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Leveraging Graph Convolutional-LSTM for Energy
Efficient Caching in Blockchain-based Green IoT

Ge Chen, Jun Wu, Member, IEEE, Wu Yang, Ali Kashif Bashir, Senior Member, IEEE, Gaolei Li,
and Mohammad Hammoudeh, Senior Member, IEEE

Abstract—Nowadays, adopting blockchain technology to In-
ternet of Things has become a trend and it is important to
minimize energy consumption while providing a high quality
of service (QoS) in Blockchain-based IoT networks. Pre-caching
popular and fresh IoT content avoids activating sensors fre-
quently, thus effectively reducing network energy consumption.
However, the user equipment in regions covered by base stations
will generate distributed and time-varying data requests, hence
modeling the base station topology to capturing spatio-temporal
request patterns is required for the data storage pre-allocation.
Traditional solutions typically fail to pay attention to the topology,
resulting in the sensor being activated redundantly. In this paper,
we propose Request Graph Convolutional-LSTM to capture
the spatio-temporal request patterns in Blockchain-based IoT
networks and make predictions. Moreover, a heuristic algorithm
based on the predictions is proposed to develop pre-caching
strategy, which determines the data and location to be cached
to minimize the mean data retrieval latency restricted by the
cache space of IoT network entities and the freshness of IoT
content. Experiments show that our proposed frame provides a
low energy consumption.

Index Terms—Internet of Things, Graph convolution networks,
Blockchain, spatial-temporal, pre-caching.

I. INTRODUCTION

INTERNET of Things (IoT) continues integrating with
human society in the 5G era. It is anticipated that by the

year 2022, 18 billion devices will be connected to the IoT [1].
Blockchain technology, which can establish a secure, credi-
ble, and decentralized data sharing ecosystem, has attracted
widespread attention from researchers. The blockchain [2]
consisting of a set of blocks and transactions is a distributed
database that eliminates the need for a central authority.
Blockchain has become an important component of the fun-
damental elements of in Industrial Internet of Things (IIOT)
[3], Vehicle-to-everything (V2X) [4], and IoT because of its
security, decentralization, and autonomy.
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In blockchain-based IoT, local edge nodes are essential
for building a decentralized storage system. Edge (or fog)
computing enhances the computing and storage resources of
local edge nodes. Artificial intelligence (AI) services empow-
ered by edge computing are gradually being pushed to the
edge node hence also known as edge artificial intelligence
(edge-AI) [5]. In contrast to traditional centralized storage,
storing on the blockchain utilizes more advanced redundant
coding modes to store data on tens of millions of nodes
around the world. Transmitting all the data to the data center
requires huge bandwidth, which will eventually generate huge
energy consumption. Meanwhile, there will be data security
concerns. With the adoption of novel methods to reduce energy
costs, blockchain-based storage will have more advantages.
Sensing service, as the primary application of IoT, trans-
mits the sensing data and assists users in monitoring the
environmental conditions (e.g., traffic congestion, humidity,
and temperature) [6]. With the number of users and IoT
sensors growing rapidly, a considerable amount of traffic will
flood into the IoT network in the near future. On the other
hand, frequent requests for data transmission from IoT sensors
accelerate battery power consumption [7]. Generally, sensors
have limited battery capacity and are equipped with batteries
with limited energy. An effective technology that can avoid
activating sensors frequently (consuming substantial energy)
is to cache IoT data at network entities [8]. Attaching cache
to IoT gateways (GW) was proposed in [9]. For time-varying
and dynamic IoT networks, the authors utilized deep reinforce-
ment learning to manage content placement. Another caching
strategy adopting markov chain model to allocate edge cache
resources reasonably in blockchain-based IoT was proposed in
[10]. To sum up, developing an efficient caching strategy on
network entities is essential to achieve the reduction of sensor
energy consumption.

However, numerous base stations (BSs) are geographically
distributed on a large scale in cities, and mobile users usually
stay briefly and quickly switch between the areas covered by
different BSs. Thus, users’ requests for sensing data demon-
strate heterogeneity (Spatio-temporal and relation). Designing
an energy-efficient caching strategy should realize the goals
as follows.
1) The number of sensor activations should be minimized to
reduce energy consumption.
2) The cache should be reasonable deployed near the edge of
the network to effectively reduce repeated transmissions.
3) Considering the geographical distribution of BSs, the
content replacement problem should be solved by predicting
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the requested sensing data based on capturing the relationship
between the coverage areas of BSs, rather than just based on
the popularity of the data.

Recently, deep learning on graph-structured data has be-
come a topic that grabs widespread attention in academia.
With the support of the spectral graph theory [11], a graph
convolution based on the Laplacian matrix [12] is designed
to deal with the inherent combinatorial complexity of the
graph structure. To lessen the complexity of learning, the
local spectrogram convolution [13] is also proposed. The graph
convolution neural networks based on adjacency matrix [12],
[14] is more flexible because of the incorporation of the
adjacency matrix. The distribution of BSs in the IoT can
be considered as a general graph structure, on which the
convolution operator can be extended to capture the spatial
relationship. Long short-term memory neural network (LSTM)
[15] is often used in time series forecasting and analysis tasks,
i.e., utilizing the characteristics of an event in the past period
of time to predict its future characteristics. LSTM can be
applied to capture the temporal characteristics of the sensing
data requested by users.

In this paper, motivated by previous works, we are dedicated
to proposing a deep learning architecture, which incorporates
the graph convolutional network and LSTM into blockchain-
based green IoT for pre-caching, to decrease energy consump-
tion.
This main contribution is to include the following three
aspects:
• A deep learning architecture simultaneously capturing

the unstable temporal dynamics and spatial dependencies
in blockchain-based green IoT that reduces the energy
consumption is proposed.

