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Dual Attention Multi-Instance Deep Learning for
Alzheimer’s Disease Diagnosis with Structural MRI

Wenyong Zhu†, Liang Sun†, Jiashuang Huang, Liangxiu Han, and Daoqiang Zhang∗

Abstract—Structural magnetic resonance imaging (sMRI) is
widely used for the brain neurological disease diagnosis, which
could reflect the variations of brain. However, due to the local
brain atrophy, only a few regions in sMRI scans have obvious
structural changes, which are highly correlative with pathological
features. Hence, the key challenge of sMRI-based brain dis-
ease diagnosis is to enhance the identification of discriminative
features. To address this issue, we propose a dual attention
multi-instance deep learning network (DA-MIDL) for the early
diagnosis of Alzheimer’s disease (AD) and its prodromal stage
mild cognitive impairment (MCI). Specifically, DA-MIDL consists
of three primary components: 1) the Patch-Nets with spatial
attention blocks for extracting discriminative features within
each sMRI patch whilst enhancing the features of abnormally
changed micro-structures in the cerebrum, 2) an attention multi-
instance learning (MIL) pooling operation for balancing the
relative contribution of each patch and yield a global different
weighted representation for the whole brain structure, and 3) an
attention-aware global classifier for further learning the integral
features and making the AD-related classification decisions.
Our proposed DA-MIDL model is evaluated on the baseline
sMRI scans of 1689 subjects from two independent datasets
(i.e., ADNI and AIBL). The experimental results show that
our DA-MIDL model can identify discriminative pathological
locations and achieve better classification performance in terms
of accuracy and generalizability, compared with several state-of-
the-art methods.

Index Terms—Alzheimer’s Disease Diagnosis, Discriminative
Pathological Location, Multi-instance Learning, Attention Mech-
anism, Convolutional Neural Network, sMRI.

I. INTRODUCTION

ALZHEIMER’S disease (AD) is one of the most prevalent
neurological diseases with a significant growth rate in

incidence [1]. The progression of AD gradually results in
memory deterioration and impairment of cognitive functions,
ultimately leading to irreversible neuron injury [2]. Although
no treatment has been proven to be effective in preventing
the progression of AD [3], the early diagnosis of AD still
remains important to subsequent treatments to delay the onset
of cognitive symptoms [4]. Specifically considering that the
atrophic process occurs even earlier than the appearance of
amnestic symptoms [5], many studies [6]–[13] based on ma-
chine learning methods are developed to identify anatomical
differences between Alzheimer’s disease (AD) patients and
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normal controls (NC), and predict the progression of mild cog-
nitive impairment (MCI) using structural magnetic resonance
imaging (sMRI), which are sensitive to morphological changes
caused by brain atrophy [14].

The conventional sMRI-based AD diagnosis methods usu-
ally partition the entire MR image into multiple regions with
different scales for better feature extraction of local abnormal
brain structural changes [15]–[18]. Based on the partition with
different scales, most of the existing sMRI-based studies can
be roughly divided into three categories, including 1) voxel-
level, 2) region-level and 3) patch-level. In voxel-level methods
[19]–[22], the tissue features (e.g., gray matter densities)
extracted from sMRI scans compose high-dimensional voxel-
wise structural features for AD diagnosis. However, compared
with the dimensionality of features, the number of training
images for AD classification is too small, which often leads to
the curse of dimensionality. To alleviate this problem, region-
level methods [7], [11], [12], [23] are proposed to identify
the AD patients from normal controls with the handcrafted
features (e.g. gray matter, cerebrospinal fluid and cortical
thickness) derived from segmented regions of interest (ROIs).
However, these methods are resource-intensive for segmenting
ROIs. In contrast, patch-level (an intermediate scale between
voxel-level and region-level) feature representations [24]–[27]
are proposed for more effectively characterizing the local
structural changes in MR images. Specifically, the centers
of patches can be located by certain anatomical landmark
detectors [24] or statistics methods [25]. However, how to
combine the local patches into a global feature representation
for the whole brain structure is still a challenge in patch-level
methods.

In recent years, deep learning methods have shown great
success in image classification tasks such as medical imaging
analysis. For instance, deep convolutional neural networks
(CNNs) are empirically verified to have the excellent ability
to learn high-level features from sMRI data, and greatly
improve the performance of brain disease diagnosis with the
efforts of many researchers [28]–[35]. However, most existing
deep learning methods for AD diagnosis still rely on the
manual pre-defined ROIs with experts’ experience to build
diagnosis models based on CNNs, which leads to insufficient
consideration of individual differences using the same template
space and may not include the entire disease-related atrophy
features distributed in the whole brain. Moreover, due to the
black box characteristics of neural networks, few deep learning
methods have specific output for pathological locations, which
neglects the issues of interpretability in medical practice. Since
brain atrophy usually occurs locally, only a few regions in
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sMRI scans have obvious structural changes which are highly
correlative with pathological features, while the rest of regions
have little useful information for distinction. Therefore, the key
challenge of deep learning-based diagnosis with sMRI is to
enhance the identification of discriminative features, including
1) informative micro-structures within local regions and 2)
relatively important regions in a global image.

To address aforementioned challenges, we propose a dual
attention multi-instance deep learning model (DA-MIDL) to
identify discriminative pathological locations for AD diagno-
sis. Specifically, as illustrated in Fig. 1, DA-MIDL consists
of three major components, i.e., the Patch-Nets, the atten-
tion multi-instance learning (MIL) pooling module and the
attention-aware global classifier. Through the Patch-Nets with
spatial attention blocks, DA-MIDL could learn discriminative
structural features from multiple local sMRI patches dis-
tributed in the brain. Then through the attention MIL pooling,
all the patch-level features are given different weights and
combined into a global feature representation for the whole
brain structure information, based on which finally a global
classifier is constructed for AD diagnosis. We have evaluated
the proposed method on two public datasets (i.e., ADNI and
AIBL) and the experimental results on multiple AD-related
classification tasks (e.g., AD classification and MCI conversion
prediction) demonstrate that our DA-MIDL method outper-
forms several state-of-the-art methods in terms of accuracy
performance and generalizability. Different from the existing
approaches, our major contributions can be summarized as
follows.

1) A dual attention multi-instance deep learning model (DA-
MIDL) is proposed for improving AD diagnosis perfor-
mance, which can automatically capture local and global
structural features from sMRI scans and make AD-related
classification decisions in a unified framework.

2) The Patch-Nets with spatial attention blocks are designed
to extract discriminative features within each patch and to
enhance the local features of abnormally changed micro-
structures caused by atrophy in the brain.

3) An attention multi-instance learning (MIL) pooling oper-
ation is proposed to balance the relative contribution of
each patch and yield a global different weighted feature
representation for the whole brain structure.

