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A Fuzzy Detection System for Rumors through
Explainable Adaptive Learning
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Ali Kashif Bashir, Senior Member, IEEE, Alaa Omran Almagrabi, and Neeraj Kumar, Senior Member, IEEE

Abstract—Nowadays, rumor spreading has gradually evolved
into a kind of organized behaviors, accompanied with strong
uncertainty and fuzziness. However, existing fuzzy detection
techniques for rumors focused their attention on supervised
scenarios which require expert samples with labels for training.
Thus they are not able to well handle unsupervised scenar-
ios where labels are unavailable. To bridge such gap, this
paper proposes a fuzzy detection system for rumors through
explainable adaptive learning. Specifically, its core is a graph
embedding-based generative adversarial network (Graph-GAN)
model. First of all, it constructs fine-grained feature spaces
via graph-level encoding. Furthermore, it introduces continuous
adversarial training between a generator and a discriminator
for unsupervised decoding. The two-stage scheme not only solves
fuzzy rumor detection under unsupervised scenarios, but also
improves robustness of the unsupervised training. Empirically,
a set of experiments are carried out based on three real-world
datasets. Compared with seven benchmark methods in terms
of four metrics, the results of Graph-GAN reveal a proper
performance which averagely exceeds baselines by 5% to 10%.

Index Terms—Fuzzy detection system, graph embedding, gen-
erative adversarial learning, cyberspace security.

This work was supported in part by the Chongqing Natural Science
Foundation of China under grant cstc2019jcyj-msxmX0747, in part by the
State Language Commission Research Program of China under grant YB135-
121, in part by the Science and Technology Research Program of Chongqing
Municipal Education Commission under Grant KJQN202000805, in part by
the Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for
Scientific Research (KAKENHI) under Grant JP18K18044, and in part by
the High-level Talents/Teams Research Project of Chongqing Technology and
Business University under grant 1853013, grant ZDPTTD201917, and grant
KFJJ2018071. (Corresponding author: Keping Yu)

Zhiwei Guo is with Chongqing Engineering Laboratory for Detection
Control and Integrated System, National Research Base of Intelligent Manu-
facturing Service, Chongqing Technology and Business University, Chongqing
400067, China. (e-mail: zwguo@ctbu.edu.cn)

Keping Yu is with Global Information and Telecommunication In-
stitute, Waseda University, Shinjuku, Tokyo 169-8050, Japan. (e-mail:
keping.yu@aoni.waseda.jp)

Alireza Jolfaei is with Department of Computing, Macquarie University,
Sydney, NSW 2113, Australia. (e-mail: alireza.jolfaei@mq.edu.au)

Ali Kashif Bashir is with Department of Computing and Mathematics,
E-154, John Dolton, Chester Street, M15 6H, Manchester Metropolitan
University, Manchester, United Kingdom, and with School of Electrical
Engineering and Computer Science (SEECS), National University of Science
and Technology, Islamabad (NUST), Pakistan, and with School of Information
and Communication Engineering, University of Electronics Science and Tech-
nology of China (UESTC), Chengdu, China. (email: dr.alikashif.b@ieee.org)

Alaa Omran Almagrabi is with Department of Information Systems, Fac-
ulty of Computing and Information Technology (FCIT), King Abdul Aziz
University (KAU), Jeddah, Saudi Arabia. (e-mail: aalmagrabi3@kau.edu.sa)

Neeraj Kumar is with the Department of Computer Science and Engi-
neering, Thapar Institute of Engineering and Technology, Patiala 147004,
India, and with Department of Computer Science and Information Engi-
neering, Asia University, Taiwan, and with School of Computing, Uni-
versity of Petroleum and Energy Studies, Dehradun, Uttarakhand. (e-mail:
neeraj.kumar@thapar.edu).

I. INTRODUCTION

W ITH the development of Internet, cyberspace has been
regarded as another important living space in daily life

[1], [2]. Along with the prevalence of diverse social network
applications, various rumor spreading events immensely affect
cyberspace security and even social stability [3], [4]. For
instance, they caused great panic to the public especially
during the epidemic COVID-19 [5]. Although conventional
artificial intelligence techniques have bred great progress in
rumor detection, manual feature extraction usually makes them
time-consuming and inefficient [7]. Especially during long-
term confrontation against supervision, rumor events tend to
evolve into more fuzzy activities to continuously gain conceal-
ment [8]. They are gradually becoming a kind of organized
activities, accompanied with strong uncertainty and fuzziness
[18]. As rumor spreaders have tended to become smarter, so
as to avoid being easily identified their real intention [19]. For
example, they may carry out social activities as normal users
in most of times, yet give specific statements in necessary
times. It remains really hard to discover such type of intention,
which brings about the issue of uncertainty and fuzziness
[25], [29]. The fuzziness makes it hard to efficiently extract
hidden or latent patterns from original activity records [9].
To this end, it is expected to integrate deeper insight into
feature spaces to establish rumors-oriented fuzzy detection
systems [6]. In contrast, deep learning actively learns feature
representation via multiple layers of abstraction [10]. Hence,
feature components with stronger representative ability can be
well extracted [11]. Given complexity of scenes, deep learning
has been regarded as an ideal solution to build fuzzy detection
systems for rumors [12].

The past few years have witnessed great progress of re-
searches on deep learning-based fuzzy detection of rumors
[13]. The research temporality can be viewed as two stages.
At the first stage, approaches originated from two models:
convolutional neural network (CNN) [14]-[17] and recurrent
neural network (RNN) [20]-[23]. CNN-based approaches gen-
erally focused on global-level feature abstraction, capturing
abstract features of activities from the perspective of integrity.
RNN-based approaches emphasized on activity order and
mined sequential patterns inside them. For instance, Li et al.
[16] adopted multi-task learning to construct a classification-
based rumor detection method. It is actually a neural network
structure with a shared layer and two task layers. Bugueño
et al. [22] learned sequential features from contents of con-
textual tweets via capturing sequential characteristics, and
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Fig. 1: Architecture of the proposed Graph-GAN model.

employed an RNN model for rumor detection. As for the
aforementioned methods, the detection precision is able to
reach 75% in average. At the second stage, researchers tried
to explore combination of the two networks [26]-[28]. For
example, Huang et al. [26] proposed a model captures both
local features and long-term features inside social events to
realize rumor detection. This type of integrated methods are
able to reach detection precision of 80% in average, which
possesses a little advancement compared with methods of
the first stage. Nevertheless, almost all of them were devel-
oped to establish a mapping from features to identification
results. They were highly dependent on the existence of expert
samples with labels while training. Therefore, they cannot
handle unsupervised situations where labels are unavailable.
In reality, making annotations on rumor samples is extremely
expensive and requires expert experience. Predictably, as the
social applications constantly gain their popularity, situations
where labels are missing tend to become more universal [30].
Therefore, adaptive learning with proper explainability for
unsupervised scenarios will become an essential demand in
the future.