• Different from traditional caching strategies based on
popularity, Request Graph Convolution (RGC) with three
convolutional layers which can learn the characteristics
of localized data requests is designed for making accu-
rate predictions. According to the sensing data requests
predictions, a low-complexity pre-caching heuristic algo-
rithm is designed to decrease energy consumption in the
blockchain-based IoT.

• Extensive simulations on synthetical dataset indicate that
our framework is superior to traditional approaches in the
aspect of effectiveness and energy consumption.

The remainder of the paper is summarized as follows: In
Section II, we summarize the related works. In Section III,
we present a comprehensive explanation of our system model.
Section IV describes leveraging graph convolutional network
and LSTM for interesting data prediction. A low-complexity
heuristic pre-caching algorithm is developed in Section V.
Section VI shows the experiment results. The conclusion of
our paper is presented in Section VII.

II. RELATED WORK

There are numerous studies that investigate energy saving
in IoT networks. In [16], the authors illustrated that the energy
consumed by IoT can be significantly diminished through
caching IoT resources. Quevedo et al. [17] analyzed that

caching in-network contributes to reducing both bandwidth
usage as well as energy consumption. On the other hand, many
researchers also focused on adopting blockchain technology
equipped with a set of good characteristics (i.e., decentraliza-
tion, security, etc.) for IoT support. In [18], the authors gave a
brief description of challenges posed by the high dynamics of
IoT applications. To dynamically configure the blockchains, a
software-defined blockchain structure is designed. Moreover,
a consensus function virtualization method and a transfer-
learning-based intelligent project are proposed to enhance the
flexibility and scalability of blockchains in IoT.

Several studies focused on designing efficient caching
strategies. In [9], to reduce the energy consumed by sensors,
the authors proposed that the cache in GW can be leveraged
to temporarily place popular sensing data. Hence, the number
of activations of the sensor is reduced. Deep reinforcement
learning is utilized to determine content placement within
dynamic IoT networks. Cloud radio access network (C-RAN),
as a patent framework of 5G networks, aggregates the com-
putational functionalities of conventional BSs in a centralized
resource pool [20], namely baseband unit (BBU) pool. Thus,
their work ignores the BBU buffer space, and the network
architecture they proposed is overly simplified. In [19], a
collaborative caching scheme for IoT in 5G networks was
proposed, which provides space-reserved storage at both small
and macro BSs to decrease the average energy consumption.
However, their work did not take take into account the impact
of user mobility of the IoT on data storage. In [10], the authors
proposed to utilize the caching capacity of edge server to
support the IoT devices in caching data in blockchain-based
IoT. And there is a shortcoming that the above work has
not considered the geographical distribution of base stations
and the spatial-temporal characteristic of sensing data. In our
work, we analyze the spatial-temporal IoT networks where the
influence of both time and geographic factors on sensing data
requests is considered. In this setting, we study the data pre-
caching issue in blockchain-based IoT networks by leveraging
graph convolutional-LSTM.

Studies that investigate conducting graph convolution are
mainly divided into two classes. The first class of methods
[12], [13], [21] started from the graph Laplacian matrix and
designed a spectral filter convolution. The other form of graph
convolution is to dynamically perform on graph data structure.
An example was proposed in [22] when performing graph
convolution, the dynamic edge-conditioned filters are applied.
LSTM Encoder-Decoder model for data caching was first
proposed in [23], and can significantly boost cache efficiency.
To design reasonable caching strategies, LSTM is leveraged
as a forecasting tool to forecast the data popularity [24].

III. SYSTEM MODEL

As shown in Fig.1, the system model of our proposed
blockchain-based deep hierarchical pre-caching architecture
with BBU pools and IoT GW comprises several planes: the
user perception plane, distributed edge artificial intelligence
plane, and IoT sensor plane.

The user perception plane consisting of BSs geographically
distributed in the city can monitor sensing data requests
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Fig. 1. System Model.

generated from the user equipment (UE). Near the edge of
the network, massive information is periodically transmitted
to edge-AIs within the edge artificial intelligence plane for
processing. The graph convolution network (GCN) and LSTM
relying on certain computing capability, are deployed in the
distributed edge-AIs to simultaneously learn the complicated
spatial dependency and temporal dynamics in green IoT.
Therefore, edge-AIs, also acting as an edge data center,
performing calculations, and ultimately generating sensing
data request predictions. The underlying infrastructure in IoT
(e.g., thermometer, GPS, etc), which sense the environment,
is deployed in the sensor plane. Massive IoT data (e.g.,
temperature, traffic conditions, etc) is generated at this layer
and transmitted to the consumers who request them.

It is unrealistic and inefficient to manage edge-AIs centrally
due to the geographical distribution of them. Additionally,
edge-AIs opens up the possibility of attacks from malicious at-
tackers, which may result in the collapse of the entire network.
The sensing data request predictions are stored in edge-AIs and
could be attacked by adversaries. Malicious attackers could
tamper with the prediction results in the victim edge-AIs. The
integrity and non-tampering of prediction results should be
guaranteed. Therefore, decentralized management of edge-AIs
is essential to guarantee the security and effectiveness of our
architecture.

