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Abstract Indoor environments are challenging for global

navigation satellite systems and cripple its performance.

Magnetic field data-based positioning and localization

has emerged as a potential solution for ubiquitous in-

door positioning and localization. The availability of

embedded magnetic sensors in the smartphone simpli-

fies the positioning without the additional cost of infras-

tructure. However, the data divergence due to smart-

phone heterogeneity circumscribes the wide applicabil-

ity of magnetic field-based positioning approaches. This

research proposes the use of term frequency (TF) ex-

tracted from the magnetic field data to alleviate the im-

pact of smartphone heterogeneity. For this purpose, the

magnetic field data are transformed into terms (words)

and documents. Extracted TF vectors are used to train

long short term memory and gated recurrent unit net-

works. A voting scheme is contrived to incorporate the

predictions from these networks. Experiment results with

three different smartphones like LG G6, Galaxy S8,
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and LG Q6 demonstrate that the use of TF mitigates

the impact of the smartphones’ variability. Performance

comparison with state-of-the-art approaches reveals that

the proposed approach performs better than those of

other approaches in alleviating the influence of using

various smartphones for magnetic field-based indoor lo-

calization. Furthermore, the localization performance of

the proposed is better than those of other approaches,

even using a smaller amount of magnetic field data.

Keywords Indoor positioning and localization ·
magnetic field data · term frequency · deep neural

networks · smartphone sensors

1 Introduction

Positioning and localization became the talk of the town

during recent years. Location-based services (LBS) ac-

celerated the pace of research and development for both

outdoor and indoor positioning and localization tech-

nologies. The global navigation satellite system (GNSS)

is a de-facto technology that serves the outdoor posi-

tion with a high accuracy [1]. Still, its performance is

crippled in many challenging environments where the

user is walking through canyons, congested areas with

tall buildings, and indoor environments especially [2].

Consequently, for such and other similar complicated

environments, a large variety of positioning and local-

ization technologies has been put forward under the

banner of infrastructure-based and infrastructure-less

approaches. The approaches in the former category rely

upon the custom infrastructure like beacons, sensors,

and tags, etc. to sense the environment and perform

positioning. On the other hand, the approaches that

belong to the latter category leverage the opportunis-

tic signals present in the environment. Radiofrequency
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identification (RFID), ultra-wideband (UWB), and Blue-

tooth (BLE), etc. are part of the former category while

pedestrian dead reckoning (PDR) and magnetic field-

based positioning (MFP) approaches are examples of

the latter category [3–5]. Although Wi-Fi positioning

requires Wi-Fi access points (APs), yet it is put in the

latter category due to the wide installation of Wi-Fi

APs at public places and indoor environments [6].

The Wi-Fi positioning has been investigated exten-

sively for two decades and provides an average accu-

racy of 5 to 6 m [7]. Despite the wide prevalence of

Wi-Fi APs, simplicity, and provided accuracy, Wi-Fi

approaches are not suitable to meet the standards of in-

door localization due to many reasons. Predominantly,

Wi-Fi positioning utilizes the received signal strength

indicator (RSSI) of present APs to locate a user and

suffer severe performance degradation while position-

ing in dynamic environments. Radio signal propaga-

tion is affected by human mobility that leads to un-

accounted RSSI variability thus affecting the localiza-

tion accuracy. Shadowing, signal blockage, and multi-

path are only a few among many problems that Wi-Fi-

based approaches face. In addition to that, time, user

and device variability affect the performance of such

systems as well [8]. Apart from that the introduction

of ’throttle’ in Android 9.0 restricting frequent scan-

ning of Wi-Fi APs limits the wide use of Wi-Fi posi-

tioning and localization approaches. BLE has been the

focus of interest for indoor positioning technology due

to its high accuracy. However, BLE set up requires the

dense deployment of BLE beacons to provide high ac-

curacy. Since BLE is based on radio signal propagation,

it has inherent limitations of radio signal propagation

including shadowing, signal absorption, and multipath.

Its performance is easily affected due to human mobil-

ity.

PDR provides only a relative position and always

needs a starting/previous position to infer the next po-

sition. So, it works as a complementary approach to

improve the localization accuracy.

Magnetic field-based indoor positioning and local-

ization has emerged as a prospective candidate for in-

door positioning. The ubiquity of the magnetic field

makes it an attractive and influential solution for indoor

localization. The wide proliferation of smartphones with

embedded magnetic sensor offers the opportunity to

use magnetic field data for positioning and localiza-

tion without additional sensors and infrastructure. As

a consequence, many indoor positioning and localiza-

tion works have been presented that focus on the use

of the magnetic field data [9,10]. One limitation that

undermines the wide use of such approaches is smart-

phone heterogeneity. Today, a wide range of smart-

phones is manufactured by many companies like Sam-

sung, LG, Apple, Huawei, and Nokia, etc. These smart-

phones carry magnetic sensors from different vendors

having various specifications. The magnetometer in var-

ious smartphone models from the same company is not

alike either as they have different sensitivity and noise

tolerance. As a result, the collected magnetic field data

from smartphones vary significantly and localization

accuracy largely fluctuates even with the same local-

ization approach. It seems very difficult to devise an

approach that can work seamlessly with various smart-

phones and provide a similar localization accuracy. This

study proposes the use of term frequency (TF) to over-

power this issue and mitigate the impact of device het-

erogeneity on localization. The contributions of this

study are summarized as follows

– An indoor localization approach is devised that lever-

ages the magnetic field data from the embedded

magnetic sensor of the smartphone. The data are

normalized using a modified min-max normalization

approach to mitigate data variability caused by het-

erogeneous devices.

