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Abstract

The global demand for electricity has visualized high growth with the rapid growth
in population and economy. It thus becomes necessary to efficiently distribute elec-
tricity to households and industries in order to reduce power loss. Smart Grids (SG)
have the potential to reduce such power losses during power distribution. Machine
learning and artificial intelligence techniques have been successfully implemented
on SGs to achieve enhanced accuracy in customer demand prediction. There exists a
dire need to analyze and evaluate the various machine learning algorithms, thereby
identify the most suitable one to be applied to SGs. In the present work, several state-
of-the-art machine learning algorithms, namely Support Vector Machines (SVM),
K-Nearest Neighbor (KNN), Logistic Regression, Naive Bayes, Neural Networks,
andDecision Tree classifier, have been deployed for predicting the stability of the SG.
The SG dataset used in the study is publicly available collected fromUC Irvine (UCI)
machine learning repository. The experimentation results highlighted the superiority
of the Decision Tree classification algorithm, which outperformed the other state of
the art algorithms yielding 100% precision, 99.9% recall, 100% F1 score and 99.96%
accuracy.
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1 INTRODUCTION

The immense growth in the global population and economy, along with the rapid surge in urbanization has high possibilities
to increase the demand in energy consumption in the succeeding future years. Electricity being an important source of energy,
can be produced from various sources such as water, wind, solar cells, fossil fuels, thermal and nuclear plants. Also, with the
advancement and extensive growth of our population, the demand for electricity is ever increasing, which automatically impacts
the demand for higher electricity production. Power generation, transmission and its distribution are the most critical issues
involved in electricity management. It is a known fact that electric grid is an interconnected network that connects the consumers
to the producers of electricity and transfers the energy from producer to consumer. It comprises of the power stations generating
electricity, substations for stabilizing the electricity voltage based on use, transmission lines (the carrier of electricity) and the
distribution lines which connect the customers. The conventional electrical grids adopt a centralized structure with millions of
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the aforementioned components. Increasing the load of an electric grid thus create possibilities of generating additional overhead
resulting in power quality issues. Therefore, the need for installation of new plants emerge. On the other side, these grids do not
have proper prediction system in order to predict intermittent power outages, their causes, response delay, storage requirements
and resource utilization1.
Researchers have identified that the current electrical power system has not experienced any change for the past hundred years.

It is obvious that with the increase in population, there exists a high demand for electricity. The challenges of the conventional
power system are lack of visibility, usage ofmechanical switcheswhich result in reduced response time, deficiency ofmonitoring,
and power control. The additional inducing factors that need a new grid technology are change in climatic conditions, need for
energy, failure of components, increase in population, lack of storage for energy, demand for fossil fuels, decrease in electric
power generation, unilateral communication, and various other problems. Thus, in order to overcome such challenges, new grid
infrastructure is required. The next-generation electric power infrastructure, namely the smart grid (SG) emerges as a prominent
technology to fulfill such high prioritized necessities to enhance the quality of modern human life2.
Smart Grid is a new digital electric power grid technology that allows 2-way communication to increase security3,4,5, effi-

ciency, reliability of the electric power systems for higher generation of electrical power through contemporary communication
technologies. It is a two-way energy delivery and transportation system which allows its consumers to make decisions pertinent
to energy. SGs basically helps to reduce the electricity bill paid by customers. It also contributes to an increase in security mea-
sures taken during the consequences of natural disasters and other human attacks. On the contrary, it also ensures a significant
decrease in risks resulting in loss of human lives and other physical infrastructure relevant to conventional grid-related activi-
ties. Considering the implementation aspects, SGs assist in integrating electric vehicles and modernizing the transport division.
In the realm of global warming issues and the need for optimal energy utilization, Smart grids help to reduce the energy wastage
and also environmental pollution caused by the discharge of gases from the greenhouse6,7.
From the perspective of comparative analysis, the conventional grid provides one-way communication, which is limited to

energy users, whereas SG provides massive two-way communication. Power quality issues are solved very slowly in the con-
ventional grid, whereas a rapid self-healing facility is available in the case of SG. The traditional grid system is more prone
to cyber-attacks and natural disasters with a much slower response. The SG, on the contrary, is much durable during natural
calamities and cyber attacks. The conventional grid system responds slowly to system disturbances, whereas the SG provides
automatic detection and response to the problems and has a much lesser impact on customers. In the conventional grid system,
power flow control is quite restricted, whereas much vast in SG.
In SG, various components are integrated with sensor nodes8 and communication paths to provide inter-operability in busi-

ness, manufacturing, and residential applications. The objective is to avoid power turbulence caused by component failures,
natural disasters, and capacity constraints by providing online intelligent electric power monitoring and control system. The
SG offers state-of-the-art services with two-way communication, an intelligent system, automatic monitoring, and self-remedial
skills. SG also renders support in demand management by predicting energy usage. The usage of electricity can act as cri-
teria for providing incentives to the consumers by revising their utilization pattern thereby, efficiency can be improved. The
aforementioned can be achieved by distributing energy to customers with improved reliability and security features9.
As a huge amount of data from various applications need to be analyzed and controlled, the communication requirement

plays a significant role in SG infrastructure. Therefore it is very critical to identify the best communication infrastructure to
provide cost-effective, reliable, and secure service for the entire system. Numerous technologies have been found in the case of
SG communication with two media, namely wired and wireless, which can be applied for data communication between smart
meters and other electrical components. Wireless communication technologies are low cost, and connection establishment is
comfortable even in unreachable and problematic areas. But the signal may get weakened due to the nature of the transmission
lane, wherein wireless solutions depend on batteries. On the contrary, wired technologies do not have any intervention problem,
as they do not depend on batteries.
In the SG infrastructure, two types of information flows are involved. The first information flow is from electrical applications

