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ABSTRACT Ground penetrating radar (GPR) is a well-known useful tool for subsurface exploration. GPR
data can be recorded at a relatively high speed in a continuous way with hyperbolas being artifacts and
evidence of disturbances in the soil. Automatic and accurate detection and interpretation of hyperbolas in
GPR remains an open challenge. Recently deep learning techniques have achieved remarkable success in
image recognition tasks and this has potential for interpretation of GPR data. However, training reliable
deep learning models requires massive labeled data, which is challenging. To address the challenges, this
work proposes a Generative Adversarial Nets (GANs)-based deep learning framework, which generates
new training data to address the scarcity of GPR data, automatically learns features and detects subsurface
objects (via hyperbola) through an end-to-end solution. We have evaluated our proposed approach using
real GPR B-scan images from rail infrastructure monitoring applications and compared this with the state-
of-the-art methods for object detection (i.e. Faster-RCNN, Cascade R-CNN, SSD and YOLO V2). The
proposed approach outperforms the existing methods with high accuracy of 97% being the mean Average
Precision (mAP). Moreover, the proposed approach also demonstrates the good generalizability through
cross-validation on independent datasets.

INDEX TERMS Generative adversarial nets (GANs), deep learning, ground penetrating radar (GPR).

I. INTRODUCTION
Ground penetrating radar (GPR) has been considered as a
useful tool for underground imaging and detection of buried
objects, such as mines, pipes, cultural relics in different
domains (archaeology, military, etc.) [1]. During the GPR
scanning process, the electromagnetic wave is transmitted to
the target underground through the transmitting antenna and
returns to the receiving antenna after being reflected by the
underground object. As a result, the hyperbolic image fea-
tures can be extracted as a 2D image from the buried objects
by merging all the signal data. Analyzing the shape and
location of the hyperbolas is essential for locating, determin-
ing the diameter and detecting the anomalies of subsurface
objects.

The associate editor coordinating the review of this manuscript and

approving it for publication was Sara Dadrass .

However, the automatic detection of hyperbolas in a GPR
dataset is a challenging task. Different methods have been
proposed to automatically detect buried objects using GPR
B-scan images [2]. Several hand-crafted features including
Hough transform (HT), Scale Invariant Feature Transform
(SIFT), Speeded Up Robust Features (SURF) are generally
combined with machine learning classification algorithms
such as Support VectorMachines and Random forest to detect
hyperbolas [3], [4]. Despite encouraging work, most of these
methods could only deal with a small amount of data but with
the complicated process for extracting hand-crafted features,
which is inefficient.

Recently, deep Learning (DL) has achieved remarkable
success in image recognition tasks including image clas-
sification, segmentation and object detection [5]. Efforts
have also been made in GPR image processing. The work
in [6] used a deep convolutional neutral network (DCNN)
to classify B-scan profiles into threat and non-threat classes.
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The results showed that DCNN could extract meaningful
features and signatures complementing existing GPR fea-
ture extraction and classification techniques. In [7], land-
mine detection based on GPR data using DCNN has showed
promising results compared with traditional computer vision
methods. In [8], the authors reviewed and applied several
DCNN models to the detection of buried objects from GPR
data.

The most challenging aspects preventing the application
of deep learning models is the limited amount of train-
ing datasets. In order to solve the shortage of GPR data,
simulation-based methods were proposed to increase the
availability of training data. GprMax, an open-source soft-
ware was widely to use for simulating GPR data [1], [9].
However, using GprMax to generate simulated GPR data is
time consuming, even with CUDA support, simulation can
take many hours on advanced GPU cards.

Generative Adversarial Nets (GANs) have recently
attracted a lot of attention in the machine learning area for
generating new synthetic data with the same statistics as the
training set [10]. It has a capability to learn and mimic any
distribution of data and has been widely applied in image
generation, video generation, etc [11], [12].

In this work, we have proposed a GAN-based deep learn-
ing framework for accurately automatic hyperbola detection
through an end-to-end solution in order to address the chal-
lenges: 1) the scarcity of GPR training data; 2) efficiently
automated detection of hyperbola. The contributions of this
article include:
• Application and optimization of Generative Adversarial
Networks to generate GPR data to address the scarcity
of GPR data.

• Proposal for a single-stage object-detector with deep
learning for automatically identifying hyperbola,
enabling fast inference and easy training.

