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Machine Learning-based Efficient and Secure RSU
Placement Mechanism for Software Defined-IoV

Sudha Anbalagan, Ali Kashif Bashir, Senior Member, IEEE, Gunasekaran Raja, Senior Member, IEEE,
Priyanka Dhanasekaran, Geetha Vijayaraghavan, Usman Tariq, Mohsen Guizani, Fellow, IEEE

Abstract—The massive increase in computing and network
capabilities has resulted in a paradigm shift from vehicular
networks to the Internet of Vehicles (IoV). Owing to the dynamic
and heterogeneous nature of IoV, it requires efficient resource
management using smart technologies such as Software Defined
Network (SDN), Machine Learning (ML), and so on. Road Side
Units (RSUs) in Software Defined-IoV (SD-IoV) networks are re-
sponsible for network efficiency and offer several safety functions.
However, it is not viable to deploy enough RSUs, and also the
existing RSU placement lacks universal coverage within a region.
Further, any disruption in network performance or security
impacts vehicular activities severely. Thus, this work aims to
improve network efficiency through optimal RSU placement and
enhance security with a malicious IoV detection algorithm in an
SD-IoV network. Therefore, the Memetic-based RSU (M-RSU)
placement algorithm is proposed to reduce communication delay
and increase the coverage area among IoV devices through an
optimum RSU deployment. Besides the M-RSU algorithm, the
work also proposes a Distributed ML (DML)-based Intrusion
Detection System (IDS) that prevents the SD-IoV network from
disastrous security failures. The simulation results show that
M-RSU placement reduces the transmission delay. The DML-
based IDS detects the malicious IoV with an accuracy of 89.82%
compared to traditional ML algorithms.

Index Terms—Internet of Vehicles, Machine Learning, Soft-
ware Defined Network, RSU Placement, Intrusion Detection
System.

I. INTRODUCTION

Recent advances in the Internet of Things (IoT) technology
have introduced a wide variety of processing devices like
cameras, sensors, GPS, etc. Such sensors embedded in vehicles
collect road information to communicate with other vehicles
and have contributed to the advent of the Internet of Vehicles
(IoVs) [1]. According to Gartner [2], the net global increase of
autonomous vehicles will hit 7,45,705 units by 2023. By 2025,
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the massive economic impact produced by IoV has projected
between $210 and $740 billion annually.

The exponential growth in computing and communication
systems for IoV enables driving assistance and information
sharing among them [3]. Besides, smart technologies like
Virtual Reality (VR), and self-driving based applications,
process large amounts of data, requiring a high degree of
network processing and communications. Such delay-sensitive
and high computation demand a new orientation in designing
vehicular networks. These demands can be readily satisfied
using future technologies like Distributed Machine Learning
(DML), Software Defined Networking (SDN), and so on
[4]. Software Defined-IoV (SD-IoV) meets high computing
demands by providing flexibility in network management
and data communication control. In SD-IoV, the data and
control planes are separated with the aid of a centralized SDN
controller [5].

Apart from network flexibility, performance plays a vi-
tal role in improving the Quality of Service (QoS) [6]. In
the SD-IoV network, there are two modes of communica-
tion, namely: Vehicle-to-Vehicle (V2V) communication and
Vehicle-to-Infrastructure (V2I) communication [7]. Road Side
Units (RSUs) in SD-IoV are infrastructure nodes used for
communicating information such as road hazard alerts, traffic,
or weather updates to the vehicles. RSUs play a significant
role in V2I communications as follows: i) distributing vital
information to vehicles, (ii) transmitting received messages
to specific recipients, and (iii) offering internet access to the
vehicles in their range [8].

However, RSU needs high installation cost and maintenance
cost in the IoV environment, demanding a balance between
network coverage and deployment costs [9]. Especially in
urban cities, massive deployment of RSUs can be very costly
to efficiently cover the entire geographical area. Thus, RSU
deployment critically impacts Capital Expenditure (CapEx)
and Operational Expenditure (OpEx). Moreover, the delay in
IoV depends on the number and location of available RSUs
in the network [10].

