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Abstract

Distributed Denial of Service (DDoS) attacks can put the communication networks in instability by throw-

ing malicious traffic and requests in bulk over the network. Computer networks form a complex chain of

nodes resulting in a formation of vigorous structure. Thus, in this scenario, it becomes a challenging task

to provide an efficient and secure environment for the user. Numerous approaches have been adopted in the

past to detect and prevent DDoS attacks but lack in providing efficient and reliable attack detection. As a

result, there is still notable room for improvement in providing security against DDoS attacks. To overcome

the problem of DDoS attacks detection, in this paper, a novel high-efficient approach is proposed named

DIDDOS to protect against real-world new type DDoS attacks using Gated Recurrent Unit (GRU) a type of

Recurrent Neural Network (RNN). For effective performance results different classification algorithms are

applied Gated Recurrent Units (GRU), Recurrent Neural Networks (RNN), Naive Bayes (NB), and Sequen-

tial Minimal Optimization (SMO) are utilized to detect and identify DDoS attacks. For the performance

evaluation metrics like accuracy, recall, f1-score, precision are used to evaluate the efficiency of the ma-

chine and deep learning classifiers. Experimental results yield the highest accuracy of 99.69% for DDoS

classification in case of reflection attacks and 99.94% for DDoS classification in case of exploitation attacks

using GRU.
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1. Introduction1

Internet security is one of the paramount challenges and primary concern of Information Technology2

(IT) specifically for the Internet of Things (IoT), Mobile devices, and Medical data [1, 2, 3, 4]. As the3

demand for IT services is increasing, similarly potential cyberattacks are increasing rapidly [5, 6, 7, 8,4

9]. Among the many existing cyberattacks (i.e., DDOS, phishing, zero-days, rootkits, drive-by, password,5

SQL injection, ransomware), the Distributed Denial of Service (DDoS) attack can be utilized to breach the6

intranet and Internet resources of a particular organization or online business [10, 11, 12, 13]. Usually,7

in this attack, legitimate users are deprived of using web-based services provided by a large number of8

compromised machines that are highly vulnerable. DDoS attacks attempt to make a machine or network9

resource unavailable to its intended users. DDoS attacks are sent by two or more persons, or bots [14, 15],10

while DoS attacks are sent by one person or system. A bot is a compromised device created when a11

computer is penetrated by software from a malware code [16]. In this paper, the main focus is to keep12

an eye on DDoS attacks. These can be implemented in network, transport, and application layers using13

different protocols, such as TCP, UDP, ICMP, and HTTP. Furthermore, a DDoS attack [17, 18, 19] can14

be a large-scale coordinated attack on the provision of services of a victim system or network resources,15

launched indirectly through a large number of compromised computer agents on the internet [20, 13, 21].16

Before applying an attack the attacker takes a large number of computer machines under his control over17

the internet and these computers are vulnerable machines. The attacker exploits these computer weaknesses18

by inserting malicious code or some other hacking technique so that they become operational under his19

command.20

DDoS attacks are constantly evolving as the nature of the technology used and the motivations of the21

attackers are changing. Even today, perpetrators are being caught and charged with DDoS attacks launched22

via botnets that cause tens of thousands of dollars of damage to the victims. Last year’s massive attack23

on Estonian Government web sites bought this attack method squarely into the public eye [22]. DDoS at-24

tacks on the Internet can be launched using two techniques. In the first technique, the attacker sends some25

malicious packets to the victim to confuse a protocol or an application running on it (i.e., vulnerability at-26

tack [23]). The Second technique essentially includes the network/transport-level/application-level flooding27

attacks [23], in which an attacker to do one or both of the following: (i) interrupt a legitimate user’s connec-28

Khaliq), syedibrahimimtiaz@gmail.com (Syed Ibrahim Imtiaz), aamir.rasool.au@gmail.com (Amir Rasool),
srsshafiq@gmail.com (Muahmmad Shafiq), abdulrehman.cs@au.edu.pk (Abdul Rehman Javed),
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tivity by exhausting bandwidth, network resources, or router processing capacity or (ii) disrupt services of29

a legitimate user’s by exhausting the server resources such as CPU, memory, disk/database bandwidth and30

I/O bandwidth.31

State-of-the-art studies [24, 25, 26] lack in providing accurate detection of real-world new types of Dis-32

tributed Denial of Service (DDoS) cyberattacks and identify the type of DDOS attack. (i.e., NTP, UDP). The33

DIDDOS improves the detection and identification of real-world new types of Distributed Denial of Service34

(DDoS) using customized GRU as well as addresses the limitation of limited attack samples (imbalanced35

data) in the dataset by improving the representation of minority class.36

The main contributions to this paper are:37

• Propose an approach named DIDDOS to detect a real-world Distributed Denial of Service (DDoS)38

cyberattacks and identify the type of DDOS attack.39

• Evaluate the effectiveness of the DIDDOS using conventional machine learning classifiers (i.e., Naı̈ve40

Bayes (NB), Sequential Minimal Optimization (SMO)) and deep learning approaches by using Gated41

Recurrent Units (GRU) and Recurrent Neural Networks (RNN).42

• Present a comparative analysis with state-of-the-art studies and conventional approaches (i.e., Recur-43

rent Neural Networks (RNN), Naive Bayes (NB), Sequential Minimal Optimization (SMO)).44

• Experimental results conclude that GRU provides efficient detection and identification rate than RNN,45

other conventional algorithms, and state-of-the-art studies.46

The rest of the paper is organized as follows. Section 2 briefly covers the related work and recent47

advancements on DDOS attack detection and identification. Section 3 provides extensive discussion on48

the selected dataset. Section 4 presents the proposed approach DIDDOS for DDoS attack detection and49

identification. The experimental setup and results are articulated in Section 5. Section 6 presents the50

comparative analysis with state-of-the-art studies and conventional machine learning algorithms and overall51

discussion. Section 7 concludes the paper and leads towards future work.52

2. Related Work53

The number of DDoS attacks is increasing every year and from statistics [27] of Cisco Visual Network-54

ing Index (VNI) in 2017, it is confirmed that DDoS attacks are anticipated to double to 14.5 million by 2022.55
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This shows that DDoS attacks are increasing at a very unpleasant rate. However, this is a very challenging56

task to update the detection techniques up to the current DDoS attacks. The authors in [28] proposed the57

dataset ”DDoS Attack 2007” containing the traffic traces for one whole hour stored in the pcap format and58

details of attack traffic to the victim, as well as responses to the attack from the victim. In 2004, the authors59

