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1 | INTRODUCTION

Data-driven technologies is now applied to smart grid as a way of sustainable energy environment. This approach can
be added to a cyber-physical system consisting of hardware, software and other physical gears. Smart grid supplies
electricity on-demand to end-users from centralized stations and distribute to generating stations using information
and communication technologies. Energy supplier companies supply electricity at low cost and also control the end-
user demand for supply. In the smart grid system, one of the significant issues is security. Many vulnerabilities exist in
cyber-physical systems and hackers take advantage of vulnerabilities to launch malicious attacks on power systems.
Security problems usually include authentication, data protection, availability, confidentiality, honesty, energy effi-
ciency, single-point failures to be tested, and more [1].The attackers destroy a whole range of cyberspace in modern
electronic warfare. In our societies cybercrimes proliferated. Attacks, hacking, and malicious practices such as viruses,
trojans, and spamming are common risks to individuals and nations. The digital networks of cellular telephony, wireless
sensor networks, satellites, tactical military communications, Internet of Things, smart grids and Supervisory Control
and Data Acquisition (SCADA) are everything vulnerable to that kind of electronic attack [2].A lot of work has been
done on smart grid system implementation but the majority of work are not focusing on the security requirements
for the smart grid systems [3, 4]. Intrusion detection system (IDS) plays an essential role in cyber-attacks on smart
grid systems and secures them against attacks. The IDS are part of the network security domain and play a vital role
in protecting and maintaining a secure network.IDS system is represented in figure 2.

A typical IDS system examines and analyzes network traffic to detect and analyze attacks, and also to prevent any
security violations by generating alarms for network administrator. There are two major types of IDS: Host-based IDS
and Network-based IDS. IDS can be further classified into Anomaly-based and Signature-based IDS systems [5, 6, 7].
Anomaly-based IDS detects attacks using previously recorded normal real-time traffic image and by comparing it with
current traffic. Though, it is widely used in various IDS, it registers a large number of false-positive alarms [8, 9]. The
Signature-based IDS uses pattern matching with predefined signatures taken from the already detected malware’s
stored in a database. Thus, creating a low number of false positive alarms but at the same time, it lets new attacks to
pass-through unnoticed [10, 11, 12]. Therefore, a system needs to be developed that can increase detection rate for
new (a.k.a.zero-day malware's) attacks and reduce false alarms rate in previously defined signatures.

Figure 1 depicts the interaction between the power generation units, distribution centers and other different
entities such as industries, smart buildings, households, etc. The smart grid plays a major role in efficiently dissipating
the right amount of power to these various entities. The flexibility in the power distribution process is achieved by
means of implementing various Al algorithms in the smart grid. The flexibility comes into picture due to the dynamic
power requirement from various sectors.

This research uses optimized feature selection technique to detect and classify network intrusions using Signature-
based IDS while reducing false alarm rate.Typically, real-time traffic and patterns contain high dimensional space of
features. Therefore, feature selection is commonly used to reduce the dimensionality in order to simplify a data set and
identify relevant features without sacrificing predictive accuracy. An efficient feature selection can help in cleaning
the real-time traffic from noise and irrelevant features [13, 14, 15]. Particle Swarm Optimization (PSO) is a commonly
used technique for feature selection [16, 17, 18]. Easy to encode features, support for global searching, requirement
of less computational power, fewer parameters and ease of use makes it a common choice of researchers [19, 20, 21].
Therefore, we have used PSO for feature selection in our experiments as well.

Machine-learning algorithms have been commonly used to detect and identify various types of attacks. In this
paper, we have implemented several machine-learning algorithms to classify network packets into malicious or normal

packets. The novel contribution of this research includes: Modification in the weights of particle swarm optimization
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FIGURE 1 Smartgrid System lllustration

algorithms, allowing our proposed weighted particle swarm optimizer to select best features from data sets and those
optimal features produces high detection rate, high accuracy and improved false alarm rate. In this research two data
sets are used NSLKDD [22] and KDD99 [23]. After selection of data sets some prepossessing techniques are applied
on both the data sets. Data sets are normalized using min-max normalization technique in order to scale the data. After
data normalization data encoding is performed to convert nominal values to numeric values because machine learning
works on numeric data. The proposed system performance is evaluated in terms of accuracy,intrusion detection
rate and false alarm rate. The obtained results show that the Random Forest and a Neural Network classifiers have
performed better. We have achieved a 0.5% false alarm rate on KDD99 and a 0.08% false alarm rate on the NSLKDD

dataset. The detection rate and the testing accuracy on average are 99 % for both datasets.

Paper Organization: Section Il evaluates the existing studies and their possible limitations. Section Ill describes
the proposed methodology and techniques adopted, followed by the experiments performed and results tabulated in
Section IV. Section V concludes the paper.

2 | RELATED WORK

The demand for electricity is rising day by day and it is estimated that electricity will increase by 30 to 40 percent
over the next 20 years. Current power grids are very old; becoming more and more overloaded, unreliable and does
not produce enough of electricity. A smart grid has an analytical and well-organized approach to the management

of energy supply and usage. The smart grid tracks and regulates the flow of energy in two ways. The consumers
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also had the option to use an optimized algorithm to buy the cheapest energy at a particular time, depending on the
amount of power used.The smart grid facilitates bidirectional contact between energy suppliers and their clients. The
transformation from the current power grid to the smart grid requires new funding, which guarantees the returned
great value. The smart grid needs reliable, stable, cost-effective, efficient, environmentally sustainable and healthier
facilities.