The remainder of this article is organized as follows:
Section II presents the relatedwork; Section IIIdetails the pro-
posed method; Section IVdescribes experimental evaluation;
Section V concludes the work.

II. RELATED WORK
A. TRADITIONAL HAND-CRAFTED FEATURES BASED
DETECTION OF BURIED OBJECTS METHODS
Different handcrafted feature-based methods have been pro-
posed for automatic detection of buried objects using GPR
B-scan images. The Hough transform (HT) was first andmost
widely used for deformed shape fitting. In [3], [4], the gen-
eralized and the randomized HT features were extracted
from B-scan images to determine the hyperbola parameters
recorded within the Hough accumulator space. In [13], Scale
Invariant Feature Transform (SIFT) was employed for feature
extraction to localize the hyperbola regions.

In [14], [15], the template matching and dictionary-based
techniques were used to match hyperbola features. The cor-
relation scores between each images of template were used to
evaluate themodel. In [16], theHaar-like features was used by

learning Viola-Jones Algorithm for automatically detecting
reflection hyperbolas in raw GPR data. The Histogram of
oriented gradients (HOG) feature were used in supervised
pattern recognition approach for hyperbola detection [17].

Despite the existing efforts, the limitations of these tra-
ditional approaches persist, namely 1) the training datasets
are small; 2) the selection process of handcraft features for
each given task is complicated and inefficient; These result
in model inaccuracy for automated hyperbola detection.

B. GENERATIVE ADVERSARIAL NETS
Generative Adversarial Nets (GAN) have achieved remark-
able success and can be used to generate a large amount
of training data for deep learning model training. GANs
were firstly used to generate new samples for the MNIST
handwritten digit dataset [10]. In [18], GANswas used to gen-
erate plausible realistic photographs of human faces. In [19],
the work proposed GANs model for generating new 3D
objects in ten popular object categories, such as guns, chairs,
doors, balls and tables. In [20], the unsupervised GANs
approach was used to impute new ground penetrating radar
data based on limited and class imbalance labeled data which
improved the detection model significantly. Thomas Truong
et al. used GANs to generate radar signal which was indistin-
guishable from the training data by human observers [21].

However, training GANs is not easy. GANs models may
suffer from the several problems including mode collapse,
diminished gradient, non-convergence, etc [22]. There are a
plethora of methods such as Alternative Loss Functions like
Wasserstein GAN [23], Gradient Penalty [24], Spectral Nor-
malization and Self Attention Mechanism [25] were used for
addressing previously mentioned issues and making GANs
more stable and powerful.

C. DEEP LEARNING-BASED OBJECT DETECTION
METHODS
Different from handcrafted feature-basedmethods, theDCNN
methods skip the traditional feature selection and parameters
tuning steps. Instead, they learn the feature representations of
buried objects directly by convolutional operation from GPR
B-scan images. Several researchers have shown remarkable
performance with hyperbola recognition and detection based
on deep learning methods [6], [8], [26], [27].

At present, the research of object detection based on
DCNN can be divided into two categories:multi-stage detec-
tion and single stage detection. The multi-stage methods
can be broadly divided into two stages that start with the
region search and then determine the classification. The
Region Proposal Network (RPN) is the most well-known
region search method and have proven to be very efficient till
now. It aims to propose multiple objects that are identifiable
within a particular image. Faster Region-based Convolutional
Network (Faster R-CNN) from Facebook [28] and Cascade
R-CNN from Multimedia Laboratory, CUHK [29] are the
two most famous and widely used multi-stage detection
models. The single stage detection model is also named as
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one-time prediction model. It predicts bounding boxes and
class probabilities using a single network in a single evalua-
tion directly. This makes real-time predictions possible. You
Only Look Once (YOLO) series is the first single stage detec-
tionmodel [30]–[32], whichwas designed for rapid inference.
For the purpose of improve its accuracy, Single-Shot Detector
(SSD) [33] and RetinaNet [34] are designed by optimizing
YOLO architecture and performed the excellent accuracy.

III. THE PROPOSED METHOD
To address aforementioned challenges, in this work, we have
proposed a GAN-based deep learning framework, which gen-
erates new training data to addresses the scarcity of GPR
data and automatically learn features and detect hyperbolas
through an end-to-end solution.

The overview of the proposed framework is shown in
Figure 1. The framework consists of two main parts: 1) Data
generation through the proposed GANs; 2) Object detection
based on deep learning.

FIGURE 1. The overview of automatic detection of hyperbolas.