Mirkovic and Reiher et. al. [23] introduced classifications of different DDoS attacks and conceivable guard60

components. The attacks were classified as automation, vulnerability, source address validity, attack rate61

dynamics, characterization, the persistence of agents, victim, and impact on the victim. In automation-62

based techniques, the machine is checked for vulnerability. In this research, the activity feed is checked to63

access the DDoS resistance mechanism. The authors in [29] performed a study that proposes a classification64

dependent on the degree of automation, architecture, impact, vulnerability, attack rate dynamics, scanning65

strategy, propagation strategy, and packet content. They also categorize the data into prevention and detec-66

tion groups and claim that this classification is the best to detect where was the attack originated. The study67

also proposed a framework that can detect any DDoS attack using the K-means algorithm. However, no68

experiments are being conducted to validate the proposed classification.69

In 2016, the study [30] concentrated on DDoS Taxonomy in the cloud computing paradigm. The authors70

propose the classification for the different potential DDoS attacks as a degree of automation, vulnerability,71

attack rate dynamics, and attack impact. Some resembling work was researched by [23] but it was unique72

because of DDoS attack classification features which include real-time response, throughput, request, re-73

sponse time, and zero-day attack detection ability. The research by Masdari and Jalali [31] concentrated74

on the analysis of DDoS attacks in cloud computing. In their study, they showed that different DDoS at-75

tacks by showing how these attacks violated the vulnerabilities. Lastly, the study also characterized the76

DDoS attacks dependent on some modules like virtual machines, cloud scheduler, hyper-visor, web service,77

cloud clients, IaaS, and SaaS-based attacks [32]. The most effective cloud computing attacks have been78

recognized as bandwidth attacks, connectivity attacks, resource exhaustion, limitation exploitation, process79

disruption, data corruption, and physical disruption. The primary features of the researches are discussed in80

Table 1.81

Modi et al.[34] proposed a NIDS that integrates the Naive Bayes classifier and Snort. In their study,82

they showed that Snort signature-based detection system filters the captured packets. The captured packets83

will be divided into two sets: intrusion packets and non-intrusion packets. The intrusion packets will be84

logged and denied by the system. Meanwhile, the non-intrusion packets will be pre-processed and fed85
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Table 1: Primary Features of the Related Works [24] in Terms of Providing Multilevel Protection

Authors OSI-Layer
Network-Based

Environment

Known Attacks/

Potential threats

Defense

Mechanism

[23] 5 5 3 3

[29] 5 5 3 3

[30] 5 Cloud Computing 3 3

[31]
Application Network

Transport
Cloud Computing 3 3

[33] Application 5 3 5

into the anomaly detection module. The anomaly detection module employs the Naive Bayes classifier to86

further classify the non-intrusion packets into normal and intrusion packets. Once the packets are classified87

as intrusions, they will be logged and denied. Only when the packets are labeled as normal can they88

be allowed to go to the system. Similarly authors in [35] proposed a deep learning model for anomaly89

detection in connected vehicles. Qin et al. [36] designed a similar framework as [37] did. Jing et al. [38]90

have proposed a Support Vector Machine(SVM) with a new scaling technique in 2019. The necessary steps91

are: (1) divide the dataset into the training set and testing set; (2) Pre-processing the data (both training92

set and testing set) with scaling technique; (3) Train the SVM model with the training set; (4) Test the93

model with the testing set; (5) Record the classification result. Authors in [39, 13, 40] used various feature94

engineering and machine learning for the intrusion detection.95

In the area of intrusion detection, several researchers endeavour hard to develop effective model for the96

intrusion detection in RNN [41, 42, 43, 44, 45, 46]. Yin et al.[41] use RNN with forwarding propagation97

and weights updates (backpropagation). Qureshi et al.[42] rebalanced the KDD’99 dataset before training98

and testing. The proportion of abnormal data in the training set is rebalanced to 46.5%. The authors99

have referred to the work of Bajaj et al. [47] about feature reduction and dropped some features in the100

preprocessing to improve the detection rate. Althubiti et al. [43] use Long-Short-Term-Memory RNN and101

ADAM optimizer. Meng et al. [44] took a further step and integrate kernel PCA and LSTM. Kernel PCA is a102

type of dimension reduction technique and this technique is different from PCA because it generalizes PCA103

from linear to nonlinear dimension reduction. The overall Detection Rate tested on KDD’99 is 99.46%,104

while the False Alarm Rate is 4.86%. Le et al. [45] compared several gradient descent optimizers with105

LSTM. Gradient Descent is a classic optimizer used in deep learning. However, there are many variations106
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of Gradient Descent optimizers. The scope of all the above attacks is limited because there are new attacks107

that can be carried out using TCP/UDP based protocols at the application layer.108

This work aims to overcome the limitations in such a way that a dataset that has been released in 2019109

is utilized. The dataset includes new attacks that can be carried out using TCP/UDP based protocols at110

the application layer. Machine and deep learning-based approaches are being conducted to evaluate the111

detection and identification of DDOS attacks.112

3. Dataset Selection113

For the DDoS attacks, different datasets are used by numerous researchers that contain information114

about a variety of attacks. But new attacks are made which poses a security challenge. So, that is why115

datasets are updated to increase security. We needed a newly released dataset that contains the latest in-116

formation about Distributive Denial of Service attacks or DDoS attacks. So, for this research, a recently117

published dataset CICDDoS20191 is selected, which contains benign and the most up-to-date realistic back-118

ground DDoS traffic, which resembles the true real-world data. It also includes the results of the network119

traffic analysis using CICFlowMeter-V3 with labeled flows based on the time stamp, source, and destination120