and sensors to smart meters. The second flow is from smart meters and the SG utility data centers. Wireless communication
technologies such as 6LowPAN, Z-wave, ZigBee, etc., can be utilized for the first information flow, and internet or cellular
technologies can be applied for the second type of information flow. The same communication technology may not be suited for
various other applications. Based on the application domain, the choice of communication technologies should thus be made.2.
Smart Grid provides smart solutions to almost all spheres and activities concerned with electricity10,11,12. It offers the fol-

lowing features: real-time monitoring of electricity consumption as per the type of application, dynamic pricing (on-demand
pricing), faster and effective restoration of electricity after the power outage, in-house electrical displays, altering the electricity
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usage during day time based on the pricing signals (offering an electricity incentive to consumer) and usage levels, transferring
of the role of consumer to producer (both consume and produce power), tracking the electricity usage through the use of web
apps and mobile apps.
SGs ranging from small sizes to large ones have been deployed in most of the developed countries13. As an example, a small-

sized grid network was used at Gazi University, Turkey, which connected the wind, solar, battery storage and diesel-powered
microgrid systems. Similarly, a large-sized SG network was constructed at Jeju island, South Korea. All these SGs incorporated
the features that have been discussed earlier. It is important to mention the fact that cloud computing technologies have extensive
applications in SGs. Smart Grid uses Information and Communication Technologies (ICT) to enable communication among
the various resources. SG involves enormous data accumulation during electricity generation, transmission and distribution.
Cloud computing14,15 can thus be utilized in energy management, security services and information management in SGs16.
Zigbee technology can be utilized in an SG for monitoring and controlling information, fault locating and transmission lines
monitoring17.
The Internet of Things18 play an important role in the deployment of energy meters. In connection to this, SGs can be used

in smart home automation, smart building automation, smart city automation, smart substation and feeder automation9.
Although SG encompasses various technologies to resolve the issues with classical electricity networks, it has associated

problems that need to be addressed. There are basically two categories, technical and socio-economic issues19,20. The technical
challenges include lack of policies, storage concern, cybersecurity vulnerabilities while connecting the grid to cyber-physical
systems, inadequacy in grid infrastructure to accommodate the future needs and demands in the storage of intermittent power
generation, voluminous data management from different components of the grid, grid stability concerned with power-sharing,
system inertia, power oscillation and power reservation. Technical challenges, on the other hand, include energy management
in using electric vehicle involving power flow from vehicle to grid, grid to vehicle and vehicle to vehicle. Some of the socio-
economic challenges include stakeholder management, lack of awareness, lack of policies and substantial capital investments.
This also creates additional issues relevant to electricity charges, new tariff, health issues related to radiofrequency usage, pri-
vacy, fear of obsolescence and power theft. Security remains to be one of the primary concerns as the SG can be breached by
both wired and wireless communication networks. Artificial intelligence and its subset machine learning algorithms21,22,23 can
be employed in predicting the problems in SG that aids in taking precautionary steps. In this work, the most prominent technical
challenge, predicting the stability of an SG, is considered because it determines the reliable power transmission in almost 50%
of the SGs24. Figure 1 depicts the SG environment incorporated with Artificial Intelligence(AI) technology.
The main contributions of this work include:

• A detailed review of the existing literature on application of ML algorithms on SG is presented.

• A thorough investigation on performance of several ML algorithms for predicting the stability of SG.

• Comparative analysis of the performance of ML algorithms implemented on SG dataset against the recent work on Deep
Learning based model.25. The results highlighted the superiority of the ML algorithms which outperformed the deep
learning based model considering the size of the dataset being very less.

The rest of the paper is organized as follows: A thorough review of the existing works on application of ML algorithms on SG
is presented in Section 2. Section 3 presents the proposed model. The performance analysis of the ML algorithms is presented
in Section 4. The conclusion and future directions are presented in Section 5.

2 LITERATURE SURVEY

A survey on various research solutions adopted methodologies, outcomes, and limitations of existing works on smart grids are
presented in this section. The SG, which replaces the conventional electricity grid, promises to carry out a 2-way communication.
A complex system is used with the help of electric vehicles to distribute the power disseminated from heterogeneous sources26.
This adds additional overhead to the SG modeling, controlling of its components in order to optimize its performance. There-
fore it requires consistent monitoring of stability robustness, efficiency and reliability in different operating conditions. Various
researchers have used machine learning algorithms like support vector machine (SVM), linear regression, K-nearest neighbors
(KNN), Ridge Regression, Artificial neural network(ANN), RandomForest, stochastic gradient descent, gradient boosting, Extra
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FIGURE 1 SG environment incorporated with Artificial Intelligence(AI) technology.

trees Regressor to predict the load in SG. Deep learning models like Long short term memory (LSTM) neural network, recur-
rent neural network (RNN), feed-forward neural network (FFNN), Backpropagation neural network, Multi-Layered Perceptron
(MLP) are compared with machine learning models in these studies. Feature selection algorithms are applied for selecting the
best input values, and hyperparameter tuning is performed to avoid the overfitting of data in machine learning models.
Bouktif et al. have used the LSTM based RNN model for predicting the electric load to handle demand related aspects in

