channel is required for
delay-sensitive applications that need a quick response with
extremely low latency, e.g. smart cities and smart health.

Fog computing [10] provides computing services between
the IoT devices and cloud data centres and is typically located,
though not exclusively, at the edge of the network. As the
promises of both cloud and fog computing are similar, the
latter aims to provide low latency with a wider spread and
geographically distributed nodes. Although fog computing
minimizes the latency and reduces the amount of data sent
to the cloud, the deployment of fog nodes, i.e., fog server
in ubiquitous computing incur higher cost [4]. Alternatively,
IoT devices are allowed to connect to fog servers in a multi-
hop manner [11]. However, in such settings, the desired
performance of applications for IoT devices is hard to achieve.
For example, finding a reliable path in a multi-hop IoT-Fog
that has a minimum end-to-end delay.

In a multi-hop IoT-Fog scenario, the physically distributed
but logically unifying fog servers can be achieved using SDN-
enabled IoT-Fog [12], [4], [11]. The core idea of SDN [13] is
to decouple the control plane from the data plane by delegating
the former from all network devices, i.e., routers, switches, and
Access Points (APs), to a centralized controller [14]. However,
in SDN-enabled multi-hop IoT-Fog environment, link failures
events can occur, which could result in recomputing of an
alternative path for a flow. The alternative path may not
be the best in terms of reliability or delay. In [15], [16],
the authors have reported that a link failure in a network
occurs almost every 30 minutes. The causes of failure may
be due to Windows maintenance such as operating system
reboot, network connection (OSPF convergence), software
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(BIOS upgrade), hardware (replacement of a device or line
card), and configuration (primary-back fail-over and VPN
tunnelling) [17]. Therefore, an IoT application is adversely
affected if the flow from the application to the fog server is
dropped or delayed due to a link or a device failure.

The problem faced by IoT applications such as communi-
cation over a reliable path that has minimum end-to-end delay
can be resolved. In this paper, we propose a machine learning-
based approach to find the reliability of links in a multi-hop
and SDN-enabled IoT-Fog settings. We define the reliability
of a link as the average failure/downtime or repair-time in
the specific time duration. More specifically, the frequency of
downtime/repair-time shows the reliability level of a link. We
use a regression-based k-nearest neighbor (k-NNR) machine
learning algorithm [18], which is trained on a dataset of a real-
life network captured for over a period of 5 months, to estimate
the links reliability. The k-NNR considers the link parameters
such as link utilization rate, link failure, and the frequency
of failures from the dataset. Also, we measure the link delay
as the sum of transmission delay (packet size/link bandwidth),
processing delay and propagation delay. Furthermore, different
applications have different Quality of Service (QoS) require-
ments. For example, a real-time application may require a path
that has a minimum end-to-end delay, while compromising the
objective of maximum path reliability. Therefore, we consider
finding the path from the source node to the fog server, in
multi-hop IoT-Fog, as a multi-objective optimization (MOO)
problem.

In a MOO, several conflicting objectives are optimized
simultaneously. A trade-off between objectives naturally exists
that results in creating a set of Pareto-optimal solutions [19].
In this work, we consider two objectives: 1) maximize the
path reliability: we find it as the minimum link reliability in
all links making a path, and 2) minimize the path delay: we
measure it as the average delay of links making a path.

Achieving two or more objectives at the same time may
not be possible. For example, maximizing the path reliability
may prevent the objective of minimizing path delay because
a path having maximum reliability may happen to have one
or more links with high transmission delay. Therefore, using
a MOO algorithm, we will obtain an optimal path or a
set of paths that optimize the trade-off between the two
objectives. Furthermore, using the Pareto-optimal paths, the
SDN controller will decide on-the-fly which path to select for
a flow based on the packet types. Therefore, an adaptive and
reliable communication for different types of applications in
an IoT-Fog paradigm can be achieved. We highlight the major
contributions of this paper as follow.

