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Abstract—Blockchain has revolutionized numerous fields, which include financial services, health care, 
the Internet of things, academia and supply chain management. Blockchain technology enables us to have 
an immutable, distributed ledger for managing the transactions of untrusted users. However, the technology 
has many open challenges, such as privacy leaks, scalability, and energy consumption. User identity can be 
easily tracked using network analysis, as transactions are accessible to everyone, which is a serious concern 
of blockchain. In this paper, we propose a new efficient, privacy-preserving, and quantum-resistant key 
generation algorithm, namely, lattice-based hierarchical deterministic key generation (LB-HDKG), for 
maintaining user privacy in the public blockchain. The LB-HDKG scheme generates many cryptographic 
keys in a tree-like structure from a single seed to hide the links between transactions of the same user. Our 
proposal uses the lattice NTRU cryptosystem, the security of which relies on the shortest vector problem 
(SVP) and closest vector problem (CVP) over the polynomial ring. Operations on the lattice NTRU 
cryptosystem are efficient and secure against classical computers and quantum computers. Security and 
performance analyses of our scheme show that the model is more secure and efficient and should replace 
current models to safeguard data from quantum computers. 

 
Index Terms—Blockchain, hierarchical deterministic, lattices, NTRU, privacy, quantum cryptography 

I. INTRODUCTION 
Blockchain is a distributed database [1] that stores user transactions in a chain of blocks and can be 

implemented as a private blockchain or public blockchain. The private blockchain uses a centralized control system 
to restrict user entry with the help of access control management. The access control policy can be set to satisfy the 
requirements of user privacy protection. The public blockchain is an open network where anyone can enter and 
view the stored records and transactions [2]. There is no restriction in accessing the system, and user identity must 
be protected by hiding the links between transactions of the same user. The identity privacy requirement should be 
considered in public distributed systems such as Bitcoin, where the transactions are open to all [3]. In Bitcoin, the 
transactions are tied up with the hashed value of the user’s cryptographic public key. Therefore, financial status 
can be easily tracked through the public address of a user. This can be avoided by including a new public key in 
every new transaction. Although this solves the privacy issue, it increases the overhead to the users due to the 
management of a huge number of key pairs. 

Blockchain use cases extend beyond Bitcoin, e.g., to supply chain management, real estate, power grid 
management, the Internet of things, and government systems [4-8]. Numerous studies have improved the 
scalability, privacy protection, and interoperability and reduced the energy consumption of blockchain [9]. The 
hierarchical deterministic key generation method is proposed for resolving the privacy issue. It enables users to 
create any number of keys and simplifies the key management process [10]. Keys are derived as tree-like structures 
from a single secret seed. The master key is derived based on this secret input. Based on the user requirement, many 
child keys are derived from the derived master key. A node can derive any number of child nodes using the extended 
key or chain code. Moreover, the user can recover the entire key from a single input. The leaf nodes of the tree are 
used as a public address. The transactions are signed with the private key of the corresponding leaf node but not 
with the internal node’s private key or chain code. The generation of multiple keys helps hide user identity and 
helps subdivide a financial account into multiple accounts for easy management, auditing, and ownership sharing 
with subordinate levels [11]. The centralized mixing scheme, decentralized mixing scheme, ring signature, 
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homomorphic encryption, and zero-knowledge proof are a few of the other solutions that have been proposed for 
resolving privacy issues of the public blockchain. These solutions depend on a centralized server/other user or a 
time-consuming process [12-16]. 

Quantum computers operate differently from traditional computers [17]. They work at the atomic level and 
can overcome the physical restrictions that affect traditional computer chips. Quantum computers use qubits instead 
of bits. A qubit can represent 0 & 1 simultaneously, and very few qubits can accelerate various types of computation 
by an enormous amount. Information that is encrypted with prime factorization and discrete logarithm-based 
algorithms could be easily read by anyone with access to a quantum computer [18]. The world must transform the 
traditional cryptography system to a quantum-resistant cryptographic procedure before quantum computers become 
available. Few cryptographic algorithms are available that rely on hash-based, code-based, lattice-based, and 
multivariate-based approaches [19-22]. These algorithms are comparatively safe against outbreaks from quantum 
computers. 

In this paper, we propose a new efficient, privacy-preserving, and quantum-resistant lattice-based 
hierarchical deterministic key generation (LB-HDKG) algorithm for deriving child keys from a single master key. 
The lattice-based NTRU (Nth degree truncated polynomial ring) scheme is used for key generation algorithms, 
which are faster than RSA- and ECC-based algorithms. The method generates a new public key for each 
transaction, eliminates the overhead of storing and maintaining the multiple key pairs, and avoids the risk of key 
leakage. All the child keys are derived from the master key with only a single seed input. 

The remainder of the paper is organized as follows. Section II details related studies on previously proposed 
solutions to privacy issues. Section III presents the preliminaries of lattice cryptosystems. The proposed LB-HDKG 
system model is presented in Section IV. Sections V and VI describe the security analysis and performance analysis, 
respectively, of the proposed model. Finally, the conclusions of the paper are presented in Section VII. 

II. RELATED WORK 
Hierarchical key management was first proposed for maintaining many keys based on a partial-ordered set 

[23]. Later, many approaches were proposed for hierarchical key management. Based on symmetric key encryption, 
which is not suitable for distributed systems, hierarchical key management services by a central authority (CA) are 
at risk of losing user privacy [24]. Other schemes have been proposed for generating a pairwise shared key using 
predistributed keys, which are suitable primarily for wireless sensor networks [25], [26]. In [27-30], significant 
hierarchical identity-based encryption schemes are proposed, among which those in [27] and [28] are based on 
Weil-pairing and the random oracle method and that in [29] is based on pairing without the random oracle method. 
Pairing with the elliptic curve encryption method is prone to quantum attacks. The lattice-based hierarchical 
identity-based encryption (HIBE) scheme is believed to be resistant to quantum computers but has a few pitfalls 
[30]. The binary tree structure is maintained for the hierarchy; hence, a parent node or master node is restricted to 
having only two child nodes. The depth of the tree is predefined, which limits the tree growth beyond the predefined 
depth. Child keys are created directly from the original parent, which necessitates the storage of key information 
of all tree nodes by either a user or a third party. Other schemes are based on polynomial interpolation, partial 
order, and Laplace noise injection [31-33]. All these schemes are well suited for user group management with the 
help of a third-party key management service (KMS) for identifying a user, assigning user access, and revoking 
access but are not suitable for multiple key management for a single user. 