SGs27. They have applied best-of-breed machine learning algorithms to choose a benchmarking model and a wrapper for feature
selection (namely Extra tree regressor and regressive feature elimination) to select the best features as input to the model. The
genetic algorithm was used to find the layers and optimal time lags in the LSTM model. They have compared their results with
machine learning algorithms and found that LSTM-RNN has less forecasting error than others. But this may not perform well
in varying data sets as deep learning selects only good patterns from huge data in different time series and more training data
set. Therefore this model has to be evaluated with different datasets.
SGs are transiting towards demand-based power supply services to the consumers. Therefore there is a mandatory need to

predict the consumer load. An attempt is made to identify whether the existing short term load forecasting(STLF)model provides
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better accuracy or the anthropologic-structural data provides better accuracy in forecasting individual consumer household
load28. To perceive the best forecasting model for individual consumer load, a short term multiple load forecasting (STMLF)
model was proposed based on anthropologic structural data of the consumer’s house. SLMTF has the potential to forecast
multiple loads at different time series using a single model. The study used backpropagation neural network and SVM to compute
predictions on the STMTF model. The results highlighted the fact that STMLF is 7%more accurate than SLTF and also reduced
50% of the error. The study justified the enhanced accuracy in the case of anthropologic structural data in comparison to the
SLTF model. ANN was trained with three weeks of data in the household, which predicted the power load per hour for the next
day.
Normally SLTF is implemented on nation wise or region wise data. Hernandez et al., proposed an ANN-based approach for

SLTF within microgrids29, which consisted of three stages: Pattern recognition using Self Organizing Map (SOM), K-means
clustering for partition and MLP for demand forecasting in the individual cluster. The ANNmodel was validated using real-time
data from a Spanish company. The model was trained with periodic values (weekday and months). This model was compared
with similar models using radial basis function neural network and generalized regression neural network and proved to be
extremely efficient.
The stability of the SG depends on its ability to provide a constant power supply based on demand. Ahmed and Chen have

employed three different machine learning models to predict the long-term and medium-term energy demand in the SG30. The
models used are ANN with non-linear autoregressive exogenous multivariate inputs model (ANN_NAEMI), Ada Boost and
multivariate linear regression (MLR). The study classified the load considering three different intervals, namely 1-month ahead,
seasonal forecast and 1-year ahead forecast based on the data about aggregated data consumption. The models not only increased
the prediction accuracy but also adequately described the Spatio-temporal use of energy inconsistencies, its variations and future
perspective of energy prediction. Ada Boost model, through its preponderance in prediction, outperformed the other models.
The variations in the prediction results helped to identify the irregularities in prediction operation.
Instability in electricity prices is one of the socio-economic factors determining the usage of electricity by the consumer and

often price impacted the electricity load. Therefore, Shayeghi et al. presented a multi-input multi-output(MIMO) model that
correlated the relation between electricity price and its load31. The model used the wavelet packet, which was transformed for
decomposing the price and load signals into numerous subsets at different frequencies, and generalized mutual information with
an objective to select the best features. Also, the model made predictions on electricity load and prices simultaneously using the
least-squares SVM (LSSVM) based MIMO model. Furthermore, the Quasi Oppositional Ant Bee Colony algorithm was used
for parameter optimization. The simulation results showed that the proposed LSSVMmodel outperformed ANN as it considered
the prediction indices for evaluating the forecasting error.
Khan et al. presented a detailed study of dynamic pricing, load prediction in the SG32. The study highlighted the cor-

relation among real-time dynamic pricing of electricity, critical peak pricing and time of use. Two different ways of load
forecasting, namely Artificial intelligence (AI) models and computational models, were presented. AI models used ANN, Gener-
alized Regression Neural Network(GRNN), RNN, Auto-Regressive IntegratedMoving Average (ARIMA)-SVM, SVM,Wavelet
Transformation Error Correction(WTEC)-ANN, Wavelet Transformation(WT)-ANN, Probabilistic Neural Network(PNN),
Expert System and Fuzzy logic. It was evident from the survey that AI-based forecasting techniques were found to be more
accurate than other statistical models.
Muhammad et al. conducted a survey on Photovoltaic (PV) output forecast33. Although the majority of the researchers have

attempted to forecast PV output using traditional methods, mathematical models and AI methods, this particular study identified
ANN to be capable of generating more accurate forecasting when compared to other conventional and statistical models. The
study also revealed the fact that the accuracy of any prediction techniques changed based on the day, seasonal variation, input
features and other evaluation matrices.
Muhammad and Abbas conducted a survey on AI-based load forecasting models in the SG34. The study highlighted that the

performance of the forecast model depended on its architecture, input features, activation function, ML algorithms, which was
used for training and generating of forecast errors. It was observed that Back-propagation (BP) training algorithmwas commonly
used to train NN, but it had numerous associated challenges whereas ANNwas best suited for STLF yielding better performance
than BP. It could be finally concluded that integrated approaches provided better results.
It is a known fact that Blackout events of the traditional power grid lead to many cascading failures. In order to address

this issue in SG, early warning of blackout events becomes a mandatory necessity. Gupta et al. applied the time series model,
namely SVM, to predict the blackout events earlier and validated using a 30-bus testbed from IEEE35. SVM was trained using a
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historical database constructed by evaluating the system performance in a steady-state and dynamic state. This database recorded
the normal cases and abnormal situation(cascading failure condition).
Pan and Lee performed a comparative analysis of SVM and ANN in the midterm load forecast of the SG36. ANN was widely

used for this type of forecast, whereas SVM was adopted by the researchers in recent times. The factors affecting the load
prediction, which was carried out for the daily power load in one year was analyzed. Mitchell et al. used these models for STLF
on different load types, namely batch load, continuous load and batch-continuous load37. The results showed that SVM produced
the global minimum repeatedly. Both the algorithms performed with extreme inferiority with more than 3% deviation on erratic
load and 1.2% deviation on a continuous load.
Electricity demand forecast depends on various factors such as climatic changes, seasonal changes, sea level and catastrophic