The generative adversarial learning (GAL) [31], a deep
learning technique newly proposed in recent years, is well
suitable for resolving this challenge. The GAL contains two
components: a generator and a discriminator [32]. The for-
mer generates unknown samples and the latter discriminates
whether the generated samples are close to real ones. The
adversarial training between them is expected to produce
optimal outputs. In addition, the graph embedding (GE) theory
[24] is introduced to improve fineness of feature spaces. It
manages to construct more fine-grained feature spaces by si-
multaneously extracting entities and relations inside networked
objects for encoding [33]. The combination of GE encoding
and GAL decoding, constitutes an explainable adaptive learn-
ing framework. Thus, this paper proposes a fuzzy detection
system for rumors through graph embedding-based generative
adversarial network (Graph-GAN). Specifically, graph-level
features are extracted and encoded from initial contents as well
as associated contextual information. Based upon this, GAL
is introduced as an adaptive decoder to actively learn rules of
feature spaces. Then, a set of experiments are implemented
on three real-world datasets to assess performance of the

proposed Graph-GAN in terms of accuracy and robustness.
Main contributions of this research are summarized as follows:
• In terms of fuzzy detection for rumors, this work recog-

nizes the importance of situations where labels may be
unavailable for model training.

• To deal with the problem raised here, the Graph-GAN
model is put forward to establish a fuzzy detection system
for rumors.

• A considerable number of experiments are conducted to
assess efficiency and proactivity of the proposed Graph-
GAN.

The rest of this paper is organized as follows. In Section
II, problem situations are defined and overall workflow of the
proposed Graph-GAN is presented. The detailed algorithmic
procedures of Graph-GAN are illustrated in Section III. In Sec-
tion IV, we set experimental scenarios and give experimental
results as well as analysis. And we conclude this paper in
Section V.

II. PROBLEM STATEMENT

It is assumed that Qn (n = 1, 2, · · · ,N ) denotes the set of
events, and that that each event which consists of a set of posts
is actually a graph network. In this paper, the main goal is to
distinguish rumor events from a huge amount of social speech
events. To begin with, basic items in this research are defined:

Definition 1 (Post): A post refers to a specific speech
released by a social user, such as microblog, tweet, etc.

Definition 2 (Event): An event refers to a series of specific
social activities that have happened or are happening. In this
paper, it contains a collection of posts and is the object to be
identified.

Fig. 1 presents workflow of the proposed Graph-GAN which
contains three parts: graph-level encoding, GAL and detection.
The posts belonging to an event are viewed as nodes, and
implicit relations among posts are viewed as edges. Within
an event Qn, let Pi (i = 1, 2, · · · , |P|) denote the set of |P|
associated posts. For post Pi, it is firstly expected to make
graph-level encoding towards it. For one thing, its semantic
features are modeled by developing a CNN operator to produce
a representative vector Vi. For another, its relational features
between others are modeled to produce a representative vector
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Ri. Extended into the event Qn, the two post-level vectors
are transferred as event-level matrices V(n) and R(n), respec-
tively. Then, the GAL is set up to decode the feature spaces of
Qn. Particularly, the generator G is updated in each iterative
round, and the discriminator D are trained at the beginning.
The corresponding outputs of them are two sample vectors
G(t)
n and D′n, and the Wasserstein distance (WSD)-based

objective function is built for adversarial training between
them. Finally, all the speeches can be classified to identify
rumor events. Intuitively, rumor detection can be abstracted
as a binary classification problem of social events. Because
single social speeches are generally short and not informative,
it remains hard to precisely judge nature of an event through
literal meaning or local features. As a result, extension of
initial features is quite vital. Given above, this paper is also
established on the basis of some assumptions:

Assumption 1: Inside an event, correlations among posts
are assumed to be not sequential, and posts released earlier
will not affect the follow-up posts. In a word, each event is
independent and will not affect processes of others.

Assumption 2: Each post never exists independently, and
is associated with an event. It is released by a user who has
personal profiles and social relations.

Assumption 3: Social relations exist in a pair of users when
they have common records of comments, response or reposts.

III. METHODOLOGY

This section describes mathematical processes of the pro-
posed Graph-GAN through three main procedures. Firstly, GE
theory is utilized to generate feature abstraction for posts and
their relations, so that fine-grained feature spaces can be built.
Then, the GAL is formulated to decode feature spaces. And
within the last detection procedure, rumors can be detected
naturally by learned parameters.

A. Graph-Level Encoding

As is illustrated in Fig. 2, graph-level encoding for event Qn
mainly contains two parts: modeling of contents and modeling
of relations.

1) Modeling of Contents: Word sequence of Pi can be
denoted as a word vector Ωi = [w1, w2, · · · , wγ ], where
wj (j = 1, 2, · · · , γ) denotes all the γ words in it. For nu-
merical calculation, each word is transformed into a vector
through one-hot encoding. Specifically, dimension of such a
vector is the size of word set which is assumed to be τ . And
each element of the vector corresponds to a word in the word
set. The one-hot encoding results for Ωi are denoted as:

Ω
(1)
i =

[
vT1 ,v

T
2 , · · · ,vTγ

]
(1)

where vj(j = 1, 2, ·, γ) denotes all the γ encoding vectors
for γ words,and each vj is a τ -dimensional vector. The j-th
word vector vTj is semantically related to adjacent k vectors
before and after it. Merging the vTj and its adjacent 2k vectors
produces feature matrix for word wj , which is denoted as:

dj =
[
vTj−k,v

T
j−k+1, · · · ,vTj , · · · ,vTj+k−1,v

T
j+k

]
(2)

Fig. 2: Flowchart of the graph-level encoding.

As for semantic modeling, CNN operator is selected for two
reasons. Firstly, posts are generally short text, so that long-term
dependence can be ignored. Secondly, CNN is able to reduce
dimensions while extracting features because dimension of
the obtained vector Ω

(1)
i is too high. The CNN operator in

this research is defined as a series of convolution and pooling
operations. For the former, word matrix dj is fed into Ψ-core
filters for convolutional calculation. For the latter, dimension
of the feature matrix obtained after convolution is further
reduced via subsampling. Each combination of convolution
and pooling is viewed as a filter group. Index number of groups
is assumed as θ which ranges from 1 to η.

In the θ-th filtering, a feature matrix B(θ)
j is obtained after

convolutional transformation, and the process is denoted as:

B(θ)
j = σ1


Ψ∑
ψ=1

[
W

(θ)(ψ)
V1 ⊗F1 (dj) + b

(θ)(ψ)
V1

] (3)

where σ1 (·) denotes the ReLU activation function, ⊗ denotes
convolution operation, W (θ)(ψ)

V1 and b(θ)(ψ)
V1 are parameters, ψ

is index number of filter cores, and F1 (·) defines a nonlinear
mapping as follows:

F1 (dj) = W V2 · dTj + bV2 (4)

where W V2 and bV2 are parameters, and the F1 (dj) trans-
forms dj into a τ×τ -dimensional matrix. Note that the ReLU
activation function is represented as:

σ1 (x) = max (0, x) (5)

In pooling operation, every 4× 4 matrix is set as a pooling
block and only the maximum value is selected to represent
the block. Word matrix dj is transformed into a matrix Bj
through all the η filter groups. It is further transferred to a
Φ-core full connection filter, producing another representative
vector B′j :

B′j = σ1


Φ∑
φ=1

[
W

(φ)
V3 ·Bj + b

(φ)
V3

] (6)
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where W (φ)
V3 and b(φ)