The BIP32 specification presented a solution for privacy issues by hierarchical deterministic (HD) key 
derivation for Bitcoin public electronic cash systems. The HD key generation method uses the SHA-512 hash 
function and elliptic curve cryptography (ECC) to derive the root node’s key pair from the chosen seed. The parent 
key properties are combined with chain code to derive the child keys in further levels. Later, BIP44 was proposed 
for handling multiple cryptocurrencies, in which the address is derived via hierarchical deterministic derivation. 
Improvements of BIP32 are presented in [34], [35]. Although BIP32 has many advantages, it also has a few 
disadvantages. The system security is weak against quantum computers, as BIP32 relies on ECC. Single master 
private key leakage helps the attacker derive the child key pairs of all levels, and the attacker can spend funds using 
the derived private keys. The hierarchical deterministic key generation method has been implemented in various 
HD wallets in Ledger Nano X, Electrum, Mycelium, Trezor, KeepKey, Jaxx, and Atomic wallet. 

Several other solutions have been proposed for identity privacy preservation, such as centralized mixing 
services, decentralized mixing services, ring signatures, and noninteractive zero-knowledge proofs. Centralized 
mixing services rely on a single central system and have the possibility for privacy leaks [36-38]. Users mix their 
public addresses using various decentralized mixing techniques without relying on an untrusted party [39-41]. 
Users depend on other users in a decentralized mixing procedure to complete the mixing, which delays the initiation 
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of the transaction. Stealth addresses facilitate the generation of a new address for every new transaction [42]. The 
generated address hides the receiver's identity but does not hide the sender's identity. In the homomorphic 
encryption method, computations are conducted on encrypted data without requiring access to a secret key [43]. 
The computing and storage costs for this approach are high. Pederson commitment prevents message leakage by 
using a random blinding factor and hides only the message content and not the sender or receiver identity [44]. 
Ring signatures were designed to hide the signer identity in group shared data [45]. Later, many modified versions 
of ring signatures were proposed, among which the most notable method is traceable ring signatures [46], [47]. The 
anonymity and likability properties of ring signatures are implemented in blockchain protocols to avoid identity 
privacy leakage [48], [49]. To generate a ring signature, a signer must wait until other users share their public keys. 
Each user depends on other users' availabilities. The noninteractive zero-knowledge proof technique is the best 
solution for privacy issues and is implemented in many cryptocurrency systems to avoid transaction graph analysis 
[50]. The zero-knowledge proof method requires additional computation time for proof generation. These solutions 
are time-consuming, as the user depends on an external system when using centralized mixing services and depends 
on other users in the case of decentralized mixing or ring signatures. Similarly, the zero-knowledge proof method 
requires more computation time for both signature generation and verification. 

The ECC and RSA algorithms are popular cryptographic algorithms that are used for secure 
communication and data storage. Since the proposal of Shor's algorithm for quantum computation, recent studies 
have focused on lattice-based cryptography, since Shor's algorithm can find prime factors, and on discrete 
algorithms [51-54]. We propose a quantum-safe hierarchical deterministic key generation algorithm that is similar 
to BIP32 and is based on the lattice NTRU key generation scheme. NTRU key generation is faster than ECC and 
RSA and is resistant to quantum computers [55], [56]. 

III. PRELIMINARIES 
A. Lattice 

Lattice-based cryptography originates from recent progress in the field of quantum computing. The lattice 
is a linear algebraic structure in which the geometric grid of points extends infinitely in all directions. The 
identification of two lattice points that are relatively close together in the high dimensions of the grid is practically 
impossible and hard for both traditional and quantum computers. A lattice is defined formally as follows. 
Lattice: Given n linearly independent vectors𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑛𝑛∈ 𝑅𝑅𝑚𝑚, their lattice is defined as 

L (𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑛𝑛) = 𝑥𝑥𝑖𝑖𝑏𝑏𝑖𝑖| 𝑥𝑥𝑖𝑖 ∈ Z 

We refer 𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑛𝑛as a basis of the lattice. All possible weighted sums of those vectors are scaled by 
integers. Given the integer constraints and lattices, we can define problems that are hard to solve, as the hardness 
of factoring renders RSA highly secure. By finding hard problems that are easy to construct but hard to solve, we 
can develop a new method for public-key cryptography. No efficient algorithms are available in classical or 
quantum computers for solving lattice problems in better than exponential time. The shortest vector problem (SVS), 
closest vector problem (CVP), and covering radius are lattice-based hard problems that are used to secure public-
key cryptosystems. 

B. NTRU public key cryptosystem 
NTRU is an efficient public-key cryptosystem that is based on a lattice. It is a faster key generation method 

than RSA and ECC. The NTRU cryptosystem provides long-term privacy, communication efficiency, and higher 
performance with sustainability. The NTRU cryptosystem is secure against quantum computers, as no quantum 
algorithm is available for breaking lattice-based cryptography systems. Operations of NTRU are constructed using 
the objects in a truncated polynomial ring(𝑅𝑅, +,⊛), 

𝑅𝑅 = 𝑍𝑍[𝑋𝑋]/(𝑋𝑋𝑁𝑁 − 1) …  (1) 

with polynomial degree of at most N-1: 𝑎𝑎0 +  𝑎𝑎1𝑥𝑥1 +   𝑎𝑎2𝑥𝑥2 + ⋯ +  𝑎𝑎𝑁𝑁−1𝑥𝑥𝑁𝑁−1. The hard problem of NTRU is to 
define ℎ =  𝑓𝑓−1 ⊛  𝑔𝑔, where 𝑓𝑓 and 𝑔𝑔 are ternary polynomials. Given ℎ ∈  𝑅𝑅, find ‘short’ 𝑓𝑓 such that 𝑓𝑓−1 ⊛ 𝑔𝑔 is 
also ‘short’. 