Blockchain technology has been utilized to promote trust
and data privacy while maintaining trust, integrity, and trans-
parency. The blockchain technology supporting P2P communi-
cation is utilized to provide to guarantee effective and reliable
IoT network management. It provides identity verification
services for IoT entities, carries management responsibilities,
and grants access to data (i.e., access control). However,
for (open) public blockchains, a large number of edge-AIs
make transaction verification inefficient. Moreover, the mining
processes result in higher energy consumption and long delays.
Thus, private blockchain requiring less energy is utilized.
Private blockchains can provide a high level of security,
which guarantees a secure ecosystem for data sharing. In

the proposed framework, the private blockchain is deployed
among the edge-AIs. The private blockchain will not expose
transactions to the entire network due to its particularity.
Entities involved in transactions also have a high degree
of trust. Therefore, the private blockchain guarantees both
the privacy and transaction efficiency of edge-AIs. Besides,
applying encryption helps minimize undesired access to the
stream under the circumstance of data sharing.

According to the system architecture, edge-AIs, being de-
ployed on the edge computing platform, have the advantages
of low latency, energy-saving, and reduction of core network
congestion. The algorithm we proposed is deployed on edge-
AIs and predicts the data requests in each region accurately,
so reasonable storage allocation is performed hierarchically on
the BBU pools and GWs. Therefore, frequent sensor activation
can be avoided, which saves considerable energy.

In the following, we apply a request graph convolution
operator to capture the spatial dependencies of data requests
between regions covered by BSs. Base on this operator, we
predict data requests from UEs and propose a pre-caching
strategy.

IV. INTERESTING DATA PREDICTION BASED ON REQUEST
GRAPH CONVOLUTIONAL-LSTM

Normally, a graph is a sort of network data structure. A
graph � is composed of nodes set + and edge set � . The
relationship between nodes is called an edge. We consider an
active base station distribution map in the city of Ghent [25].
Each base station covers a circular area, and some areas are
adjacent. The graph representing a network of regions covered
by the BSs distinct from biomolecule network graphs or paper
reference graphs in several aspects: 1) the structure of the
network rarely changes; 2) the status of requests for interesting
IoT data in each region changes over time; 3) regions in the
network graph possess meaningful physical properties, such
as the coverage area, etc.

A. Network Topology

The map network is described as an undirected graph
� (�, �) based on geographic distributed BSs, where the set
of nodes � represents the areas covered by the base station,
and the edge set � represents the adjacent areas.

1) Adjacency Matrix: The information of the edges or arcs
of vertices in � is portrayed by an adjacency matrix �, and
the pseudo-variable � (8, 9) illustrates whether area 8 and area
9 are interconnected, i.e., each item �8, 9 = 1 if there exists
an edge linking vertice 8 and vertice 9 together or �8, 9 = 0
(�8,8 = 0). However, since the content popularity is time-series-
based data. The current status of an area affects the status in the
future. Moreover, we deem that all areas are self-influencing.
Therefore, we deem that the neighborhood of a vertice not only
includes itself but a matrix describing the one-order adjacency
relation of the entire graph, expressed as �̃ = � + �, � of which
is the unit matrix.
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2) Spectral Graph Convolution: The idea of graph convo-
lution is to extend standard convolution to general topology
graphs by operating in the spectral field. Supported by the
Laplacian matrix, the spectral graph convolution is established
in the Fourier domain [11], which equates ! = � − �,
� of which is the degree matrix. Laplacian matrix can be
diagonalized as ! = *Λ*) according to eigendecomposition
due to its positive semi-definite property. Characteristic values
compose a diagonal matrix Λ, eigen vectors form *, and the
transposed matrix of * is denoted as *) . Multiply a signal
G ∈ '# with a filter 6\ = 3806(\) (\ ∈ '# ) defines the
spectral convolutions operation on topological graphs in the
Fourier domain [26], i.e.:

6\ ★ G = *6\*) G, (1)

where 6\ is a function of the characteristic value of !, i.e.
6\ (Λ). Furthermore, for saving computational cost, it was
suggested [27] to fit the convolution kernel with Chebyshev
polynomials:

6\′ =

 ∑
:=0

\ ′:): (Λ̃), (2)

where Λ̃ = 2
_<0G

Λ − �# is the diagonal matrix of re-scaled
eigenvalues, \ ′ ∈ R is Chebyshev coefficients (i.e., param-
eters updated iteratively in training). Chebyshev polynomial
does not affect matrix operations, thus matrix operation is
performed first. The convolution after substitution is expressed
as:

6\′ ★ G ≈
 ∑
:=0

\ ′:): ( !̃)G, (3)

where !̃ = 2
_<0G

! − �# depends on the node-set with the
largest  step distance from the center node. Eigenvector
decomposition is not required during the calculation process.

B. Data Request Rate Prediction Problem

TABLE I
NOTATIONS FOR DATA REQUEST RATE PREDICTION

Notations Description
� Request region-based graph network � = (�, � ) .

�
Set of edges in � possessing the the number of
elements |� |.

�
Set of vertices in � possessing the the number of
elements |�| = # .

� ∈ R#×# Adjacent matrix of �.
�̃ ∈ R#×# The adjacent matrix plus self-connection.

AC ∈ R#×#
Vector of request rate of all nodes in graph �
at time C .

A 8C,0E4A064
The historical average content request rate at
time epoch C of region 08 ∈ �.

A 8
C,<4380=

The historical median content request rate at
time epoch C of region 08 ∈ �.

A 8
C,<8=

The historical minimum content request rate at
time epoch C of region 08 ∈ �.

A 8C,<0G

The historical maximum content request rate at
time epoch C of region 08 ∈ �.

38C
The historical standard deviation at time epoch C
of region 08 ∈ �.

