
Please cite the Published Version

Banupriya, S, Kottursamy, K and Bashir, AK (2021) Privacy-preserving hierarchical deterministic
key generation based on a lattice of rings in public blockchain. Peer-to-Peer Networking and
Applications, 14 (5). pp. 2813-2825. ISSN 1936-6442

DOI: https://doi.org/10.1007/s12083-021-01117-2

Publisher: Springer Verlag

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/627617/

Usage rights: In Copyright

Additional Information: This is an Author Accepted Manuscript of an article published in Peer-
to-Peer Networking and Applications. This article is part of the Special Issue on Blockchain for
Peer-to-Peer Computing

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://doi.org/10.1007/s12083-021-01117-2
https://e-space.mmu.ac.uk/627617/
https://rightsstatements.org/page/InC/1.0/?language=en
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines

1Banupriya S, 2*Kottilingam Kottursamy, 3,4Ali Kashif Bashir
1,2 School of Computing, SRM Institute of Science and Technology, Tamilnadu, India

3Department of Computing and Mathematics, Manchester Metropolitan University, UK
4School of Information and Communication Engineering, University of Electronics Science and Technology of China

(UESTC), China
1bs9093@srmist.edu.in, 2kottilik@srmist.edu.in, 3,4 dr.alikashif.b@ieee.org

*Corresponding Author

Abstract—Blockchain has revolutionized numerous fields, which include financial services, health care,
the Internet of things, academia and supply chain management. Blockchain technology enables us to have
an immutable, distributed ledger for managing the transactions of untrusted users. However, the technology
has many open challenges, such as privacy leaks, scalability, and energy consumption. User identity can be
easily tracked using network analysis, as transactions are accessible to everyone, which is a serious concern
of blockchain. In this paper, we propose a new efficient, privacy-preserving, and quantum-resistant key
generation algorithm, namely, lattice-based hierarchical deterministic key generation (LB-HDKG), for
maintaining user privacy in the public blockchain. The LB-HDKG scheme generates many cryptographic
keys in a tree-like structure from a single seed to hide the links between transactions of the same user. Our
proposal uses the lattice NTRU cryptosystem, the security of which relies on the shortest vector problem
(SVP) and closest vector problem (CVP) over the polynomial ring. Operations on the lattice NTRU
cryptosystem are efficient and secure against classical computers and quantum computers. Security and
performance analyses of our scheme show that the model is more secure and efficient and should replace
current models to safeguard data from quantum computers.

Index Terms—Blockchain, hierarchical deterministic, lattices, NTRU, privacy, quantum cryptography

I. INTRODUCTION
Blockchain is a distributed database [1] that stores user transactions in a chain of blocks and can be

implemented as a private blockchain or public blockchain. The private blockchain uses a centralized control system
to restrict user entry with the help of access control management. The access control policy can be set to satisfy the
requirements of user privacy protection. The public blockchain is an open network where anyone can enter and
view the stored records and transactions [2]. There is no restriction in accessing the system, and user identity must
be protected by hiding the links between transactions of the same user. The identity privacy requirement should be
considered in public distributed systems such as Bitcoin, where the transactions are open to all [3]. In Bitcoin, the
transactions are tied up with the hashed value of the user’s cryptographic public key. Therefore, financial status
can be easily tracked through the public address of a user. This can be avoided by including a new public key in
every new transaction. Although this solves the privacy issue, it increases the overhead to the users due to the
management of a huge number of key pairs.

Blockchain use cases extend beyond Bitcoin, e.g., to supply chain management, real estate, power grid
management, the Internet of things, and government systems [4-8]. Numerous studies have improved the
scalability, privacy protection, and interoperability and reduced the energy consumption of blockchain [9]. The
hierarchical deterministic key generation method is proposed for resolving the privacy issue. It enables users to
create any number of keys and simplifies the key management process [10]. Keys are derived as tree-like structures
from a single secret seed. The master key is derived based on this secret input. Based on the user requirement, many
child keys are derived from the derived master key. A node can derive any number of child nodes using the extended
key or chain code. Moreover, the user can recover the entire key from a single input. The leaf nodes of the tree are
used as a public address. The transactions are signed with the private key of the corresponding leaf node but not
with the internal node’s private key or chain code. The generation of multiple keys helps hide user identity and
helps subdivide a financial account into multiple accounts for easy management, auditing, and ownership sharing
with subordinate levels [11]. The centralized mixing scheme, decentralized mixing scheme, ring signature,

Privacy-Preserving Hierarchical Deterministic Key
Generation based on a Lattice of Rings in Public

Blockchain

homomorphic encryption, and zero-knowledge proof are a few of the other solutions that have been proposed for
resolving privacy issues of the public blockchain. These solutions depend on a centralized server/other user or a
time-consuming process [12-16].

Quantum computers operate differently from traditional computers [17]. They work at the atomic level and
can overcome the physical restrictions that affect traditional computer chips. Quantum computers use qubits instead
of bits. A qubit can represent 0 & 1 simultaneously, and very few qubits can accelerate various types of computation
by an enormous amount. Information that is encrypted with prime factorization and discrete logarithm-based
algorithms could be easily read by anyone with access to a quantum computer [18]. The world must transform the
traditional cryptography system to a quantum-resistant cryptographic procedure before quantum computers become
available. Few cryptographic algorithms are available that rely on hash-based, code-based, lattice-based, and
multivariate-based approaches [19-22]. These algorithms are comparatively safe against outbreaks from quantum
computers.

In this paper, we propose a new efficient, privacy-preserving, and quantum-resistant lattice-based
hierarchical deterministic key generation (LB-HDKG) algorithm for deriving child keys from a single master key.
The lattice-based NTRU (Nth degree truncated polynomial ring) scheme is used for key generation algorithms,
which are faster than RSA- and ECC-based algorithms. The method generates a new public key for each
transaction, eliminates the overhead of storing and maintaining the multiple key pairs, and avoids the risk of key
leakage. All the child keys are derived from the master key with only a single seed input.

The remainder of the paper is organized as follows. Section II details related studies on previously proposed
solutions to privacy issues. Section III presents the preliminaries of lattice cryptosystems. The proposed LB-HDKG
system model is presented in Section IV. Sections V and VI describe the security analysis and performance analysis,
respectively, of the proposed model. Finally, the conclusions of the paper are presented in Section VII.

II. RELATED WORK
Hierarchical key management was first proposed for maintaining many keys based on a partial-ordered set

[23]. Later, many approaches were proposed for hierarchical key management. Based on symmetric key encryption,
which is not suitable for distributed systems, hierarchical key management services by a central authority (CA) are
at risk of losing user privacy [24]. Other schemes have been proposed for generating a pairwise shared key using
predistributed keys, which are suitable primarily for wireless sensor networks [25], [26]. In [27-30], significant
hierarchical identity-based encryption schemes are proposed, among which those in [27] and [28] are based on
Weil-pairing and the random oracle method and that in [29] is based on pairing without the random oracle method.
Pairing with the elliptic curve encryption method is prone to quantum attacks. The lattice-based hierarchical
identity-based encryption (HIBE) scheme is believed to be resistant to quantum computers but has a few pitfalls
[30]. The binary tree structure is maintained for the hierarchy; hence, a parent node or master node is restricted to
having only two child nodes. The depth of the tree is predefined, which limits the tree growth beyond the predefined
depth. Child keys are created directly from the original parent, which necessitates the storage of key information
of all tree nodes by either a user or a third party. Other schemes are based on polynomial interpolation, partial
order, and Laplace noise injection [31-33]. All these schemes are well suited for user group management with the
help of a third-party key management service (KMS) for identifying a user, assigning user access, and revoking
access but are not suitable for multiple key management for a single user.