V3 are parameters, and φ is the index num-
ber of cores. Note that B′j is a normalized vector. Considering
diverse roles of different words, an attention layer is further
introduced. We firstly denote initial semantic matrix as the
concatenation of all the B′j , where j ranges from 1 to γ:

V ′i =
[
B′1

T
,B′2

T
, · · · ,B′γ

T
]

(7)

Then we denote the attention weight of the j-th word as the
following two formulas:

α′j = σ2

[
W V4 · V ′i + bV4

]
· βTj (8)

αj =
exp (α′j)
γ∑
j=1

exp (α′j)

(9)

where W V4 and bV4 are parameters, βTj is weight factor for
the j-th word, and σ2 (·) denotes the tanh activation function:

σ2 (x) =
ex − e−x

ex + e−x
(10)

The post-level representative vector for Pi is obtained as:

Vi =

γ∑
j=1

αj ·B′j (11)

Accordingly, the event-level representative matrix for Qn is
denoted as:

V(n) =
[
VT

1 ,V
T
2 , · · · ,V

T
|P|

]
(12)

2) Modeling of Relations: Relations among posts are
divided into two types inherent relations and contex-
tual relations. All the relations between post Pi and
Pl (l = 1, 2, · · · , |P| ; l 6= i) are initially denoted as:

Ri,l =λ1 · ω(inh)
i,l ·WR1 ·Λ(inh)

i,l

+ (1− λ1) · ω(con)
i,l ·WR2 ·Λ(con)

i,l + bR1

(13)

where WR1, WR2 and bR1 are parameters, ω(inh)
i,l and

ω
(con)
i,l are the weight factors from inherent information and

contextual information, Λ(inh)
i,l and Λ

(con)
i,l are two similarity

vectors between Pi and Pl, and λ1 is the trade-off parameter.
The ω(inh)

i,l is mainly decided by similarity of their words,
and it is computed as:

ω
(inh)
i,l =


γ∑
j=1

ϕj(i∩l)/ϕj(l)

|P |∑
p=1

γ∑
j=1

ϕj(i∩p)/ϕj(p)
, i 6= l

0, i = l

(14)

where ϕj (l) and ϕj (p) count the number of word wj in post
Pl and Pp respectively, ϕj (i ∩ l) counts the cooccurrence
number of word wj in Pi and Pl, ϕj (i ∩ p) counts the
cooccurrence number of word wj in Pi and Pp, and p
is another index number of posts that satisfies p 6= i. The
similarity vector Λ(inh)

i,l is measured as:

Λ
(inh)
i,l = ‖Vi − V l‖ (15)

Fig. 3: Flowchart of the Generative Adversarial Learning.

It is assumed that posts Pi and Pl are released by users Ui and
Ul. Although i is inequal to l, it is possible for Ui and Ul to be
the same user. The ω(con)

i,l is mainly decided by correlations
between their users, and is computed as:

ω
(con)
i,l =


F2(i,l)·[ϕu(Ui∩Ul)/ϕu(Ul)]

|U|∑
u=1

F2(i,l)·[ϕu(Ui∩Uu)/ϕu(Uu)]

, Ui 6= Ul

0, Ui = Ul
(16)

where u is the index number of users that ranges from 1 to
|U|, Uu is another user different from Ui, ϕu (Ul) and ϕu (Uu)
count number of friends concerning Ul and Uu, ϕu (Ui ∩ Ul)
counts number of common friends between Ui and Ul, and
ϕu (Ui ∩ Uu) counts number of common friends between Ui
and Uu. In addition, F2 (i, l) is used to judge whether Ui and
Ul are friends. F2 (i, l) equals to 1 if they are friends, and 0
otherwise.

For user Ui, his social relation vector is denoted as S(fri)
i .

It is a (|U| − 1)-dimensional vector, in which the (|U| − 1)
elements correspond to relationships between him and others.
If corresponding friendship exists, an element equals to 1;
otherwise, it equals to 0. Besides, his profile vector is denoted
as S(pro)

i . Of all the attributes in user profiles, only structural
attributes are selected, which refer to those whose values are
one of several fixed options, such as sex, location, etc.. In
one-hot encoding, the selected option is set to 1 and other
options are set to 0. This scheme is well suitable for structural
attributes, and concatenation of all the encoded attributes
constitute profile vector S(pro)

i . When Ui = Ul, the similarity
vector Λ(con)

i,l equals to 0. When Ui 6= Ul, the similarity vector
Λ

(con)
i,l is measured as:

Λ
(inh)
i,l =

∥∥∥S(fri)
i + S(pro)

i − S(fri)
j − S(pro)

j

∥∥∥ (17)

The final relational value between Pi and Pl is calculated
as:

R′i,l = Ri,l ·RT
i,l (18)

All the R′i,l are concatenated into a (|P | − 1)-dimensional
representative vector. And it is further transformed into Ri

after normalization, which is expressed as:

Ri =
[
R′i,1, · · · ,R′i,i−1,R′i,i+1, · · · ,R′i,|P|

]
(19)

The event-level representative matrix for Qn is denoted as:

R(n) =
[
RT

1 ,R
T
2 , · · · ,R

T
|P|

]
(20)

Algorithmic process of graph-level encoding is illustrated
in Algorithm 1.
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Algorithm 1 Graph-Level Encoding

INPUT: Qn, Pi (i = 1, 2, · · · , |P|), Ωi, k, η, Ψ, τ , Φ, λ1

OUTPUT: V(n) and R(n)

1 : for n = 1→ N do
2 : for i = 1→ |P| do
3 : Encode Ωi into Ω

(1)
i as Eq. (1)

4 : for j = 1→ γ do
5 : Set up feature matrix for wj as Eq. (2)
6 : for θ = 1→ η do
7 : for ψ = 1→ Ψ do
8 : Compute B(θ)

j as Eq. (3), (4) and (5)
9 : end for
10 : end for
11 : for φ = 1→ Φ do
12 : Compute B′j as Eq. (6)
13 : end for
14 : Concatenate all the B′j into V ′i as Eq. (7)
15 : Compute Vi from Eq. (8) to Eq. (11)
16 : end for
17 : for l = 1→ |P| and l 6= i do
18 : Compute Ri,l from Eq. (13) to (17)
19 : Compute R′i,l as Eq. (18)
20 : Concatenate all the R′i,l into Ri as Eq. (19)
21 : end for
22 : end for
23 : end for

B. Generative Adversarial Learning

As is shown in Fig. 3, architecture of GAL is essentially the
adversarial training between a generator G and a discriminator
D. During each round of iterations, the G projects distribution
of original feature spaces V(n) and R(n) into a simulated
factor of label. At the same time, the D provides feedback
for G by estimating WSD between real and simulated label
factors according to some distributions.