C. Notation and parameters 
Parameters 𝑁𝑁, 𝑝𝑝, 𝑞𝑞 ∈  𝑍𝑍 are defined, where N is the degree of a set of polynomials 𝐿𝐿 with trinary coefficient 

T, which is denoted as 𝐿𝐿 ∈  𝑇𝑇. 

𝐿𝐿 = � 𝑎𝑎𝑘𝑘𝑥𝑥𝑘𝑘𝑁𝑁−1
𝑘𝑘=0  ∶  𝑎𝑎𝑘𝑘 ∈  { −1, 0, 1 } for ternary  …  (2) 



Polynomial ring R =  Z [X] / ( 𝑋𝑋𝑁𝑁 − 1) is a polynomial 𝑍𝑍[𝑋𝑋] with modulo 𝑋𝑋𝑁𝑁 − 1. The symbol ∗ denotes 
the polynomial multiplication operation. Polynomials 𝑓𝑓, 𝑔𝑔 and ℎ ∈ 𝑅𝑅 and 𝑓𝑓, 𝑔𝑔 and ℎ ∈ 𝑇𝑇 have highest degree 𝑁𝑁 −
1. 𝑓𝑓 =  [ 𝑓𝑓1, 𝑓𝑓2, … . 𝑓𝑓𝑁𝑁 ], 𝑔𝑔 =  [ 𝑔𝑔1, 𝑔𝑔2, … . 𝑔𝑔𝑁𝑁 ] and ℎ =  [ ℎ1, ℎ2, … . ℎ𝑁𝑁 ] and 𝑓𝑓𝑝𝑝

−1 denotes the polynomial inverse of 
f with modulo p. 

𝑓𝑓𝑝𝑝
−1 = [ �𝑓𝑓𝑝𝑝

−1�
1

, �𝑓𝑓𝑝𝑝
−1�

2
, … . . �𝑓𝑓𝑝𝑝

−1�
𝑁𝑁

]    ∶    �𝑓𝑓𝑝𝑝
−1�

𝑖𝑖
 ≥ 0 𝑎𝑎𝑎𝑎𝑎𝑎 �𝑓𝑓𝑝𝑝

−1�
𝑖𝑖

< 𝑝𝑝 
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D. NTRU encryption and digital signature 
Select the public parameters 𝑁𝑁, 𝑝𝑝, and 𝑞𝑞 and the secret polynomials 𝑓𝑓 and 𝑔𝑔. Both p and q are prime 

numbers, 𝑞𝑞 is a large modulus, 𝑝𝑝 is a small modulus and 𝑔𝑔𝑔𝑔𝑔𝑔(𝑛𝑛, 𝑞𝑞) and 𝑔𝑔𝑔𝑔𝑔𝑔(𝑛𝑛, 𝑝𝑝) should be 1. The secret 
polynomials 𝑓𝑓 and 𝑔𝑔 are selected randomly from the set of polynomials 𝐿𝐿 manually or using a polynomial generator. 
The chosen polynomials 𝑓𝑓 and 𝑔𝑔 are small relative to the value of 𝑁𝑁. Polynomial 𝑓𝑓 is selected such that there exists 
inverses of 𝑓𝑓 ∈ 𝑅𝑅 for both modulo 𝑝𝑝 and modulo 𝑞𝑞. The extended Euclidean algorithm is used to check the 
existence of inverses for the chosen 𝑓𝑓. Since both random polynomials 𝑓𝑓 and 𝑔𝑔 are “short”, and the product of their 
result is also “short”. The inverse of 𝑓𝑓 results in randomization, and multiplication with 𝑔𝑔 makes the result ℎ more 
random. Therefore, given the public value ℎ, it is difficult to find secret values 𝑓𝑓 and 𝑔𝑔. NTRU key generation, 
encryption, and decryption algorithms are presented as Algorithms 1, 2, and 3, respectively. Algorithm 1 accepts 
secret polynomials and 𝑁𝑁, 𝑝𝑝, and 𝑞𝑞 as input and generates the public key. Algorithm 2 accepts the public key and 
input message as input and outputs the encrypted message. Algorithm 3 accepts the secret polynomial 𝑓𝑓 and the 
encrypted message as input and decrypts the message. The NTRUSign key generation, digital signature generation, 
and verification algorithms are presented as Algorithms 4, 5, and 6, respectively. Algorithm 4 accepts secret 
polynomials and parameters as input and generates the public key. Algorithm 5 accepts private polynomial 𝑓𝑓 and 
a message as input and generates the signature. Algorithm 6 accepts the public key, message, and signature 𝑠𝑠 as 
input and returns the verification status. 

Algorithm 1: 𝐾𝐾𝐾𝐾𝐾𝐾 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (NTRUEncrypt_KeyGen) 
Input: Secret polynomials 𝑓𝑓 and 𝑔𝑔, parameters 𝑁𝑁, 𝑝𝑝, and 𝑞𝑞 
Output: Public key ℎ 

1. Find the inverse of 𝑓𝑓 (𝑓𝑓𝑝𝑝
−1) using the extended Euclidean algorithm. 

2. Generate public key ℎ by, h =  𝑓𝑓𝑝𝑝
−1   ⊛   g ( mod q ). 

Algorithm 2: 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 
Input: public key ℎ, message 𝑚𝑚 ∈  𝐿𝐿, 𝑚𝑚 ∈  𝑇𝑇 in the form 𝑚𝑚 =  [𝑚𝑚1, 𝑚𝑚2, … . 𝑚𝑚𝑁𝑁]  ∶  𝑚𝑚𝑖𝑖 ≥ 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑖𝑖 < 𝑞𝑞 
Output: encrypted message 𝑒𝑒(𝑚𝑚) 

1. Choose a random polynomial 𝑟𝑟 ∈ 𝑅𝑅 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒  𝑟𝑟 = [𝑟𝑟1, 𝑟𝑟2, … 𝑟𝑟𝑁𝑁]  ∈ 𝑇𝑇. 
2. Encrypt the message 𝑚𝑚 by, 𝑒𝑒(𝑚𝑚) = 𝑟𝑟 ⊛  ℎ + 𝑚𝑚 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞). 