1) When a link failure happens due to external and uncon-
trollable factors, our proposed approach ensures that it
is still capable to estimate the link reliability level using
machine learning algorithm.

2) Our proposed approach optimizes the trade-off between
two objectives: 1) maximize the path reliability, and 2)
minimize the path end-to-end delay. This leads to finding
the Pareto-optimal approximation of paths in the SDN
controller.

3) Our proposed approach improves the performance of
IoT applications in terms of minimizing the end-to-end
delays and packet losses for a set of source nodes and
destination nodes. This is achieved by using an adaptive
switching mechanism employed in an SDN controller. In
this case, the source nodes are SDN switches to which
the IoT devices are linked, while the destination nodes
are the fog servers.

The rest of this paper is organized as follow. Section II
discusses the related work. Section III explains the system
model followed by reliable communication in SDN-enabled
IoT-Fog networks in Section IV. Section V presents the
adaptive communication in SDN-enabled IoT-Fog networks.
Section VI discusses the experimental setup and results. Fi-
nally, Section VII concludes the paper with future directions.

II. RELATED WORK

The communication over highly reliable paths, according to
QoS requirements in a network, is a hot research topic. In [20],
the authors proposed a time slot-based approach in which the
SDN controller regularly find multi-paths for the transfer of
media-intensive applications over the Internet while meeting
their QoS requirements. They used heuristics to find optimal
survivable multi-paths with least cost. However, the QoS
cannot always reflect the actual service quality experienced
by the end-users. Authors in [21] focused more on quality of
experience (QoE) that influence the interactivity of the services
experienced by end-users.

To provide a better QoE, multi-objective optimization
(MOO) techniques have been used, in different domains, to
minimize the trade-off between conflicting objectives. For
example, MOO has been used to improve coverage of wireless
nodes [22] in a network, to optimize the trade-off between
two conflicting objectives (battery power consumption and
network usage) of mobile-cloud hybrid applications for smart-
phones [23] and battery-powered robots [24]. In MOO algo-
rithms, multiple objectives are treated simultaneously, subject
to a set of constraints [25]. Furthermore, MOO problems
are more often solved by using multi-objective evolutionary
algorithms (MOEAs) [26], which aim for searching the Pareto-
optimal set of solutions in a single run. One particular MOEA
algorithm, the Non-dominated Sorting Genetic Algorithm-II
(NSGA-II) [27], has been widely researched in the family of
MOO algorithms, due to its capability of efficiently construct-
ing an approximate Pareto-front of non-dominated solutions
in a set of solutions.

However, for different types of end-user applications, a re-
liable path selection based on dynamic nature of the networks
such as link utilization rate, link failures and the frequency
of failures must be considered [28]. Moreover, the end-to-
end delay of a given path is an important criterion for a
reliable path selection. The authors in [29] have observed
that for 30 − 80% of failures in the network, there is an
alternative path with better characteristics in terms of delay
and packet loss. Therefore, machine learning-based prediction
algorithms can be used to provide better QoE under various
network conditions. For example, ML-based approaches have
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been used to provide better VoIP service under various network
conditions [30], to classify YouTube QoE based on encrypted
network traffic [31], and in other areas such as predicting
SDN-based networks QoE [32].

Furthermore, to minimize the end-to-end delay in resource-
constrained IoT devices, from the centralized virtual cloud,
mobile computing has shifted towards mobile edge computing
(MEC) [33] and fog computing [10]. As the long-distance in
terms of network topology between a mobile device and the
conventional cloud remains a significant drawback for mobile-
cloud computing, MEC provides low latency due to being in
proximity to mobile devices. Also, MEC promises to push
computation, storage and network control to the edge of the
network (e.g. wireless access points, cellular base stations).
However, MEC has limited computing capabilities compared
to the conventional cloud computing [34]. Instead, fog comput-
ing has the advantage to not only provide low latency but also
better compute and storage services anywhere in the device-
to-cloud continuum. Moreover, as fog computing provides
an abstraction to the underlying communication technology,
it can be useful for heterogeneity of IoT devices. In [35],
[36], the authors proposed a hierarchical architecture for the
task offloading (IoT-fog-cloud) to minimize the path delay
and maximize the QoE. Whereas, in such a scenario, using
MEC would have the drawback to provide the hierarchical
architecture, because it is essentially one layer of nodes located
near the end-users.