The BIP32 specification presented a solution for privacy issues by hierarchical deterministic (HD) key
derivation for Bitcoin public electronic cash systems. The HD key generation method uses the SHA-512 hash
function and elliptic curve cryptography (ECC) to derive the root node’s key pair from the chosen seed. The parent
key properties are combined with chain code to derive the child keys in further levels. Later, BIP44 was proposed
for handling multiple cryptocurrencies, in which the address is derived via hierarchical deterministic derivation.
Improvements of BIP32 are presented in [34], [35]. Although BIP32 has many advantages, it also has a few
disadvantages. The system security is weak against quantum computers, as BIP32 relies on ECC. Single master
private key leakage helps the attacker derive the child key pairs of all levels, and the attacker can spend funds using
the derived private keys. The hierarchical deterministic key generation method has been implemented in various
HD wallets in Ledger Nano X, Electrum, Mycelium, Trezor, KeepKey, Jaxx, and Atomic wallet.

Several other solutions have been proposed for identity privacy preservation, such as centralized mixing
services, decentralized mixing services, ring signatures, and noninteractive zero-knowledge proofs. Centralized
mixing services rely on a single central system and have the possibility for privacy leaks [36-38]. Users mix their
public addresses using various decentralized mixing techniques without relying on an untrusted party [39-41].
Users depend on other users in a decentralized mixing procedure to complete the mixing, which delays the initiation

https://coinsutra.com/go/LedgerXBP/

of the transaction. Stealth addresses facilitate the generation of a new address for every new transaction [42]. The
generated address hides the receiver's identity but does not hide the sender's identity. In the homomorphic
encryption method, computations are conducted on encrypted data without requiring access to a secret key [43].
The computing and storage costs for this approach are high. Pederson commitment prevents message leakage by
using a random blinding factor and hides only the message content and not the sender or receiver identity [44].
Ring signatures were designed to hide the signer identity in group shared data [45]. Later, many modified versions
of ring signatures were proposed, among which the most notable method is traceable ring signatures [46], [47]. The
anonymity and likability properties of ring signatures are implemented in blockchain protocols to avoid identity
privacy leakage [48], [49]. To generate a ring signature, a signer must wait until other users share their public keys.
Each user depends on other users' availabilities. The noninteractive zero-knowledge proof technique is the best
solution for privacy issues and is implemented in many cryptocurrency systems to avoid transaction graph analysis
[50]. The zero-knowledge proof method requires additional computation time for proof generation. These solutions
are time-consuming, as the user depends on an external system when using centralized mixing services and depends
on other users in the case of decentralized mixing or ring signatures. Similarly, the zero-knowledge proof method
requires more computation time for both signature generation and verification.

The ECC and RSA algorithms are popular cryptographic algorithms that are used for secure
communication and data storage. Since the proposal of Shor's algorithm for quantum computation, recent studies
have focused on lattice-based cryptography, since Shor's algorithm can find prime factors, and on discrete
algorithms [51-54]. We propose a quantum-safe hierarchical deterministic key generation algorithm that is similar
to BIP32 and is based on the lattice NTRU key generation scheme. NTRU key generation is faster than ECC and
RSA and is resistant to quantum computers [55], [56].

III. PRELIMINARIES
A. Lattice

Lattice-based cryptography originates from recent progress in the field of quantum computing. The lattice
is a linear algebraic structure in which the geometric grid of points extends infinitely in all directions. The
identification of two lattice points that are relatively close together in the high dimensions of the grid is practically
impossible and hard for both traditional and quantum computers. A lattice is defined formally as follows.
Lattice: Given n linearly independent vectors𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑛𝑛∈ 𝑅𝑅𝑚𝑚, their lattice is defined as

L (𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑛𝑛) = 𝑥𝑥𝑖𝑖𝑏𝑏𝑖𝑖| 𝑥𝑥𝑖𝑖 ∈ Z

We refer 𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑛𝑛as a basis of the lattice. All possible weighted sums of those vectors are scaled by
integers. Given the integer constraints and lattices, we can define problems that are hard to solve, as the hardness
of factoring renders RSA highly secure. By finding hard problems that are easy to construct but hard to solve, we
can develop a new method for public-key cryptography. No efficient algorithms are available in classical or
quantum computers for solving lattice problems in better than exponential time. The shortest vector problem (SVS),
closest vector problem (CVP), and covering radius are lattice-based hard problems that are used to secure public-
key cryptosystems.

B. NTRU public key cryptosystem
NTRU is an efficient public-key cryptosystem that is based on a lattice. It is a faster key generation method

than RSA and ECC. The NTRU cryptosystem provides long-term privacy, communication efficiency, and higher
performance with sustainability. The NTRU cryptosystem is secure against quantum computers, as no quantum
algorithm is available for breaking lattice-based cryptography systems. Operations of NTRU are constructed using
the objects in a truncated polynomial ring(𝑅𝑅, +,⊛),

𝑅𝑅 = 𝑍𝑍[𝑋𝑋]/(𝑋𝑋𝑁𝑁 − 1) … (1)

with polynomial degree of at most N-1: 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥1 + 𝑎𝑎2𝑥𝑥2 + ⋯ + 𝑎𝑎𝑁𝑁−1𝑥𝑥𝑁𝑁−1. The hard problem of NTRU is to
define ℎ = 𝑓𝑓−1 ⊛ 𝑔𝑔, where 𝑓𝑓 and 𝑔𝑔 are ternary polynomials. Given ℎ ∈ 𝑅𝑅, find ‘short’ 𝑓𝑓 such that 𝑓𝑓−1 ⊛ 𝑔𝑔 is
also ‘short’.

C. Notation and parameters
Parameters 𝑁𝑁, 𝑝𝑝, 𝑞𝑞 ∈ 𝑍𝑍 are defined, where N is the degree of a set of polynomials 𝐿𝐿 with trinary coefficient

T, which is denoted as 𝐿𝐿 ∈ 𝑇𝑇.

𝐿𝐿 = � 𝑎𝑎𝑘𝑘𝑥𝑥𝑘𝑘𝑁𝑁−1
𝑘𝑘=0 ∶ 𝑎𝑎𝑘𝑘 ∈ { −1, 0, 1 } for ternary … (2)

Polynomial ring R = Z [X] / (𝑋𝑋𝑁𝑁 − 1) is a polynomial 𝑍𝑍[𝑋𝑋] with modulo 𝑋𝑋𝑁𝑁 − 1. The symbol ∗ denotes
the polynomial multiplication operation. Polynomials 𝑓𝑓, 𝑔𝑔 and ℎ ∈ 𝑅𝑅 and 𝑓𝑓, 𝑔𝑔 and ℎ ∈ 𝑇𝑇 have highest degree 𝑁𝑁 −
1. 𝑓𝑓 = [𝑓𝑓1, 𝑓𝑓2, … . 𝑓𝑓𝑁𝑁], 𝑔𝑔 = [𝑔𝑔1, 𝑔𝑔2, … . 𝑔𝑔𝑁𝑁] and ℎ = [ℎ1, ℎ2, … . ℎ𝑁𝑁] and 𝑓𝑓𝑝𝑝

−1 denotes the polynomial inverse of
f with modulo p.

𝑓𝑓𝑝𝑝
−1 = [�𝑓𝑓𝑝𝑝

−1�
1

, �𝑓𝑓𝑝𝑝
−1�

2
, … . . �𝑓𝑓𝑝𝑝

−1�
𝑁𝑁

] ∶ �𝑓𝑓𝑝𝑝
−1�

𝑖𝑖
 ≥ 0 𝑎𝑎𝑎𝑎𝑎𝑎 �𝑓𝑓𝑝𝑝

−1�
𝑖𝑖

< 𝑝𝑝
.

