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Abstract: The existing solutions for reducing total harmonic distortion (THD) using different control
algorithms in shunt active power filters (SAPFs) are complex. This work proposes a split source
inverter (SSI)-based SAPF for improving the power quality in a nonlinear load system. The advantage
of the SSI topology is that it is of a single stage boost inverter with an inductor and capacitor where the
conventional two stages with an intermediate DC-DC conversion stage is discarded. This research
proposes inventive control schemes for SAPF having two control loops; the outer control loop
regulates the DC link voltage whereas the inner current loop shapes the source current profile. The
control mechanism implemented here is an effective, less complex, indirect scheme compared to
the existing time domain control algorithms. Here, an intelligent fuzzy logic control regulates the
DC link voltage which facilitates reference current generation for the current control scheme. The
simulation of the said system was carried out in a MATLAB/Simulink environment. The simulations
were carried out for different load conditions (RL and RC) using a fuzzy logic controller (FLC) and PI
controllers in the outer loop (voltage control) and hysteresis current controller (HCC) and sinusoidal
pulse width modulation (SPWM) in the inner loop (current control). The simulation results were
extracted for dynamic load conditions and the results demonstrated that the THD can be reduced to
0.76% using a combination of SPWM and FLC. Therefore, the proposed system proved to be effective
and viable for reducing THD. This system would be highly applicable for renewable energy power
generation such as Photovoltaic (PV) and Fuel cell (FC).

Keywords: total harmonic distortion (THD); shunt active power filter (SAPF); split source inverter
(SSI); MATLAB/Simulink; hysteresis current controller (HCC); fuzzy logic controller (FLC)

1. Introduction

With the advent of power electronic converters, the power conversion for various
applications has become quite easy. However, the power quality issues due to the nonlinear
switching of power devices have become inevitable. Among all the power quality issues,
the most prevalent one is the harmonics. Total harmonic distortion (THD) results in poor
power factor, insulation failures, non-sinusoidal source, poor voltage profile, etc. The
harmonic distortion in source voltage is very high when the power electronic interfaces
relate to induction heating circuits, arc furnace, un-interruptible power supplies (UPS) [1,2].
To alleviate the impact of harmonics, filter circuits are used. In general, the inductor (L) and
capacitor (C) form L-C passive filters which do not possess any static control [3]. Active
power filters (APFs) [4] are embedded with control switches whose duty cycle is tuned to
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the amount of inclusion of LC values. The APF topology that is prevalently used in grid
systems to compensate for the harmonic distortion have an energy storage component with
an inverter. Many research works have been archived in proposing new topologies for the
inverter or new control scheme of the inverter for compensating the harmonic distortion.

The inverter topology presently used are six-switch topologies in which the switches
will be of MOSFETs or insulted gate bipolar transistor (IGBT). Kim [5] proposed a new
hybrid active power filter topology in which the combination of MOSFETs and IGBTs were
used. The hybrid switch usage helped in dealing with various combinations of high- and
low-voltage, switching frequencies. The IGBT embedded inverter accounts for voltage
compensation whereas the MOSFET was for current compensation. The above-discussed
scheme, though advantageous, encounters more switching losses. Another breakthrough
happened when Hirve et al. [6] and Barva et al. [7] proposed a three-phase, four-wire
system, but there was additional control complexity in the system. Similarly, articles
were published based on the reference signals generated for the control of shunt active
power filter (SAPF) in either frequency domain or time domain algorithms [8,9]. In [10,11],
synchronous reference frame theory and instantaneous PQ theory were used to generate
the reference currents. Therefore, the THD was reduced to within the permissible limit, but
the voltage across the DC link capacitor varied with respect to the transient conditions.

With the advent of multilevel inverter (MLI) topologies, the harmonic mitigation
and pure sinusoidal waveform at inverter terminal output became pragmatic [12,13].
MLIs like cascaded H-bridge, diode clamped inverter, flying capacitor inverter and its
control methods, applications, etc., were proposed [14,15]. Recently, a detailed review of
modular multilevel converters and its control nuances were presented in [16]. A five-level
cascaded H-bridge (CHB) was implemented using a space vector pulse width modulation
technique [17], which was a complex scheme of producing PWM signals. In active power
filters, instead of the conventional inverters, MLIs can be used but the PWM generation
with greater driver units makes the compensation scheme very complex [18].