According to the system assumptions, the catalog of IoT
sensing data is defined as � = {1, ..., �} carrying the Freshness
Period (�%) parameter. The set of BBU pools � = {1, 2, ..., �}
equipped with limited storage for caching connects the Base
Stations (BSs) which monitor the request data generated from
the UEs. The set of IoT gateways � = {1, 2, ..., �} with
storage capabilities to store sensing data such that BBU pools
can collect data directly from � through backhaul links instead
of sensors. Avoiding activating sensors frequently helps to
reduce energy consumption. Thus, we can attach a cache to
GW or BBU pool to store sensing data which is not only
popular but also fresh. The request rate of a certain data at
the CCℎ time slot (e.g., 10 min) of area 08 ∈ � is defined
as AC ∈ R# (# is the number of areas covered by the BSs).
More specifically, we calculate the following parameters in the
general time interval C:

• the sum of received sensing data requests, #C>C ,C .
• the count of requests of every distinct requested data,
#38B,C .

The request rate of a certain data at interval C, A E8C , is then
obtained as A E8C =

#38B,C

#C>C,C
, which is also the 8Cℎ element of AC .

Data request rate forecasting refers to predicting future
states of the user request data, given previously observed states
of the user request data from an IoT network. IoT networks are
time-vary dynamic. Therefore, as a basic decision parameter,
data freshness also affects IoT data caching strategies. Data
measurements such as road congestion and temperature will
become stale after a short period. Thus, in our work, we
also take into account the freshness of data. The IoT network
with large-scale BSs distribution is transformed into a graph
network containing # vertices that depict # areas covered
by BSs and a set of edges that depict adjoining areas. As a
classic time series forecasting problem, the most recent real-
time measurement data can contribute valuable information for
data request rate prediction. Moreover, historical statistics can
also assist us to predict data request rates in the near future.

The daily trend of the request rate status of sensing data
requests can be obtained by utilizing historical statistics as
the input of the prediction model. During the CCℎ time slot
of area 08 ∈ �, the historical average data request rate,
median data request rate, minimum data request rate, maxi-
mum data request rate, and standard deviation re denoted by
A 8C ,0E4A064, A

8
C ,<4380=

, A 8
C ,<8=

, A 8C ,<0G , 3
8
C , respectively. The task

of data request rate prediction is to predict the future value
of each region in a certain period via learning the previously
obtained records. We summarize the main aforementioned
notations in TABLE I for data request rate prediction.

Thus, the data request rate prediction problem can be
formulated as:

A) +1 = %A ( [A1, A2, · · · , AC , · · · , A) ]; �(�, �)), (4)

where ') = [A1, A2, · · · , AC , · · · , A) ] represents historical graph
information with ) time steps. %A (·) is a conditional proba-
bility function that attempts to predict the signal in the next
step.
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C. Request Graph Convolution LSTM

In this subsection, the novel Request Graph Convolutional
Long Short-Term Memory (RGC-LSTM) integrating spatial-
temporal knowledge and historical statistics into the deep
learning model for data request rate prediction is proposed. In
our model, we replace the inputs of the LSTM with the graph
convolution features and ensure that other structures of LSTM
remain unchanged. The graph convolution-based adjacency
matrix has been defined in previous work [21], [14], [28].
The idea of a convolutional layer in the graph deep learning
network is to learn the influence of the characteristics of each
node in the graph structure data on its neighboring nodes.
Generally, the input data is characterized by a 2D or 3D matrix
structure. The propagation rules of each convolutional layer
can be defined as the following expression:

�;+1 = f(�̃− 1
2 �̃ �̃−

1
2�;, ;), (5)

where �̃ = � + � is the sum of the adjacent matrix and self-
connection of the undirected graph �, � is a matrix whose
diagonals are all ones (i.e., the identity matrix). This allows
the characteristic information of the vertex itself to be retained
when the information is propagated. �̃ is the degree matrix
of �̃ denote as: �̃ = diag(∑ 9 �̃8 9 ) and �; is the activation
unit matrix of layer !. The embedding matrix’s initial value
is the node feature: �0=X. , ; is the trainable matrix of each
layer. f is usually the activation function of ReLU, which is
applied in all layers but the output layer. Different from the
feedforward layer, the graph convolutional layer perform the
multiplication with �̃−

1
2 �̃ �̃−

1
2 in the front. On the other hand,

the multiplication with �̃−
1
2 �̃ �̃−

1
2 can also be interpreted as a

collection of embeddings of adjacent nodes. The weight matrix
, is the parameter of the different layers ; of GCN.

GCN is a convolutional neural network that stacks up
multiple layers of graphs. On each convolutional layer, GCN
only processes the first-order adjacent message of a certain
node, thus, the neighborhood matrix � of distributed BSs
graph, the input data AC can be substituted into Equation (5)
to extract characteristics from the one-order neighborhood.
Via superimposing several convolutional layers, multi-level
neighborhood information transmission is realized, i.e., we
can still retrieve convolutional filter capabilities via stacking
multiple such layers. The frequently used two-layer GCN can
be elegantly written as:

'
(1)
C = RELU(�̂ · RELU(�̂'0

C ), (0) ·, (1) ), (6)

where �̂ is a standardization of � denoted as: �̂ = �̃−
1
2 �̃ �̃−

1
2 .

