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GENERAL ABSTRACT 

 

Although the ecology of the Cape buffalo is reasonably well understood, the social dynamics 

occurring within and among groups are less known, despite the important implications for 

both buffalo ecology and management, and intra and interspecies disease transmission. 

This thesis aims to better understand the social behaviour of Cape buffalo across several 

populations in sub-Saharan Africa using a combination of GPS tracking data and genetic 

markers. This thesis quantifies the dynamics of interactions within and among neighbouring 

buffalo groups and examines the influence of seasonality and inter-population variance on 

these dynamics. I also investigate the influence of sex on the dispersal ability, in order to 

better understand the spread of pathogens among populations. To go further, I examine the 

impact of intragroup dynamics on a directly transmitted pathogen spread as a model to link 

the host social organisation and pathogen transmission. This thesis reveals different social 

dynamics within and among groups, although consistent among the study populations. 

Results show that buffalo form relatively distinct groups occupying unique and separated 

home ranges, with minimal overlap, independently on the season. Direct contacts (i.e. the 

use of the same space at the same time) among groups were rare while indirect contacts 

(i.e. the use of the same space at different times or through an intermediate vector, here 

the mosquito) occurring within one month were more frequent, with serious implications for 

indirectly transmitted pathogens in the population. These results suggest a behavioural 

avoidance or a territorial behaviour occurring throughout the year. It appears that both 

males and females disperse among neighbouring groups, but females could be more likely 

to disperse among populations than males. Within groups, individuals form very unstable 

dyadic associations. These fission-fusion dynamics varied seasonally, with fission patterns 

lasting 1 to 3 days before individuals merge again for an equivalent average duration. 

However, it seems that the way individuals interact with each other within groups only 

slightly affects the transmission of a directly transmitted pathogen. This study is one of the 

first to quantify the degree of fission-fusion dynamics and intergroup encounter in the Cape 

buffalo, and to relate these dynamics to variations in environmental conditions across 

several populations. Therefore, this thesis contributes to the understanding of buffalo social 

systems and their relation to the environment, a growing issue at the wildlife-livestock 

interfaces given the economic costs due to pathogen transmission with cattle. 
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1 The growing issue of infectious diseases  

There was optimism that the war on infectious diseases was over in the 1970s, but humans 

are still faced with challenges of pandemics and emerging diseases and the recent 

pandemic caused by the COVID-19 has once again increased the burden of infectious 

diseases. Many pathogens can infect both humans and animals (multihost pathogens) and 

pathogens can be transmitted between the parties. Around 60% of emerging and re-

emerging infectious diseases in humans are caused by animal pathogens (zoonoses), 

particularly from wildlife (Cleaveland et al. 2001, Bengis et al. 2004, Jones et al. 2008). 

Zoonotic diseases pose considerable risks to public health and the economy around the 

world (Bengis et al. 2004, Schneider et al. 2009). For example, the Severe Acute 

Respiratory Syndrome (SARS) outbreaks in 2002-2003 initiated by zoonotic transmission 

from bats via palm civets caused more than 900 deaths across 29 countries (WHO 2003). 

Infectious diseases also have substantial negative effects on the health of both domestic 

and wild animals (Cleaveland et al. 2001, Taylor et al. 2001, Jones et al. 2008). In domestic 

animals, infectious diseases can have devastating effects on the livelihoods of livestock 

farmers by decreasing animal production (mortality) and national economies by limiting 

international trade (Latif et al. 2001). Although wildlife is frequently thought of as a conduit 

for transmitting infections to humans and domestic animals, the reverse is also true and 

80% of domesticated animal pathogens can infect wildlife (Cleaveland et al. 2001). This 

threatens the environment when diseases transmitted from domestic animals cause the 

death of wild animals (Pastoret et al. 1988, Kock et al. 1999, Smith et al. 2009). For 

example, the expansion of livestock production promoted the spread of the rinderpest 

morbillivirus, which was first introduced by humans in Ethiopia, and caused significant 

damages to wild animal populations. African buffalo (Syncerus caffer) populations have 

been devastated by rinderpest, with the most several collapse occurring in the 1890s, with 

mortality rates estimated at 90-95% across the continent (Mack 1970, Sinclair 1977, Ryan 

et al. 1998, Winterbach 1998, Smitz et al. 2014). The potential disease transmission 

between domestic and wild animals, particularly livestock, intensifies the risk of infectious 

diseases in animals and the associated negative impacts. In the United States, the total 

cost for rabies prevention in humans and pets has been estimated at between USD 230 

million and 1 billion annually (Rupprecht et al. 1995, Sterner and Sun 2004), and the national 

brucellosis eradication program has cost about USD 3.5 billion between 1934 and 1997 

(Sriranganathan et al. 2009 in Kiros et al. 2016). In Cameroon, around Waza National Park, 

the economic losses due to livestock diseases were equivalent to the losses due to 

predators (Bauer et al. 2001) whilst in the Maasai Steppe, Tanzania, livestock mortality due 

to diseases is 10 times higher than due to predation (Ogutu et al. 2005, Kissui 2008).  
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Nowadays, concerns about infectious pathogens are increasing with cumulative 

effects of land development (e.g. habitat loss, environmental pollution), globalization and 

climate change (Smith et al. 2009). For example, the increasing encroachment of human 

activities on wildlife habitats and the international trade of wildlife has led to an increase in 

interactions between humans, domestic animals and wildlife, which creates more 

possibilities for transmission of pathogens. Intensive agriculture favours the transmission of 

infectious diseases in livestock, as more individuals are congregated in small spaces 

(Gilchrist et al. 2007). The expansion of human settlements can also promote exposure to 

certain non-human vectors and hosts of vector-borne diseases (Vora 2008). Understanding 

how disease spreads through, and among intra- or inter-specific populations is thus of 

growing interest to veterinary services, farmers, and conservationists for issues related to 

human health, economy and food security. 

 

2 Contacts in epidemiology and pathogen spread 

Mathematical models have been important in understanding the diffusion phenomena of a 

pathogen in both human and animal populations (Stehlé et al. 2011, Bjørnstad 2018). 

Without going into too much detail, the SIR and SEIR compartmental models are the most 

widely used (Figure 1). S represents the number of susceptible individuals (healthy who can 

become infected), E the number exposed (infected but not yet infectious), I the number of 

infectious and R the number recovered. In these epidemiological models, the frequency of 

contact of a susceptible individual with an infected individual, i.e. with the pathogen, is one 

of the most important parameters affecting the probability of infection of susceptible 

individuals as well as the diffusion capacity of a pathogen (Lloyd-Smith et al. 2005, Bansal 

et al. 2007, Smieszek 2009). A susceptible individual (S) can contract the pathogen (S -> 

E) in a period of t with a transmission rate of infection (βt), function of the probability of 

pathogen transmission given contact and the contact rate (Smieszek 2009). After 

contracting the disease, a susceptible individual becomes exposed but is not infectious 

during an incubation period. These exposed individuals enter the infectious state at a rate 

σ, with σ-1 representing the mean latent period of the disease (E -> I) and can transmit the 

disease to the susceptible individuals during their infectious period. The infectious 

individuals become recovered (I -> R) according to the recovery rate γ. 



Chapter 1 Introduction 

4 

 

Figure 1. An SEIR compartmental model showing the evolution of states, according to the 
transmission rate of infection β; the recovery rate γ; and death/birth rates μ and μ*. To simplify 
models, death/birth rates are usually not considered. When permanent immunity is acquired, 
this reduces to an SEIR model, but in the case of reversible immunity, the model becomes an 
SEIRS model. In the case of density-dependent transmission (the host density in the 
population influences the number of potentially infectious contacts), the infection force 
governing the transition from a S state to an I state is equal βI, but when the transmission is 
frequency-dependent (the number of hosts in the population does not influence the number 
of potentially infectious contacts, e.g. sexually transmitted diseases), the infection force is 
βI/N, N being the population size.  

 

Infectious diseases spread through transmission routes that vary along a spectrum 

from direct transmission, where close contacts between an infected and a healthy individual 

are required (i.e. at the same place and at the same time, Keeling 1999, Altizer et al. 2003, 

Hamede et al. 2009) to indirect transmission, when pathogens occupy some intermediate 

reservoir or vector between hosts (e.g. a host of another species or an environmental 

reservoir like soil or water), making spatial overlap between individuals a more important 

requirement than temporal overlap (Dougherty et al. 2018). A pathogen is treated as directly 

or indirectly transmitted in relation to both the duration of time it can survive in the 

environment outside of hosts and its ability to disperse in the environment separated from 

host movement (e.g. using a vector, like the Rift Valley Fever virus with the mosquito). Many 

pathogens have several transmission pathways. Traditional epidemiological models 

assumed that the contact rates are homogeneous between all individuals in the population 

(Anderson and May 1991), which means that no heterogeneity in the mixing pattern was 

considered. However, contact patterns are usually heterogeneous among individuals for 

human and animal populations (e.g. fission-fusion dynamics), and this variation can impact 

the probability, size and persistence of disease epidemics (Lloyd-Smith et al. 2005, Bansal 

et al. 2007, Smieszek 2009). Although the definition of what is a relevant contact for disease 

transmission can vary according to the pathogen of interest (i.e. mode of transmission), 

understanding how the individuals of a population interact with each other, via a set of 

behaviours (e.g. dispersal, social interactions), is essential for building computational 

models of infectious disease transmission and providing the best recommendations 
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concerning disease management (Hamede et al. 2009, Craft and Caillaud 2011, Stehlé et 

al. 2011, Reynolds et al. 2015).  

 

3 Social systems, dispersal and contact patterns 

The contact patterns of a population, whether defined as direct (i.e. the use of the same 

space at the same time, which does not necessarily mean physical contact) or indirect (i.e. 

the use of the same space at different times or through an intermediate host), certainly 

depend on animal movements and social systems. Free-living animal populations can live 

according to a solitary system, where individuals avoid each other and only meet during the 

breeding season, or “randomly” due to the environmental constraints, e.g. in response to 

spatial heterogeneity in food resource availability (Mcloughlin et al. 2000, Mattisson et al. 

2013, Guilder et al. 2015, Elbroch and Quigley 2017). Alternatively, they can live in social 

groups of variable size, composition and dynamics depending on the species, population 

density or environmental conditions (Hill and Lee 1998, Sundaresan et al. 2007, Vander 

Wal et al. 2013). 

 

3.1 The benefits and costs of sociality 

The causes and consequences of sociality have been examined extensively in many 

species within both an ecological and evolutionary framework (Dunbar 1974, 1987, Jarman 

1974). Group formation confers many benefits to group members, including reduced risk of 

predation and infanticide, improved foraging efficiency, e.g. via increased hunting success 

for predators, information sharing (e.g. about location of resources) and assistance in 

parental care (Hamilton 1971, Van Orsdol 1984, Clark and Mangel 1986, review in Krause 

and Ruxton 2002). In prey species, grouping can decrease predation risk for any individual 

through an enhanced ability to detect predators by collective vigilance, cooperative defence, 

a higher probability of escape or a lower probability of being selected as potential prey by 

dilution and confusion effects (Caraco et al. 1980, Turner and Pitcher 1986, Dehn 1990, 

Childress and Lung 2003). Individuals in groups can also spend less time being vigilant and 

allocate more time to other activities such as foraging, which improves the foraging 

efficiency at the individual level (Powell 1974, Caraco 1979, Underwood 1982, Elgar 1989, 

Lima 1995, Childress and Lung 2003).  

Despite the apparent benefits, all animal species do not live in groups, which 

suggests that group living incurs costs as well as benefits. Indeed, while group size can be 

advantageous to minimize the predation risk, it also makes the group more detectable by 

predators (Vine 1973, Lindstrom 1989, Krause and Godin 1995, Hebblewhite and Pletscher 
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2002). Groups may also have negative impacts on individual foraging efficiency due to 

increasing competition for food, which can force groups to travel further and to spend more 

time feeding, or due to more intense aggressive interactions among group members  

(Caraco 1979, Chapman 1990, Molvar and Bowyer 1994, Olupot et al. 1994, Majolo et al. 

2008). The spatial proximity between individuals promotes the transmission of pathogens 

and parasites (Caillaud et al. 2006, Rifkin et al. 2012). Moreover, to ensure group cohesion, 

animals must synchronize their activities (Conradt and Roper 2000, Jacobs et al. 2011) and 

this constraint may be costly because individual group members can compromise their own 

nutritional needs (e.g. metabolic requirements due to their reproductive status) to maintain 

spatial cohesion with their conspecifics. For example, in some cases, individuals may have 

to shorten their resting time to travel with the rest of the individuals in their group, whilst in 

other cases, individuals may be forced to wait for the whole individuals have finished feeding 

before moving.  