The rest of the paper is organized as follows: Section II
introduces the related works; Section III describes the studied
materials and our proposed DA-MIDL method; Section IV
shows the experimental settings and results for multiple AD
diagnosis tasks compared with several state-of-the-art meth-
ods; Section V presents the discussion on the effectiveness
of our attention modules, identified pathological locations and
limitations; Section VI concludes the work.

II. RELATED WORK

In this section, we briefly introduce previous studies on
computer-aided AD diagnosis methods with sMRI data. Then
we respectively review multi-instance learning and attention
mechanism related works in medical imaging analysis.

A. Alzheimer’s Disease Diagnosis with sMRI

According to the partition of ROIs from sMRI scans, the
previous brain disease diagnosis studies could be roughly
divided into three categories, including voxel-level, region-
level, and patch-level methods.

The voxel-level methods [19]–[22] aimed at distinguishing
disease-related microstructures in MR images of the patients
and normal controls. In a voxel-wise manner, the tissue
(e.g., gray matter and white matter) densities were gener-
ally measured as features for the classification algorithms.
However, only analyzing features on isolated voxels would
lead to the ignorance of the high correlation between voxels.
Another limitation of voxel-level methods was the overfitting
problem, because the voxel-level feature representation always
had a high dimensionality compared with the small number
of subjects for model training. Therefore, feature dimension
reduction was the main challenge of voxel-level methods for
improving the performance of AD classification. In [36], a
sparse coding method with a hierarchical tree-guided reg-
ularization was adopted to identify the relevant biomarkers
(i.e., voxel-wise gray matter density) with structured sparsity
from MR images for brain disease classification. In [37],
an incremental learning-based method for AD diagnosis was
proposed to effectively reduce the dimension of data and
achieve robustness to noises by filtering out high frequency
components of the voxel-wise cortical thickness data.

In contrast, region-level methods were based on the pre-
segmented ROIs, which had much lower feature dimension-
ality than voxel-level methods. For instance, the volumetric
features were extracted from 93 ROIs automatically labeled
by an atlas warping algorithm and a linear support vector
machine (SVM) was used for AD classification [11]. The
hippocampal features were segmented from sMRI scans for
AD diagnosis and MCI conversion prediction [20], since the
hippocampus is usually affected at the earliest stage of AD.
Ensemble classification models were constructed based on
multiple sets of regional gray matter density features from
multiple spatially normalized template spaces for AD and MCI
diagnosis [12]. In [38], a multi-kernel-based method combined
with Marginal Fisher Analysis was proposed to achieve the
sparsity of ROIs for dimensionality reduction and capture
the complicated relationship between MRI features and the
disease status. However, the definition and segment of ROIs
were resource-intensive due to the requirement of experts’
experience. Furthermore, most region-level methods [7], [11],
[12], [23] only used part of the handcrafted features (e.g., gray
matter, white matter, cerebrospinal fluid and cortical thickness)
extracted from the ROIs, which may not include the entire
disease-related features.

As an intermediate scale between voxel-level and region-
level, patch-level methods [24]–[27] were proposed for more
effectively capturing the local structural changes in MR im-
ages. For instance, many weak classifiers were constructed
based on the features extracted from randomly sampled
patches in MR images and were combined to make a final
decision for AD diagnosis [26]. The graph representations
were measured based on squared Euclidean distance between
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intensity features of patches, and then the SVM was used for
classification [8]. In [27], a fully convolutional network (FCN)
was trained on the randomly sampled patches from the full
MRI volumes. Based on the trained FCN, the voxels of high-
risk were selected and fed to the multilayer perceptron (MLP)
for individual-level AD classification. However, the spatial
correlation among patches were processed inadequately in
these works. A hierarchical full convolutional neural network
was proposed for AD diagnosis [6], which could learn multi-
scale feature representations (e.g., patch-level, region-level
and subject-level) from sMRI scans. Then a pruning strategy
was used to remove uninformative patches and cut down the
learnable parameters. However, it may lead to the loss of
potential spatial correlation between the removed patches and
left patches. Therefore, highlighting the discriminative features
while retaining the spatial correlation among patches is still a
challenge in patch-level methods.

B. Multi-instance Learning

In multi-instance learning (MIL) [39], one sample consists
of multiple observed instances and is only annotated with a
general category. That is, the training set can be regarded
as a set of labeled bags, where each bag contains multiple
unlabeled instances. Specifically, one positive labeled bag
contains at least one positive instance. In addition, the positive
labeled bag may contain negative instances or useless instances
which are irrelevant to the label of the bag. While, all the
instances in the negative bags are negative. The main task of
MIL is to predict the labels of unseen bags.

Multi-instance learning performs well in the computer-aided
medical diagnosis domain [40]–[45]. For example, a novel
MIL framework MIS-Boost was employed for the identifi-
cation of cerebral small vessel disease, using the intensity
patches from regions with high probability of containing
lesions in CT images [43]. A new method as MIL pooling
was proposed based on the quantile function to aggregate the
predictions from smaller regions into an image-level classifica-
tion for breast tumor histology [40]. A deep MIL model was
proposed for AD diagnosis, which simply concatenated the
local features learned from sub-CNNs for the global feature
representation of whole brain structure [10]. However, how
to combine the instance-level features into a global bag-level
feature representation is still a challenge in MIL.

C. Attention Mechanism

Since the features of different parts make different con-
tributions to the overall classification performance, the at-
tention mechanism has been proposed to automatically find
and highlight the most informative points on feature maps
for boosting the performance of image classification [46],
[47]. Specifically, the attention modules can learn task-oriented
different weighted feature maps for subsequent representation
learning and classification.

Recently, the attention mechanism has been widely used in
the medical imaging analysis domain [48]–[51]. Different task-
oriented attention modules were proposed to help classification

or segmentation models to enhance the features of disease-
related regions in images. For instance, a weakly-supervised
attention network was proposed for dementia status prediction
[48], which consisted of a fully convolutional network, a
trainable dementia attention block and a multi-task regression
block. A cross-attention model was designed to find the
areas with high pathogenic chances and eliminate noises for
thoracic disease diagnosis [49]. A channel attention module
was integrated into the conventional residual block to extract
more informative features for improving tissue quantification
in fingerprinting [50].

Although both attention mechanism and multi-instance
learning have good performance in the field of medical
imaging analysis, there are few studies to combine these two
methods. In MIL, the key stage is the combination of instance-
level features into a global bag-level feature representation. It
may be unreasonable to combine the instance-level features
equally, since different instances contain different amounts
of information. Therefore, the attention mechanism can be
used to estimate the weight of each instance. To this end,
we propose a dual attention multi-instance deep learning
model (DA-MIDL) for identifying discriminative pathological
locations and AD diagnosis with structural MRI data.