In recent years, single-stage inverters have gained more importance due to their
reduced circuit complexity, less weight and smaller number of components. Peng intro-
duced the Z-source inverter (ZSI), which comprised two sets of two passive elements,
i.e., an inductor, a capacitor, and a diode connected to act as a buck/boost inverter [19].
All these topologies will have L-C impedance networks which facilitates the buck boost
capability [20–22] and is combined with the inversion unit. The major drawbacks of these
topologies are poor DC regulation and high complexity in designing the L-C network.
Furthermore, achieving the shoot through mode to boost the voltage in single stage inverter
is quite complex.

A split source inverter (SSI) is of unique topology, which uses only an inductor and a
capacitor, and diode as the prime components [23]. Additionally, it does not utilize any
extra switching state and the voltage across the bridge remains stable. The SSI topology
utilizes the same states as voltage source inverter (VSI) with the same modulation schemes.
This topology is a combination of boost converter merged with 3-ϕ VSI connected with
the input inductor through diodes to the split points of the bridge inverter. With these
advantages in mind, in this research work SSI topology has been chosen to compensate the
harmonic currents in the line.

Various controller schemes for active power filters have been reported in the research
arena. In a typical control scheme, the grade of harmonic impact is measured and PWM
(pulse width modulation) pulses for the inverter are generated in such a way that the
inverter feeds harmonic currents into the line to negate the existing harmonic currents.
The control algorithm aids in maintaining the desired point of common coupling (PCC)
voltage, harmonic current elimination, and load balancing of the nonlinear loads. On
the other hand, achieving voltage regulation at the PCC and unity power factor control
cannot be achieved simultaneously. In all, the SAPF compensation scheme involves four
essential facets and they are harmonic reference current generation, synchronization, DC
link voltage regulation and current control. A detailed survey on SAPF has been archived
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in the literature [24]. Conventional proportional integral (PI) controllers for the voltage and
current control were used in [25,26] to regulate the harmonic current and the DC voltage.
However, to achieve versatility in the PI controller, an accurate model of the system should
be known, which is difficult to obtain with the given nonlinearity, load disturbances and
parameter variations. The fuzzy logic controller (FLC) is one of the intelligent control
methods and even without a precise linear mathematical model, it can perform well.

The FLC-based shunt APF was reported in [27], where the reference current generation
was carried out using P-Q theory and the FLC was used for current injection and DC
voltage regulation. Here, the complexity lies in framing the rules with the membership
functions. In [28], dynamic characteristics of VSI based SAPF for varying loads were
discussed. In [29], synchronous reference theory was used to develop reference current
generation for seven level cascaded H-bridge inverter (SLCHB), seven level modular
multilevel converter (SLMMC)-based SAPF was employed to reduce the harmonics to 4%.
A hybrid predictive fuzzy logic (HPFL)-based technique was used to reduce harmonics
where the predictive part was used for compensating current generation and fuzzy logic
for voltage regulation [30]. Another study designed a low-cost hybrid shunt active power
filter using PI/fuzzy for generating reference current and to regulate DC link capacitor
voltage and switching pulses were generated by using an adaptive fuzzy hysteresis current
controller (A-F-HCC) [31]. In [32], maximum power point tracking (MPPT) and DC link
voltage regulation were carried out using a fuzzy logic controller. All these systems
mentioned above used time domain control algorithms to generate current references.
A comparison of the controllers for VSI based SAPF has been discussed with respect to
the reduction of harmonics in [33]. A sliding mode controller (SMC) for shunt APF for
improving power factor was discussed in [34], whereas a THD of 1.45% was produced by
the designed system with complex reference current generation method. The maximum
development of a shunt APF for improving power quality with predator-prey based firefly
optimization was well presented in [35]. However, in this work, the authors developed an
optimization technique for a normal voltage source inverter (VSI)-based APF and complex
controller computation methods. Single- and three-phase PUC-5 inverter systems were
reported in [36] where the converter had two equally regulated separate DC links for the
APF application.

From the detailed literature, it is inferred that the quest on proposing simple but
versatile control schemes for SAPF is still in demand. Additionally, the choice of inverter
topology should achieve the required compensation. This research paper proposes an
inventive FLC-aided SSI for SAPF. The fuzzy controller in the outer loop provides good
DC regulation and reduced harmonics. SSI is advantageous with reduced components, DC
link capacitor voltage and high voltage gain with conventional switching states and shorter
commutation path. The paper is so organized that Section 2 deals with analysis of SSI and
modelling of the SSI. The design of controllers for SSI-based SAPF has been explored in
Section 3. Section 4 presents the results obtained from dynamic and steady state conditions
of nonlinear loads. Finally, the conclusions are presented in Section 5.