Also, security is a vital aspect of the design of an IoV
network. In SD-IoV, vehicles distribute traffic safety warnings
to other vehicles, and any security breach results in catas-
trophic losses [11]. Also, compromised vehicles degrade the
performance by sending false information to the network and
RSU or disclose critical information to the attackers. Thus it
is crucial to detect the security violation by vehicles at the ear-



liest. Motivated by this finding, the proposed RSU placement
algorithm provides sufficient coverage with a limited number
of RSUs. It improves network performance by reducing the
transmission delay of vehicular communication. Further, the
proposed DML-based Intrusion Detection System (IDS) in
the SDN actively detects the malicious IoV and protects the
network.

The contributions of this article are summarized as follows:
• An efficient Memetic-based RSU (M-RSU) placement al-

gorithm for SD-IoV is proposed to minimize the network
transmission delay. On average, the M-RSU algorithm
reduces the delay by 42% and 11% compared with D-
RSU [12] and GARSUD [13] algorithms, respectively.

• The M-RSU placement algorithm is also enhanced using
the received signal strength to avoid signal degradation
in urban areas, thereby improving the overall deployment
coverage.

• An efficient DML-based IDS is also proposed to de-
tect vehicles’ malicious activity with high accuracy and
less false alarms. The detection accuracy of the IDS is
89.82%, thus offering a secure SD-IoV network.

The rest of this paper is structured as follows: Section
II discusses the existing literature related to RSU placement
and ML-based IDS for SD-IoV. The overview of the SD-IoV
and the necessary preliminaries are presented in Section III.
The M-RSU placement algorithm is detailed in Section IV.
Section V discusses the DML-based IDS used in the SD-IoV.
Implementation and result analysis are provided in Section VI.
Finally, the work is concluded in Section VII.

II. RELATED WORK
Machine Learning can mine knowledge from the given data

and then use the acquired knowledge to control an agent’s ac-
tions. ML strategies are majorly used in data-driven problems
like optimization, classification, and so on [14]. IoV devices
produce large quantities of data, and thus data-driven ML-
based analytics aids in efficiently and securely managing the
resources in the network [12]. Moreover, the optimal location
for infrastructure like RSU in the IoV network is crucial, as
RSUs deployed in a region with low vehicle coverage lead to
under-utilization of available network resources.

In [15], DynLim is proposed, which uses a profit density
function to maximize the RSU’s utility and Integer Linear
Programming (ILP) model to minimize the delay in a high-
way scenario. When this technique is applied to the urban
environment, however, there is a deterioration of the network’s
performance. This problem is alleviated in [16] using a utility-
based deployment model that aids in delay-tolerant applica-
tions. However, this model is not suitable for low vehicle
density, as the transmission delay increases due to multi-hop
communication between the vehicles.

Some of the literature works approach the RSU placement
problems mathematically. In [17], the RSU placement problem
is treated as the shortest path problem and solved using the
ILP model. In [18], the placement uses a mathematical model
based on the relationship between the delay and distance

between RSUs. Bio-inspired algorithms, a branch of artificial
intelligence, are also used for RSU placement optimization.
For example, in [13], [19], the preliminaries of bio-inspired
algorithmic operations like crossover, mutation, and replace-
ment are discussed in detail and use a genetic algorithm to
optimize the RSU placement of a fitness function based on
message delay. A particle swarm optimization technique is
used to minimize the deployment cost of both RSU and sensor
nodes [20]. However, this RSU placement technique does not
address the cross-layer challenges in a hybrid network. The
authors used delay bounds, end-to-end backlog [21], and delta
network parameters [22] as an efficiency measure of RSU
placement to evaluate the QoS.

Concerning the security of IoV, various works based on
cyber-physical systems like anomaly detection and IDS are
proposed. Game-theory models are used to design IDS but
lead to high computation complexity [23]. Alternatively, ML-
based algorithms like logistic regression [14], naive bayes [24]
are frequently used in IDS. Furthermore, the reputation and
rule-based anomaly detection suffer from high false alarm
generation and detect only the known attacks [25]. Support
Vector Machine (SVM)-based IDS detects the attacks with
high detection accuracy but requires high computational power
[26]. In [27], the IDS state gets switched between active and
idle using the Bayesian method to conserve power. In an
idle state, however, the IDS cannot detect attacks and lead
to a security loop-hole. Alternatively, [28] uses a hybrid ML
approach by combining SVM and dolphin swarm optimization
to detect network attacks, but such approaches are computa-
tionally complex.