1) Generator: To better fit sequential iterative multiple-
round updating, the gated recurrent unit (GRU) model is
embedded into G. The fusion of two representative vectors
V(n) and R(n) into generated prediction results undergoes an
iterative process which is denoted as t and ranges from 1 to
T . At the t-th round, the hidden state vector is updated via
GRU operator according to hidden state of the previous round.
The GRU consists of two gates: update gate (UG) and reset
gate (RG). UG controls the degree where state information of
the previous round is brought into the current round, and RG
controls the degree where state information of the previous
round is neglected. Therefore, hidden state at such timestamp
is represented as:

H(t)
n = GRU

[
H(t−1)
n ,A(t)

n

]
(21)

where A(t)
n is the aggregation state and denoted as:

A(t)
n = WG1 ·H(t−1)

n + bG1 (22)

where WG1 is weight parameter, and bG1 is bias parameter.
Values of UG z

(t)
n−up and z(t)

n−fo are formulated as:

z
(t)
n−up = σ3

[
W z1 ·A(t)

n + Z1 ·H(t−1)
n + bz1

]
(23)

z
(t)
n−fo = σ3

[
W z2 ·A(t)

n + Z2 ·H(t−1)
n + bz2

]
(24)

where W z1, W z2, Z1, Z2 are weight parameters, bz1 and
bz2 are bias parameters, and σ3 (·) denotes sigmoid activation
function which is represented as:

σ3 (x) =
1

1 + e−x
(25)

Thus, Eq. (21) can be rewritten as:

H(t)
n = H̃(t)

n � z
(t)
n−up + H(t)

n �
[
1− z(t)

n−up

]
(26)

where � denotes element-wise multiplication, and H̃(t)

n is a
transition vector denoted as:

H̃(t)

n

= σ2

{
W z3 ·H(t)

n + Z3 ·
[
z

(t)
n−fo �H(t−1)

n

]
+ bz3

} (27)

where W z3 and Z3 are weight parameters, and bz3 is bias
parameter. Note that H(t)

n of initial state is expressed as:

H(0)
n =

[
V(n) ⊕R(n)

]
(28)

As the H(t)
n captures global latent information via mixture

of posts and their relations, its elements naturally play different
roles. The attention mechanism is added to output original
distributions. The hidden state vector is firstly transformed
into another vector h(t)

n through a neural network mapping
procedure:

h(t)
n = σ1

[
WG2 ·H(t)

n + bG2

]
(29)

where WG2 is weight parameter, and bG2 is bias parameter.
Introducing attention weight parameter an for h(t)

n , simulated
factors from the G is represented as:

G(t)
n = σ1

{
an ·

[
h(t)
n

]T}
(30)

2) Discriminator: The discriminator D projects initial sam-
ples into real factors of labels. Different from G, the D
produces real factors for labels at the beginning via multiple
rounds of propagations. Index number of propagations is
denoted as m that ranges from 1 to M.

At the m-th step, vector V(m)
(n) is updated through the

following formula:

V(m)
(n) = σ3

[
V(m−1)

(n) + C(m)
v1

]
(31)

where C(m)
v1 is state variable denoted as:

C(m)
v1 = σ1

{
WD1 ·

[
V(m−1)

(n) ⊕R(m−1)
(n)

]
+ bD1

}
(32)

where WD1 is weight parameter, and bD1 is bias parameter.
Besides, vector R(m)

(n) is updated via the following formula:

R(m)
(n) = σ3

[
R(m−1)

(n) + C(m)
v2

]
(33)
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TABLE I: Brief description of main symbols with respect to indices.

Indices:

n Index number of all the events (n = 1, 2, ·,N )
i Index number of all the posts (i = 1, 2, ·, |P|)
j Index number of words in a post (j = 1, 2, ·, γ)
θ Index number of operation rounds in CNN (θ = 1, 2, ·, η)
ψ Index number of convolutional cores in CNN (ψ = 1, 2, ·,Ψ)
t Index number of all iterative rounds (t = 1, 2, ·, T )
k Index number of adjacent words (k > 1)

λ1, λ2, λ3 Trade-off parameters (0 < λ1, λ2, λ3 < 1)

TABLE II: Brief description of symbols with respect to main parameters.

Parameters:

Qn The set of events whose size
Pi The set of posts associated with each event
Ωi The word vector associated with post Pi
wj The set of words inside post Pi
Ω

(1)
i Encoding vector for Ωi

dj Feature matrix for word wj
θ Index number of convolutional transformation rounds
ψ Index number of convolutional cores

ωinhi,l , ωcomi,l Similarity weight between post Pi and post Pl
Λ

(inh)
i,l , Λ(con)

i,l Similarity vector between post Pi and post Pl
R′i,l Final relation value between post Pi and post Pl
Ri Normalized relation vector for post Pi

E (a, b) WSD between two distributions a and b
JG Distribution corresponding to G(t)

n

JD Distribution corresponding to D(t)
n

LD, LG Objective function corresponding to D and G
L Final objective function

F1, F2, F3 Non-linear transformation functions

where state variable C(m)
v2 is denoted as:

C(m)
v2 = σ1

[
WD2 · V(m−1)

i + bD2

]
(34)

Given above, real factor of label is expressed with the aid of
a neural mapping as follows:

D′n = σ1

{
WD3 ·

[
V(m)

(n) ⊕R(m)
(n)

]
+ bD3

}
(35)

During each round t, D measures distance between real
and simulated factors of labels. The WSD of discrete form
measures distance between two sample distributions by count-
ing work amount of changing one into the other [34]. It is
assumed that two vectors G(t)

n and D′n are drawn from two
distributions JG and JD which come from the Dirac delta
[35]. The expressions are represented as:

E (JG |JD ) = min
δ
(t)
G,D≥0

{ N∑
n=1

δ
(t)
G,D · EUC

[
G(t)
n ,D′n

]}
(36)

where EUC
[
G(t)
n ,D′n

]
denotes Euclidean distance between

two samples. When extending discrete distributions into con-
tinuous ones, WSD of general forms can be set up as:

E ′ (JG |JD )

= inf
µ∈Γ(JG ,JD)

{ N∑
n=1

∫
EUC

[
G(t)
n ,D′n

]
dµ
[
G(t)
n ,D′n

]}
(37)

where Γ (·) denotes the joint probabilistic distribution. Inspired
by typical Wasserstein distance-based GAL, learning goal of
the D is to minimize the following formula:

D (JG |JD )

= inf
µ∈Γ(JG ,JD)

{ N∑
n=1

E[
G(t)
n ,D′

n

]
∼µ · E

′
[
G(t)
n ,D′n

]} (38)

where E (·) denotes the expectation.
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TABLE III: Brief description of symbols with respect to main decision

variables.