– The term frequency paradigm is proposed to allevi-

ate the impact of device heterogeneity. The process

of transforming the magnetic field data to terms and

documents is presented.

– Deep neural networks like long short term memory

and gated recurrent unit networks are structured

that utilize the extracted TF for training and test-

ing. A voting criterion is improvised to incorporate

the predictions from neural networks to estimate the

user’s current location.

– Three smartphones including LG G6, Galaxy S8,

and LG Q6 are used to carry out the experiments

to analyze the impact of smartphone heterogeneity

on the proposed approach.

– Results are compared with three state-of-the-art in-

door localization approaches that utilize the mag-

netic field data for localization. Performance anal-

ysis reveals that the proposed approach performs

better than those of state-of-the-art approaches.

The rest of the paper is organized in the following

manner. Section 2 discusses research works related to

the current study. Section 3 gives an overview of the

challenges to use the magnetic field data for indoor lo-

calization. The working of the proposed approach for

transforming the magnetic field data into terms, extrac-

tion of TF for a document, and localization algorithm

are discussed in Section 4. Results are discussed in Sec-

tion 8 while the conclusion is given in Section 6.
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2 Related Work

The vast majority of the magnetic field based indoor

localization works use the fingerprinting approach for

its ease of adaption, simplicity, and effectiveness. Fin-

gerprinting involves offline and online phases where the

former refers to collecting the data on ground truth

points to make the database while the latter phase in-

cludes the localization using the smartphone data from

the user smartphone at run time. The ground truth

points are the designated locations with known coor-

dinates and are traditionally separated by equal dis-

tances. Concerning the used technology for localization,

MFP can be divided into groups: approaches based on

magnetic field data alone, hybrid approaches that uti-

lize complementary technologies like BLE, Wi-Fi, and

PDR, etc. to improve localization performance.

Authors leverage the magnetic field data to iden-

tify various rooms in a building [11]. For this purpose,

the database is made using the fast Fourier transform

(FFT) of the magnetic field data as the signature. Acer

A500 tablet is used worn around the waist and the data

is collected at 100 Hz for 10 seconds. The user’s posi-

tion is estimated by comparing the FFT of the collected

signal with that of the fingerprint database using a

modified Manhattan distance. The proposed approach

identifies all the rooms correctly, however, the precise

position of the user is not evaluated. The user’s exact

position inside the room cannot be estimated correctly

as the approach works on the room level only. In addi-

tion to that user has to move from one specific point

to another to identify a specific floor that is restricting

and limiting the scope of indoor positioning [12].

Indoor infrastructures comprise locations with par-

ticular signatures that are influential than those of other

locations. Such unique locations are often called, ”land-

marks” and can dramatically improve the localization

performance of MFP approaches. For example, the ap-

proach presented in [13] utilizes magnetic landmarks

to perform indoor localization. Landmarks are selected

based on the minima/maxima in the magnetic field

data considering eight connected neighbors. Deep neu-

ral networks are trained using features of ’recurrence

plot’, ’trend’ of the peaks, and peak-to-peak ’length’

from the magnetic data. The trained DNN can cor-

rectly classify 80% of the magnetic landmarks. How-

ever, the meter level or the exact location of the user

is not calculated with the proposed approach. Further-

more, the magnetic landmarks can be several meters

apart which increases location uncertainty. In addition

to that, the magnetic field data from seven meters long

place is gathered to identify a landmark that is long and

might not be appropriate or available in many cases.

Hybrid approaches offer higher accuracy than those

of using the magnetic field data alone and present a

more practical and effective solution. As a result, the

data from multifarious sensors like Wi-Fi, accelerome-

ter, BLE, etc., is used to enhance the accuracy of MFP.

For example, a sensor fusion approach is presented in

[14] that maneuvers the data from WiFi, smartphone

camera, magnetometer, Bluetooth, and people’s co-occurrence.

Initially, camera images are used to identify the coarse

location of the user which is used to narrow down the

search space for the magnetic field database. On the

other hand, Wi-Fi works to correct the location esti-

mation periodically. It helps to both elevating the accu-

racy and reducing battery consumption. Results show

that the user can be located correctly with an accu-

racy of 83.7% with the proposed approach. Moreover,

if the user time-specific activities are considered, the

location accuracy can be further improved. The use of

BLE proves to enhance the accuracy in multi-sensor in-

door positioning approaches, where multiple scenarios

can be adopted. Two kinds of approaches are adopted

for BLE based indoor positioning such as hybrid solu-

tions as in [15,16] or dense deployment of BLE bea-

cons [17]. Besides the additional cost for deploying the

beacons, BLE has other issues. It is based on radio

propagation which has its inherent limitations. These

limitations are prevalent both in time-based position-

ing approaches like multilateration and RSSI based ap-

proaches. Such problems include multipath, scattering,

shadowing, and signal absorption due to human mo-

bility. Using the sparse deployment of BLE beacons is

useful to estimate course location which can be used

to narrow the search space in hybrid solutions to re-

duce the processing time and increase the positioning

accuracy

The use of deep learning approaches also helps to

improve the localization performance with the magnetic

field data. In this regard, authors in [18] present the

use of convolutional neural networks to identify the in-

door scene that functions as an important module in

an indoor localization system. Scene recognition low-

ers the search space of the magnetic field database and

improves time and performance. Motion sensors, com-

pass, and Wi-Fi further increase the localization accu-

racy. Sensor fusion using particle filter is adopted to this

end. The reported localization accuracy of the system

is 1.32 m at 95%.

The above-cited research works focus on using a sin-

gle smartphone primarily and do not investigate the

impact of device heterogeneity on the presented local-

ization approach. Authors make a profound study of

how walking speed and smartphone disparity affect the

magnetic field data in [19]. They present an indoor po-
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sitioning and tracking approach that incorporate Wi-Fi

signals, PDR, and magnetic field data to track the user.