The smart grid has the below seven key features: allow active customer involvement; manage all production and
storage options; create new products, utilities, and markets; offer the best digital economy with power reliability; use
energy, optimization, and reliability; ability to self-heal and robust cyber and physical attack actions. The development
of smart grids required the integration of diverse technologies and applications. The smart grid has four milestones:
customer allowing, advanced delivery operations, advanced transmission operations, advanced asset management.
By improving network-wide reliability and dynamic performance, the smart grid increases monitoring and control of
the power system co-ordinates. Cyber protection is essential for automatic electric power system operation.

One of the first attempts to achieve a high detection rate and a reduced false alarm rate has been performed on
the DARPA 1998 dataset [24].In this paper, authors have used Principal Component Analysis (PCA) to select features
and neural networks for classification. Though PCA provides an optimal feature set, it compromises the training
efficiency with correct results [25]. Another method for optimal feature selection has been used is Feature Vitality
Based Reduction Method (FVBRM) algorithm [19]. The experiment has used 41 features on the NSLKDD dataset
using the Naive Bayes classifier. Some experiments have used multiple techniques for feature selection. Hee-Su et al.
[26] have used four feature selection techniques. These techniques are Gain Ratio (GR), Correlation-based Feature
Selection (CFS), Information Gain (IG) and Attribute Ratio (AR).

22 Features have been selected from the NSLKDD dataset and for classification, the J48 classifier has been used.
Genetic Principal Component (GPA) [27] approach has been used to select optimal features from the KDDCUP99
dataset with SVM classifier for intrusion detection. In order to develop an intelligent IDS using the NSLKDD dataset,
Manekar et al. [28] used parameter turning using Particle Swarm Optimization (PSO) with SVM classifier. Another
variant of PSO is the intrusion feature selection algorithm (IFSA) based PSO [29, 30]. Which represents velocity and
position in intervals compare to a single numeric value. The technique has been used on the KDD99 dataset, while
random based PSO has also been used for intrusion detection [31]. PSO can improve the performance of the Multiple
Criteria Linear Programming (MCLP) classifier [32]. PSO provides a selection of optimal features for various datasets

such as KDDCUP99 [33]. We have investigated various feature selection techniques and performed an analysis of
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the available systems that can classify a packet into normal or anomaly classes automatically. We have examined the

available literature using the following criteria,as shown in table 1.

TABLE 1 Survey on feature selection and classification techniques

Author Year Feature selection Features Classifier Dataset
Heba et.al.[25] 2010 PCA 23 SVM NSLKDD
Mukherjee et.al.[34] 2012 FVBRM 24 Naive Bayes NSLKDD
AR 22
H.Chae et.al.[26] 2013 CFs 25 148 NSLKDD
IG 23
GR 19
Tesfahun et.al.[35] 2013 IG 22 Random Forest NSLKDD
RAW RAW 38
PCA 38
Eesa et.al. [27] 2014 PCA PCA 22 SVM KDD99
GPC GPC 12
GPC 10
V.Manekar et.al.[28] 2014 PSO - SVM(RBF) NSLKDD
Shrivas et.al.[36] 2014 GR 35 ANN-+Bayesian Net NSLKDD
Patel et.al.[31] 2015 PSO - - NSLKDD
Ahmad et.al.[37] 2015 PCA + PSO 8 MNN NSLKDD
Eesa et.al.[38] 2015 CFA 5 Decision Tree KDD99
K.Rai et al [39] 2016 Information Gain 16 DTS NSLKDD
KDD99
Bamakan et al.[40] 2016 FMIFS 19,18,4 LSSVM NSLKDD
Kyoto2006
Bamakan et al.[41] 2016 TVCPSO 17 SVM NSLKDD
Thaseen et.al.[42] 2017 Chi 31 SVM NSLKDD
Syarif et.al.[33] 2017 PSO 25 KNN KDD99
Pajouh et.al.[43] 2018 - 41 Deep Learning NSLKDD
Shone et.al.[44] 2018 - 41 RNN NSLKDD
Naseer et.al.[45] 2018 - 41 LSTM NSLKDD
Sakr et.al.[46] 2019 BPSO +SPSO + SVM 23 SVM NSLKDD
Woo et.al.[47] 2019 Correlation Method 40 Neural Network NSLKDD
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From Table 1, we can conclude that though, PCA provides an optimal feature set, but it compromises the training
efficiency [48]. The problem with information gain and Gini-index is it give biased results for non-numeric values
[49]. Similarly with genetic algorithm and fuzzy logic does not provide surety for optimal solutions [50]. Therefore,
more robust solutions are required, which not only give optimal solutions but also have a fast convergence rate, unlike
the genetic algorithm, which has a slow convergence rate, also depends upon the population used [51]. That's why
we used weighted PSO for feature optimization to make the system more robust. PSO will automatically provide
a set of optimal features regardless of the dataset. The above mention feature selection methods either improved
detection rate, accuracy, or false alarm rate not all the measures at the same time and on different datasets. These
feature selection methods are data-dependent. Therefore, a more optimal way is required, which can solve the above
mention problems and perform well regardless of the dataset. For this reason we have proposed, weighted PSO in

this research, which achieved promising results compare to other studies.