A. DATA GENERATION WITH THE PROPOSED GANs
In order to generate new data for the purpose of model
training, we have applied a GANs for generating GPR B-scan
images. The architecture of the proposed GANs is shown in
Figure 2.

FIGURE 2. The architecture of the proposed GANs.

The concept of GANs is that two models are trained at
the same time: a generator (G) and a critic (C) model. The
generator tries to make new data similar to the data in our
dataset, and the critic tries to classify real images from the
ones produced by the generator.

Most GANs models suffer from the following problems:
• The model parameters are unstable and never converge;
• The generator collapses during the training stage;
• The generator gradient vanishes and learns nothing.
• The traditional cost functions may not converge using
gradient descent during the adversarial training.

In our work, the generator and critic models are both built
by convolutional networks. The input of G is a random noise
vector and the output is a fake GPR B scan image. The input
of the C is the faked image from G and the simulated GPR
data (real image). It is used to evaluate how the generated
data truly estimates the probability that the sample comes
from the training data rather than G. TheWasserstein distance
was selected to evaluate similarity, which was designed to
measure the difference between the data distributions of real
and generated images [35]. It can be used to smooth the
gradient that improves the stability of the adversarial training.
The training procedure for G is to maximize the probability
of C making a mistake. This method was considered as a
minimax two-player game. The minimax objective is used to
train both G and C and can be formulated as:

min
G

max
C∈w

V (C,G) = Ex∼pr [C(x)]− Ex̃∼pg(z)[C(x̃)] (1)

The minimax objective encourages G to fit pr so as to fool
Cwith its generated samplesC(x).WhereEx∼pr [C(x)] means
the expected distribution of function when input is x. x ∼ pr
means sample x that has probability distribution pr . pg(z) is
model distribution implicitly defined by x̃ = G(z), z ∼ p(z).
In this work, the Wasserstein distance w was used to evaluate
the critic model, where maxc∈w means the maximum of w in
the Wasserstein distance.

The w is a set of 1 − Lipschitz functions that requires the
weights of the function to be within a range controlled by
hyper parameter u.

w← (w,−µ,µ) (2)

However, in the training stage, the range µ is not easy to
set. The gradient disappears when µ decreases and the gradi-
ent explodes when µ increases a little. In fact, we encourage
the norm of the gradient to reach 1 instead of just staying
below 1. To achieve this aim, we added a gradient penalty in
the 1-Lipschitz function. The final loss of the critic is defined
by Equation 3 which includes the gradient penalty.

Loss = Ex∼pr [C(x)]−Ex̃∼pg(z)[C(x̃)]+λ(
∥∥∇x̂C(x̂)∥∥2 − 1)2

(3)

where the λ(
∥∥∇x̂C(x̂)∥∥2 − 1)2 is the gradient penalty term,

x̂ means sample from x and x̃ with a uniformly t between
0 and 1.

x̂ = (1− t)x + t x̃ (4)

The aim of the generator is to generate an image which
takes the input of a random noise vector. Then several
up-sampling operations are set to reshape the input vector
to the defined size of the generated image (512 × 512 in
this work). The design of generator involves a transposed
convolutional block to up-sample the input. There are seven
transposed convolutional blocks used in this work. Each
block consists of a transposed convolutional layer, followed
by a Batch Normalization and ReLU activation. In the
first block, the kernel of transposed convolutional layer is
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4× 4with stride as 1 that resizes the input vector to 4× 4with
4096 channels. Then the stride of transposed convolutional
layer was set as 2 with a number of features divided by
2 at each block. A transpose convolution of size 4 × 4 and
stride 2 followed by Tanh was set as the last block to resize
the output as 1 × 512×512. The detailed architecture of the
generator is shown in Table 1.

TABLE 1. The Architecture of the Generator Model.

The input of criticmodels is the fake images from generator
and real images. During training, it compares two images and
the output is used to adjust the generator to make images
more real. As mentioned in the introduction, LeakyReLU
activation was used to reduce mode collapse [36]. It includes
a first 4 × convolutional blocks of stride 2 followed by 3 ×
3 convolutional blocks of stride 1. Then we put seven 4 ×
4 convolutional blocks of stride 2 with several features multi-
plied by 2 at each stage. The Lamda block was set as the last
block as a summary of the information learned in the previous
blocks. This is used for direct comparisonwith the real image.
The detailed architecture of the critic is shown in Table 2.