The fusion of Wi-Fi helps in reducing the error dramat-

ically. Mean, 2nd and 3rd quartile errors are low, how-

ever, the localization performance with multiple smart-

phones is not tested.

Several works emphasize using multiple smartphones

to analyze the impact of device heterogeneity with mag-

netic field data. By way of example, authors present a

sensor fusion approach in [20] for magnetic field-based

indoor localization with multiple smartphones. Con-

trary to the traditional approach of using the intensity,

the patterns formed by the magnetic field data are used

to mitigate the influence of device heterogeneity. Data

from motion sensors including an accelerometer and the

gyroscope helps in reducing large errors and improves

the localization accuracy. Experimental results indicate

that the use of magnetic field data patterns reduces the

effect of using diversified smartphones. Similarly, an in-

door localization approach is presented in [9] that inves-

tigates how multifarious smartphone can compromise

the localization accuracy when used with the magnetic

field data. Two smartphones like Samsung Galaxy S8

and LG G6 are tested on the fingerprinting approach

where the database is built using S8 while the testing

is done with both the smartphones. A modified parti-

cle filter approach is used for improving the localization

accuracy with multiple sensors. Results show that the

proposed approach can alleviate the impact of using

various devices.

In the same fashion, authors use different smart-

phones to perform indoor localization with a magnetic

field fingerprint database in [21]. Dynamic time warping
(DTW) is used for matching the user collected magnetic

field data sample to the stored magnetic sample and 35

magnetic samples are taken in this regard. The classi-

fication accuracy is 88% where accuracy refers to the

number of correctly predicted positions concerning to-

tal predictions. A total of 16 test signatures are used to

evaluate the accuracy of the proposed approach. The

localization error falls between 0 to 17 m and varies

in different buildings as well as for different lengths of

test signatures. Another work in the same line is [22]

that takes advantage of the deep learning approach to

overcome the limitations of device heterogeneity. Mul-

tiple neural networks are trained on the patterns of

the magnetic field data to estimate the user’s location.

Although the localization results are promising, yet,

the device dependence is not resolved fully. The above-

discussed research works investigate the use of multiple

smartphones from various companies to analyze how

changing the localization device impacts the localiza-

tion accuracy. Results demonstrate the reduction in de-

vice dependency, yet, the proposed approaches are not

device-independent. Localization accuracy though sim-

ilar, yet, the difference is rather substantial. So, the

current study aims to alleviate device dependency to

make the localization performance of various smart-

phones substantially similar.

Table 1: Summary of the research works discussed in

related work.

Ref. Approach Accuracy Shortcoming

[9] Multi-sensor
fusion

Meter level Fixed orientation of
the smartphone.

[11] FFT Room level User moves between
specific points

[13] Magnetic
landmarks

Landmarks Meter level accuracy
is not provided

[14] Multi-sensor
fusion

Meter level User activity tracking
has privacy issues

[16] Hybrid solu-
tion

Meter level High infrastructure
dependence.

[17] BLE Meter level Dense deployment of
BLE beacons is re-
quired.

[18] Multi-sensor
fusion

Meter level High computational
cost and time.

[19] Wi-Fi &
smartphone
sensors

Meter level Infrastructure and
device dependence.

[20] Multi-sensor
fusion

Meter level Longer magnetic field
data is required.

[21] Multi-sensor
fusion

Meter level Very long magnetic
field data is required.

[23] Multi-sensor
fusion

Meter level High computation
complexity, device
dependency.

An important work, similar to ours, is [23] that in-

troduces the use of a bag of words (BoW) approach for

indoor localization with the magnetic field data. Each

location serves as a different class having BoW features.

The research aims to solve the speed invariance prob-

lem for magnetic field-based indoor localization where

the different speeds of the users affect the localization

accuracy. Several classifiers are used to predict the class

using the extracted BoW. The scope of this research is

however restricted by two major limitations. First, ex-

periments are conducted using a single smartphone and

smartphone heterogeneity is not studied at all. Second,

the evaluation is based on the classification accuracy

which does not show mean, median, 50%, 75%, and

maximum errors that are key indicators to prove the

performance of positioning and localization. Thirdly,

very long sequences of few tens of seconds of magnetic

field data are used to make a reference point. The use of

long sequences of data is not appropriate, not to men-
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tion the fact that many complicated indoor areas do not

have much longer sequences at all. Table 1 summarizes

the discussed research papers in the related work.

The current study introduces the TF paradigm to

perform indoor localization using deep neural networks.

Various algorithms are proposed to transform the mag-

netic field data into terms and documents, as well as,

incorporating the predictions of neural networks to es-

timate the user’s current location. Device heterogeneity

is extensively studied using three different smartphones

in this regard.

3 Challenges of using Magnetic Field Data for

Localization

The earth’s magnetic field referred to as the ’magnetic

field’ here for simplicity is a natural phenomenon caused

by the flow of convection current. Its distribution over

the globe is uniform with a smooth change between

20 µT to 65 µT. At any given point, it has x, y, and

z values that represent the magnitude of the magnetic

field in the North, East, and downward direction. These

values do not change abruptly and remain similar in

the absence of man-made constructions. However, the

buildings containing ferromagnetic materials like nickel,

cobalt, and iron, etc. interfere with the natural phe-

nomenon and cause disturbances, often called, ’anoma-

lies’. Such disturbances are observed to present unique

values at different places and used as ’signature’ to

make fingerprinting databases [24].