Algorithm 3: 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 
Input: Secret polynomial 𝑓𝑓, encrypted message 𝑒𝑒(𝑚𝑚) 
Output: Message 𝑚𝑚 

1. Compute  𝑟𝑟1 = 𝑓𝑓 ⊛ 𝑒𝑒(𝑚𝑚) (𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞). 
2. Compute 𝑟𝑟2 = 𝑟𝑟1 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝). 
3. Compute 𝑚𝑚 =  𝑓𝑓𝑝𝑝

−1 ⊛ 𝑟𝑟2 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝). 
 

Algorithm 4: 𝐾𝐾𝐾𝐾𝐾𝐾 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (NTRUSign_KeyGen) 

Input: Secret polynomials 𝑓𝑓 and 𝑔𝑔, parameters 𝑁𝑁 and 𝑞𝑞 
Output: Public key ℎ 

1. Find polynomials F and G such that 𝑓𝑓 ∗ 𝐺𝐺 − 𝑔𝑔 ∗ 𝐹𝐹 = 𝑞𝑞. 
2. Find the inverse of 𝑓𝑓 (𝑓𝑓𝑝𝑝

−1) using the extended Euclidean algorithm. 
3. Generate public key h by, h =  F ∗  𝑓𝑓𝑞𝑞

−1 ( mod q ). 
 

Algorithm 5: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺  



Input: private key 𝑓𝑓, message m ∈ L, m ∈ T in the form 𝑚𝑚 =  [𝑚𝑚1, 𝑚𝑚2, … . 𝑚𝑚𝑁𝑁]  ∶   𝑚𝑚𝑖𝑖 ≥ 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑖𝑖 < 𝑞𝑞 
Output: Signature 𝑠𝑠 

1. Map the input message to the hash function to obtain 𝑚𝑚’. 
2. Set 𝑥𝑥 = � − 1

𝑞𝑞
� 𝑚𝑚′ ∗ 𝑔𝑔 𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦 =  � 1

𝑞𝑞
� 𝑚𝑚′ ∗ 𝑓𝑓. 

3. Set 𝑒𝑒 =  −{𝑥𝑥} 𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒′ =  −{𝑦𝑦}. 
4. Compute signature 𝑠𝑠  as 𝑠𝑠 = 𝑒𝑒𝑒𝑒 + 𝑒𝑒′𝑔𝑔. 

 
Algorithm 6: 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 

Input: Public key ℎ, message 𝑚𝑚, signature 𝑠𝑠, balancing vector 𝑏𝑏 and norm bound 𝑛𝑛 
Output: Status 0 or 1 

1. Map the input message to the hash function to obtain 𝑚𝑚’. 
2. Compute 𝑡𝑡 = (𝑠𝑠 ∗ ℎ) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞. 
3. Calculate Norm 𝑣𝑣 = min ( || 𝑠𝑠 + 𝑘𝑘1𝑞𝑞 , ( 𝑠𝑠 ∗ ℎ − 𝑚𝑚  ) +  𝑘𝑘2𝑞𝑞 || ) for 𝑘𝑘1, 𝑘𝑘2  ∊ 𝑅𝑅. 
4. If 𝑣𝑣 ≤ 𝑛𝑛 set the status as 0 (valid); otherwise, set it to 1 (invalid). 

 
 

IV. SYSTEM MODEL 
The hierarchical key derivation algorithm is applied to the end-user side and does not require any 

modification to the other users in the network. The seed value is a generic English sentence that can be remembered 
easily without storage in any electronic device. The polynomial generator accepts the seed value input and generates 
the secret polynomials 𝑓𝑓 and 𝑔𝑔 for each user with a highest polynomial degree of 𝑁𝑁 − 1. ℎ𝑓𝑓𝑙𝑙  𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑓𝑓𝑟𝑟 denote the 
left and right half values of ℎ𝑓𝑓. ℎ𝑔𝑔𝑙𝑙  𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑔𝑔𝑟𝑟 denote the left and right half values of ℎ𝑔𝑔.ℎ𝑐𝑐𝑐𝑐𝑙𝑙  𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑐𝑐𝑐𝑐𝑟𝑟 denote the 
left and right half values of ℎ𝑐𝑐𝑐𝑐. ℎ𝑐𝑐𝑐𝑐𝑙𝑙  𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑐𝑐𝑐𝑐𝑟𝑟denote the left and right half values of ℎ𝑐𝑐𝑐𝑐. 

 

 
Fig. 1. Master key generation 

To create a key, the user chooses the public parameters 𝑁𝑁, 𝑝𝑝, and 𝑞𝑞 and generates polynomials 𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔 
from the seed phrase. The master keys and chain code are generated using 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 which is presented as 
Algorithm 7. The master key generation algorithm computes the master private key values 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚, the 
master public key value 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚ℎ, and the master chain code values 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚 and 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚. Fig. 1 illustrates the master 
key generation process. The generated keys and chain codes are 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 (𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔)  →  𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚 , 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔)  →  𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚, 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑘𝑘𝑘𝑘𝑘𝑘 →  𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚ℎ 
The child keys and chain code values are generated using 𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖_𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾, which is presented as Algorithm 

8, by sending master key input(𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚, 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚, 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚, 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚)/parent key input(𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐, 𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐, 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐 , 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐)  and the 
index number of child node 𝑖𝑖 The child key generation algorithm computes the child private key values𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐 and 



𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐, the child public key value 𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐ℎ, the child chain code values 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐 and the child chain code 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐. Fig. 2 
illustrates the child key generation process. The generated keys and chain codes are 

𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 (𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔) →  𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐 , 𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐 
𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔) →  𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐 , 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐 

𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑘𝑘𝑘𝑘𝑘𝑘 →  𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐ℎ 

 