To summarize, most of the existing RSU placement al-
gorithms suffer from poor network performance and lack
applicability towards versatile road scenarios. The existing IDS
are predominantly in-vehicle IDS and therefore have a low de-
tection accuracy due to less computational power and storage.
The SD-IoV mitigates these problems through a combination
of efficient RSU placement and DML- based IDS. The RSU
placement algorithm optimizes network performance through
improved coverage and reduced transmission delay. DML-
based IDS detects the malicious activity of nodes thereby
securing the network.

III. SOFTWARE DEFINED-IOV FRAMEWORK
OVERVIEW

IoV technology in Intelligent Transportation Systems (ITS)
improve road safety, traffic management, and infotainment
applications. But, IoV has its challenges like high mobility,
dynamic network topology, and so on. SDN is suitable for the
dynamic nature of IoV by providing flexible routing among
RSUs. Furthermore, the SD-IoV can provide increased uptime
because an SDN controller manages the RSUs in the IoV
through programmable routing protocols. Additionally, net-
work efficiency can be enhanced by optimally placing RSUs,
and this is a non-trivial task in an urban vehicular environment.
Apart from the optimal placement of RSUs, it is equally
important to detect compromised vehicles swiftly and secure
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Fig. 1: System model of SD-IoV

the SD-IoV from catastrophic failures. These problems are
addressed using the proposed M-RSU placement and DML-
based IDS for SD-IoV. The proposed system model is, as
shown in Fig. 1. The frequently used notations are listed in
Table I.

A. Mobility Model

The vehicles in IoV are assumed to follow the Non-
Homogeneous Poisson Process (NHPP) because of multiple
peak hours in a city. The vehicular mobility is modeled as
an NHPP with an arrival rate of λ(t) where t ≥ 0. The
number of vehicles in road segment RS of length L at time t
is represented as N(L, t) and the expected number of vehicles
m(L, t) in RS at time t is

m(L, t) = E(N(L, t)) =

∫ t

0

λ(x)dx (1)

The probability of n vehicles at time t in RS of length L is

P{N(L, t) = n} = [m(L, t)]n

n!
e−m(L,t) (2)

Let Dv be the transmission range of the vehicles and the
probability there are no vehicles within Dv is expressed from
Eq. (2) as

P{N(Dv, t) = 0} = e−m(Dv,t) (3)

TABLE I: List of Notations Used

Symbol Description
t Time
λ(t) Arrival rate
L Length of road segment
N(L, t) Number of vehicles at time t
m(L, t) Expected number of vehicles at time t
Dv Transmission range of vehicles
Ps Probability of successful multi-hop transmission
Pf Probability of failure multi-hop transmission
ρ0,n Transmission delay for n vehicles
λp Arrival rate of a packet
µ Service rate of the channel
ρr Average delay for V2I transmission
p Packet size
R Data rate of the channel

The transmission succeeds if there are vehicles in its transmis-
sion range Dv , that is capable of establishing V2V communi-
cation directly. Otherwise, the vehicles carry the message until
the end of the road segment. For a road segment of length L,
the multi-hop transmission succeeds if they are within each
other’s transmission range. As per Eq. (3), each vehicle has
the probability P{N(Dv, t) = 0} to disconnect from the
V2V network. Let Ps be the successful multi-hop transmission
probability in RS of length L, which is expressed as

Ps = (1− e−m(Dv,t))
L

Dv (4)

Pf = 1− Ps (5)

where Pf represents the probability of failure of multi-hop
transmission in the road segment of length L. The transmission
delay for multi-hop transmission (ρ0,n) in RS of length L is
expressed as

ρ0,n = ρ0

n−1∑
k=1

P ks + Pf

n−1∑
k=1

P k−1
s

Dk,n

v
(6)

where ρ0, Dk,n and v represents the transmission delay
for one-hop communication, distance from kth vehicle to
nth vehicle and average speed of the vehicles respectively.
The vehicle that carries the message outside the deployed
RSU coverage uses Base Station (BS) to report the incident
(malicious activity or accident). Let us assume the packet’s
arrival rate (λp) and service rate of the channel (µ) follows
an exponential distribution. The carrier sense multiple access
mechanism is used, where the vehicle acquires the channel
after random back-off. Once the channel is acquired, each
vehicle begins message transmission, with a packet size of
p. The packets in the vehicle buffer is serviced as M/M/1
queuing model. The average waiting time of the packet in the
vehicle is expressed as

