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Abstract: We firstly discuss classical stability for a dynamical system of two ions levitated in a 3D
Radio-Frequency (RF) trap, assimilated with two coupled oscillators. We obtain the solutions of the
coupled system of equations that characterizes the associated dynamics. In addition, we supply the
modes of oscillation and demonstrate the weak coupling condition is inappropriate in practice, while
for collective modes of motion (and strong coupling) only a peak of the mass can be detected. Phase
portraits and power spectra are employed to illustrate how the trajectory executes quasiperiodic
motion on the surface of torus, namely a Kolmogorov–Arnold–Moser (KAM) torus. In an attempt to
better describe dynamical stability of the system, we introduce a model that characterizes dynamical
stability and the critical points based on the Hessian matrix approach. The model is then applied
to investigate quantum dynamics for many-body systems consisting of identical ions, levitated in
2D and 3D ion traps. Finally, the same model is applied to the case of a combined 3D Quadrupole
Ion Trap (QIT) with axial symmetry, for which we obtain the associated Hamilton function. The
ion distribution can be described by means of numerical modeling, based on the Hamilton function
we assign to the system. The approach we introduce is effective to infer the parameters of distinct
types of traps by applying a unitary and coherent method, and especially for identifying equilibrium
configurations, of large interest for ion crystals or quantum logic.

Keywords: radiofrequency trap; dynamical stability; eigenfrequency; Paul and Penning trap; Hessian
matrix; Hamilton function; bifurcation diagram

PACS: 37.10.Ty; 02.30.-f; 02.40.Xx

1. Introduction
The advent of ion traps has led to remarkable progress in modern quantum physics,

in atomic and nuclear physics or quantum electrodynamics (QED) theory. Experiments
with ion traps enable ultrahigh resolution spectroscopy experiments, quantum metrology
measurements of fundamental quantities such as the electron and positron g-factors [1],
high precision measurements of the magnetic moments of leptons and baryons (elementary
particles) [2], Quantum Information Processing (QIP) and quantum metrology [3,4], etc.

Scientists can now trap single atoms or photons, acquire excellent control on their
quantum states (inner and outer degrees of freedom) and precisely track their evolution by
the time [5]. A single ion or an ensemble of ions can be secluded with respect to external
perturbations, then engineered in a distinct quantum state and trapped in ultrahigh vacuum
for a long period of time (operation times of months to years) [6–8], under conditions of
dynamical stability. Under these circumstances, the superposition states required for
quantum computation can live for a relatively long time. Ion localization results in unique
features such as extremely high atomic line quality factors under minimum perturbation
by the environment [3]. The remarkable control accomplished by employing ion traps and
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laser cooling techniques has resulted in exceptional progress in quantum engineering of
space and time [2,9]. Nevertheless, trapped ions can not be completely decoupled from the
interaction with the surrounding environment, which is why new elaborate interrogation
and detection techniques are continuously developed and refined [6].

These investigations allow scientists to perform fundamental tests of quantum me-
chanics and general relativity, to carry out matter and anti-matter tests of the Standard
Model, to achieve studies with respect to the spatio-temporal variation of the fundamental
constants in physics at the cosmological scale [2], or to perform searches for dark matter,
dark energy and extra forces [9]. Moreover, there is a large interest towards quantum
many-body physics in trap arrays with an aim to achieve systems of many interacting
spins, represented by qubits in individual microtraps [6,10].

The trapping potential in a Radio-Frequency (RF) trap harmonically confines ions in
the region where the field exhibits a minimum, under conditions of dynamical
stability [1,11,12]. Hence, a trapped ion can be regarded as a quantum harmonic oscil-
lator [13–15].

A problem of large interest concerns the strong outcome of the trapped ion dynamics
on the achievable resolution of many experiments, and the paper builds exactly in this
direction. Fundamental understanding of this problem can be achieved by using analytical
and numerical methods which take into account different trap geometries and various
cloud sizes. The other issue lies in performing quantum engineering (quantum optics)
experiments and high-resolution measurements by developing and implementing different
interaction protocols.

Investigations on Classical and Quantum Dynamics Using Ion Traps
A detailed experimental and theoretical investigation with respect to the dynamics

of two-, three-, and four-ion crystals close to the Mathieu instability is presented in [16],
where an analytical model is introduced that is later used in a large number of papers to
characterize regular and nonlinear dynamics for systems of trapped ions in 3D QIT. We use
this model in our paper and extend it. Numerical evidence of quantum manifestation of
order and chaos for ions levitated in a Paul trap is explored in [17], where it is suggested that
at the quantum level one can use the quasienergy states statistics to discriminate between
integrable and chaotic regimes of motion. Double well dynamics for two trapped ions (in
a Paul or Penning trap) is explored in [18], where the RF-drive influence in enhancing or
modifying quantum transport in the chaotic separatrix layer is also discussed. Irregular
dynamics of a single ion confined in electrodynamic traps that exhibit axial symmetry is
explored in [19], by means of analytical and numerical methods. It is also established that
period-doubling bifurcations represent the preferred route to chaos.

Ion dynamics of a parametric oscillator in an RF octupole trap is examined in [20,21]
with particular emphasis on the trapping stability, which is demonstrated to be position
dependent. In Ref. [22] quantum models are introduced to describe multi body dynamics
for strongly coupled Coulomb systems SCCS [23] stored in a 3D QIT that exhibits axial
(cylindrical) symmetry.

A trapped and laser cooled ion that undergoes interaction with a succession of
stationary-wave laser pulses may be regarded as the realization of a parametric non-
linear oscillator [24]. Ref. [25] uses numerical methods to explore chaotic dynamics of a
particle in a nonlinear 3D QIT trap, which undergoes interaction with a laser field in a
quartic potential, in presence of an anharmonic trap potential. The equation of motion is
similar to the one that portrays a forced Duffing oscillator with a periodic kicking term.
Fractal attractors are identified for special solutions of ion dynamics. Similarly to Ref. [19],
frequency doubling is demonstrated to represent the favourite route to chaos. An experi-
mental confirmation of the validity of the results obtained in [25] can be found in Ref. [26],
where stable dynamics of a single trapped and laser cooled ion oscillator in the nonlinear
regime is explored.
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Charged microparticles stored in an RF trap are characterized either by periodic or
irregular dynamics, where in the latter case chaotic orbits occur [27]. Ref. [28] explores
dynamical stability for an ion confined in asymmetrical, planar RF ion traps, and estab-
lishes that the equations of motion are coupled. Quantum dynamics of ion crystals in RF
traps is explored in [29] where stable trapping is discussed along with the validity of the
pseudopotential approximation. A phase space study of surface electrode ion traps (SET)
that explores integrable, chaotic and combined dynamics is performed in [30], with an
emphasis on the integrable and chaotic motion of a single ion. The nonlinear dynamics of
an electrically charged particle stored in an RF multipole ion trap is investigated in [31].
An in-depth study of the random dynamics of a single trapped and laser cooled ion that
emphasizes nonequilibrium dynamics, is performed in Ref. [32]. Classical dynamics and
dynamical quantum states of an ion are investigated in [33], considering the effects of the
higher order terms of the trap potential. On the other hand, the method suggested in [34]
can be employed to characterize ion dynamics in 2D and 3D QIT traps.