In this work, we aim to find a reliable path with minimum
delay in an IoT-Fog framework. Our method is different
from the aforementioned approaches because we consider
each objective differently and conflicting with each other. By
integrating the benefits of two established technologies, i.e.,
SDN [13] and fog computing [10] for IoT applications and
using a machine learning algorithm, we show that our method
can achieve better QoS/QoE as depicted by our experimental
results section.

III. MODELLING AND NOTATIONS

We discuss the network modeling in this section. It is
important as it will enable the SDN control plane to further
exploits the potential of SDN in performing fine-grained
management. Our proposed system model consists of network
architecture, communication model and provisioning model.
We discuss them in detail here.

A. Network Architecture

The underlying physical SDN-enabled IoT-Fog architecture
consists of a set of SDN switches V , a set of fog nodes F , a
set of IoT devices I and a set of links L. The architecture
is represented by a directed graph G = (V ∪ F, L). In
G, each li ∈ L is associated with QoS parameters, i.e.,
link reliability Rli, bandwidth bli, and transmission delay dli.
The SDN controller obtains the QoS-related information from
the underlying network periodically, i.e., after t seconds, to
optimize the routing policy for a new flow. Additionally, each
li ∈ L in the network has a set of associated functions.
Function R(.) : l → (0, 1] is use to compute the reliability

of an li ∈ L and function D(.) : L → dli > 0 is use to
compute the transmission delay.

B. Communication Model

In an IoT-Fog network, fog servers receive continuous flows
from IoT end devices. For a given flow, the SDN controller
needs to compute a path. The path needs to satisfy two QoS
requirements, which are based on the path reliability level and
transmission delay. In the proposed model, the IoT flow is
represented by a triple, Υ (If , bf , df ), where If signify the
source IoT device of a given flow f , bf : If → R+, and df > 0
represent the delay of the flow. For every flow f , the delay
should be enforced for transmission.

A graph G that represents the network topology, consists
of a set of paths P = {px}, where each path consists of
links px = (lx(0), lx(1), ..., lx(|px|)). In a path, x(j) shows the
index of jth link. The QoS properties of paths and links,
i.e, reliability level and transmission delay, are signified by
Rli , dli , Rpx , and dpx . The link failure is often observed in
a network G due to external and uncontrollable conditions.
We refer these uncontrollable conditions as events E. The
reliability function, R : L×E → (0, 1], assigns the reliability
level to each l ∈ L at a specific time ti slot. Therefore, R(li|e)
represents the reliability level of any link at a specific event
e ∈ E. Furthermore, we assume that links’ reliability level are
independent of one another. Thus the reliability level of a link
li can be computed using Eq. 1.

Rti(li|E) = 1−
∑
e∈E

(1−R(li|e). (1)

For a given flow Υ, the reliable path Rpx
from a source

device I to the fog server Fn is shown in Eq. 2.

Rpx
((I, Fn)|E) =

∑
li∈px∈P |E

[IR(I, Fn)×Rti(li|E)] (2)

where, IR ← (0, 1] shows the reliability indicator of a link in
the path px.

In the proposed model, function D(.) is used to compute
the end-to-end delay on a path dpx

= (lx(0), lx(1), ...). The
associated delay with links, depend on all flows traversing the
links li ∈ L. If we neglect the delay demand of a given flow
Υ, then the delay can be computed using Eq. 3,

dpx =
∑
li∈px

d(lx(i)), (3)

where, d(l(i)) shows the end-to-end delay of ith link. How-
ever, in this work, we will consider the end-to-end delay of a
path px, which is a combination of transmission delay (packet
size/link bandwidth), processing delay, and propagation delay.
Therefore, the links’ failure and end-to-end delay creates
sequential dependence between the links status.