events by nature. Therefore, demand management in the SG determines its reliability and stability for providing consistent power
demands of the consumer. Demand scheduling can be effectively derived by the effective forecast of the consumers’ electricity
usage pattern. Ali and Azad have used machine learning algorithms, namely Linear regression, SVM and MLP for demand
management and load prediction38 wherein it outperformed the other models. Support vector regression (SVR) employed the
constrained quadratic optimization problem, which mapped the input features into high dimensional space using a kernel. SVR
outperformed the NN trained with BP algorithm and other linear regression methods. It also produced high-quality outputs with
time series missing data. The study thus recommended SVM for load forecasting.
Similar to demand management, SVM performed exceptionally better in other forecasts too. In the prediction of lake water

levels, SVM showed compatibility and best results (long-term forecast) when compared with ANN and Statistical model, namely
the Seasonal autoregressive model in39. SVM was employed in the time series forecast for financial analysis, which helped to
overcome two common problems, namely noisy data and non-stationary40. The study used fuzzy-based Support vector regres-
sion basically to serve the purpose. Li et al. have used PCA and SVM with rough sets for long term electricity load forecast41.
C-ascending SVM in non-stationary financial time series provided better results with fewer support vectors42. Cao and Ju have
used dynamic SVM for non-stationary time series forecast45. The study modified the traditional SVM with a regularized risk
function, which enabled the model to effectively track the structural change in financial time series. Also, SVM with rough sets
outperformed the statistical models and GRNN43. SVR and chaotic GA simulated annealing algorithm which was integrated to
improve the prediction accuracy of Chaotic load44. Also, SVM showed better accuracy in the case of MLP for wind speed fore-
casting46. Alazab et al., developed a multi-directional LSTM (MLSTM) model to predict the stability of the SG and the results
shown that MLSTM outperformed the traditional LSTM, Deep learning models gated recurrent units and RNN25. An overview
of the survey describing the problems was addressed. The models used and inferences on their methodology is presented in
Table 1.
From the literature survey, it is evident that most of the research on SG was done using deep learning algorithms irrespective

of the dataset size. But ML algorithms performed better than the deep learning models being subjected to the SG dataset due to
its size. The present work thus emphasizes on the use of ML algorithms on the SG dataset.

3 PROPOSED MODEL

Thework-flow of the proposedmodel is depicted in Figure 2. The steps involved in the proposedmethodology can be summarized
as follows:

• SG dataset from UCI ML repository is loaded.

• Preprocessing of the dataset is performed by using min–max method for normalization and label encoding for data
transformation.

• The dataset is then split into training and testing data.

• The dataset is trained by various machine learning algorithms.

• The performance of the ML algorithms is then evaluated with several metrics.
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TABLE 1 Survey of the literature on SGs.

Problem Definition Models used Inferences

Prediction of electric load in SG27

↣ Deep Learning LSTM based RNN model
for prediction.
↣Recursive Feature Elimination for feature
selection.
↣Extra Trees Regressor as benchmark machine
learning model. ·
↣Genetic Algorithm for identifying the time
lages and layers in LSTM

LSTM RNN may not perform well on different
dataset as train split was more.

Demand forecast on individual
consumer’s household load28

↣ANN 3 layered (60-20-1 neuron)
↣ SVM
↣ Regression model

The STMLF was not compared with other model,
impact of data during prediction and the price
demand relationship was not discussed.

STLF within microgrids29
↣Self-Organizing Map
↣K-Means Clustering
↣Multilayer Perceptron

System was not evaluated with microgrid sized
environment. Also number of patterns considered
for evaluation against other models was lesser

Predicting long-term and medium-term
energy demand in SG at district level30

↣ANN-NAEMI
↣MLR
↣ AdaBoost

Prediction results have enormous errors with
large data amd input parameter sets

Correlating the non-linear pattern in the
electricity load and price signals31

↣ LSSVM-MIMO
↣ ANN
↣ QOABC optimization algorithm
↣ GMI

The model can predict the load and power signals
without considering the prior data on particular
forecast day but it might not be more accurate

Comprehensive review on load prediction
and dynamic pricing of electricity32

↣ ANN, WT-ANN,ARIMA-SVM,
Regression,WTEC-ANN, Fuzzy logic
↣ Statistical models

AI based forecasting techniques are more
accurate than statistical models

Review on AI based load forecasting models34 ↣ ANN
↣ BP, gradient descent

Integrated approaches can be used for training the
NN to attain better forecast results.
ANN performs better than BP

Early warning system for prediction of blackout
events in SG to avoid cascading failure35 ↣ SVM Grid resilience feature of the SG can be

determined

Midterm load forecasting36 ↣ SVM
↣ ANN NA

Short term Load forecasting37 ↣ SVM
↣ ANN

SVM attain global minimum repeatedly. But both
models shows deviations in forecast on
continuous load and erratic loads

Demand and Load forecasting in SG38

↣ SVM, SVR
↣ Linear Regression
↣ NN with BP algorithm for training
↣MLP

SVR proved to be the best choice for the context
(even in case of huge data set, with the given data
set it was compatible with the other algorithms)
whereas MLP have higher computational
complexity

Forecasting Lake water Levels39
↣ SVM
↣ ANN
↣ Seasonal Autoregressive model

SVM showed yet compatible and better results
than other model in long-term

Financial tie series forecast40 ↣ Fuzzy based SVR The model provided best results in noise and non
-stationarity data.

Short term load forecast41
↣ SVM with polynomial basis function
and Radial basis function
↣ PCA
↣ Rough set theory

Single kernel SVM function performed weakly

Non-stationary financial time series forecast42 ↣ C-ascending SVM with regularized
risk function

Model utilized less support vectors than the
traditional one. Model should be explored with
sophisticated weight function.