All these experimental and analytical investigations previously described open new
directions of action towards an in-depth exploration of the dynamical equilibrium at the
atomic scale, as the subject is extremely pertinent. In our paper we perform a classical
study of the dynamical stability for trapped ion systems in Section 2, based on the model
introduced in [16,18]. The associated dynamics is shown to be quasiperiodic or periodic.
We use the dynamical systems theory to characterize the time evolution of two coupled
oscillators in an RF trap, depending on the chosen control parameters. We consider the
pseudopotential approximation, where the motion is integrable only for discrete values of
the ratio between the axial and the radial frequencies of the secular motion. In Section 3 we
apply the Morse theory to qualitatively analyze system stability. The results are extended
to many body strongly coupled trapped ion systems, locally studied in the vicinity of
equilibrium configurations that identify ordered structures. These equilibrium configura-
tions exhibit a large interest for ion crystals or quantum logic. Section 4 explores quantum
stability and ordered structures for many body dynamics (assuming the ions are identical)
in an RF trap. We find the system energy and introduce a method (model) that supplies
the elements of the Hessian matrix of the potential function for a critical point. Section 5
applies the model suggested in Section 4. Collective models are introduced and we build
integrable Hamiltonians which admit dynamic symmetry groups. We particularize this
Hamiltonian function for systems of trapped ions in combined (Paul and Penning) traps
with axial symmetry. An improved model results by which multi-particle dynamics in a 3D
QIT is associated with dynamic symmetry groups [35–37] and collective variables. The ion
distribution in the trap can be described by employing numerical programming, based on
the Hamilton function we obtain. This alternative technique can be very helpful to perform
a unitary description of the parameters of different types of traps in an integrated approach.
We emphasize the contributions in Section 6 and discuss the potential area of applications
in Section 7.

2. Analytical Model
2.1. Dynamical Stability for Two Coupled Oscillators in a Radiofrequency Trap

We use the dynamical systems theory to investigate classical stability for two coupled
oscillators (ions) of mass m1 and m2, respectively, levitated in a 3D radiofrequency RF QIT.
The constants of force are denoted as k1 and k2, respectively. Ion dynamics restricted to the
xy-plane is described by a set of coupled equations:

(
m1 ẍ = �k1x + b(x � y)
m2ÿ = �k2y � b(x � y) ,

(1)
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where b stands for the parameter that characterizes Coulomb repulsion between ions.
The control parameters for the trap are:

ki =
miq2

i W
8

, qi = 4
Qi
mi

V0

(z0W)2 ; i = 1, 2, (2)

with W the frequency of the micromotion, V0 denotes the RF trapping voltage, z0 is the trap
axial dimension, Qi represents the electric charge and mi stands for the mass of the ion
labeled as i. We use the time-independent (also known as pseudopotential) approximation
of the RF trap electric potential, because it can be employed to achieve a good description of
stochastic dynamics [32]. As heating of ion motion occurs in our case due to the Coulomb
interaction between ions (as an outcome of energy transfer from the trapping field to the
ions), the time-independent approximation can be safely used, which brings a significant
simplification to the problem. Therefore, higher order terms in the Mathieu equation [1,38]
that portrays ion motion can be discarded.

The simplest non-trivial model to describe the dynamic behavior is the Hamilton
function of the relative motion of two levitated ions that interact via the Coulomb force
in a 3D QIT that exhibits axial symmetry, under the time-independent approximation
(autonomous Hamiltonian) [16–18]. The paper uses this well established model, which
we extend.

We consider the electric potential to be a general solution of the Laplace equation, built
using spherical harmonics functions with time dependent coefficients (see Appendix A).
This family of potentials accounts for most of the ion traps that are used in experiments [29].
The Coulomb constant of force is b ⌘ 2Q2/r3 < 0, resulting from a series expansion of
Q2/r2 about a mean deviation of the ion with respect to the trap centre r0 ⌘ (x0 � y0) < 0,
established by the initial conditions.

The expressions of the kinetic and potential energy are:

T =
m1 ẋ2

2
+

m2ẏ2

2
, U =

k1x2

2
+

k2y2

2
+

1
2

b(x � y)2. (3)

It is assumed that the ions share equal electric charges Q1 = Q2. We denote

k1 = 2Q1b1 , b1 =
4Q1V2

0
m1W2x4 � 2U0

x2 , (4)

with x2 = r2
0 + 2z2

0, where r0 and z0 denote the radial and axial trap semiaxes. We assume
U0 = 0 (the d.c. trapping voltage) and consider r0 as negligible. The trap control parameters
are U0, V0, x and ki. We select an electric potential V = 1/|z| and we perform a series
expansion around z0 > 0, with z � z0 = x � y. The potential energy can be then cast into:

U =
k1x2

1
2

+
k2x2

2
2

+
1

4p#0

Q1Q2
|x1 � x2|

. (5)

The Hamilton principle states the system is stable if the potential energy U exhibits
a minimum

k1,2x1,2 ⌥ l = 0 , l =
1

4p#0

Q1Q2

|x1 � x2|2
. (6)

Then
k1x1 + k2x2 = 0 , x1 min =

l

k1
, x2 min = � l

k2
. (7)

Equation

l = 3

s
1

4p#0

k2
1k2

2

(k1 + k2)
2 Q1Q2 , (8)
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supplies the points of minimum, x1 and x2, for an equilibrium state. We choose

z0 = x1 min � x2 min = l
k1k2

k1 + k2
(9)

and denote
z = x1 � x2 , x1 = x1 min + x , x2 = x2 min + y , (10)

with z = z0 + x � y. Equation (8) gives us

Q1Q2
4p#0

= l3
✓

k1k2
k1 + k2

◆2
= lz2

0 . (11)

We turn back to Equation (5), then make use of Equations (7) and (10) to express the
potential energy as

U =
k1
2

⇣
x2

1 min + x2
⌘
+

k2
2

⇣
x2

2 min + y2
⌘
+ lz0 +

l

z0
(z � z0)

2 � . . . (12)

From Equation (3) we obtain b/2 = l/z0. When the potential energy is minimum the
system is stable.