3 | PROPOSED MODEL

This research proposes an artificial intelligence (Al) base solution for the data-driven security part of the smart grid
system by using the optimal features subset and Al models. The objective of this research is to propose a machine
learning model which detects network traffic packets quickly and accurately while achieving a low False Alarm Rate
(FAR) and high Detection Rate (DR). To achieve this objective optimal feature selection is very important to be used.
In this research, the PSO search algorithm is implemented to select the best features from a given subset of features.
The datasets used in this research are NSLKDD and KDD99. For both KDD99 and NSLKDD datasets, we perform
binary classification, i.e., anomaly or normal, as well as multiclass classification to predict attack categories, such as
Denial of Service (DoS), R2L, U2R, Probe and Normal class. After a successful classification of the attacks, we do
further classification to handle the exact name of the anomaly. The proposed model consists of six phases. The
1st is data reading, in the data reading phase, we read KDD99 and NSLKDD datasets one by one. The 2nd is data
preprocessing, in the preprocessing step, we replace missing values by mean, remove the outliers in data if any, after
that data normalization is performed to scale the data. After completing the data normalization, then we performed
data encoding to convert non-numeric values into numeric values. The last stage of data preprocessing is the optimal
feature selection, which is performed using PSO. The complete working of PSO is discussed in the next section. The
3rd is passing optimal features to machine learning selected models. In the 4th phase, we trained different models by
passing 70% data and labels to the model. Testing is performed on 30% of the data. 5th phase phase is the experiment
phase and 6th phase phase is evaluation.Figure 3 represent the proposed model.

3.1 | Datasets

3.1.1 | KDD99 dataset

KDD?99 is one of the most famous datasets used in the field of network security for IDS. KDD99 is a derived version
of the 1998 DARPA. It is developed in the MIT research lab and is used by IDS designers as a benchmark to evaluate
various methodologies and techniques [52, 53]. KDD99 has 4,900,000 rows and 41 attributes having binary labels
and 22 network attacks are listed in the KDD99 dataset. Class labels consist of 4 major attacks like DoS, Probe, U2R,
R2L and Normal class.
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TABLE 2 KDD99 dataset normal and anomaly packets

Normal packets 97277
Anomaly packets 396731
Total size 494008

Table 2 represents the total number of normal and anomaly packets contain the KDD99 dataset used in this
research. 97277 and 396731 packets are used for anomaly and normal class to develop ensemble machine learning
classifiers upon which training and testing can be performed. 70% KDD99 dataset is used for training and validation
purpose and the rest of the 30% dataset is used for testing and validation, respectively.

3.1.2 | NSLKDD dataset
NSLKDD is an updated copy of the KDD99 dataset. NSLKDD does not have any duplicate Values, which is in the
KDD99 dataset. NSLKDD also does not have any inconsistent values. NSLKDD contains 148517 instances and 41

features for training and testing purposes overall.

TABLE 3 NSLKDD dataset normal and anomaly packets

Normal packets 77054
Anomaly packets 71215
Total size 148269

Table 3 represents the total number of normal and anomaly packets contain the NSLKDD dataset used in this
research. The total number of an anomaly and normal packets used to train and test machine learning models are
71215 and 77054, respectively. 70% KDD99 dataset is used for training and the rest of the 30% dataset is used for
testing and validation, respectively.



8

Suleman Khan et al.

TABLE 4 NSLKDD dataset training and testing packets

Training data size

Testing data size

103789
44481

Table 4 represents the total number of an anomaly and normal packets used to train and test machine learning

models are 103789 and 44481, respectively. Table 5 represents the number of features in both the datasets.

TABLE 5 Total number of features in KDD99 and NSLKDD datasets

Feature Name Feature Type Feature Name Feature Type
Duration Number Protocol type Non-Numeric
Service Non-Numeric Flag Non-Numeric
Src bytes Number Destination bytes Number
Land Non-Numeric Wrong fragt Number
Urgent Number Hot Number
Num of failed logins Number logged in Non-Numeric
Num access files Number Root shell Number
Su_Attemped Number Number root Number
Number of file creations Number Number shells Number
Number access files Number Number outbound commands Number

Is host login

Count

Serror rate

Rerror rate

Same service rate

Service different host rate
Dst_host_srv_count
Dst_host_diff_srv_rate
Dst_host_srv_diff_host_rate
Dst_host_srv_serror_rate

Dst_host_srv_rerror_rate

Non-Numeric
Number
Number
Number
Number
Number
Number
Number
Number
Number

Number

Is guest login

Service Count

Service Error rate

Service error rate

Different service rate
Dst_host_count
Dst_host_same_srv_rate
Dst_host_same_src_port_rate
Dst_host_serror_rate
Dst_host_rerror_rate

Class label type

Non-Numeric
Number
Number
Number
Number
Number
Number
Number
Number
Number

Non-Numeric
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3.2 | Pre-processing
3.2.1 | Normalization:

After selection of dataset, data cleaning operations are performed on datasets to remove noise from dataset and
normalize the features. For normalization different techniques are used but in this research min-max normalization
approach is used which is better in terms of scaling and solve outliers’ issues with z-score normalization Min-max

scaling normalizes values in the range of [0, 1]. Equation for min-max normalization is given below.

Y; —min(Y)

max(Y) — min(Y) ()

=

From equation 1, Y=(Y1,Y2Y3...Yn) are the number of features while Y; is the feature which we want to normalize

and Z; are normalized features. By doing this now all features have same weights and all features are in one scope.

3.2.2 | Dataencoding

Before data encoding, we remove duplicate and inconsistent values from the datasets. Then the nominal attributes
are converted to numeric, the reason for that machine learning algorithms back end calculations are done on numeric

values not nominal values. So this step is done before passing data to the proposed model.

3.2.3 | Feature selection

Algorithm 1: Steps for PSO algorithm
Step1: Randomly set the velocity as well as position of every particle.

Step2: Evaluation of particle fitness.

if fitness value of Pi >Lbesti then
| Lbesti = Pi

else

if fitness value of Lbesti >Gbesti then
| Gbesti = Lbesti

else
Step 3: particle i velocity is updated at this step.

DZ;H =Wx Dfnd + aixr; X {L,‘d - P/’;V} + C2><f2i X {Lgd - P/,;V}
After updating the velocity, position of particle i is updated

+1 _ +1
Pia = FPig+Dig

Step 4: If threshold for stopping id not achieved then repeat step 2 and step.