The SDN controller obtains the link status and compute
the path status signified by sli and spx

, respectively. The
link’s status sli contains information about the reliability level,
transmission delay, processing delay, and propagation delay.
Additionally, the path status spx contains the end-to-end QoS
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matrix. Consequently, based on these status, i.e., sli and spx
,

we can conclude two assumptions:

• The link status sli depends upon the status of all paths
px ∈ P including the link li ∈ px.

• The path status spx depends upon the status of all links
li ∈ px in the path.

We have formulated these two assumptions in Eq. 4 and
Eq. 5 as given here.

sli = ı(spxi
, ..., spxj

),∀li ∈ px, x = 1, 2, ..., j, (4)

spx
= (slx(o), ..., slx(|px|)), (5)

where, ı and  are optimization functions. However, a direct
optimization of ı and  is not possible here. Therefore, we
will use a multi-objective optimization algorithm (discuss in
Section IV-C) to achieve a structure for ı and . The delay cost
function D(.) can be formulated mathematically using Eq. 6.

dpx
((I, Fn)|E)) :=

∑
f

[(dTx
f + dPro

f + dProp
f )], (6)

where, dTx
f , dPro

f , and dProp
f show the transmission delay,

processing delay, and propagation delay, respectively.

C. Provisioning Model

As mentioned in Section III-B, a flow f is provisioned
with two QoS parameters, which are the path reliability and
transmission delay. Based on these parameters, we make the
following explanation.

Path Reliability (Max): It is the minimum link reliability in
all links making a path. The objective is to find a path that
has maximum reliability. In the proposed model, we compute
this parameter using Eq. 7.

max(min(
∑

px∈P |E

Rpx
IR(I, Fn))). (7)

Path’s Delay (Min): It is the mean of total delay of all the
links making a path px(I, Fn). The objective is to find a path
that has minimum end-to-end delay. In the proposed model,
we compute this parameter using Eq. 8,

min
∑
px∈P

dpx
(I, Fn). (8)

IV. RELIABILITY-AWARE COMMUNICATION IN
SDN-ENABLED IOT-FOG

In this section, we discuss our proposed approach for a
reliable communication in an SDN-enabled IoT-Fog. In the
following sub-section, we start with providing an overview of
a multi-hop network scenario that we have considered for the
transmission of flows from IoT end-devices to the fog servers.

A. Multi-Hop SDN-Enabled IoT-Fog Architecture

In order to communicate with the fog servers in an SDN-
enabled IoT network, we consider a multi-hop scenario for
data transmission. Figure 1 shows the architecture of SDN-
enabled IoT-Fog. As mentioned in Introduction (Section I),
deploying the fog servers at the edge is costly and companies
are often reluctant to do so. Therefore, fog server are deployed
in such a way that end-users’ devices can access them in a
multi-hop fashion. The end-devices are connected to the SDN
switches via access points.

Fig. 1. A multi-hop SDN-enabled IoT-Fog architecture. The things layer
of IoT communicate with fog servers in a multi-hop manner, where the
intermediate nodes are the SDN switches.

B. Finding Link Reliability

In this work, we employ an ML-based algorithm to build a
model that find the reliability of a link in a network. We train
the ML-based model on historical statistics, which are based
on link failure events of a real-life network. For this purpose,
we use a regression-based k-nearest neighbor algorithm (k-
NNR), which is one of the most popular supervised learning
and non-parametric algorithm. Furthermore, k-NNR is used
to identify the non-linear and complex relationship among
observations using nearest neighbors’ rules. For example,
when a new link failure lx ∈ L event occurs, k-NNR works
under the assumption that the link failure event shares a similar
property with similar historical links failure events. Therefore,
using the model (based on the k-NNR), the reliability level
for the links are predicted. Moreover, k-NNR can use different
distance metrics such as Euclidean, Manhattan, or Makowski
to find the closest/nearest neighbors [18]. In this work, we
consider the Euclidean distance, as shown in Eq. 9,

Euclidean distance (ri, lx) =

√
(ri, lx)

2
,∀lx ∈ L, (9)

where, (ri, lx) shows the distance between the target reli-
ability value of ri.