Decision Variables:

vj Encoding vectors for words
B(θ)
j Feature matrix of the θ-th round of iteration
B′j Final feature matrix after transformation
Vi Representative vector for Pi
V(n) Event-level representative matrix for event Qn
Ri,l Initial relation vector between post Pi and post Pl
R(n) Event-level representative matrix for event Qn
H(t)
n Hidden state for event Qn at such timestamp

A(t)
n Aggregation state for event Qn at such timestamp

h(t)
n Aggregation state for event Qn at the t-th timestamp

G(t)
n Representation of G at the t-th timestamp
an Attention weight parameter for h(t)

n

D′n Representation of D at the t-th timestamp
{W,Z} Weight parameters
{b} Bias parameters

3) Training and Optimization: As the aforementioned prob-
abilistic distribution in Eq. (37) and (38) is discrete, a mapping
function is required to transform it into continuous form. And
the WSD can be defined as supreme of a continuous function.
Eq. (38) can be rewritten as:

D (JG |JD )

=
1

K
sup

‖F3‖≤K

{ N∑
n=1

EG(t)
n ∼JG

[
F3

(
G(t)
n

)]
− ED′

n∼JD

[
F3

(
D′n
)]}

(39)

where F3 (·) denotes the K-Lipschitz continuous function.
Thus, objective of the D is to estimate parameters of F3 (·)
and find its supreme, leading to the following formula:

max
D

N∑
n=1

LD (40)

where

LD =

N∑
n=1

EG(t)
n ∼JG

[
F3

(
G(t)
n

)]
− ED′

n∼JD

[
F3

(
D′n
)]
(41)

Theoretically, if all the parameters are learned, its result should
be the WSD. Accompanied with the fact that D estimates
WSD, the G manages to minimize the estimated WSD. The
objective of G is formulated as:

min
G

N∑
n=1

LG (42)

where

LG = −
N∑
n=1

EG(t)
n ∼JG

[
F3

(
G(t)
n

)]
(43)

Considering that WSD-based GAL still suffers from esti-
mation quality problem, a penalty item needs to be introduced
into the final loss function. Interpolation sampling is utilized
to randomly pick a pair of true samples ∇

(
D′n
)

and generates
samples ∇

(
G(t)
n

)
from corresponding vectors, yielding:

χ(t)
n = λ2 · ∇

(
G(t)
n

)
+ (1− λ2) · ∇

(
D′n
)

(44)

where ∇
(
G(t)
n

)
and ∇

(
D′n
)

are sampled from G(t)
n and D′n,

and λ2 is the trade-off parameter. Accordingly, the χ(t)
n is

drawn from the following probabilistic distribution:

Jχ = λ2 · JG + (1− λ2) · JD (45)

Adding the χ(t)
n as adaptive penalty item, the total objective

function can be established as:

min
G

max
D
L (46)

L = LG − LD + λ3 · Eχ(t)
n ∼Jχ

[
F3

(
χ(t)
n

)]
(47)

where λ3 is the penalty coefficient. Then, the Adam [36]
is selected as learning method for above objective function
to estimate the set of parameters, in which learning rate is
denoted as e. The algorithmic process of GAL is illustrated in
Algorithm 2.

C. Detection

Having estimated the set of parameters Θ, simulated factor
G(T )
n and real factor D′n of GAL can be accordingly learned.

They are respectively mapped into two vectors f1 and f2

through two multi-layer perception (MLP) networks [37]:

f1 = MLP1

(
G(T )
n

)
(48)
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Algorithm 2 Generative Adversarial Learning

INPUT: Qn, M, V(n), R(n), λ2, λ3, e
OUTPUT: G(t)

n , D′n, Θ
1: for n = 1→ N do
2: for t = 1→ |T | do
3: while G-steps do
4: Update hidden state H(t)

n via GRU operator as Eq.
(21) and (22)
5: Define GRU operator from Eq. (23) to (27)
6: Initialize H(t)

n at t = 0 as Eq. (28)
7: Compute G(t)

n as Eq. (30) and (31)
8: end while
9: while D-steps do
10: for m = 1→M do
11: Update vector V(m)

(n) as Eq. (31) and (32)

12: Update vector R(m)
(n) as Eq. (33) and (34)

13: Compute D′n as Eq. (35)
14: end for
15: Draw G(t)

n ∼ JG and D′n ∼ JD
16: Define WSD of discrete form and continuous form
as Eq. (36) and Eq. 37
17: Set up learning goal of D as Eq. (38) and (39)
18: end while
19: while training steps do
20: Set up objective function of D and G as Eq. (40)
to (43)
21: Sample χ(t)

n from G(t)
n and D′n as Eq. (44), and

draw χ
(t)
n ∼ Jχ as Eq. (45)

22: Set up total objective functions as Eq. (46)

23: Update G(t)
Θ ←

1
N ·

N∑
n=1

∂L
∂G ·

∂G(t)
n

∂Θ

24: Update Θ← Θ− e ·Adam
(

Θ,G(t)
Θ

)
25: end while
26: end for
27: end for

f2 = MLP1

(
D′n
)

(49)

where MLP1 (·) and MLP2 (·) are the MLP network whose
parameters are well known. In this research, the rumor detec-
tion is viewed as a 0-1 binary classification process, in which
0 denotes non-rumor and 1 denotes rumor. The final detection
results can be output as:

On = σ3

{
1

y

∑
y

(λ3 · f1) · [(1− λ3) · f2]
T

}
(50)

where y is the dimension of f1 and f2.
In all, all the notations involved in this paper are briefly

introduced in TABLE I, TABLE II and TABLE III. All of the
variables are divided into three types according to their roles:
indices, parameters, and decision variables. The indices refer
to those that are used to denote value ranges of some variables.
The parameters refer to those that can be known directly based
on initial datasets or manual settings. The decision variables
refer to those that cannot be obtained directly and need to
be estimated during the process of model training. TABLE I,

TABLE IV: Metadata included in the experimental dataset

Attribute PHEME Weibo Twitter
# of users 215217 2246374 24328
# of posts 198872 1415983 48621
# of events 901 2582 1676

# of true rumors 458 1280 842
# of false rumors 443 1302 834

average # of posts per event 221 870 29
maximum # of posts per event 2675 58350 289
minimum # of posts per event 63 12 15

TABLE V: Precision results on PHEME dataset

Algorithms
Different Sizes of Training Data

50% 60% 70% 80%

Random-LR 0.3275 0.3493 0.3668 0.3930
Random-MLP 0.3493 0.3384 0.3886 0.4017

C-Means 0.3384 0.3537 0.3755 0.3886
Twitter-LDA 0.3428 0.3755 0.3843 0.4061

HDP 0.3624 0.3646 0.4127 0.4192
BPI 0.3690 0.3908 0.4083 0.4323

GAN 0.3974 0.4258 0.4541 0.4672
Graph-GAN 0.4301 0.4498 0.4760 0.4869

TABLE II and TABLE III briefly illustrate descriptions for in-
dices, process parameters, and decision variables, respectively.

IV. EXPERIMENTS AND ANALYSIS

This section presents the detailed process for evaluating
performance of the proposed Graph-GAN. Firstly, three real-
world datasets that are commonly used for such purpose, are
selected as the experimental scenarios. Secondly, parameter
settings, baseline methods, and evaluation metrics of exper-
iments are described separately. Thirdly, the obtained exper-
imental results are displayed through various of figures and
tables. And corresponding reasons for observed phenomenon
are also analyzed.

A. Datasets

The simulative scenarios in this research are constructed
with the aid of three publicly available benchmark datasets
in this field. Among which, two of them are initial datasets
named PHEME and Weibo respectively, and the third one is
named Twitter in this research, which is the synthesis of two
similar datasets named Twitter 15 and Twitter 16. In terms
of applicability, they are all nearly standard datasets that can
be used for evaluation of general data mining problems in
terms of social networks. Although there exists some distance
between these datasets and realistic different scenes, they
still act as proper approximation towards realistic scenarios.
And the utilizing these datasets to assess ordinary social
network analysis problems has been widely recognized by
many researchers. Detailed information of these three datasets
is described as follows:
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Fig. 4: Summary of baseline methods and the proposed Graph-GAN.