D. NTRU encryption and digital signature
Select the public parameters 𝑁𝑁, 𝑝𝑝, and 𝑞𝑞 and the secret polynomials 𝑓𝑓 and 𝑔𝑔. Both p and q are prime

numbers, 𝑞𝑞 is a large modulus, 𝑝𝑝 is a small modulus and 𝑔𝑔𝑔𝑔𝑔𝑔(𝑛𝑛, 𝑞𝑞) and 𝑔𝑔𝑔𝑔𝑔𝑔(𝑛𝑛, 𝑝𝑝) should be 1. The secret
polynomials 𝑓𝑓 and 𝑔𝑔 are selected randomly from the set of polynomials 𝐿𝐿 manually or using a polynomial generator.
The chosen polynomials 𝑓𝑓 and 𝑔𝑔 are small relative to the value of 𝑁𝑁. Polynomial 𝑓𝑓 is selected such that there exists
inverses of 𝑓𝑓 ∈ 𝑅𝑅 for both modulo 𝑝𝑝 and modulo 𝑞𝑞. The extended Euclidean algorithm is used to check the
existence of inverses for the chosen 𝑓𝑓. Since both random polynomials 𝑓𝑓 and 𝑔𝑔 are “short”, and the product of their
result is also “short”. The inverse of 𝑓𝑓 results in randomization, and multiplication with 𝑔𝑔 makes the result ℎ more
random. Therefore, given the public value ℎ, it is difficult to find secret values 𝑓𝑓 and 𝑔𝑔. NTRU key generation,
encryption, and decryption algorithms are presented as Algorithms 1, 2, and 3, respectively. Algorithm 1 accepts
secret polynomials and 𝑁𝑁, 𝑝𝑝, and 𝑞𝑞 as input and generates the public key. Algorithm 2 accepts the public key and
input message as input and outputs the encrypted message. Algorithm 3 accepts the secret polynomial 𝑓𝑓 and the
encrypted message as input and decrypts the message. The NTRUSign key generation, digital signature generation,
and verification algorithms are presented as Algorithms 4, 5, and 6, respectively. Algorithm 4 accepts secret
polynomials and parameters as input and generates the public key. Algorithm 5 accepts private polynomial 𝑓𝑓 and
a message as input and generates the signature. Algorithm 6 accepts the public key, message, and signature 𝑠𝑠 as
input and returns the verification status.

Algorithm 1: 𝐾𝐾𝐾𝐾𝐾𝐾 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (NTRUEncrypt_KeyGen)
Input: Secret polynomials 𝑓𝑓 and 𝑔𝑔, parameters 𝑁𝑁, 𝑝𝑝, and 𝑞𝑞
Output: Public key ℎ

1. Find the inverse of 𝑓𝑓 (𝑓𝑓𝑝𝑝
−1) using the extended Euclidean algorithm.

2. Generate public key ℎ by, h = 𝑓𝑓𝑝𝑝
−1 ⊛ g (mod q).

Algorithm 2: 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
Input: public key ℎ, message 𝑚𝑚 ∈ 𝐿𝐿, 𝑚𝑚 ∈ 𝑇𝑇 in the form 𝑚𝑚 = [𝑚𝑚1, 𝑚𝑚2, … . 𝑚𝑚𝑁𝑁] ∶ 𝑚𝑚𝑖𝑖 ≥ 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑖𝑖 < 𝑞𝑞
Output: encrypted message 𝑒𝑒(𝑚𝑚)

1. Choose a random polynomial 𝑟𝑟 ∈ 𝑅𝑅 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑟𝑟 = [𝑟𝑟1, 𝑟𝑟2, … 𝑟𝑟𝑁𝑁] ∈ 𝑇𝑇.
2. Encrypt the message 𝑚𝑚 by, 𝑒𝑒(𝑚𝑚) = 𝑟𝑟 ⊛ ℎ + 𝑚𝑚 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞).

Algorithm 3: 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
Input: Secret polynomial 𝑓𝑓, encrypted message 𝑒𝑒(𝑚𝑚)
Output: Message 𝑚𝑚

1. Compute 𝑟𝑟1 = 𝑓𝑓 ⊛ 𝑒𝑒(𝑚𝑚) (𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞).
2. Compute 𝑟𝑟2 = 𝑟𝑟1 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝).
3. Compute 𝑚𝑚 = 𝑓𝑓𝑝𝑝

−1 ⊛ 𝑟𝑟2 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝).

Algorithm 4: 𝐾𝐾𝐾𝐾𝐾𝐾 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (NTRUSign_KeyGen)

Input: Secret polynomials 𝑓𝑓 and 𝑔𝑔, parameters 𝑁𝑁 and 𝑞𝑞
Output: Public key ℎ

1. Find polynomials F and G such that 𝑓𝑓 ∗ 𝐺𝐺 − 𝑔𝑔 ∗ 𝐹𝐹 = 𝑞𝑞.
2. Find the inverse of 𝑓𝑓 (𝑓𝑓𝑝𝑝

−1) using the extended Euclidean algorithm.
3. Generate public key h by, h = F ∗ 𝑓𝑓𝑞𝑞

−1 (mod q).

Algorithm 5: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

Input: private key 𝑓𝑓, message m ∈ L, m ∈ T in the form 𝑚𝑚 = [𝑚𝑚1, 𝑚𝑚2, … . 𝑚𝑚𝑁𝑁] ∶ 𝑚𝑚𝑖𝑖 ≥ 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑖𝑖 < 𝑞𝑞
Output: Signature 𝑠𝑠

1. Map the input message to the hash function to obtain 𝑚𝑚’.
2. Set 𝑥𝑥 = � − 1

𝑞𝑞
� 𝑚𝑚′ ∗ 𝑔𝑔 𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦 = � 1

𝑞𝑞
� 𝑚𝑚′ ∗ 𝑓𝑓.

3. Set 𝑒𝑒 = −{𝑥𝑥} 𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒′ = −{𝑦𝑦}.
4. Compute signature 𝑠𝑠 as 𝑠𝑠 = 𝑒𝑒𝑒𝑒 + 𝑒𝑒′𝑔𝑔.

Algorithm 6: 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

Input: Public key ℎ, message 𝑚𝑚, signature 𝑠𝑠, balancing vector 𝑏𝑏 and norm bound 𝑛𝑛
Output: Status 0 or 1

1. Map the input message to the hash function to obtain 𝑚𝑚’.
2. Compute 𝑡𝑡 = (𝑠𝑠 ∗ ℎ) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞.
3. Calculate Norm 𝑣𝑣 = min (|| 𝑠𝑠 + 𝑘𝑘1𝑞𝑞 , (𝑠𝑠 ∗ ℎ − 𝑚𝑚) + 𝑘𝑘2𝑞𝑞 ||) for 𝑘𝑘1, 𝑘𝑘2 ∊ 𝑅𝑅.
4. If 𝑣𝑣 ≤ 𝑛𝑛 set the status as 0 (valid); otherwise, set it to 1 (invalid).

IV. SYSTEM MODEL
The hierarchical key derivation algorithm is applied to the end-user side and does not require any

modification to the other users in the network. The seed value is a generic English sentence that can be remembered
easily without storage in any electronic device. The polynomial generator accepts the seed value input and generates
the secret polynomials 𝑓𝑓 and 𝑔𝑔 for each user with a highest polynomial degree of 𝑁𝑁 − 1. ℎ𝑓𝑓𝑙𝑙 𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑓𝑓𝑟𝑟 denote the
left and right half values of ℎ𝑓𝑓. ℎ𝑔𝑔𝑙𝑙 𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑔𝑔𝑟𝑟 denote the left and right half values of ℎ𝑔𝑔.ℎ𝑐𝑐𝑐𝑐𝑙𝑙 𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑐𝑐𝑐𝑐𝑟𝑟 denote the
left and right half values of ℎ𝑐𝑐𝑐𝑐. ℎ𝑐𝑐𝑐𝑐𝑙𝑙 𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑐𝑐𝑐𝑐𝑟𝑟denote the left and right half values of ℎ𝑐𝑐𝑐𝑐.