More specifically, first we stack multiple graph convolution
layer to capture the spatial dependencies. Subsequently, the
spatial-temporal variable ' C is fused with historical variable
�C (including the historical average content request rate,
median content request rate, minimum content request rate,
maximum content request rate, and standard deviation at) to
construct the input vector %C = [' C ;�C ], where %C ∈ R## ,
two tensors are concatenated by operator [·; ·] along the same
dimensions. %C is then fed into the encoder of LSTM model.
At time epoch C forget gate, input gate, output gate, and input

cell state are represented by 5 6C , 8?C , >?C , and (̃C respectively.
The calculation formulas are defined as follows

5 6C = f(, 5 · %C ++ 5 · ℎC−1 + 1C 5 ), (7)

8?C = f(,8 · %C ++8 · ℎC−1 + 1C8), (8)

>?C = f(,> · %C ++> · ℎC−1 + 1C>), (9)

(̃C = tanh(,( · %C ++( · ℎC−1 + 1C(), (10)

· is the matrix multiplication operator. , 5 ,,8 ,,> and ,( ∈
R#×## , which map the input to the corresponding gate and
cell are the weight matrices of LSTM. + 5 , +8 , +> and +( ∈
R#×# are the weight matrices of hidden states. The bias terms
are represented by 1C 5 , 1C8 , 1C>, and 1C( ∈ R# , respectively.
The f is the activation function (typically tanh for status and
output and sigmoid function for gates). We then can calculate
the final cell state and the hidden state:

�C = 5C � �C−1 + 8C � (̃C , (11)

ℎC = >?C � tanh (�C ), (12)

At the ultimate time epoch ) , the outcome of RGC-LSTM
is the hidden state ℎ) , i.e., the predicted result ĤC = ℎ) . Let
H) ∈ R# represent the label of the input data %) ∈ R#×# .
For sequential data request prediction problem in our work,
labels of time ) () ∈ {..., =−1, =, =+1, ..., =+<}) is the input
of the immediate next time () + 1), i.e., H) = ?) +1. Thus, we
define the loss function during training process as ! (H) , Ĥ) ) =
! (?) +1, ℎ) ), i.e., the residual between the predicted result ĤC
and the labels is calculated by ! (·), which is typically Mean
Squared Error(MSE) function (MSE).

V. HIERARCHICAL PRE-CACHING STRATEGY

Average retrieve latency (ARL), acting as an important
indicator to evaluate the performance of network caching, is
the time interval between the user requesting data and the
user receiving the data packet. We formulate the energy-saving
problem in the complicated non-stationary temporal dynamical
and spatial dependent green IoT networks as an optimization
problem that decides to cache and update data at each time
unit to minimize the ARL constrained by the storage capacity
in this section. Accordingly, we design a heuristic algorithm
to work out the above optimization problem.

A. Optimization Formulation of Interesting Data Pre-cacheing

Given the status of the distribution of user requests for
content, once receiving a request for data item 5 , we first
search in its associated BBU pool 1 and download it to the
user if it is in 1. If the search fails, the BBU pool 1 requests
data from the IoT GW 6 through the backhaul. Then, if the
requested data is in the cache and is up-to-date, the GW
directly sends it to the BBU pool or otherwise collects it
from corresponding sensors to relay it. Here we define '

5

01

as the request rate for 5 from area 0 to BBU 1. �01 , �16
and �6B represents the physical transmission latency between
area 0 and BBU 1, BBU 1 and GW 6, GW 6 and sensor
B, respectively. Θ� , dynamically updated at each interval C
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TABLE II
NOTATIONS FOR MINIMIZATION PROBLEM.

Notations Description
� Catalog of IoT contents � = {1, ..., � }.
�% Freshness Period parameter carried by IoT contents.
� Set of BBU pools � = {1, 2, ..., �}.
� set of IoT gateways � = {1, 2, ..., � }.
28 Storage capacities of IoT network entity 8

�8
Upper limit budget of total caches of IoT network
entities 8.

'
5

01
Request rate for 5 from area 0 to BBU 1.

�8 9
Physical transmission latency between IoT network
entity 8 and 9.

-
5

8

Boolean variable to indicate whether file 5 is obtained
from IoT network entity 8.

is a freshness threshold that helps to identify whether the
requested IoT content long-lived or short-lived. We denote
the Exponential Weighted Moving Average (EWMA) of the
average Freshness Period (�%) as Θ� :

Θ� (C) = (1 − U)Θ� (C − 1) + U�%, (13)

Since we have predicted the request rate for content 5 ' 5
01

in
area 0 ∈ + at CCℎ time slot in Section IV. We can get the ARL
function at time C:

�'! =
∑
5 ∈�

∑
0∈+1

2' 5
01
(C){�01- 51 (C) + (�01 + �16)

[1 − - 5
1
(C)]- 56 (C) + (�01 + �16 + �6B)
[1 − - 5

1
(C)] [1 − - 56 (C)]}, (14)

Two Boolean variables -
5

1
and -

5
6 are defined to indicate

whether sensing data 5 is obtained from BBU 1 and GW
6, respectively. We list the main aforementioned notations
in TABLE II for formulating the average retrieve latency
minimization problem.

With the consideration of data freshness, the average retrieve
latency minimization problem is defined as:

<8=
∑
5 ∈�

∑
0∈+1

2' 5
01
(C){�01- 51 (C) + (�01 + �16)

[1 − - 5
1
(C)]- 56 (C) + (�01 + �16 + �6B)
[1 − - 5

1
(C)] [1 − - 56 (C)]}, (15)

B.C.-
5

1
(C), - 56 (C), . 51 (C), .

5
6 (C) ∈ {0, 1}, C ∈ {0, 1, 2, ...} ,

(16)

-
5

1
(C) =

{
1, 8 5 .

5

1
(C) = 1 0=3 �% 5 (C) > Θ� (C)

0, >Cℎ4AF8B4,
(17)

∀ 5 ∈ �, C ∈ {0, 1, 2, ...} ,

-
5
6 (C) =

{
1, 8 5 .