1) Dataset - A Real-life Fog-based network: We train the
k-NNR algorithm with a data set that includes a realistic data
capture of links’ failure of an anonymous fog-based network.
The data is recorded for a time interval of over 5 months. The
data set shows that a link goes down almost every 22 minutes.
As our primary goal is to study link failures, we focus only
on those link State Packets (SPs) that report a link failure
or be reinstated after a failure. In Fig. 2, the distribution of
link failure events is shown. We can see that the link failure
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events are spread out reasonably well across the given period.
Moreover, a zoomed view of the events highlighting only one
month duration of the link’s failure is shown in Fig. 3.

Fig. 2. Real-time Captured Notification of Link Failure Events over Timescale
(April 15, September 21, 2019)

Furthermore, the data traces recorded for each
link li of the network include parameters such as
Daytime, lidowntimestart

, liuptime , lidownfrequency
, and

lifailurereason
. The lidowntimestart

is the occurrence time
of a link failure, and liuptime

is when the link is recovered or
become operational. The lidownfrequency

refers to the number
of times a link was down in a specific time slot of a day. The
lifailurereason

shows the reasons for link failure, e.g. due to
power, configuration, hardware, and software malfunctioning.
The total down duration of a link is lidowntime

= liuptime
-

lidowntimestart
. Furthermore, we computed the reliability level

of each link li in the data set using Eq. 1.
2) k-NNR Algorithm: Algorithm 1 shows our implemen-

tation of the k-NNR. It takes the data set as an input, we
split the data into two sets, to be used for training (Xtrain)
and testing (Xtest). The K-NN regression method is based on
three steps, which results in predicting the accuracy of a link’s
reliability level lx ∈ L and returns the predicted value. The
distance array is calculated in step-1, which is to calculates the
distance between a sample in (Xtest) and all other samples in
the training data set (Xtrain), using the Euclidean distance
of Eq. 9. In step-2, the nearest k neighbors in data Xtest is
selected. Finally, in step-3, the predicted value is estimated
and returned.

C. Multi-Objective Optimization

Multi-objective optimization (MOO) algorithms represent a
viable alternative to finding the Pareto-optimal approximation
set in one run. We will use NSGA-II [27] - an MOO algorithm
to find an optimal path or set of Pareto-optimal paths that op-
timize the trade-off between the two objectives: 1) maximum
reliability level of a path, i.e., Eq. 7, and 2) minimum end-to-
end delay of a path, i.e., Eq 6.

1) Pareto optimality: Pareto optimality is a state when
a solution or a set of solutions in the solution space are
achieved so that no other feasible solution reduces at least
one objective function without increasing another one [37].
As in multiple-objective optimization, there are more than one
objective to be optimized simultaneously. During the process
of optimization, one of the challenging steps occurs when
the objectives are conflicting with each other. There exists a

Algorithm 1: A Regression-based k-NN Algorithm
to predicts links’ reliability-level of an SDN-enabled
network.
input : Link lx ∈ L, training dataset (Z) having (m)

samples, nearest neighbors (k).
Result: Return the reliability-level predrel of lx ∈ L

1 //Step-1 calculate distance array
2 for i = 1 to m do
3 for y = 1 to m do
4 E-dist[y] ← 0 // Euclidean distance
5 for z = 1 to n do
6 E-dist[y] ← E-dist[y] + (Xtestz , Xtrainyz