TABLE VI: Recall results on PHEME dataset

Algorithms
Different Sizes of Training Data

50% 60% 70% 80%

Random-LR 0.3238 0.3472 0.3639 0.3947
Random-MLP 0.3503 0.3512 0.3885 0.4027

C-Means 0.3471 0.3564 0.3839 0.4002
Twitter-LDA 0.3492 0.3736 0.3824 0.4062

HDP 0.3747 0.3778 0.4138 0.4292
BPI 0.3653 0.3907 0.4227 0.4348

GAN 0.3982 0.4252 0.4591 0.4704
Graph-GAN 0.4335 0.4475 0.4827 0.4996

PHEME—It was firstly collected by Zubiaga et al. [38]
from five breaking news. As for each news, it has many claims
that are released by different users. For each claim, other users
are allowed to express their opinions by making comments.
Publisher of the claim is able to respond to comments, forming
conversations among this user and reviewers. Generalized into
our experiments, the claims and comments correspond to
events and posts, respectively. Furthermore, events having less
than 63 posts have been filtered out to avoid sparsity.

Weibo—It was firstly published by Ma et al. [39] and
collected from the most popular Chinese social platform Sina
Weibo . It has many topics which can be discussed by users
through releasing speeches. As the response information is too
sparse in this dataset, some response records are randomly
generated to enrich the dataset. Generalized into this research,
the topics and usersÃÂ¡ÃÂ¯ speeches correspond to events
and posts, respectively. Furthermore, events having less than
12 posts have been filtered out to avoid sparsity.

Twitter—It was merged from two standard datasets whose
initial names are Twitter 15 and Twitter 16. The two datasets
were published by Ma et al. [40] and were crawled from a

most prevalent international social platform Twitter . Similar
to the PHEME, users can express themselves and others are
allowed to participate in discussions via giving comments.
Besides, the two datasets also possess records of responses or
reposts. In our experiments, claims and comments correspond
to events and posts, respectively. Moreover, events having less
than 15 posts have been filtered out to avoid sparsity.

Two users are assumed to have social relations if they
have direct records of comments, responses or reposts. In
each dataset, some meaningless comments or posts, such as
stop words, have been removed. As for labels, events of
PHEME and Weibo have been labeled as Rumor or Non-
rumor. However, the Twitter has four types of labels: Non-
rumor, True Rumor, False Rumor, and Unverified Rumor.
Among them, the last two labels are viewed as uncertain
labels. We hired some graduates from Chongqing Technology
and Business University to verify nature for some events. They
dealt with it by accessing Wikipedia or event information. The
verification work lasted for about two months, and identified
102 true rumors and 90 false rumors. After preprocessing,
the statistical characteristics of the three datasets are listed in
TABLE IV.

B. Experimental Settings

As we are the first to investigate unsupervised rumor
detection, direct baselines are not available. To highlight
performance superiority of the proposed Graph-GAN, seven
methods that can be used for the research problem are selected
as indirect baselines. The first two methods try to add labels
for each event, and two different supervised learning methods
are utilized for rumor detection. The third method selects a
famous text clustering method named C-Means. The next three
methods are probabilistic inference-based approaches. The last
method is the pure GAN model without graph embedding.
They are described as follows:

Random-LR—It is a two-stage combination method.
Firstly, labels are randomly generated for training samples.



IEEE TRANSACTIONS ON FUZZY SYSTEMS 10

TABLE VII: Precision results on Weibo dataset

Algorithms
Different Sizes of Training Data

50% 60% 70% 80%

Random-LR 0.3242 0.3383 0.3570 0.3766
Random-MLP 0.3281 0.3398 0.3664 0.3797

C-Means 0.3414 0.3625 0.3813 0.3883
Twitter-LDA 0.3500 0.3758 0.3883 0.3867

HDP 0.3484 0.3797 0.3867 0.4016
BPI 0.3742 0.3914 0.3953 0.4133

GAN 0.3859 0.4086 0.4250 0.4320
Graph-GAN 0.3961 0.4227 0.4367 0.4461

TABLE VIII: Recall results on Weibo dataset

Algorithms
Different Sizes of Training Data

50% 60% 70% 80%

Random-LR 0.3257 0.3341 0.3530 0.3762
Random-MLP 0.3253 0.3384 0.3650 0.3741

C-Means 0.3415 0.3622 0.3734 0.3896
Twitter-LDA 0.3498 0.3726 0.3890 0.3863

HDP 0.3451 0.3810 0.3869 0.3970
BPI 0.3688 0.3921 0.3951 0.4120

GAN 0.3811 0.4067 0.4204 0.4266
Graph-GAN 0.3992 0.4216 0.4358 0.4441

Then, the logistic regression model is trained to classify
rumors from all the events. After generation of labels, this
rumor detection is actually transformed into a supervised
learning process.

Random-MLP—Similarly, the unsupervised situation is
transformed into a supervised learning issue. It is a two-
stage combination method. Different from the Random-LR,
the logistic regression is replaced as an MLP network.

C-Means [41]—It is a famous clustering method that can be
used for numerical data and texts. At the beginning, vectorized
representation for the texts is extracted by the TF-IDF. Top-
100 high frequency words are selected as the word dictionary
of TF-IDF. All the events are finally divided into two clusters
corresponding to rumor events and non-rumor events.

Twitter-LDA [42]–It is a classical topic model that can be
used to identify a topic indicator of each piece of text. It
assigns prior distributions for generative processes of texts, and
realizes text classification via Gibbs sampling-based posterior
probabilistic inference. In effect, all the events are finally
divided into two clusters corresponding to rumor events and
non-rumor events.

HDP [43]—It refers to the hierarchical Dirichlet process
(HDP) model which is also a probabilistic generative model.
It is developed to cluster similar samples together, so that
different categories can be distinguished. When the number
of classes is set to two, all the events can be divided into two

TABLE IX: Precision results on Twitter dataset

Algorithms
Different Sizes of Training Data

50% 60% 70% 80%

Random-LR 0.3824 0.4109 0.4216 0.4252
Random-MLP 0.3967 0.4240 0.4430 0.4442

C-Means 0.4097 0.4204 0.4347 0.4513
Twitter-LDA 0.4371 0.4430 0.4525 0.4656

HDP 0.4228 0.4418 0.4572 0.4739
BPI 0.4145 0.4644 0.4679 0.4822

GAN 0.3859 0.4086 0.4250 0.4320
Graph-GAN 0.4656 0.4893 0.4941 0.5024

TABLE X: Recall results on Twitter dataset

Algorithms
Different Sizes of Training Data

50% 60% 70% 80%

Random-LR 0.3788 0.4057 0.4213 0.4326
Random-MLP 0.3953 0.4247 0.4422 0.4413

C-Means 0.4169 0.4216 0.4424 0.4605
Twitter-LDA 0.4426 0.4433 0.4589 0.4699

HDP 0.4266 0.4464 0.4626 0.4807
BPI 0.4269 0.4625 0.4706 0.4915

GAN 0.4432 0.4791 0.4874 0.4988
Graph-GAN 0.4604 0.4881 0.4988 0.5073

clusters corresponding to rumor events and non-rumor events.
BPI—It refers to the Bayesian probabilistic inference (BPI),

a method uniquely proposed by us. It originates from the
inference model in the study [44]. It assumes that the labels are
drawn from some prior distributions which are further drawn
from some hyper parameters. And all the parameters can be
learned while training.