III. MATERIALS AND METHOD

In this section, we first present materials used in our study.
Then we introduce the proposed DA-MIDL method, including
the overall architecture, key components and loss function
based on multi-instance learning and attention mechanisms.
Finally, we provide the implementation details.

A. Subjects and Image Pre-Processing

Two datasets (i.e., ADNI and AIBL) used in our study are
acquired from the public Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (http://adni.loni.usc.edu) and Aus-
tralian Imaging, Biomarker and Lifestyle Flagship Study of
Ageing (AIBL) database (https://aibl.csiro.au). In the ADNI
dataset, there are totally 1193 1.5T/3T T1-weighted struc-
tural MRI (sMRI) scans from subjects at their own base-
line/screening visit (i.e., the first examination) across three
ADNI phases (i.e., ADNI-1, ADNI-2 and ADNI-3). These
subjects can be divided into three categories: AD (Alzheimer’s
disease), MCI (mild cognitive impairment) and NC (normal
control) in accordance with the standard clinic criteria, such as
Mini-Mental State Examination (MMSE) scores and Clinical
Dementia Rating (CDR). For MCI conversion prediction, MCI
subjects can be further categorized into two classes: pMCI
(progressive MCI subjects who had converted to AD within
36 months after baseline visit) and sMCI (stable MCI subjects
who were continuously diagnosed as MCI for 36 months after
baseline visit). The studied ADNI dataset contains 389 AD,
172 pMCI, 232 sMCI and 400 NC subjects. The AIBL dataset
consists of baseline sMRI scans from 496 different subjects,
including 79 AD, 17 pMCI, 93 sMCI and 307 NC subjects.
The demographic detail of these 1689 subjects from the ADNI
and AIBL datasets is shown in Table I.
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Fig. 1. Illustration of our dual attention multi-instance deep learning network (DA-MIDL), which consists of Patch-Nets with Spatial Attention Blocks,
Attention MIL Pooling and Attention-Aware Global Classifier.

TABLE I
DEMOGRAPHIC DETAIL OF THE STUDIED SUBJECTS INCLUDING DATASET,

GROUP TYPE, GENDER, AGE, MINI-MENTAL STATE EXAMINATION
(MMSE) AND CLINICAL DEMENTIA RATING (CDR).

Dataset Group
Type

Gender
(Male/Female)

Age
(Mean±Std)

MMSE
(Mean±Std)

CDR
(Mean±Std)

ADNI

AD 202/187 75.13±7.86 23.28±2.03 0.75±0.25
pMCI 105/67 75.73±7.05 26.59±1.71 0.50±0.00
sMCI 155/77 76.40±7.94 27.27±1.78 0.49±0.04
NC 202/198 73.85±6.38 29.10±1.01 0.00±0.00

AIBL

AD 33/46 73.34±7.77 20.42±5.46 0.95±0.51
pMCI 9/8 75.29±6.16 26.24±2.04 0.47±0.13
sMCI 48/45 74.67±7.21 27.23±2.08 0.46±0.12
NC 134/173 73.12±6.19 28.77±1.25 0.02±0.20

The original structural MRI data downloaded from ADNI
are pre-processed for subsequent better feature learning and
classification. First, the original images in 3D Neuroimaging
Informatics Technology Initiative (NIfTI) format are standard-
ized through geometry correction for gradient nonlinearity by
3D gradwarp correction [52] and intensity correction for non-
uniformity by B1 non-uniformity correction [53]. Then, we
perform linear registration to the Colin27 template [54] to
remove global linear differences (including global translation,
scale, and rotation differences) and skull-stripping on all the
structural MR images respectively using ’flirt’ instruction with
default parameters (e.g., DOF (degrees of freedom) as 12 and
Correlation Ratio as cost function) and ’bet’ instruction with
default fractional intensity threshold (0.5) in FSL toolbox [55].
After image normalization to the Colin27 standard space, MR
images have a size of 181×217×181 voxels.

B. Overall Architecture Based on Multi-Instance Learning

We regard the patch-level brain morphometric pattern analy-
sis for AD diagnosis as a multi-instance problem and construct
our model based on multi-instance learning. In MIL, the
training data is a set of bags, i.e., D = {(Xi, Yi)}Ni=1, where

Xi is the i-th sample/bag, Yi is the bag-level label of Xi, and
N is the number of bags. Each bag contains multiple unlabeled
instances, i.e., Xi = {Ii,j}Ni

j=1, where Ii,j is the j-th instance,
Ni is the number of instances in Xi. Besides, in a positive bag
there is at least one positive instance while all the instances
in a negative bag are negative. We denote Yi = 0 only when∑Ni

j=0 yi,j = 0, where yi,j represents instance-level label of
Ii,j , otherwise Yi = 1.

Brain abnormal atrophy occurs at few local regions, espe-
cially at the early stage of AD [56]–[58]. To this end, we
regard the bag of patches from a certain patient’s MR image as
a positive bag. Correspondingly, we group the patches from a
normal control into a negative bag. Thus, the bags of multiple
patches with bag-level labels take the place of whole large
images as the training data for AD-related diagnosis.

Our proposed DA-MIDL model (shown in Fig. 1) contains
four key steps, including the selection of instances for com-
posing a bag X (i.e., Patch Location Proposals described in
Section III-C), a transform f of instance-level features (i.e,
Patch-Net described in Section III-D), a combination φ of
transformed instances (i.e, Attention MIL Pooling described in
Section III-E), a classification g based on the combined bag-
level features (i.e, Attention-Aware Global Classifier described
in Section III-F). The probability Θ of positive category is
expressed as: Θ(X) = gφf(X).

C. Patch Location Proposals

Patch location proposals are used to initially select patches
from sMRI scans as input to our model. Inspired by the patch
extraction in [25], we propose a novel method, considering the
group comparison on patch-level features instead of voxel-
wise features. In our method, we first uniformly divide the
MR images into multiple cubic patches with a fixed size
(e.g., W ×W ×W ) without overlapping in order to simplify
calculations and avoid redundant information. However, not all
the partitioned patches are related to abnormal atrophy caused
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by AD. The t-test is a method to identify the significance
of the difference between the experimental group and the
control group. In our experiment, the patch locations with
more significant differences between AD group and NC group
are more likely to be the brain regions with abnormal atrophy.
Thus, we apply the t-tests to sort the informativeness in all
patches. We calculate the average of the voxel-wise features
in one patch as its patch-level feature. Then we make a group
comparison on two groups of patch-level features at one patch
location respectively from the same amount of AD patients
and normal controls in training set using a t-test. So we can
obtain a p-value at this patch location, which can represent the
informativeness of this location. All the p-values respectively
calculated on all the locations are normalized by pvalue−MIN

MAX−MIN
and form a p-value map covering the whole brain MR image.
Additionally, the locations with smaller p-values are roughly
considered to have higher discrimination. According to the p-
value map, we select a number of patches in one image at the
locations with the smallest p-values to compose a bag (e.g.,
X = {I1, I2, · · · , Ik}, where Ii ∈ RW×W×W and k is the
number of selected patches) as input to our model.