IPs, source and destination ports, protocols, and attacks. For this dataset, the abstract behavior of 25 users121

based on the HTTP, HTTPS, FTP, SSH, and email protocols was established.122

In Section 2, as explained that there exist no other datasets that have captured modern reflective DDoS123

attacks. The new reflective DDoS attacks are NTP, NetBIOS, SSDP, UDP-Lag, and TFTP. The important124

part of analyzing the network packets is to keep the payloads while anonymizing the traffic. The above125

datasets anonymized the traffic but removed the payloads which shows the datasets discussed in 2 were not126

complete and the selected dataset CICDDoS2019 for this research is better concerning the factors complete127

traffic, attack diversity, data source heterogeneity, complete interaction, and complete capture. A graphical128

representation of different DDoS attacks and their types can be seen in Table 1 which was introduced by129

[24] by Iman Sharafaldin in 2019. In this dataset, there are different modern reflective DDoS attacks such130

as PortMap, NetBIOS, LDAP, MSSQL, UDP, UDP-Lag, SYN, NTP, DNS, and SNMP. Moreover, 12 DDoS131

attacks include NTP, DNS, LDAP, MSSQL, NetBIOS, SNMP, SSDP, UDP, UDP-Lag, WebDDoS, SYN,132

and TFTP are used on the training day, and 7 attacks including PortScan, NetBIOS, LDAP, MSSQL, UDP,133

1[48] CICDDoS2019 Dataset Link: https://www.unb.ca/cic/datasets/ddos-2019.html
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UDP-Lag and SYN in the testing day. The traffic volume for WebDDoS was so low and PortScan just has134

been executed in the testing day and will be unknown for evaluating the proposed model.135

Figure 1: Graphical Representation of DDoS Attacks Hierarchy and Categorization

3.1. Reflection-based DDoS Attacks136

Are those kinds of attacks in which the identity of the attacker remains hidden by utilizing legitimate137

third-party component. The packets are sent to reflector servers by attackers with source IP address set to138

target the victim & rsquos IP address to overwhelm the victim with response packets. These attacks can be139

carried out through application layer protocols using transport layer protocols, i.e., Transmission Control140

Protocol (TCP), User Datagram Protocol (UDP), or through a combination of both. In this category, TCP141

based attacks include MSSQL, SSDP while UDP based attacks include CharGen, NTP, and TFTP. Certain142

attacks can be carried out using either TCP or UDP like DNS, LDAP, NETBIOS, and SNMP.143

1. MSSQL Attack: Microsoft Structured Query Language (MSSQL) injection is an attack that makes144

it possible to execute malicious SQL statements [49].145

2. SSDP Attack: An SSDP attack exploits Universal Plug and Play (UPnP) networking protocols to146

send a large amount of traffic to a victim to overwhelm their computing resources [50].147

3. DNS Attack: A DNS attack exploits vulnerabilities in the DNS [51].148
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4. LDAP Attack: LDAP injection is an attack used to exploit web-based applications that construct149

LDAP statements based on user inputs [52].150

5. NETBIOS Attack: A security exploit in Network Basic Input/Output System (NetBIOS) allows an151

attacker to see information in computer memory over a network [53].152

6. SNMP Attack: A Simple Network Management Protocol (SNMP) attack generates a large amount153

of traffic which is directed at victims from multiple networks [25].154

7. PORTMAP Attack: PORTMAP is an attack on TCP or UDP port 111 which is a service used155

to direct clients to the proper port number so they can communicate with the requested Remote156

Procedure Call (RPC) service [25].157

8. CharGen Attack: Character Generator Protocol (CharGEN) flooding is an attack that is carried out158

by sending small packets carrying a spoofed IP of the victim to internet-enabled devices running159

CharGEN to exhaust computing resources [25].160

9. NTP Attack: NTP is an amplification attack in which the attacker exploits publically accessible NTP161

servers to overwhelm the target with UDP traffic [54].162

10. TFTP Attack: A TFTP attack exploits the buffer overflow vulnerability in a Trivial File Transfer163

Protocol (TFTP) server [55].164

3.2. Exploitation-based DDoS attacks165

Are those kinds of attacks in which the identity of the attacker remains hidden by utilizing legitimate166

third-party component. The packets are sent to reflector servers by attackers with the source IP address set167

to the target victim & rsquos IP address to overwhelm the victim with response packets. These attacks can168

also be carried out through application layer protocols using transport layer protocols e.g. TCP and UDP.169

TCP based exploitation attacks include SYN flood and UDP based attacks include UDP flood and UDP-170

Lag. UDP flood attack is initiated on the remote host by sending a large number of UDP packets. These171

UDP packets are sent to random ports on the target machine at a very high rate. As a result, the available172

bandwidth of the network gets exhausted, system crashes and performance degrades. On the other hand,173

the SYN flood also consumes server resources by exploiting the TCP-three-way handshake. This attack is174

initiated by sending repeated SYN packets to the target machine until the server crashes/malfunctions. The175

UDP-Lag attack is that kind of attack that disrupts the connection between the client and the server. This176

attack is mostly used in online gaming where the players want to slow down/interrupt the movement of177

other players to outmaneuver them. This attack can be carried in two ways, i.e., using a hardware switch178
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known as a lag switch or by a software program that runs on the network and hogs the bandwidth of other179

users.180

1. UDP-Flood Attack: User Datagram Protocol (UDP) flooding is an attack in which a large number181

of UDP packets are sent to a victim to overwhelm their ability to process and respond. The firewall182

protecting the target server is exhausted as a result [56].183

2. UDP-Lag Attack: UDP-Lag is an attack that disrupts the connection between the client and server184

[57].185

3. SYN Flood Attack: SYN flood is a denial-of-service attack in which an attacker sends a succes-186

sion of SYN requests to a target system in an attempt to consume server resources so the system is187

unresponsive to legitimate traffic [25].188

TCP-based attacks can employ Microsoft Structured Query Language (MSSQL) or Simple Service Dis-189

covery Protocol (SSDP) whereas UDP-based attacks utilize CharGen, Network Time Protocol (NTP), or190