 

3.2 Group cohesion and individual trade-off 

Given the benefits and costs of group living, each individual is confronted to a trade-off 

between its own nutritional and social needs, and those of the group (i.e. synchronize the 

activities to maintain spatial cohesion and benefit from the presence of the conspecifics, 

Conradt and Roper 2005). However, when the group size increases or when the intrinsic 

differences (e.g. in sex, age) among individuals become too large, the needs can be very 

different among all group members (e.g. individuals with higher body mass spend more time 

to feeding, and lactating females forage longer than nonlactating females, Ruckstuhl and 

Neuhaus 2002). Consequently, the costs for maintaining group cohesion for each individual 

increase and individuals may cope with a compromise between pursuing its own interests 

(by leaving the group) or staying with preferred conspecifics at some cost (Jacobs et al. 

2011). Maintaining group coordination also requires individuals to make common decisions, 

such as about the direction of travel or the next activity, which can generate a conflict of 

interest (Conradt and Roper 2005, Bourjade and Sueur 2010). These conflicts represent 

another factor that may lead to the departure of certain individuals from the group.  

 

3.3 Consequences of trade-offs: Dispersal and fission-fusion dynamics  

In the light of the compromises and decisions that group members must constantly make, 

group cohesion may decrease when the group size or within-group competition for food 

increases, and the group may therefore split. One sub-group can decide to move in one 

direction while the other one decides either to stay in the current zone or to move in another 

direction (Kerth et al. 2006, Ramos-Fernández et al. 2006). Group splitting can be on a long-
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term scale, i.e. the groups that have split do not merge again. A classic example is when 

juveniles move away from their natal group for reducing sexual competition, avoiding 

inbreeding and finding suitable habitats (natal dispersal, Greenwood 1980, Cockburn et al. 

1985, Wahlström and Liberg 1995, Sweitzer and Berger 1998). Adults can also leave 

permanently their group to join another one or a different population to find a new 

reproduction site, avoid within-group competition or improve their social status (Bowler and 

Benton 2005, Clutton-Brock and Lukas 2012, Marjamäki et al. 2013). Some categories of 

individuals could be more likely to initiate a movement. For example, males and females 

typically display large differences in terms of dispersal distances and/or dispersal rates, 

which is called sex-biased dispersal. Female-biased dispersal is more common in bird 

species, whereas mammals are typically male-biased, except primates where the female 

dispersal is more widespread (Greenwood 1980, Strier 1994, Clarke et al. 1997, Engelhaupt 

et al. 2009, Lebigre et al. 2010).  

 When splitting occurs on a short-term scale, this flexibility in social behaviour is 

defined as “fission-fusion societies” (Kummer 1971) or “fission-fusion dynamics” (Aureli et 

al. 2008).  The term “fission-fusion” was first introduced by Kummer (1971) to describe the 

social organization in some non-human primate societies where group size changed 

frequently through the splitting (fission) and merging (fusion) of the group according to both 

the activity of group members and the distribution of resources. In animal societies, fission-

fusion group dynamics refer to “the extent of variation in spatial cohesion and individual 

membership in a group over time” and vary along three dimensions: the temporal variation 

in spatial cohesion, subgroup size and subgroup composition (Aureli et al. 2008). According 

to this framework, any animal system can be characterized by its degree of fission-fusion 

group dynamics along a gradient of group stability, and fission frequency can vary according 

to taxa, environment and social structure. Kangaroos (Macropus sp., Best et al. 2013, 

2014), many ungulate species (e.g. European roe deer Capreolus capreolus, Pays et al. 

2007, onagers Equus hemionus khur, Sundaresan et al. 2007, chamois Rupicapra 

pyrenaica, Pépin and Gerard 2008, bison Bison bison, Fortin et al. 2009), bats (Kerth and 

König 1999, Popa-Lisseanu et al. 2008) and many primates (e.g. baboon Papio 

cynocephalus, Henzi et al. 1997, black-and-white ruffed lemurs Varecia variegata, Baden 

et al. 2016, spider monkey Ateles geoffroyi, Pinacho-Guendulain and Ramos-Fernández 

2017) form highly unstable and fluid subgroups, which are often merging together and 

splitting apart, which themselves are grouped into larger social groups. Subgroups vary in 

size and composition, while the whole group is stable in size, composition, and occupied 

home range. More complex social systems can be described by the hierarchical 

organization of social structures subject to fission and fusion events. For example, 

elephants (Loxodonta africana, Wittemyer et al. 2005, Archie et al. 2006) and giraffes 

(Giraffa Camelopardalis, Bercovitch and Berry 2010, VanderWaal et al. 2014) form 
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multilevel societies where cohesive groups temporarily join each other and form sub-

communities, which themselves could be grouped into communities.  

The drivers of fission-fusion dynamics are generally poorly understood, but are likely to 

be linked to short-term changes in irregular social and environmental conditions, such as in 

predation pressure, reproductive opportunities or in resource availability (Isvaran 2007, 

Couzin and Laidre 2009, Kelley et al. 2011, Bond et al. 2019). For example, in bottlenose 

dolphins Tursiops aduncus, the high degree of fission-fusion reflects an adaptation to 

heterogeneity in the distribution of prey resources, with dolphins spreading out in smaller 

groups to reduce intraspecific competition for food when resources are limited and 

aggregating in larger groups when food is abundant and predation risk is high (Connor et 

al. 2000, Heithaus and Dill 2002). 

 

3.4 Establishing contact patterns using tracking and genetic tools  

Direct observations of individuals using standard behavioural sampling methods provide the 

best empirical evidence and have been used in several instances to measure the social 

structure (e.g. Altmann 1974, Chapman 1990, Geffen et al. 1999). The degree of fission-

fusion dynamics can be derived through the recording of group size and composition over 

time, as well as any fission and fusion events among subgroups (van Schaik 1999, 

Bercovitch and Berry 2012). Movements and social structure can also be described using 

capture-mark-recapture (CMR) methods. Capture-mark-recapture methods are often 

employed to document dispersal, and thus the social structure at population scale (e.g. 

Favre et al. 1997, Helfer et al. 2012). However, both direct observations and CMR methods 

have their limitations: (1) they can be very time consuming, (2) the number of individuals 

and groups that can be studied is limited, (3) the direct observations may be problematic 

depending on the environment in which the individuals are monitored (difficulty to observe 

in dense forests) or depending on the species studied (being scarce, nocturnal and/or shy) 

and (4) they are usually spatially and temporally restricted and reveal only partially the 

patterns of individual movements, and thus the social structure. Long-distance dispersal 

may be difficult to detect with these methods when individuals move out of the sampling 

area. 

The use of new wildlife monitoring technologies, such as GPS and proximity loggers 

can overcome some of these issues by providing a more complete picture of movements of 

individuals or groups (Kays et al. 2015). Some studies have used GPS tracking data to 

estimate home range overlap as a proxy of contact, because of the difficulty of estimating 

rates of intraspecific interactions (e.g. Millspaugh et al. 2000). Even if the hypothesis of a 

positive correlation between home range overlap and interaction rate seems reasonable, 
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the strength of this association has rarely been evaluated (Schauber et al. 2007, Robert et 

al. 2012). In recent years, GPS and proximity loggers are becoming increasingly popular 

for studying complex social structures: GPS data allow researchers to have simultaneous 

locations of individuals with great accuracy (Podgórski et al. 2014, Elbroch and Quigley 

2017, Lesmerises et al. 2018) whilst proximity loggers, which record when individuals are 

close to each other according to a priori defined spatial threshold, provide a more direct 

measure of contact rates (e.g. Ji et al. 2005, Hamede et al. 2009, Walrath et al. 2011). Both 

technologies allow researchers to determine when, and for how long, two animals have 

been in proximity and, therefore, describe the contact structure relevant for a directly or 

indirectly (only for GPS) transmitted infectious disease. However, they cannot discriminate 

among types of interactions (agonistic vs. affiliative) as direct observations do, and do not 

allow monitoring of the size and composition of subgroups over time. The telemetry devices 

are particularly essential for species that are hard to observe visually in their natural 

environment or that move over large spatial scales. These technologies can, however, be 

expensive since they require many individuals to be monitored simultaneously, especially 

for studies on social behaviour. The use of GPS loggers commonly requires the capture of 

individuals to place GPS tags (on collars, for example) and this needs certain logistics and 

qualified people (i.e. to anaesthetize) in the field. Another limitation is related to the battery 

size and memory size that are limited by animal weight and size. Researchers generally 

need to make a trade-off between sampling rate and battery life. Collecting data can also 

be challenging. While in some cases it is possible to download data remotely from tags, in 

other cases tags must be retrieved to download the data, either by recapturing animals or 

by having a remote drop-off system. Finally, the location errors can sometimes be very 

large, especially in densely vegetated habitats, which require intensive corrections before 

using the data. Despite these challenges, the actual rapid development of better, lighter and 

cheaper technologies should offer new opportunities to track more individuals and from a 

wider range of species (Haddadi et al. 2011, Kays et al. 2015). 

Some behaviours beyond social structure can be examined using genetic tools, such 

as movements over larger temporal and spatial scales and sex-biased dispersal (Ji et al. 

2001, Engelhaupt et al. 2009, Frantz et al. 2010, Vander Wal et al. 2012). These behaviours 

are determinants in disease spread within a population but also among populations. Whilst 

movement tracking technologies allow researchers to explore social structure at a relatively 

short-time scale (in general, around 1-2 years depending on the battery lifetime of the GPS 

collars or proximity loggers), the use of genetic tools describes phenomena occurring on a 

time scale of the individual’s life or on the evolutionary time scale. Molecular genetic 

markers provide new insights for characterizing social and population structure in species 

for which behavioural and movement data are either hard to collect or absent. This method 

consists in quantifying variability between individuals within a DNA sequence, such as in 
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mitochondrial DNA (mtDNA), or in allele frequencies at one or more loci, such as at 

microsatellites (Prugnolle and de Meeus 2002) or single nucleotide polymorphisms (SNPs, 

Aguillon et al. 2017). The most common method for quantifying movements among groups 

or populations consists of assessing the fixation index (FST) as a measure of genetic 

differentiation among groups/populations based upon autosomal neutral markers. A high 

genetic differentiation between populations means low potential for dispersal between 

them. The use of sex-specific markers (e.g. maternally inherited mtDNA or paternally 

inherited non-PAR regions of the Y-chromosome), either alone or in combination with bi-

parentally inherited markers (e.g. autosomal microsatellites or SNPs) provide valuable 

information regarding sex-specific gene flow (Palo et al. 2004, Eriksson et al. 2006, 

Hammond et al. 2006, Wang et al. 2019). These approaches can reveal sex differences in 

gene flow within a generation, and thus give information on interactions and mixing among 

groups or populations. For example, a strong male sex-bias in dispersal patterns revealed 

by genetic analyses has the potential to generate matrilineal social groups because 

members of the female sex remain in the natal group over consecutive generations. 

However, it is worth to mention that the bi-parentally inherited markers should be only used 

to measure sex-biased dispersal before mating of the individual having dispersed because 

allele frequencies are equally distributed between males and females in the offspring. In 

other words, the signal of a sex-biased dispersal may not be detected using biparental 

markers (Goudet et al. 2002). 

 

4 The African buffalo 

The African buffalo (Syncerus caffer, Sparrman 1779) is a ruminant mammal, belonging to 

the Bovidae family and the subfamily Bovini, and is the largest and most massive of the 

African bovids. The African buffalo is currently considered a single species, with important 

morphological variations throughout its geographical range (e.g. in body size, weight, fur 

colour, horn shape and size) leading to a subdivision into four subspecies: Cape buffalo (S. 

c. caffer), forest buffalo (S. c. nanus), West African savanna buffalo (S. c. brachyceros) and 

Central African savanna buffalo (S. c. aequinoctialis, East 1998). The African buffalo 

occupies a wide range of habitats, from open grasslands to rainforests (Sinclair 1977, Prins 

1996, Melletti et al. 2007a, Megaze et al. 2013). In the past, the African buffalo occurred 

throughout sub-Saharan Africa, but its geographical distribution and population size have 

greatly decreased since the nineteenth century, as a result of habitat loss, poaching, 

disease outbreaks and climatic events (Cornélis et al. 2014). The majority of buffalo 

populations are now confined to protected areas and managed hunting areas (East 1998, 
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Figure 2). The African buffalo is now considered as “near threatened” by the IUCN (IUCN 

2019).   