There are two well-known representations to show

the magnetic field at a given point. One way is to use
magnetic x, y, and z for North, East, and downward

components, respectively. An alternative approach used

in a few research works is through F , I, and D that cor-

responds to total magnetic field intensity, inclination,

and declination, respectively [25]. The latter represen-

tation is not very famous with positioning approaches

concerning the sensitivity of the components. The I,

and D are measured in angles using the horizontal com-

ponent H =
√
x2 + y2 and magnetic x, y, and z. Small

variations in these components can easily change the

values for I, and D which ultimately affects the posi-

tioning accuracy. Predominantly, magnetic x, y, and z

are used to formulate the fingerprinting database for

MFP systems. The major drawback of using x, y, and

z is their variability concerning the smartphone used.

For example, Figure 1 shows the magnetic x, y, and

z collected using three different smartphones walking

along with the same location at the same time. Despite

that, the values of these components are not the same

and vary significantly.

(a)

(b)

(c)

(d)

Fig. 1: Magnetic field data collected using heteroge-

neous smartphones for the same location, (a) magnetic

x, (b) magnetic y, (c) magnetic z, (d) magnetic F
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The magnetic field data shown in Figure 1 indicates

that the intensity is not the same with different de-

vices. Consequently, when the localization approach is

used on the data from different devices, the localization

accuracy varies significantly. So, devising an approach

that can work seamlessly and provide similar accuracy

with heterogeneous devices is very important.

4 Materials and Methods

This section contains the information on the term fre-

quency paradigm, how the magnetic field data is trans-

formed into terms and documents, as well as, the local-

ization algorithms.

4.1 Term Frequency Paradigm

Training the neural networks requires feature vectors

from the magnetic data. So, the magnetic field numeric

data needs to be transformed feature vectors. Several

techniques like BoW, GLoVe, Word2Vec, and TF, etc.

can be used for this purpose. The accuracy of BoW is

limited by character-length limitations and insufficient

word occurrences [26]. Additionally, it is often difficult

and computationally expensive to build a vocabulary

large enough to cover all the possible words [27]. GloVe

(Global Vectors) for word representations is another

approach used to create word embedding. The GLoVe

works like matrix factorization and is widely used in

text mining tasks. It has advantages when used with a

large corpus concerning its scaling capability, yet, of-

ten not efficient with smaller data [28]. Word2Vec is

an approach designed by Google for text classification

and it uses CBOW (Continuous BOW). Although show-

ing promising results with English text classification, it

makes context-based predictions and it not appropri-

ate for the current task [29]. TF is one of the most

widely used approaches in text mining that shows out-

performing results in natural language processing, sen-

timent analysis, and text classification [26]. We aim to

utilized TF concerning to take advantage of its supe-

rior performance. It counts the words in a document

and produces a matrix that represents the total num-

ber of occurrence (frequency) of each word in a given

document. Frequency is adjusted by the length of a doc-

ument. Mathematically, TF for the word t in the doc-

ument d from D document set can be calculated as

tf(t, d) = log(1 + f(t, d)) (1)

where f represents the frequency of the term t in

the document d.

Equation 1 calculates the frequency of each term.

In other words, it counts, how many times a specific

term has appeared in a given document. The TF feature

counts the frequency of the terms in the document and

does not measure the commonality or rarity of the term.

Take, for example, the following statements:

”Brevity is the soul of wit”,

”Beauty comes from the soul”,

”Perception of beauty is different than beauty itself”.

Table 2: TF feature matrix for the above-given state-

ments.

Term Term frequency

brevity 0.6931 0.0000 0.0000
soul 0.6931 0.6931 0.0000
wit 0.6931 0.6931 0.0000
beauty 0.0000 0.6931 1.0986
come 0.0000 0.0000 0.0000
perception 0.0000 0.0000 0.6931
different 0.0000 0.0000 0.6931

The TF vector for the above-given statements is

given in Table 2. The TF matrix of the document d is

used to train and test classification algorithms to clas-

sify the given documents. TF is amongst the widely

used techniques for text document classification. How-

ever, we utilize it to solve the problem of magnetic

field-based indoor localization. For this purpose, we first

need to define terms and documents regarding localiza-

tion.

4.2 Transforming the Magnetic Field Data into Terms

and Documents

In the text analysis scheme, a document is comprised of

a sequence of various terms (words) where each term is

an ordered sequence of characters. Various documents

contain various terms as well as, the order of the terms

may be different. Text analysis focuses on measuring

the similarity of these terms to determine the similar-

ity of the documents. By way of the same analogy, the

term t in the localization scenario is a pattern formed

using the magnetic field data and each data value re-

sembles a character c. The sequence of these patterns

constitutes a document d using the magnetic field data.

The document d represents a specific location L that

corresponds to (x, y) coordinate. Vocabulary V refers

to the collection of all unique terms T and is used as a

reference to look up the terms during the localization

process. Table 3 show the list and explanation of the

notations used in Algorithms 1 and 2.
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Table 3: Notations used in Algorithm 1 and Algorithm

2.

Notation Description

T Term indicating a unique pattern of data.
D document that refers to location.
L Location in 2D, i.e., (x, y)
V Vocabulary, collection of all terms (patterns).
M Magnetic field data.
x North component of the magnetic field.
y East component of the magnetic field.
z Downward component of the magnetic field.
Md Denoised magnetic field data.

M̂ Normalized magnetic field data.
dist Euclidean distance between two positions.
lstmp Predictions from LSTM.
grup Predictions from GRU.
P Set of unique predictions from LSTM and GRU.
O Occurrences of each unique position.
Lc Candidates for probable location of the user.
Lu Estimated current location of the user.

Algorithm 1 MagIT- Magnetic field data transforma-

tion Into Terms
Input: Magnetic field data M //M = {x, y, z}
Output: Terms T //T =

{t1, t2, ..., tn}, where t represents unique terms.