2.2. Solutions of Coupled System of Equations
We seek for a stable solution of the coupled system of Equation (1) of the form

x = A sin wt , y = B sin wt . (13)

The Wronskian determinant of the resulting system of equations must be zero for a
stable system ����

b � k1 + m1w2 �b
�b b � k2 + m2w2

���� = 0 . (14)

The determinant allows us to construct the characteristic equation:
⇣

b � k1 + m1w2
⌘⇣

b � k2 + m2w2
⌘
� b2 = 0 . (15)

The discriminant of Equation (15) can be cast as

D = [m1(b � k2)� m2(b � k1)]
2 + 4m1m2b2 . (16)

The system admits solutions if the determinant is zero, as stated above. Hence,
a solution of Equation (15) would be:

w2
1,2 =

m1(k2 � b) + m2(k1 � b)±
p

D
2m1m2

. (17)

Then, we find a stable solution for the system of coupled oscillators

x1 = C1 sin(w1t + j1) + C2 sin (w2t + j2) ,
y1 = C3 sin(w1t + j3) + C4 sin (w2t + j4) ,

(18)

which describes a superposition of two oscillations characterized by the secular frequen-
cies w1 and w2, that is to say the system eigenfrequencies. Assuming that b ⌧ k1,2 in
Equation (15), the strong coupling condition is

����
b
ki

�����
����
m1 � m2

m2

���� , (19)
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where the modes of oscillation are

w2
1 =

1
2

✓
k1
m1

+
k2
m2

◆
, (20)

w2
2 =

1
2

✓
k1 � 2b

m1
+

k2 � 2b
m2

◆
. (21)

By exploring the phase relations between the solutions of Equation (1), we can as-
certain that the w1 mode corresponds to a translation of the ions (the distance r0 between
ions does not fluctuate), while the Coulomb repulsion remains steady as b is absent in
Equation (20). The axial current produced by this mode of translation can be detected
(electronically). In the w2 mode the distance between the ions fluctuates about a fixed centre
of mass (CM), case when both the electric current and signal are zero. Optical detection is
possible in the w2 mode [39] even if electronic detection is not feasible. As a consequence,
for collective modes of motion only a peak of the mass is detected that corresponds to
the ion average mass. In case of weak coupling the inequality in Equation (19) overturns,
and from Equation (17) we derive

w2
1,2 = (k1,2 � b)/m1,2 , (22)

which means that each mode of the dynamics matches a single mass, while resonance is
shifted with the parameter b. In addition, within the limit of equal ion mass m1 = m2,
the strong coupling requirement in Equation (19) is always fulfilled regardless of how weak
is the Coulomb coupling. This renders the weak coupling condition unsuitable in practice.

For the stable solution described by Equation (18), we supply below the phase portraits
for the coupled oscillators system, as shown in Figures 1–8.

Figure 1. Parameter values C1 = 0.8, C2 = 0.6, C3 = 0.75, C4 = 0.6, j1 = p/3, j2 = p/4, j3 = p/2,
j4 = p/3, w1/w2 = 1.71/1.93 7�! quasiperiodic dynamics.
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Figure 2. Parameter values C1 = 0.75, C2 = 0.9, C3 = 0.8, C4 = 0.85, j1 = p/3, j2 = p/4, j3 = p/2,
j4 = p/3, w1/w2 = 1.96/1.85 7�! quasiperiodic dynamics.

Figure 3. Parameter values identical with those from Figure 1, w1 = 1.2, w2 = 2 7�! periodic behavior.
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Figure 4. Parameter values C1 = 0.8, C2 = 0.6, C3 = 0.75, C4 = 0.6, j1 = p/4, j2 = p/2, j3 = p/3,
j4 = p/5, w1 = 1.2, w2 = 2 7�! periodic dynamics.

The phase portraits with parameter values C1 = 0.75, C2 = 0.9, C3 = 0.8, C4 = 0.85
are illustrated in Figures 5–8.

Figure 5. j1 = p/5, j2 = p/6, j3 = p/3, j4 = p/2, w1/w2 = 1.8/1.7 7�! periodic behavior.
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Figure 6. j1 = p/4, j2 = p/2, j3 = p/3, j4 = p/4, w1 = 1.81, w2 = 1.88 7�! quasiperiodic dy-
namics.

Figure 7. j1 = p/6, j2 = p/5, j3 = p/2, j4 = p/4, w1 = 1.8, w2 = 1.9 7�! periodic behavior.
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Figure 8. j1 = p/6, j2 = p/4, j3 = p/2, j4 = p/8, w1 = 1.5, w2 = 1.9 7�! periodic behavior.

Figure 1 illustrates the phase portrait for a system of two coupled oscillators in an RF
trap, where the eigenfrequencies ratio is w1/w2 = 1.71/1.93. When the eigenfrequencies
ratio is a rational number w1/w2 2 Q, the solutions of the equations of motion (18) are
periodic trajectories and ion dynamics is regular. In case when the eigenfrequencies ratio
is an irrational number w1/w2 /2 Q, iterative rotations occur around a certain point [40]
that are called ergodic, according to the theorem of Weyl. It can be observed that the
solutions (18) of the equations of motions, illustrated in Figures 1–8, demonstrate that ion
dynamics is generally periodic or quasiperiodic, and stable. There are also a few cases
which illustrate ergodic dynamics [40] and the occurrence of what may be interpreted
as iterative rotations. According to Figures 1–8, by extending the motion in 3D we can
ascertain that the trajectory executes periodic and quasiperiodic motion on the surface of a
torus, referred to as a Kolmogorov–Arnold–Moser (KAM) torus [41]. By choosing various
initial conditions different KAM tori can be generated.

We have integrated the equations of motion given by Equation (1) to explore ion dy-
namics and illustrate the associated power spectra [42], as shown in Figures 9–16. The nu-
merical modeling we performed clearly demonstrates that ion dynamics is dominantly
periodic or quasiperiodic.