)2

7 end
8 E-dist[y] ← sqrt(E-dist[y])
9 end

10 // Step-2, Sort distance array
11 for s = 1 to k do
12 neareastSet[s] = E-dist[s]
13 end
14 sum ← 0 //Step-3
15 for s ∈ neareastSet do
16 sum ← sum + s
17 end
18 predrel ← sum/k
19 return predrel
20 end

natural trade-off between the objectives, which creates a set
of optimal solutions using Pareto-optimal theory [27]. These
solutions are popularly known as Pareto-optimal solutions or
non-dominated set of solutions. To represent a Pareto-optimal
set or non-dominated solutions on a two-dimensional graph,
an approximation front called Pareto front/Pareto frontier is
used.

2) NSGA-II: The Non-dominated Sorting Genetic Algo-
rithm (NSGA-II) [27] is a fast elitist population-based algo-
rithm for multi-objective optimization. Algorithm 2 shows our
implementation of the NSGA-II. Moreover, NSGA-II is based
on elitism. In a population of a generation, the elites have
the opportunity to be carried to the next generation. Also, the
non-dominated solutions in NSGA-II algorithm are preserved.

We implemented the NSGA-II by executing it on the SDN
controller. It finds the Pareto-optimal approximation of paths
from source SDN switches (r ⊂ V ) to the fog servers (F ). As
the link states of the network changes on-the-fly, the controller
searches the updated paths. This enables the SDN controller
to select the best path according to the requested flow for
achieving the required QoS level. We will discuss more about
adaptive selection of path in Section V.

V. ADAPTIVE COMMUNICATION IN SDN ENABLED
IOT-FOG

Adaptivity enables the IoT applications running on the end-
devices to achieve better QoE. Based on the type of packets,
the SDN controller can choose a path from the Pareto-optimal
set. In other words, the behavior of the controller will change
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Fig. 3. The plot showing links failure statistics per day of a real-life network.

Algorithm 2: Implementation of NSGA-II to optimise
tradeoff between reliability and delay of a path.

input : G: The global view of IoT-Fog topology with
links information such as link reliability and
delay, F :list of Fog servers, r ⊂ V : list of
source SDN Switches.

Result: return the Pareto-optimal set of paths
1 for s ∈ r do
2 for d ∈ F do
3 paths ← Networkx.all simple paths(G, s, d)
4 binaryEncode(paths)
5 NSGA(paths, populationSize, TournamentSize,
6 crossoverProb,mutationProb)
7 pop ← initializePopulation()
8 R pop ← pop
9 for k = 1 to numGenerations do

10 pop ← findChildPop(R pop)
11 evoluePopulation(pop) // i.e., Using the

costs functions in Eq. 6 and Eq. 7
12 find fronts(pop)
13 find Crowding distance(pop)
14 R pop ← elitistPop(pop)
15 end
16 PF Paths{s:d} ← R pop
17 end
18 end

at run-time in response to the changing QoS requirements to
make better decisions on how to use the available resources.

In this work, we implemented an adaptive decision mecha-
nism in the SDN controller. This was achieved by considering
the output of NSGA-II algorithm - the Pareto-optimal paths
from source SDN switches (r ⊂ V ) to the fog servers. The
source SDN switches are those to which host terminals are
connected directly or indirectly, i.e., through wireless access
points. Therefore, when a new packet arrives on any of these
source switches, the SDN controller (on-the-fly) checks the
packet type and decides which path should be selected. For
real-time applications, which are delay-sensitive in nature and

generally use UDP packets, a path that has the lowest end-to-
end delay will be selected. For those applications that use TCP
packets for their communications, i.e., computation offloading
or HTTP requests, a path from the Pareto-optimal set that has
a higher reliability level will be selected.

VI. EXPERIMENTAL WORK AND RESULTS

A. Simulation Settings
We evaluate the performance of the proposed approach

using Mininet 1 network emulator along with POX 2 SDN
controller. We used Intel core i7 PC with 3.40 GHz CPU
and 12 GB of RAM, running Ubuntu 16.04 OS having Linux
kernel version 4.4.