Exchange Rate Prediction43 ↣ Linear and non-linear SVM
↣ GA for feature selection

SVM outperforms conventional NN and applied
structural risk minimization principle to reduce
the generalization error.

Cyclic Electric Load forecasting44
↣SVR
↣ Chaotic Genetic Algorithm
(Simulated Annealing algorithm)

Outperformed ARIMA and Tensor Flow SVR
simulated annealing model
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FIGURE 2 Proposed Methodology.

3.1 Preprocessing
Pre-processing plays an essential role in improving data quality and also the performance of the ML algorithms47,48. The two
common pre-processing techniques used in any machine learning model are normalization and data transformation. The data
in an SG dataset are scattered with different ranges which often lead to bias towards values having higher weights, thereby
degrading the performance of the proposed model. In order to avoid this, min-max normalization is used in the present study
to normalize the SG dataset. The min-max normalization fits the data into a common scale, which improves the performance
of the classifiers. redMachines use mathematical formulae to process the data and hence requires data to be in numeric format.
Since most of the dataset contains both numerical and categorical values, data encoding is done during data pre-processing49,
which converts the non-numeric values to numeric ones before being fed to the ML models.
The pre-processed data is then split into training and testing datasets. The ML algorithms are trained by the training dataset

and then the trained algorithms are tested with new data set to evaluate its performance. In this work 70% of the dataset is
used to train the ML algorithms and the remaining 30% of the dataset is used for evaluating the performance of the trained ML
algorithms.
Due to the minimal size of the dataset, several ML algorithms are used for the purpose of classification instead of Deep

Learning based algorithms. Some of the popular ML algorithms, namely SVM, Logistic Regression, Naive Bayes, Neural Net-
works and Decision Tree algorithms, are used in this work to classify the SG dataset. The performance of the ML algorithms are
then evaluated using metrics - precision, recall, F1-score, Receiver Operating Characteristic and accuracy. The results obtained
are then compared with the recent works on the SG datasets. The ML algorithms used in this work are discussed in the below
subsections.
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3.2 Support vector machine
SVM aims to solve classification and regression problems and most researchers prefer to use SVM due to its capability to with
high accuracy using minimal computing power. The versatility of SVM lies in the kernelization process n which it uses the
kernel trick to model nonlinear decision boundaries.
SVM aims to classify points using hyperplanes and ensures that after developing hyperplanes, two margin lines are produced

creating classification points that are linearly separable50. These margin lines are created to move one of the margin lines to the
nearest positive point and another margin line to the nearest negative point as shown in Figure 3. The distance between the two
parallel margins is referred to as the marginal distance. The primary aim of this approach is to maximize the marginal distance
by selecting the best hyperplane.

Positive 
Hyperplane

Negative  
Hyperplane

Max Margin 
Hyperplane

Max Margin

Support 
Vectors

X1

X2

FIGURE 3Maximum marginal hyperplane with support vectors.

Support Vectors: The vector points extremely closer to the hyperplane are classified as support vector points, and these two
data points specifically contribute to the results of the algorithm whereas other data points have no significant impact. Also, it
is important to highlight that the removal of support vectors alters the hyperplane’s position.
Good Margin: The support vector points of the positive class and the negative class maintain the maximum distance to the

hyperplane.
Bad Margin: This refers to the hyperplane that is close to either positive support class vectors or negative support class

vectors.
Hard Margin: This refers to data points that can be separated from the positive class and the negative class by maintaining

the maximum marginal distance between the parallel hyperplane.
Soft Margin These are data points that can not be separated from the positive class and the negative class by drawing a

hyperplane. Soft margins are very difficult to manage as positive and negative data points are intermixed wherein the accuracy
efficiency is diminished. The line equation is given in Equation 1.

b = xa + y (1)
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vT a = −y × (1) + (−x) × a + 1 × b
vT a = b − xa − y

(2)

The hyperplane equation is given in Equation 3.
vT a + y = 0 (3)

Where, y is bias and v, a is vector.
Consider two support vectors, a+ (Positive Support Vector) and a− (Negative Support Vector). The distance between the two
margin lines should be the maximum for scattering the data points linearly. Maximum margin helps to minimize loss. The
equation for the approximation of the margin is shown in Equation 4.

(

a+ − a−
)

⋅ v =
(

a+ − a−
)

⋅
v
‖v‖

= a+ ⋅ v
‖v‖

− a− ⋅ v
‖v‖

(4)

Cost Function and Gradient Updates SVM’s aim is to maintain maximum margin distance between data points and hyper-
plane. Hinge loss function allows maximum margin between data points and hyperplane which is given in Equation 5.

M(v) =
∑

i=1
max

(

0, 1 − bi
[

vT ai + y
])

+ �‖v‖22 (5)

∑

i=1 max
(

0, 1 − bi
[

vT ai + y
])

is used to minimize misclassification,
�‖v‖22 is regularization used to avoid over-fitting. � is known as the regularization factor to maximize the marginal difference

and holds ai on the appropriate margin side. The difference between positive and negative hyperplane is measured using Hinge
loss as given in Equation 6.

max
(

0, 1 − bi
[

vT ai + y
])

= 0
⇒ bi

[

vT ai + y
]

= 1
(6)

bi

{

+1 va + y ≥ 1
−1 va + y ≤ −1

Equation 6 is further derived as in Equation 7.

a+ ⋅ v
‖v‖

− a− ⋅ v
‖v‖

=
1 − y
‖v‖

−
−y − 1
‖v‖

= 2
‖v‖

(7)

Finally, the objective function is given in Equation 8.

max 2
‖v‖

→ max 1
‖v‖

→ min ‖v‖ → min 1
2
‖v‖2 (8)

Polynomial kernel: The polynomial kernel is a kernel functions used along with SVM to represent similar data points in a
dataset51. The polynomial kernel for degree-d is delineated as in Equation 9.