5
6 (C) = 1 0=3 �% 5 (C) > Θ� (C)

0, >Cℎ4AF8B4,
(18)

∀ 5 ∈ �, C ∈ {0, 1, 2, ...} ,
�∑
5 =1

.
5

1
(C) ≤ 21 , ∀1 ∈ �, C ∈ {0, 1, 2, ...} , (19)

�∑
5 =1

.
5
6 (C) ≤ 26, ∀6 ∈ �, C ∈ {0, 1, 2, ...} , (20)

�∑
1=1

21 ≤ �1 , ∀1 ∈ �{1, 2, ..., �}, (21)

�∑
6=1

26 ≤ �6, ∀6 ∈ �{1, 2, ..., �}. (22)

The objective function is shown in Equation (15). In each
period, Eq. (15) decides whether to store the data in the
cache of BBU pool or the cache of IoT GW to minimize
the average data retrieval latency. Eq. (16) denotes that . 5

1
(C)

and . 56 (C) are also binary variables which indicate whether
data 5 ∈ �{1, 2, ..., �}, are stored in the BBU 1 and GW 6,
respectively. Equations (17) and (18) imply the relationship of
-
5

1
(C), . 5

1
(C), Θ� (C), and the relationship of - 56 (C), . 56 (C),

Θ� (C), respectively. Once the user request is received, the
requested sensing data is retrieved from the BBU pool first,
sensing data 5 is obtained from the BBU 1 (i.e., - 5

1
= 1) if

1) sensing data 5 is cached in the BBU (i.e., . 5
1
= 1) and

2) sensing data 5 is fresh (i.e., �% 5 (C) > Θ� (C)). Otherwise,
sensing data request is forwarded to IoT GW (i.e., - 5

1
= 0) if

1) sensing data 5 is cached in the BBU but is stale (i.e.,. 5
1
= 1

and �% 5 (C) < Θ� (C)) or 2) sensing data 5 does not exist in the
BBU 1(i.e., . 5

1
= 0). Data 5 is obtained from the GW 6 (i.e.,

-
5
6 = 1) if 1) sensing data 5 is in the GW (i.e., . 56 = 1) and

2) sensing data 5 is fresh (i.e., �% 5 (C) > Θ� (C)). Otherwise,
sensing data 5 is collected from sensors (i.e., - 56 = 0) if 1)
sensing data 5 is in the GW but is stale (i.e.,. 56 = 1 and
�% 5 (C) < Θ� (C)) or 2) data 5 does not exist in the GW
6(i.e., . 56 = 0). Eqs. (19) and (20) indicate that the sum of
whole data sizes per BBU and GW should not exceed their
storage capacity, respectively. Eqs. (21) and (22) indicate that
the cache attached to all BBU pools and GWs should not
exceed the storage thresholds �1 and �6, otherwise it will
consume too many resources.

Although it is possible to predict the complete information
of the network state within a specific period in practice,
it is still challenging to solve the problem due to its high
computational complexity.

B. RGC-LSTM-Based Pre-Caching Greedy Algorithm

In this subsection, considering time efficiency, a heuristic
algorithm, i.e., RGC-LSTM-Based hierarchical pre-caching
algorithm is proposed to obtain a fast solution.

The cache placement policy determines data to be stored
at each BBU pool and IoT GW to decrease the ARL. We
can draw the following conclusions via combining formula
analysis and experience:
• Intuition 1: Caching data with higher request rate can

reduce more latency.
We express ARL as Eq. (11). If we have -1

1
(C) = -1

6 (C) =
-2
1
(C) = -2

6 (C) = 0 and '1
01
> '2

01
, cache 1 has a lower

delay than 2 due to the more reduction of the objective
function.

• Intuition 2: Along the path from sensors to the UEs,
caching closer to UEs reduces more latency.
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Algorithm 1 RGC-LSTM-Based Pre-Caching Greedy Algo-
rithm.
Input: �, �, 21 , 26, �1 , �6, '

5

01
, �, �%, �01 , �16, �6B , -,.

Output: Average retrieve latency �'!, content placement
solutions .1 , .6 at all time epochs;

1: Initialization of time epoch t = 0;
2: for each time epoch C do
3: for each BBU 1 do
4: Load the total request rate of data f of all BSs

related to the BBU from the prediction result of the RGC-
LSTM.

5: for each predicted data 5 in descending sort of ' 5
do

6: if �% 5 (C) > Θ� (C) then
7: Cache data 5 until BBU 1 is insufficient;
8: else
9: Request data 5 with IoT gateway through

backhaul links;
10: Update �% 5 ;
11: for each GW 6 do
12: for each predicted data 5 from all region in de-

scending order of request rate do
13: if data 5 is not in BBU pool 1 and �% 5 (C) >

Θ� (C) then
14: Cache data 5 until GW 6 is insufficient;
15: else
16: Activate the related IoT sensors to transmit

the data 5 ;
17: Update �% 5 ;
18: All Freshness Period parameters in �% automatically

subtracted by 1.
19: C ← C + 1;
20: Calculating new freshness threshold: Θ� (C) = (1 −

U)Θ� (C − 1) + U�%;

We consider two nodes 1 ∈ � and 6 ∈ �. For data 5 ,
when pre-caching at node 1 but not at node 6, the total
latency will decrease by �16, so caching closer to UEs
will reduce more retrieving latency.