E[Wp] =
λp

µ(µ− λp)
(7)

The average delay (ρr) from vehicle to infrastructure is
obtained by including the packet transmission delay and is
expressed as

ρr = E[Wp] +
p

R
(8)

where E[Wp], p, R represents average waiting time, packet
size, and data rate respectively. Thus, the transmission at-
tributes are mathematically formulated based on the vehicular
mobility.

IV. M-RSU PLACEMENT MECHANISM

In SD-IoV, the RSU deployment’s goal is to maximize the
coverage area and minimize the message transmission delay.
The placement of RSU is an offline design to create a network
of RSUs in the urban IoV environment. Due to the low market
penetration of IoV vehicles and the high deployment cost of
RSUs, vehicular network design is generally restricted to use a
limited number of RSUs for a given region. The delay defined
in Eq. (6), (8) and coverage is incorporated in the memetic
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Fig. 2: RSU deployment in a 4 x 4 region

algorithm’s fitness function, which is further elaborated in this
section.

Let us consider a simple 4 × 4 road network for RSU
deployment, where each intersection is a potential candidate
location. Thus, there are 16 candidate locations for the RSU
deployment. If the RSUs are deployed at locations highlighted
in green, all the other locations are covered without any
overlap, as demonstrated in Fig. 2.

In urban road networks, the RSU coverage is affected by
the presence of obstacles such as buildings, trees, and so on.
The interference due to these obstacles can be measured using
a Received Signal Strength Indicator (RSSI) of the beacon
message from a vehicle and is used to determine the coverage
area of RSU. Thus, the RSU coverage area is the distance
range in square meters, within which the RSSI is above a given
threshold. This distance range is represented as a polygon (δ)
specifying its coverage distance from all the road segments
connecting it. If R number of RSUs available, then each RSU
(i) has its polygon (δi) that covers a specific range in a given
region in square meters. An efficient RSU placement strategy
optimizes the coverage area by minimizing its overlap among
RSUs. The coverage overlap of the RSU placement is the
overlap among all the polygons (Oδ) is expressed as

Oδ =

R∑
i=1

R∑
j=i+1

O(δi, δj) (9)

where O(δi, δj) represents the overlapped area (i.e., intersec-
tion) between polygon δi and δj in square meters. Therefore
the coverage (C1) of RSU placement in a given region is
expressed as

C1 =
δc −Oδ
Tc

(10)

where δc and Tc represents the total coverage area of all the
polygons and the size of the region that need to be covered,
respectively.

Another objective (C2) of RSU placement is to reduce the
transmission delay (ρr, ρ0,n) in reporting the incident. Let
us consider N number of scenarios (accident or malicious
activity) that occur in an urban road network. The delay
for V2V communication delay is calculated using the Eq.
(6) and Eq. (8) is used to calculate the V2I communication

Algorithm 1 M-RSU Placement Algorithm

Input: Possible Location L = L1, L2, L3, . . . , Lk, Number of
RSUs available R, Number of generation G, Offspring size n
Output: Set of R locations

1: Generate initial population of size G
2: αc, αm → Probability of crossover and mutation respec-

tively
3: βc, βm → Index of crossover and mutation respectively
4: γc, γm → Random number between 0 and 1
5: while G not reached do
6: for i = 1 to n do
7: Si = Selection(G)
8: end for
9: if γc > αc then

10: for i = 1 to n/2 do
11: βci = index(Diff(Si, Si+2))
12: βci+2= index(Diff(Si+2, Si))
13: S

′

i , S
′

i+2=crossover(Si, Si+2, βci, βci+2)
14: end for
15: end if
16: if γm > am then
17: for i = 1 to n do
18: βmi = index(Diff(S