Ref. [43] describes an electrodynamic ion trap in which the electric quadrupole field
oscillates at two different frequencies. The authors report simultaneous tight confinement
of ions with extremely different charge-to-mass ratios, e.g., singly ionized atomic ions
together with multiply charged nanoparticles. The system represents the equivalent of two
superimposed RF traps, where each one of them operates close to a frequency optimized in
order to achieve tight storage for one of the species involved, which leads to strong and
stable confinement for both particle species used.
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Figure 9. Phase portrait for b = 2, k1 = 4, k2 = 5, m1 = m2 = 1.

Figure 10. Associated power spectrum. Initial conditions ẋ(0) = 0, ẏ(0) = 0, x(0) = 0, y(0) = 0.5.
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Figure 11. Phase portrait for b = 2, k1 = 17, k2 = 199, m1 = m2 = 1.

Figure 12. Associated power spectrum. Initial conditions ẋ(0) = 0, ẏ(0) = 0, x(0) = 0, y(0) = 0.5.
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Figure 13. Phase portrait for b = 3, k1 = 99, k2 = 102, m1 = 10, m2 = 13.

Figure 14. Associated power spectrum. Initial conditions ẋ(0) = 0, ẏ(0) = 0, x(0) = 0, y(0) = 0.5.
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Figure 15. Phase portrait for b = 2, k1 = 4, k2 = 5, m1 = 5, m2 = 7.

Figure 16. Associated power spectrum. Initial conditions ẋ(0) = 0, ẏ(0) = 0, x(0) = 0, y(0) = 0.5.

3. Dynamic Stability for Two Oscillators Levitated in a Rf Trap
3.1. System Hamiltonian Hessian Matrix Approach

A well established model is employed to portray system dynamics, that relies on two
control parameters: the axial angular moment and the ratio between the radial and axial
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secular frequencies characteristic to the trap. If we consider two ions with equal electric
charges, their relative motion is described by the equation [16,18,19]

d2

dt2

2

4
x
y
z

3

5+ [a + 2q cos(2t)]

2

4
x
y

�2z

3

5 =
µ2

x
|r|3

2

4
x
y
z

3

5 , (23)

where~r = x1 � x2, µx =
q

a + 1
2 q2 represents the dimensionless radial secular (pseudo-

oscillator) characteristic frequency [44], while a and q stand for the adimensional trap
parameters in the Mathieu equation, namely

a =
8QU0

mW2
�
r2

0 + 2z2
0
� , q =

4QV0

mW2
�
r2

0 + 2z2
0
� .

U0 and V0 denote the d.c and RF trap voltage, respectively, Q stands for the electric
charge of the ion, W represents the RF drive frequency, while r0 and z0 are the trap radial
and axial dimensions. For a, q ⌧ 1, such as in our case, the pseudopotential approximation
is valid. Therefore we can associate an autonomous Hamilton function to the system
described by Equation (23), which we express in scaled cylindrical coordinates (r, f, z)
as [16]

H =
1
2

⇣
p2

r + p2
z

⌘
+ U(r, z) , (24)

where

U(r, z) =
1
2

⇣
r2 + l2z2

⌘
+

n2

2r2 +
1
r

, (25)

with r =
p

r2 + z2 , l = µz/µx , and µz =
p

2(q2 � a). n denotes the scaled axial (z)
component of the angular momentum Lz and it is a constant of motion, while µz represents
the second secular frequency [16]. We emphasize that both l and n are strictly positive
control parameters. For arbitrary values of n and for positive discrete values of l = 1/2, 1, 2,
Equation (25) is integrable and even separable, excluding the case when l = 1/2 and
|n| > 0 (n 6= 0), as stated in [17].

The equations of the relative motion corresponding to the Hamiltonian function
described by Equation (24) can be cast into [16,17]:

z̈ =
z

r3/2 � l2z ,

r̈ =
r

r3/2 � r +
n2

r3 ,
(26)

with pr = ṙ and pz = ż. The critical points of the U potential are determined as solutions
of the system of equations:

∂U
∂r

= r � n2

r3 � 1
r2

r

r
= 0 ,

∂U
∂z

= l2z � 1
r2

z
r
= 0,

(27)

where ∂r/∂r = r/r and ∂r/∂z = z/r.
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3.2. Solutions of the Equations of Motion for the Two Oscillator System
We use the Morse theory to determine the critical points of the potential U and to

discuss the solutions of Equation (27), with an aim to fully characterize the dynamical
stability of the coupled oscillator system. Then

z
✓

l2 � 1
r3

◆
= 0 , (28)

which leads to a number of two possible cases:
Case 1. z = 0 . The first equation of the system (27) can be rewritten as

r � n2

r3 � r

r3 = 0 ,

which gives us r = r for z = 0. In such case, a function results

f (r) = r4 � r � n2 , f 0(r) = 4r3 � 1 . (29)

The second relationship in Equation (29) shows that r = 3
q

1
4 is a point of minimum

for f (r). In case when r0 > 0, for n 6= 0 and z0 = 0:

f (r) = r4
0 � r0 � n2 = 0 .

In case when n = 0 we obtain f (r) = r
�
r3 � 1

�
= 0. Then, the solutions are r1 = 0

and r2 = 1, where only r2 = 1 is a valid solution. Moreover, for n = 0 and z0 = 0, r0 = 1
is a solution.
Case 2. r3 = 1/l2 )

r = l�2/3 . (30)

We return to the system of Equations (27) and infer

r =

p
|n|

4p1 � l2
, (31)

for l < 1. In case when l  1 and n 6= 0, the system admits no solutions. In the scenario
when l < 1, n = 0 we find r = 0, while in case when l = 1, n = 0 it results that any r � 0
represents a solution. As r =

p
z2 + r2, then

z = ±
q

r2 � r2 = ±
q

l�4/3 � r2 . (32)

We differentiate among three possible sub-cases
Subcase (i): l < 1 , n 6= 0 and

z12 = ±
s

l�4/3 � |n|p
1 � l2

,

provided that 1 � l2 > n2l8/3 or

z = 0 for 1 � l2
c = n2l8/3

c ,

where the c index of l refers to critical.
Subcase (ii): l < 1, n = 0 which leads to r = 0 and z12 = ±l�2/3 .