2. System Description

Figure 1 presents the SSI-based SAPF system architecture using a block diagram. An
AC source with a balanced nonlinear load (NLL) was introduced. An insulted gate bipolar
transistor (IGBT)-based SSI with a DC bus capacitor was used for the SAPF and its AC
side was connected in parallel across the loads or point of common coupling (PCC). The
gating pulses to the inverter bridge were generated by employing a current controller over
the reference and sensed supply currents as an indirect current control. It had two control
loops, a voltage control loop and a current control loop. The voltage control loop regulates
the DC link capacitor voltage (V2). The sensed DC link capacitor voltage was compared
with the reference DC link voltage (V2ref) and the error was fed to a PI/fuzzy controller.
The output of the PI controller was the amplitude of the current, which was used to derive
the reference current. A phase-locked loop (PLL) is used to extract the source voltage. The
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reference current was compared with the source current in the current control loop for
generating gate signals for the switches (T1 to T6) of the SSI in the SAPF.
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Figure 1. Block diagram of SSI-based SAPF for the three-phase, three-wire system.

2.1. Analysis of SSI

The basic circuit of 3-ϕ SSI shown in Figure 2A in this section uses the same B6
bridge of the traditional VSI combined with an impedance network to implement the boost
capability. SSI comprises of two passive elements, an inductor and a capacitor. Three
diodes are connected in series with the input inductor with the nodes of each leg in bridge
as shown in Figure 2A. L is discharged only in one state and charges the capacitor (i.e., the
DC link capacitor) as shown in the Figure 2B, a–h. Inductor L can be charged in any of
the six active states and a zero state. During the other zero state, L discharges through the
antiparallel diode connected across the upper switches. SSI has connected to a linear load
and a diode rectifier load according to the IEC62040-3 standard.
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According to the modes of operation, the circuit operates as boost converter in contin-
uous conduction mode where switches in the inverter are in conduction state (i.e.,) L will
be charged for a period of Ton and discharging for a period To f f .
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The duty cycle δ given by Equation (1):

δ =
Ton

Ton + To f f
(1)

where Ton = charging time and Toff = discharging time.
For Figure 2i, the sinusoidal pulse width modulation (SPWM) technique was applied,

the mathematical equations of SPWM modulation schemes are discussed where the duty
cycle δ, minimum and maximum duty cycle are δmin, δmax respectively and its average
value of duty cycle δav of modulation scheme can be determined by Equation (2):

δ(θ) =
1
2
{1−m sin(θ)} (2)

The inverter is 3ϕ (i.e.,) 7π
6 ≤ θ ≤ 11π

6 , where θ is the angle of interval and modulation
index m is shown with respect to minimum value and maximum value (Equations (3) and (4)):

δmin =
1
2
+

1
4

m (3)

δmax =
1
2
+

1
2

m (4)

The average duty cycle (i.e.,) inductor gets charged is given by δav (Equation (5)):

δav =
1
2
+

3
√

3
4π

m (5)

The average normalized inverter voltage Vp
V1

is given by Equation (6):

Vp

V1
=

4π

2π − 3
√

3m
(6)

where V1 is the DC input Voltage and Vp is the voltage applied across the inverter bridge.
The fundamental output phase voltages Vo1 can be calculated as (Equation (7)):

Vo1

V1
=

2πm
2π − 3

√
3m

(7)

For the selection of the capacitor and inductor value, both the frequency compo-
nents due to the switching cycle as well as duty cycle has been considered. The high
frequency ripple for the inductor current ∆ILH and the capacitor voltage ∆VPH are defined
by Equations (8) and (9), respectively:

∆ILH =
δV1

fsL
(8)

∆VPH =
(1− δ)Idc

fsC
(9)

where Idc is the input current.
The capacitor current ripple ICl and inductor voltage ripple VLl of low frequency are

defined by (Equations (10) and (11)), respectively, assuming constant inductor current and
inverter voltage:

|VLl | = (1− δ(θ))Vp (10)

|ICl | = (1− δ(θ))Idc (11)

To calculate the low frequency ripple components, only the fundamental terms of |VLl |
and |ICl |, the Fourier series of δ(θ) is considered, where ∆IL is the allowable ripple current
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and ∆Vp is the allowable voltage ripple are the combination of low frequency component
and high frequency component. The capacitor and inductor values are calculated from
Equations (12) and (13):

L ≈
wmVp

6π f1∆IL
+

δmaxV1

2 fs∆IL
(12)