′

i , Su))
19: βmu = index(Diff(Su, S

′

i))
20: S

′

i=mutation(S
′

i , Su, βmi, βmu)
21: end for
22: end if
23: Local search replacement (L)
24: for i = 1 to n do
25: if F

′

i > Fi then
26: Replace Si with S

′

i in the population
27: else
28: Si remains in the population and S

′

i rejected
29: end if
30: end for
31: end while
32: return the set of locations

delay. Thus, the objective function (C2) of this problem is
represented as

C2 = N.
100

N∑
i=1

(ρr(i) + ρ0,n(i))

(11)

Thus, by combining both objectives (C1 and C2) for solving
the RSU placement problem in an urban scenario, the Fitness
(F ) function of the memetic algorithm is formulated as

F =Max(w1C1 + w2C2) (12)

where the parameters w1 and w2 ranges from 0 to 1, which
governs the control over the function C1 and C2 respectively.

In the M-RSU placement algorithm, a bio-inspired solution
is used to efficiently place the RSUs in the given region, with k
candidate locations. The M-RSU placement algorithm chooses
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the optimal position for RSU deployment in a feasible time.
Input parameters for the M-RSU placement algorithm include
a set of possible candidate locations, number of RSUs to be
deployed, size of the offspring, and a number of generations.
The memetic algorithm is similar to the traditional genetic
algorithm but differs by incorporating local search to avoid
local optimum. The proposed M-RSU placement algorithm
uses the fitness function (F ), as given by Eq. (12), to place
RSU strategically by optimizing the RSU coverage area and
transmission delay. Steps 1 through 4 of Algorithm 1 specify
the initial solution space generated from the possible locations,
crossover and mutation probability, and their respective index
and random numbers, respectively. Step 7 selects the solutions
for M-RSU from the available population. The crossover
operation is performed from steps 9 through 15, where the
index of unique elements in each solution is obtained and
gets interchanged. Similarly, the mutation occurs from steps
16 to 22, replacing the solution’s element using a global set
of locations.

At step 23, the local search replacement function (L) re-
places the minimum δ value in the solution with the maximum
value in the global location for C1. The fitness value of
the solution obtained in each iteration is calculated. Step 25
indicates that if the maximum fitness value is present in the
current population, it is selected for the next generation. This
algorithm iterates until it reaches the specified number of
generations. The set of R locations are returned as output
from the M-RSU algorithm, thereby achieving maximum RSU
coverage with minimal transmission delay.

V. DISTRIBUTED MACHINE LEARNING BASED
IDS FOR SD-IOV

In centralized ML techniques, the network traffic of the
IoV network is monitored and sent to the centralized learning
node that trains the neural model. For DML, each node has
its network data and performs the ML steps to obtain its
model. The global model is obtained by aggregating the model
parameters of all the nodes in the network. The DML performs
data parallelism to reduce the storage space requirement of
IDS. The DML is scalable for large input datasets; as the
dataset increases, the system’s accuracy also increases.

The SD-IoV uses a DML-based IDS algorithm to detect
vehicles’ malicious activity by monitoring the network traffic
data. In the IDS, the RSUs receive the SDN’s global model
parameters and locally create the ML model using its training
data. The updated model parameter of RSUs is sent to the
SDN, where the model aggregation is performed, resulting
in a new global model. The process of DML continues
until the termination condition is reached. Thus, the DML
technique preserves training data privacy by exchanging the
model parameters instead of data and meets the storage and
computation demands of IDS.

Algorithm 2 of DML-based IDS receives the input as net-
work traffic data and outputs the model parameter or intrusion
detection alarm. In step 2, the SDN controller initializes the
set of weights ω0 for the global model. Step 3 to 10 iterates

Algorithm 2 DML-based IDS for SD-IoV

Input: Network traffic data
Output: Model parameter or Intrusion alarm

1: procedure SDN update:
2: Initialize ω0

3: for i = 1, 2, .., th do
4: m← max(R.C, 1)
5: Si= select random set of m RSUs
6: for each RSU k ∈ Si do
7: ωki+1 ← RSU update(k, ωi)
8: end for
9: ωi+1 ←