D. Patch-Net with Spatial Attention Block
Fig. 1 shows the structure of Patch-Net with spatial attention

block. There are two tasks in Patch-Net, including 1) learning a
spatial attention-aware patch-level feature representation, and
2) outputting an affect score which indicates the ability of
triggering the bag label. Spatial attention blocks are used
for feature enhancement of discriminative parts in fixed-size
patches. Specifically, all the Patch-Nets in our DA-MIDL
method have the same architecture.

1) Patch-Net: The former part as a backbone of Patch-
Net aims to learn more abstract feature representations from
original patches and reduce the size of feature maps. It
consists of four 3D convolutional layers and a max pooling
in the middle for adapting the size of input patches. The first
convolutional layer has a kernel size of 4×4×4. The last three
convolutional layers have the same filter size of 3×3×3. The
max pooling has a filter size of 2 × 2 × 2 with 2-unit-length
stride for down-sampling. In detail, the number of channels
from conv1 to conv4 is 32, 64, 128 and 128 sequentially.
All the convolutional layers are trained in a unit stride with
non-zero-padding feature maps. Each convolutional layer is
followed by batch normalization (BN) and rectified linear unit
(ReLU) activations. Based on the feature maps output from
conv4, the Patch-Net extends to two branching modules. One
is the spatial attention block (Section III-D2) for learning a
spatial attention-aware patch-level representation (whose size
is C × w × w × w, where C is the number of channels and
w×w×w is the size of the feature maps). The other module
(including a global average pooling, a fully connected layer
and a sigmoid function) aims to produce an affect score which
is used to identify the discriminative pathological locations.
Instead of generating one-dimensional feature vectors in most
existing instance-level transforms in MIL, the local patch-
level features output from Patch-Nets maintain the three-
dimensional shape for the better combination of patches and
further learning of the spatial relationship among patches.

2) Spatial Attention Block: Inspired by the spatial attention
module proposed in [47], we design our spatial attention block
embedded into our Patch-Net to adapt the local structural
feature extraction from 3D image patches. The architecture
of the spatial attention block is also shown in Fig. 1. Two
different pooling along the channel axis (i.e., channel max
pooling and channel average pooling) are adopted to generate
two feature maps in the name of the max features and
average features respectively. Then the two feature maps are
concatenated with a size of 2 × w × w × w as the input
of the subsequent convolutional layer (stride: 1, kernel size:
3×3×3, padding: 1 for maintaining the size of feature maps).
The output of the convolutional layer can be regarded as a
spatial attention map (Aspatial ∈ Rw×w×w, the same size
as the feature maps from conv4) where the attention score
at each location is limited to the range of 0 to 1 through
the sigmoid layer. The spatial attention map describes the
spatially-varying contributions of different parts in a patch,
which reveals which part to emphasize or suppress in feature
representations. Each feature map in the output of conv4 is
multiplied at element wise with the calculated attention map
Aspatial so that the local spatial attention-aware structural
representations are generated ultimately. Then we explain the
proposed spatial attention block with several formulas.

We denote the output of conv4 as F = {F1,F2, · · · ,FC},
where Fi ∈ Rw×w×w and C is the number of channels. Max
pooling along channel axis can be expressed as

Fmax = ChannelMaxPooling(F ), (1)

where Fw,h,l
max = max{Fw,h,l

1 ,Fw,h,l
2 , · · · ,Fw,h,l

C }. Average
pooling along channel axis is denoted as

Faverage = ChannelAveragePooling(F ), (2)

where Fw,h,l
average = 1

C

∑C
c=1 F

w,h,l
c . Then we concatenate the

two feature maps and calculate a spatial attention map.

Aspatial = σ(W([Fmax;Faverage])), (3)

where σ is sigmoid activation, W is the weight of the con-
volutional layer and [ ; ] is concatenation. The patch-level
spatial-attention-aware feature representaion F is denoted as

F = [F1 ⊗ Aspatial; · · · ;FC ⊗ Aspatial], (4)

where ⊗ is element-wise multiplication.

E. Attention MIL Pooling

We also propose an attention MIL pooling operation for
learning a patch-attention map which indicates relative contri-
bution of each patch. The architecture of attention MIL pooling
is also shown in Fig. 1.

Each patch-level structural representation F ∈ RC×w×w×w

output from Patch-Net are firstly compressed by average-
pooling along channel axis to F̄ ∈ R1×w×w×w. Then,
the compressed patch-level feature representations are con-
catenated to the global feature representation as Fglobal =
{F̄1, F̄2, · · · , F̄C}, where C is also the number of patches
and F̄i represents the patch-level features of the i-th input
patch. The global average pooling (GAP ) and global max
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pooling (GMP ) are constructed in parallel for generating two
different feature descriptors, since it is empirically confirmed
that exploiting both above feature descriptors can improve
representation power of networks rather than only adopting
one of them [47]. Then the two descriptors are respectively
further learned by corresponding two 1× 1× 1 convolutional
layers to produce two patch-attention maps.

Aaverage = W1ReLU(W0GAP (Fglobal)) (5)

Amax = W1ReLU(W0GMP (Fglobal)) (6)

We respectively use W0, W1 as the weights of the convolu-
tional layers. Herein, the convolutional layers in processing
the average feature descriptor share the parameters with the
convolutional layers in processing the max feature descriptor.
Apart from the two patch-attention maps learned from inter-
patch relationships, the affect score learned from each intra-
patch feature is also considered to estimate the contribution of
each patch. The affect scores from all the Patch-Nets form an
affect vector a = {a1, a2, · · · , aC}, where C is the number
of patches. The affect vector is extended to the same size as
the patch-attention maps. Thus, the three different attention
maps can be merged into a comprehensive patch-attention
map Apatch by element-wise summation, which is activated
by sigmoid function σ afterwards.

Apatch = σ(Aaverage + Amax + a) (7)

Finally, the previous global representations are multiplied with
the patch-attention map to produce the attention-aware global
feature representation Fglobal.

Fglobal = Fglobal ⊗ Apatch, (8)

where ⊗ represents tensor multiplication.
Different from the conventional max MIL pooling and

average MIL pooling, our attention MIL pooling not only
considers all patch features instead of only depending on
the most probably discriminative patch, but also gives each
patch a different weight instead of combining all the patches
equally. Therefore, the attention MIL pooling can empha-
size the feature representations for crucial patches to lighten
the noise interference and meanwhile remain the connection
between unimportant patches and key patches to avoid the
loss of potential relevant features, so that it can improve the
classification performance and reduce the misdiagnosis rate of
special subjects. Specifically, the patch-attention map can be
a reference to identify pathological locations.