F (a, b) =
(

aT b + z
)s (9)

where a and b are vectors of the data set, z ≥ 0 is a weight vector comparing higher-order and lower-order polynomial values.
As a kernel, F correlates to an internal data points in a higher dimensional space that is based on a certain mapping ' as shown
in Equation 10.

F (a, b) = ⟨'(a), '(b)⟩ (10)
The influence of ' is shown below in Equation 11, where s = 2.

F (a, b) =

( m
∑

i=1
aibi − z

)2

=
m
∑

i=1

(

a2i
) (

b2i
)

+
m
∑

i=2

i−1
∑

j=1

(
√

2aiaj
)(

√

2bibj
)

;

+
m
∑

i=1

(
√

2zai
)(

√

2zbi
)

+ z2 (11)

'(a) =
⟨

a2m,… , a21,
√

2amam−1,… ,
√

2ama1,
√

2am−1am−2
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,… ,
√

2am−1a1,… ,
√

2a2a1,
√

2zam,… ,
√

2za1, z
⟩

(12)
Radial basis function kernel(RBF): RBF Kernel is a common kernel function that is predominantly used in numerous ker-
nelized machine learning algorithms. RBF kernel is widely used for SVM classification tasks. The RBF kernel for two separate
sample vectors a and aa′ , in decision boundary, is shown in Equation 13.

F
(

a, a′
)

= exp

(

−
‖a − a′‖2

2�2

)

(13)

‖a − a′‖2 is considered to be the Euclidean distance between two vectors and � is considered as a variable where � = 1
2�2

.

F
(

a, a′
)

= exp
(

−� ‖
‖

a − a′‖
‖

2
)

(14)

The RBF kernel value decreases with respect to the euclidean distance ranging from 0 to∞. When �= 1 the equation is expressed
as in Equation ??:

exp
(

−1
2
‖

‖

a − a′‖
‖

2
)

=
∞
∑

j=0

(

a⊤a′
)j

j!
exp

(

−1
2
‖a‖2

)

exp
(

−1
2
‖

‖

a′‖
‖

2
)

;

=
∞
∑

j=0

∑

∑

mi=j

exp
(

−1
2
‖a‖2

) am1
1 ⋯ amff

√

m1!⋯mf !
exp

(

−1
2
‖

‖

a′‖
‖

2
) a′m1

1 ⋯ a′mff
√

m1!⋯mf !
(15)

Sigmoid Kernel Sigmoid Kernel is often referred to as Hyperbolic Tangent Kernel which is originated from the neu-
ral network research area. In most cases, sigmoid function has been used as an activation function for neural networks. The
mathematical representation of the sigmoid function is shown in the Equation 16.

F (a, b) = tanh
(

�aT b + z
)

(16)

where � is chosen to be a slope, z is constant, � is considered as 1
M

whereM is data dimension.

3.3 Logistic Regression
Logistic Regression is one of the most popular machine learning algorithms52. The goal of the algorithm is to seek a similarity
between both the likeliness of desired outcome and attributes. Logistic Regression Equation is as follows:

log
(

p(a)
1 − p(a)

)

= �l + A1a (17)

p(a) = eX0+�1a

1 + k�0+�1a
(18)

Equation 18 is considered as a sigmoid function, generating an S-like curve. The probability value is in the range of 0<p<1.

3.4 Naive Bayes
Naive Bayes (NB)53 is a classification technique that assumes independence between predictors. NB consists of two parts namely
Naive and Bayes. The NB classifier assumes that the presence of a particular feature in a class is independent of the presence of
any other feature. All the features independently contribute to the probability of a variable belonging to the specific target class
or otherwise. NB is quite trivial to develop and is particularly useful for very large dataset. In probability theory and statistics,
this is alternatively known as Bayes Law. The conditional probability of NB is shown in the Equation 19.

p
(

Zf |a
)

=
p
(

Zf
)

p
(

a|Zf
)

p(a)
(19)

The Bayes classifier of the probability model is shown in the Equation 20.

b̂ = argmax
f∈{1,…,F }

p
(

Zf
)

m
∏

i=1
p
(

ai|Zf
)

(20)
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3.5 K-Nearest Neighbour(k-NN)
k-NN is one of the simplest ways to classify data and is primarily used for regression and classification. It is used to identify data
points using the closest training examples in the feature space. It involves instance-based learning where the function is locally
approximated and all performance is deferred until classification. The F value is considered as the number of closest neighbors
in a vector classification and the selection of the most appropriate F value is essential for attaining superior quality results. In
the proposed approach, we considered F=5, leaf-size=30 and Minkowski metric weights are uniform. Equations for k-NN are
as follows:

Eculidean equation =

√

√

√

√

F
∑

i=1
(Ai − bi)2 (21)

Manhattan equation =
F
∑

i=1
|Ai − Bi| (22)

Minkowski =

( F
∑

i=1
(|A − Bi|)r

)1∕r

(23)

3.6 Decision Tree (DT)
DT belongs to one of the few classification models where we can understand the exact reasoning behind the classifier, making
a particular decision54. DT provides a graphical representation of all possible decision solutions based on certain conditions. It
begins with a root and then branches off to a number of possible solutions, just like a tree. The root node initially gets added to
the tree, which receives the trained data set, and then each node asks a true and false question to one of the features. Henceforth,
the dataset gets divided into two different subsets. These subsets then act as an input to the child node. The aim is to produce the
purest possible distribution of the labels at each node. This iteration process continues till no further questions are asked, and it
finally reaches the leaf. The equation for Entropy is given in Equation 24.