Subcase (iii): l = 1, n = 0 which results in z12 = ±
q

l�4/3 � r2 , with r � 0 .
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These are the solutions we find for the equations of motion corresponding to the two
coupled oscilators system. After doing the math, the Hessian matrix of the potential U
appears as

H =

������
1 + 3n2

r4 � 1
r3 +

3r2

r5
3rz
r5

3rz
r5 l2 � 1

r3 +
3z2

r5

������
. (33)

The determinant and the trace of the Hessian matrix result as

detH =
3n2

r4

✓
l2 � 1

r3 +
3z2

r5

◆
+ l2

✓
1 � 1

r3 +
3r2

r5

◆
� 1

r3

✓
1 +

2
r3 � 3z2

r2

◆
,

TrH = 1 + l2 +
3n2

r4 +
1
r3 .

(34)

From Equation (34) we infer that TrH = 0. Thus, the Hessian matrix H has at least a
strictly positive eigenvalue.

3.3. Critical Points. Discussion.
We use Equation (34) with an aim to investigate the critical points for the system of

interest. We consider two distinct cases:
Case 1. z = 0 and r = r. Then Equations (34) modify appropriately

detH =
3n2

r4

✓
l2 � 1

r3

◆
+ l2

✓
1 +

2
r3

◆
� 1

r3

✓
1 +

2
r3

◆
,

TrH = 1 + l2 +
3n2

r4 +
1
r3 .

(35)

We discriminate among the following sub-cases:
Subcase (i): n = 0, z = 0, r = 1.

We obtain a system of equations as follows

TrH = 2 + l2 > 0 ,

detH = 3
⇣

l2 � 1
⌘

.
(36)

Moreover, we infer a table (see Table 1) that describes the eigenvalues l1 and l2 of the
Hessian matrix:

Table 1. Hessian matrix eigenvalues and associated critical points.

l1 l2 Critical Point

0 < l < 1 > 0 >0 Minimum

l = 1 >0 0 Degeneracy

l > 1 >0 <0 Saddle point

Thus, by investigating the signs of the Hessian matrix eigenvalues we can discriminate
between critical points, minimum points, saddle points and degeneracy. Only if l = 1 the
critical point is degenerate. When the determinant of the Hessian matrix of the potential
detH 6= 0 the system is non-degenerate. The system is degenerate if detH = 0.
Subcase (ii): z = 0, n 6= 0.
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The derivatives of a smooth function must be continuous. We now turn back to
Equation (29). Then n2 = r

�
r3 � 1

�
and

detH =

✓
4 � 1

r3

◆✓
l2 � 1

r3

◆
. (37)

We seek for degenerate critical points (characterized by detH = 0). We infer r = l�2/3

or r = 4�3, which involves two distinct sub-subcases:
(a) r = l�2/3. We return to Equation (27) and infer

l�8/3 � l�2/3 � n2 = 0 .

(b) r4 � r , r � 1. In such a situation we encounter a point of minimum when
r > l�2/3, while the case r < l�2/3 implies a saddle point.
Case 2. r = l�4/3 , z2 = l�4/3 � r2 .

In this particular situation, after doing the math Equation (34) can be recast into

detH = 12l2
⇣

1 � l2
⌘⇣

1 � l4/3r2
⌘

,

TrH = 4 � l2 > 0 ,
(38)

with 0  l2  1. We differentiate among several sub-cases as follows:

Subcase (i): n = 0 , l2 = 1. We further infer z = ±
q

l�4/3 � r2, with r2 2
h
�l2/3, l2/3

i
,

r  �l�8/3. Then TrH = 3 and detH = 0, which characterizes a degenerate critical point.
Subcase (ii): n 6= 0 , l2 = 0. We are in the case of a degenerate critical point, with r =

p
|n|.

In this particular case detH = 0 and

n2 = l�8/3 � l�2/3 .

Subcase (iii): 0  l2 < 1 , n 6= 0. The critical point is a point of minimum, as detH > 0:

r0 =

p
|n|

4p1 � l2
, 1 � l2 > n2l4/3 ,

z1,2 =
r

l�4/3 � np
1 � l2

.

Subcase (iv): 0 < l2 < 1 , n = 0. Then r = 0 and detH = 0, which indicates a point of
minimum characterized by z12 = ±l�2/3.
Subcase (v): Case n = 0 , l = 0. In such case we infer r = 0 , z = 0. We are in the case of a
degenerate critical point as (detH = 0).
Subcase (vi): Case r = l�2/3, l = lc.

1 � l2
c = n2l8/3

c . (39)

The critical point is degenerate with z = 0 and (detH = 0).
A critical point for which the Hessian matrix is non-singular, is called a non-degenerate

critical point. A Morse function admits only non-degenerate critical points that are sta-
ble [45]. The degenerate critical points (defined by detH = 0) compose the bifurcation set,
whose image in the control parameter space (more precisely the n � l plan) establishes the
catastrophe set of equations that defines the separatrix:

n =
p

l�8/3 � l�2/3 or l = 0 . (40)

Our method relies on employing the Hessian matrix to better characterize dynam-
ical stability and the critical points of the system. Figure 17 displays the bifurcation
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diagram for two coupled oscillators confined in a Paul trap. The ion relative motion is
characterized by the Hamilton function described by Equations (24) and (25). The dia-
gram illustrates both stability and instability regions where ion dynamics is integrable
and non-integrable, respectively. Ion dynamics is integrable and even separable when
l = 0.5, l = 1, l = 2 [17–19].
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4. Quantum Stability and Ordered Structures for Many-Body Systems of Trapped Ions
Furthermore, we apply the Hessian matrix approach and method previously intro-

duced to investigate semiclassical stability and ordered structures for strongly coupled
Coulomb systems (SCCS) confined in 3D QIT. In addition we suggest an analytical a
method to determine the associated critical points. We consider a system consisting of
N identical ions of mass ma and electric charge Qa (a = 1, 2, . . . , N), confined in a 3D RF
(Paul) trap. The coordinate vector of the particle labeled as a is denoted by~ra = (xa, ya, za).
A number of 3N generalized quantum coordinates qai, i = 1, 2, 3, are associated to the 3N
degrees of liberty. We also denote qa1 = xa, qa2 = ya, and qa3 = za. Hence, the kinetic
energy for a number of a particles confined in the trap can be expressed as

T =
N

Â
a=1

3

Â
i=1

1
2ma

q̇2
ai , (41)

while the potential energy is

U =
1
2

N

Â
a=1

3

Â
i=1

kiq2
ai + Â

1a<bN

QaQb

4p#0
��~ra �~rb

�� , (42)

where #0 stands for the vacuum permittivity. For a spherical 3D trap: k1 = k2 = k3. In case
of Paul or Penning 3D QIT k1 = k2, while the linear 2D Paul trap (LIT) corresponds to
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k3 = 0, k1 = �k2. The ki constants in case of a Paul trap result from the pseudo-potential
approximation. The critical points of the system result as:

N

Â
a=1

DaU = 0 , Da =
∂2

∂x2
a
+

∂2

∂y2
a
+

∂2

∂z2
a

, (43)

DU = 0 or
∂U
∂qgj

= 0, g = 1, . . . , N; j = 1, 2, 3. (44)

We denote
∂qai
∂qgj

= dagdij , (45)

where d stands for the Kronecker delta function. After doing the math we can write
Equation (44) as

∂U
∂qgj

=
1
2

N

Â
a=1

3

Â
i=1

2kiqaidagdij � Â
1a<bN

1
4p#0

QaQb

|~ra �~rb|3
�
qaj � qbj

��
dag � dbg

�
, (46)

where the second term in Equation (46) represents the energy of the system, and introduce

xab =
1

4p#0

QaQb

|~ra �~rb|3
, a 6= b. (47)

Moreover, xab = xba. After some calculus the system energy can be cast as

E = qgj

N

Â
a=1

xag �
N

Â
a=1

xagqaj . (48)

We use Equations (46) and (48), while the critical points (in particular, the minima)
result as a solution of the system of equations

∂U
∂qgj

=

 
kj �

N

Â
a=1

xag

!
qgj +

N

Â
a=1

xagqaj = 0, 1  j  3, 1  a  N . (49)

We consider q̄aj to be a solution of the system of Equation (49) and obtain

U(q) = U(q̄) +
N

Â
a=1

3

Â
j=1

∂U
∂qaj

�
qaj � q̄aj

�
+

1
2

N

Â
a,a0=1

3

Â
j,j0=1

∂2U
∂qaj∂qa0 j0

�
qaj � q̄aj

�⇣
qa0 j0 � q̄a0 j0

⌘
+ . . . . (50)

We further infer

∂2U
∂qgj∂qg0 j0

= kjdgg0djj0 �
N

Â
a=1

xagdgg0djj0 � qgj

N

Â
a=1

∂xag

∂qg0 j0
+

N

Â
a=1

xgg0djj0 +
N

Â
a=1

∂xag

∂qg0 j0
qaj . (51)

After performing the math (details are supplied in Appendix C) we cast Equation (51) into

∂2U
∂qgj∂qg0 j0

= �
 

N

Â
a=1

xag

!
dgg0djj0 + xgg0djj0 + kjdgg0djj0+

qgj

N

Â
a=1

hag

⇣
qaj0 � qgj0

⌘�
dag0 � dgg0

�
�

N

Â
a=1

hag

⇣
qaj0 � qgj0

⌘�
dag0 � dgg0

�
qaj . (52)
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We search for a fixed solution q0
gj of the system of Equation (49). Then, the elements of

the Hessian matrix of the potential function U in a critical point of coordinates q0
gj are:

∂2U
∂q0

gj∂q0
g0 j0

= kjdgg0djj0 + xgg0djj0 �
 

N

Â
a=1

xag

!
dgg0djj0+

hgg0

⇣
q0

gjq
0
g0 j0 � q0

gjq
0
gj0 � q0

g0 jq
0
g0 j0 + q0

g0 jq
0
gj0
⌘
+ q0

gjq
0
gj0

N

Â
a=1

hagdgg0+

dgg0

N

Â
a=1

hagq0
ajq

0
aj0 � dgg0q0

gj

N

Â
a=1

hagq0
aj0 � dgg0q0

gj0
N

Â
a=1

hagq0
aj . (53)

As it can be observed from Equation (53), our method allows one to determine
(identify) the critical points of the potential function for the quantum system of N identical
ions, where equilibrium configurations occur. It is exactly these equilibrium configurations
that present a large interest for ion crystals or for quantum logic.

5. Hamiltonians for Systems of N Ions
We further apply our model to explore dynamical stability for systems consisting of

N identical ions confined in a 3D QIT (Paul, Penning or combined traps) and show they
can be studied locally in the neighbourhood of the minimum configurations that describe
ordered structures (Coulomb or ion crystals [46]). Collective dynamics for many body
systems confined in a 3D QIT that exhibits cylindrical (axial) symmetry is characterized
in Refs. [1,22]. We explore a system consisting of N ions in a space with d dimensions,
labeled as Rd. The coordinates in the manifold of configurations Rd are denoted by
xaj , a = 1, . . . , N , j = 1, . . . , d. In case of linear, planar or 3D (space) models, the number
of corresponding dimensions is d = 1, d = 2 or d = 3, respectively. We will further
introduce the kinetic energy T, the linear potential energy U1, the 3D QIT potential energy
U, and the anharmonic trap potential V:

T =
N

Â
a=1

d

Â
j=1

1
2ma

p2
aj , U1 =

1
2

N

Â
a=1

d

Â
j=1

djxaj ,

U =
1
2

N

Â
a=1

d

Â
i,j=1

kijx2
aj , V =

N

Â
a=1

v(xa, t) ,

(54)

where ma is the mass of an ion labeled by a, xa = (xa1, . . . , xad), while dj and kij represent
functions that ultimately depend on time. The Hamilton function associated to the strongly
coupled Coulomb system (SCCS) under investigation is

H = T + U1 + U + V + W ,

where W denotes the interaction potential between the ions.
Under the assumption of equal ion masses we introduce d coordinates xj of the center

of mass (CM)

xj =
1
N

N

Â
a=1

xaj , (55)

and d(N � 1) coordinates yaj to account for the relative ion motion

yaj = xaj � xj ,
N

Â
a=1

yaj = 0 . (56)
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We also introduce d collective coordinates sj and the collective coordinate s, identi-
fied as

sj =
N

Â
a=1

y2
aj , s =

N

Â
a=1

d

Â
j=1

y2
aj . (57)

Then
N

Â
a=1

x2
aj = Nx2

j +
N

Â
a=1

y2
aj . (58)

sj =
1

2N

N

Â
a,b=1

�
xaj � xbj

�2 , s =
1

2N

N

Â
a,b=1

d

Â
j=1

�
xaj � xbj

�2 . (59)