 
Fig. 2. Child key generation 

Algorithm 7: 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴_𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲 
Input: Polynomials 𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔 and parameters 𝑁𝑁, 𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎 𝑞𝑞 
Output:𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚, 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚, 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚 , 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚ℎ 

1. Reset 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and initialize it to 0. 
2. Compute ℎ𝑓𝑓 = HashFunc (𝑓𝑓 ||  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ) and split ℎ𝑓𝑓 into ℎ𝑓𝑓𝑙𝑙 𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑓𝑓𝑟𝑟. 
3. Check that ℎ𝑓𝑓𝑙𝑙 is invertible, gcd(ℎ𝑓𝑓𝑙𝑙, 𝑝𝑝) =  1 and gcd(ℎ𝑓𝑓𝑙𝑙 , 𝑞𝑞) =  1; if any condition fails then 

increment 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and repeat step 2. 
4. Assign 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚 =  ℎ𝑓𝑓𝑙𝑙. 
5. Assign 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚 =  ℎ𝑓𝑓𝑟𝑟. 
6. Reset 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and initialize it to 0. 
7. Compute ℎ𝑔𝑔 = HashFunc (𝑔𝑔 ||  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) and split g𝑓𝑓 into 𝑔𝑔𝑔𝑔𝑙𝑙  𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔𝑔𝑔𝑟𝑟. 
8. Check that ℎ𝑔𝑔𝑙𝑙  is invertible, gcd( ℎ𝑔𝑔𝑙𝑙 , 𝑝𝑝) =  1 and gcd(ℎ𝑔𝑔𝑙𝑙𝑙𝑙 , 𝑞𝑞) =  1; if any condition fails then 

increment 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and repeat step 7. 
9. Assign 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚 =  ℎ𝑔𝑔𝑙𝑙. 
10. Assign 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚 =  ℎ𝑔𝑔𝑟𝑟. 
11. Invoke key generation algorithm 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚ℎ = 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚 , 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚, 𝑁𝑁, 𝑝𝑝, 𝑞𝑞). 

Algorithm 8: 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪_𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲 
Input: 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚, 𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚, 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚 , 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚 and child index 𝑖𝑖  
Output: 𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐, 𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐, 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐 , 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐ℎ 

1. Reset 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and initialize it to 0. 
2. Compute ℎ𝑐𝑐𝑐𝑐 = HashFunc (𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚 || 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚 ||  𝑖𝑖  ||  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) and split ℎ𝑐𝑐𝑐𝑐 into ℎ𝑐𝑐𝑐𝑐𝑙𝑙 𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑐𝑐𝑐𝑐𝑟𝑟. 
3. Check that ℎ𝑐𝑐𝑐𝑐𝑙𝑙  is invertible, gcd(ℎ𝑐𝑐𝑐𝑐𝑙𝑙, 𝑝𝑝) =  1 and gcd(ℎ𝑐𝑐𝑐𝑐𝑙𝑙, 𝑞𝑞) =  1; if any condition fails then 

increment 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and repeat step 2. 
4. Assign 𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐 =  ℎ𝑐𝑐𝑐𝑐𝑙𝑙. 
5. Assign 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐 =  ℎ𝑐𝑐𝑐𝑐𝑟𝑟. 
6. Reset 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and initialize it to 0. 
7. Compute  ℎ𝑐𝑐𝑐𝑐 = HashFunc (𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚 || 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚 ||  𝑖𝑖  ||  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) and split ℎ𝑐𝑐𝑐𝑐 into ℎ𝑐𝑐𝑐𝑐𝑙𝑙  𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑐𝑐𝑐𝑐𝑟𝑟.  



8. Check that ℎ𝑐𝑐𝑐𝑐𝑙𝑙  is invertible, gcd(ℎ𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙 , 𝑝𝑝) =  1 and gcd(ℎ𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙 , 𝑞𝑞) =  1; if any condition fails then 
increment 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and repeat step 7. 

9. Assign 𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐 =  ℎ𝑐𝑐𝑐𝑐𝑙𝑙. 
10. Assign 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐 =  ℎ𝑐𝑐𝑐𝑐𝑟𝑟. 
11. Invoke key generation algorithm 𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐ℎ = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡_𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 (or) 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁_𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 is invoked only for the root node, and 𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖_𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 is invoked for the internal and leaf 
nodes. The chain code is used to break the link from the master key and child key. The polynomial private keys 
(𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔) that are generated from 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 and 𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖_𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 are evaluated with the extended Euclidean 
algorithm for invertibility. The extended Euclidian algorithm determines the greatest common divisor (GCD) of 
two polynomials and returns the GCD value. For ternary polynomials, the input trits are converted into binary 
values before invoking the hash function. The SHA256 algorithm is used to find a hash value in the key generation 
process based on the EESS recommendation [57]. The lengths of the input random polynomials vary, and the output 
of SHA256 is always 256 bits. The binary value of each octet (8 bits) is converted into its equivalent ternary value 
with a length of 6 trits. Therefore, the hashed output length is 192 trits, and polynomials 𝑓𝑓 and 𝑔𝑔 are each 96 trits 
long. Similarly, the index value 𝑖𝑖 is converted into a ternary value before invoking the key generation function. 

The child index number is represented as (𝑟𝑟/1, 𝑟𝑟/2, 𝑟𝑟/3 … 𝑟𝑟/𝑘𝑘) when depth = 2 or level = 1, where 𝑟𝑟 
represents the root node and 1,2,3 … 𝑘𝑘 represent children of the root node (depth = 1 or level = 0), as shown in Fig. 
3. Index numbers (𝑟𝑟/1/1) and (𝑟𝑟/1/2) represent the 1st and 2nd children, respectively, from a parent (𝑟𝑟/1). The 
depth of a tree can grow according to user requirements. The child index number is encoded into trinary values 
before it is fed into HashFunc. If the user requests the generation of a child key (𝑟𝑟/2/1), then the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 
algorithm is invoked one time to derive (r) from random polynomials. 𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖_𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 is called twice: first, to 
derive (𝑟𝑟/2) from (𝑟𝑟) and second, to derive (𝑟𝑟/2/1) from (𝑟𝑟/2). Out of these three derivations, the public key is 
derived only for a child (r/2/1) and not for r or r/2. By setting req_depth to 3 (req_depth = 3), the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 
and 𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖_𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 algorithms ignore the public key generation process for (𝑟𝑟) and (𝑟𝑟/2)  nodes. Similarly, if the 
user requests (𝑟𝑟/1/1/1) node keys, req_depth is set to 4 (req_depth = 4), and the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 and 
𝐶𝐶ℎ𝑖𝑖𝑖𝑖𝑖𝑖_𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 algorithms ignore the public key generation process for nodes (𝑟𝑟), (𝑟𝑟/1) and (𝑟𝑟/1/1) and generate 
a public key only for (𝑟𝑟/1/1/1). 