 

 

The African buffalo is a key species with a high economic value. It has attracted the 

attention of hunters since the beginning of European settlement in southern and eastern 

Africa, and as a member of the ‘Big-Five’, buffalos have since been highly sought after as 

an animal trophy (Prins 1996, Munag’andu et al. 2006). The African buffalo is also a 

preferred species for bushmeat, as a source of protein and income in many African 

countries (Mfunda et al. 2010, Alexander et al. 2012, Prin 2014). During the last few 

decades, the African buffalo has also gained important value for eco-tourism and is popular 

on viewing and photographic safaris (Van der Merwe et al. 2004). Buffalos also play an 

important ecological role: as bulk grazers, they facilitate the opening up of habitats, which 

benefits more selective species or short-grass grazers (Prins 1996, Munag’andu et al. 2006, 

Eby et al. 2014). However, the African buffalo carries many pathogens such as foot and 

mouth virus, bovine tuberculosis, brucellosis and tick-borne diseases such as theileriosis, 

that can easily pass from one species to another (Bengis et al. 2002, Kock 2005, Dion et 

al. 2011, Caron et al. 2013, de Garine-Wichatitsky et al. 2013, Gorsich et al. 2015). Due to 

their close taxonomic relationship, buffalos represent the main threat for pathogen 

Figure 2. Distribution of the four African buffalo subspecies and their abundance in relation 
to protected areas (green). Data from East (1998). 
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transmission to cattle  (Bengis et al. 2002, Kock et al. 2014). Additionally, as grazers and 

ruminants of similar size, buffalo and cattle have similar ecological niches and tend to utilize 

the same type of resources (i.e. forage and water, Hofmann 1989), leading to possible 

competition between them (Augustine et al. 2011, Odadi et al. 2011, Valls-Fox et al. 2018). 

In areas where buffalo and cattle live sympatrically, shared use of resources creates 

opportunities for buffalo-cattle contacts (i.e. direct, at the same time; indirect, at different 

times) and therefore pathogen transmission. Although buffalos usually avoid cattle, 

seasonal profiles in contact risk between buffalo and cattle are observed, with higher 

contact rate during the dry season when both water and forage resources are depleted or 

when cattle range further into protected areas in search of food (Kock 2005, Zengeya et al. 

2015, Valls-Fox et al. 2018).   

The ecology of the African buffalo is reasonably well understood (e.g. resource 

requirements, habitat use and selection, Sinclair 1977, Mloszewski 1983, Taylor 1985, Prins 

1996), but the literature concerning its social behaviour is comparatively sparse. The current 

knowledge on the social behaviour of the African buffalo mainly comes from monographs 

(doctoral theses and works) focusing on the Cape buffalo and is often descriptive (Grimsdell 

1969, Sinclair 1977, Mloszewski 1983, Prins 1996, Ryan 2006). The African buffalo is a 

highly social species forming groups (usually call ‘herds’) subject to fission (splitting) and 

fusion (merging) events. The fission-fusion dynamics vary with subspecies and 

environmental conditions (see below, Eltringham and Woodford 1973, Sinclair 1977, Prins 

1996) and the definition of a herd can be problematic. Therefore, throughout the thesis, I 

use the term ‘group’, rather than ‘herd’, to define the set of individuals with fixed membership 

and size that share the same home range. A ‘subgroup’ is defined as a part of individual 

group members that exhibit fission and fusion events, leading to frequent changes in 

subgroup size and composition over time. I define the term ‘population’ as the assemblage 

of buffalos living in the same protected area. Forest buffalo typically occur in small groups 

rarely larger than 20, with little switching between groups and fission patterns that last 1-2 

days before subgroups merge again (Melletti et al. 2007b, Korte 2008). West African 

savanna buffalo live in groups of approximately 50 individuals with very little interaction 

between groups (Cornélis et al. 2011). The group size of Cape buffalo is among the largest 

reported for this species since it can live in large groups up to 2000 individuals, but its group 

size varies across its distribution (Sinclair 1977, Prins 1996). Most studies of Cape buffalo 

in southern and eastern Africa have identified groups with permanent members that 

periodically subdivide due to fission-fusion dynamics but consistently occupied identifiable 

home ranges (Prins 1996, Cross et al. 2005a, Ryan et al. 2006). Even though there is more 

research on the social behaviour of the Cape buffalo than in the other subspecies, there are 

still important knowledge gaps particularly with respect to sociality and group behaviour, 

and the potential risks for pathogen transmission. This thesis will seek to address four 



Chapter 1 Introduction 

13 

important knowledge gaps in the Cape buffalo, which relate to sociality and the potential for 

the spread of pathogens.  

The first knowledge gap relates to the absence of understanding of fission-fusion 

patterns at fine temporal scale, and the ecological drivers of such patterns. Much of the 

previous research on fission-fusion dynamics in the Cape buffalo is mainly based on the 

seasonal variation of subgroup size and composition (Prins 1996). For example, in Chobe 

National Park (Botswana), Cape buffalos formed larger subgroups during the dry season, 

when resources are more limited (Halley et al. 2002), but the opposite was reported in 

Serengeti National Park (Tanzania, Sinclair 1977) and Klaserie Private Nature Reserve 

(South Africa, Ryan et al. 2006). However, no study focused on quantifying the 

characteristics of fission-fusion patterns, such as the frequency of fission and fusion events 

as well as the duration of subgroups, which directly influence the variation in subgroup size 

and composition.  

The Cape buffalo is usually considered as non-territorial species, but studies 

investigating space sharing between neighbouring groups have reported contrasting 

results. At Lake Manyara NP (Prins 1996), in Chobe NP (Halley et al. 2002) and at Klaserie 

Private Nature Reserve (Ryan et al. 2006), groups tended to occupy distinct and exclusive 

home ranges with little overlap whilst in the Rwenzori National Park (Uganda, Grimsdell 

1969) and in Sengwa Wildlife Research Area (Zimbabwe, Conybeare 1980), strong space 

overlap has been reported between home ranges of neighbouring groups. Few studies have 

compared overlap between neighbouring groups across seasons and investigated the 

contact patterns between groups, and this constitutes the second knowledge gap. Cross et 

al. (2004) observed contacts between neighbouring groups within a 2-year period, but 

without quantifying them. To my knowledge, only Bennitt et al. (2018) examined the patterns 

of direct contacts (i.e. at the same time within a small spatial window) between buffalo 

groups and the influence of environmental variables on contact patterns within a study site. 

Yet, although poorly understood, fission-fusion patterns within groups and contact patterns 

between groups are essential for understanding and predicting the spread of pathogens at 

varying social and spatial scales (Bastos et al. 2000, Corner et al. 2003, Craft 2015).  

The third knowledge gap is related to the lack of understanding the role of dynamic 

contact patterns in disease dynamics in the Cape buffalo. Traditional epidemiological 

models assumed that contact patterns are homogeneous among all individuals in the host 

population (Anderson and May 1991). Although there is now more research on contact 

patterns and their influence on pathogen transmission in wild animal species (Drewe 2010, 

Chen et al. 2014, Reynolds et al. 2015), in the Cape buffalo, only Cross et al. (2004) 

investigated the influence of contact patterns within groups on pathogen dynamics. 

However, this study was based on an association index calculated on a monthly scale. This 

may lead to misleading predicted pathogen dynamics, as it ignores the short-term 
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interactions that change due to the ecology and social behaviour (i.e. fission-fusion 

behaviour), which could have an important effect on the pattern of pathogen transmission 

(Volz and Meyers 2007).  

Finally, so far, male Cape buffalos were thought to be native dispersers and females 

were gregarious with a strong fidelity to their group and limited intergroup movements (i.e. 

dispersion, Sinclair 1977, Prins 1996). However, both genetic and observational studies 

now highlight the dispersal ability of both female and male Cape buffalos (Halley et al. 2002, 

Van Hooft et al. 2003, Naidoo et al. 2014, Caron et al. 2016). The use of GPS collars has 

made it possible to record long-distance dispersal in females among populations (Halley et 

al. 2002, Naidoo et al. 2014, Caron et al. 2016). Most genetic studies on the Cape buffalo 

have been carried out at the population level (national parks and game reserves, Simonsen 

et al. 1998, Van Hooft et al. 1999, 2000, 2002, Smitz et al. 2013, 2014). At the group level, 

only Van Hooft et al. (2003) explored the dispersal capacity and the differences between 

sexes using genetic tools to my knowledge. Telemetry studies support frequent switches 

among groups within a local population (Halley et al. 2002, Cross et al. 2004, Roug et al. 

2020). Despite abundant evidence that dispersal is common in both male and female Cape 

buffalos, no studies have explored if there are differences in the dispersal patterns between 

different populations (e.g. due to different social or environmental environments). 

 

5 Questions and research objectives of the thesis  

In this thesis, I address the knowledge gaps relating to contact patterns within (i.e. fission-

fusion patterns) and between Cape buffalo groups (S. c. caffer), and their moderators. 

Furthermore, to reduce the research gap related to sex-biased dispersal at population and 

group levels, I conduct an exploratory analysis of the dispersal capacity of both males and 

females between groups and between populations. Overall, this thesis explores the 

temporal and spatial distribution of individuals relative to each other throughout three 

organisational levels: within groups, among groups and among populations. To go further, 

this thesis examines the impact of contact patterns within groups on a directly transmitted 

pathogen spread as a model to link the host social organisation and pathogen transmission. 

In addition to improving our fundamental knowledge of the social behaviour of the Cape 

buffalo (e.g. what is a group), these results aim to better understand the transmission of 

pathogens within buffalo populations. The questions and objectives of this thesis are the 

following:  

 

Question 1 – Do fission-fusion dynamics between buffalo individuals vary according to 

seasons, distribution of resources in the landscape and geographical regions?  
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Objectives: This part of the study included the use of long-term GPS tracking in three 

populations living in savanna environments. I quantified the frequency at which fission and 

fusion events occurred and their duration between buffalo dyads and investigated the 

environmental conditions (habitat structure, distance to water) in which such events 

happened. This analysis provides preliminary insights into the environmental factors 

determining the degree of fission-fusion dynamics. I compared the degree of fission-fusion 

dynamics and the location where such events occurred across seasons and sites. This 

question is addressed in Chapter 3. 

 

Question 2 – Do the contact patterns between buffalo groups vary according to 

geographical region, season and distribution of resources in the landscape? 

Objectives: Based on long-term GPS tracking in two populations living in contrasting 

environmental conditions, I quantified the frequency and the duration of direct (i.e. at the 

same time, at the same place) and indirect contacts (i.e. at different times), compatible with 

the transmission of various pathogens, between buffalo dyads belonging to neighbouring 

groups. I then investigated the environmental conditions under which such contacts 

happened in relation to the habitat structure and the distance to water to determine the 

importance of environmental conditions in social dynamics between groups. I compared the 

frequency and duration of contacts and the location of contacts across seasons and sites 

to explore whether the geographical region influences the between-group dynamics. This 

question is treated in Chapter 4.  

 
 

Question 3 – Does sex influence the likelihood of dispersal among populations and 

groups?  

Objectives: From an approach combining genetic and movement data in 10 populations, I 

investigated whether dispersal was sex-biased in the Cape buffalo. Using both sex-specific 

and bi-parentally inherited markers, I calculated multiple genetic indexes, such as the 

genetic differentiation levels and the relatedness indexes, and the correlation between 

genetic and geographical distances, to reveal differences in migration rates between sexes 

at population and group levels. As the genetic markers cannot give information about the 

characteristics of dispersal events, I used GPS data to describe the dispersal events (e.g. 

distance). This question is treated in Chapter 5. 

 

Question 4 – Do the intensity, heterogeneity and temporal dynamic of interactions in a 

healthy buffalo group influence the diffusion of a pathogen within this group?  