Equation (59) shows s to symbolize the squared distance measured between the origin
(fixed in the CM) and the point that designates the system of N ions in the manifold
of configurations. The relation s = s0, with s0 > 0 constant, establishes a sphere of ra-
dius

p
s0 whose centre is located in the origin (of the configurations manifold). When

investigating ordered structures of N ions, the trajectory is restricted within a neighbour-
hood ks � s0k < # of this sphere, with # sufficiently small. At the same time, the collective
variable s can be also regarded as a dispersion:

s =
N

Â
a=1

d

Â
j=1

⇣
x2

aj � x2
j

⌘
. (60)

We now submit paj moments associated to the coordinates xaj. We also introduce
d moments pj of the center of mass (CM) and d(N � 1) moments xaj of the relative ion
motion defined as

pj =
1
N

N

Â
a=1

paj , xaj = paj � pj ,
N

Â
a=1

xaj = 0 , (61)

with paj = �ih̄
�
∂/∂xaj

�
. We denote

Dj =
1
N

N

Â
a=1

∂

∂xaj
, Daj =

∂

∂xaj
� Dj ,

N

Â
a=1

Daj = 0 . (62)

In addition
N

Â
a=1

∂2

∂x2
j
= ND2

j +
N

Â
a=1

D2
aj . (63)

When d = 3 we denote by La3 the projection of the angular momentum of the a
particle on axis 3. Then, the projections of the total angular momentum and of the relative
motion angular momentum on axis 3, are labeled as L3 and L0

3 respectively, determined as

N

Â
a=1

La3 = L3 + L0
3 , La3 = xa1 pa2 � xa2 pa1 ,

L3 = p1D2 � p2D1 , L0
3 =

N

Â
a=1

(ya1xa2 � ya2xa1) .

(64)

The Hamilton function assigned to a many body system of N charged particles of mass
M and equal electric charge Q, confined in a quadrupole combined (Paul and Penning)
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trap that displays axial (cylindrical) symmetry, in presence of a constant axial magnetic
field B0, can be expressed as [1,36]

H =
N

Â
a=1

"
1

2M

3

Â
j=1

p2
aj +

Kr
2

⇣
x2

a1 + x2
a2

⌘
+

Ka
2

x2
a3 �

wc
2

La3

�
+ W ,

with

Kr =
Mw2

c
4

� 2Qc2 A(t) , Ka = 4Qc2 A(t) , wc =
QB0
M

,

where wc is the cyclotron frequency characteristic to a Penning trap, c2 is a constant
that depends on the trap geometry and A(t) represents a time periodical function [47].
The index r refers to radial motion while the index a refers to axial motion. We can also
write H by adding the Hamilton function of the CM, HCM, and the Hamilton function
associated to the ion relative motion H0:

H = HCM + H0 ,

HCM =
1

2NM

3

Â
j=1

p2
j +

NKr
2

⇣
x2

1 + x2
2

⌘
+

NKa
2

x2
3 �

wc
2

L3 ,

H0 =
N

Â
a=1

"
� h̄2

2M

3

Â
j=1

x2
aj +

Kr
2

⇣
y2

a1 + y2
a2

⌘
+

Ka
2

y2
a3

#
� wc

2
L0

3 + W .

(65)

Our results are in agreement with Ref. [22], where collective dynamical systems
associated to the symplectic group are used to describe the axial and radial quantum
Hamiltonians of the CM and of the relative ion motion. The space charge and its effect on
the ion dynamics in case of a LIT is examined in Ref. [48], where the authors emphasize
two distinguishable effects: (i) alteration of the specific ion oscillation frequency owing
to variations of the trap potential, and (ii) for specific high charge density experimental
conditions, the ions might perform as a single collective ensemble and exhibit dynamic
frequency which is autonomous with respect to the number of ions. The model we suggest
in this paper is appropriate to achieve a unitary approach aimed at generalizing the
parameters for different types of 3D QIT. Further on, we apply this model to investigate
the particular case of a combined Paul and Penning 3D QIT [49].

We consider W to be an interaction potential that is translation invariant (it only
depends of yaj). The ion distribution in the trap can be represented by means of numerical
analysis and computer modeling [50,51], through the Hamilton function we provide

Hsim =
n

Â
i=1

1
2M

pi
2 +

n

Â
i=1

M
2

⇣
w2

1x2
i + w2

2y2
i + w2

3z2
i

⌘

+ Â
1i<jn

Q2

4p#0

1��~ri �~rj
�� ,

(66)

where the second term accounts for the effective electric potential of the 3D QIT and the
third term is responsible for the Coulomb repulsive force. In addition, we emphasize that
the results obtained bring new contributions towards a better understanding of dynamical
stability for charged particles levitated in a combined ion trap (Paul and Penning) [2],
using both electrostatic DC and RF fields over which a constant static magnetic field
is superimposed. Applications span areas of large interest such as stable confinement
of antimatter and fundamental physics with antihydrogen [2,52]. We can also mention
precision measurements and tests of the Standard Model using 3D QITs.

We can resume by stating that many body systems consisting of N ions stored in a
3D QIT trap can be investigated locally in the neighbourhood of minimum configurations
that characterize regular structures (Coulomb or ion crystals [46]). Collective models that
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exhibit a small number of degrees of freedom can be introduced to achieve a comprehensive
portrait of the system, or the electric potential can be estimated by means of particular
potentials for which the N-particle potentials are integrable. Little perturbations generally
preserve quantum stability. The many body system under investigation is also character-
ized by a continuous part of the energy spectrum, whose classical equivalent is achieved
through a class of chaotic orbits. Nevertheless, a weak correspondence can be traced be-
tween classical and quantum nonlinear dynamics, based on Husimi functions [1,22]. As a
result, it is straightforward to describe quantum ion crystals [53] by way of the minimum
points associated to the Husimi function [37].

6. Highlights
We discuss dynamical stability for a classical system of two coupled oscillators in a

3D RF (Paul) trap using a well known model from literature [16–18], based on two control
parameters: the axial angular moment and the ratio between the radial and axial secular
frequencies of the trap. We enlarge the model by performing a qualitative analysis, based
on the eigenvalues associated to the Hessian matrix of the potential, in order to explicitly
determine the critical points, the minima and saddle points. The bifurcation set consists
of the degenerate critical points. Its image in the control parameter space establishes the
catastrophe set of equations which establishes the separatrix. We also supply the bifurcation
diagram particularized to the system under investigation.

By illustrating the phase portraits we demonstrate that ion dynamics mainly consists
of periodic and quasiperiodic trajectories, in the situation when the eigenfrequencies ratio
is a rational number. In the scenario in which the eigenfrequencies ratio is an irrational
number, the system is ergodic and it exhibits repetitive (iterative) rotations in the vicinity
of a certain point. Our results also stand for ions with different masses or ions that exhibit
different electrical charges, by generalizing the system investigated. By illustrating the
phase portraits and the associated power spectra we show that ion dynamics is periodic or
quasiperiodic for the parameter values employed in the numerical modeling.