Step 5: At the end, system returns Gbest and its fitness values.

end

end

After feature normalization next important step is the feature optimization. Optimal features not only improve
accuracy, but also improve detection rate and false alarm rate. The main focus of feature optimization is to find
such feature subsets that can work with different classifiers to produce better results. In this research, we use PSO
search method for feature selection. Eberhart and Kennedy [54] in 1995 inspired from fish and birds flock movement

behavior and proposed PSO which is generally an optimization algorithm. To solve non-smooth global problems PSO
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is considered one of the powerful technique [51].Convergence rate of PSO is also very high and it gives optimal
solution in less amount of time [55]. Genetic algorithms are also used for optimal feature selection which produce
good detection rate but the issue with genetic algorithms is that their convergence rate is very slow and may become
worse if subjects of the population are also used [56]. The swarm particles are randomly initialized and then passed
to search arena, by changing the value for velocity and for position of particle we can get optimal features subset.
The present position and its velocity are expressed in (2) and (3).

Pi = {Pj1, Pi2, Pi3, Pi4, Pis, Pig . . . . . ... Pin'} (2)

Where the dimension of principal search space is represented by N.

Dj= {Dj1Dj2Dj3Dj4Dj5Dj6 ..... DjN} (3)

Until we get the optimal values algorithm keep updating values for velocity as well as for position. As soon as we
get the optimal features, the algorithm stops.

3.3 | Selected optimal features for NSLKDD and KDD99 datasets

TABLE 6 NSLKDD selected optimal attributes

S.No Feature Name Data Type
1 Service Nominal
2 Destination bytes Numeric
3 Logged-in Numeric
4 Count Numeric
5 Srv-diff-host-rate Numeric
[ Dst-host-count Numeric
7 Labels Nominal

TABLE 7 KDD99 selected optimal attributes

S.No Feature Name Data Type
1 Service Numeric
2 Destination bytes Numeric
3 Logged-in Numeric
4 Count Numeric
5 Srv_diff_host_rate Numeric
6 Dst-host-count Numeric
7 Dst-host-srv-diff-host-rate Numeric
8 Labels Nominal
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Table 6 and table 7 represents the optimal features selected form NSLKDD and KDD99 datasets.

3.4 | Classifiers
3.4.1 | K-Nearest Neighbor

K-Nearest Neighbor Classifier (KNN) uses similarity measures to predict new data points. The reason for using the
KNN algorithm in this research is that it depends upon the features’ similarity. To achieve optimal results, the selection
of the right value of K is significant. The value of K is the number of nearest neighbors that are considered in the
classification of a vector. In this research, we select K=5, leaf-size=30 and Minkowski metric is used along weights
are uniformed. Equations for KNN is given below

k

Eculidean equation = Z(Xi -Yi)? )
=1
K
Manhattan equation = Z | Xi—=Yi| (5)
i=1
P 1/q
Minkowski = (Z(|X - Yil)") ()
i=1

3.4.2 | Neural Network (NN)

An NN is a data processing paradigm that is motivated by the biological sensory system. Such as the human brain.
The neural network is also widely used in IDS and it is represented in figure 4. Given an input node X,, the output of

the hidden node Oy, is given as:

Input layer Hidden layers i Output layer

FIGURE 4 Neural Network structure [57]
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Op =1 +

Zn: Uap + 9b) (7)

a=1

where wa, b represents the weight between the ath input and ji;, hidden node, and 6; represents the bias value.
Whereas, output will be given

output = ¢, +

Z Upk + Gk) (8)

b=1

The mapping of inputs to outputs is an iterative process, where in each iteration weights Ua,b are updated. One of

the commonly used algorithm is Back Propagation algorithm which updates the weights using:

OEf

Upa(t +1) = Upa(t) — € U
ba

9)

The NN is mostly used to solve complex problems and it consists of the input layer, weighted (hidden layers) and
output layers. Weights are assigned to each layer in the neural network system. The activation function is also used in
the neural network. The NN Model is represented in figure 4. A neural network consists of 60 hidden layers with an
activation function of relu, and alpha size is 0.0001. We kept the batch size constant. Max-Iter is 200 and randomness

is true.

3.4.3 | Decision Tree

Another algorithm used in recent anomaly-based IDS research is the Decision Tree (DT), this is the same as any tree
structure consisting of edges, nodes, leaves etc. A feature and threshold is typically applied to a node and the data is
split down the tree, where for example if the data is below a threshold it goes left and above a threshold goes right,
until it ends up in a final cluster or class [18]. One DT method is ID3 algorithm that quantifies information by using

entropy. Equations for entropy is given below

S

Entropy: H (p1.p2..-p2) = ) (pilog (1/pi) (10)

i=1

Where (p1,p2,...ps ) represents the probabilties of the class labels.

Gain(D. $) = H(D) ) p (D;) H (D)) (11)
i=1

Another decision tree method is called the C4.5. Decision tree [58, 59] has the ability to process large amounts of
data efficiently is used to sort data into groups so that a Support Vector Machine (SVM) can classify the smaller subsets
of information. In [60] author proposed a similar method however an SVM is placed on each edge in the DT. We per-
formed splitting using gini-index, max-depth=none, min-samples-split=2, min-samples-leaf=1, class-weights=none,

random-state=none, min-impurity-decrease=0.0 and min-impurity-split=none.
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3.4.4 | Random Forest

Random Forest classifier plays a significant part in IDS. It is a combination of multiple decision trees and random
forest combine all the decision trees to get prediction sharpened and get more accurate results. The best thing about
the random forest is that it can be used for both regression and classification. The random forest also tells us about
the importance of the features that will help in deciding which features should be kept and which ones should be
dropped from the dataset.