Fig. 1. Master key generation

To create a key, the user chooses the public parameters 𝑁𝑁, 𝑝𝑝, and 𝑞𝑞 and generates polynomials 𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔
from the seed phrase. The master keys and chain code are generated using 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 which is presented as
Algorithm 7. The master key generation algorithm computes the master private key values 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚, the
master public key value 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚ℎ, and the master chain code values 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚 and 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚. Fig. 1 illustrates the master
key generation process. The generated keys and chain codes are

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 (𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔) → 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚 , 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔) → 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚, 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑘𝑘𝑘𝑘𝑘𝑘 → 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚ℎ
The child keys and chain code values are generated using 𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖_𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾, which is presented as Algorithm

8, by sending master key input(𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚, 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚, 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚, 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚)/parent key input(𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐, 𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐, 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐 , 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐) and the
index number of child node 𝑖𝑖 The child key generation algorithm computes the child private key values𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐 and

𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐, the child public key value 𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐ℎ, the child chain code values 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐 and the child chain code 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐. Fig. 2
illustrates the child key generation process. The generated keys and chain codes are

𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 (𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔) → 𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐 , 𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐
𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔) → 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐 , 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐

𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑘𝑘𝑘𝑘𝑘𝑘 → 𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐ℎ

Fig. 2. Child key generation

Algorithm 7: 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴_𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲
Input: Polynomials 𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔 and parameters 𝑁𝑁, 𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎 𝑞𝑞
Output:𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚, 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚, 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚 , 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚ℎ

1. Reset 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and initialize it to 0.
2. Compute ℎ𝑓𝑓 = HashFunc (𝑓𝑓 || 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) and split ℎ𝑓𝑓 into ℎ𝑓𝑓𝑙𝑙 𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑓𝑓𝑟𝑟.
3. Check that ℎ𝑓𝑓𝑙𝑙 is invertible, gcd(ℎ𝑓𝑓𝑙𝑙, 𝑝𝑝) = 1 and gcd(ℎ𝑓𝑓𝑙𝑙 , 𝑞𝑞) = 1; if any condition fails then

increment 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and repeat step 2.
4. Assign 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚 = ℎ𝑓𝑓𝑙𝑙.
5. Assign 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚 = ℎ𝑓𝑓𝑟𝑟.
6. Reset 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and initialize it to 0.
7. Compute ℎ𝑔𝑔 = HashFunc (𝑔𝑔 || 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) and split g𝑓𝑓 into 𝑔𝑔𝑔𝑔𝑙𝑙 𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔𝑔𝑔𝑟𝑟.
8. Check that ℎ𝑔𝑔𝑙𝑙 is invertible, gcd(ℎ𝑔𝑔𝑙𝑙 , 𝑝𝑝) = 1 and gcd(ℎ𝑔𝑔𝑙𝑙𝑙𝑙 , 𝑞𝑞) = 1; if any condition fails then

increment 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and repeat step 7.
9. Assign 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚 = ℎ𝑔𝑔𝑙𝑙.
10. Assign 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚 = ℎ𝑔𝑔𝑟𝑟.
11. Invoke key generation algorithm 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚ℎ = 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚 , 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚, 𝑁𝑁, 𝑝𝑝, 𝑞𝑞).

Algorithm 8: 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪_𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲
Input: 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚, 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚, 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚 , 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚 and child index 𝑖𝑖
Output: 𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐, 𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐, 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐 , 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐ℎ

1. Reset 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and initialize it to 0.
2. Compute ℎ𝑐𝑐𝑐𝑐 = HashFunc (𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚 || 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚 || 𝑖𝑖 || 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) and split ℎ𝑐𝑐𝑐𝑐 into ℎ𝑐𝑐𝑐𝑐𝑙𝑙 𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑐𝑐𝑐𝑐𝑟𝑟.
3. Check that ℎ𝑐𝑐𝑐𝑐𝑙𝑙 is invertible, gcd(ℎ𝑐𝑐𝑐𝑐𝑙𝑙, 𝑝𝑝) = 1 and gcd(ℎ𝑐𝑐𝑐𝑐𝑙𝑙, 𝑞𝑞) = 1; if any condition fails then

increment 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and repeat step 2.
4. Assign 𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐 = ℎ𝑐𝑐𝑐𝑐𝑙𝑙.
5. Assign 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐 = ℎ𝑐𝑐𝑐𝑐𝑟𝑟.
6. Reset 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and initialize it to 0.
7. Compute ℎ𝑐𝑐𝑐𝑐 = HashFunc (𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚 || 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚 || 𝑖𝑖 || 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) and split ℎ𝑐𝑐𝑐𝑐 into ℎ𝑐𝑐𝑐𝑐𝑙𝑙 𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑐𝑐𝑐𝑐𝑟𝑟.

8. Check that ℎ𝑐𝑐𝑐𝑐𝑙𝑙 is invertible, gcd(ℎ𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙 , 𝑝𝑝) = 1 and gcd(ℎ𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙 , 𝑞𝑞) = 1; if any condition fails then
increment 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and repeat step 7.

9. Assign 𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐 = ℎ𝑐𝑐𝑐𝑐𝑙𝑙.
10. Assign 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐 = ℎ𝑐𝑐𝑐𝑐𝑟𝑟.
11. Invoke key generation algorithm 𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐ℎ = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡_𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 (or) 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁_𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾.

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 is invoked only for the root node, and 𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖_𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 is invoked for the internal and leaf
nodes. The chain code is used to break the link from the master key and child key. The polynomial private keys
(𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔) that are generated from 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 and 𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖_𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 are evaluated with the extended Euclidean
algorithm for invertibility. The extended Euclidian algorithm determines the greatest common divisor (GCD) of
two polynomials and returns the GCD value. For ternary polynomials, the input trits are converted into binary
values before invoking the hash function. The SHA256 algorithm is used to find a hash value in the key generation
process based on the EESS recommendation [57]. The lengths of the input random polynomials vary, and the output
of SHA256 is always 256 bits. The binary value of each octet (8 bits) is converted into its equivalent ternary value
with a length of 6 trits. Therefore, the hashed output length is 192 trits, and polynomials 𝑓𝑓 and 𝑔𝑔 are each 96 trits
long. Similarly, the index value 𝑖𝑖 is converted into a ternary value before invoking the key generation function.

The child index number is represented as (𝑟𝑟/1, 𝑟𝑟/2, 𝑟𝑟/3 … 𝑟𝑟/𝑘𝑘) when depth = 2 or level = 1, where 𝑟𝑟
represents the root node and 1,2,3 … 𝑘𝑘 represent children of the root node (depth = 1 or level = 0), as shown in Fig.
3. Index numbers (𝑟𝑟/1/1) and (𝑟𝑟/1/2) represent the 1st and 2nd children, respectively, from a parent (𝑟𝑟/1). The
depth of a tree can grow according to user requirements. The child index number is encoded into trinary values
before it is fed into HashFunc. If the user requests the generation of a child key (𝑟𝑟/2/1), then the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾
algorithm is invoked one time to derive (r) from random polynomials. 𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖_𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 is called twice: first, to
derive (𝑟𝑟/2) from (𝑟𝑟) and second, to derive (𝑟𝑟/2/1) from (𝑟𝑟/2). Out of these three derivations, the public key is
derived only for a child (r/2/1) and not for r or r/2. By setting req_depth to 3 (req_depth = 3), the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾
and 𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖_𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 algorithms ignore the public key generation process for (𝑟𝑟) and (𝑟𝑟/2) nodes. Similarly, if the
user requests (𝑟𝑟/1/1/1) node keys, req_depth is set to 4 (req_depth = 4), and the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 and
𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖_𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 algorithms ignore the public key generation process for nodes (𝑟𝑟), (𝑟𝑟/1) and (𝑟𝑟/1/1) and generate
a public key only for (𝑟𝑟/1/1/1).