We created a network topology that has a total of 38 nodes,
i.e., SDN switches, and 586 links connecting them. The graph
G, representing the network topology, was well connected
and nearly a complete graph. The nodes in G represent the
SDN switches (V ) that are connected to a Pox controller. We
randomly selected 10 nodes (r ⊂ V ), which were connected
directly (or indirectly via wireless access point) to the host
terminals. We selected three fog servers placed in random
and distance positions from each other. For each of the host
terminals, the nearest fog server having the minimum number
of hops was chosen as the offload target.

B. Results and Discussion
1) Finding links reliability level: We created a Python-

based script to execute the simulation in the Mininet by
employing the network topology. For the Pox controller to
obtain a global view of the network with link failure statistics,
we generated traffic from hosts to fog servers. We achieved
this by enabling the built-in Python-based HTTP server at the
fog servers and the hosts were set to send HTML page requests
continuously for a random amount of time. Furthermore, we
enforced to randomly make some of the intermediate links
down for a random and a small amount of time. As the k-NNR
algorithm was deployed on the controller, it was calculating
the links reliability level inline with the failure events.

1http://mininet.org
2http://github.com/noxrepo/pox
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2) Finding Pareto-optimal paths: The Pox controller ex-
ecuted the NSGA-II algorithm in order to find the Pareto-
optimal paths between the source SDN switches (through
which the hosts were connected) and the fog servers. NSGA-
II starts by creating a population of individuals (i.e possible
paths). We used binary representation of individuals, where
1 indicates the link is considered while 0 indicates the link
is not considered. To select the parents in each generation,
we used the tournament selection. To create a child, we used
Uniform Crossover operator. With the crossover probability
as 0.5, each gene (bit) is selected randomly from one of the
corresponding genes of the parent chromosomes. We used Flip
Mutation which works by flipping a gene (bit). With a very
low mutation probability 0.2, it involves changing 0 to 1 and
1 to 0.

To find out the quality of solution set (Pareto-frontier)
produced in each generation by the NSGA-II, we used a
unary indicator called hypervolume indicator (S-metric). The
hypervolume is a unary value, which is calculated as the sum
of the areas formed by points on the non-dominated front and
a chosen reference point (w). In Fig. 4, the hypervolume of the
Pareto-front in each generation is shown. We used a maximum
of 30 generations in NSGA-II. Moreover, it can be seen in
cases of all the switches that the calculated hypervolume value
remains constant after the 20th generation. This indicates that
at this point the algorithm has fully converged in finding the
Pareto-optimal approximation of paths.

0 5 10 15 20 25 30
NSGA-II Generations Count
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Fig. 4. The plot shows the hypervolume of the Pareto-front approximation
obtained throughout the generations of NSGA-II MOO algorithm.

In Table I, we provide the results of the NSGA-II algorithm.
The average time to find the paths from the source SDN
switches to the fog servers was 16 seconds. The two extreme
paths making the Pareto-front approximation and the shortest
path are stated along with their reliability level and end-
to-end delay. Furthermore, we have randomly selected the
results of only three SDN switches, which we will be using to
demonstrate the adaptive decision mechanism in the following
subsection.

3) Adaptive communication: In order to evaluate how an
IoT application will perform in terms of communicating to
the fog servers using the reliable path (pr), the shortest path
(SP ) and the path having less end-to-end delay (pd), we used
two different applications (Apps). The first application (App-
1) sent continuous data stream to the fog server using UDP

sockets for analysis. The second application (App-2) offloads a
computationally-intensive task to the fog server for processing.
For this simulation, we stopped updating the links failure
statistics, so that no new paths are calculated. In Fig. 5, we
can see that App-1 performed well (using multiple runs) when
the Pareto-optimal path with the lowest delay (Pd) was chosen.
Moreover, the result was the same when this app was executed
on different host terminals communicating with different fog
servers. This implies that for a real-time application, which
relies on UDP packets for communication, the SDN controller
would choose a path with low end-to-end delay, i.e., pd.