3.5 | Evaluation metrics

Various performance metrics are used to evaluate the proposed solution, including precision, recall, F1-Measure [61],
False Alarm Rate (FAR), Detection Rate (DR) and Accuracy. Above mention performance metrics base on True Positive
(TP), False Positive (FP), False Negative (FN) and True Negative (TN).

False Alarm Rate (FAR) is a combination of total instances that are normal but classify as attack class and truly

classify attack class.

FP

FAR=EP TN

(12)
Accuracy [62] is used to measure how many instances are correctly classified as normal and attacks classes.

Accuracy is achieved by summing correctly classify instances with dividing the total instances represented in equation
13.

TP+TN
A = 13
CUraCY = TPy FP+FN+TN (3)

Detection Rate (DR) provides information about the attacks detected correctly divided by the total number of
attacks in the dataset.

TP
DR= — (14)
TP+FN
Precision’s objective is to evaluate the True Positive (TP) entities in relation to False Positive (FP) entities.
TP
Precision = ————— (15)
TP+FP

The purpose of recall is to evaluate True Positive (TP) entities in relation to (FN) False Negative entities that are

not at all categorized. The mathematical form of recall is mentioned in equation (16).

TP
Recall = m (16)
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Sometimes performance assessment may not be good with accuracy and recall, For instance, if one mining al-
gorithm has low recall but high precision that another algorithm is needed. Then there is the question of which
algorithm is better. This problem is solved by using F1-score that gives an average recall and precision. F1-score can
be calculated as shown in equation (17).

2«Precision x Recall
F1 - score = —ooolon » Recal (17)
Precision + Recall

4 | EXPERIMENT RESULTS

In this section experiment results of KDD99 and NSLKDD are mentioned. All these experiments are performed on
google colab. System specification core 13 system with 8 GB RAM and 2.7 GHz processor is used.

TABLE 8 Classification report for KDD99

Model Name Class Precision % Recall % F1-score %

PSO + KNN Normal 98.8 97.6 98.2
Attack 99.4 99.7 99.6

PSO + Neural Network Normal 954 99.6 97.5
Attack 99.9 98.8 99.4

PSO + Decision Tree Normal 98.5 99.2 98.8
Attack 99.8 99.6 99.7

PSO + Random Forest Normal 98.5 99.3 98.9
Attack 99.8 99.6 99.7

From Table 8, we can conclude that precision, recall and f1-score for KNN, normal class is 98.89%, 97.60%,
98.20%, respectively. Similarly, for an anomaly class, precision is 99.40%, the recall is 99.70% and the f1-score is
99.60%, respectively. Random forest precision, recall and f1-score for the normal class will give us 98.50%,99.30%,98.90%,
respectively. Precision, recall and f1-score for attack class are 99.80%, 99.60%,99.70%. For decision tree and neural
network, precision scores for the normal class are 98.50%, 95.40%, respectively. Similarly, recall and f1-scores are
99.30% and 98.40% on average for a normal class. Precision recall and f1-scores on average for an attack class using

decision tree and neural network are 97%, 99.60% 99.50% respectively depicted in the figure 5.
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FIGURE 5 Classification report for KDD99 datasets

TABLE 9 FAR, DR and Accuracy comparison report

Model Name KDD99 (FAR %) NSLKDD (FAR %)
PSO + KNN 2.40 0.17
PSO + Neural Network 0.50 3.13
PSO + Decision Tree 0.80 0.14
PSO + Random Forest 0.60 0.08

Table 9 and figure 6 depicts that the KNN classifier with KDD99 dataset achieved 2.4% FAR which is high
compare to other classifiers, decision tree and random forest achieved 0.8% and 0.6% FAR respectively. For KDD99
neural network outperformed other classifiers in terms of FAR and it achieved 0.5% FAR. The reason for this is neural
network performs well on large dataset and KDD99 dataset has more data compare to NSLKDD dataset. Similarly
random forest achieved promising results for FAR using NSLKDD dataset. FAR for random forest is 0.08%, since
random forest is ensemble classifier and it is the combination of multiple decision tree that's why it achieved promising

results compare to other classifiers like decision tree, KNN and NN.

From table 10 and table 11 we can conclude that using the KNN classier with KDD99 dataset, 118779 packets
are identified as an attack, while only 337 packets are misclassified out of 119116 packets. For normal class out of
29090 packets, 28390 packets are detected correctly and 700 packets are identified incorrectly with the accuracy of
97.60% for normal class and 99.70% for attack class, respectively. The detection rate for the knn classifiers is 99.70%.
True positive for random forest and decisions tree are 118672 and 118680, respectively. The true negative for the
random forest is 28902. Similarly, for the decision tree the true negative is 28850. False positive and false negative
scores for the random forest is 188 and 444, respectively. For the decision tree overall, 676 packets are misclassified.

The detection rate for both the random forest and the decision tree is 99.60%, respectively. The neural network also
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FIGURE 6 FAR for KDD99 and NSLKDD datasets

achieved promising results for true positive and for true negative with the detection rate of 99.20%.118161 packets
are correctly detected as an attack with an accuracy of 99.20%, while 28927 packets are correctly identified normal
packets with an accuracy of 99.40%. 95 packets are misclassified for attack class and 163 packets for the normal class

using a neural network.Figure 7 represents accuracy and detection rate for both datasets.
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FIGURE 7 Accuracy and DR for both datasets.
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TABLE 10 Confusion matrix for KDD99

Model Name TP FN FP TN

PSO+ KNN 118779 337 700 28390
PSO+ Neural Network 118161 95 163 28927
PSO+ Decision Tree 118680 436 240 28850
PSO+ Random Forest 118672 444 188 28902

TABLE 11 Accuracy and DR for both datasets.