Trivial File Transfer Protocol (TFTP). Certain attacks use a combination of these protocols and include Do-191

main Name System (DNS), Lightweight Directory Access Protocol (LDAP), Network Basic Input/Output192

System (NetBIOS), Simple Network Management Protocol (SNMP), or PORT MAP. SYN flood is a denial-193

of-service attack in which an attacker sends a succession of SYN requests to a target system in an attempt194

to consume server resources so the system is unresponsive to legitimate traffic [25]. WebDDoS is an attack195

to take down the target website or slow it by flooding the network, server, or application with bogus traffic196

[58]. A TFTP attack exploits the buffer overflow vulnerability in a Trivial File Transfer Protocol (TFTP)197

server [25]. A DNS attack exploits vulnerabilities in the DNS [25]. PORT MAP is an attack on TCP or UDP198

port 111 which is a service used to direct clients to the proper port number so they can communicate with199

the requested Remote Procedure Call (RPC) service [25]. Microsoft Structured Query Language (MSSQL)200

injection is an attack that makes it possible to execute malicious SQL statements [25]. LDAP injection is201

an attack used to exploit web-based applications that construct LDAP statements based on user inputs [25].202

NETBIOS is a security exploit in Network Basic Input/Output System (NetBIOS) that allows an attacker203

to see information in computer memory over a network [25]. NTP is an amplification attack in which the204

attacker exploits publically accessible NTP servers to overwhelm the target with UDP traffic [25]. An SSDP205

attack exploits Universal Plug and Play (UPnP) networking protocols to send a large amount of traffic to206

a victim to overwhelm their computing resources [25]. SNMP is a Simple Network Management Protocol207

(SNMP) attack that generates a large amount of traffic which is directed at victims from multiple networks208
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[25]. User Datagram Protocol (UDP) flooding is an attack in which a large number of UDP packets are sent209

to a victim to overwhelm their ability to process and respond. The firewall protecting the target server is ex-210

hausted as a result [25]. UDP-Lag UDP-Lag is an attack that disrupts the connection between the client and211

server [57]. CharGEN is Character Generator Protocol (CharGEN) flooding is an attack that is carried out212

by sending small packets carrying a spoofed IP of the victim to internet-enabled devices running CharGEN213

to exhaust computing resources [25].214

4. Proposed Methodology215

In this section, we present our proposed DIDDOS approach for the detection and identification of DDoS216

attacks. The proposed approach comprises data normalization, feature extraction, and classification of217

attacks. Figure 2 summarizes our proposed approach which consists of deep learning classifiers for the218

classification of multiple types of DDoS attacks. In Figure 2, the detailed methodology can be clearly seen219

in which firstly the feature extraction and feature normalization takes place. Then the dataset is checked220

and if it has oversampling problems then the dataset is balanced by using SMOTE with the help of the tool221

WEKA. After this step, the algorithms are deployed on the datasets to evaluate their performance to detect222

malware.223

Figure 2: Graphical Representation of the DIDDOS Demonstrating the Worflow of the Model
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4.1. Pre-Processing224

In the Pre-processing stage, the dataset is optimized so that the results could be achieved with the highest

accuracy. This includes dealing with NaN and duplicate instances. Typically these instances are removed

and then the dataset is normalized and scaled according to the algorithm. In this case, MinMax scaling from

[59] is used for feature normalization which used the Equation 1 to normalize the data.

Xnorm =
Xi −Xmin

Xmax −Xmin
(1)

In equation 1 the variable Xi represents the original value of the feature. Then the minimum value of the225

feature Xmin is subtracted from the original feature and divided by the difference between the maximum226

Xmax and a minimum Xmin result of the feature.227

4.2. Feature Extraction228

After pre-processing the raw data, the data is in good shape to extract features. The dataset is distributed229

in 13 categories each representing a different DDoS attack. These different attacks are NTP, UDP, DNS,230

LDAP, MSSQL, NetBIOS, SNMP, SSDP, SYN, UDP-Lag, Web-DDoS, TFTP, and Portmap attacks. The231

dataset CIC-DDoS2019 [48] is a combination of numerous numeric and object types from which only nu-232

merical types are extracted. This step is necessary to ensure improvement in the efficiency of classification233

models.234

4.3. Oversampling235

Oversampling is achieved by increasing the minority classes using the Synthetic Minority Oversampling236

Technique (SMOTE) [60]. SMOTE is a statistical technique for increasing the number of instances in237

a dataset such that all class labels have the same number of instances. It generates new instances from238

existing minority cases. First, the minority class instance is randomly selected by SMOTE and finds its k239

nearest minority class neighbors. The synthetic instance is then created by choosing one of the k nearest240

neighbors b at random and connecting a and b to form a line segment in the feature space. The synthetic241

instances are generated as a convex combination of the two chosen instances a and b.242

4.4. Classification Models243

For the classification deep learning algorithms are used such as Gated Recurrent Unit (GRU), recurrent244

neural network(RNN), and machine learning algorithms are Naive Bayes (NB), Sequential Minimal Opti-245

mization (SMO). Below, a brief introduction is provided to each algorithm.246

247
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1. Gated Recurrent Unit (GRU) aims to solve the vanishing gradient problem which comes with a248

standard recurrent neural network. GRU can also be considered as a variation on the LSTM because249

both are designed similarly and, in some cases, produce equally excellent results. In this research, the250

GRU model is used because it trains the dataset faster, executes faster, and uses less memory.251