The model we introduce is then used to investigate quantum stability for N identical
ions levitated in a 3D QIT, and we infer the elements of the Hessian matrix of the potential
function U in a critical point. We then apply our model to explore dynamical stability for
SCCS consisting of N identical ions confined in different types of 3D QIT (Paul, Penning,
or combined traps) that exhibit cylindrical (axial) symmetry, and show they can be studied
locally in the neighbourhood of the minimum configurations that describe ordered struc-
tures (Coulomb or ion crystals [46]). In order to perform a global description, we introduce
collective models with a small number of degrees of freedom or the Coulomb potential can
be approximated with specific potentials for which the N-particle potentials are integrable.
Small enough perturbations maintain the quantum stability although the classical system
may also exhibit a chaotic behavior.

We obtain the Hamilton function associated to a combined 3D QIT, which we show
to be the sum of the Hamilton functions of the CM and of the relative motion of the ions.
The ion distribution in the trap can be modeled by means of numerical analysis through
the Hamilton function provided.

The results obtained bring new contributions towards a better understanding of the
dynamical stability of charged particles in 3D QIT, and in particular in combined ion traps,
with applications such as high precision mass spectrometry for elementary particles, search
for spatio-temporal variations of the fundamental constants in physics at the cosmological
scale, etc. Our approach is also very relevant in generalizing the parameters of different
types of traps in a unified manner.

7. Conclusions
The paper suggests an alternative approach that is effective in describing the dynami-

cal regimes for different types of traps in a coherent manner. The results obtained bring new
contributions towards a better understanding of the dynamical stability (electrodynamics)
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of charged particles in a combinational ion trap (Paul and Penning), using both electrostatic
DC and RF fields over which a constant static magnetic field is superimposed. One of the
advantages of our model lies in better characterizing ion dynamics for coupled two ion
systems and for many body systems consisting of large number of ions. It also enables
identifying stable solutions of motion and discussing the important issue of the critical
points of the system, where the equilibrium configurations occur.

Applications span areas of vivid interest such as stable confinement of antimatter and
fundamental physics with antihydrogen [2,52] or high precision measurements (including
matter and antimatter tests of the Standard Model) [9,54]. Better characterization of ion
dynamics in such traps would lead to longer trapping times, which is an issue of outmost
importance. Other possible applications are Coulomb or ion crystals (multi body dynamics).
The results and methods used are appropriate for the ion trap physics community to
compare regimes without having the details of the trap itself.
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Appendix A. Interaction Potential, Electric Potential of The Trap
We denote

k1
2

= Q1b1, (A1)

where Q1 represents the electric charge of the ion labeled as 1. We assume the ions possess
equal electric charges Q1 = Q2. The trap electric potential F1 = b1x1

2 + . . . , can be
considered as harmonic to a good approximation for the system of interest. In case of a
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one-dimensional system of s particles (ions) or for a system with s degrees of freedom,
the potential energy is:

U =
s

Â
i=1

kiz
2
i

2
+

1
2 Â

1i<js
bij
�
zi � z j

�2 , (A2)

where zi are the generalized coordinates and żi represent the generalized velocities.
The electric potential is considered as a general solution of the Laplace equation, built using
spherical harmonics functions with time dependent coefficients. By performing a series
expansion of the Coulomb potential in spherical coordinates we can write down

1���~x � ~X
���
=

•

Â
k=0


rk/Rk+1 (a)
Rk/rk+1 (b)

�
4p

2k + 1

k

Â
q=�k

Y⇤
kq(Q, F)Ykq(q, j) , (A3)

where Y⇤
kq and Ykq stand for the spherical harmonic functions. We choose r = |~x| and

R = |~X|. The expression labeled as (a) in Equation (A3) corresponds to the case r < R,
while the expression labeled by (b) is valid when r > R. We expand in series around R
assuming a diluted medium. We infer the interaction potential as

Vint =
1

4p#0
Â

1i<js

QiQj��~ri �~rj
�� . (A4)

Appendix B. Dynamical Stability
As shown in Section 2.1, the expression of the autonomous Hamiltonian function

associated to the system of two ions is given by Equation (24), where r =
p

r2 + z2,
l = µz/µx, µz =

p
2(q2 � a). In fact l and n represet the two control parameters chosen,

with l the ratio between the secular axial and radial frequencies of the trap. n denotes the
scaled axial (z) component of the angular momentum Lz, while µz represents the second
(or axial) secular frequency [16]. By calculus we infer

l2 = 4
q2 � a

q2 + 2a
, n2 =

2L2
z

q2 + 2a
, (A5)

and we discriminate among three cases [17]:
1. l = 1

2 and from Equation (A5) we infer

a =
5q2

6

2. l = 1. Equation (A5) gives

a =
q2

2

3. l = 2. By an analogous procedure we have

a = 0 .

Appendix C. Quantum Stability
Using Equations (44) and (45) we obtain

∂

∂qgj

1
|~ra �~rb|

= � 1
|~ra �~rb|2

∂

∂qgj
|~ra �~rb| (A6)
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We also have

|~ra �~rb| =

vuut
3

Â
h=1

⇣
qah � qbh

⌘2
. (A7)

Then
∂

∂qgj
|~ra �~rb| = |~ra �~rb|�1�qaj � qbj

��
dag � dbg

�
, (A8)

and
∂

∂qgj

1
|~ra �~rb|

= � 1
|~ra �~rb|3

�
qaj � qbj

��
dag � dbg

�
. (A9)

By using Equation (47) the last term in Equation (51) can be expressed as

∂xag

∂qg0 j0
=

QaQg

4p#0

∂

∂qg0 j0

1
|~ra �~rg|3

. (A10)

Moreover

∂

∂qg0 j0
|~ra �~rg|�3 = �3|~ra �~rg|�5

⇣
qaj0 � qgj0

⌘�
dag0 � dgg0

�
. (A11)

Then, Equation (A10) can be cast into

∂xag

∂qg0 j0
= �hag

⇣
qaj0 � qgj0

⌘�
dag0 � dgg0

�
; hag =

QaQg

4p#0
3|~ra �~rg|�5, a 6= g . (A12)

We use
N

Â
a=1

qadag = qg . (A13)
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