F. Attention-Aware Global Classifier

Attention-aware global classifier (shown in Fig. 1) con-
tinues to process the bag-level representations Fglobal by
considering the high correlations among patches and makes a
final diagnosis. Compared with directly using fully connected
layers to explore the correlation among patch-level features,
the convolutional layers show a superior high-level feature
extraction capability for deep learning on inter-patch features.
Thus, the two-layer convolutional network in the front of the
global classifier are used to further learn the attention-aware

feature representation from the MIL pooling for extracting
more structural information among patches and squeezing the
feature maps along channels. The two convolutional layers
respectively have 128 filters and 64 filters with the same size of
2×2×2 and unit stride, followed by batch normalization (BN)
and rectified linear unit (ReLU) activations. Then an adaptive
3D average pooling is adopted to downsample the feature maps
to F ∈ R64×1×1×1. Then the feature representation is flattened
as the input of subsequent two fully connected layers with 32
and 2 units to generate two scores (normalized by softmax
function) representing the negative and positive probability
respectively.

Based on the different weighted feature maps output from
the previous attention MIL pooling, the attention-aware global
classifier is designed to further learn the integral feature rep-
resentations for the whole brain structural information in MRI
scans and output classification results for AD classification or
MCI conversion prediction.

G. Loss Function

Since only image-level labels are given while patch-level
labels are ambiguous, the image-level label is regarded as
the unique guidance used in back propagation for updating
our network weights W. The loss function we use in model
training based on the cross entropy loss is described as :

L(W) = − 1

N

N∑
n=1

log(P (Yn|Xn;W)), (9)

where N is the number of images, P (Yn|Xn;W) is the
probability of correct prediction for Xn. As an end-to-end net-
work, the training losses are backpropagated from the global
classifier to the MIL pooling and Patch-Nets for assisting in
updating the parameters of the network with an optimization
algorithm (e.g., Adam). By minimizing the loss function, our
network finally learns a map: X to Y .

H. Implementation

Our proposed DA-MIDL network (whose framework is
shown in Fig. 1 and detailed in Table SI of the Supplementary
Materials) is implemented using Python based on the Pytorch
packages1. To alleviate the overfitting issue, we use the batch
normalization activation after the convolutional layers. We
make all the Patch-Nets share the weights, which reduces the
number of trainable parameters especially when a large cohort
of patches are inputted. Besides, the input image patches to
Patch-Nets are extracted from different brain locations with
various anatomical structures, which effectively augments the
diversity of training data.

Two datasets (i.e., ADNI and AIBL) are used to evaluate the
performance and generalizability of our DA-MIDL method.
Specifically, we divide the samples from the ADNI dataset
into training and test datasets, in which 80% samples are used
for model training while the remaining 20% samples held out
as a test dataset. A five-fold cross validation strategy is used
for choosing the hyper-parameters and model training on the

1https://github.com/WyZhuNUAA/DA-MIDL
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ADNI training dataset. Then the trained model with optimized
hyper-parameters is tested on the held out ADNI test dataset.
To further verify the robustness and generalizability of our
model, we have also evaluated our model on an independent
dataset (AIBL).

In the training stage, we first calculate the p-value map
covering the whole MR image by group comparison on the
training set (i.e., 4 subsets each round in 5-fold) to initialize
the input patch locations. Then we feed the patches extracted
from the selected locations in MR images to the corresponding
Patch-Nets, respectively. The proposed DA-MIDL is trained
using the Adam optimizer for 100 epoch, which requires ∼ 5.5
hours on one NVIDIA GTX Titan X GPU, and evaluated on
the remaining 1 validation subset. The architecture (e.g., the
number of channels) of DA-MIDL and its hyper-parameters
(e.g., learning rate = 0.001, batch size = 10, patch size =
25×25×25 and patch number = 60) are chosen by the mean
validation performance across all folds. In addition, the vali-
dation performances of our method with different parameters
are shown in Section II-A of the Supplementary Materials.

In the test stage, we feed the patches extracted at the same
locations used in the training stage from an unseen MR image
to the trained network for AD diagnosis, which takes ∼ 0.25
seconds for one subject based on the pre-processed MR image.

IV. EXPERIMENTS

In this section, we present the experimental settings and
the performance and generalizability of our DA-MIDL method
on multiple AD-related diagnosis tasks compared with several
state-of-the-art methods.

A. Experimental Settings

Our DA-MIDL method is verified on multiple AD-related
diagnosis tasks, such as AD classification (AD vs. NC), MCI
conversion prediction (pMCI vs. sMCI) and MCI classifica-
tions (pMCI vs. NC and sMCI vs. NC). We apply four metrics
to evaluate the classification performance, including accuracy
(ACC), sensitivity (SEN), specificity (SPE), and the area under
receiver operating characteristic curve (AUC). These metrics
are defined as: ACC = TP+TN

TP+TN+FP+FN , SEN = TP
TP+FN ,

SPE = TN
TN+FP , where TP, TN, FP and FN are denoted as

true positive, true negative, false positive and false negative
value respectively. ACC, SEN and SPE are calculated using
the default threshold of 0.5. AUC is calculated on all possible
pairs of true positive rate (TPR = SEN ) and false positive
rate (FPR = 1−SPE) by changing the thresholds performed
on the prediction results from our trained DA-MIDL network.

B. Competing Methods

We compare our DA-MIDL method with three baseline
methods, i.e., a conventional voxel-level method (i.e., VBM),
a conventional ROI-level method (i.e., ROI), a conventional
patch-level method (i.e., PLM), and two state-of-the-art patch-
level deep learning-based methods (i.e., DMIL [10] and HFCN
[6]).

1) Voxel-level Morphometry (VBM): According to the study
[22], each MR image is processed by the spatial normalization
to a standard stereotactic brain space (i.e., Colin27 template)
and the local gray matter density is measured as the voxel-
level feature. Due to the high dimension of the voxel-wise
features, a t-test is adopted to make a difference comparison
on two groups of images at each voxel respectively from AD
patients and normal controls for feature selection. Then based
on the selected voxel-level feature vectors, a linear SVM is
trained for AD-related diagnosis.

2) ROI-level Method (ROI): Following the work [11], all
the registered MR images after a deformable registration algo-
rithm Hammer [59] are segmented into 93 regions according
to the template with 93 manually labeled ROIs [60]. Then
we calculate the gray matter volume in each ROI as the
region-level feature which is further normalized by the total
intracranial volume. Based on the feature vectors which consist
of 93 ROI features, a linear SVM is constructed for AD-related
classification.