∑R
k=1

nk

n ω
k
i+1

10: end for
11: end procedure

12: procedure RSU update (k, ωi):
13: Pre-process and split the data into batches of size B
14: for i = 1, 2, ..t do
15: for each batch b ∈ B do
16: Build the model using received weights
17: Use the trained model in the IDS
18: if IDS in RSU detects intrusions then
19: Send Alarm()
20: end if
21: ω ← ω − η∇Fk(ω)
22: end for
23: end for
24: return ω to the SDN controller
25: end procedure

the updation of the global model up to the threshold (th). In
step 4, the random set of RSUs are selected, where R and C
represents the number of RSUs and C ∈ (0, 1] a hyperparam-
eter, respectively. In step 7, each RSU (k) receives the SDN
weights and therefore performs RSU update procedure. Step
9 completes the aggregation of model parameters (ωki+1) from
all the selected RSUs. Step 13 of the RSU update procedure,
pre-processes, and split the training data into batches of size
B. In steps 14 to 23, each selected RSU iterates up to local
epoch (t), thereby building the model based on the received
weights and local training data. From step 17 to 20, the RSU
uses the trained model to detect a vehicle’s malicious activity.
If any malicious activity is found, then it sends the intrusion
alarm to the respective authority. The RSU updates the local
weights using its training data as per step 21. Finally, the local
updated weight (ω) is sent to the SDN controller for model
aggregation.

Each RSU with a fixed learning rate (η) receive the global
model parameters and the gradient descent (gi) [29] using the
local training data is calculated as follows:

gi = ∇Fk(wi) (13)

where Fk(wi) represents the estimation of weight based on
the loss value obtained for each data in training set. The local
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TABLE II: Simulation Parameters

Parameter Value
Area Size 500 m x 500 m
Number of Vehicles 100 - 400
Vehicle Velocity 80 - 120 kmph
Number of RSUs 1 - 20 RSUs
Direction Bi-directional
RSU, Vehicle Transmission Range 300 m
RSU, Vehicle Interference Range 600 m
Channel Mode Wireless
Interface Queue Drop tail/ Priority queue
Propagation Model Two ray ground
Routing Protocol used AODV protocol
MAC Type IEEE 802.11
Antenna Mode Omni-directional
Agent Type TCP
Simulation Time 500 sec
Representation Numerical
Crossover Type 1-point cross over
Probability of Mutation 1 gene/ individual (average)
Parent Selection Tournament k = 2
Population Size 8
Initialization Random
Number of Generations 21
Number of Executions 5

weight update for each selected RSU is specified as

∀k,wki+1 ← wi − ηgki (14)

The SDN controller updates the weights of the global model
wi+1 by aggregating the weights wki+1 of the selected RSUs.
The computational complexity of the DML-based IDS is
measured as O(

∑th
1

∑m
k (t)

R ), where th, m, R and t represents
a global model threshold, number of selected RSUs at each
global iteration, number of deployed RSUs and local epoch
respectively. Thus, the DML-based IDS prohibits any mali-
cious vehicle from attacking the SD-IoV and prevents network
performance from deteriorating due to disruptive activities.

VI. IMPLEMENTATION AND RESULTS

This section presents the experimental analysis of RSU
placement and DML-based IDS performance in the SD-IoV
environment. A detailed list of the parameters used in the
M-RSU placement algorithm is shown in Table II. The M-
RSU placement algorithm uses the vehicular traffic traces of
Chandigarh in India, extracted from OpenStreet Maps (OSM)
and visualized in Simulation of Urban Mobility (SUMO), as
shown in Fig. 3. Each intersection represents the possible RSU
location in the given region. Nevertheless, even in a small
area with a minimal number of RSUs, it is impractical to
assess every possible combination of candidate locations for
RSU placement. For example, if a region has 200 locations
with 5 RSUs to be placed, then there are 2.5357e+9 different
RSU placement possibilities. The proposed M-RSU placement
algorithm finds the optimal locations to deploy RSUs by
selecting the best solution with the maximal fitness value. The
RSU coverage polygon is computed using the RSSI from all
the road segments intersecting the RSU location. The coverage
polygon is established with a received RSSI threshold value
of -94db or greater.