C ≈ wmIdc
6π f1∆Vp

+
(1− δmin)Idc

2 fs∆Vp
(13)

where fs is the switching frequency and f 1 is the fundamental frequency, w is a constant
given by Equation (14):

w =
3
√

3
8π

(14)

2.2. Modeling of SSI

The average modelling SSI-based SAPF is essential for designing the controller pa-
rameters [9,10]. The SSI state space equations can be engraved by dividing each switching
time period Ts, into two interval ton and toff (refer Figure 2). During ton, the charging period
of L and C is supplying the load during active switching. In toff, L is discharging, and C is
charging during that zero state, performing as an intermediate state for transfer of energy.
Choosing state variables x1 = iL, x2 = V2 of the SSI-based shunt SAPF (see Figure 2) and its
state space equation of two interval ton and toff are represented by Equations (15) and (16):

diL
dt

=
V1

L
− rLiL

L
(15)

dV2

dt
= − iinv

C
interval ton

diL
dt

=
V1

L
− rLiL

L
− V2

L
(16)

dV2

dt
=

iL
C

interval to f f

where rL is the internal resistance and iinv is the current through the bridge.

3. SSI Based SAPF with Controllers

The three phase SSI-based SAPF with controllers are illustrated in Figure 3. From this
figure, it is observed that the two DC link voltages of capacitors C1 and C2 are summed
to attain the measured DC link voltage V2. This Vdc is compared with DC link reference
voltage Vdc

* to obtain the voltage error, which is applied to single FLC/PI controller to
produce the control signal. This generated control signal and synchronization of supply
sin θ from the phase-locked loop (PLL) are multiplied to obtain the reference current of the
APF is*. Now, the measured current is from the supply is compared with the is* to generate
the reference voltage signal. This reference voltage is compared with multiple carrier
signals with integrated voltage balancing to generate the PWM pulse for gating switches of
an inverter. The inverter must inject the current at PCC to compensate the current (current
controller), reduce the THD, improve the power factor and balance the capacitors voltage
(FLC/PI controller) during the SAPF operated at non-linear load condition. Now, the
current equation of the given model is defined by Equation (17):

is + i f = iL (17)

where i f is the current through the filter at the point of common coupling.
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Figure 3. Circuit diagram of Three-phase SSI-based SAPF connected to the supply and non-linear load.

3.1. Design of PI Controller

The proportional-integral (PI) is a traditional controller that is used to retain sinu-
soidal output current, to maintain near-unity and fast implementation of the power factor.
The proportional and integral gains are Kp and Ki, respectively. The difference between
reference voltage and output voltage is the error signal. The values of Kp and Ki are 0.9
and 500 respectively are set by tuning of the controller using the Ziegler–Nicholas method.

3.2. Design of FLC

The fuzzy logic controller is one of the non-linear and intelligent controllers. The rules
of the FLC are derived from the system parameters without the mathematical model of the
system. The FLC converts a linguistic control strategy based on expert knowledge into an
automatic control strategy, which makes the system stable. The FLC consists of three parts
namely, fuzzification, inference system, defuzzification. The fuzzy variables are expressed
in terms of membership functions. The Sugeno method of fuzzification was used where
the output was numerical values. The membership functions of error and change in error
of the proposed model are depicted in Figure 4a,b, respectively.

In this proposed system, Gaussian membership functions were selected as the inputs.
The voltage errors of the capacitor within the inverter were given as the input to FLC. Then,
FLC output was multiplied to synchronize the supply voltage signal sinθ via the phase-
locked loop (PLL) and the reference current of APF. Then, is was compared with is* to make
the reference voltage signal (refer Figure 3). This reference voltage was compared with the
carrier signals, which are integrated with voltage balancing to generate the PWM pulse
for gating the switches of SSI. The current from the SSI is injected at PCC to compensate
the current.
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The fuzzy sets were NB (negative big), NS (negative small), Z (zero), PS (positive
small), PM (positive medium) and PB (positive big), respectively. The assortment of FLC
49 rules were to be wholly contingent on dynamic deeds of the proposed APF (see Table 1).
Finally, the defuzzification-weighted average method was involved.

Table 1. Fuzzy rules for the proposed shunt active power filter (SAPF).
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NS Z Z PB PB PB PM PB
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3.3. Hysteresis Current Controller (HCC)

This method is simpler, and the implementation does not require complex circuits
or processors. The graphical representation of HCC for designed filter is illustrated in
Figure 5. The HCC method appears in such a way as to compel the current to remain within
a hysteresis band (HB) when the switch is ON/OFF. When the error reaches a fixed HB
magnitude, the switches will operate within the backslash limits. The control laws with
respect to the power switches of the SSI of the APF are as follows.