 
Fig. 3. Node index numbers 

The advantages of the proposed LB-HDKG scheme are as follows: 1) User privacy is guaranteed by linking 
new public addresses in every incoming transaction. 2) Chain code is used to derive child keys and hide the 
properties of the private key from lower-level keys for increased security. 3) A seed phrase alone is required as 
input to derive the whole tree structure. 4) Users need not worry about key damage, loss, or storage management. 
5) Lower-level public keys can be shared with trustless third-parties to maintain subtree accounts. 6) The scheme 
is secure against quantum computing. 7) It does not depend on any external system or user for key generation. 8) 
It is more efficient than the RSA and ECC algorithms. 

V. SECURITY ANALYSIS 
The security of the LB-HDKG system is evaluated based on the chosen  N value. The recommended value 

of  N is above 200 for moderate-level security and above 500 for high-level security. A system with a security level 



of 80 requires approximately 10 to the power of 12 MIPS-years to break. Selecting large and relative prime values 
for 𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎 𝑞𝑞 increases the security level of the system [55], [56]. 

Using the combinatorial method, the attacker can recover private keys 𝑓𝑓 and 𝑔𝑔 from public value ℎ or 
random value 𝑟𝑟. Similarly, the attacker attempts to recover message 𝑚𝑚 from encrypted message 𝑒𝑒 since the secret 
polynomials 𝑓𝑓 and 𝑔𝑔 fall under space 𝑁𝑁 ∗ 𝑁𝑁. The security against the combinatorial technique for binary 

polynomials is greater than or equal to  
�𝑁𝑁/2

𝑑𝑑/2�

√𝑁𝑁
. The security against the combinatorial technique for ternary 

polynomials is greater than equal to �𝑁𝑁/2
𝑑𝑑/2�  /√𝑁𝑁. Private values 𝑓𝑓 or 𝑔𝑔 can be recovered from public value ℎ or 𝑒𝑒 

using the combinational technique when the correct parameters are not chosen. 
If the private key  =  1 + 𝑝𝑝𝑝𝑝 (F is a small polynomial) or 𝑓𝑓 =  1 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝), then the lattice attack on 𝑓𝑓 is 

equivalent to SVP. SVP is NP-hard under the randomized reduction hypothesis. If the private key satisfies 𝑓𝑓 ! =
 1 + 𝑝𝑝𝑝𝑝, then a lattice attack on 𝑓𝑓 is equivalent to CVP and is as hard as SVP. The security level of this 𝑓𝑓 = 1 +
𝑝𝑝𝑝𝑝 form can be represented with 𝑎𝑎 =  𝑁𝑁/𝑞𝑞 and c = √(4𝜋𝜋𝜋𝜋 || 𝑓𝑓 || || 𝑔𝑔|| 𝑞𝑞). The breaking time increases when 
increasing the value of c with constant (a, N), and the breaking time increases exponentially when increasing the 
value of N with constant (a, c). 

Secret message 𝑚𝑚 is encrypted with random polynomial 𝑟𝑟 and public polynomial ℎ in Algorithm 2. 

𝑒𝑒(𝑚𝑚) = 𝑟𝑟 ⊛  ℎ + 𝑚𝑚 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞)   … (3) 

The attacker knows the values of ℎ and 𝑒𝑒(𝑚𝑚) and tries to recover 𝑚𝑚 with a different combination of random 
values 𝑟𝑟. The attack can be avoided by choosing a sufficiently large 𝑚𝑚 by adding extra padding bits. For better 
security, the parameter 𝑑𝑑 (as small as possible) is set to have a minimum number of 1’s in trinary polynomials 𝑓𝑓 
and 𝑚𝑚.  

A. Child private key recovery from the parent’s private key 
Loss of the parent's private key does not compromise the remainder of the tree. The private key is used for 

digital signatures and to transfer the ownership of financial holds in the blockchain. The private key can be revealed 
to the attacker by any means, but the chain code is never revealed to the outside for any purpose. The attacker 
cannot derive the child keys from the private key alone. The chain code helps regenerate the child's private key in 
the future whenever the user transfers ownership and helps avoid compromising the remainder of the tree or the 
child's private keys. 

B. Private key recovery from a public key 
The security of LB-HDKG depends on the recovery of shorter master private keys (𝑓𝑓 and 𝑔𝑔) from a public 

basis B of the master lattice: 

𝐵𝐵 = �𝑞𝑞𝐼𝐼𝑁𝑁 0𝑁𝑁
𝐻𝐻 𝐼𝐼𝑁𝑁

� 

where 𝐼𝐼𝑁𝑁 is an identity matrix with 𝑁𝑁 ∗ 𝑁𝑁 dimensions, 0𝑁𝑁 is a zero matrix with 𝑁𝑁 ∗ 𝑁𝑁 dimensions and 𝐻𝐻 is a circular 
matrix that corresponds to public key ℎ. The attacker attempts to locate the shortest vector on a public basis  that 
corresponds to secret values 𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔. The attacker chooses 𝑁𝑁′ less than N and builds 𝐵𝐵′ with 𝑁𝑁′ and 𝐻𝐻′. 