GAN [45]—It is the initial generative adversarial network
(GAN) model without graph embedding. At the beginning,
all the events are transformed into feature vectors with the
aid of TF-IDF. Its procedures of generation process and
discrimination process are similar to corresponding parts in
Graph-GAN.

And the seven selected baselines and the proposed Graph-
GAN are briefly described in Fig. 4.

To quantify performance of the proposed Graph-GAN,
several evaluation metrics are introduced for measurement. In
such a binary classification situation, a positive event sample
indicates that it is labeled as rumor, and a negative event
sample indicates that it is labeled as non-rumor. The scenarios
where positive samples and negative samples are correctly
discriminated, are defined as true positive (TP) and true
negative (TN), respectively. Similarly, scenarios where positive
samples and negative samples are incorrectly discriminated,
are defined as false positive (FP) and false negative (FN),
respectively. Above definitions lead to four metrics: precision,
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recall, accuracy, and F-score, which are defined as:

Precision =
ζ (TP )

ζ (TP ) + ζ (FP )
(51)

Recall =
ζ (TP )

ζ (TP ) + ζ (FN)
(52)

Accuracy =
ζ (TP ) + ζ (TN)

ζ (TP ) + ζ (FP ) + ζ (TN) + ζ (FN)
(53)

F − score =
2 · Precision ·Recall
Precision+Recall

(54)

where ζ (x) counts the number of x.
All the experiments are carried out in a deep learning

working station with 28-core CPU, 256-GB RAM and a GPU
(RTX-2080-Ti). The proposed Deep-PR is implemented with
the assistance of TensorFlow 1. Because all the texts in Weibo
dataset are Chinese texts, the tool jieba is employed for word
segmentation and stop words are removed. In Algorithm 1, the
k in Eq. (2) is set to 5, θ in Eq. (3) is set to 6, Φ in Eq. (6)
and Ψ in Eq. (3) are both set to 8, and λ1 in Eq. (13) is set
to 0.5. In Algorithm 2, the λ2 in Eq. (45), M is set to 10, λ3

in Eq. (50) is set to 0.3, and the number of iterative rounds T
is set to 20. Its learning rate is initially set to 0.001 and will
be changed multiple times during experiments. Parameters in
baselines are set to their default values, and are left out here
due to the limitation of textual length. Size of training data is
set to 70% in default and it is fluctuating in experiments.

C. Results and Analysis

1) Performance Efficiency: The obtained precision and
recall results on three datasets are listed from TABLE V to
TABLE X. From the view of overall trend, almost all of the
methods perform better when the proportions of training data
is increasing. When the proportion reaches 60%, the ascending
trend tends to be gentle. In terms of performance comparison,
the first two methods are relatively weaker and followed
by the middle four, while the last two GAN-based methods
are stronger. Of all the methods, the proposed Graph-GAN
obtains the best performance. We specialize two representative
situations to illustrate this view. As for precision results on
Twitter dataset, it is about 18% better than Random-LR,
16% better than Random-MLP, 12% better than C-Means,
9% better than Twitter-LDA, 11% than HDP, 8% better than
BPI, and 5% better than GAN. And for recall results on
Weibo dataset, it is about 22% better than Random-LR, 19%
better than Random-MLP, 15% better than C-Means, 12%
better than Twitter-LDA, 13% better than HDP, 9% better
than BPI, and 4% better than GAN. The achievements of
above observations can be attributed to two possible reasons.
Firstly, the Graph-GAN constructs a more fine-grained feature
space from the perspective of graph learning. Then, the Graph-
GAN overcomes the barrier of label unavailability through an
adversarial learning-based adaptive optimization process. The
successive effect of the two parts contributes to a more precise
detector under unsupervised scenarios.

1http://tensorflow.google.cn/

The F-Score and accuracy results of three datasets are
demonstrated in Fig. 5, Fig. 6 and Fig. 7. Each of them has
two subfigures, in which X-axis denotes proportion of training
data and Y-axis denotes values of evaluation metrics. The
overall performance trends are similar to precision and results
where two GAN-related methods perform more excellently
than other probabilistic inference-based models. Performance
of these methods tends to be better with risen proportion of
training data.When the proportion of training data is risen, the
performance advantage of Graph-GAN is more remarkable.
It is evident that the Graph-GAN needs sufficient training
samples to learn a quite comprehensive feature space. We
also give two examples to specialize proper performance of
the Graph-GAN. As for F-Score on Twitter dataset, it is about
19% better than Random-LR, 14% better than Random-MLP,
15% better than C-Means, 12% better than Twitter-LDA, 11%
better than HDP, 7% better than BPI, and 5% better than GAN.
And for accuracy on PHEME dataset, it is 25% better Random-
LR, 21% better than Random-MLP, 19% better than C-Means,
16% better than Twitter-LDA, 13% better than HDP, 9% better
than BPI, and 7% better than GAN. Two possible explanations
may be deduced for above phenomenons. For one thing, the
idea of GAL is more robust than general unsupervised learning
methods because it improves the understanding of knowledge
during constant adversarial training inside itself. For another,
the graph embedding is a more fine-grained feature abstraction
scheme compared with general ones, hence, a more compre-
hensive feature space also ensures model performance.

To sum up, both of two above aspects jointly contribute to
the promotion the Graph-GAN. Note that results of the four
metrics on the Weibo dataset are worse than other two datasets.
A possible explanation for this lies in that semantic modeling
part of Graph-GAN is more suitable for English texts and
Chinese texts, as effect of word segmentation is likely to bring
about some influence. But no matter how the experimental
scenarios change, the proposed Graph-GAN always performs
better than baselines with respect to precision and recall.

2) Parameter Sensitivity: Having evaluated efficiency of
the proposed Graph-GAN, another set of experiments are
conducted to explore its stability by testing its sensitivity
to parameter changes. In this group of experiments, only
performance fluctuation of Graph-GAN itself under different
parameter settings is visualized, without comparing with base-
lines. In detail, performance tendency in terms of four metrics
is analyzed with the changing of two groups of parameters:
learning rate and proportion of training data. Considering the
relatively weak performance of these methods when proportion
of training data is too small, only four proportions are selected:
50%, 60%, 70% and 80%. And learning rate is also set to
three values: 0.001, 0.002 and 0.003. To this end, parameter
sensitivity results on three datasets are illustrated in Fig. 8, Fig.
9 and Fig. 10. Each of them contains four subfigures, in which
X-axis denotes different learning rates and Y-axis denotes
different proportions of training data. The smaller the chro-
maticity difference among blocks, the less the performance
of the algorithm is affected by the change of parameters. It
can be observed from these figures that performance generally
tends to become quite stable when the proportion of training
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Fig. 5: F-Score and accuracy results on PHEME dataset
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Fig. 6: F-Score and accuracy results on Weibo dataset
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Fig. 7: F-Score and accuracy results on Twitter dataset
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Fig. 8: Parameter sensitivity results with respect to four metrics on PHEME dataset.
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Fig. 9: Parameter sensitivity results with respect to four metrics on Weibo dataset.
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Fig. 10: Parameter sensitivity results with respect to four metrics on Twitter dataset.