HBmin ≤ iref − is ≤ HBmax, none of the power switches are closed.
Iaref − Isa, Ibref − Isb, Icref − Isc>HBmax, T1, T3 and T5 are closed.
iref − is <HBmin, T4, T6 and T2 are closed. Isa, Isb, Isc are source currents.
The optimal operating frequency (ω) with desired HB can be written as

ω =
0.5ΠV2V1

HB× L f
(18)

where V1 is the source voltage and V2 is the DC link capacitor voltage, HB is the hysteresis
band and Lf is the inverter side inductance.
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Figure 5. Graphical representation of fixed band hysteresis current controller (HCC).

4. Results and Discussion

This section deals with the simulation results of the proposed three-phase SSI-based
SAPF with various controllers at different load operating conditions. In this proposed
system, diode bridge rectifier (DBR) with RL and RC were utilized as the nonlinear loads.
The experiments were performed under source and load balanced conditions as shown
in Figure 6. To validate the robustness and dynamic responses of the proposed SSI-based
SAPF, a step change load was introduced with the non-linear loads. During hysteresis
current controlling, a sudden load variation was applied at a time period of 0.05 s where
the total simulation time was 0.1 s. For SPWM technique, a sudden load variation was
introduced at 0.5 s while the total simulation time was set at 1.0 s.
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Figure 6. Simulation of experimental conditions employed in this study.

The specifications of SSI-based SAPF is catalogued in Table 2. Here, HCC was em-
ployed as an inner loop for the source current profile and reduce the THD of it, whereas
the PI controller and FLC were used as the outer loop for regulating its DC link voltages.
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Figure 7 indicates the simulated responses of the source current and THD of the power
system without SAPF at different load conditions.

Table 2. Specifications of three phase SSI Based SAPF used for the simulation.

Parameters Value

Source Voltage (Vs) 230 V (Peak Value)
Source Frequency (f) 50 Hz

Inductor (L) 6 mH
DC link capacitor voltages (V1 & V2) 100 V, 347 V

DC bus capacitor (C1 & C) 60 µF & 360 µF
Switching frequency (fs) 2 kHz

Filter inductor (Lf) 2 mH
Load inductor (LL) 2 mH

Diode bridge rectifier RL Load 10 Ω, 70 mH
Diode bridge rectifier RC Load 10 Ω, 100 µF
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Figure 7. Simulated responses of the source current in the power system without SAPF for (a) RL load and (b) RC load.

From these results, it was evident that the THDs of the power system without filter at
RL load and RC Load were 23.05% and 23.45%, respectively, that were much higher than
IEEE standard limit of 5%. To reduce the THD and refine the source current, a SAPF using
three phase split source inverter was introduced in the proposed power system design.

4.1. Hysteresis Current Controller (HCC) with Different Controllers for Voltage Regulation
4.1.1. Case 1 for HCC: PI and FLC Controllers with RL Loads

Figure 8a–c shows the change in source current, load current and compensation
current, for RL load when SAPF was connected. It was found that the proposed model
when subjected to dynamic load changes, the DC link voltage profile having a peak
overshoot with a voltage of 387 V before it settled at a time of 0.15 s and reached to a
voltage of 347 V with zero steady state error as shown in Figure 8e. At 0.05 s, the load was
increased by 5 Ω, and it was observed that the controller had null overshoots, zero steady
state error, and zero settling time. Hence, Figure 8g shows the three-phase line voltage
of three-phase split source inverter. Figure 8h shows the source current profile in phase
with source voltage. The source current reached almost near to its current profile with a
harmonic percentage of 4.47% which is shown in Figure 8d.
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Figure 8. Simulated responses of three-phase SSI-based SAPF connected at the diode rectifier bridge (DRB)-RL load HCC
and PI controller, (a) supply current, (b) load current, (c) compensation current, (d) THD, (e) V2 DC link voltage, (f) V1 DC
link voltage, (g) SSI output voltage and (h) source voltage (Vsa) and source current (Isa) of phase A.
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Figure 9a–c shows the change in source current, load current and compensation
current for the RL load when the SAPF was connected. When the proposed system was
subjected to load changes of the diode rectifier bridge, the DC link voltage profile had a
peak overshoot with a voltage of 387 V before it settled at a time of 0.13 s and reached a
voltage of 327 V with zero steady state error as shown in Figure 9e. At 0.05 s, the load
was increased by 5 Ω and it was observed that the controller had null overshoots, zero
steady state error, and zero settling time. Figure 9g shows the three-phase line voltage of
the three-phase split source inverter with 315 V. Figure 9h shows the source current profile
in phase with the source voltage. The source current reached almost near to its current
profile with a harmonic percentage of 4.46%, which is shown in Figure 9d.
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current and compensation current for the RC loads when SAPF was connected. The PI 