1: for i←− 1 to M do

2: Md=denoise(Mi)

3: M̂=normalize(Md)

4: end for

5: for j ←− 1 to M̂ do

6: for k ←− 1 to M̂ do

7: dist = calDist(Mi,M)

8: if dist > 0 & dist < α then

9: add Mi to T

10: remove similar terms from Mi

11: end if

12: end for

13: end for

LetM be the magnetic field data whereM = {x, y, z, F}
and each of x, y, z, and F is {1, 2, ..., n} with n as the

total number of data samples, the term t can be formed

as

t = Mi1,Mi2, ...,Mk (2)

So, the term t is an ordered sequence of k elements

from each of magnetic x, y, z, and F . It shows the

sequence of the magnetic field data in the order of col-

lection and refers to the data collected from the em-

bedded magnetic field sensor of the smartphone. The

document d here refers to the collection of these terms

at a reference location in the indoor location. Hypothet-

ically, each document contains a combination of differ-

ent terms, so it is possible to discriminate one document

(location) from the other. However, to extract TF for

a given document, first, we need to identify all possible

terms given in document set D where D refers to the in-

door location where the localization is to be performed.

Algorithm 1 is designed to carry out this operation.

(a)

(b)

Fig. 2: The denoising of the magnetic field data using

wavelet denoising, (a) before denosing, (b) after de-

noising.

Lines 1-4 perform two operations on the input mag-

netic field data M ; denoising and normalization. The

magnetic data collected from the magnetic sensor of

the smartphone contains noise due to the sensitivity of

the sensor and slight movements of the user’s hands

and has to be removed for better performance of MFP

systems. Wavelet denoising is utilized in this regard.
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Figure 2 shows the magnetic field data before and after

denoising.

Once the data M are denoised into Md, it is normal-

ized using a modified min-max normalization method

using

M̂ =
Mdi
−min(Mdn

)

max(Mdn
)−min(Mdn

)
(3)

where i represents ith sample in Md, min, and max

are the minimum and maximum samples while n rep-

resents the total number of samples considered for nor-

malization. In other words, n represents the number of

samples that are considered to define a term. Unlike

text processing, where each term has a different length,

we consider equal length for all the terms. The differ-

ence lies, not in their length but their shape/pattern.

Fig. 3: Examples of terms found from the magnetic field data after normalization.
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The patterns formed by the magnetic field data are al-

most similar, however, the matching of these patterns

is not a trivial problem and requires substantial com-

putational resources concerning image-based matching.

The normalization process is carried out to put these

patterns on the same scale so that the pattern matching

can be done without image-based matching techniques.

Figure 3 shows a few terms from the magnetic field

data after lines 1-4 of Algorithm 1 are executed. The

terms displayed in Figure 3 are not unique, for example,

terms number 2 and 38 look very similar, if not the

same. Figure 4 shows a few terms in each graph with a

high resemblance. Similar to text analysis, where each

term has a unique sequence of characters, we need to

select terms that represent unique patterns formed by

the magnetic field data.

Lines 6-13 contains the procedure to select only

one term from those with high similarity. For this pur-

pose, a single term is taken at a time and its Euclidean

distance with all other terms is calculated using

dist =
√

(Mi −Mk)2 (4)

where Mi is the term considered to check its simi-

larity with k elements of M̂ . Equation 4 gives the quan-

tifiable difference between two given magnetic field se-

quences.

Selection of unique terms and deletion of duplicate

terms is based on the criteria

{
dist > 0 & dist < α similar term

else unique term
(5)

where α is the threshold set to decide the similarity

of a term. Equation 5 is used to discriminate two se-

quences of the magnetic field data. It distinguishes one

magnetic field sequence from others using α which is an

empirical value and its value is set to 0.4. The value is

determined through experiments where the impact of

various values is analyzed concerning the dissimilarity

between given terms. The set value is a trade-off be-

tween the size of the vocabulary (processing time) and

accuracy for positioning. Increasing its value leads to a

reduced number of unique terms which lowers the po-

sitioning performance while decreasing its value gives a

higher number of unique terms, elevates the position-

ing accuracy, and increases the processing time. Once

the duplicate terms are removed, the unique terms are

annotated and stored as ’vocabulary’ that is used as a

lookup to identify the terms for a new document.

(a)

(b)

(c)

Fig. 4: Various terms from the magnetic field data have

high similarity, (a) terms 7, 42 and 44, (b) terms 2, 8,

and 38, (c) terms 43, 50 and 41.

4.3 Localization Process

The localization process involves two phases: the train-

ing phase and the testing phase. The former involves

data collection, denoising, and transforming into terms

and finding TF while the latter uses the trained model

and the localization scheme to perform localization. De-

tails of each of these phases are discussed separately.
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4.3.1 Training Phase

The training phase involves the transformation of the

magnetic field data into terms and extraction of TF

for ground truth positions. The TF is calculated us-

ing Equation 1, while Table 2 shows a specimen of TF

vector. Each TF is formed using a data length of five

seconds, covering approximately a distance of 4.5 to 5.0

m. The use of five seconds data is based on the findings

of the experiment where the impact of various lengths

of data on the localization accuracy is investigated. Ex-

periments show that a minimum of five seconds of data

is necessary to achieve the desired positioning accuracy

for indoors. Of course, a less amount of data can be

used for positioning, however, it will degrade the po-

sitioning accuracy. Similarly, using a large amount of

data would estimate a position with higher accuracy

but increase the processing time latency. After the TF

vector for each ground truth location is prepared, it is

used to train two neural networks. This study uses long

short term memory and gated recurrent unit networks

in this regard.