252

2. Recurrent Neural Network (RNN) is a generalization of a feedforward neural network that has253

internal memory. RNN is recurrent as it performs the same function for every input of data while254

the output of the current input depends on the past one computation. After producing the output, it is255

copied and sent back into the recurrent network [61]. In this research, the RNN model is used because256

the size of the dataset CICDDoS2019 is large and even if the dataset input size is larger, the model257

size does not increase.258

259

3. Naive Bayes (NB) is a classification technique based on Bayes’ Theorem with an assumption of260

independence among predictors. So, this classifier assumes that the presence of a particular feature261

in a class is unrelated to the presence of any other feature.262

4. Bayes theorem checks probability P (c|x) from P (c), P (x) and P (x|c) as shown in equation 2 from

[62] and P (c|x) is the posterior probability of class (c, target) given predictor (x, attributes), P (c)

is the prior probability of a class, P (x|c) is the likelihood which is the probability of predictor given

class and P (x) is the prior probability of predictor [63]. In this research, the NB model is used

because the dataset CICDDoS2019 .
P (x|c)P (c)

P (x)
(2)

5. Sequential Minimal Optimization (SMO) is an algorithm for solving the quadratic programming263

(QP) problem that arises during the training of support vector machines (SVM). Instead of an SVM264

algorithm that uses numerical QP as an inner loop, SMO uses an analytic QP step [64].In this research,265

the SMO algorithm is used because it is a very fast algorithm and very robust with a high input266

dimension dataset.267

5. Evaluation and Results268

The results are evaluated based on Accuracy, Precision, Recall, and F1-score. Accuracy is commonly269

taken as the performance evaluator in most cases but in the case of dataset imbalance problem, F1-score is270
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the optimal choice to evaluate the performance of the classifier. F1-score is the harmonic mean of precision271

and recall.272

5.1. NTP attacks273

The results for NTP DDoS attacks are shown in Table 2 in which the highest accuracy achieved is274

99.52% by using the GRU algorithm. Other algorithms: RNN, SMO, and NB achieve the accuracy of275

99.35%, 98.89%, and 96.65%. In the case of naive Bayes, the accuracy is 96.65% which is low as compared276

to other algorithms because it needs more data instances. Other algorithms used are not dependent on277

the quantity of data. Figure 3a presents the accuracy convergence with respect to epochs and the highest

Table 2: Algorithms Proficiency Metrics for Detecting NTP attacks

Model Accuracy(%) Precision(%) Recall(%) F1-score(%)

GRU 99.52 99.31 97.12 98.37

RNN 99.35 99.45 96.50 97.07

SMO 98.89 99.0 98.91 98.90

NB 96.65 97.3 96.75 96.83

278

accuracy of 99.5% is achieved at 42th epoch. Training accuracy curve begins at 97.5% and goes up to 99.5%279

and after that the convergence of training accuracy becomes stable. Test accuracy starts at 99.87% and goes280

up to 99.5%. It slightly went down at the 6th epoch. Figure 3 depicts the convergence of the accuracy with281

epochs and it achieves the lowest loss of 0.01% at the 44th epoch. Training loss starts at 0.09% and goes282

down to 0.01%. Then the convergence of training loss becomes stable as shown in Figure 3b.283

5.2. UDP attacks284

In the case of UDP attacks, the highest accuracy of 99.69% is achieved by using GRU and RNN classifi-285

cation algorithm and the other models were also very accurate in which SMO and NB achieved an accuracy286

of 99.60% and 99.20% as shown in Table 3. Figure 4a presents the accuracy convergence with respect287

to epochs and the highest accuracy of 99.76% is achieved at 42th epoch. Training accuracy curve begins288

at 98.7% and goes up to 99.8% and after that the convergence of training accuracy becomes stable. Test289

accuracy starts at 99.87% and goes up to 99.7%. It slightly went down at the 15th epoch. Figure 4 depicts290

the convergence of the accuracy with epochs and it achieves the lowest loss of 0.01% at the 46th epoch.291
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(a) Model accuracy (b) Model Loss

Figure 3: Model Accuracy and Loss of DDoS Malware with Respect to NTP Attacks

Table 3: Algorithms Proficiency Metrics for Detecting of UDP attacks

Model Accuracy(%) Precision(%) Recall(%) F1-score(%)

GRU 99.69 98.1 98.21 98.3

RNN 99.69 98.41 97.94 98.35

SMO 99.60 99.61 99.61 99.61

NB 99.20 99.31 99.24 99.29

Training loss starts at 0.07% and goes down to 0.01%. Then the convergence of training loss becomes stable292

as shown in fig 4b.293

5.3. DNS attacks294

In Table 4, it can be seen that by using the SMO algorithm the highest accuracy achieved is 99.75%295

and with other algorithm techniques such as GRU, RNN and NB the accuracy achieved is 99.51%, 99.72%296

and 99.35% for DNS attacks. Figure 5a presents the accuracy convergence with respect to epochs and the297

highest accuracy of 99.72% is achieved at 46th epoch. Training accuracy curve begins at 98.25% and goes298

up to 99.6% and after that the convergence of training accuracy becomes stable. Test accuracy starts at299

98.65% and goes up to 99.65%. It slightly went down at the 20th epoch. Figure 5 depicts the convergence300

of the accuracy with epochs and it achieves the lowest loss of 0.01% at the 48th epoch. Training loss starts301

at 0.06% and goes down to 0.01%. Then the convergence of training loss becomes stable as shown in fig302
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(a) Model accuracy (b) Model Loss

Figure 4: Model Accuracy and Loss of DDoS Malware with Respect to UDP Attacks

Table 4: Algorithms Proficiency Metrics for Detecting of DNS attacks

Model Accuracy(%) Precision(%) Recall(%) F1-score(%)