E: I
(

p1, p2,… pn
)

=
n
∑

i=1

(

pi log
(

1∕pi
)

(24)

(

p1, p2,… pn
)

denotes the probabilities of class labels.
In the proposed model the splitting was performed using Gini-index, max-depth = none, min-samples-split=2, min-samples-

leaf=1, class-weights = none, random-state = none, min-impurity-decrease=0.0 and min-impurity-split = none.

3.7 Neural Networks
The neural network maps the input units to its appropriate output unit after performing some mathematical calculations55,56.
The neural network consists of input layer where features are given as input, hidden layers are placed between input and output
layers. The role of the hidden layer is to multiply weights to the input layer and then pass the resultant values to activation
functions. The predictions are performed at the last layer, called as an output layer.

Hn = �1 +

( k
∑

i=1
Wmn + �n

)

(25)

Equation 25 shows the working of hidden layer when features fi are given as input. Weight between nth input and mtℎ hidden
layer is calculated byWmn where �n is the value of bias factor.

output = �2 +

( k
∑

i=1
WMO + �O

)

(26)

The mapping inputs to the outputs is an iterative operation, in which weights Wmn are changed in each iteration. Back
propagation (BP) algorithm is one of the widely used algorithms and the equation for back propagation is given below:

Wnm(t + 1) = Wnm(t) − e
)Ef
Wnm

(27)

The error between the calculated and target output is used for weighing updates.
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FIGURE 4 Neural Network Architecture.

4 RESULTS AND DISCUSSION

In this work, the experimentation is carried out using "Google Colab", Google’s online Graphical Processing Unit (GPU). Python
3.7 is used as the programming language. The dataset used for the experimentation is collected from publicly available UCI
machine learning repository57 which consists of 10000 instances with 14 attributes. The attributes in the dataset are electricity
producer values, nominal power consumed/produced, coefficient related to price elasticity, the maximum value of the equation
root and the stability of the system (class label, whether the system is stable or not).
The performance metrics considered in the study are accuracy, recall, F1 measurement, and detection rate (DR) which helps

to evaluate the proposed solution. The above performance measurements are based on True Positive (TP), False Positive (FP),
False Negative (FN) and True Negative (TN).
In the present study, 70% of the SG dataset is used for training and remaining 30% of the SG dataset is used for testing and

validation purposes. The machine learning models are evaluated based on the parameters mentioned above in association with
the Receiver Operating Characteristic (ROC) curve which helps in justifying the results.

4.1 Neural Network Results

((a)) Confusion matrix ((b)) Classification Report

FIGURE 5 Neural Network Results
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FIGURE 6 NN Roc Curve

Figure 5 represents the confusion metric (CM) and classification report (CR) for neural network classifier. Using neural
network classifier we achieved an accuracy of 97.50%, for stable class and 98.50% accuracy for fault class. Also, 2.5% false
positive rate (FPR) and 1.5% false negative rate (FNR) is achieved for stable and fault class respectively, depicted in figure 5.a.
The result highlight the fact that 97.60% precision, 99.50% recall and 98.50% F1-Measure is achieved for fault class. Similarly
for stable class precision, recall and F1-Measure scores are 99.00%, 95.70% and 97.30% respectively as represented in figure
5.b. Figure 6 represents the ROC curve for neural network wherein the area under the curve score is 97.96%.

4.2 Support vector Machine Results
4.2.1 SVM Polynomial Kernel

((a)) Confusion matrix ((b)) Classification Report

FIGURE 7 SVM Polynomial kernel Results

Figure 7 presents the SVMPolynomial Kernel results. As shown in the figure, 91.20% average predication accuracy is achieved
in case of SVM Polynomial Kernel wherein 977 records are classified accurately as a stable class achieving an accuracy of
90.10% . On the other hand, 1759 out of 1916 records are detected as fault class with the accuracy of 91.80% using SVM
with Polynomial kernel as shown in figure 7.a. In figure 7.b SVM polynomial kernel precision score for fault and stable grids
are 94.10% and 83.00% respectively. Similarly recall for both fault and stable classes are 89.60% and 90.10% respectively. F1-
Measure for fault class is 97.80% and for stable class F1-Measure score is 86.40% respectively. The Area under the curve score
is 90.21% as shown in figure 8.
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FIGURE 8 SVM Polynomial kernel ROC Curve

4.2.2 SVM RBF Kernel

((a)) Confusion matrix ((b)) Classification Report

FIGURE 9 SVM RBF kernel Results

Figure 9 presents the SVM RBF Kernel results wherein 87.46% average predication accuracy is achieved in case of the SVM
RBF Kernel. A total number of 858 records are classified accurately as stable class generating an accuracy of 79.20% , while
1766 out of 1916 records are detected as fault class yielding an accuracy of 92.20% when SVM with RBF kernel is deployed as
shown in figure 9.a. In figure 9.b SVMRBF kernel precision score for fault and stable grids are 86.80% and 83.10% respectively.
Similarly recall for both fault and stable classes are 91.30% and 75.50% respectively. F1-Measure for the fault class is 89.00%
and for the stable class, the F1-Measure score is 79.10% respectively. The Area under the curve score is 86.89% as shown in
figure 10.
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FIGURE 10 SVM RBF kernel ROC Curve

4.2.3 SVM Sigmoid Kernel

((a)) Confusion matrix ((b)) Classification Report

FIGURE 11 SVM Sigmoid kernel Results

It can be observed from figure 11.a that 157 records are correctly classified as stable and 1023 records are predicated as fault
class when SVM sigmoid kernel is implemented. Similarly figure 11.b depicts the classification report for SVM sigmoid kernel.
Precision, recall and F1-Measure scores for fault class are 52.30%, 53.10% and 52.70% respectively. Similarly precision for
stable class is 14.70%, recall score is 14.30% and F1-Measure score is 14.50% respectively. Figure 12 represents the area under
the curve (AUC) for SVM sigmoid kernel and AUC score for SVM sigmoid kernel is 33.71%.