3) Patch-level Method (PLM): Similar to [26], we uni-
formly divide the tissue density maps into non-overlapping
patches. Then, we use t-tests to select the relevant voxels
with p-values smaller than 0.05. The selected patches (i.e.,
contain the relevant voxels) from tissue density maps are used
to compose a patch pool as the features for Alzheimer’s disease
classification. We construct a classifier (i.e., SVM) based on
the patch pool to obtain the classification results.

4) Deep Multi-instance Learning (DMIL): In this work
[10], the deep learning framework with patch-wise input data
is constructed based on the multi-instance learning. Multiple
sub-CNNs with the same structure of 6 convolutional layers
generate patch-level feature representations, where each sub-
CNN corresponds to a patch and has different parameters.
Then the patch-level feature representations are concatenated
into a global feature representation as the input of the sub-
sequent classifier including 5 fully connected layers and a
softmax layer for AD diagnosis.

5) Hierarchical Fully Convolutional Network (HFCN):
The HFCN model [6] is reproduced as a comparison method,
which is implemented by fully convolutional layers and
contains three levels of networks including multiple patch-
level sub-networks, several region-level sub-networks and a
subject-level sub-network. Multi-scale feature representations
are jointly learned and fused for the construction of hierarchi-
cal classifiers. That is, the outputs from low-level sub-networks
are spatially combined to form input features for high-level
sub-networks.

Note that the conventional methods are simply implemented
by linear SVMs based on selected local features of different
scales (i.e., voxel-level, ROI-level and patch-level) and the
patch-level deep learning-based models are trained on the
patches at the same proposal locations as our DA-MIDL
method instead of the landmarks with prior knowledge. Thus,
these contrast methods may fail to achieve the first-rate results
in their papers. All the methods are trained and evaluated on
the same training set and test sets.
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C. Classification Performance on ADNI

The performances on AD classification and MCI conversion
prediction achieved by our DA-MIDL method and the com-
peting methods on the test set from ADNI are shown in Table
II. Also, the 5-fold validation performances of our method on
the training set from ADNI are shown in Table SII of the
Supplementary Materials.

As shown from Table II, our DA-MIDL method achieves
better performance in both AD classification and MCI con-
version prediction tasks in most cases. For example, our DA-
MIDL method obtains better results on all four metrics (i.e.,
ACC = 0.924, SEN = 0.910, SPE = 0.938 and AUC = 0.965)
in AD classification. Additionally, in the MCI conversion
prediction task, the ACC (0.802), SEN (0.771) and AUC
(0.851) yielded by our DA-MIDL method are also much better
than the results from the other five methods. Meanwhile,
the patch-level methods (i.e., PLM, DMIL, HFCN and DA-
MIDL) all outperform the voxel-level and ROI-level methods
(i.e., VBM and ROI). The possible reason is that the patch-
level feature representation can capture more suitable local
discriminative structural features. Furthermore, compared with
the conventional patch-level method (i.e., PLM), the deep
learning-based methods (i.e., DMIL, HFCN and DA-MIDL)
achieve much better results for Alzheimer’s disease diagnosis.
The main reason could be that using the task-oriented features
learned by deep learning methods can mitigate the hetero-
geneity between features and subsequent classification algo-
rithms. Compared with the two state-of-the-art methods (i.e.,
DMIL and HFCN), our DA-MIDL method overall achieves
better classification performance with the same inputs. The
underlying reason could be that the different weighted feature
representations learned by our DA-MIDL model are effective
for AD detection. Specifically, our DA-MIDL method has a
superior improvement on the sensitivity metric, which implies
that our DA-MIDL method has much lower missed diagnosis
rate in AD classification and MCI conversion predication. It
indicates that our DA-MIDL method is more sensitive to the
disease-related structural changing features in the brain.

TABLE II
RESULTS FOR AD CLASSIFICATION (AD VS. NC) AND MCI CONVERSION

PREDICTION (PMCI VS. SMCI) ON THE ADNI TEST SET.

Method AD vs. NC pMCI vs. sMCI

ACC SEN SPE AUC ACC SEN SPE AUC
VBM 0.816 0.756 0.875 0.883 0.679 0.629 0.717 0.709
ROI 0.804 0.718 0.888 0.852 0.667 0.571 0.739 0.692
PLM 0.848 0.846 0.850 0.905 0.716 0.657 0.761 0.732
DMIL 0.892 0.859 0.925 0.950 0.765 0.714 0.804 0.790
HFCN 0.905 0.897 0.913 0.942 0.778 0.686 0.848 0.812

DA-MIDL 0.924 0.910 0.938 0.965 0.802 0.771 0.826 0.851

To further evaluate the performance of DA-MIDL, we
perform the additional experiments on MCI classification tasks
(including pMCI vs. NC and sMCI vs. NC). Specifically, the
classification between sMCI and NC is also as challenging as
MCI conversion prediction (i.e., pMCI vs. sMCI) due to the
slight structural changes in the cerebrum at the early stage
of AD. As shown in Table III, our DA-MIDL method also
achieves better performance on the both classification tasks.

For example, in the classification task of distinguishing pMCI
subjects from normal controls, our DA-MIDL method acquires
better results (i.e., ACC = 0.895, SEN = 0.824, SPE = 0.925
and AUC = 0.917). In the challenging classification between
sMCI subjects and normal controls, our DA-MIDL method
also obtains quite better results, especially on ACC (0.825)
and AUC (0.860).

TABLE III
RESULTS FOR PMCI VS. NC AND SMCI VS. NC CLASSIFICATIONS ON THE

ADNI TEST SET.

Method pMCI vs. NC sMCI vs. NC

ACC SEN SPE AUC ACC SEN SPE AUC
VBM 0.816 0.647 0.888 0.853 0.698 0.674 0.713 0.742
ROI 0.789 0.618 0.862 0.846 0.675 0.652 0.688 0.698
PLM 0.825 0.765 0.850 0.876 0.738 0.652 0.788 0.756
DMIL 0.868 0.735 0.925 0.908 0.794 0.783 0.800 0.808
HFCN 0.877 0.795 0.913 0.910 0.802 0.717 0.850 0.832

DA-MIDL 0.895 0.824 0.925 0.917 0.825 0.804 0.838 0.860

D. Generalization on AIBL

To verify the generalizability of our method, we further
use an independent AIBL dataset to evaluate our DA-MIDL
method and its competing methods trained on the ADNI
dataset. The experimental results for AD classification and
MCI conversion prediction on the AIBL dataset are shown
in Table IV.

TABLE IV
RESULTS FOR AD CLASSIFICATION AND MCI CONVERSION PREDICTION

ON THE AIBL DATASET.