Objectives: Using the long-term GPS tracking in two populations, I built a dynamic system 

of networks representing buffalo direct contacts within a group. A dynamic system of 
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homogenous (i.e. random) contact networks was also produced to assess the role of 

heterogeneity in contact structure on the pathogen dynamics. The spread of a pathogen 

along these interactions within both the dynamic heterogeneous and homogeneous contact 

networks was simulated using an SEIR model. I used a hypothetical pathogen based on the 

characteristics of the Foot-and-Mouth Disease Virus (FMDV) with direct transmission. I 

investigated the dynamics of the pathogen across seasons, sites and types of network 

(homogeneous vs. heterogeneous). This question is addressed in Chapter 6. 
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In this thesis, I benefited from data entirely collected in 11 Cape buffalo populations across 

Mozambique, Zimbabwe, Botswana and South Africa between 2007 and 2016. The study 

populations were located in protected areas, in habitats varying from the tropical rainforest 

in Mozambique to mixed woodlands and riparian forests in South Africa, Zimbabwe and 

Botswana (Figure 1, Ryan et al. 2016). The data used in this thesis had been previously 

collected either for epidemiological and ethological monitoring or for telemetry studies in 

order to investigate buffalo habitat use and selection and were exclusively based on indirect 

observation methods, which were GPS tracking, remote sensing and genetic sampling. In 

this chapter, the data used in this thesis and the data pre-processing are described along 

with information on data collection. More detailed descriptions of specific data collection 

protocols and analyses are given in the Methods section of each chapter. The terms related 

to the socio-biology of the Cape buffalo defined in Chapter 1 are reminded in Box 1. 

 

 

Figure 1. Map of Africa representing the 11 populations analyzed in this thesis. Light blue 
shapes on the left map represent the actual distribution of the Cape buffalo according to the 
IUCN Antelope Specialist Group, 2008. Green zones correspond to the protected areas (East 
1998). A. Mozambique, B. Zimbabwe, C. Botswana, D. South Africa. 1. Hluhluwe-iMfolozi (960 
km²), 2. Kruger (18 989 km²), 3. Limpopo (11 230 km²), 4. Gorongosa (4 000 km²), 5. Marromeu 
(11 270 km²), 6. Gonarezhou (5 053 km²), 7. Malilangwe (405 km²), 8. Mana Pools (6 766 km²), 
9. Hwange (14 620 km²), 10. Chobe (11 700 km²), 11. Okavango Delta (16 000 km²). The symbols 
indicate the type of data collected in each population: circle = only genetic data; square = 
both telemetry and genetic data; diamond = only telemetry data.  
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1 The GPS tracking data  

I used GPS data previously collected in 4 study areas to examine the fission-fusion patterns 

(Chapter 3), the intergroup contact patterns (Chapter 4), to describe the dispersal events 

(Chapter 5) and build an intragroup social network for understanding pathogen dynamics 

(Chapter 6):  

(1) southern Gonarezhou National Park and Malipati safari area (conservation area) 

adjacent to Sengwe communal land in the South-East Lowveld of Zimbabwe (22° 

00’ S, 31° 30’ E);  

(2) northern Kruger National Park in north-eastern South Africa, on the border between 

Zimbabwe and South Africa along the Limpopo River, connecting the northern part 

of the park to the Sengwe communal land adjacent to the Gonarezhou NP (22° 253’ 

S, 31° 13’ E); 

(3) Hwange National Park (mainly the northern and eastern regions) and Sikumi Forest 

in the north-west of Zimbabwe (19° 00’ S, 27° 10’ E); 

(4) the south-eastern area of the Okavango Delta in northern Botswana (22° 00’ E – 

18° 50’ S). 

The GPS data in the first three study areas had been collected by Cirad and its partners 

(including CNRS, IGF, SANParks). These three areas were selected for their proximity to 

human populations as part of PhDs in ecology and epidemiology aimed at exploring the 

sharing of space between buffalos and cattle, their contact patterns and the phenomena of 

pathogen transmission between the 2 species (Miguel 2012, Valls Fox 2015). The GPS 

data from the population of Okavango Delta were collected as part of Emily Bennitt’s PhD 

(2012), which aimed to examine the ecology of the Cape buffalo, such as habitat selection, 

migratory behaviour and movement patterns (non-exhaustive). Depending on the study 

Box 1. Definition of terms related to socio-biology of the Cape buffalo that I use 

throughout this thesis.  

❖ Population: all buffalos living in the same protected area, including national 

parks and game reserves (i.e. possibly several groups of buffalos). 

❖ Group: the assemblage of individuals with fixed membership and size that 

share most of their home range.  

❖ Subgroup: a part of individual group members that exhibit fission and fusion 

events, leading to frequent changes in subgroup size and composition over 

time.  
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design developed in each study area and the requirements for my research questions, I 

was forced to adapt the dataset of GPS locations to each of my research questions (see 

Table 1). While a large number of individuals followed in the same group was necessary to 

explore the contact patterns within groups (Chapters 3 & 6), examining the intergroup 

contact patterns (Chapter 4) required few GPS collars in the same group, but in many 

different neighbouring groups.  

 

1.1 Capture and collaring  

Depending on site, available capture team and material and experience, buffalos were 

captured either directly from helicopter or using a boma. In the first case, buffalo groups 

were sighted from a light airplane (cheaper) or directly from the helicopter; then, one or 

more buffalo were selected given the protocol requirements (e.g. adult females) to be tele-

anesthetised. Once asleep the helicopter would land close to the one or more buffalos and, 

with or without the support of a ground team, would process to sampling (e.g. blood sample, 

a small piece of tissue (ear) and/or hair, see section 3) and collaring. The other method 

consisted in building a funnel-type boma (diameter 400 m), where buffalo groups were 

pushed inside using a helicopter (Figure 2). Later, once calm, a group team would enter the 

boma to dart selected individuals (la Grange 2006) and proceed to sampling and collaring. 

As adult males can leave the group temporarily and join bachelor groups, cows were 

primarily selected to be collared in order to reflect the movements of groups (Sinclair 1977, 

Mloszewski 1983, Prins 1996). During the capture event, age of individuals was defined 

based on tooth wear (juvenile: 0-2.5 

years, subadult: 2.5-4.5 years old and 

adult: >4.5 years old, Grimsdell 1973, 

Taylor 1988) All animals were observed 

returning to their group after the darting 

operation. All field operations conformed 

to the permits and legal requirements of 

the countries in which they were carried 

out. 

A total of 16 capture sessions was carried out to place the collars. The movements 

of 82 buffalos in 19 groups were monitored using 95 GPS collars between December 2007 

and June 2016. Of the 95 collars placed, 13 of them were replaced on the same individuals 

(in Gonarezhou and Kruger NPs) at a later capture session to extend data coverage, which 

explains the difference between the number of GPS collars placed and the number of 

buffalos followed (see Table 1). The collars were equipped with Very High Frequency (VHF) 

Figure 2. The elaboration of a boma.  
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transmitter, allowing animals to be located using conventional telemetry equipment. GPS 

loggers were scheduled to acquire locations at synchronous times (the top of the hour) 

every hour.  

Table 1. Summary statistics of the deployment of 95 GPS collars in 19 groups in Hwange 
National Park, Gonarezhou National Park, Kruger National Park and Okavango Delta from 
2007 and 2016. All buffalos monitored were adult females (A) or subadult females (SA, see 
text for details). I defined group membership a posteriori by calculating home range overlap 
(see Chapters 3 & 4).  

Study area Group 

Total number 

of different 

buffalos  

Deployment of GPS collars 

according to the age class 

Chapters in which 

the data are used 

Gonarezhou 

National 

Park 

G1 6  
10/2008 6 A 

3, 4, 5 & 6 
11/2009 4 A 

G2 6  
10/2008 6 A 

11/2009 2 A 

Hwange 

National 

Park 

G1 8  

08/2009 3 A 

3 

11/2012 4 A 

12/2013 1 A 

G2 8  
08/2009 5 A 

11/2012 3 A 

G3 3  11/2012 3 A 

G4 1  11/2012 1 A 

Kruger 

National 

Park 

G1 20 

06/2010 2 SA 

3, 4, 5 & 6 

07/2011 3 A + 4 SA 

10/2013 6 A + 6 SA 

G2 4 
06/2010 1 A + 1 SA 

07/2011 2 A + 2 SA 

G3 9 

06/2010 1 A + 1 SA 

07/2011 2 A 

10/2013 3 A + 3 SA 

G4 2 
06/2010 1 A + 1 SA 

07/2011 2 A  

Okavango 

Delta 

G1 3 

12/2007 

10/2008 

06/2009 

1 A 

1 A 

1 A 

4 

G2 2 12/2007 2 A 

G3 2 12/2007 2 A 

G4 1 12/2007  1 A 

G5 2 
10/2008 

06/2009 

1 A 

1 A 

G6 2 06/2009 2 A 

G7 1 06/2009 1 A 

G8 1 10/2009 1 A 

G9 1 10/2009 1 A 
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1.2 Data pre-processing  

I projected the locations, originally acquired in decimal degrees, in Universal Transverse 

Mercator (UTM) coordinates with the WGS84 datum, using the ‘rgdal’ package in R (R 

Development Core Team 2016). The UTM grid cells corresponding to the study sites were: 

UTM 34S for Okavango Delta, UTM 35S for Hwange NP and UTM 36S for Gonarezhou and 

Kruger NPs. I screened the GPS locations successfully acquired for erroneous fixes 

following the established technique by Bjørneraas et al. (2010). This approach identifies 

locations arising from unrealistic movement pattern by using specified thresholds for 

distance, speed and turning angles between two recorded locations. Here, I applied the 

following criteria: Δ = 100,000 m; μ = 10,000 m; α = 3,000 m/h; θ = -0.95. Some of the GPS 

locations were acquired with a delay compared to the time the GPS was programmed to 

take the location. In order to limit the impact of acquisition delays on the subsequent 

analyses (e.g. inter-individual distance to identify contact), I corrected the acquisition delays 

according to the following rules: if the location was taken within 5-min interval from 

programmed acquisition time, I kept the location fix and repositioned it at the scheduled 

time (i.e. the top of the hour), otherwise, I calculated the location for the programmed 

acquisition time by linear interpolation. This was particularly essential for Chapter 3 in order 

to have locations at the same time between individuals to determine fission and fusion 

events. This method was, however, not applied in Chapter 4 as the approach used did not 

require locations at regular intervals and simultaneous between individuals.  

 

2 The environmental variables 

As the availability of resources is commonly cited to affect buffalo habitat selection (Sinclair 

1977, Ryan et al. 2006, Valls-Fox et al. 2018), I used two environmental variables (habitat 

structure and distance from water) to examine whether fusion and fission events (Chapter 

3) and contacts between neighbouring groups (Chapter 4) occurred in specific areas. 

Simplified vegetation maps were adapted from an unpublished map for Gonarezhou NP, 

Pretorius and Pretorius (2015) for Kruger NP, Arraut et al. (2018) for Hwange NP and 

Bennitt et al. (2014) for Okavango Delta. The original land cover classes, as well as the 

number of classes, were different across the study areas. For comparative purposes 

between the study areas, I combined the original classes into three broad classes of natural 

vegetation according to woody cover and availability of grasses, the main food for buffalo: 

(1) grassland, including areas dominated by grassland, or bushed grassland with sparse 

vegetation, (2) bushland, which consists of shrubs and bushed areas, (3) woodland, 

encompassing deciduous, evergreen or riverine forests. The non-vegetated or non-natural 
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vegetation land cover classes were re-classified as “null” as well as cloud cover. As the type 

(polygon vs. raster) and spatial resolution of the original maps also differed, I converted 

them to raster layers with 30-m resolution using the software R (Figure 3). I plotted the GPS 

coordinates of each buffalo location onto the habitat map of the corresponding study area 

and I extracted the habitat type (i.e. grassland, bushland or woodland) in which the location 

occurred (Chapters 3 & 4).  

In Gonarezhou NP and Hwange NP, I identified the permanent waterholes, i.e. 

providing water in both dry and wet seasons, following the systematic monitoring of artificial 

and natural water pans within the home ranges of Cape buffalo groups studied here. This 

monitoring was implemented at the same periods as the deployment of the GPS collars 

(2011 in Gonarezhou NP and 2013-2014 in Hwange NP). In Kruger NP, I recorded the 

location of every permanent waterhole from Google Earth (Google Inc., Mountain View, CA) 

using photographic capture taken at different times of the year. In Okavango Delta, 

consistent with Bennitt et al. (2018), I used the vegetation class ‘Secondary floodplain’ as 

the location of permanent water sources since it is the only habitat that is flooded all year 

round (Bennitt et al. 2018, Figure 3). In each study site, the location of permanent water 

sources was used to generate a raster layer representing the distance to permanent water 

for each pixel (50-m resolution) in the study site. I plotted the GPS coordinates of each 

buffalo location onto the raster layer of the corresponding study area and I extracted the 

distance to permanent water in which the location occurred (Chapters 3 & 4). 
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Figure 3. Vegetation maps and permanent water sources for the 4 study areas. For a better 
reading, I only show the centroid of the individual home range rather than their contours. 
Home range centroid was calculated as the mean of longitude and latitude from all locations 
of the individual and represents the centre of the individual’s home range.    