𝐵𝐵′ = �
𝑞𝑞𝐼𝐼𝑁𝑁′ 0𝑁𝑁
𝐻𝐻′ 𝐼𝐼𝑁𝑁′

� 

where 𝐻𝐻′ is a truncated matrix of 𝐻𝐻. The attacker removes matrix B' from the center of matrix B. The attacker 
repeats the process until all N'of 𝑞𝑞 vectors are removed. Greater than k' bits of effort can be used to reduce the 
original lattice B'. Optimally choosing N' and k' for reduction, the problem is equivalent to a meet-in-the-middle 
search. Finding N' and k' is hard, and the master private key cannot be recovered from a public basis  B . Choosing 
relatively small 𝑓𝑓 and 𝑔𝑔 compared to  N  is important to avoid recovery of the private key from the public key. In 
our scheme, the hashed output size is reduced to ½ for both polynomials 𝑓𝑓 and 𝑔𝑔. For a security level of 𝑘𝑘 = 80, 
the parameter  N  is chosen as a prime number that exceeds 3𝑘𝑘(𝑁𝑁 > 3𝑘𝑘). When 𝑁𝑁 = 251, the sizes of 𝑓𝑓 and 𝑔𝑔 
needed to be less than 251. The output of hash function SHA256 is split into 2 halves as the master private key 
(128 bits) and the chain code (128 bits). In the case of ternary polynomials, each octet (8 bits) is converted into 6 
trits. The 256 bit (32 octets) output of SHA256 is reduced to 192 trits (32 octets * 6 trits). By splitting the 192 
converted trits into 2 halves, we obtain 96 trits for private keys and 96 trits for the chain code. Therefore, the sizes 



of 𝑓𝑓 and 𝑔𝑔 are always less than 251 or smaller than  N . As a result, it is infeasible to recover smaller 𝑓𝑓 and 𝑔𝑔 from 
 using the reduction method. 

C. Master/parent key recovery from the child keys 
The security of the master key relies on the difficulty of learning short polynomials 𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚 and 𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚  from 

the child keys. The child node’s private key is derived from a partial value of the master private key. The private 
keys are derived after hashing the master private key to avoid upstream key exposure or master key recovery. In 
the hierarchical derivation, upstream key exposure is a way of obtaining knowledge of parent key values from the 
known child key values. Two chain codes for each polynomial 𝑓𝑓 and 𝑔𝑔 are used to eliminate the relation between 
the master private keys and child keys. Child private key pricf is derived from the hashed value of master private 
key primg,  and master chain code CCmg. Child private key pricg is derived from the hashed value of master private 
key primf and master chain code 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚. The master keys are completely masked in child key derivation. Therefore, 
the attacker cannot obtain any knowledge from one secret value 𝑓𝑓 or 𝑔𝑔 Decryption failure can be avoided by adding 
extra bits with input for padding [58]. Various attacks of NTRU, such as hybrid attacks, ternary linear cryptanalysis, 
meet-in-the-middle attacks, and invariant attacks, are avoided by choosing the correct parameters [59-61]. 
Therefore, the security of the system depends solely on the hash function and parameter selection [62]. Table I 
presents the security level of NTRU with basic NTRU parameters [63] and the computation times for key 
generation, encryption, and decryption. Table II presents the security level of NTRU with basic NTRU parameters 
and the computation times of signature generation and verification. Few researchers have also proposed algorithms 
to restrict attacks in the physical layer [64].  

Table I 
Computation times for key generation, encryption, and decryption 

N p q Security 
level 
(bits) 

Key 
generation 

(msec) 

Encryption 
(msec) 

Decryption 
(msec) 

251 2 197 80 62.2 4.23 21.53 

347 2 269 112 146.18 6.72 33.3 

397 2 307 128 192 9.11 49.37 

587 2 439 192 418.51 13.09      79.21 

787 2 587 256 767 23.38 10.64 

 

Table II 
Computation times for signature generation and verification 

N q Security level 
(bits) 

Signature 
generation 

(msec) 

Signature 
verification 

(msec) 
157 256 80 3.17 1.567 

197 256 112 4.56 2.78 

223 256 128 5.78 3.52 

313 512 192 14.98 7.91 

349 512 256 26.8 10.786 

 

VI. PERFORMANCE ANALYSIS 
In this section, we present a detailed comparison of the computation times for the key generation, 

encryption/decryption, and signature/verification processes of ECC and NTRU. Then, we compare BIP32 and LB-
HDKG and present the computation times of our proposed LB-HDKG master key generation and child key 



generation processes. The performance of the system is examined on a 2.30 GHz Intel Core operating system under 
Windows. Unoptimized Python code is implemented for ECC and NTRU key generation, encryption/decryption, 
signature/verification, and LB-HDKG. The computation times include the initialization of parameters, hashing, 
primitive polynomial operations for the extended Euclidean algorithm, encoding, and key generation process. 

 

 
Fig. 4. Comparison of computation time for key generation between ECC and NTRU 

The sizes of the private key and public keys are approximately equal in ECC and extremely different in 
NTRU. The value of 𝑁𝑁 is chosen based on the requirement of security level 𝑘𝑘 namely, 𝑁𝑁 should exceed 3𝑘𝑘. 

 
 

Fig. 5. Comparison of computation time for encryption between ECC and NTRU  



 
 

Fig. 6. Comparison of the computation time for decryption between ECC and NTRU  
The public key size depends on the parameter 𝑁𝑁 that is, the size of ℎ is 𝑁𝑁/(𝑁𝑁 − 𝑘𝑘) 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝑞𝑞 –  𝑡𝑡𝑡𝑡 − 1 [57]. Fig. 4. 
illustrates the comparison of computation time (msec) of ECC and NTRU key generation for security levels 8, 112, 
128, 192 and 256. Fig. 5 illustrates the comparison of computation time (msec) of ECC and NTRU encryption, and 
Fig. 6 illustrates the comparison of computation time (msec) of ECC and NTRU decryption for various security 
levels 8, 112, 128, 192 and 256. 

 

 
Fig. 7. Comparison of the computation times for ECC signature and verification with those for NTRU signature 

and verification 
The computation times for ECC, NTRU signature, and verification are compared in Fig. 7. The figure 

presents the computation times for signature/verification for security levels 8, 112, 128, 192 and 256. The results 



demonstrate that NTRU is faster than ECC for all security levels. Table III compares BIP32 with the proposed LB-
HDKG scheme. 