GRU 99.51 98.42 97.21 97.20

RNN 99.72 98.12 99.59 99.32

SMO 99.75 99.80 99.80 99.80

NB 99.35 99.40 99.40 99.40

5b.303

5.4. LDAP attacks304

For LDAP attacks, the highest accuracy achieved is 99.96% by using the SMO model. The remaining305

algorithms were GRU, RNN, and NB through which the achieved accuracy is 99.95%, 99.94%, and 99.82%306

as shown in Table 5. Figure 6a presents the accuracy convergence with respect to epochs and the highest307

accuracy of 99.95% is achieved at 4th epoch. Training accuracy curve begins at 99% and goes up to 99.9%308

and after that the convergence of training accuracy becomes stable. Test accuracy starts at 98.1% and goes309

up to 99.95%. Figure 6 depicts the convergence of the accuracy with epochs and it achieves the lowest310

loss of below 0.01% at the 15th epoch. Training loss starts at 0.06% and goes down to 0.005%. Then the311

convergence of training loss becomes stable as shown in fig 6b.312
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(a) Model accuracy (b) Model Loss

Figure 5: Model Accuracy and Loss of DDoS Malware with Respect to DNS attacks

Table 5: Algorithms Proficiency Metrics for detecting of LDAP attacks

Model Accuracy(%) Precision(%) Recall(%) F1-score(%)

GRU 99.95 99.16 99.88 99.32

RNN 99.94 99.40 99.77 99.48

SMO 99.96 99.71 99.91 99.87

NB 99.82 99.80 99.80 99.80

5.5. MSSQL attacks313

The MSSQL attack results are shown in Table 6 in which the highest accuracy of 99.94% is achieved314

by using the SMO algorithm and with GRU, RNN, and NB algorithm the accuracy achieved is 99.82%315

and 99.83%. Figure 7a presents the accuracy convergence with respect to epochs and the highest accuracy

Table 6: Algorithms Proficiency Metrics for Detecting of MSSQL attacks

Model Accuracy(%) Precision(%) Recall(%) F1-score(%)

GRU 99.82 98.11 99.10 99.06

RNN 99.83 98.04 99.55 99.31

SMO 99.94 99.90 99.90 99.90

NB 99.83 99.80 99.80 99.80

316
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(a) Model accuracy (b) Model Loss

Figure 6: Model Accuracy and Loss of DDoS Malware with Respect to LDAP Attacks

of 99.83% is achieved at 8th epoch. Training accuracy curve begins at 98.4% and goes up to 99.8% and317

after that the convergence of training accuracy becomes stable. Test accuracy starts at 98.1% and goes318

up to 99.95%. Figure 7 depicts the convergence of the accuracy with epochs and it achieves the lowest319

loss of below 0.01% at the 48th epoch. Training loss starts at 0.08% and goes down to 0.01%. Then the320

convergence of training loss becomes stable as shown in fig 7b.

(a) Model accuracy (b) Model Loss

Figure 7: Model Accuracy and Loss of DDoS Malware with Respect to MSSQL Attacks

321
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5.6. NetBIOS attacks322

In the case of NetBIOS attacks, the highest accuracy of 99.94% is achieved by using the GRU algorithm.323

By using other algorithms: RNN, SMO and NB achieved the accuracy of 99.89%, 99.93%, and 99.87% as324

shown in Table 7. Figure 8a presents the accuracy convergence concerning epochs and the highest accuracy

Table 7: Algorithms Proficiency Metrics for Detecting of NetBIOS attacks

Model Accuracy(%) Precision(%) Recall(%) F1-score(%)

GRU 99.94 99.11 99.90 99.49

RNN 99.89 98.10 99.81 99.10

SMO 99.93 99.90 99.90 99.90

NB 99.87 99.90 99.90 99.90

325

of 99.94% is achieved at the 35th epoch. The training accuracy curve begins at 98.8% and goes up to 99.9%326

and after that the convergence of training accuracy becomes stable. Test accuracy starts at 99.3% and goes327

up to 99.9%. Figure 8 depicts the convergence of the accuracy with epochs and it achieves the lowest loss328

of below 0.01% at the 48th epoch. Training loss starts at 0.06% and goes down to 0.004%. Then the329

convergence of training loss becomes stable as shown in fig 8b.330

(a) Model accuracy (b) Model Loss

Figure 8: Model Accuracy and Loss of DDoS Malware with Respect to NETBIOS Attacks
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5.7. SNMP attacks331

For SNMP attacks, the highest accuracy achieved is 99.99% by using the SMO algorithm, and by using332

GRU, RNN, and NB classification techniques the achieved accuracy is 99.97%,99.79% and 99.87% as333

shown in Table 8. Figure 9a presents the accuracy convergence with respect to epochs and the highest

Table 8: Algorithms Proficiency Metrics for Detecting of SNMP attacks

Model Accuracy(%) Precision(%) Recall(%) F1-score(%)

GRU 99.97 99.35 99.55 99.67

RNN 99.79 99.42 96.15 97.25

SMO 99.99 99.97 99.97 99.97

NB 99.87 99.90 99.90 99.90

334

accuracy of 99.97% is achieved at 9th epoch. Training accuracy curve begins at 98.25% and goes up to335

99.9% and after that the convergence of training accuracy becomes stable. Test accuracy starts at 98.8%336

and goes up to 99.9%. Figure 9 depicts the convergence of the accuracy with epochs and it achieves the337

lowest loss of below 0.01% at the 8th epoch. Training loss starts at 0.09% and goes down to 0.006%. Then338

the convergence of training loss becomes stable as shown in fig 9b.

(a) Model accuracy (b) Model Loss

Figure 9: Model Accuracy and Loss of DDoS Malware with Respect to SNMP Attacks

339
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5.8. SSDP attacks340

The SSDP attacks results are shown in Table 9 in which the highest accuracy achieved is 99.90% using341

the GRU algorithm and by using others with algorithms i.e., RNN, SMO and NB the accuracy of 99.87%,342

99.89%, and 99.78% are achieved respectively. Figure 10a presents the accuracy convergence with respect

Table 9: Algorithms Proficiency Metrics for Detecting of SSDP attacks

Model Accuracy(%) Precision(%) Recall(%) F1-score(%)

GRU 99.91 99.83 99.79 99.69

RNN 99.87 99.05 99.68 99.81

SMO 99.89 99.90 99.90 99.90

NB 99.78 99.81 99.80 99.80

343

to epochs and the highest accuracy of 99.9% is achieved at 45th epoch. Training accuracy curve begins344

at 96.7% and goes up to 99.8% and after that the convergence of training accuracy becomes stable. Test345

accuracy starts at 98.7% and goes up to 99.9%. Figure 10 depicts the convergence of the accuracy with346

epochs and it achieves the lowest loss of below 0.01% at the 48th epoch. Training loss starts at 0.12% and347

goes down to 0.01%. Then the convergence of training loss becomes stable as shown in fig 10b.