 

Since the existing literature reports seasonal variation in habitat use and selection by 

buffalos as well as in group size and composition due to variation in resource availability 

(Sinclair 1977, Halley et al. 2002, Halley and Mari 2004, Turner et al. 2005, Ryan et al. 

2006, Valls-Fox et al. 2018), I investigated the fission-fusion patterns and contact patterns 

between groups across seasons (Chapters 3, 4 & 6). I used the rainfall patterns to define 2 

distinct seasons. Annual rainfall across the 4 study sites is similar with around 600 mm for 

Hwange NP, and 500 mm for Gonarezhou NP, Kruger NP and Okavango Delta (Gertenbach 

1980, McCarthy et al. 1998, Chamaillé-Jammes et al. 2006, Gandiwa et al. 2016). The 

distribution of rainfall within the year is also similar between sites, with most rain falling 

between November and March. To avoid transitional periods and for seasonal comparisons, 

I restricted my analyses to the core of the wet and dry seasons. I defined these periods 

according to fixed dates based on similar rainfall patterns between the sites: the core wet 

season is the period running from January 1st to March 31st (n = 90 days) and the core dry 

season from August 15th to October 31st (n = 78 days) for all sites.  

 

3 The genetic data 

I used genetic data to explore sex-biased dispersal in the Cape buffalo (Chapter 6). The 

genetic data have been collected, analyzed and previously published by a PhD student 

(Smitz et al. 2013, 2014) examining the population genetic structure and evolutionary 

history of the African buffalo. The original dataset consisted of 264 S. c. caffer samples, 

with 178 females and 86 males, and was collected in 6 countries (South Africa, 

Mozambique, Zimbabwe, Botswana, Zambia and Angola). The samples (i.e. blood, a small 

piece of ear, hair or dung) were genotyped by N. Smitz at 14 variable autosomal 

microsatellite loci [TGLA227, TGLA263, ETH225, ABS010, BM1824, ETH010, SPS115, 

INRA006, BM4028, INRA128, CSSM19, AGLA293, ILSTS026, DIK020 described by Van 

Hooft et al. (1999) and Greyling et al. (2008)]. Additionally, 73 males were also genotyped 

at three Y-chromosomal microsatellites (UMN1113, INRA189, UMN0304- described by Van 

Hooft et al. 2007). The microsatellite amplification and genotyping are detailed in Smitz et 

al. (2014). Individuals in two populations (Gonarezhou and Hluhluwe-iMfolozi) were also 

sequenced using mitochondrial D-loop (control region). I read and aligned these mtDNA 

sequences available on the National Institutes of Health (NIH) genetic sequence database 

(GenBank- JQ780553.1 - JQ780600.1) using MEGA 10.0 (Tamura et al. 2011), with 
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corrections by eye. Newly sequenced samples led to the identification of a 580-bp 

overlapping region. To examine sex-biased dispersal (Chapter 5), I selected the populations 

in which both males and females were sampled, as well as those with a sample size > 5 

among the populations sampled by Smitz et al. (2013, 2014). Finally, for my thesis, I used 

a dataset including 205 individuals genotyped at the 14 autosomal microsatellites, 68 males 

genotyped at the three Y-chromosome microsatellites and mtDNA sequences for 48 

individuals.  
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CHAPTER 3 

ARE FISSION-FUSION DYNAMICS 

CONSISTENT AMONG POPULATIONS? 

A LARGE-SCALE STUDY WITH CAPE 

BUFFALO 
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Abstract 

Fission-fusion dynamics allow animals to manage costs and benefits of group living by 

adjusting group size. The degree of intraspecific variation in fission-fusion dynamics across 

the geographical range is poorly known. During 2008-2016, 38 adult female buffalos were 

equipped with GPS collars in three populations of Cape buffalo located in different protected 

areas (Gonarezhou National Park and Hwange National Park, Zimbabwe; Kruger National 

Park, South Africa) to investigate the patterns and environmental drivers of fission-fusion 

dynamics between pairs of buffalo (dyad) among populations. I estimated home range 

overlap and fission and fusion events between buffalo dyads. I investigated the temporal 

dynamics of both events at daily and seasonal scales and examined the influence of habitat 

and distance to water on event location. Fission-fusion dynamics at dyad level were 

generally consistent across populations: fission and fusion periods between dyads lasted 

on average between less than one day and three days. However, I found seasonal 

differences in the underlying patterns of fission and fusion between dyads, which point out 

the likely influence of resource availability and distribution in time on social dynamics: during 

the wet season, buffalo dyads split and associated more frequently and were together or 

separated for shorter periods. Whereas habitat structure did not have a significant influence 

on fission and fusion locations between dyads, my results suggest that water sources might 

act as hotspots of events during the dry season only in areas with low water availability. 

This study is one of the first to quantify fission-fusion dynamics between dyads in a single 

species across several populations with a common methodology. This underlines the 

question of the behavioural flexibility of fission-fusion dynamics among environments. 
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1 Introduction 

Identifying the factors that drive social organization is central to understanding the ecology 

and evolution of animal populations. Animal social organizations range from solitary, where 

individuals meet occasionally and for mating during the breeding season, to systems 

whereby animals live in stable groups with individuals remaining together over several years 

(Clutton-Brock 2016). Groups can also be much more fluid, with regular splitting (i.e. fission) 

and merging (i.e. fusion) of subgroups, and the degree of fission-fusion dynamics between 

group members can be seen as a characteristic of any social system (Aureli et al. 2008).  

Moderate to high levels of fission-fusion dynamics have been reported in a range of 

taxa (bats: Kerth and König 1999, cetaceans: Connor et al. 2000, primates: Lehmann and 

Boesch 2004, large mammalian herbivores: Archie et al. 2006, Fortin et al. 2009, Bercovitch 

and Berry 2010, fish: Kelley et al. 2011, macropods: Best et al. 2013). Decisions to split or 

merge are thought to be related to spatial and temporal variation in the costs and benefits 

of grouping, e.g. changes in resource availability, competition (Chapman 1990, Pépin and 

Gerard 2008), predation risk (e.g. through habitat structure, Hill and Lee 1998, Fortin et al. 

2009), activity synchronization (Conradt and Roper 2000) or in the risk of disease or 

pathogen transmission (Kashima et al. 2013). 

Most studies on fission-fusion dynamics published to date have either focused on 

describing dynamics in a single population (e.g. Lehmann and Boesch 2004) or comparing 

fission-fusion dynamics in populations of different species living in the same area (e.g. Parra 

et al. 2011). Little is known about the variability of fission-fusion dynamics among 

populations of a given species (e.g. Kelley et al. 2011). As heterogeneity in the environment 

across the geographical range of a species can influence social behaviour (Baden et al. 

2016), fission-fusion dynamics may vary among populations. Comparing fission-fusion 

dynamics from several populations located in different areas would provide insight into the 

behavioural flexibility of a species to adjust to heterogeneous environmental constraints. 

Standardized comparative studies would also allow a better determination of the factors 

influencing fission-fusion dynamics at the species level.  

Cape buffalo live in large (up to 1500 individuals) mixed-sex groups, of primarily 

females and their offspring, subadults of both sexes, and a small proportion of adult males 

(Sinclair 1977, Prins 1996). Group refers to the assemblage of individuals with stable 

membership and size that share most of their home range. Each group occupies a home 

range that overlaps very little with other groups (Sinclair 1977, Prins 1996, Chapter 4). 

Within these large groups, subgroups of individuals split and merge regularly, leading to 

frequent changes in subgroup size and composition. The critical characteristics of these so-

called fission-fusion patterns, such as duration of subgroup splitting, and merging remain 
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mostly unknown (but see Bennitt et al. 2018). The factors that appear to drive group 

dynamics in the Cape buffalo remain unclear with conflicting results from different studies. 

In Chobe National Park (Botswana), buffalos formed larger subgroups during the dry 

season, when resources are more limited (Halley et al. 2002) but the opposite was reported 

in Serengeti National Park (Tanzania, Sinclair 1977) and Klaserie Private Nature Reserve 

(South Africa, Ryan et al. 2006). In Lake Manyara National Park (Tanzania), buffalo groups 

tended to exhibit fission-fusion patterns strongly related to group size: large groups split 

more frequently than smaller ones (Prins 1989). Finally, changes in buffalo group dynamics 

living in Addo Elephant National Park (South Africa) are related to predation, with buffalos 

aggregating into larger subgroups following the reintroduction of lions into the park 

(Tambling et al. 2012). 

In order to better understand the patterns and drivers of fission and fusion in the 

Cape buffalo, I employed a comparative approach incorporating data collected over wet 

and dry seasons across three distinct populations living in similar environmental conditions 

(Gonarezhou National Park and Hwange National Park, Zimbabwe; Kruger National Park, 

South Africa). Much of the previous research on fission-fusion dynamics in the Cape buffalo, 

and generally on other species, is based on the observation of how the size and composition 

of subgroups change over time (Prins 1996, Aureli et al. 2008). In this study, I took a 

different approach by studying fission-fusion dynamics at the individual level, using GPS 

tracking data. This approach is increasingly used (e.g. Loretto et al. 2017, Lesmerises et al. 

2018, for buffalo see Bennitt et al. 2018) as it provides detailed information on when and 

where two individuals are together but does not provide information on subgroup size and 

composition. I, therefore, used GPS tracking data to quantify the time that pairs of buffalo 

(dyads) spent together and the frequency and duration of fission and fusion events between 

buffalo dyads. Since the existing literature reports seasonal variation in subgroup and group 

size, I explored seasonal changes in fission-fusion dynamics between buffalo dyads but 

given the contradictory results of previous studies (see above), I refrained to make specific 

predictions. Building on our knowledge of the species’ ecology and on consistent results 

from previous studies, I also specifically tested the predictions that (i) fission and fusion 

events between dyads would occur more during the periods when Cape buffalos are more 

active, i.e. early in the morning and late afternoon because conflicts of interest in the 

upcoming activities or directions would be higher (Cornélis et al. 2011, Valls-Fox et al. 

2018); (ii) Cape buffalo dyads would be more likely to meet (fusion event) and remain 

together in open habitats, as large herbivores are commonly found in large groups in open 

habitats where visibility is higher (Jarman 1974, Isvaran 2007, Pays et al. 2007), facilitating 

social cohesion, reducing predation risk against ambush predators and, possibly for 

grazers, where forage is more abundant; and (iii) the scarcity of water during the dry season 

would increase the probability that buffalo meet, and remain together for some time, near 
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water points. I reveal new insights into Cape buffalo fission-fusion dynamics between dyads 

and provide one of the first studies demonstrating the consistency of fission-fusion 

dynamics across populations. 

 

2 Materials and methods 

2.1 Study areas 

The study was conducted across three sites: the eastern region of Hwange National Park 

(14 620 km², HNP, Zimbabwe), the southern part of Gonarhezou National Park (5 053 km², 

GNP, Zimbabwe), and in the north of Kruger National Park (18 989 km², KNP, South Africa; 

Figure 1). Across the three study areas, the vegetation is a mosaic of bushland savanna, 

open grassland and woodland (GNP: Gandiwa and Zisadza 2010, HNP: Chamaillé-Jammes 

et al. 2006, KNP: Gertenbach 1983). Annual rainfall across the three sites is similar with 

around 600 mm for HNP, and 500 mm for GNP and KNP. The distribution of rainfall within 

the year is also similar between sites, with most rain falling between November and March 

(GNP: Gandiwa et al. 2016, HNP: Chamaillé-Jammes et al. 2006, KNP: Gertenbach 1980). 

During the wet season, grass water content is high, and water is widely distributed in the 

landscape across numerous natural and artificial pans (HNP, KNP) or rivers (GNP, KNP). 

During the dry season, most natural pans dry up and water distribution differs between sites. 

In GNP, water is only available in a few pools in the main river; in HNP, only artificial pumped 

waterholes provide water; in the north of KNP (Pafuri region), water is provided by a few 

permanent rivers and some pools that persist along the Limpopo river (GNP: Zvidzai et al. 

2013, HNP: Chamaillé-Jammes et al. 2007, KNP: Purdon and van Aarde 2017). 