B. OBJECTION DETECTION
Inspired by the success of YOLO [32], We have proposed
a one-stage detection model titled GPR-Detection. Com-
pared with the multi-stage detection models, the single-stage
model has a faster inference speed and is easier to train. The
proposed GPR detector contains three main blocks: Back-
bone, Neck and Head. The proposed architecture is shown
in Figure 3.

1) BACKBONE
Backbone is the block to extract deep features from the
origin image. Residual network is the most widely used
backbone for many computer vision tasks. It adds skip

TABLE 2. The Architecture of the Critic Model.

FIGURE 3. The architecture of the proposed object detection model
(GPR-Detector).

connection between input and output after convolutional
operation, which can ease the problem of vanishing or explod-
ing gradients when the network becomes larger. In this work,
the ResNet50 with 50 layers architecture was selected as
the backbone (Figure 4). The output of Conv2, Conv3 and
Conv4 was set as the input of Neck block.

2) NECK
The purpose of the neck block is to add extra layers between
the backbone and the head blocks to extract different feature
maps of various stages of the backbone. Feature Pyramid
Networks (FPN) were selected as the neck block. It was
introduced to use both bottom and upper layers in the feature
map for detection, which provides a top-down pathway for
construction of higher resolution features. FPN upsamples the
previous output layers and adds it to the neighboring layer
of the backbone (see Figure 3). It creates the feature maps at
different scales for the head block. Then generate hierarchical
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FIGURE 4. The architecture of ResNet50.

structure by using different spatial resolution feature maps
from head block.

3) HEAD
The head block was used to get the classification and bound-
ing boxes for each object by using classification and regres-
sion methods. A single output has four values describing the
predicted bounding box (x, y, h, w) and the probability of
hyperbola. In this work, we have applied the head network
on each layer at different scales to get a better result.

FIGURE 5. A example of the same MSE values with different IoU between
ground truth and predicted bounding boxes.

The traditional loss function of the regression network is
Mean Squared error which is defined as:

MSE =
1
n

n∑
i=1

(Ŷi − Yi) (5)

However, in Equation 5, each point Y is treated as an inde-
pendent variable, which doesn’t consider the integrity of the
object itself. It doesn’t have a good correlation with the mean
Average Precision (mAP). In Figure 5 where the green rectan-
gle represents the ground truth and black rectangle represents
the predicted bounding box. Due to the concept of MSE, any
predicted bounding box where the second corner lies on a
circle with a radius centered on the corresponding corner of
ground truth will have the same MSE value. However, their
Intersection over Union (IoU) values are different [37].

Intersection over Union has scale invariant and related
with the ground truth directly. However, if IoU reaches
zero between predicted and ground truth bounding boxes,
the IoU cannot reflect if two shapes are in vicinity of each or
extremely far from each other. To address this issue, a penalty
term was added to minimize the normalized distance between
central points of two bounding boxes and thus converges
much faster than IoU [38]. The loss function is called the
Distance-IoU Loss function and is defined as follows:

LDIoU = 1−

⋂Bgt
B⋃Bgt
B

+

∣∣∣C −⋃Bgt
B

∣∣∣
|C|

(6)

where Bgt = (xgt , ygt ,wgt , hgt ) is the ground-truth, and

B = (x, y,w, h) is the predicted box.
⋂Bgt

B⋃Bgt
B

is the Intersection

over Union (IoU). C is the smallest box covering B and Bgt

and

∣∣∣∣C−⋃Bgt
B

∣∣∣∣
|C| can be used to minimizes the distance between

two central points. Focal loss function was used to resolve the
class imbalance effect by reducing the loss for well-trained
classes [34]. The loss function of the probability of hyperbola
in this work is defined as:

Focal Loss (pt) = − (1 − pt)γ log (pt) (7)

The − log (pt) is the cross entropy (CE) loss commonly
used for classification tasks where the p is the probability for
each category. The (1 − pt )γ is the modulating factor added
to address the data imbalance problem. The γ can be set in a
range 0-5. In this work the γ was set to 2 to put more focus
on an identified target.

IV. EXPERIMENTAL EVALUATION
A. SIMULATED DATA
In this work, firstly to acquire some ‘‘real’’ data for the
GANs model, GprMax, an open-source software to produce
simulated electromagnetic wave propagation, was selected to
generate simulated data. To simulate a buried PVE pipeline,
we generate plastic cylinders with different diameters. The
time window was set as 12× 10−9, and the ricker waveform
as 1.5 GHz. To offer extra randomness, we applied randomly
selected seed value for every iteration of generating training
data. Thus, each image produced by GprMax was unique.
A total of 80 A-scan traces comprised a single B-scan sim-
ulation. The diameter of a cylinder was used as classifica-
tion label, which allowed us to condition the generator and
identify the image during the GANs model training. Figure 6
shows a typical configuration file for GprMax.