The sequential relationship between the words plays

an important role in text analysis. Recurrent neural

network (RNN) is proposed in [30] for text sequence

data. RNN has input, hidden and output layer like DNN

does. However, it aggregates the input and hidden layer

at time t to make a new layer to calculate the hidden

layer and its loop structure allows information to be

persistent. In practical matters, RNN suffers from his-

tory information loss and gradient attenuation during

training. Long short term memory (LSTM) is proposed

to overcome the limitations of RNN and currently one of

the most widely used ones for text analysis. RNN node

is replaced with an LSTM cell that saves the text infor-

mation history. Input, forget and output gates placed

in LSTM cell helps in reading, saving, and updating

history information [31].

The gated recurrent unit (GRU) proposed in [32] is

another variant of RNN that uses each recurrent unit

for capturing dependencies related to time scales. Anal-

ogous to LSTM, GRU is comprised of various gating

units. These units are used to regulate information flow

within the units. The total number of parameters in

GRU is increased by 3-fold as compared to simple RNN.

It is observed in various studies, like in [33,34] that the

performance of GRU is comparable or leading to that

of LSTM in many cases. These networks are trained

using the architecture and parameters given in Table

4. Dropout layers are added to avoid model overfitting.

Training data is split into training and validation with

a ratio of 7 to 3.

Table 4: Architecture and parameters used for LSTM

and GRU for training and validation.

Model Parameters

LSTM
sequence input layer, LSTM layer (100), fully
connected layer (180)
fully connected layer (90), fully connected layer,
softmax layer
Optimizer=’Adam’, Epochs=2000, Learning
rate=1e−4

GRU
sequence input layer, GRU layer (100), fully
connected layer (180), dropout layer (0.5)
fully connected layer (90), dropout layer (0.5),
fully connected layer, softmax layer
Optimizer=’Adam’, Epochs=2000, Learning
rate=1e−4

4.3.2 Localization/Testing Phase

The localization phase includes three sub-phases: trans-

forming the magnetic field data into terms, searching

the terms in the vocabulary, and making the TF vector

for a particular location. Transformation of the mag-

netic field data is done using Algorithm 1 (lines 1-4).

Once the term t is defined, we need to search it in the

vocabulary V to identify it for counting its frequency.

Lines 6-13 of Algorithm 1 are used for this purpose

along with the criteria defined in Equation 5. The ex-

tracted TF vector is then used for prediction using the

trained LSTM and GRU networks. Figure 5 shows the

methodology adopted for the localization process.

Instead of using one neural network, this study uti-

lizes two neural networks known for their good per-

formance for text analysis and incorporates their pre-

dictions using a voting scheme to estimate the current

location of the user. The preference of more than one

network lies in the empirical evidence that prediction

from one neural network occasionally leads to location

prediction, far away from the original location. This

leads to high maximum errors, as well as, affects the

mean error and standard deviation of the localization

algorithm. Voting more than one neural network helps

to overcome this limitation and improves the perfor-

mance of the localization approach. Location estima-

tion is done using Algorithm 2.

The TF vector extracted from the magnetic field

data for a location is the input for Algorithm 2, along

with the trained LSTM and GRU networks. The output

of the algorithm is the user’s estimated current location.

Lines 1-2: of Algorithm 2 use the TF vector with

the trained networks to predict the user’s location. How-

ever, instead of taking a single prediction from these

networks, this study considers top k predictions along
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StartStart

Motion

Accelerometer 

Data

YesNo

Recent position 

Magnet field

data

LSTM

StopStop

Normalization

Location estimationLocation estimation

TF extraction 

GRN

Top K Predictions with Probability scores

User’s location

Fig. 5: The adopted methodology to estimate the location of the user.

with their prediction weights. The k is based on the

empirical findings of our exper iments and its value is

set to 3. On the other hand, prediction weights are the

prediction scores for each prediction from the trained

networks. We consider the weights because it gives the

prediction confidence. For example, we found that if the

prediction weight is high like 0.8 or higher, it is highly

probable that it is the original location or very close

to the original location of the user. On the contrary,

the predictions may often carry smaller weights like 0.2

or lower which increases the uncertainty to predict the

user’s location. A reasonable solution for such scenarios

would be to estimate the location based on the predic-

tions from multiple neural networks, and that is exactly

what we do.

Lines 3-4: finds unique positions from LSTM pre-

dictions lstmp and GRU predictions grup because often

LSTM and GRU trained networks have one or more

common predictions among k taken predictions; the

weights, at the same time, may not be the same. The

weightsW for unique predictions P should also be taken

that are used to break the tie if more than one predic-

tions have a similar occurrence.

Lines 5-8: are executed for each element of the

unique predictions set P to count the total occurrence

of each prediction from lstmp and grup. So, Lc rep-

Algorithm 2 Location estimation using TF of the

magnetic field data.
Input: Term frequency vector TF ,
//TF = {tf1, tf2, ..., tfn}
Output: User’s current location Lu

//Lu gives 2D coordinates (x, y).

1: [lstmp, lstmw]←− predictLoc(LSTM,TF )

2: [grup, gruw]←− predictLoc(GRU, TF )

3: P = unique(lstmp, grup)

4: W = getWeights(P, lstmw, gruw)

5: for i←− 1 to P do

6: Lc = findOccurrence(Pi, lstmp, grup)

7: Lw = findWeights(Lci
,W )

8: end for

9: Lu = estimateLoc(Lc, Lw)

resents location candidates and is a 2×n matrix with

columns as predictions and their occurrence while rows

are n unique predictions. Besides, Lw is maintained to

store the summed weight for predictions with higher

than one occurrence.
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Lines 9 estimates the current location of the user.

The following criteria are used for location estimation.