 

Figure 1. Location of the three study sites: Gonarezhou National Park (GNP) and Hwange 
National Park (HNP) in Zimbabwe, and Kruger National Park (KNP) in South Africa. 
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2.2 Environmental covariates 

I used one unpublished and two published vegetation maps (KNP: Pretorius and Pretorius 

2015, HNP: Arraut et al. 2018), each covering a study area and using different vegetation 

classes, to create simpler and more homogeneous maps for the comparative analyses. I 

combined the original land cover classes into three broad habitat types: (1) grassland, 

including areas dominated by grassland, or bushed grassland with sparse vegetation, (2) 

bushland, which consists of shrub and bushed areas, and (3) woodland, encompassing 

deciduous, evergreen or riverine forests. In HNP and GNP, the location of permanent 

waterholes was obtained exhaustively from project collaborators whilst in KNP locations 

were recorded from Google Earth.  

Within the three study sites, due to the presence of numerous natural pans at all 

sites, it was difficult to quantify water availability outside of the core dry season. Because of 

this and to avoid transitional periods, I restricted the analyses to the core of the wet and dry 

seasons. I defined these periods according to fixed dates based on the similar rainfall 

patterns between the sites (GNP: Gandiwa et al. 2016, HNP: Chamaillé-Jammes et al. 

2006, KNP: Gertenbach 1980): the core wet season (hereafter called wet season) is running 

from January 1st to March 31st (n = 90 days) and the core dry season (hereafter called dry 

season) from August 15th to October 31st (n = 78 days) for all sites.  I considered water as 

a non-limiting factor in the wet season (Cornélis et al. 2011, Bennitt et al. 2014). 

 

2.3 Capture and collaring 

Between 2008 and 2016, 47 adult female Cape buffalo were tracked across the three study 

areas (GNP: n = 12, HNP: n = 20, KNP: n = 15) using GPS collars. We focused on adult 

females, as adult males leave subgroups and groups more often (Sinclair 1977, Prins 1996). 

On average, the collared female buffalos travelled between 4 (KNP) and 7 km (GNP and 

HNP) per day. All animals were captured by authorized personnel using established 

techniques (la Grange 2006) and were observed returning to their subgroups after collaring 

operations. All field operations were conducted in accordance with the legal and permit 

requirements of the countries in which they were carried out.  

The data acquisition periods extended from October 2008 to May 2011 in GNP, from 

April 2010 to January 2016 in HNP, and from June 2010 to July 2015 in KNP. Duration of 

the tracking varied between 19 and 1013 days (median = 486) across individuals and GPS 

loggers were scheduled to acquire locations at synchronous times (the top of the hour) 

every hour. As some GPS locations were acquired with a small delay compared to the time 

the GPS was programmed to take the location, I corrected the acquisition delays. The 

location was retained if it was taken within a 5-min interval from the programmed acquisition 
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time, and I repositioned the location by linear interpolation otherwise. I computed fix success 

rate (i.e. the proportion of scheduled times for obtaining a GPS fix that resulted in successful 

acquisition of a GPS fix) within each season within each year for each individual and I 

retained GPS data from 38 collared individuals for which the fix success rate was higher 

than 90%. These individuals consisted of 10 groups: 2 in GNP, 4 in HNP and 4 in KNP. The 

number of collared cows in each group varied between 1 and 7 (GNP groups, n1 = 4, n2 = 

6 ; HNP groups, n1 = 7, n2 = 6, n3 = 1, n4 = 1 ; KNP groups, n1 = 5, n2 = 2, n3 = 5, n4 = 1). 

The individuals selected had data for all days within the same season, and of these, 31 

were tracked in both wet and dry seasons (GNP: n = 10, HNP: n = 11, KNP: n = 10) and 7 

in only one season (HNP: n = 4, KNP: n = 3). This global dataset was used for a preliminary 

analysis (see section Definition of association and fission-fusion events below), before 

some data selection processing for subsequent analyses (see Statistical analyses section). 

 

2.4 Estimation of home ranges and home range overlaps 

To estimate home range overlap (HRO) between individuals, I considered seasonal home 

ranges (HR) as the 90% utilization distribution during the dry and wet seasons for each 

year. Utilization Distributions (UD) were computed using the Movement-Based Kernel 

Density Estimation method (MKDE, Benhamou and Cornélis 2010) implemented in the 

‘adehabitatHR’ package in R (Calenge 2007). Home range overlap between individuals was 

estimated using the Bhattacharyya’s affinity index (Benhamou et al. 2014). The index 

accounts for variation in the intensity of HR use and can take values from 0 (no overlap) to 

1 (identical space use). 

 

2.5 Definition of association and fission-fusion events 

Fusion and fission events were defined as the point in space and time at which two 

individuals merged and split up, respectively. Each fusion and fission event led to a period 

where individuals were together or separated, respectively (hereafter called ‘together’ or 

‘separated’ periods, respectively). To quantify individual association patterns and define 

fission and fusion events between dyads, I calculated the distance between synchronous 

locations for every dyad that shared space (HRO > 0) for a given season (GNP: n = 104, 

HNP: n = 20, KNP: n = 47). Two buffalos were defined as being together if they were located 

simultaneously within a 1 km distance from each other. This distance threshold was 

determined using the group definition proposed by Cross et al. (2005a): a mixed-sex group 

is a set of individuals that are within 1 km of one another. At this same distance, Polansky 

et al. (2010) showed that female buffalos synchronized their movements, thus giving an 

estimate of the maximum diameter of a subgroup. As the activity synchronization among 
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group members is essential to ensure group cohesion, the result of Polansky et al. (2010) 

confirms that beyond 1 km, subgroups are likely to split. Bennitt et al. (2018) identified fusion 

events when collared buffalo were within 300 m of each other. Most recorded interindividual 

distances in my three sites occurred at these short distances (0-300 m: 74.27 % of all 

distances between dyads < 1 km apart), but the 1-km distance threshold was more 

consistent with field observations where buffalo subgroups spread over great distances (> 

800 m) when travelling and arriving at a water point (pers. obs.). To minimize the number 

of false fission or fusion events resulting from infrequent erroneous locations, I also 

considered that two buffalos were together when their distance was ≥ 1 km for ≤ 2 h. The 

influence of the chosen distance (dth) and time (tth) thresholds on further analyses was 

examined using sensitivity analysis (Appendix 1). The sensitivity analysis indicated that the 

results would be qualitatively robust to changes in the values of dth within the 800 m – 1.5 

km range. Lowering tth would change the absolute number of fission and fusion events 

(Appendix 1) but is unlikely to alter the qualitative conclusions of the study. To calculate the 

proportion of time spent together, I created for each dyad a binary vector of association, 

with value ‘T’ when individuals were together and ‘S’ when they were separated. When one 

value was missing between two association values (‘T’ or ‘S’) (i.e. the location of at least 

one of the two individuals had not been recorded), I substituted the missing value by the 

value of the previous hour (GNP: 0.44 % of the data, HNP: 0.31 % of the data, KNP: 0.97 

% of the data). From these association vectors, I derived (1) the proportion of time that two 

individuals spent together (the number of times two individuals were together divided by the 

total number of association values for these two individuals during the entire season), (2) 

the timing and location of fission and fusion events between dyads and (3) the duration of 

periods that dyads spent together and separated (number of consecutive hourly time steps 

defined as ‘together’ and ‘separated’, respectively). I defined fusion events as the St-1 -> Tt 

transition, from being separated (S) at time t-1 to being together (T) at time t. Conversely, 

fissions are the opposite transition: Tt-1 -> St. I excluded the periods containing at least one 

missing timestamp when calculating the duration of periods. The occurrence of fusion 

events was used to calculate the number of fusion events (by definition, the number of 

fission events is equal) per dyad per month as the total number of fusion events per dyad 

divided by the number of months of simultaneous tracking. 

 

2.6 Statistical analyses 

Animals from neighbouring groups can occasionally be in the vicinity of one another by 

chance (e.g. by randomly using the same resource patches at the same time). To avoid 

qualifying these events as within-group fission-fusion events, I restricted the analyses to 

dyads that spent a given amount of time together. To determine an appropriate cut-off value, 
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I investigated how the proportion of time that two individuals spent together was related to 

their HRO. I fitted a generalized (quasibinomial) additive mixed model with the proportion 

of time spent together as the response variable, and seasons (dry vs. wet), sites (GNP, 

HNP vs. KNP) and their interaction, and HRO as explanatory variables. From this 

preliminary analysis, I restricted the subsequent analyses to dyads that spent ≥10% of their 

time together (see Figure 2). Dyad identity was used as a random effect in all subsequent 

analyses that were conducted in a hierarchical (i.e. mixed) modelling framework.  

I investigated the stability of HRO and proportion of time spent together across 

seasons at the dyad level. For each dyad with data for at least one dry and one wet season, 

I calculated the differences in HRO and proportion of time spent together between the dry 

season and the wet season (value dry season – value wet season). To test whether these 

differences differed from 0 and varied between sites, I used two linear mixed models: the 

response variable was either (1) the seasonal difference in HRO or (2) the seasonal 

difference in the proportion of time spent together. The site was the unique explanatory 

variable in both models.  

I then explored whether characteristics of the fission-fusion dynamics between 

buffalo dyads (i.e. the number of fusion events per month and the duration of ‘together’ and 

‘separated’ periods) varied across sites and seasons. I fitted three generalized linear mixed-

models with negative binomial distributions of errors: the response variable was either (1) 

the number of fusion events per month, (2) the duration of every ‘together’ period, or (3) the 

duration of every ‘separated’ period. Sites, seasons and their interaction and HRO were the 

explanatory variables. To analyze the distribution of fission and fusion events across the 

diel cycle, I ran two generalized additive mixed models with cubic splines and Poisson 

distribution of errors, with the number of (1) fission events or (2) fusion events per hour of 

the day per month as the response variables. The explanatory variables were site, season 

and their interaction and the time of the day. 

Finally, I explored whether fission and fusion events and ‘together’ and ‘separated’ 

periods occurred in areas of the landscape differing in terms of distance to water (during 

the dry season) or vegetation type (during dry and wet seasons). The spatial location of 

fission and fusion events was defined as the average of the spatial coordinates of both 

individuals of the dyad. To describe the habitat of each individual of a dyad when they were 

‘together’ or ‘separated’, I grouped, for each individual, all ‘together’ locations and all 

‘separated’ locations, respectively. I calculated utilization distribution (90% UD using the 

MKDE approach) for those, resulting in one ’together’ UD and one ‘separated’ UD for each 

individual of a dyad. I generated 300 random points/km² in each UD. The vegetation class 

and distance to the nearest water point were extracted at each fission and fusion location 

and each point drawn in the UDs. I used a generalized linear mixed model with a negative 

binomial distribution of the residuals, including distance to water as the response variable 
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and location type (i.e. fission event, fusion event, ‘separated’ and ‘together’ locations) and 

the site as explanatory variables. In addition, I compared the proportion of fusion and fission 

events taking place in each vegetation class to the proportion of ‘separated’ and ‘together’ 

points in each vegetation class. The comparisons were explored by fitting three generalized 

(binomial) linear mixed models, i.e. one for each vegetation class, and in each model, the 

response variable was whether the location occurred in the corresponding vegetation class 

(scored 1) or not (scored 0). The explanatory variables were site, season and their 

interaction and the variable indicating the location type. Here I explored the habitat structure 

both of periods when dyads were together and periods when they were separated in order 

to understand whether two individuals were more likely to be together or not in specific 

areas and because exploring the locations where two individuals are together does not give 

any information on the locations where these two individuals may be found separated. For 

example, even though two individuals spent 25% of their time together in grasslands, this 

result does not mean that they were 75% of their time separated when they were in 

grasslands. This result only indicates that the remaining 75% of their time spent together 

took place outside of the grasslands (in my case, bushlands and woodlands). Note that the 

results I present give the proportion of each habitat class within the locations of fission 

events, fusion events, ‘together’ and ‘separated’ periods rather than the proportion of fusion 

locations, fission locations, ‘together’ locations and ‘separated ‘locations’ within each habitat 

class.   