Method AD vs. NC pMCI vs. sMCI

ACC SEN SPE AUC ACC SEN SPE AUC
VBM 0.808 0.582 0.866 0.817 0.673 0.529 0.720 0.717
ROI 0.793 0.519 0.863 0.796 0.664 0.471 0.710 0.671
PLM 0.839 0.722 0.870 0.846 0.709 0.529 0.742 0.725
DMIL 0.868 0.772 0.893 0.901 0.764 0.588 0.796 0.793
HFCN 0.889 0.823 0.906 0.930 0.782 0.647 0.806 0.796

DA-MIDL 0.902 0.848 0.915 0.939 0.809 0.706 0.828 0.824

As shown in Table IV, our proposed DA-MIDL method
generally outperforms the other five competing methods (i.e.,
VBM, ROI, PLM, DMIL and HFCN) in most metrics in
both AD-related diagnosis tasks. For example, the DA-MIDL
achieves the best ACC (0.902) for the AD vs. NC classification
task on the AIBL dataset by using the model trained on
the ADNI dataset, which is better than VBM (0.808), ROI
(0.793), PLM (0.839), DMIL (0.868), and HFCN (0.889). For
the pMCI vs. sMCI classification task, our DA-MIDL method
also obtains better results (0.809, 0.706, 0.828, and 0.824 for
ACC, SEN, SPE and AUC, respectively), which is superior
to that of the second-best method (0.782, 0.647, 0.806, and
0.796 for ACC, SEN, SPE and AUC, respectively). These
results suggest our DA-MIDL method can achieve a robust
performance across different datasets. Furthermore, compared
with the results reported in Table II, the performance of our
DA-MIDL has no obvious drop for the AD vs. NC task in most
of metrics. The performance of our DA-MIDL has a serious
drop in terms of sensitivity for the pMCI vs. sMCI task. The
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possible reason is the small number of pMCI in the AIBL
dataset. Even one misclassified sample will lead to a serious
drop in terms of sensitivity. Nevertheless, these results overall
indicate the good generalization capability of our method for
AD diagnosis.

E. Comparison with Previous Works

For a broad comparison between our method and related
studies on the performance of AD diagnosis, in Table VI
we sort out several state-of-the-art results reported in the
corresponding literature using structural MRI data from the
ADNI database on AD classification and MCI conversion
prediction tasks, including two voxel-level methods [13], [20],
three ROI-level methods [38], [61], [62] and three patch-level
methods [8], [27], [30].

As shown in Table VI, we can have several observations as
follows. First, our method achieves competing performance in
both AD-related classification tasks. Second, compared with
voxel-level methods [13], [20], our method has much better
performance. The possible reason is that our method can deal
with the spatial correlation (i.e., latent non-linear features)
of local patch-level brain structures by convolutional neural
networks better than the linear voxel-level feature vectors.
Third, different from the region-level methods based on em-
pirically predefined ROIs [38], [62], our method attempts to
extract structural features from multiple patches distributed
in the whole brain, which is much more difficult. However,
our method has competing performance, which implies the
effectiveness of our DA-MIDL model for identifying the
pathological locations. Finally, our method outperforms the
other patch-level methods [8], [27], [30], which demonstrates
that our method has a good feature extraction ability of local-
to-global representations for AD diagnosis by specifically
balancing the relative contribution of each patch.

V. DISCUSSION

In this section, we first evaluate the effectiveness of at-
tention modules (i.e. spatial attention block and attention
MIL pooling) and the influence of Attention MIL Pooling in
our method. Then we present the discriminative pathological
locations identified by our method and the potential of clinical
translation. Finally, we analyze the limitations of our work and
possible future research directions.

A. Effectiveness of Attention Modules

To evaluate the effectiveness of the attention modules used
in our study, we further compare the proposed DA-MIDL
method with its counterparts, i.e., the model with neither
attention modules (N-MIDL), the model only with spatial
attention blocks (S-MIDL), and the model only with attention
MIL pooling (A-MIDL). We evaluate these four methods on
two AD-related diagnosis tasks (e.g., AD vs. NC and pMCI
vs. sMCI), with results reported in Table V.

As shown in Table V, our proposed attention modules can
overall improve the classification performance. For instance,
our DA-MIDL method with dual attention modules has higher

accuracy than its counterparts (i.e., N-MIL, S-MIL and A-
MIL) in AD classification and MCI conversion prediction.
These results imply that using both attention modules could
achieve better classification performance. The possible reason
is that the attention modules are effective in enhancing the
discriminative features for AD-related classification.

TABLE V
RESULTS FOR AD CLASSIFICATION AND MCI CONVERSION PREDICTION

ACHIEVED BY DA-MIDL AND ITS COUNTERPARTS (I.E., N-MIDL,
S-MIDL AND A-MIDL) ON THE ADNI TEST SET.

Method AD vs. NC pMCI vs. sMCI

ACC SEN SPE AUC ACC SEN SPE AUC
N-MIDL 0.886 0.885 0.888 0.944 0.753 0.743 0.761 0.758
S-MIDL 0.899 0.897 0.900 0.951 0.765 0.714 0.804 0.790
A-MIDL 0.905 0.903 0.913 0.960 0.778 0.800 0.761 0.805

DA-MIDL 0.924 0.910 0.938 0.965 0.802 0.771 0.826 0.851

B. Influence of Attention MIL Pooling

We further compare the proposed attention MIL pooling
with several common MIL pooling which are widely used
for aggregating the instance-level representations in processing
MIL problems such as average MIL pooling and max MIL
pooling [63]. Average MIL pooling is used to calculate the
average feature representation of instance-level features as the
bag representation (i.e, B = 1

K

∑K
k=1 Ik). In contrast, max

MIL pooling only focuses on discriminative instance-level fea-
tures (i.e., B = maxk=1,···,K{Ik}). We replace the attention
MIL pooling in DA-MIDL with average MIL pooling and max
MIL pooling as two control methods, which are implemented
respectively by element-wise average and maximum operators.
As shown in Fig. 2, the proposed attention MIL pooling
achieves much better performance on AD classification than
the other two MIL pooling in all cases. It implies that only
focusing on one single discriminative patch (as max MIL
pooling does) may not adequately represent the disease-related
features for classification, since the atrophy occurs at multiple
patches distributed in the brain. In addition, the average
MIL pooling may relatively lack of identifying discriminative
features with a lower sensitivity, due to aggregating all patch-
level features equally. In contrast, attention MIL pooling may
balance the contribution of each patch for AD classification
by learning a relative weight for each patch-level features
with different informativeness, which could be effective for
improving the classification performance.

Fig. 2. AD classification performance of our DA-MIDL model with dif-
ferent MIL pooling including Max-MIL-Pooling, Average-MIL-Pooling and
Attention-MIL-Pooling on the ADNI test set.
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TABLE VI
REFERENTIAL COMPARISON ON SMRI-BASED STUDIES FOR AD CLASSIFICATION AND MCI CONVERSION PREDICTION.