B. REAL DATA
The trained hyperbola recognition model was evaluated on
a group of real GPR B-scans images from rail infrastructure
monitoring application provided by Railview [39]. The data
was collected by a modular, off the shelf terrestrial based sys-
tem named ZOND 12with a 500MHz antenna.We conducted
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FIGURE 6. GprMax configuration case.

FIGURE 7. a) is the modular, off the shelf terrestrial based system
(ZOND 12), b) is the on-site experimental environment.

the on-site experiment on a completion of the concrete sur-
round measuring 4.8 metres in width × 2.4 metres length ×
1.2 metres depth. Three plastic/rubber pipes with different
diameter (180mm, 125mm, 63mm) were buried in the pit at
a uniform depth of 800mm. Data was collected at 100mm
intervals over a distance of 4.80 metres in width and the data
collection time for this 11.52 Square meter test amounted
to 53 minutes. The device and experimental environment
were shown in Figure 7. Meanwhile, we have also used an
additional real publicly available GPR dataset of 171 GPR
B-scans images [40] to validate our model.

C. IMAGE ANNOTATION
As mentioned in the previous section, the bounding box of
hyperbola in each image was annotated for object detection
model training. In this work, 170 B-scan images were gener-
ated byGANs. Then the hyperbolas in each image were anno-
tated manually by ‘‘LabelImg’’ [41], as shown in Figure 8.

D. THE PROPOSED GANs-BASED MODEL TRAINING
Figure 9 shows the process of training the GANs model.
Adaptive Moment Estimation (Adam) [42] was used to
replace RMSprop in the original method to speed up the
convergence. In this work, the weighted sum of losses for the

FIGURE 8. Annotated B-scan image.

FIGURE 9. The algorithm of the proposed GANs.

generator and the critic individually needs to be optimized.
The algorithm starts with samples of real data and random
noise vectors. For each iteration of the training loop and each
generator update, the critic is updated a total of five times.

The output and training parameters of each layer in the
generator and the critic model are shown in Table 1 and
Table 2 respectively.

E. OBJECT DETECTION MODEL TRAINING
The proposed object detection model was compiled and
trained with the mmdetection (an open-source object detec-
tion toolbox based on PyTorch [43]). The trained Resnet50 by
ImageNet was set as the backbone block in detection
models. For the performance comparison, the most widely
used multi-stage and single stage object detection models
including Faster-RCNN [28], Cascade R-CNN [29], and
SSD [33] were also implemented. The Stochastic Gradient
Descent SGD) with a batch size of 8 was used for optimiza-
tion. The learning rate (LR) was set as 0.001 in the first and
it was finally decreased to 0.00001 following the training
stage. In this work, eachmodel was trained for 24 epochs. The
object detection models configuration was shown in Table 3.
As a multi-stage detection model, the Faster R-CNN and Cas-
cade R-CNN have longer training time than the single stage
detection models due to the Region Proposal Network (RPN).

TABLE 3. Object Detection Model Configuration.
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As a single stage detection model, our proposed GPR detec-
tion model used the Feature Pyramid Networks to provide
multi-scale features to improve the detection performance
which slightly increased the model complexity. However,
in the head part of our model, only three anchor boxes were
used for each grid cell on each layer and processed in parallel
for multi-scale features. Therefore, the training time is less
than the traditional single stage detectionmodels such as SSD
and YOLO V2 in which normally five anchor boxes in their
head parts were used. Here, anchor boxes represent a set of
predefined bounding boxes of a certain height and width used
to capture the scale and aspect ratio of specific object classes
to be detected.

The mean Average Precision (mAP) was selected as the
metric to evaluate the performance of the GPR detector. It is
the mean of the Average Precisions (AP) for all classes. The
AP is calculated as the average of maximum precision at
11 recall levels as follows, the APr (0) means the maximum
precision when recall at value of 0.

AP =
1
11
× (APr (0)+ APr (0.1)+ APr (0.2)

+ . . .+ APr (1)) (8)

If the AP matches the ground truth and Intersection over
union (IOU) was above 0.5, then it was set as a correct value.
We also use a metric called the inference time (fps), which
indicates how many images can be inference per second.