KDD99 NSLKDD

Model Name
Accuracy % DR % Accuracy % DR %
PSO+KNN 99.3 99.7 99.51 99.17
PSO+NN 99.2 99.2 97.54 98.18
PSO+DT 99.5 99.6 99.64 99.41
PSO+RF 99.6 99.6 99.65 99.3
TABLE 12 Confusion matrix for NSLKDD

Model Name TP FN FP TN
PSO+ KNN 21255 176 41 23083
PSO+ Neural Network 21041 390 703 22421
PSO+ Decision Tree 21306 125 34 23090
PSO+ Random Forest 21295 136 20 23104

Table 11 and table 12 represents that the random forest with PSO achieved 99.65% accuracy and 99.30%
detection rate, respectively. Precision, recall and f1-scores are 99.40%, 99.90%, 99.70% respectively for a normal
class. Similarly, for an anomaly class, we achieved 99.90% precision, 99.40% recall and 99.60% f1-score, respectively.
KNN model gained 99.51% accuracy overall, for normal class accuracy is 99.8%, while for an attack class, accuracy is
99.20%. Decision tree detected 21307 packets correctly as anomaly out of 21431 with the accuracy of 99.40% and
out of 23124 normal packets, 23093 packets correctly identified as normal traffic with the accuracy of 99.90%. For
an attack class decision tree achieved 99.80% precision, recall is 99.40% and 99.70% f1-score, similarly for normal
class precision is 99.50% while recall is 99.90% and f1-score is 99.70%. Using a multilayer perceptron, we achieved
99.50% accuracy for normal class and 97.90% accuracy for anomaly class. 98.5% overall accuracy is achieved in [42].
Similarly, in [61] they got 97.87% overall accuracy. We gained a 98.18% detection rate while the false alarm rate is
around 3.13% using a multilayer perceptron. MLP results are a little low compare to knn, decision tree and random
forest, the reason for this is a neural network performs well when class is balance and when we have a large amount

of data for both training and testing. For a normal class preicion, recall and f1-score is 95.10%, 99.90% and 97.40%
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respectively using multilayer perceptron classifier and NSLKDD dataset. Similarly, for an anomaly class, precision,
recall and f1-score is 99.90%, 94.50%,97.10%, respectively, depicated in table 13 and figure 8.

Precision
- Recall

T T T - F1-Score T T T

Normal Attack Normal Attack Normal Attack Normal Attack
PSO+KNN PSO+NN PSO+DT PSO+RF

FIGURE 8 Classification report for NSLKDD dataset.

TABLE 13 Classification report for NSLKDD

Model Name Class Precision % Recall % F1-score %

PSO + KNN Normal 99.2 99.8 99.5
Attack 99.8 99.2 99.5

PSO + Neural Network Normal 95.1 99.9 97.4
Attack 99.9 94.5 97.1

PSO + Decision Tree Normal 99.5 99.9 99.7
Attack 99.8 99.4 99.6

PSO + Random Forest Normal 99.4 99.9 99.7
Attack 99.9 99.4 99.6

4.1 | KDD99 Multi Class Classification Experimental Results

Table 14 and figure 9 depict that normal class achieved 98.30% precision, 96.10% recall and 97.10% F1-Measure,
respectively. TP and FP rate is 96.10% and 0.4% respectively. Smurf and Warezclient achieved a 100% detection
rate, respectively. Similarly, for Warezclient and Smurf attack has 0% and 0.3% FP rate, respectively. Recall for both
Warezclient and Smurf attacks is 100%, respectively, while f1-score is above 99% on average for both the attacks,

respectively. Precision for Warezclient is 99.30% and Smurf precision is 98.9%, respectively, for Portsweep DR and
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recall is 89.20%, respectively. FP rate for Portsweep is high compare to other attacks using a decision tree, which
is around 1.8%. Precision and F1-Measure scores are 77.20% and 82.80% respectively for Portsweep. On average,
precision, recall, F1-Measure and TP rate scores for Ipsweep are 98.50% and the FP rate is 0.2%, respectively. Saran,
Nmap, Back, Teardrop and Neptune also performed well and achieved, on average, 93% precision, recall and F1-
Measure, respectively.

TABLE 14 Classification report for Decision Tree

Class TP Rate % FP Rate % Precision % Recall % F1-score %
saran 84.7 0.3 97.3 84.7 90.6
portsweep 89.2 1.8 77.3 89.2 82.8
ipsweep 99.1 0.2 96.7 99.1 97.9
nmap 41.2 0 96.6 41.2 57.7
back 97.9 0.1 98.9 97.9 98.4
teardrop 86.1 1.5 76.6 86.1 81.1
warezclient 100 0 99.3 100 99.7
neptune 95.6 1.7 92.8 95.6 94.2
smurf 100 0.3 98.9 100 99.4
normal 96.1 0.4 98.3 96.1 97.1
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FIGURE 9 Classification report for Decision Tree
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TABLE 15 Classification report for Random Forest

Class TP Rate % FP Rate % Precision % Recall % F1-score %
saran 85.1 0.5 95.3 85.1 89.9
portsweep 89.5 1.9 76.5 89.5 82.5
ipsweep 99.1 0 99.4 99.1 99.2
nmap 42.6 0 96.7 42.6 59.2
back 97.9 0.1 99.2 97.9 98.5
teardrop 81.1 1.6 73.9 81.1 77.3
warezclient 100 0 99.3 100 99.7
neptune 96.1 1.7 92.6 96.1 94.3
smurf 100 0 99.9 100 99.9
normal 96.3 0.4 98.2 96.3 97.2
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FIGURE 10 Classification report for Random Forest