 For each above-mentioned analysis, I used the Akaike Information Criterion 

corrected for small sample size (AICc) to test whether a simpler model, nested in the full 

model, would be more parsimonious (Burnham and Anderson 2002). Model sets are 

presented in Table 1. I considered the most parsimonious model to be the model that had 

both a ∆AICc < 2 and the lowest number of explanatory variables (Arnold 2010). The 

goodness-of-fit measure of the models was estimated by the adjusted R-squared (Wood 

2017) for generalized additive models (Table 1, analyses 1, 7 and 8), and by the marginal 

pseudo-R-squared (Nakagawa et al. 2017) for generalized linear mixed models (Table 1 – 

analyses 2-6, 9 and 10) using the ‘performance’ package (Lüdecke et al. 2020). Analyses 

were conducted using the ‘lme4’ (Bates et al. 2015), ‘mgcv’ (Wood 2011) and ‘glmmTMB’ 

(Brooks et al. 2017) packages for R v. 3.3.2 (R Development Core Team 2016). 
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3 Results 

Table 1. Summary of the candidate models fitted for each analysis. Response variables were 
modelled as a function of different combinations between HRO, site (GNP, HNP or KNP), 
season (dry or wet season), time of day and event type (fission event, fusion event, together 
periods and separated periods). Dyad identity was included as a random intercept in all 
models. For analyses 4–6, HRO was included in some models as an explanatory variable to 
control for the positive relationship between the number of fusion events or duration of 
‘together’ and ‘separated’ periods and HRO, as HRO positively affects the total time that two 
buffalos spent together (analysis 1). 

For each model the degree of freedom (df), deviance = -2*loglikelihood (-2LL), difference in 
AICc values between the best fit and modeli (∆AICc), model fit estimated by the adjusted R-
squared (Wood 2017) for GAMMs (analyses 1, 7 and 8 below), and the marginal pseudo R-
squared (Nakagawa et al. 2017) for GLMMs (analyses 2 to 6, 9 and 10 below) – Higher values 
indicate better model fit in both cases. The ranking was based on the ∆AICc. The best model, 
i.e. which had both a ∆AICc < 2 and the lowest number of explanatory variables, is shown in 
bold for each analysis. s(variable): explanatory variable with a spline effect.  

 Model df -2LL ∆AICc Adj. R² / Pseudo R²marginal 

1. Relationship between proportion of time spent in the same subgroup and home-range 

overlap 

 s(HRO) + site 7 805.05 0.0 0.93 

 s(HRO) + site + season 8 802.97 0.05 0.93 

 s(HRO) + site*season 15 788.52 1.0 0.93 

 s(HRO)  5 833.06 23.8 0.89 

 s(HRO) + season 6 833.14 26.0 0.90 

 null 3 1110.63 297.2 0.00 

 season 4 1112.06 300.7 0.00 

 site 5 1113.20 303.9 0.01 

 site + season 6 1114.52 307.3 0.01 

 site*season 8 1113.21 310.3 0.01 

2. Seasonal changes in home range overlap 

 null 3 -52.2 0 0.00 

 Site 5 -52.5 4.7 0.01 

3. Seasonal changes in proportion of time spent in the same subgroup 

 null 3 378.9 0 0.00 

 Site 5 375 1.0 0.12 

4. Number of fusion events 

 HRO + season 5 440.3 0 0.39 

 HRO + site + season 7 436.5 0.9 0.40 

 HRO + site*season 9 436.4 5.7 0.40 

 season 4 478.0 35.5 0.23 

 site + season 6 474.4 36.4 0.25 

 site*season 8 473.9 40.7 0.25 

 HRO 4 484.9 42.4 0.26 

 HRO + site 6 484.0 46.0 0.27 

 null 3 520.4 75.6 0.00 

 site 5 519.2 78.9 0.02 

5. Duration of periods in the same subgroup 

 Site + season 6 15760 0 0.10 

 HRO + site + season 7 15760 0.2 0.11 

 Site*season 8 15760 3.6 0.10 

 HRO + Site*season 9 15760 3.9 0.11 
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 Season 4 15780 16.3 0.04 

 HRO + season 5 15780 17.2 0.04 

 HRO + site 6 15820 57.3 0.06 

 Site 5 15820 57.3 0.06 

 Null 3 15830 66.7 0.00 

 HRO 4 15830 67.1 0.00 

6. Duration of periods in a different subgroup 

 HRO + site + season 7 16290 0 0.20 

 HRO + site*season 9 16290 3.4 0.20 

 HRO + season 5 16310 9.1 0.15 

 Site + season 6 16360 62.2 0.17 

 Site*season 8 16360 65.5 0.17 

 HRO + site 6 16360 70.5 0.17 

 Season 4 16380 80.4 0.06 

 HRO 4 16380 82.7 0.10 

 Site 5 16440 140.6 0.12 

 null 3 16460 161.6 0.00 

7. Occurrence of fusion events during the diel cycle 

 null 2 7389.06 0.0 0.00 

 Site 4 7392.29 7.2 0.00 

 Season 3 7429.67 42.6 0.03 

 Site + season 5 7437.61 54.6 0.04 

 Site*season 7 7436.94 57.9 0.04 

 s(Time of day) + site*season 8 7458.14 81.1 0.11 

 s(Time of day)  3 7471.55 84.5 0.09 

 s(Time of day) + site 5 7475.06 92.0 0.09 

 s(Time of day) + season 4 7498.97 113.9 0.12 

 s(Time of day) + site + season 6 7507.75 126.7 0.12 

 s(Time of day) + site * season 8 7507.81 130.8 0.12 

8. Occurrence of fission events during the diel cycle 

 null 2 7355.63 0 0.00 

 Site 4 7358.68 7.1 0.00 

 s(Time of day)  3 7369.03 15.4 0.07 

 s(Time of day)  + Site 5 7372.90 23.3 0.07 

 season 3 7393.70 40.1 0.03 

 Site + season 5 7400.68 51.1 0.04 

 Site*season 7 7399.58 54.0 0.03 

 s(Time of day) + season 4 7412.09 60.5 0.10 

 s(Time of day) * site * season 8 7411.90 68.4 0.14 

 s(Time of day) + site + season 6 7421.24 73.7 0.11 

 s(Time of day) + site*season 8 7421.52 78.0 0.11 

9. Distance to water   

 Type*site 13 5997000 0.0 0.60 

 Type + site 7 5998000 677.4 0.60 

 Type 5 5998000 757.8 0.01 

 Site 4 6029000 31915.9 0.60 

 null 2 6029000 31999.1 0.00 

10. Habitat structure  

Grassland      

 Type + site*season 10 2416246 0.0 0.11 

 Site*season 7 2416628 376.0 0.11 

 Type + site + season 8 2429397 13147.0 0.09 
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 Type + season 6 2429420 13166.0 0.02 

 Site + season 5 2429891 13635.0 0.09 

 Season 3 2429915 13655.0 0.02 

 Type + site 7 2447079 30827.0 0.07 

 Type 5 2447099 30843.0 0.00 

 Site  4 2447627 31369.0 0.07 

 null 2 2447647 31385.0 0.00 

Bushland      

 Type + site*season 10 3642600 0.0 0.25 

 Site*season 7 3642625 19.0 0.25 

 Type + site + season 8 3648911 6307.0 0.25 

 site + season 5 3648937 6327.0 0.25 

 Type + Season 6 3649034 6426.0 0.01 

 season 3 3649059 6445.0 0.01 

 Type + site 7 3665492 22886.0 0.24 

 Site  4 3665529 22917.0 0.24 

 Type 5 3665611 23001.0 0.00 

 null 2 3665648 23032.0 0.00 

Woodland      

 Type + site*season 10 2984964 0.0 0.12 

 Type + site + season 8 2985014 46.0 0.12 

 Type + season 6 2985051 79.0 0.00 

 Site*season 7 2985253 283.0 0.12 

 Site + season 5 2985293 319.0 0.12 

 Season 3 2985330 352.0 0.00 

 Type + site 7 2985514 544.0 0.12 

 Type 5 2985550 576.0 0.00 

 Site  4 2985779 803.0 0.12 

 null 2 2985816 836.0 0.00 

 

3.1 Relationship between the proportion of time spent together and 

home range overlap 

Home range overlap and the proportion of time spent together by two individuals were 

positively and non-linearly related (Figure 2). With a few exceptions, the very small 

proportion of time spent together (< 10%) was associated with a small to moderate HRO (< 

0.4). Moderate time spent together (10% < < 50%) could be associated with widely different 

HRO (0.5 < < 0.9). Individuals spending more than 50% of their time together always had a 

very large HRO (>0.8). The most parsimonious model between the proportion of time that 

two buffalos spent together and HRO fit the data well and included the effect of the site only 

(Table 1 – analysis 1), suggesting that the season had little influence on this relationship.  

All subsequent analyses were restricted to dyads that spent ≥ 10% of their time together in 

at least one season.  
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Figure 2. Relationship between the time spent together and home range overlap among pairs 
of Cape buffalos according to the study sites in dry (red) and wet (blue) seasons. Points in 
corresponding colours are the observed values for each dyad per year and season. Although 
the most parsimonious model did not include the effect of season (Table 1), the observed 
values are given per season for information. Solid lines represent the predictions from the 
model and grey dashed lines represent 95% confidence intervals. The horizontal black 
dashed line indicates the cut-off value of 10% of time spent together.  

 

3.2 Seasonal stability of home range overlap and association patterns 

The observed seasonal changes in HRO and in the proportion of time spent together are 

plotted on Figure 3. The most parsimonious models explaining seasonal changes in both 

the HRO and in the proportion of time spent together across all sites were the null models 

(Table 1 – analyses 2-3). The seasonal change estimated for HRO (± SE) was 0.01 ± 0.02 

(95%CI: -0.03, 0.06) and that for the proportion of time spent together (± SE) was 5.75 ± 

3.87 % (95%CI: -1.83, 13.33).  
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Figure 3. Differences in (a) HRO between two individuals and (b) the proportion of time that 
two individuals spent together between the dry season and the wet season in each site. Each 
open dot represents observed data for one dyad; the filled symbols denote observed means 
and the whiskers denote standard deviations (SDs) for each site. Grey dashed line indicates 
no seasonal difference. A positive value means that two individuals spent more time 
together/had more HRO during the dry than during the wet season. Conversely, a negative 
value means that two individuals spent less time together/had less HRO during the dry than 
during the wet season. This analysis required data for at least one dry season and one wet 
season for each dyad, which explains why the number of dyads is reduced compared to the 
other analyses. 

 

3.3 Frequency of fusion events and duration of periods 

Mean ± SD number of fusion events per month was 5.73 ± 1.86, 4.04 ± 1.28, and 5.54 ± 

2.49 during the dry season in GNP, HNP, and KNP, respectively, and 9.83 ± 4.28, 8.22 ± 

8.09, and 10.30 ± 3.92 during the wet season in GNP, HNP, and KNP, respectively. The 

most parsimonious model included the effect of HRO and season (Table 1 – analysis 4), 
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indicating that the frequency of fusion events between dyads was higher in the wet than in 

the dry season (Figure 4).  

 

Figure 4. Effects of the study site and season on the number of fusion events per month per 
dyad. The open symbols give the observed values; the filled symbols denote means and the 
whiskers indicate SEs. 

 

Mean ± SD duration of ‘together’ periods was 35.6 ± 71.6, 88.4 ± 127, and 39.9 ± 

65.2 during the dry season in GNP, HNP, and KNP, respectively, and 18.9 ± 29.6, 38.5 ± 

70.1, and 23.6 ± 40.4 during the wet season in GNP, HNP, and KNP, respectively. The 

most parsimonious model included effects of both season and site (Table 1 – analysis 5), 

indicating that periods were shorter in the wet than in the dry season and were the highest 

in HNP, intermediate in KNP, and the lowest in GNP (Figure 5a).  

Mean ± SD duration of ‘separated’ periods was 71.9 ± 118.0, 60.6 ± 97.9, and 47.0 

± 103.0 during the dry season in GNP, HNP, and KNP, respectively, and 42.7 ± 80.9, 20.9 

± 55.0, and 22.9 ± 42.7 during the wet season in GNP, HNP, and KNP, respectively. The 

most parsimonious model included the effect of HRO, season and site (Table 1 – analysis 

6). Therefore, the more space that two individuals shared, the shorter the periods during 

which they were separated. Independently to HRO, periods that two individuals spent 

separated were shorter in the wet than in the dry season and were the longest in GNP, 

intermediate in KNP, and the lowest in HNP (Figure 5b, Table 1 – analysis 6).  

Overall, the effects of site and season explained only a small amount of the 

variability in the duration of both types of periods (pseudo-R² in Table 1 – analysis 5-6), 

suggesting that these variables may only slightly affect the duration of periods spent 

together or separated. Both types of periods were on average short but very variable (Figure 

5).  
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Figure 5. Effects of the study site and season on the duration of (a) every ‘together’ period 
and (b) every ‘separated’ period. The open symbols give the observed values; the filled circles 
denote means and the whiskers indicate SEs. 