data reaches 60%, especially on Twitter dataset. We analyze
all the results and summarize two possible reasons for the
phenomenons. Firstly, as feature extraction part undergoes
multiple layers of neural computation procedures, the obtained
feature space has been quite robust. Secondly, the GAL tries to
tackle with deviation issue of initial values by active gaming
learning. Due to the two reasons, the proposed Graph-GAN
is not susceptible to parameter changes. Only within PHEME
dataset, the change of F-Score and accuracy results is a little
obvious when the proportion of training set is switched from
60% to 70%. It may be caused by the fact that Graph-GAN is
still not well trained in some scenarios where training samples
are not sufficient enough. Thus, it never influences the stability
assessment of the Graph-GAN.

Based on the results and analysis concerning above two
groups of experiments, the proposed Graph-GAN is a both
efficient and robust fuzzy detection system for rumor events
with respect to unsupervised situations.

V. CONCLUSIONS

The rumor spreading gradually become a major security
threat in cyberspace. In consequence, deep learning-based

fuzzy detection for rumors has attracted much research at-
tention in recent years. Although much progress has been
achieved, almost all of existing studies focused on supervised
scenarios where expert samples with labels are available. As
far as we are concerned, fuzzy detection for rumors under
unsupervised scenarios, have not been noticed. In fact, they
are quite common as the annotation of rumor samples is
expensive and complicated. To deal with such challenge, this
paper proposes a fuzzy detection system for rumors named
as Graph-GAN. It employs the idea of GAL to construct an
adaptive classifier and sets up graph-level feature spaces to
further improve robustness. Such design is able to tackle with
the scenarios where labels are absent for training.

And two groups of experiments are implemented on three
real-world datasets to assess the proposed Graph-GAN. Seven
methods are selected as baselines and four typical metrics
are adopted for evaluation. Experimental results show that the
proposal improves performance about 5% to 10% compared
with baseline methods, and that it possesses proper robustness.
Therefore, the proposed solution not only realizes adaptive
fuzzy detection for rumor events under unsupervised situa-
tions, but also possesses proper efficiency as well as stability.
This research distinguishes itself from others by constructing
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novel rumor detection models without prior expertise labels, so
as to realize adaptive rumor detection. It is also noted that the
proposed Graph-GAN is not a completely adaptive detection
method, because the neural network structures inside it are
empirically set. The complete adaption needs to possess the
ability to automatically modify network structures to fit for
different types of social contexts. The transfer learning may
provide some promising ideas for this point, which is certainly
the future working direction of our research team.
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[8] G. W. Weber, İ. Batmaz, G. Gülser, P. Taylan, and F. Yerlikaya-Özkurt,
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1Â¨C17, 2011.

[22] M. Bugueño, G. Sepulveda and M. Mendoza, “An Empirical Analysis
of Rumor Detection on Microblogs with Recurrent Neural Networks,” in
Proc. of 21st International Conference on Human-Computer Interaction,
Orlando, FL, USA, 2019, pp. 293-310.

[23] Z. Wang et al., “Research on Microblog Rumor Events Detection via
Dynamic Time Series Based GRU Model,” in Proc. of the 2019 IEEE
International Conference on Communications, Shanghai, China, 2019,
pp. 1-6.

[24] X. Zhou, W. Liang, K. Wang, R. Huang, and Q. Jin, “Academic Influence
Aware and Multidimensional Network Analysis for Research Collabora-
tion Navigation Based on Scholarly Big Data,” IEEE Transactions on
Emerging Topics in Computing, 2018, doi: 10.1109/TETC.2018.2860051

[25] E. B. Tirkolaee; A. Goli; G. W. Weber, “Fuzzy Mathematical Program-
ming and Self-Adaptive Artificial Fish Swarm Algorithm for Just-in-Time
Energy-Aware Flow Shop Scheduling Problem With Outsourcing Option,”
IEEE Trans. Fuzzy Syst., vol. 28, no. 11, pp. 272-2783, 2020.

[26] Q. Huang et al., “Deep Structure Learning for Rumor Detection on
Twitter,” in Proc. of the 2019 International Joint Conference on Neural
Networks, Budapest, Hungary, 2019, pp. 1-8.

[27] Y. Chen, L. Hu and J. Sui, “Text-Based Fusion Neural Network for
Rumor Detection,” in Proc. of the 12th International Conference on
Knowledge Science, Engineering and Management, Athens, Greece, 2019,
pp. 105-109.

[28] H. Zhang et al., “Multi-modal Knowledge-aware Event Memory Net-
work for Social Media Rumor Detection,” in Proc. of the 27th ACM
International Conference on Multimedia, New York, NY, USA, 2019, pp.
1942-1951.

[29] E. B. Tirkolaee, A. Mardani, Z. Dashtian, M. Soltani, and G. W. Weber,
“A novel hybrid method using fuzzy decision making and multi-objective
programming for sustainable-reliable supplier selection in two-echelon
supply chain design,” Journal of Cleaner Production, vol. 250, 119517,
2020. doi: 10.1016/j.jclepro.2019.119517.

[30] Z. Wu et al., “hPSD: A Hybrid PU-Learning-Based Spammer Detection
Model for Product Reviews,” IEEE Trans. Cybern., vol. 50, no. 4, pp.
1595-1606, 2020.

[31] X. Chen et al., “One-Shot Generative Adversarial Learning for MRI
Segmentation of Craniomaxillofacial Bony Structures,” IEEE Trans. Med.
Imaging, vol. 39, no. 3, pp. 787-796, 2020.

[32] S. Qiu et al., “Referring Image Segmentation by Generative Adversarial
Learning,” IEEE Trans. Multimedia, vol. 22, no. 5, pp. 1333-1344, 2020.

[33] Y. Wang et al., “A Heterogeneous Graph Embedding Framework for
Location-Based Social Network Analysis in Smart Cities,” IEEE Trans.
Ind. Informatics, vol. 16, no. 4, pp. 2747-2755, 2020.

[34] Y. Liu, Y. Liu and L. Ding, “Scene Classification by Coupling Con-
volutional Neural Networks With Wasserstein Distance,” IEEE Geosci.
Remote. Sens. Lett., vol. 16, no. 5, pp. 722-726, 2019.

[35] H. Yang, J. Guo and J. Jung, “Schwartz Duality of the Dirac Delta
Function for the Chebyshev Collocation Approximation to the Fractional
Advection Equation,” Appl. Math. Lett., vol. 64, pp. 205-212, 2017.

[36] S. Bock and M. Weiß, “A Proof of Local Convergence for the Adam
Optimizer,” in Proc. of the 2019 International Joint Conference on Neural
Networks, Budapest, Hungary, 2019, pp. 1-8.

[37] B. Gürbüz, M. Sezer and C. Güler, “Laguerre Collocation Method
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