Please cite the Published Version
Paxton-Fear, Katie (1) (2018) A Computational Decipherment of Linear B. In: Computer Applications and Quantitative Methods in Archaeology Conference (CAA 2018), 19 March 2018-23 March 2018, Tübingen, Germany.

Version: Presentation

Downloaded from: https://e-space.mmu.ac.uk/627538/

Enquiries:

If you have questions about this document, contact openresearch@mmu.ac.uk. Please include the URL of the record in e-space. If you believe that your, or a third party's rights have been compromised through this document please see our Take Down policy (available from https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

Tools of the Future A Computational Decipherment of Linear B

Creativity is Limitation

- Limitation: Follow the steps of the original decipherment
- "Standing on the Shoulders of Giants"
- A different approach to a interdisciplinary project

Background

- Linear B was found on Crete and at select places on the mainland
- It is a syllabic language
- The language was used administratively
- Related languages
- Linear A, Cypro-Minoan, Cretan Hieroglyphs, Classical Cypriot

A Recipe for Decipherment

1）Correctly classify and transcribe tablets Completed by Emmett L．Bennett Jr．

2）Find evidence of inflection
Completed by Alice Kober

3）Create a grid of characters

Completed by Michael Ventris

4）Begin assigning likely values to the grid Completed by John Chadwick \＆Ventris

	A	E	I	0	U
VOWEL	T	A	＊	\square	F
D	＋	翌	T	9	4
J	目	＊		₹	
K	\oplus	断	\％	P	2
M	M	9	V	\uparrow	H
N	$\overline{\bar{Y}}$	Ψ	${ }^{x}$	㡎	1
P	\ddagger	E	A	¢	π
Q	9	\bigcirc	T	H	
R	上	ψ	＊	t	ψ
S	Y	F＇	由	\％	E
T	L	非	A	†	¢
w	71	2	A	h^{3}	
z	t	通		＋	

System flow

Output

Finding Inflection: Original Work

- Kober originally found evidence that Linear B was inflected
- Kober's algorithm
- Select words which are followed by ideograms and numerals
- Find the same word in different contexts
- Find predictable patterns where the word endings change

Finding Inflection: Computational Approach

- A visual representation
- Loop through each word
- Loop through each word

alk	[w,a,l,k]
talking	[t,a,l,k,i,n,g]
valking	[w,a,l,k,i,n,g]
wanting	[w,a,n,t,i,n,g]
walked	[w,a,l, , , e, d]

- If the word is exactly the same - ignore
- Else
- Loop through the characters in word 1
- Does this character match the character in word 2
- Increase the similarity
- Else - stop, these words are dissimilar

	Loop	Word 1	Word 2	Similarity
	1	walk	walk	0
	2	walk	talking	0
	3	walk	walking	4
	4	walk	wanting	2
	Loop	walk	wanting	Similarity
	1	w	w	1

Finding Inflection: The Results

Linear B Tests

```
po-ti-ni-ja Confirmed? true
    -po-ti-ni-ja-we-jo
    -po-ti-ni-ja-we
    -po-ti-ni-ja-wi-jo
u-ru-pi-ja-jo Confirmed? false
    -u-ru-pi-ja-jo
a-ko-so-ta Confirmed? false
    -a-ko-so-ta
    -a-ko-so-ta-o
po-ro-u-te Confirmed? false
    -po-ro-u-te-u
    -po-ro-u-te-we
```


Creating the Connections：Original Work

－Kober showed how characters are connected
－Computerise this process
－Predictable patterns，evidence of inflection
－Then this is plot on a graph
mo
wo
no

```
Ser-vu-s(a) -> Servus
Ser-vu-m(a) -> Servum
Ser-vi-> Servi
```



```
    different case charracter likely shares a` vownepnant
        Type A Type B
\begin{tabular}{|c|c|c|c|c|c|}
\hline Case & 个\％用年 & キ＊ \(\mathrm{n}_{\text {目 }}\) & ¢我丮目 & P 屾本目 &  \\
\hline Case & ヶ\％ก ₹ & キ \(*\) ¢ & ¢ 采井 & P 揤本 5 & \＃\(V\) 队 \({ }^{\text {x }}\) \\
\hline Case & ¢\％ & \＃ \(\boldsymbol{*}\) ¢ & ¢ \(\underbrace{*}\) &  &  \\
\hline
\end{tabular}
```


Creating the Connections: Results

- Graph
- Node -> A Linear B character
- Edge -> A shared vowel or consonant
- Weight -> How often it appears
- Seed the graph with likely values
- da, ma, mi, ni, so, do, su, du
- Plot onto a table

Final Grid

	a	e	i	o	u
M	ma	me	mi	mo	mu
N	na	ne	null	no	nu
D	da	de	di	do	du
J	ja	je	ni	jo	ju
K	ka	ke	ki	ko	ku
P	pa	pe	pi	po	pu
Q	qa	qe	qi	qo	qu
R	ra	re	ri	ro	ru
S	sa	se	si	so	su
T	ta	te	ti	to	tu
Z	za	ze	zi	zo	zu
W	wa	we	wi	wo	null

Conclusion

- It is possible to replicate the decipherment of Linear B computationally
- Different approach that typical Machine Learning decipherments
- Working with limitations can encourage creative solutions
- Interdisciplinary projects are great sources of personal growth

Thank you for listening

Any Questions?

\square @InsiderPhD
 \square K.Paxton-Fear@cranfield.ac.uk
 므 www.somewebpage.com
 () https://github.com/greenpencil

My Linear B datasets are available and free for use https://github.com/InsiderPhD/Linear-B-Dataset
My inflection algorithm is available and free for use