control scheme involves regulation of the DC link voltage. The DC link voltage showed a 
small peak overshoot before it reached the steady state voltage of 337 V, as shown in Fig-
ure 10e. The DC link voltage had zero steady state error, null overshoots and zero settling 

time during the step change in load variation with a minimized ripple voltage. In this case, 
the SAPF has been introduced to compensate harmonics and has reduced the THD from 
23.45% to 4.41%. The source current near to the current profile indicated a reduction in 

harmonics to 4.41% as shown in Figure 10d. Figure 10g shows the output line voltage of 
the three-phase split source inverter. Figure 10h shows that supply voltage and source 
current were almost in phase with the power factor. 
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Figure 9. Simulated responses of three phase SSI-based SAPF connected at DRB—RL load with HCC and FLC: (a) Supply
current, (b) load current, (c) compensation current, (d) THD, (e) V2 DC link voltage, (f) V1 DC link voltage, (g) SSI output
voltage and (h) source voltage (Vsa) and source current (Isa) of Phase A.

From these results, it was evident that the proposed model with HCC and FLC
displayed proficient performance at DBR based RL loads. Furthermore, DC link voltages
were settled at a quick settling time/zero steady state error and null peak overshoots with
a voltage of 327 V. The source current reached almost near to its current profile with HCC
and FLC with less distortion in its waveform and source current harmonics were reduced
to 4.46%.

4.1.2. Case 2 for HCC: PI and FLC Controllers with RC Loads

The simulation results illustrated in Figure 10a–c include the source current, load
current and compensation current for the RC loads when SAPF was connected. The PI
control scheme involves regulation of the DC link voltage. The DC link voltage showed
a small peak overshoot before it reached the steady state voltage of 337 V, as shown in
Figure 10e. The DC link voltage had zero steady state error, null overshoots and zero
settling time during the step change in load variation with a minimized ripple voltage.
In this case, the SAPF has been introduced to compensate harmonics and has reduced
the THD from 23.45% to 4.41%. The source current near to the current profile indicated a
reduction in harmonics to 4.41% as shown in Figure 10d. Figure 10g shows the output line
voltage of the three-phase split source inverter. Figure 10h shows that supply voltage and
source current were almost in phase with the power factor.
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Figure 10. Simulated responses of three phase SSI-based SAPF connected at DRB RC load with HCC and PI controller.
(a) Supply current, (b) load current, (c) compensation current, (d) THD, (e) V2 DC link voltage, (f) V1 DC link voltage,
(g) SSI output voltage and (h) source voltage (Vsa) and source current (Isa) of phase A.

Figure 11a–c show the source current, load current, compensation current. It was
observed that when there was a sudden change in load at 0.05 s, it had zero steady state
error at 327 V with a minimized ripple voltage which is shown in Figure 11e. The source
current near to the current profile indicated a reduction in harmonics by 4.03%, as shown
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in Figure 11d. Figure 11g shows the output line voltage of the three-phase split source
inverter. Figure 11h shows that supply voltage and source current were almost in phase.
When the FLC controller was connected in the outer loop it performed well because the
overall system was a nonlinear system. The DC link voltage remained constant. The source
current harmonics were found to be 4.46% and 4.03% for various loads using the FLC over
PI controller with a near to source current profile. Thus, the results proved the system
dynamic performance during transient condition.
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Figure 11. Simulated responses of three phase SSI-based SAPF connected at DRB RC load with HCC cum FLC: (a) Supply
current, (b) load current, (c) compensation current, (d) THD, (e) V2 DC link voltage, (f) V1 DC link voltage, (g) SSI output
voltage and (h) source voltage (Vsa) and source current (Isa) of phase A.