Based on intuitions 1 and 2, we conclude that hierarchically
data caching should be realized in the network. Frequently
requested and fresh data should be closer to the UEs, i.e.,
storing data with a higher request rate as well as larger
�% demonstrates high-performance when designing caching
strategies. Greedy idea is utilized to store as much data with
a higher request rate as possible at each network entity. More
specifically, under the condition of �% 5 (C) > Θ� (C), our
State-awareness-based greedy algorithm first stores the data
with the highest request rate at each BBU pool 1 until reaching
its maximum storage capacity. Then, each GW stores the
data with the highest request rate until reaching its maximum
storage capacity. Algorithm 1 details the energy-efficient pre-
caching strategy. Lines 4–11 describe the caching process per
BBU pool. Caching in each GW is depicted between lines
12–20. Based on the prediction results of RGC-LSTM and
in a specific time interval, the time complexity of the second

for loop (i.e., between lines 2 and 10) is O(��). The worst-
case time complexity of the third for loop (i.e., between lines
11 and 17) is O(��). Combining the two, the computational
complexity of our proposed algorithm is O(�� + ��). Our
proposed algorithm which allows leveraging the cache to tem-
porarily store sensing data requested by the user (i.e., cache in
GW and BBU pools), formulates reasonable storage allocation
and data placement in each time period. GW and BBU pools
can directly provide IoT data to users without collecting them
from sensors after receiving user requests, which can avoid
activating sensors frequently(consuming considerable energy).

VI. EVALUATION

The evaluation goes here. Compared with the traditional
Popular-based algorithm, we consider the performance of our
proposed heuristic algorithm. Experiment results show that
our proposed heuristic algorithm achieves substantial energy
reduction.

A. Experiment Settings

In our simulations, we assign the number of BBU pools �
= 4 and the number of IoT gateways � = 2, and the cache
capacity is �1 =1000 MB and �6 = 3000 MB, respectively.
For simplicity, we specify the sizes of IoT data are 1 MB.
Moreover, the freshness period of the IoT data triggering the
discarding of expired data is randomly chosen from 2 to 4 time
units.To simulate data request distribution in the real world,
Zipf distribution model [29] is adopted, i.e., the distribution of
sensing data requests from an area covered by BS conforms to
Zipf’s law. We employ NDN Traffic Generator [30] to generate
user requests for IoT data in each region, where the frequency
of data accords to Zipf-like distributions. According to the
base station distribution map in the city of Ghent [25], We
constructed a joint spatio-temporal dataset, which collects the
measurement parameters of data requests in all 13 regions.
Due to the huge difference in the range of measured parameter
values, hence the dataset requires to be normalized before
model training.

RGC-LSTM is utilized for multi-step prediction of time-
series data (i.e., input is multiple sequences, output is one
sequence). In this paper, we calculate the request for certain
data in each region as the average value within 5 minutes,
thus the clock time is converted into an ordered integer # ,
e.g., 00 : 00 − 00 : 05 as #C = 1 and 12 : 00 − 12 : 05 as #C =
145(12 ∗ 12 + 1). We extracted 60 days of data generated by
the traffic generator for experimental purposes. The extracted
data set is divided into a training set comprised of records from
the previous 50 days, and the testing dataset consisting of the
remaining observations in the next 10 days. The prediction
time horizon is set as 00:00-24:00, thus, for certain data, each
region contains 288 data points per day. The simulations are
implemented by Python with the Pytorch platform. We choose
Adam optimizer (learning rate 0.01) and train our prediction
model via minimizing loss function (MSE).
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B. Evaluation Metrics

In the part of perceiving requests for interesting data,
inputs are continuous time-series data with 4 time units. The
performance of our proposed RGC-LSTM is evaluated by the
commonly used metric for predicting Mean Squared Error
(MSE) function: "(� = 1

=

∑#
==1 (H) − Ĥ) )2.

In the part of verifying the performance of the cache
strategy, our proposed autonomous pre-caching scheme is
compared against the Popular-based scheme. Popular-based
always uses the idea of greed to cache the most popular
data in network entities at each time period. On the other
hand, RGC-LSTM learns the characteristics of localized data
requests, which help train a good predictive model. Based
on the prediction result, RGC-LSTM can always cache the
freshest and most needed data in the network entity near the
user. We consider the following performance metrics.
• Cache Hit Ratio: Cache Hit Ratio (CHR) is the mean

ratio of the number of responses to the sum of requests
from users within a specific time. Values are expressed
in percentage as

��' =
#A4B?

#2>D=C
, (23)

where #A4B? represents the sum of response number from
network entities, #2>D=C represents the sum of requests
received by network entities. The value of CHR reflects
the pros and cons of the cache strategy. A high CHR
value indicates the effectiveness of the caching scheme
and low data redundancy.

• Average Retrieve Latency: Average Retrieve
latency(ARL) is calculated as the average time for
a UE to retrieve the IoT data.

• Average Sensor Activation Rate(ASAR): Power con-
sumption is a traditional measure of the energy consump-
tion of the sensor. It can be obtained by monitoring the
power consumption of the sensor in real-time. However,
we can indirectly measure its energy consumption by
counting the number of activations of the sensor, because
once the data is not cached in the IoT network, the GW
will activate the relevant sensors to transmit interesting
data. Thus, we define the Average Sensor Activation Rate
as follows:

�(�' =
#>DC30C4 + #=>C8=

#C>C0;
, (24)

where #C>C0; is the total number of interesting data
requested in all regions in each time unit, and #>DC30C4
and #=>C8= are the number of data that is stale and not
cached in the IoT network, respectively. The greater the
ASAR, the greater the energy consumption.