Fig. 3. Node index numbers

The advantages of the proposed LB-HDKG scheme are as follows: 1) User privacy is guaranteed by linking
new public addresses in every incoming transaction. 2) Chain code is used to derive child keys and hide the
properties of the private key from lower-level keys for increased security. 3) A seed phrase alone is required as
input to derive the whole tree structure. 4) Users need not worry about key damage, loss, or storage management.
5) Lower-level public keys can be shared with trustless third-parties to maintain subtree accounts. 6) The scheme
is secure against quantum computing. 7) It does not depend on any external system or user for key generation. 8)
It is more efficient than the RSA and ECC algorithms.

V. SECURITY ANALYSIS
The security of the LB-HDKG system is evaluated based on the chosen N value. The recommended value

of N is above 200 for moderate-level security and above 500 for high-level security. A system with a security level

of 80 requires approximately 10 to the power of 12 MIPS-years to break. Selecting large and relative prime values
for 𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎 𝑞𝑞 increases the security level of the system [55], [56].

Using the combinatorial method, the attacker can recover private keys 𝑓𝑓 and 𝑔𝑔 from public value ℎ or
random value 𝑟𝑟. Similarly, the attacker attempts to recover message 𝑚𝑚 from encrypted message 𝑒𝑒 since the secret
polynomials 𝑓𝑓 and 𝑔𝑔 fall under space 𝑁𝑁 ∗ 𝑁𝑁. The security against the combinatorial technique for binary

polynomials is greater than or equal to
�𝑁𝑁/2

𝑑𝑑/2�

√𝑁𝑁
. The security against the combinatorial technique for ternary

polynomials is greater than equal to �𝑁𝑁/2
𝑑𝑑/2� /√𝑁𝑁. Private values 𝑓𝑓 or 𝑔𝑔 can be recovered from public value ℎ or 𝑒𝑒

using the combinational technique when the correct parameters are not chosen.
If the private key = 1 + 𝑝𝑝𝑝𝑝 (F is a small polynomial) or 𝑓𝑓 = 1 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝), then the lattice attack on 𝑓𝑓 is

equivalent to SVP. SVP is NP-hard under the randomized reduction hypothesis. If the private key satisfies 𝑓𝑓 ! =
 1 + 𝑝𝑝𝑝𝑝, then a lattice attack on 𝑓𝑓 is equivalent to CVP and is as hard as SVP. The security level of this 𝑓𝑓 = 1 +
𝑝𝑝𝑝𝑝 form can be represented with 𝑎𝑎 = 𝑁𝑁/𝑞𝑞 and c = √(4𝜋𝜋𝜋𝜋 || 𝑓𝑓 || || 𝑔𝑔|| 𝑞𝑞). The breaking time increases when
increasing the value of c with constant (a, N), and the breaking time increases exponentially when increasing the
value of N with constant (a, c).

Secret message 𝑚𝑚 is encrypted with random polynomial 𝑟𝑟 and public polynomial ℎ in Algorithm 2.

𝑒𝑒(𝑚𝑚) = 𝑟𝑟 ⊛ ℎ + 𝑚𝑚 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞) … (3)

The attacker knows the values of ℎ and 𝑒𝑒(𝑚𝑚) and tries to recover 𝑚𝑚 with a different combination of random
values 𝑟𝑟. The attack can be avoided by choosing a sufficiently large 𝑚𝑚 by adding extra padding bits. For better
security, the parameter 𝑑𝑑 (as small as possible) is set to have a minimum number of 1’s in trinary polynomials 𝑓𝑓
and 𝑚𝑚.

A. Child private key recovery from the parent’s private key
Loss of the parent's private key does not compromise the remainder of the tree. The private key is used for

digital signatures and to transfer the ownership of financial holds in the blockchain. The private key can be revealed
to the attacker by any means, but the chain code is never revealed to the outside for any purpose. The attacker
cannot derive the child keys from the private key alone. The chain code helps regenerate the child's private key in
the future whenever the user transfers ownership and helps avoid compromising the remainder of the tree or the
child's private keys.

B. Private key recovery from a public key
The security of LB-HDKG depends on the recovery of shorter master private keys (𝑓𝑓 and 𝑔𝑔) from a public

basis B of the master lattice:

𝐵𝐵 = �𝑞𝑞𝐼𝐼𝑁𝑁 0𝑁𝑁
𝐻𝐻 𝐼𝐼𝑁𝑁

�

where 𝐼𝐼𝑁𝑁 is an identity matrix with 𝑁𝑁 ∗ 𝑁𝑁 dimensions, 0𝑁𝑁 is a zero matrix with 𝑁𝑁 ∗ 𝑁𝑁 dimensions and 𝐻𝐻 is a circular
matrix that corresponds to public key ℎ. The attacker attempts to locate the shortest vector on a public basis that
corresponds to secret values 𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔. The attacker chooses 𝑁𝑁′ less than N and builds 𝐵𝐵′ with 𝑁𝑁′ and 𝐻𝐻′.

𝐵𝐵′ = �
𝑞𝑞𝐼𝐼𝑁𝑁′ 0𝑁𝑁
𝐻𝐻′ 𝐼𝐼𝑁𝑁′

�

where 𝐻𝐻′ is a truncated matrix of 𝐻𝐻. The attacker removes matrix B' from the center of matrix B. The attacker
repeats the process until all N'of 𝑞𝑞 vectors are removed. Greater than k' bits of effort can be used to reduce the
original lattice B'. Optimally choosing N' and k' for reduction, the problem is equivalent to a meet-in-the-middle
search. Finding N' and k' is hard, and the master private key cannot be recovered from a public basis B . Choosing
relatively small 𝑓𝑓 and 𝑔𝑔 compared to N is important to avoid recovery of the private key from the public key. In
our scheme, the hashed output size is reduced to ½ for both polynomials 𝑓𝑓 and 𝑔𝑔. For a security level of 𝑘𝑘 = 80,
the parameter N is chosen as a prime number that exceeds 3𝑘𝑘(𝑁𝑁 > 3𝑘𝑘). When 𝑁𝑁 = 251, the sizes of 𝑓𝑓 and 𝑔𝑔
needed to be less than 251. The output of hash function SHA256 is split into 2 halves as the master private key
(128 bits) and the chain code (128 bits). In the case of ternary polynomials, each octet (8 bits) is converted into 6
trits. The 256 bit (32 octets) output of SHA256 is reduced to 192 trits (32 octets * 6 trits). By splitting the 192
converted trits into 2 halves, we obtain 96 trits for private keys and 96 trits for the chain code. Therefore, the sizes

of 𝑓𝑓 and 𝑔𝑔 are always less than 251 or smaller than N . As a result, it is infeasible to recover smaller 𝑓𝑓 and 𝑔𝑔 from
 using the reduction method.

C. Master/parent key recovery from the child keys
The security of the master key relies on the difficulty of learning short polynomials 𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚 and 𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚 from

the child keys. The child node’s private key is derived from a partial value of the master private key. The private
keys are derived after hashing the master private key to avoid upstream key exposure or master key recovery. In
the hierarchical derivation, upstream key exposure is a way of obtaining knowledge of parent key values from the
known child key values. Two chain codes for each polynomial 𝑓𝑓 and 𝑔𝑔 are used to eliminate the relation between
the master private keys and child keys. Child private key pricf is derived from the hashed value of master private
key primg, and master chain code CCmg. Child private key pricg is derived from the hashed value of master private
key primf and master chain code 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚. The master keys are completely masked in child key derivation. Therefore,
the attacker cannot obtain any knowledge from one secret value 𝑓𝑓 or 𝑔𝑔 Decryption failure can be avoided by adding
extra bits with input for padding [58]. Various attacks of NTRU, such as hybrid attacks, ternary linear cryptanalysis,
meet-in-the-middle attacks, and invariant attacks, are avoided by choosing the correct parameters [59-61].
Therefore, the security of the system depends solely on the hash function and parameter selection [62]. Table I
presents the security level of NTRU with basic NTRU parameters [63] and the computation times for key
generation, encryption, and decryption. Table II presents the security level of NTRU with basic NTRU parameters
and the computation times of signature generation and verification. Few researchers have also proposed algorithms
to restrict attacks in the physical layer [64].