Fig. 3: OSM and SUMO road network of Chandigarh in India

Fig. 4: Fitness value comparison of RSU placement algorithms

The M-RSU placement strategy initializes the population
by randomly selecting the locations in the given region. Each
RSU location computes its polygon and is stored to avoid
recomputation. The coverage overlap and fitness value of the
selected solution are computed, as formulated in Eq. (10).
The transmission delay is calculated based on the vehicular
mobility with N=3, where N denotes the average number of
incidents in a given region. The parameters w1 and w2 control
the trade-off between the coverage and delay objectives of
RSU placement. If w1 is zero, then placement occurs based
on the delay minimization, and if w2 is zero, then RSUs
are placed based on the coverage maximization. Therefore
based on w1 and w2, the M-RSU finds the location having
increased coverage and decreased communication delay. M-
RSU uses local search for elitism and both w1, w2 as 0.5.
The M-RSU placement is compared with Genetic Algorithm
(GA) [13] using five executions, and each run spans over 21
generations. The best and average fitness analysis is shown
in Fig. 4 and observed that the M-RSU converges to the best
fitness within 10 generations. Even in the best and average
case, the existing GA algorithm generates inefficient results
compared with the proposed M-RSU, and it does not converge
until the last iteration.

The M-RSU placement algorithm is also compared with the
existing Density-based RSU placement (D-RSU) [12] and GA
for RSU Deployment (GARSUD) [13] by varying the number
of vehicles and RSUs. As shown in Fig. 5, it is inferred that
the proposed M-RSU placement reduces the reporting time
approximately by 42% and 11% on an average compared to
the D-RSU and GARSUD, respectively.

The V2I delay for a vehicle in a road segment near RSU at
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Fig. 5: Reporting time comparison of RSU placement

Fig. 6: V2I Average delay for various time intervals

the different waiting time (T) in seconds (T=1, T=3, T=5) is
plotted in Fig. 6 and it is found that the increase in vehicular
density decreases the delay. The increased vehicle density
specifies that the vehicle uses V2V communication for its
transmission, reducing the delay even with the long waiting
time. The M-RSU placement covered the maximum area in
the network, as shown in Fig. 7, and noticed that the coverage
and overlap in a given region vary with the number of RSUs.
It is observed that by increasing the number of RSUs in the
network, increases the coverage with minimal overlap.

The DML algorithm used in the IDS is simulated using
python, and the models are assessed using the following
evaluation metrics: accuracy, precision, recall, and F1-score.
Fig. 8 shows the evaluation scores of the models used in
IDS. All the classifiers detect the malicious vehicle with an
accuracy greater than 97% using the training data. In Fig.
9, the evaluation metrics of various classifiers using testing
data are presented. The DML-IDS model detects the malicious
vehicle with an accuracy of 89.82% and performs better than
other ML models.

The DML-based IDS minimizes its loss function using the
received model parameters from the SDN controller. In Fig.
10, the DML-based learning curve of RSU is shown and it uses
the binary cross-entropy loss function. Based on the updated
global model function, the RSU minimizes its loss, thereby
improving detecting the intruders in the network. Thus, the
M-RSU placement in SD-IoV maximizes the coverage as
well as minimizes the transmission delay. Further, the DML-
based IDS detects the intruders with high accuracy, thereby
enhancing network security.

Fig. 7: Coverage comparison of RSUs

Fig. 8: IDS evaluation of training data

Fig. 9: IDS evaluation of testing data

Fig. 10: DML-based learning curve
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VII. CONCLUSION

In this paper, for an efficient RSU deployment, the M-
RSU placement algorithm is proposed to determine the optimal
position of the RSU. This algorithm improves the distribution
of RSUs in a minimal number on any road map structure, from
normal to sophisticated city layouts. An optimal RSU location
reduces the message communication delay and improves cov-
erage to the vehicles in a given region. Based on the simulation
results on real-time traces, it is seen that the M-RSU algorithm
performs much better on complex scenarios with a different
number of RSU settings. The M-RSU based deployment has
reduced the average V2I delay, which is especially suitable for
safety applications that deal with emergency messages and
communication-intensive applications. Additionally, security
is provided by detecting malicious vehicles with DML-based
IDS placed in the SDN controller. Compared to the other
ML classifiers, the DML-based classifier has higher accuracy,
making it suitable for the SD-IoV environment.
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