Table III 
Comparison of hierarchical key generation schemes 

 
Characteristics 

 
BIP32 

 
LB-HDKG 
 

Approach 
 

Asymmetric Asymmetric 

Based on Elliptic curve 
key generation 

Lattice-based 
NTRU 

Public key size 
 

Small Large 

Complexity of 
public key 
generation 
 

𝑂𝑂(𝑁𝑁4) 𝑂𝑂(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑁𝑁) 

Mathematical 
problem 
 

Elliptic curve 
discrete 
logarithm 

Short vector 
problem/closest 
vector problem 

Operations Scalar point 
addition and 
multiplication 

Polynomial 
multiplication 
over a ring 

Security 
 

High Very high 

Quantum 
Resistance 
 

No Yes 

Advantages Short public 
key 
 

High speed, 
high security, 
and quantum 
resistance 
 

Disadvantages Requires more 
computation 
time and 
breakable by 
quantum 
computers 
 

Large public 
key size and 
security 
depends on 
parameter 
selection 

 
The minimum computation time for the master key generation process is approximated using Eqn. (4). 

Equations (5), (6), and (7) are used to approximate the minimum computation time for child key generation, where 
Mt represents the minimum time for master key generation,  Ckt represents the minimum time for child key 
generation at level 𝑚𝑚, ℎ𝑡𝑡 represents the time for generating the hash, 𝐾𝐾𝑡𝑡  represents the time for generating public 
key ℎ from secret polynomials 𝑓𝑓 and 𝑔𝑔, 𝑃𝑃𝑡𝑡 represents the time for polynomial generation from the seed, and Et 
represents the time for the encoding (ternary to binary) and decoding (binary to ternary) process. The approximate 
minimum time for the key generation process can be expressed as 

𝑀𝑀𝑡𝑡 ≃ ( 2 ∗ ℎ𝑡𝑡  ) + 𝐾𝐾𝑡𝑡 + 𝑃𝑃𝑡𝑡 … (4) 
𝐶𝐶1𝑡𝑡 ≃ ( 2 ∗  ℎ𝑡𝑡) + ( 2 ∗ ℎ𝑡𝑡)+ 𝐾𝐾𝑡𝑡  +  𝑃𝑃𝑡𝑡 +  𝐸𝐸𝑡𝑡 … (5) 

𝐶𝐶2𝑡𝑡 ≃  2 ∗ ℎ𝑡𝑡 +( 2 ∗  ℎ𝑡𝑡) + ( 2 ∗  ℎ𝑡𝑡) +  𝐾𝐾𝑡𝑡 + 𝑃𝑃𝑡𝑡 +  𝐸𝐸𝑡𝑡 … (6) 

From (5) and (6), the general form for child key generation can be expressed as 

𝐶𝐶𝐶𝐶𝑡𝑡 ≃   (𝑚𝑚 + 1 ) ∗ ( 2 ∗  ℎ𝑡𝑡) + 𝐾𝐾𝑡𝑡 + 𝑃𝑃𝑡𝑡 +  𝐸𝐸𝑡𝑡 … (7) 



For the same set of parameters 𝑁𝑁, 𝑝𝑝, and 𝑞𝑞, the computation time for master key generation differs based on the 
seed value. Similarly, time variance may be possible for child nodes at the same level since the polynomials 𝑓𝑓 and 
 g are obtained from the hashed output. If the polynomial  f is not invertible, the private key is recomputed by 
adding extra padding bits to the input of the hashing function. The complexity of public key generation from the 
private key and chain code is 𝑂𝑂(𝑁𝑁 𝑙𝑙𝑙𝑙𝑙𝑙 𝑁𝑁) for N-degree polynomials without consideration of the padding 
complexity. 

Table IV 
LB-HDKG master key generation and child key generation 

 
Fig. 8. Comparison of LB-HDKG master key generation and LB-HDKG child key generation 

Table IV presents the computation times of the LB-HDKG master key generation and child key generation 
algorithms. Fig. 8 presents the measured execution times for master key generation and child key generation for 
various values of N. The child key generation process includes the time that is needed to find a child position based 
on the index and path for the child key. The times that is required is approximately equal for all children at the 
same level. A smaller variance of time at the same level may occur due to the noninvertibility of  f from the hashing 
output. The results demonstrate that increasing the tree level will not increase the key generation time. The public 
key is not derived for all parent/master nodes; it is derived only for the child node with the index that is passed in 
the input. We can omit the public key derivation process from the root to the parent of the child node. Additionally, 
if the user provides the original parent’s private keys along with the new child index, the keys are derived from the 
original parent instead of the root. The presented result includes the time that is required for deriving keys from the 
root node to the child node. 

VII. CONCLUSIONS 
Blockchain has been considered a promising technology for adaption from a centralized system to an 

immutable decentralized system. To increase user privacy and reduce energy consumption, we proposed an 
efficient, privacy-preserving, and quantum-resistant hierarchical deterministic key generation algorithm. The 

N Master key 
generation 

(msec) 

Child key 
generation (Level 1) 

(msec) 

Child key 
generation (Level 2) 

(msec) 

Child key 
generation (Level 3) 

(msec) 

11 98.2 101.53 120.62 129.31 

53 104.62 111.31 124.61 136.32 

251 159.27 178.98 199.22 203.84 

347 281.61 293.81 305.42 306.71 

449 352.22 378.44 395.43 410.82 



proposed hierarchical key generation algorithm uses a lattice-based NTRU cryptosystem and efficiently generates 
numerous keys to avoid user privacy leaks without key management overhead. The lattice-based key generation 
algorithm is efficient, quantum-safe, and highly suitable for distributed systems. The security analysis of our 
scheme shows that upstream key exposure is not possible, and the performance analysis shows that the computation 
time for the proposed scheme is less than those of RSA and ECC. The proposed model can be applied to distributed 
systems, public storage systems, and cloud storage systems, among other systems. However, parameter selection 
is considered to be a crucial factor when the NTRU cryptosystem is implemented in real time. 
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