Reference Method Subjects
AD vs. NC pMCI vs. sMCI

ACC SEN SPE AUC ACC SEN SPE AUC

Salvatore et al. [13] Voxel-level features,
PCA + SVM

137 AD + 162 NC +
76 pMCI + 134 sMCI 0.760 - - - 0.660 - - -

Cuingnet et al. [20] Voxel-level features,
SVM

137 AD + 162 NC +
76 pMCI + 134 sMCI 0.886 0.810 0.950 - 0.704 0.570 0.780 -

Eskildsen et al. [61] ROI-level features,
mRMR + LDA

194 AD + 226 NC +
61 pMCI + 134 sMCI 0.867 0.804 0.920 0.917 0.773 0.690 0.791 0.835

Cao et al. [38] ROI-level features,
multi-kernel + KNN

192 AD + 229 NC +
168 pMCI + 229 sMCI 0.886 0.857 0.904 0.898 0.704 0.677 0.718 0.705

Lin et al. [62] ROI-level features,
CNN + Lasso + ELM

188 AD + 229 NC +
169 pMCI + 139 sMCI 0.888 - - - 0.799 0.840 0.748 0.861

Tong et al. [8] Patch-level Features,
mi-Graph + SVM

198 AD + 231 NC +
167 pMCI + 238 sMCI 0.900 0.860 0.930 - 0.720 0.690 0.740 -

Li et al. [30] Path-level features,
K-means + DenseNet 199 AD + 229 NC 0.895 0.879 0.908 0.924 - - - -

Qiu et al. [27] Patch-level features,
FCN + MLP 188 AD + 229 NC 0.834 0.767 0.889 - - - - -

Proposed Patch-level features,
Attention + MIL + CNN

398 AD + 400 NC +
172 pMCI + 232 sMCI 0.924 0.910 0.938 0.965 0.802 0.771 0.826 0.851

C. Discriminative Pathological Locations and the Potential of
Clinical Translation

The potential of clinical translation is of importance to
the computer-aided diagnosis. One of the keys to the clinical
diagnosis of AD is to observe the morphological changes of
the brain (i.e., to find abnormally atrophy areas of the brain).
As an auxiliary diagnostic approach, our proposed DA-MIDL
method can automatically identify the possible pathological
locations in the whole MR images for doctors to find the
regions of interest for diagnosis easily. That is, our method
can identify the subject-specific discriminative pathological
locations, including relative discriminative patches in global
images and discriminative micro-structures in local patches.

1) Discriminative Patch Locations: The upper part of Fig.
3 shows several discriminative patch locations in sMRI scans
identified by DA-MIDL. The discriminative patch locations
are marked at the perspective direction of one view (e.g.,
coronal, axial or sagittal view) in 3D images. In total 12
most discriminative patches are marked for one subject, which
cover ∼ 10.61% of non-zero voxels in the whole image.
Also, the left and right panels respectively correspond to the
probable pathological locations for AD classification and MCI
conversion prediction. Besides, the marked patch locations
in the first and second rows are respectively suggested by
the affect scores and attention weights yielded from DA-
MIDL. Compared with the discrete locations identified by
affect scores, the patches identified by attention weights gather
in certain regions. The possible reason is that the affect
scores are calculated depending on isolated patches, while
the attention weights take account of the correlations among
patches. Furthermore, the probable pathological locations in
AD classification and MCI conversion prediction are very
similar, which is in line with the high correlation between
the two classification tasks according to the progression of

Alzheimer’s disease.
We further mark out three major brain regions where more

patches are gathered with a visualization tool [64] in the
rightmost panel of Fig. 3, including hippocampus, amygdala
and thalamus. The marked regions are consistent with many
previous works [6], [7], [23] and are considered as related
regions for AD diagnosis. Specifically, the hippocampus is
highly correlative with long-term memory. The influence of
brain atrophy caused by AD on the hippocampus has been
biologically verified [65]. The amygdala has effect on emotion
functions and control of learning and memory [66], which is
also relevant to AD. In addition, the thalamus is thought to be
related to cognition and information processing speed [7].

2) Discriminative Parts within Patches: The last two rows
of Fig. 3 show the spatially-varying contributions of different
parts within the corresponding discriminative patches with
relatively high attention weights in sMRI scans produced from
spatial attention blocks. The spatial heat maps demonstrate
the discriminative micro-structures in fixed-size patches for
AD diagnosis. We can observe that most of informative parts
with red colors are located at the edges of sulcus gyrus and
gray matter, which may effectively reflect the local structural
changes by brain atrophy.

D. Limitations and Future Work

Although our proposed DA-MIDL method achieves good
performance in AD-related diagnosis and identifying discrim-
inative pathological locations, there are still several limitations
which may influence the generalization capability of our
model. We summarize the limitations and potential solutions as
follows. 1) The size of input patches is fixed and equivalent.
However, the structural changes in the cerebrum caused by
brain atrophy may occur across multiple regions with different
scales. Using the fixed size could not represent various local
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Fig. 3. Discriminative pathological locations identified by DA-MIDL on AD classification (i.e., the left panel) and MCI conversion prediction (i.e., the right
panel). The first and second rows show the informative patch locations respectively suggested by affect scores and attention weights. The rightmost panel
shows the marked brain regions where more patches are gathered. The last two rows show the discriminative micro structures in several fixed-size informative
patches identified by spatial attention blocks.

features. It’s more reasonable to use multi-scale patches as
inputs, while it may increase the difficulty of constructing
the networks. In addition, ROI pooling [67] may be adopted
for settling the inputs with non-uniform sizes. 2) The patch
location proposals based on the group comparison are isolated
from the subsequent network. This means that our proposed
method is not strictly an end-to-end analysis procedure, which
may affect the optimal performance of our model. Therefore,
it is important to combine the generator of patch location
proposals and the network into a unified framework. In the
future works, we can embed a weakly-supervised network for
detecting informative landmarks in a whole brain and based
on the detected patches at the discriminative landmarks we
construct our DA-MIDL model for AD-related diagnosis. The
parameters in the detection network and DA-MIDL model can
be optimized jointly as an end-to-end model.

VI. CONCLUSION

In this study, we propose a dual attention multi-instance
deep learning network (DA-MIDL) for computer-aided AD
diagnosis, which includes three major components: 1) Patch-
Nets with spatial attention blocks for extracting discriminative
features from local patches, 2) an attention MIL pooling
operation for balancing the relative contribution of each patch,
and 3) an attention-aware global classifier for making the AD-
related diagnosis decisions based on the combined feature
representation for the whole brain structure. Our proposed
DA-MIDL method is evaluated on 1689 subjects from two
independent datasets (i.e., ADNI and AIBL) in multiple AD-
related diagnosis tasks. Experimental results demonstrate that
our method can not only identify discriminative pathological

locations in sMRI scans, but also achieve better diagnosis
performance than several state-of-the-art methods.
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