Table I
Computation times for key generation, encryption, and decryption

N p q Security
level
(bits)

Key
generation

(msec)

Encryption
(msec)

Decryption
(msec)

251 2 197 80 62.2 4.23 21.53

347 2 269 112 146.18 6.72 33.3

397 2 307 128 192 9.11 49.37

587 2 439 192 418.51 13.09 79.21

787 2 587 256 767 23.38 10.64

Table II
Computation times for signature generation and verification

N q Security level
(bits)

Signature
generation

(msec)

Signature
verification

(msec)
157 256 80 3.17 1.567

197 256 112 4.56 2.78

223 256 128 5.78 3.52

313 512 192 14.98 7.91

349 512 256 26.8 10.786

VI. PERFORMANCE ANALYSIS
In this section, we present a detailed comparison of the computation times for the key generation,

encryption/decryption, and signature/verification processes of ECC and NTRU. Then, we compare BIP32 and LB-
HDKG and present the computation times of our proposed LB-HDKG master key generation and child key

generation processes. The performance of the system is examined on a 2.30 GHz Intel Core operating system under
Windows. Unoptimized Python code is implemented for ECC and NTRU key generation, encryption/decryption,
signature/verification, and LB-HDKG. The computation times include the initialization of parameters, hashing,
primitive polynomial operations for the extended Euclidean algorithm, encoding, and key generation process.

Fig. 4. Comparison of computation time for key generation between ECC and NTRU

The sizes of the private key and public keys are approximately equal in ECC and extremely different in
NTRU. The value of 𝑁𝑁 is chosen based on the requirement of security level 𝑘𝑘 namely, 𝑁𝑁 should exceed 3𝑘𝑘.

Fig. 5. Comparison of computation time for encryption between ECC and NTRU

Fig. 6. Comparison of the computation time for decryption between ECC and NTRU
The public key size depends on the parameter 𝑁𝑁 that is, the size of ℎ is 𝑁𝑁/(𝑁𝑁 − 𝑘𝑘) 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝑞𝑞 – 𝑡𝑡𝑡𝑡 − 1 [57]. Fig. 4.
illustrates the comparison of computation time (msec) of ECC and NTRU key generation for security levels 8, 112,
128, 192 and 256. Fig. 5 illustrates the comparison of computation time (msec) of ECC and NTRU encryption, and
Fig. 6 illustrates the comparison of computation time (msec) of ECC and NTRU decryption for various security
levels 8, 112, 128, 192 and 256.

Fig. 7. Comparison of the computation times for ECC signature and verification with those for NTRU signature

and verification
The computation times for ECC, NTRU signature, and verification are compared in Fig. 7. The figure

presents the computation times for signature/verification for security levels 8, 112, 128, 192 and 256. The results

demonstrate that NTRU is faster than ECC for all security levels. Table III compares BIP32 with the proposed LB-
HDKG scheme.

Table III
Comparison of hierarchical key generation schemes

Characteristics

BIP32

LB-HDKG

Approach

Asymmetric Asymmetric

Based on Elliptic curve
key generation

Lattice-based
NTRU

Public key size

Small Large

Complexity of
public key
generation

𝑂𝑂(𝑁𝑁4) 𝑂𝑂(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑁𝑁)

Mathematical
problem

Elliptic curve
discrete
logarithm

Short vector
problem/closest
vector problem

Operations Scalar point
addition and
multiplication

Polynomial
multiplication
over a ring

Security

High Very high

Quantum
Resistance

No Yes

Advantages Short public
key

High speed,
high security,
and quantum
resistance

Disadvantages Requires more
computation
time and
breakable by
quantum
computers

Large public
key size and
security
depends on
parameter
selection

The minimum computation time for the master key generation process is approximated using Eqn. (4).

Equations (5), (6), and (7) are used to approximate the minimum computation time for child key generation, where
Mt represents the minimum time for master key generation, Ckt represents the minimum time for child key
generation at level 𝑚𝑚, ℎ𝑡𝑡 represents the time for generating the hash, 𝐾𝐾𝑡𝑡 represents the time for generating public
key ℎ from secret polynomials 𝑓𝑓 and 𝑔𝑔, 𝑃𝑃𝑡𝑡 represents the time for polynomial generation from the seed, and Et
represents the time for the encoding (ternary to binary) and decoding (binary to ternary) process. The approximate
minimum time for the key generation process can be expressed as

𝑀𝑀𝑡𝑡 ≃ (2 ∗ ℎ𝑡𝑡) + 𝐾𝐾𝑡𝑡 + 𝑃𝑃𝑡𝑡 … (4)
𝐶𝐶1𝑡𝑡 ≃ (2 ∗ ℎ𝑡𝑡) + (2 ∗ ℎ𝑡𝑡)+ 𝐾𝐾𝑡𝑡 + 𝑃𝑃𝑡𝑡 + 𝐸𝐸𝑡𝑡 … (5)

𝐶𝐶2𝑡𝑡 ≃ 2 ∗ ℎ𝑡𝑡 +(2 ∗ ℎ𝑡𝑡) + (2 ∗ ℎ𝑡𝑡) + 𝐾𝐾𝑡𝑡 + 𝑃𝑃𝑡𝑡 + 𝐸𝐸𝑡𝑡 … (6)

From (5) and (6), the general form for child key generation can be expressed as

𝐶𝐶𝐶𝐶𝑡𝑡 ≃ (𝑚𝑚 + 1) ∗ (2 ∗ ℎ𝑡𝑡) + 𝐾𝐾𝑡𝑡 + 𝑃𝑃𝑡𝑡 + 𝐸𝐸𝑡𝑡 … (7)

For the same set of parameters 𝑁𝑁, 𝑝𝑝, and 𝑞𝑞, the computation time for master key generation differs based on the
seed value. Similarly, time variance may be possible for child nodes at the same level since the polynomials 𝑓𝑓 and
 g are obtained from the hashed output. If the polynomial f is not invertible, the private key is recomputed by
adding extra padding bits to the input of the hashing function. The complexity of public key generation from the
private key and chain code is 𝑂𝑂(𝑁𝑁 𝑙𝑙𝑙𝑙𝑙𝑙 𝑁𝑁) for N-degree polynomials without consideration of the padding
complexity.

Table IV
LB-HDKG master key generation and child key generation

Fig. 8. Comparison of LB-HDKG master key generation and LB-HDKG child key generation

Table IV presents the computation times of the LB-HDKG master key generation and child key generation
algorithms. Fig. 8 presents the measured execution times for master key generation and child key generation for
various values of N. The child key generation process includes the time that is needed to find a child position based
on the index and path for the child key. The times that is required is approximately equal for all children at the
same level. A smaller variance of time at the same level may occur due to the noninvertibility of f from the hashing
output. The results demonstrate that increasing the tree level will not increase the key generation time. The public
key is not derived for all parent/master nodes; it is derived only for the child node with the index that is passed in
the input. We can omit the public key derivation process from the root to the parent of the child node. Additionally,
if the user provides the original parent’s private keys along with the new child index, the keys are derived from the
original parent instead of the root. The presented result includes the time that is required for deriving keys from the
root node to the child node.