4.3 Decision Tree
A total of 1084 records are classified correctly as stable, with an accuracy of 100%, while 1915 records are detected as fault
with an accuracy of 99.90%, respectively using decision tree as depicted in figure 13.a. The precision, recall and F1-Measure
scores are 100%, 99.90%,100% respectively for fault class. Similarly for stable class precision, recall and F1-Measure scores are
99.90%, 100%,100% respectively as depicted in figure 13.b. The Figure 14 presents the decision tree AUC score of 99.95%.
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FIGURE 12 SVM Sigmoid kernel ROC Curve

((a)) Confusion matrix ((b)) Classification Report

FIGURE 13 Decision Tree Results

FIGURE 14 Decision Tree ROC Curve

4.4 K Nearest Neighbour (KNN) Results
Figure 16.a represents the confusion matrix while figure 16.b represents classification report for KNN. KNN classifier detects
701 stable class instances correctly with an accuracy of 64.70%. Similarly, the fault grid prediction accuracy for KNN is observed
to be 85.60% which refers 1641 instances to be detected accurately out of 1916. The results show that 81.10% precision, 85.60%
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FIGURE 15 KNN ROC Curve

((a)) Confusion matrix ((b)) Classification Report

FIGURE 16 KNN Results

recall and 83.30% F1-Measure score is achieved in case of fault class. For the stable class, precision, recall and F1-Measure
scores are 71.80%, 64.74%, 68.10% respectively. Figure 15 represents the ROC curve of KNN classifier and AUC score for KNN
classifier which is 76.45%.

4.5 Naive Bayes Results
A total of 1051 records are classified correctly as stable with an accuracy of 97%, while 1875 records are detected as fault
with an accuracy of 97.90%, respectively using naive bayes as depicted in figure 17.a. Precision, recall and F1-Measure scores
are 98.30%, 97.90%,98.10% respectively for fault class. Similarly for stable class, precision, recall and F1-Measure scores are
96.20%, 97%,96.60% respectively depicted in figure 17.b. AUC for naive bayes is 97.26% as depicted in figure 18.

4.6 Logistic Regression Results
It is observed that 877 records are classified correctly as stable with an accuracy of 80.90%, while 1770 records are detected
as fault with an accuracy of 92.40%, respectively using logistic regression as depicted in figure 19.a. Precision, recall and
F1-Measure scores are 89.50%, 92.40, 90.90% respectively for the fault class. Similarly for stable class, precision, recall and
F1-Measure scores are 85.70%, 80.90%,83.20% respectively as depicted in figure 17.b. AUC for logistic regression is 87.63%
which is represented in figure 20.
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((a)) Confusion matrix ((b)) Classification Report

FIGURE 17 Naive Bayes Results

FIGURE 18 Naive Bayes ROC Curve

((a)) Confusion matrix ((b)) Classification Report

FIGURE 19 Naive Bayes Results
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FIGURE 20 Logistic Regression ROC Curve

TABLE 2 Testing Accuracy Comparison of ML Algorithms.

Classifier Testing Accuracy
SVM(Polynomial Kernel) 91.20
SVM (RBF Kernel) 87.46
SVM (Sigmoid Kernel) 39.33
KNN 78.06
Logistic Regression 88.23
Naive Bayes 97.53
Decision Tree 99.96
Neural Network 98.13

TABLE 3 Comparison With Existing Works.

Method Accuracy
MLSTM25 99.07
AdaBoost58 97.87
KNN59 95.90
Proposed Model 99.96

The predication accuracy for the decision tree model is 99.96% which is highest in comparison to other classifiers used in this
work as depicted in Table 2. Since Decision tree is a probability based algorithm, it outperforms other algorithms used in this
work in terms of prediction accuracy, precision, recall and F1-Measure respectively.
The authors in25 achieved 99.07% accuracy, 97% precision, 100% recall and 99.00% F1-Measure for the stable class. Simi-

larly for unstable class they achieved 100% precision, and 99.00% recall and F1-Measure respectively. In this research, decision
tree achieved 99.96% predication accuracy, 100% precision and F1-Measure respectively for fault class and 99.90% recall. For
stable class, decision tree classifier achieved 99.90% precision, 100% recall and 100% F1-Measure score respectively. In25

authors also achieved 99.27% AUC using multidimensional long short term memory while decision tree classifier achieved
99.95% AUC. Table 3 depicts the comparison of the current work with recent works.

From the results obtained the following can be concluded:

• Since the size of the dataset is not huge, ML algorithms are apt for classification of the SG dataset when compared to deep
learning models.

• DT classifier outperforms the other ML algorithms considered as the number of attributes are relatively less.
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5 CONCLUSION AND FUTURE SCOPE

Machine learning algorithms play a vital role in maintaining the stability of SG due to its ability of predicting the electricity
demands of the customers. With the emergence of various machine learning algorithms, the ultimate challenge is to find the
most appropriate algorithm to predict the stability of the SG. In order to achieve this, a comprehensive survey on the state-of-
the-art machine learning algorithms have been performed in order to predict the stability of SGs. The dataset used in this work
is collected from the publicly available UCI machine learning repository. The experimental results proved that the decision tree
classification algorithm outperforms SVM, KNN, Naïve Bayes, Logistic Regression and Neural Network. The limitations of
the current work indicate that the size of the dataset is not quite huge. But in real-time, SGs generate massive data. In order to
address this problem, as part of future work, effective feature engineering-based models could be applied on real-time SG data.
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