Fig. 5. A real-time application execution completion time using different
paths.

For App-2, we used a controlled environment to randomly
make the intermediate links down for some time (seconds)
in order to emulate link failure events, based on the paths
reliability. The simulation was carried out by executing the
app for multiple times (ten runs). In Fig. 6, we can see that
the app performed well while using the Pareto-optimal path
with high reliability (pr). The packet loss was relatively lower
as compared to the app using the other two paths.

Fig. 6. Packet loss during offloading task using different paths.

Analysis of results shows that using the adaptive decision
mechanism at the SDN controller, both the applications (App-1
and App-2) met the required QoS requirements. The adaptive
decision to select the best path, pd, for App-1, resulted in
finishing its execution in 13% less time than if the shortest
path, SP , would have been selected, and 20% less time than
if the reliable path, pr, would have been selected. Similarly,
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TABLE I
THE RESULT OBTAINED FOR 3 SWITCHES AFTER EXECUTING NSGA-II ALGORITHM 2. THE EXECUTION TIME FOR FINDING THE PARETO-OPTIMAL

PATHS, SHORTEST AND EXTREME PARETO-OPTIMAL PATHS ARE SHOWN ALONG WITH THEIR RELIBILITY LEVEL AND END-TO-END DELAY.

SDN Switch Fog Server Execution Time (s) Paths Path Reliablility Level Path End-to-End Delay (s)

SDN Switch 1 Fog Server 1 (node=14) 16.48
SP = [1,2,13,14]
Pr = [1,3,16,20,21,15,14]
Pd = [1,2,15,13,14]

0.56
0.84
0.71

0.91
1.04
0.83

SDN Switch 3 Fog Server 2 (node=27) 17.61
SP = [3,16,20,25,27]
Pr = [3,6,12,10,15,25,27]
Pd = [3,16,20,21,15,23,27]

0.84
0.87
0.81

0.94
0.97
0.86

SDN Switch 10 Fog Server 3 (node=38) 16.73
SP = [10,25,33,37,38]
Pr = [10,15,23,34,36,38]
Pd = [10,15,23,34,37,38]

0.62
0.80
0.66

0.96
1.1
0.76

selecting a reliable path for App-2 faced less packet loss than
if the their data would have been sent on the shortest path or
pd. On average, the packet loss on path pr was 41% less than
SP and 36% less than pd.

VII. CONCLUSION

In this paper, we presented a novel approach to achieve
adaptive and reliable communication in an SDN-enabled IoT-
Fog. A regression-based k-nearest neighbor algorithm is used
to find the reliability level of links trained with real-life net-
work traces recorded for 5 months. A popular MOO algorithm
( NSGA-II) is used to find the Pareto-optimal paths that
optimizes the trade-off between two objectives. An adaptive
decision mechanism is used in which the SDN controller
selects the best path for different types of applications, based
on the packet types (UDP and TCP).

We used two different applications to evaluate the proposed
method: 1) a real-time and delay-sensitive application (App-
1) that was sending data to the fog server using UDP sockets,
and 2) a second application (App-2) that was offloading a
computationally-intensive task to the fog server for processing.
The demands of both applications were different. A path with
lowest possible delay needed to be selected for the first app,
while the second app needed a reliable path to communicate.
THe results showed that using the adaptive decision mech-
anism at the SDN controller, both the applications met the
required QoS requirements.

In the future, we are interested in pursuing further work
on the proposed approach and related case-study applications.
Particularly, by evaluating different strategies for other QoS
metrics beyond the execution time of the applications such
as energy efficiency and the cost of using the fog servers.
Furthermore, creating case studies by conducting real-world
experiments involving users that exercise the system instead
of using the controlled environment.
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