VII. CONCLUSIONS
Blockchain has been considered a promising technology for adaption from a centralized system to an

immutable decentralized system. To increase user privacy and reduce energy consumption, we proposed an
efficient, privacy-preserving, and quantum-resistant hierarchical deterministic key generation algorithm. The

N Master key
generation

(msec)

Child key
generation (Level 1)

(msec)

Child key
generation (Level 2)

(msec)

Child key
generation (Level 3)

(msec)

11 98.2 101.53 120.62 129.31

53 104.62 111.31 124.61 136.32

251 159.27 178.98 199.22 203.84

347 281.61 293.81 305.42 306.71

449 352.22 378.44 395.43 410.82

proposed hierarchical key generation algorithm uses a lattice-based NTRU cryptosystem and efficiently generates
numerous keys to avoid user privacy leaks without key management overhead. The lattice-based key generation
algorithm is efficient, quantum-safe, and highly suitable for distributed systems. The security analysis of our
scheme shows that upstream key exposure is not possible, and the performance analysis shows that the computation
time for the proposed scheme is less than those of RSA and ECC. The proposed model can be applied to distributed
systems, public storage systems, and cloud storage systems, among other systems. However, parameter selection
is considered to be a crucial factor when the NTRU cryptosystem is implemented in real time.

REFERENCES
[1] Nakamoto, S., 2019. Bitcoin: A peer-to-peer electronic cash system. Manubot.
[2] Pilkington, M., 2016. Blockchain technology: principles and applications. In Research handbook on digital

transformations. Edward Elgar Publishing.
[3] Underwood, S., 2016. Blockchain beyond bitcoin.
[4] Saberi, S., Kouhizadeh, M., Sarkis, J. and Shen, L., 2019. Blockchain technology and its relationships to

sustainable supply chain management. International Journal of Production Research, 57(7), pp.2117-2135.
[5] Karamitsos, I., Papadaki, M. and Al Barghuthi, N.B., 2018. Design of the blockchain smart contract: A use

case for real estate. Journal of Information Security, 9(3), pp.177-190.
[6] Mengelkamp, E., Notheisen, B., Beer, C., Dauer, D. and Weinhardt, C., 2018. A blockchain-based smart

grid: towards sustainable local energy markets. Computer Science-Research and Development, 33(1-2),
pp.207-214.

[7] Lin, X., Wu, J., Bashir, A.K., Li, J., Yang, W. and Piran, J., 2020. Blockchain-Based Incentive Energy-
Knowledge Trading in IoT: Joint Power Transfer and AI Design. IEEE Internet of Things Journal.

[8] Ølnes, S., Ubacht, J. and Janssen, M., 2017. Blockchain in government: Benefits and implications of
distributed ledger technology for information sharing.

[9] Yli-Huumo, J., Ko, D., Choi, S., Park, S. and Smolander, K., 2016. Where is current research on blockchain
technology?—a systematic review. PloS one, 11(10), p.e0163477.

[10] Wuille, P., 2012. Bip32: Hierarchical deterministic wallets. h ttps://github. com/genjix/bips/blob/master/bip-
0032. md.

[11] Eskandari, S., Clark, J., Barrera, D. and Stobert, E., 2018. A first look at the usability of bitcoin key
management. arXiv preprint arXiv:1802.04351.

[12] Zhang, R., Xue, R. and Liu, L., 2019. Security and privacy on blockchain. ACM Computing Surveys (CSUR),
52(3), pp.1-34.

[13] Shi, N., Tan, L., Li, W., Qi, X. and Yu, K., 2020. A blockchain-empowered AAA scheme in the large-scale
HetNet. Digital Communications and Networks.

[14] Yu, K., Tan, L., Shang, X., Huang, J., Srivastava, G. and Chatterjee, P., 2020. Efficient and Privacy-
Preserving Medical Research Support Platform Against COVID-19: A Blockchain-Based Approach. IEEE
Consumer Electronics Magazine.

[15] J. Zhang, K. Yu, Z. Wen, X. Qi and A. K. Paul, 2021. 3d reconstruction for motion blurred images using
deep learning-based intelligent systems. Computers, Materials & Continua, 66(2), pp. 2087–2104.

[16] Yu, K.P., Tan, L., Aloqaily, M., Yang, H. and Jararweh, Y., 2021. Blockchain-enhanced data sharing with
traceable and direct revocation in IIoT. IEEE Transactions on Industrial Informatics.

[17] Deutsch, D., 1985. Quantum theory, the Church–Turing principle and the universal quantum
computer. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 400(1818),
pp.97-117.

[18] Bernstein, D.J., 2009. Introduction to post-quantum cryptography. In Post-quantum cryptography (pp. 1-
14). Springer, Berlin, Heidelberg.

[19] Buchmann, Johannes; Dahmen, Erik; Hülsing, Andreas (2011). "XMSS - A Practical Forward Secure
Signature Scheme Based on Minimal Security Assumptions". Lecture Notes in Computer
Science. 7071 (Post-Quantum Cryptography. PQCrypto 2011): 117–129.

[20] Overbeck, R. and Sendrier, N., 2009. Code-based cryptography. In Post-quantum cryptography (pp. 95-
145). Springer, Berlin, Heidelberg.

[21] Kottursamy, K., Raja, G., Padmanabhan, J. and Srinivasan, V., 2017. An improved database synchronization
mechanism for mobile data using software-defined networking control. Computers & Electrical Engineering,
57, pp.93-103.

[22] Ding, J. and Schmidt, D., 2005, June. Rainbow, a new multivariable polynomial signature scheme.
In International Conference on Applied Cryptography and Network Security (pp. 164-175). Springer, Berlin,
Heidelberg.

[23] Arul, R., Raja, G., Kottursamy, K., Sathiyanarayanan, P. and Venkatraman, S., 2017. User path prediction
based key caching and authentication mechanism for broadband wireless networks. Wireless Personal
Communications, 94(4), pp.2645-2664

[24] MacKinnon, S.J., Taylor, P.D., Meijer, H. and Akl, S.G., 1985. An optimal algorithm for assigning
cryptographic keys to control access in a hierarchy. IEEE Transactions on Computers, (9), pp.797-802.

[25] Lin, J.C., Huang, K.H., Lai, F. and Lee, H.C., 2009. Secure and efficient group key management with shared
key derivation. Computer Standards & Interfaces, 31(1), pp.192-208.

[26] Arul, R., Raja, G., Almagrabi, A.O., Alkatheiri, M.S., Chauhdary, S.H. and Bashir, A.K., 2019. A Quantum-
Safe Key Hierarchy and Dynamic Security Association for LTE/SAE in 5G Scenario. IEEE Transactions on
Industrial Informatics, 16(1), pp.681-690.

[27] C. Gentry and A. Silverberg. Hierarchical ID-based cryptography. In ASIACRYPT, pages 548–566. 2002.
[28] J. Horwitz and B. Lynn. Toward hierarchical identity-based encryption. In EUROCRYPT, pages 466–481.

2002.
[29] X. Boyen and B. Waters. Anonymous hierarchical identity-based encryption (without random oracles). In

CRYPTO, pages 290–307. 2006.
[30] Katsumata, S., Matsuda, T. and Takayasu, A., 2020. Lattice-based revocable (hierarchical) IBE with

decryption key exposure resistance. Theoretical Computer Science, 809, pp.103-136.
[31] Shen, V.R. and Chen, T.S., 2002. A novel key management scheme based on discrete logarithms and

polynomial interpolations. Computers & Security, 21(2), pp.164-171.
[32] Das, M.L., Saxena, A., Gulati, V.P. and Phatak, D.B., 2005. Hierarchical key management scheme using

polynomial interpolation. ACM SIGOPS Operating Systems Review, 39(1), pp.40-47.
[33] Wang, T., Zheng, Z., Bashir, A.K., Jolfaei, A. and Xu, Y., 2020. FinPrivacy: A Privacy-Preserving

Mechanismfor Fingerprint Identification. ACM Transactions on Internet Technology (TOIT).
[34] Gutoski, G. and Stebila, D., 2015, January. Hierarchical deterministic bitcoin wallets that tolerate key

leakage. In International Conference on Financial Cryptography and Data Security (pp. 497-504). Springer,
Berlin, Heidelberg.