C. Experiment Results

Fig.2(a) shows a comparison histogram that when the graph
convolution aggregates the information of the surrounding
neighborhood nodes in RGC-LSTM, the impact of the selec-
tion of the number of hops on the training time per epoch. The
result shows that the training time per epoch increases with
the increase in the value of  . In our simulation, the training

time in each epoch increases significantly when  exceeds
3. Longer training time will result in more computational and
energy consumption. Fig. 2(b) also illustrates the impact of the
selection of the number of hops on the training losses when
the graph convolution aggregates the information of the sur-
rounding neighborhood nodes in RGC-LSTM. As illustrated
in Fig. 2(b), the increase in the value of  speeds up the
convergence. However, for our datasets, the training outcome
improves only indistinctively when  is larger than 3. The
choice of the number of hops in the graph convolution may
be different due to the model evaluation and comparison. Note
that  = 3 has advantages in both training time and accuracy.
Thus for designing future a pre-caching strategy, we set it as
3, which simultaneously accuracy and performance.

(a)

(b)

Fig. 2. Influence of neighboring orders (hops) of the graph convolution. (a)
Training time per epoch. (b) Training losses.

Fig. 3 visualizes the prediction values and the ground truth
of the request for certain content in a region. As shown in
Fig.3, two curves fit well, indicating that after the graph
convolution operation (i.e., aggregating the information of the
neighborhood), our model can predict the trend of requests
well in different time epoch.

In the part of comparing cache strategies, we analyze the
performances of our algorithm with Popular-based algorithms
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Fig. 3. Visualization of prediction and ground truth of request for content 0 on a randomly selected day.

(a) (b) (c)

Fig. 4. Impact of the number of content and consumers in green IoT on key evaluation indicators. (a) Average cache hit ratio. (b) Average sensor activation
rate. (c) Average retrieve delay.

from three different evaluation metrics, i.e., the average cache
hit ratio in Fig. 4(a), the average retrieve delay in Fig. 4(b),
and the average sensor activation rate in Fig. 4(c). Note that
RGC-LSTM works better than Popular-based algorithms, i.e.,
the highest average cache hit ratio, the minimum average data
retrieve delay, and the minimum average sensor activation
rate. Moreover, in Fig. 4(a), we first compare the proposed
algorithms with Popular-based algorithms under the same
condition (e.g., cache capacity �1 =1000 MB and �6 = 3000
MB). As illustrated in Fig. 4(a), the larger the number of
contents, the lower the average cache hit ratio. This is because
the network entity has a limited storage space and is capable
to individually hold a fixed amount of data. Compared with
the other scheme, the CHR of RGC-LSTM can reach 0.53
even the number of contents is 5000. Moreover, the CHR of
Popular-based is 0.31. Popular-based does not consider the
relationships between data requests in different regions and
different time periods, but only uses the idea of greed to
design a caching strategy in each time period. Fig. 4(b) also
depicts the result by setting the number of contents to range
from 1000 to 5000. It resulted in fewer sensor activation than
the case of Popular-based caching. As shown in Fig. 4(b),
a huge amount of data make for a larger number of sensor
activations for both algorithms while the increase rate in the
number of sensor activations of RGC-LSTM is significantly
lower than that of Popular-based algorithms. This is because
although network entities have limited storage capacity, which
allows them to store only a certain amount of data, RGC-
LSTM can accurately predict data requests at each moment,

which makes it more reasonable to allocate cache locations and
content. We learn the influence of the number of consumers
with the same condition. Fig. 4(c) illustrates the relationship
between key evaluation metrics and the number of consumers.
As illustrated in Fig. 4(c), it indicates that once the number
of consumers increases, the average retrieve delay becomes
longer for both algorithms because the increase of consumers
requesting interesting data injects massive traffic into IoT
networks, resulting in network congestion. The advantages of
low increase of our RGC-LSTM get more and more clear, with
the increase of consumer requests. Therefore, the proposed
RGC-LSTM algorithms can be considered as a green pre-
caching algorithm, which is more applicable in blockchain-
based green IoT.

D. Discussion

In this work, we deploy RGC-LSTM and make pre-caching
policies in edge-AIs, which are designed to process massive
information streams and deploy AI algorithms (adaptive boost-
inting, deep learning, etc). We concentrate on securing the
edge-AIs from malicious attacks and while minimizing energy
consumption. The edge-AIs share their data via blocks in a
private blockchain. All participating parties have high trans-
parency and credibility. Once an edge-AI is compromised, it is
relatively simple to withdraw the previous set of operations on
a private blockchain. Moreover, the transparent, tamper-proof
ledger in private blockchain stores detailed information related
to the transaction, such as shard location, shard hash, etc.
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VII. CONCLUSION

In this paper, to minimize sensors’ energy consumption
while providing quality of service (QoS) in IoT networks,
we proposed a sophisticated deep learning architecture for
reducing energy consumption. The GCN and LSTM are united
to learn the spatial-temporal dependencies in the green IoT
network for request-state prediction. In addition, based on
the prediction, we have proposed a heuristic algorithm im-
plementing the hierarchical pre-caching process, where con-
tents can be cached at both the BBU and GW with much
lower time complexity. By evaluating on spatial-temporal
joint distribution datasets, our strategy is demonstrated to be
superior compared to the conventional Popular-based methods.
Moreover, we utilized blockchain technology in the proposed
architecture to build P2P communication for strict access
to edge-AIs and secure data sharing, preventing an internal
node from deliberately concealing or tampering with data and
thus achieving complete privacy. Future studies could include
improving the accuracy and robustness of our model and
performing experiments on large urban networks.
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