(a) Model accuracy (b) Model Loss

Figure 10: Model Accuracy and Loss of DDoS Malware with Respect to SSDP Attacks

348
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5.9. SYN attacks349

In the case of SYN attacks, as shown in Table 10 the highest accuracy of 99.98% is achieved by us-350

ing the SMO algorithm and by other algorithms such as GRU, RNN and NB, the achieved accuracy is351

99.69%, 99.7%, and 99.95% respectively. Table 10 shows these results. Figure 11a presents the accuracy

Table 10: Algorithms Proficiency Metrics for Detecting of SYN attacks

Model Accuracy(%) Precision(%) Recall(%) F1-score(%)

GRU 99.69 99.11 92.43 96.35

RNN 99.70 99.50 92.24 96.31

SMO 99.98 99.94 99.94 99.94

NB 99.95 99.91 99.91 99.91

352

convergence with respect to epochs and the highest accuracy of 99.7% is achieved at 15th epoch. Training353

accuracy curve begins at 98.8% and goes up to 99.7% and after that the convergence of training accuracy354

becomes stable. Test accuracy starts at 99.3% and goes up to 99.9%. Figure 11 depicts the convergence of355

the accuracy with epochs and it achieves the lowest loss of 0.01% at the 17th epoch. Training loss starts at356

0.06% and goes down to 0.01%. Then the convergence of training loss becomes stable as shown in Figure357

11b.

(a) Model accuracy (b) Model Loss

Figure 11: Model Accuracy and Loss of SYN Attacks Detection

358
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5.10. UDP-Lag attacks359

As shown in Table 11, the highest accuracy achieved is calculated by using RNN algorithm that is360

99.87%. Other algorithms also achieved good results in which GRU algorithm achieved 99.55% accuracy,361

SMO achieved 99.86% accuracy and NB achieved 96.63% accuracy respectively. Figure 12a presents the

Table 11: Algorithms Proficiency Metrics for Detecting of UDP-Lag attacks

Model Accuracy(%) Precision(%) Recall(%) F1-score(%)

GRU 99.87 99.57 98.67 98.36

RNN 99.55 97.60 90.56 94.22

SMO 99.86 99.9 99.91 99.90

NB 96.63 96.51 96.60 96.60

362

accuracy convergence with respect to epochs and the highest accuracy of 99.87% is achieved at 18th epoch.363

Training accuracy curve begins at 98.86% and goes up to 99.7% and after that the convergence of training364

accuracy becomes stable. Test accuracy starts at 98.6% and goes up to 99.85%. Figure 12 depicts the365

convergence of the accuracy with epochs and it achieves the lowest loss of 0.01% at the 18th epoch. Training366

loss starts at 0.06% and goes down to 0.01%. Then the convergence of training loss becomes stable as shown367

in fig 12b.

(a) Model accuracy (b) Model Loss

Figure 12: Model Accuracy and Loss of DDoS Malware with Respect to UDP-Lag Attacks

368
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5.11. Web-DDoS attacks369

As shown in Table 12, SMO algorithm achieved the highest accuracy of 96.62% for detecting Web-370

DDoS attacks. Other algorithms such as GRU, RNN and NB achieved the accuracy 95.11%, 95.6% and371

68.8% respectively. For Web-DDoS attacks the accuracy achieved with naive bayes classifier is 96.65%372

which is low as compared to other algorithms because it needs more data instances. Other algorithms used373

are not dependent on quantity of data. Figure 13a presents the accuracy convergence with respect to epochs

Table 12: Algorithms Proficiency Metrics for Detecting of WebDDoS attacks

Accuracy(%) Precision(%) Recall(%) F1-score(%)

GRU 95.11 96.14 99.32 97.41

RNN 95.60 97.44 99.04 98.36

SMO 96.62 96.70 96.60 96.03

NB 68.80 92.00 68.90 75.10

374

and the highest accuracy of 96% is achieved at 40th epoch. Training accuracy curve begins at 89% and goes375

up to 95.55% and after that the convergence of training accuracy becomes stable. Test accuracy starts at376

90% and goes up to 96.0%. Figure 13 depicts the convergence of the accuracy with epochs and it achieves377

the lowest loss of 0.10% at the 48th epoch. Training loss starts at 0.35% and goes down to 0.1%. Then the378

convergence of training loss becomes stable as shown in fig 13b.

(a) Model accuracy (b) Model Loss

Figure 13: Model Accuracy and Loss of DDoS Malware with Respect to Web-DDoS Attacks

379
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5.12. TFTP attacks380

The result of TFTP are represented in Table 13 with respect to 4 different classification models. The381

highest accuracy that is achieved is 99.97% by using the SMO algorithm. The other algorithms: GRU,382

RNN, and NB also calculated excellent results in which the accuracy is 99.83% for GRU, 99.78% for RNN,383

and 98.92% for NB algorithm respectively. Figure 14a presents the accuracy convergence with respect

Table 13: Algorithms Proficiency Metrics for Detecting of TFTP attacks

Model Accuracy(%) Precision(%) Recall(%) F1-score(%)

GRU 99.83 99.08 86.16 92.33

RNN 99.78 98.36 83.18 90.17

SMO 99.97 99.94 99.96 99.92

NB 98.92 99.40 98.90 99.10

384

to epochs and the highest accuracy of 99.83% is achieved at 18th epoch. Training accuracy curve begins385

at 99.3% and goes up to 99.8% and after that the convergence of training accuracy becomes stable. Test386

accuracy starts at 99.6% and goes up to 99.83%. Figure 14 depicts the convergence of the accuracy with387

epochs and it achieves the lowest loss of 0.013% at the 17th epoch. Training loss starts at 0.04% and goes388

down to 0.013%. Then the convergence of training loss becomes stable as shown in fig 14b.