From table 15 and figure 10, we can conclude that the FR rate for Ipsweep, Nmap, Warezclient and Smurf is
0%, respectively, which is promising. Similarly, the DR rate for those attacks is 99.10, 42.60%, 100%, respectively.
Saran, Portsweep, Back, Teardrop and Neptune achieved 0.5%, 1.9%, 0.1%, 1.6% , 1.7% FR rate respectively.The DR
rate for those attack is 85.10%, 89.50%, 97.90%, 81.10% ,96.10% respectively.Precision, recall and F1-Measure for

all attacks on average are 92.50%, 87.93% ,88.88%, respectively. For normal class precision, recall and F1-Measure
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is 98.20%, 96.30%, 97.20%, respectively.TP and FP for normal class is 96.30% and 0.4%, respectively.

TABLE 16 Classification report for K Nearest Neighbour

Class TP Rate % FP Rate % Precision % Recall % F1-score %
saran 84.9 0.5 94.6 84.9 89.5
portsweep 90.5 1.9 76 90.5 82.6
ipsweep 99.1 0 100 99.1 99.5
nmap 42.6 0 96.7 42.6 59.2
back 97.6 0.2 98.1 97.6 97.9
teardrop 83 1.7 73.9 83 78.2
warezclient 100 0 100 100 100
neptune 95.4 1.6 93.3 95.4 94.3
smurf 100 0 100 100 100
normal 95.8 0.5 97.7 95.8 96.8
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FIGURE 11 Classification report for K Nearest Neighbour

For the table 16, we can conclude that Saran attack, TP, FP, precision, recall and f1-score is 84.9%, 0.5%, 94.6%,
84.9%,89.5% respectively. Portsweep has 90.50%, 1.9%, 76%, 90.50%, and 82.60% TP, FP, precision, recall, f1-score
respectively. TP rate for Ipswep, Back and Neptune attacks is 99.10%, 97.60%, 95.40%, respectively. Similarly, FP
rate for those attacks is 0%, 0.22,1.6%, respectively. The precision for Ipsweep is 100%. Recall and F1-Measure
for Ipsweep is 99.10%, 99.50%, respectively. Precision for Back and Neptune is 98.10%. 93.30%, respectively. For
back attack recall and f1-score is 97.60%,97.90%, respectively. Similarly, for Neptune, it is 95.40% and 94.30%,
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respectively, for the Nmap TP rate and the recall score is 42.60%, respectively. FR rate is 0%. Precision and recall
scores are 96.70% and 59.20%, respectively. Warezclient and Smurf attack achieved promising results using the KNN
classifier. Precision, recall, f1-score and TP rate are 100% respectively for both attacks. The normal class achieved,
on average, 95% TP, precision, recall and f1-score, respectively, depicted in figure 11.

TABLE 17 Classification report for Neural Network

Class TP Rate % FP Rate % Precision % Recall % F1-score %
saran 84.3 0.5 94.8 84.3 89.2
portsweep 91.8 5.9 51.1 91.8 65.7
ipsweep 99.1 0 99.4 99.1 99.2
nmap 42.6 0.1 90.6 42.6 58
back 98.7 11 88.6 98.7 93.4
teardrop 62.5 1 78.3 62.5 69.5
warezclient 100 0.1 99 100 99.5
neptune 96.7 1.6 93.3 96.7 95
smurf 100 0.1 99.7 100 99.8
normal 79.2 0.3 98.4 79.2 87.8
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FIGURE 12 Classification report for Neural Network

From table 17 and figure 12, we conclude that the TR rate for attacks and the normal class is 95.36% on average.
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Similarly, the average FP rate is 1.06% for all the classes in NSLKDD dataset. Average precision, recall and F1-Measure

scores are 89.32%, 85.49%, 85.33% respectively for all the attacks and normal class using decision tree algorithm.

4.2 | NSLKDD Multi Class Classification Experimental Results

TABLE 18 Classification report for Decision Report

Class TP Rate % FP Rate % Precision % Recall % F1-score %
warezclient 98.2 0.2 96 98.2 97.1
ipsweep 90.8 0.3 98.4 90.8 94.4
portsweep 99.2 0.1 99.1 99.2 99.1
teardrop 100 0 100 100 100
nmap 97.6 1.3 82.9 97.6 89.7
smurf 100 0.3 97.4 100 98.7
back 98.9 0 99.6 98.9 99.2
satan 98.8 0.2 98.7 98.8 98.8
neptune 99.3 0 99.8 99.3 99.6
normal 96.9 0.3 98.2 96.9 97.5

FIGURE 13 Classification report for Decision Tree
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From table 18 and figure 13, we can conclude that the TP rate for attacks and the normal class is 95.36% on average.
Similarly, the average FP rate is 1.06% for all the classes in NSLKDD dataset. Average precision, recall and f1-measure
scores are 89.32%, 85.49%, 85.33% respectively for all the attacks and normal class using decision tree algorithm.