F. EXPERIMENT EVALUATION
We have evaluated the proposed model in terms of perfor-
mance and generalizability.

1) PERFORMANCE EVALUATION
Firstly, we have generated 170 GPR images based on our
proposed GANS-based model.Figure 10 shows a set of sam-
ples of generated GPR B-scan images. The hyperbolas in
these images show the desired behavior without showing
much variation. There is no single noise distribution among
hyperbolas and they are identical visually and the images are
visually realistic.

FIGURE 10. Realistic generated images.

Then, the object detection models were trained based on
annotated images. Figure 11 shows the process of proposed
model fitting.

Table 4 shows the model accuracy comparison. Faster
R-CNN and Cascade R-CNN, as the most commonly used
multi-stages detection models, their mAPs are 0.95 and

FIGURE 11. The loss plot for 1200 iteration during training the GRP
Detection.

TABLE 4. Performance Comparison of Different Methods.

0.96 respectively, which show that these models work well
for most hyperbolic signatures. Meanwhile, as a single-stage
detection model, the mAP of our proposed GPR detection
model achieves 0.95, which is close to the two state-of-the-art
multi-stage detection models. By using the FPN as the neck
part in the model architecture, our proposed model can detect
the object on multi-scale of the deep features which can
significantly improve its performance on small targets [44].
In this work, we have tried to replace the loss function of
bounding box regression with DIoU. By directly minimizing
the normalized distance of two central points, DIoU loss can
achieve faster convergence speed and better performance.
The mAP has significantly increased and achieved 0.97 by
replacing the loss function with DIoU. The speed of inference
is 29.5 image per second which is better than multi-stage
detection models.

2) GENERALIZABILITY EVALUATION
To further evaluate the generalizability of the proposed detec-
tion model, we have conducted evaluation on the simulated
data by GprMax and the GANs-based data by our model
under different cross-validation strategies:

1) We have trained the model on GANs-based data and
tested onGANs-based and simulated data, respectively.

2) Then we reverse the training and testing datasets by
training the model on simulated data and testing on
simulated and GANs-based data, respectively.
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TABLE 5. The Model Performance on Independent Datasets.

The simulated data are obtained from GprMax simulator.
GANS-based data are obtained from our proposed GANs
model. We have obtained the same number of images from
GprMax simulator and from our GANS model respectively,
340 images in total. The results are show in Table 1 below.
In the first group of the experiment, when training our
proposed model with GANS data and testing it on both
GANs-based and simulated data, the accuracies (mAP) are
0.97 and 0.95 respectively. In the second group of exper-
iment, when training our proposed model with simulated
data and testing it on both simulated data and GANs-based
data, the accuracies (mAP) are 0.96 and 0.91 respectively.
These results demonstrate the proposed model has good
generalizability.

FIGURE 12. The examples of Hyperbola detection result. The first column
shows three real raw GPR B-scans images. The second column shows the
detection results based on the model trained on GprMax-based simulated
data and the third column shows the detection results based on the
model trained with GANs-based data.

Meanwhile, we have also tested the proposed model on
collected real GPR data. Figure 12 shows the detection result.
The first column shows three real raw GPR-sans sample
images. The second column shows the detection results based
on the model trained on GprMax-based simulated data and
the third column shows the detection results based on the
model trained with GANs data. It shows that the model
trained on simulated data only recognizes one hyperbola in
the first and second sample images, while the model trained
on the GANs-based data recognizes all hyperbolas in the

images. Both models have correctly identified hyperbolas in
the third sample image.

V. CONCLUSION
In this work, we have proposed a GAN-based object detec-
tion tool consisting of two main components: a GANs-based
model to enable generation of realistic GPR B-scan data and
a single-stage object detection model with deep learning for
automatically detect hyperbola in GPR B-scan image. The
proposed approach has been evaluated with real data and
has been compared with the state-of-the-art deep learning
methods for object detection (i.e. Faster-RCNN, Cascade
R-CNN, SSD and YOLOV2). The experimental results show
that the proposed method outperforms the existing methods
and achieved high accuracy of 97% for the mAP. Mean-
while, our proposed model shows good generalizability by
a cross-validation on independent datasets. It has demon-
strated the effectiveness of the proposed method in terms of
addressing data scarcity and automatic detection of subsur-
face objects from GPR.
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