First, find the location candidates whose occurrence is

equal to 2, i.e. the same prediction from both the neural

networks.

O = find(Lc == 2) (6)

Equation 6 counts the occurrence of each location

candidate. The candidates with higher occurrences have

a higher probability to be the user’s current location.

Location estimation is then made with

{
length(O) > 1 Lu = mean(O)

else Lu = O
(7)

(a)

(b)

Fig. 6: Location estimation candidates and estimation

process. The size of the circle indicate prediction score

from LSTM and GRU, (a) scenario with two common

predictions between SLTM and GRU, (b) scenario with

no common prediction.

Predominantly, only one among k considered pre-

dictions is common between lstmp and grup, yet, more

than such instances are also possible. In such scenarios,

the mean of these instances serves as the estimated lo-

cation. Figure 6(a) shows one such scenario where two

predicted locations are common. Alternatively, if there

is only one prediction that is common between lstmp

and grup, it is the user’s location.

The third possible scenario for location estimation

is shown in Figure 6(b) where each k selected prediction

from LSTM and GRU is unique. In that case the spatial

proximity of Lc to remove outlier. The elements in Lc

that are spatially close are considered for location esti-

mation. The centroid of the selected candidates is the

user’s estimated location Lu as shown in Figure 6(b).

5 Results and Discussions

The experiment setup and results are separately de-

scribed in this section.

5.1 Experiment Setup

Experiments are carried out in a building of an area of

92×36 m2. The path used to evaluate the performance

of the proposed approach is shown in Figure 7. Three

smartphones are used to analyze the results including

LG G7, Samsung Galaxy S8, and LG Q6.Table 5 shows

the parameter for conducted experiments.

Table 5: Experiment set up parameters.

Parameter Description

Smartphones used LG G7, Galaxy S8, LG Q6
Experiment area 92×36 m2

Training data Galaxy S8 - 12350

Testing data
LG G6 - 6950
Galaxy S8 - 6800
LG Q6 - 6850

The smartphones used for the experiment have an

embedded magnetic sensor that is used to collect the

magnetic field data. The data from the Galaxy S8 is

used for training while testing is performed with all

the smartphones. The details of the specification of the

smartphone magnetic sensors for all the smartphones

are given in Table 6.
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Ground truth points for data collection

Ground truth points for location test

Fig. 7: The path used for experiments. Points on the map are separated by 1 m distance.

Table 6: List of sensors and their specifications used in

the experiments

Smartphone Specification

SM-G950N Galaxy S8 Octa-core, Adreno 540 GPU,
Android 7.0 (Nougat), 4 GB
RAM

Magnetometer (AK09916C) 3-axis, 16-bit, sensitivity 0.15
mT/LSB, temperature –30
to +85 ◦C, 6.0 mA [35]

LGM-G600L LG G6 Quad-core, Adreno 530
GPU, Android 7.0 (Nougat),
4 GB RAM

Magnetometer (AK09915C) 3-axis, 16-bit, sensitivity 0.15
mT/LSB, temperature –30
to +85 ◦C, 6.0 mA [36]

LGM-X6OOS LG Q6 Octa-core, Adreno 505 GPU,
Android 7.1.1 (Nougat), 3
GB RAM

Magnetometer (AK09918C) 3-axis, 16-bit, sensitivity 0.15
mT/LSB, temperature –30
to +85 ◦C, 1.1 mA [37]

5.2 Experiment Results

Various experiments are performed for the current study

to analyze the results of the proposed approach with the

perspective of studying the impact of smartphone het-

erogeneity on the localization accuracy using the TF

paradigm with the magnetic field data. Figure 8 shows

the cumulative distributive function (CDF) graph for

the localization accuracy with LG G6, Galaxy S8, and

LG Q6. Results demonstrate that the localization us-

ing the proposed paradigm is similar if not identical

using three different smartphones. The performance of

Galaxy S8 is slightly better than those of the other two

smartphones and the presumptive reason for this may

be the use of S8 data for training. The localization per-

formance of LG G6 and LG Q6 is almost identical while

the maximum error for LG G6 is marginally high than

those of S8 and Q6. Results for mean, maximum, and

50% error, etc. are shown in Table 7.

Table 7: Results details for the proposed approach using

G6, S8 and Q6

Device
Distance error (m)

Mean Med. Max S. D. 50% 75%

LG G6 2.68 2.53 8.46 1.81 2.52 3.90
Galaxy S8 2.56 2.27 8.45 1.81 2.26 3.62
LG Q6 2.65 2.45 7.82 1.78 2.44 3.91

Fig. 8: CDF graph with the proposed approach for var-

ious smartphones used for experiments

Results shown in Table 7 indicate that the pro-

posed approach can successfully alleviate the impact

of smartphone heterogeneity on the localization accu-

racy when the magnetic field data is used for localiza-

tion. The values for mean, median, 50%, and 75% error

are marginally different for the smartphones used for
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the experiments. Moreover, the localization accuracy is

good and the user can be located within 2.54 m at 50%,

without regard to the smartphone used for localization.

Similarly, 75% error is 3.90 m, 3.62 m, and 3.91 m for

LG G6, Galaxy S8, and LG Q6, respectively.

5.3 Performance Comparison with Localization

Approaches

Various approaches based on the magnetic field data

are considered to analyze the performance of the pro-

posed approach with two perspectives: capability of an

approach to mitigate the impact of device heterogene-

ity and average localization accuracy. Figure 9 shows

the localization performance of considered approaches

including mPILOT [20], DeepLocate [22], and GUIDE

[9] with different smartphones. It should be noted that

the impact of using divergent smartphones for MFP ap-

proaches is more mitigative in the proposed approach

shown in Figure 9(d). Other approaches, although, re-

duces this impact, yet, show large differences in perfor-

mance with different smartphones like Figure 9(a) and

Figure 9(b). A detailed comparison in terms of error

difference for mean, 50%, and maximum errors, using

the considered approaches would be more interesting,

as shown in Table 8.