(a) Model accuracy (b) Model Loss

Figure 14: Model Accuracy and Loss of DDoS Malware with Respect to TFTP Attacks

389
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5.13. Portmap attacks390

The result of portmap attacks are represented in Table 14 with respect to 4 different classification mod-391

els. The highest accuracy that is achieved is 99.87% by using GRU algorithm. The other algorithms: RNN,392

SMO and NB also calculated excellent results in which the accuracy is 99.80% for RNN, 99.86% for SMO393

and 99.1% for NB algorithm respectively. Figure 15a presents the accuracy convergence with respect to

Table 14: Algorithms Proficiency Metrics for Detecting of Portmap Attacks

Model Accuracy(%) Precision(%) Recall(%) F1-score(%)

GRU 99.87 98.13 99.45 99.63

RNN 99.80 97.44 99.07 98.30

SMO 99.86 97.50 99.65 98.50

NB 99.18 85.40 99.70 92.00

394

epochs and the highest accuracy of 99.87% is achieved at 16th epoch. Training accuracy curve begins at395

99.4% and goes up to 99.81% and after that the convergence of training accuracy becomes stable. Test396

accuracy starts at 99.6% and goes up to 99.87%. It slightly went down at the 17th epoch. Figure 15b depicts397

the convergence of the accuracy with epochs and it achieves the lowest loss of 0.013% at the 17th epoch.398

Training loss starts at 0.045% and goes down to 0.014%. Then the convergence of training loss becomes399

stable as shown in Figure 15.

(a) Model accuracy (b) Model Loss

Figure 15: Model Accuracy and Loss of DDoS malware with respect to Portmap attacks

400
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6. Comparative Analysis and Discussion401

In Table 15, the precision, and recall of different models are compared with other state-of-the-art studies402

that utilize the CICDDoS2019 dataset for DDoS attack detection and identification. In [24], the ID3 algo-403

rithm was used to achieve the highest precision of 78% while other algorithms such as RF, NB, and logistic404

regression achieved the precision 77%, 41%, and 25% respectively. Similarly, the research [25] evaluated405

the average performance of classifiers and achieved the highest precision of 96.9% by using the bagging406

classifier. This research also obtained the results by using other classifiers such as Bayes net, KNN, SMO,407

and simple logistic which achieved the precision 96.2%, 96.7%, 93.9%, and 93.1% respectively. The re-408

search [65] combined DDoS simulators, BoNeSi and SlowHTTPTest with the CICDDoS2019 dataset. They409

achieved an accuracy of 98.9% using the LSTM algorithm and 99.9% using the CNN algorithm. In [26],410

2 scenarios were observed and in the second scenario, they used the dataset CICDDoS2019. By using the411

CICDDoS2019 dataset the highest precision achieved was 97.89% using the LSTM-Fuzzy algorithm. Other412

algorithms were also used such as KNN, LSTM-2, MLP, PSO-DS, and SVM which achieved the precision413

of 89.27%, 96.61%, 94.08%, 81.19%, and 97.74% respectively. In the other comparisons, it is observed that414

they also achieved good results but our research achieves the highest accuracy of 99.97% using the GRU415

algorithm for SNMP attacks as shown in Table 16.416

Table 15: Comparison of the DIDDOS with State-of-the-art Studies

Paper Dataset Precision (%) Recall (%)

[24] CICDDoS2019 78.00 65.00

[25] CICDDoS2019 96.90 96.40

[26] CICDDoS2019 97.89 93.13

This approach CICDDoS2019 99.83 99.79

In this research, the CICDDoS2019 dataset is passed from a series of steps that include pre-processing,417

feature extraction, resolving the oversampling problem, and then the data was split into 11 different attack418

files. Due to a very large dataset, a part of the CICDDoS2019 dataset is used for each attack in this exper-419

imentation. Firstly in the pre-processing stage, NAN values, duplicate rows of data are removed, and then420

the data is normalized with MinMax scaling because the data was less ambiguous with low variance. Then421

the oversampling problem is solved on WEKA [66] platform by using a supervised classification technique422

called SMOTE [60]. This technique analyzes the data and generates data instances of the minority class of423
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Figure 16: Comparison of Performance Measures with Respect to Each Attack

data to balance the data and avoid over-fitting problems.424

7. Conclusion425

In this research, an approach DIDDOS is proposed to detect and identify DDoS attacks over the net-426

work. The DIDDOS is evaluated by using the state-of-the-art CICDDoS2019 dataset by using deep learning427

algorithms i.e., GRU and RNN as well as conventional machine learning algorithms NB and SMO. The ex-428

perimental results demonstrated that the DIDDOS is most efficient for detecting and identifying DDoS429

attacks. From the experimental result analysis, it is evident that our proposed approach gives very effective430

performance results based on accuracy, precision, recall, and F1-score. The highest accuracy achieved is431

99.91% by using the GRU algorithm in case of an SSDP attack and an average of 99.7 for all other attacks.432

In addition to this, for SSDP attacks, the precision, recall, and F1-score are 99.83%, 99.79%, and 99.69%433

respectively. For future work, we plan to use this dataset in an intrusion detection system and that network434

module can be upgraded to an intrusion prevention system so that the DDoS attacks can be detected and435

prevented. By the addition of more malware samples, in the near future, we can also make a generic dataset436

that will contain all different categories and types of malware information. This step will allow different437
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areas to use our generic dataset instead of using multiple datasets for each malware classification. This will438

contribute a positive security service to the world and help to increase the prevention of DDoS attacks.439
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