4.2. SPWM with Different Controllers for DC Link Voltage Regulation
4.2.1. Case 1 for SPWM: PI and FLC Controllers with RL Loads

It was observed that when the controllers for DC link voltage regulation was varied,
the total harmonic distortion has been reduced to IEEE standard limit of 5%. When the
proposed model treated with a different controller in the inner loop, percentage of THD
reduction has been verified. Figure 12a–c shows the change in source current, load current
and compensation current. It was further observed that the proposed model when subjected
to dynamic load changes, the DC link voltage profile showed a peak overshoot with a
voltage of 387 V before it settled at a time of 0.2 s and reached a voltage of 300 V with zero
steady state error, as shown in Figure 12e. At 0.5 s, the load was increased by 5 Ω and it
was observed that the controller had null overshoots and zero steady state error. Figure 12f
shows the three-phase line voltage of three phase split source inverter. Figure 12g shows
the source current profile in phase with the source voltage. The source current reached
almost near to its current profile with a THD of 1.03% as shown in Figure 12d.
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Figure 12. Simulated responses of three phase SSI-based SAPF connected at DRB RL load with SPWM and PI controller:
(a) Supply current, (b) load current, (c) compensation current, (d) THD, (e) V2 DC links voltage, (f) SSI output voltage and
(g) source voltage (Vsa) and source current (Isa) of phase A.

Figure 13a–c shows the source current, load current, and compensation current when
SAPF relates to SPWM and FLC Controller. Figure 13e shows the DC link voltage profile
showing a peak overshoot of 447 V and it reached a voltage of 350 V with zero steady state
error. When there is a sudden change in load, the FLC controller had null overshoots and
zero steady state error. Figure 13f shows the line-to-line voltage of three phase split source
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inverter. Figure 13g shows the source current profile in phase with the source voltage. The
source current reached almost near to its current profile with a harmonic percentage of
0.76% as shown in Figure 13d. Figure 13j shows that the input inductor current has been
increased and a small voltage dip during a transient period of 0.5 s. Figure 13k,l,h show the
zoomed graphs of source current, load current and compensation current of load variation
at the time of 0.5 s. When the FLC controller was connected to the outer loop and SPWM
controller to the inner loop, controller where the DC link voltage remained constant, the
source current harmonics was found to be 0.76% for FLC over PI controller with near to
the source current profile and power factor near to the unity. Thus, these results proved
the system dynamic performance during transient condition.
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Figure 13. Simulated responses of three phase SSI-based SAPF connected at DRB RL load with SPWM and FLC controller:
(a) Supply current, (b) load current, (c) compensation current, (d) THD, (e) V2 DC links voltage, (f) SSI output voltage
(g) source voltage (Vsa) and source Current (Isa) of Phase A, (h) Zoomed source current, (i) zoomed load current, (j) inductor
current, (k) zoomed compensation current and (l) zoomed inverter output voltage.

4.2.2. Case 2 for SPWM: PI and FLC Controllers with RC Loads

The difference in the DC link voltage regulation with PI and FLC controllers with
SPWM are presented Figures 14 and 15. Figure 14a–c shows the source current, load current
and compensation current when SSI is connected as SAPF. The DC link voltage showed a
peak overshoot before it reached the steady state voltage of 347 V as shown in Figure 14e.
At 0.5 s, when there was a sudden change in load, the DC link voltage had zero steady state
error, null overshoots and zero settling time with a minimized ripple voltage. The source
current was near to the current profile with a reduction of harmonics by 1.00% as shown in
Figure 14d. Figure 14f shows the output line voltage of split source inverter. Figure 14g
shows that supply voltage of 315 V and source current are almost in phase with the power
factor near to unity.
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Figure 15. Simulated responses of three phase SSI-based SAPF connected at DRB RC load with SPWM and FLC controller,
(a) Supply current, (b) load current, (c) compensation current, (d) THD, (e) V2 DC links voltage, (f) SSI output voltage,
(g) source voltage (Vsa) and source current (Isa) of phase A, (h) zoomed source current and (i) zoomed load current.

Figure 15a–c shows the change in source current, load current and compensation
current. The DC link voltage profile showed a peak overshoot with a voltage of 410 V
before it settled at a time of 0.14 s and reached to a voltage of 347 V at 0.5 s with zero steady
state error, as shown in Figure 15e. It was observed that the fuzzy logic controller had null
overshoots, zero steady state error and a small voltage dip during a transient period of
0.5 s. Figure 15f shows the three-phase line voltage of three phase split source inverter.
Figure 15g shows the source current profile in phase with the source voltage. The source
current reached almost near to its current profile with a harmonic of 0.72% as shown in
Figure 15d. hence, Figure 15h,i are zoomed waveforms of the source current and load
current at 0.5 s. The FLC controller was connected to the outer loop and SPWM controller
to the inner loop, controller where the DC link voltage remained constant. The source
current harmonics was found to be 0.72% for FLC over PI controller with near to the source
current profile and a power factor near to the unity. Thus, these results proved the system
dynamic performance during transient condition.