[35] Khovratovich, D. and Law, J., 2017, April. BIP32-Ed25519: Hierarchical Deterministic Keys over a Non-
linear Keyspace. In 2017 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW) (pp.
27-31). IEEE.

[36] Heilman, E., Baldimtsi, F. and Goldberg, S., 2016, February. Blindly signed contracts: Anonymous on-
blockchain and off-blockchain bitcoin transactions. In International conference on financial cryptography
and data security (pp. 43-60). Springer, Berlin, Heidelberg.

[37] Heilman, E., Alshenibr, L., Baldimtsi, F., Scafuro, A. and Goldberg, S., 2017. Tumblebit: An untrusted
bitcoin-compatible anonymous payment hub. In Network and Distributed System Security Symposium.

[38] Knirsch, F., Unterweger, A. and Engel, D., 2018. Privacy-preserving blockchain-based electric vehicle
charging with dynamic tariff decisions. Computer Science-Research and Development, 33(1-2), pp.71-79.

[39] Maxwell, G. 2013. Coinjoin: Bitcoin privacy for the real world. In Post on Bitcoin Forum.
[40] Bissias, G., Ozisik, A.P., Levine, B.N. and Liberatore, M.2014.Sybilresistant mixing for bitcoin. In The

Workshop on Privacy in the Electronic Society, pp. 149–158.
[41] Ruffing T., Moreno-Sanchez P., Kate A. (2014) CoinShuffle: Practical Decentralized Coin Mixing for

Bitcoin. In: Kutyłowski M., Vaidya J. (eds) Computer Security - ESORICS 2014. ESORICS 2014. Lecture
Notes in Computer Science, vol 8713. Springer, Cham. https://doi.org/10.1007/978-3-319-11212-1_20

[42] Rivest R.L., Shamir A., Tauman Y. (2001) How to Leak a Secret. In: Boyd C. (eds) Advances in Cryptology
— ASIACRYPT 2001. ASIACRYPT 2001. Lecture Notes in Computer Science, vol 2248. Springer, Berlin,
Heidelberg. Courtois, N.T. and Mercer, R., 2017. Stealth Address and Key Management Techniques in
Blockchain Systems. ICISSP, 2017, pp.559-566.

[43] Garcia, F.D. and Jacobs, B., 2010, September. Privacy-friendly energy-metering via homomorphic
encryption. In International Workshop on Security and Trust Management (pp. 226-238). Springer, Berlin,
Heidelberg.

[44] Zhou, L., Wang, L., Sun, Y. and Lv, P., 2018. Beekeeper: A blockchain-based iot system with secure storage
and homomorphic computation. IEEE Access, 6, pp.43472-43488.

[45] Maxwell, G., 2015. Confidential transactions. URL: https://people. xiph. org/greg/confidential values. txt
(Accessed 09/05/2016).

[46] Fujisaki, E., Suzuki, K., “Traceable ring signature,” in Public Key Cryptography, vol. 4450, pp. 181–200,
Springer, 2007.

[47] Fujisaki E. (2011) Sub-linear Size Traceable Ring Signatures without Random Oracles. In: Kiayias A. (eds)
Topics in Cryptology – CT-RSA 2011. CT-RSA 2011. Lecture Notes in Computer Science, vol 6558. Springer,
Berlin, Heidelberg

[48] Van Saberhagen.N.2013. Cryptonote v 2. 0.
[49] Noether, S. and Mackenzie, A., 2016. Ring confidential transactions. Ledger, 1, pp.1-18.
[50] Blum, M., Feldman, P. and Micali, S., 2019. Non-interactive zero-knowledge and its applications.

In Providing Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali (pp.
329-349).

[51] Shor, P.W., 1994, November. Algorithms for quantum computation: discrete logarithms and factoring. In
Proceedings 35th annual symposium on foundations of computer science (pp. 124-134). Ieee.

[52] Liu, Z., Choo, K.K.R. and Grossschadl, J., 2018. Securing edge devices in the post-quantum internet of
things using lattice-based cryptography. IEEE Communications Magazine, 56(2), pp.158-162.

[53] Nejatollahi, H., Dutt, N., Ray, S., Regazzoni, F., Banerjee, I. and Cammarota, R., 2019. Post-quantum lattice-
based cryptography implementations: A survey. ACM Computing Surveys (CSUR), 51(6), pp.1-41.

[54] Dharminder, D. and Mishra, D., 2020. LCPPA: Lattice‐based conditional privacy preserving authentication
in vehicular communication. Transactions on Emerging Telecommunications Technologies, 31(2), p.e3810.

[55] Hoffstein, J., Howgrave-Graham, N., Pipher, J. and Whyte, W., 2009. Practical lattice-based cryptography:
NTRUEncrypt and NTRUSign. In The LLL Algorithm (pp. 349-390). Springer, Berlin, Heidelberg.

[56] Karu, P. and Loikkanen, J., 2001. Practical comparison of fast public-key cryptosystems.
In Telecommunications Software and Multimedia Lab. at Helsinki Univ. of Technology, Seminar on Network
Security (pp. 1-18). Citeseer.

[57] EESS, “Efficient embedded security standards (eess),” 2003
[58] Howgrave-Graham, N., Nguyen, P.Q., Pointcheval, D., Proos, J., Silverman, J.H., Singer, A. and Whyte, W.,

2003, August. The impact of decryption failures on the security of NTRU encryption. In Annual
International Cryptology Conference (pp. 226-246). Springer, Berlin, Heidelberg.

[59] Hoffstein, J., Pipher, J., Schanck, J.M., Silverman, J.H., Whyte, W. and Zhang, Z., 2017, February. Choosing
parameters for NTRUEncrypt. In Cryptographers’ Track at the RSA Conference (pp. 3-18). Springer, Cham

[60] N. Howgrave-Graham, J. H. Silverman, W. Whyte Choosing Parameter Sets for NTRUEncrypt with NAEP
and SVES-3, Topics in cryptology|CT-RSA 2005, 118{135, Lecture Notes in Comput. Sci., 3376, Springer,
Berlin, 2005. http://www.ntru.com/cryptolab/articles.htm\#2005_1

[61] P. Hirschhorn, J. Hoffstein, N. Howgrave-Graham, W. Whyte, Choosing NTRUEncrypt Parameters in Light
of Combined Lattice Reduction and MITM Approaches, ACNS 2009. 437-455

[62] Howgrave-Graham, N., 2007, August. A hybrid lattice-reduction and meet-in-the-middle attack against
NTRU. In Annual International Cryptology Conference (pp. 150-169). Springer, Berlin, Heidelberg.

[63] Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H. and Whyte, W., 2003, April. NTRUSIGN:
Digital signatures using the NTRU lattice. In Cryptographers’ track at the RSA conference (pp. 122-140).
Springer, Berlin, Heidelberg.

[64] Ponnusamy, V., Kottursamy, K., Karthick, T., Mukeshkrishnan, M.B., Malathi, D. and Ahanger, T.A., 2020.
Primary user emulation attack mitigation using neural network. Computers & Electrical Engineering, 88,
p.106849.

http://www.ntru.com/cryptolab/articles.htm/#2005%5C_1