TABLE 19 Classification report for Random Forest

Class TP Rate % FP Rate % Precision % Recall % F1-score %
warezclient 100 0.1 98.6 100 99.3
ipsweep 90.8 0.1 99.3 90.8 94.9
portsweep 98.7 0.1 98.9 98.7 98.8
teardrop 100 0 100 100 100
nmap 96.7 1.3 83 96.7 89.4
smurf 100 0.3 97.9 100 99
back 100 0 100 100 100
satan 98.8 0.3 98.3 98.8 98.5
neptune 99.9 0.1 99.2 99.9 99.6
normal 98.4 0.2 99.1 98.4 98.7

FIGURE 14 Classification report for Random Forest
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Table 19 depicts that Warezclient, Teardrop, Smurf and Back attack have a 100% TP rate and 100% recall, respec-
tively. Teardrop and Back attack has a 0% FP rate, respectively. Warezlient, Ipsweep, Portsweep and Neptune have a
0.1% FP rate, respectively. Smurf and Satan have a 0.3% FP rate, respectively. Satan has 0.3% and normal has 0.2%
FR rates, respectively. Warezclient, Portsweep and Satan have 98% precision, respectively. Ipsweerp, Neptune and
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normal have 99% precision, respectively. Portsweep, Neptune and normal class hs 98% recall, respectively. Similarly,
Ipsweep, Nmap and Neptune have 90.8%,96.7% and 99.9% recall, respectively. f1-measure for Warezclient, Smurf
and Neptune is 99%, respectively. Portsweep, Satan and Normal have 98% f1-measure, respectively. Teardrop and
Back have 100% f1-measure, respectively. Nmap has 89.4% f1-measure using a random forest classifier and NSLKDD
dataset. The visualization of these attacks is depicted in figure 14.

TABLE 20 Classification report for K Nearest Neighbour

Class TP Rate % FP Rate % Precision % Recall % F1-score %
warezclient 99.5 0.2 95.2 99.5 97.3
ipsweep 90.8 0.1 99.3 90.8 94.9
portsweep 97.9 0.1 99.1 97.9 98.5
teardrop 100 0 100 100 100
nmap 97 1.2 83.3 97 89.6
smurf 100 0.3 97.7 100 98.8
back 100 0 99.2 100 99.6
satan 98.7 0.4 97.7 98.7 98.2
neptune 99.3 0.2 98.8 99.3 99.1
normal 96.7 0.3 98.2 96.7 97.4
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FIGURE 15 Classification report for K Nearest Neighbour

From table 20 and figure 15, we conclude that the TP rate for attacks and the normal class is 97.99% on average.
Similarly, the average FP rate is 0.28% for all the classes in NSLKDD dataset. Average precision, recall and f1-measure
scores are 97.97%, 97.99% and 97.34 respectively for all the attacks and normal class using KNN algorithm.
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TABLE 21 Classification report for Neural Network

Class TP Rate % FP Rate % Precision % Recall % F1-score %
warezclient 99.5 0.5 88.6 99.5 93.7
ipsweep 90.5 0.2 99.1 90.5 94.6
portsweep 98.8 0.2 98.8 98.8 98.8
teardrop 100 0 100 100 100
nmap 91.1 1.3 82.2 91.1 86.4
smurf 100 0.3 97.4 100 98.7
back 98.5 7.2 37.7 98.5 54.6
satan 98.4 0.7 95.9 98.4 97.1
neptune 994 0.1 99.6 99.4 99.5
normal 46.7 0.4 94.9 46.7 62.6
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FIGURE 16 Classification report for Neural Network

From table 21 and figure 16, we conclude that the TP rate for attacks and the normal class is 92.29% on average.
Similarly, the average FP rate is 1.6% for all the classes in NSLKDD dataset. Average precision, recall and F1-Measure
scores becomes 89.44%, 92.25% and 88.6% respectively for all the attacks and normal class using decision tree
algorithm.
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TABLE 22 Comparison of proposed model with other models (KDD99)

Model Accuracy % FAR % DR %
PSO+MCLP [32] 99.13 1.94 -
TVCPSO [41] - 0.80 97
SVM-ELM [63] 95.75 1.87 95.17
PSO [64] 88.5 - -
DNN [65] 75.5 0.85 76
PSO-ANN [66] 92.5 - -
ANN(FNN-LSO) 94.02 2.23 89.83
Proposed Model (PSO+NN) 99.20 0.5 99.70

TABLE 23 Comparison of proposed model with other models (NSLKDD)

Model Accuracy % FAR % DR %
RF [43] 93.77 - -
SVM-ELM [44] 95.75 1.87 95.17
DNEDRON [45] 97.55 1.08 95.97
RNN-IDS [46] 99.81 5.09 96.92
HIERARCHICAL SOM [47] - 2.19 93.46
ADABOOST [48] - 3.14 91.20
LSTM [49] 93.82 0.09 77.12
GA [50] 88.77 - -
Proposed Model 99.65 0.08 99.3

5 | CONCLUSION AND FUTURE WORK

This paper proposes a feature selection base IDS system for smart grid systems. For this purpose, we have used
weighted PSO to improve the false alarm rate in the IDS. Optimal features are selected from KDD99 and NSLKDD
datasets. After optimal features selection, these features are passed to machine learning models. We have applied
various machine learning algorithms on NSLKDD and KDD99 datasets during the experiments. After the collection
of datasets, we have transformed them into a binary classification: attack class and normal class as well as we used
multiple attacks. 9 attacks are used for the KDD99 dataset. In comparison, 21 attacks are used for the NSLKDD
dataset. Initially, we have performed preprocessing on the datasets and non-numeric values are replaced with numeric
encoding. Next, the data is normalized using min-max normalization. After that, we have performed feature selection
using particle swarm optimization and selected the best features. After feature selection, we have applied different

machine learning algorithms on both the datasets. Random Forest and Neural Network have outperformed all other
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methods in terms of accuracy, training time and false alarm rate. We have also compared our proposed methodology

with other recent work as shown in Table 22 and Table 23. Experimental results prove that our method performs

better in terms of detection rate, false alarm rate and accuracy for both KDD99 and NSLKDD datasets. In future, we

intend to repeat this experiment with multiple classes with feature selection methods using deep learning algorithms.
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