4.3. Comparative Analysis and Discussion

In order to analyse the performance of the proposed approach, statistical analysis of
the case studies with a shunt active power filter configuration using various approaches
is illustrated in Table 3. From the results, it was evident that the proposed model with
SAPF demonstrated proficient performance at DBR based RC and RL loads where DC link
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voltages were settled in quick time with almost zero steady state error and minimized
ripple voltage for FLC controller compared to the PI controller with a sudden load variation
at 0.5 s. Owing to the nonlinearity in the total system, fuzzy logic controller performed
well compared to the PI controller for RL and RC loads. Furthermore, the inner current
controllers in HCC and SPWM were replaced with outer loop controllers. The source
current harmonics had almost the source current profile and the power factor was near
unity with lower distortion factor.

Table 3. THD analyses of the proposed model at different load operating conditions with differ-
ent controllers.

Load Type/Active Power Filter
THD (%)

RL Load RC Load

System without SAPF 23.05 23.45
HCC and PI controller 4.47 4.41

HCC and FLC 4.46 4.03
SPWM and PI controller 1.03 1.00

SPWM and FLC 0.76 0.72

The load values were changed dynamically, and the automatic regulation was investi-
gated for the developed controller. From the results obtained based on the simulations of
different case studies under different load conditions, it can be concluded that the proposed
system is robust enough to accommodate any sudden load variations. Therefore, the system
could bring a sustainable and simple solution for automatic regulation of load nonlinearity.

From Table 3, it was found that the designed SAPF through SPWM and fuzzy logic
control aided SSI showed better performance with significantly reduced THD down to
0.76% for the RL load and 0.72% for RC load. When compared the HCC and PI controller
with the SPWM and FLC, the later one demonstrated almost six times lower THD, which
would significantly contribute towards improving the power quality.

From Table 4, it can be concluded that topologies implemented requires a greater
number of switches [29], and PWM techniques which are used to generate gate pulses
are complicated. The DC link capacitors rating required was high in all other topologies.
In [35,36], the reference current generation led to the complexity of the structure. It can be
observed that indirect effective controlled SSI-based SAPF showed less THD, less distortion
and good DC voltage regulation under transient conditions.

Table 4. THD analysis of the proposed inverter with other topologies with only RL load.

SAPF with Different Topologies
THD (%)

PI (%) FLC (%)

SLCHB [29] 4.85 4.68
SLMMC [29] 4.29 4.01
3-Φ VSI [37] 1.18 -

3-Φ VSI with indirect current control
technique [38] 0.90 -

3-Φ VSI With SRF [39] 1.06 -
3-Φ SSI [Proposed] 1.03 0.76

In this work, the simulations were focused on reduction of THD and overall system
losses due to the harmonics created by nonlinear loads which are used in domestic as
well as industrial applications. A substantial increase in the harmonics might lead to
energy losses, the life span of the electrical equipment might decrease and derating of
the electrical equipment. To avoid these drawbacks, a three phase SSI-based SAPF for
current harmonic compensation has been proposed. When identifiable harmonics are
present, the best solution is to suppress the harmonics at the source side. The dynamic
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performance of the SSI-based SAPF was designed with an indirect effective control to
suppress the harmonics from the source side by injecting the harmonic current at PCC. The
fuzzy-based strategies regulating the DC link capacitor voltage made it simple, robust and
less susceptible to system transients.

5. Conclusions

An effective indirect control scheme for SSI-based SAPF with the fuzzy logic control
technique and with sinusoidal pulse width modulation was successfully designed. The
performance of the fuzzy logic controller (FLC) was validated by comparing it with the
conventional PI controller and it was found that FLC reduced the THD to 0.76%, which
was lower than the THD obtained by the PI controller (1.03%). The inverter current control
was accomplished by the SPWM scheme, which outperformed the hysteresis control with
respect to the total harmonic distortion. The whole system was tested for dynamic load
variations under balanced condition, and it was found that the combination of fuzzy and
SPWM remained to be superior (THD 0.76%) when compared with the PI and hysteresis
control (4.47%). The potential barrier of the proposed system might have reliability issues
with respect to the single stage but, given the control complexity issues, the suggested
scheme is believed to be the most preferred and viable. It should also be mentioned that the
system was validated using extensive modelling and simulations under different scenarios.
However, in the future, an experimental setup should be developed for further validation
and implementation in real life situations.
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