Table 8: Comparative results showing impact of var-

ious smartphonees on the localization accuracy using

the magnetic field data.

Approach
Error difference (m)

Mean 75% Maximum

mPILOT 1.38 1.74 4.60
GUIDE 0.87 0.89 1.98
DeepLocate 0.53 0.34 2.12
Propsed 0.12 0.28 0.02

The values for mean, 75%, and maximum error in

Table 8 show the absolute difference between Galaxy S8

and LG G6 errors with approaches taken for compari-

(a) (b)

(c) (d)

Fig. 9: Comparative CDF graphs of the proposed approach with other magnetic field based localization approaches

with Galaxy S8 and LG G6, (a) mPILOT, (b) GUIDE, (c) DeepLocate, and (d) proposed approach.



Title Suppressed Due to Excessive Length 15

son. The given values do not represent the localization

error, instead, it is the difference in the performance

of various smartphones. The main objective of the pro-

posed approach is to reduce the difference in positioning

error when various smartphones are used for position-

ing. Results show that when the proposed approach

has been used, the difference in the positioning error

is lower. The difference in localization of various smart-

phone is low with the proposed approach than other ap-

proaches. Although the magnetic field data varies with

different smartphones, the transformation of the data

into terms helps to reduce the variability. Furthermore,

the normalization process preserves the patterns of the

magnetic field data which plays an important role to

alleviate smartphone heterogeneity to improve the per-

formance of the proposed approach.

Results demonstrate that there is a marginal differ-

ence in the performance of three different smartphones

with the proposed approach than those of other mag-

netic field-based localization approaches. It shows the

dominant performance of the proposed approach. Per-

formance analysis is also done for the localization per-

formance of the proposed approach with the selected

approaches. Figure 10 shows the CDF graph for local-

ization accuracy with all the approaches. Apparently,

the localization accuracy of the proposed approach is

slightly lower than those of other approaches. It is im-

portant to point out that our chief objective is the

mitigation of device dependency for MFP approaches.

However, further analysis for localization accuracy is

made in Table 9 that revels that the localization per-

formance of the proposed approach is better than other

approaches as it uses smaller magnetic field data in

comparison. Presumably, increasing the length of terms
(magnetic field data) would yield higher accuracy than

those of other approaches.

Table 9 show the details for mean, 50%, 75%, and

maximum error with the proposed approach and other

similar approaches. Localization results for mPILOT

are using 14 s of data while that of DeepLocate with

6 s. In contrast, the proposed approach uses only 5 s

data and localization performance is better than that of

mPILOT. The mean and 75% error is comparable with

DeepLocate while the maximum error is lower than that

of DeepLocate. In light of the discussed results, we can

say that the proposed TF paradigm is very effective in

reducing the smartphone dependency that the existing

MFP approaches have.

It is also noteworthy to point out that the local-

ization accuracy comparison is not possible with [23].

Although, this work is similar to ours, yet it does not

1 Indicates the length of the data used to calculate the lo-
cation.

Fig. 10: CDF graph for the proposed approach and

mPILOT and DeepLocate.

Table 9: Detailed statistics for performance comparison

of the proposed approaches with other approaches.

Approach Device
Error difference (m)

Data1

Mean 75% Max

mPILOT
Galaxy S8 2.92 4.01 7.60

14 s
LG G6 4.30 5.75 11.85

DeepLocate
Galaxy S8 2.23 3.21 8.32

6 s
LG G6 2.52 3.55 10.44

Proposed
Galaxy S8 2.26 3.90 8.45

5 s
LG G6 2.68 3.91 8.46

measure the performance of the proposed approach in

terms of localization error, rather, it evaluates the ef-

fectiveness of the BoW approach for its classification

accuracy. The current study, at the same time, focuses

on the localization accuracy in m to analyze the ef-

fectiveness of the TF paradigm for mitigating the in-

fluence of heterogeneous devices. Additionally, research

[23] does not review the BoW approach with multiple

smartphones and its results can not be generalized.

6 Conclusions

This study investigates the use of the magnetic field

data in challenging GNSS environments like near and in

buildings scenarios where the global positioning system

can not provide a reliable position. Magnetic field-based

indoor positioning and localization is an attractive so-

lution, yet, its accuracy is severely affected when multi-

farious smartphones are used for positioning. Owing to

the large variety of smartphones available today, devis-

ing an approach that can work seamlessly with various

smartphones is of significant importance. This study

presents the term frequency paradigm from the text

analysis domain to solve this issue. The magnetic field
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data is transformed into terms and a combination of

these terms represents a word (specific location in this

case). Extracted TF vectors are used to train LSTM

and GRU networks and their predictions are voted to

estimate the current location of the user.

Experiments are carried out using three different

smartphones including LG G6, Samsung Galaxy S8,

and LG Q6. Experimental results demonstrate that the

proposed approach helps to alleviate the impact of de-

vice dependency on magnetic field-based localization.

Performance comparison with three state-of-the-art ap-

proaches indicates that the proposed approach is more

influential in mitigating the device dependence than

those of other techniques. In addition, mean, maximum,

50%, and 75% error are low than other techniques even

using a smaller amount of the magnetic field data. The

approach can localize the user withing 2.52 m, and 3.91

m at 50% and 75%, regardless of the three smartphones

used for localization. A natural extension to the current

study would be to test more smartphones and increase

the localization accuracy of the proposed approach.
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