 

3.4 Occurrence of fusion and fission events during the diurnal cycle 

Both fission and fusion events occurred at any time of the day but occurred more frequently 

in the early morning (04h00–07h00) and from mid-afternoon to the early evening (15h00–

19h00, not shown). However, the most parsimonious models on the occurrence of fission 

and fusion events between dyads at diurnal cycle were the null models, suggesting that 

fission and fusion events occurred at any time of the day in all sites and both seasons (Table 

1 – analyses 7-8).  
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3.5 Environmental characteristics of fission and fusion events  

The mean distance to water ± SD of fission and fusion events and locations where 

individuals were together or separated are plotted in Figure 6. The most parsimonious 

model of distance to water included the interaction effect between site and type of location 

(Table 1 – analysis 9), indicating that fission and fusion locations occurred farther away 

from the water in GNP than those in HNP and KNP (Table 1 – analysis 9). At all sites, fusion 

events tended to occur slightly closer to water than fission events, especially in GNP. 

However, the pseudo-R² values indicated that the type variable improved the model fit only 

negligibly (Table 1 – analysis 9), suggesting that distance to water only slightly influenced 

the location of fusion and fission events and ‘together’ and ‘separated’ periods. Distance to 

water at fusion and fission locations was very variable and on average was not distinct to 

the ones when individuals were together or separated (Figure 6).  

The distribution of buffalo locations among vegetation types varied strongly between 

sites (Figure 7). For all vegetation classes, the most parsimonious models included the type 

of location and the interaction between site and season (Table 1 – analysis 10). However, 

pseudo-R² values (Table 1 – analysis 10) showed that the inclusion of these variables led 

only to a small improvement of model fits. In general, seasonal effects were small and the 

vegetation at fusion and fission locations did not differ much from the one that in areas 

where individuals were together or separated, apart from in the dry season in HNP (Figure 

7). 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Distance to water of fission and fusion locations, and during periods when 
individuals of a dyad were together or separated. See text for details. The analysis was 
conducted during the dry season only. The points denote the observed means and the 
whiskers denote SDs. 
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Figure 7. Percentage of each vegetation type among fission and fusion locations, and during 
‘together’ and ‘separated’ periods. See text for details. The points denote the observed means 
and the whiskers denote SDs. The figure gives the proportion of each habitat class within 
fusion locations, fission locations, locations where dyads were together and locations where 
they were separated. For example, for a given dyad, the proportion of ‘together’ periods taking 
place in the grasslands was calculated as the number of locations in the grasslands where 
the dyad was together divided by the total number of locations where the dyad was together 
regardless of the habitat (i.e. grasslands, bushlands and woodlands). 

 

4 Discussion 

As the factors hypothesized to drive fission-fusion dynamics may vary across populations, 

it is expected that the levels and patterns of fission-fusion dynamics may also vary. 

However, variability in fission-fusion dynamics across natural populations is currently known 

only from comparisons between independent studies that have used different approaches 

(Furuichi 2009, Coles et al. 2012, Baden et al. 2016), or from experimental studies that 

investigate social dynamics in artificial settings (Kelley et al. 2011). Standardized 

comparative studies conducted in natura are essential for understanding how social, 

ecological and demographic factors influence patterns of fission and fusion. Here I address 

this important issue, by investigating the fission-fusion dynamics between dyads across 

three Cape buffalo populations living in similar environmental contexts. Patterns of fission 

and fusion between dyads were generally similar across all three populations suggesting 

that localized effects have little influence on adult female social dynamics in the species.   
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At all sites, the relationship between the time that two individuals spent together and 

the extent to which home range overlapped was positive and consistent across seasons. I 

found a site effect on this relationship but, as this effect was small and only marginally 

improved model fit, I considered that the pattern was generally consistent across sites. 

However, the predictive power for a specific dyad might be low at all sites, as the proportion 

of time spent together remained highly variable for any given home range overlap, in 

particular when the overlap was large. Some of this unexplained variability might be linked 

to non-random associations that could not be controlled for when the GPS collars were 

deployed. Whilst this study was conducted on adult females and therefore variability in 

association patterns is not linked to age/sex differences, female Cape buffalos may form 

preferred associations with close kin, as previously reported in species with fluid fission-

fusion dynamics (elephants Loxodonta africana, Archie et al. 2006, eastern grey kangaroo 

Macropus giganteus, Best et al. 2014, and bottlenose dolphins Tursiops aduncus, Frère et 

al. 2010). Body condition may also affect the association patterns, as Cape buffalos in Lake 

Manyara National Park (Tanzania) located in the rear of the group, where conditions are 

worst, tended to split off more frequently from the group (Prins 1996). Possibly, variation in 

fission-fusion dynamics among the three studied populations could be due to differences in 

group and/or subgroup size. However, as the study design was originally developed for 

telemetry studies (e.g. habitat selection) or to track the transmission of pathogens, it was 

not necessary to consider the temporal variation of group size (but the group size during 

the capture was usually recorded)  and recording subgroup size over time using GPS 

technology was not possible.    

Fusion and fission events between dyads appeared to happen frequently in all 

populations with, on average, 5.7 to 10.3 fusion events per month per dyad depending on 

site and season (see Fig. 5) and periods when two individuals were together or separated 

lasting between 18 to 88 h and 20 to 71 h on average, respectively (see Fig. 6). It is, 

however, important to note that when assessing the duration of fusion and fission event 

between dyads, I only considered events where the association level (i.e. together or not) 

between two individuals was known throughout the period. Thus, long events were more 

likely to be excluded because they could include more missing data, which may have biased 

the estimate of the mean event duration. Cape buffalos usually rest in the middle of the day 

and are most active during the early morning and afternoon (Cornélis et al. 2011, Megaze 

et al. 2013, Valls-Fox et al. 2018). During these periods, individuals are more likely to differ 

in their activities, with some individuals engaging in foraging activities, whilst others are 

moving to other food patches. Although inspection of the data suggested a slight trend for 

fission and fusion events to occur more during these periods (not shown), such diel patterns 

were not retained in the most parsimonious models, showing that there are no important 

cycles of fission-fusion dynamics throughout the day. It is thus not clear why individuals 
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split, and the same question arises about why individuals fused regularly. This could be 

because the resource is limited and heterogeneously distributed in semi-arid areas such as 

my study sites. Cape buffalos could afford to congregate in areas where high-quality 

resources are abundant, or conversely, be forced to come together when foraging patches 

are limited. The regular fusions could also be because of an intrinsic need to regroup (for 

instance, to obtain information, Fortin and Fortin 2009).  

A significant site effect was observed in the analysis describing the duration of 

‘together’ periods. This was likely due to my large sample size, as the magnitude of this site 

effect was small. These slight differences between sites could be real, but also be due to 

small inter-annual variations in fission-fusion dynamics between years, as not all sites were 

surveyed during a similar period. The number of dyads tracked in each site during the 

common period (from June 2010 and May 2011) was too small, preventing me from testing 

such an effect. Overall, my results point towards similar fission-fusion dynamics between 

dyads across all study populations, which differ strongly from the one observed in a 

population in the Okavango Delta (Botswana, Bennitt et al. 2018). In general, the authors 

reported longer ‘together’ periods than those observed in my study and lower fission and 

fusion rates between dyads: the mean duration of ‘together’ periods varied from 60 to 75 

hours according to seasons (except in one wet season where mean duration was 7.5 h, my 

study – from 18 to 88 h) and the number of fusion events per month varied between less 

than 1 and 3 (from 3 to 12 for the whole season based on dyads that spent more than 10% 

of their total time together). I consider it unlikely that methodological differences in the 

definition of fission and fusion events (see Bennitt et al. 2018) could account for differences 

between this study and mine. This is particularly true as the authors used a distance 

threshold of 300 m, compared to 1000 m in this study, as a threshold for defining a fusion 

event. The use of a similar threshold between the two studies would have led to even larger 

differences. This comparison suggests a greater instability of dyads in my populations and 

points towards resource conditions as being a driver of fission-fusion dynamics of female 

Cape buffalos. GNP, HNP and KNP are dominated by wooded semi-arid savannas, 

whereas the area of the Okavango Delta where Bennitt et al.'s (2018) study took place is at 

the border of an alluvial plain where food quality and possibly water availability is greater. 

Future research should be conducted to further compare the environments of my sites and 

the Okavango Delta, such as the predation pressure, the size and distribution of food 

patches, the forage quality and the access to water, which could be responsible for the 

variation in social dynamics between dyads observed between my sites and in the 

Okavango Delta.  

The observed seasonal differences in the frequency of fusion events and the 

duration of both types of period hint at the role of resource condition as a driver of fission-

fusion dynamics between dyads. At my study sites, despite the absence of seasonal 
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changes in home range overlap or the proportion of time that two buffalos spent together, 

Cape buffalos usually split and associated more frequently and were separated or together 

for shorter periods during the wet season when resource availability was high. As large 

Cape buffalo groups split more frequently than smaller ones (Prins 1989), one could 

hypothesize that in the wet season individuals occur in larger, more fluid subgroups than in 

the dry season when they would occur in smaller, more stable subgroups. An increase in 

subgroup size during the wet season has been shown in other species with fission-fusion 

dynamics (spider monkeys Ateles belzebuth belzebuth, Shimooka 2003, blackbuck Antilope 

cervicapra, Isvaran 2007, Thornicroft’s giraffe Giraffa camelopardalis, Bercovitch and Berry 

2010 and in Cape buffalo, Sinclair 1977). This would suggest that Cape buffalos have 

evolved a strategy to limit intra-group competition for food during the dry season while trying 

to benefit from larger aggregations (e.g. protection against predators for newborns), at least 

temporarily, in the wet season when food competition is reduced. Additionally, Cape 

buffalos are in much poorer body condition during the dry season than the wet season 

(Beechler et al. 2009), reflecting an increased susceptibility to diseases during this period 

(Ezenwa and Jolles 2011). Being in smaller subgroups during the dry season could help to 

reduce pathogen transmission between individuals. During the wet season, the cost of 

social cohesion is expected to be lower, yet I found that dyads were together for shorter 

amounts of time. Why they stay together for shorter durations during the wet season 

remains unexplained but could be linked to resource availability. As resources are highly 

available, buffalo dyads may prefer to split more often and stay together for a shorter time 

to exploit available habitat more efficiently. Conversely, the low resource availability in the 

dry season could force buffalo dyads to congregate in the few patches where resources are 

plentiful and stay longer in these areas.  

Much of the research on fission-fusion dynamics published to date has relied on 

direct observations and the recording of temporal changes in subgroup size, but these are 

often conducted on a small number of groups (Lehmann and Boesch 2004, Baden et al. 

2016, Pinacho-Guendulain and Ramos-Fernández 2017). The lack of data on subgroup 

size is a limitation in this study but using GPS tracking technology offers an individual 

viewpoint by describing the fission-fusion dynamics of dyads in various groups at several 

sites using a unified analysis. While I had a large sample size of locations through the use 

of GPS devices, it is worth noting that the constraints associated with this technology (e.g. 

deployment costs) have limited the number of individuals to be monitored simultaneously 

within the same group. Fission and fusion events involving non-collared animals have not 

been recorded, but it is unlikely that the behaviour of those animals was highly different 

from the collared Cape buffalos and that the biases related to sample size were 

heterogeneous across sites and seasons. Consequently, the differences observed across 

sites and seasons should remain valid. There is a need to collect more movement data from 
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individuals from the same group to compare and confirm or not my results. Even though 

GPS data collected every hour provide large location data sets and allow accurate 

measurements of fission and fusion frequency (Body et al. 2015), these data remain 

relatively coarse and it is not possible to identify exactly when or where fusion or fission 

events of dyads occur. Although this factor may have influenced the precise location of 

fusion and fission events in this study, it is unlikely that increasing the resolution of locations 

would have greatly affected the results on the frequency and duration of fusion and fission 

events. Given the gregarious behaviour of the species, I expected dyads to spend a lot of 

their time together, so it is unlikely that an accurate measure of the duration of fusion and 

fission events would change the average duration by site and season. Despite these 

limitations, GPS tracking provides new information about whether local environmental 

conditions affect where fission and fusion events occur and whether space use differs when 

individuals of a given dyad are together or not. In particular, the data allow the testing of the 

expectation that water sources should act as hubs where fission and fusion events occur. I 

expected this because (i) dyads may meet as they come to drink (which, irrespective of the 

actual decision process leading to the encounter, would be identified as a fusion event 

according to my approach); (ii) individuals initiate new activity bouts after drinking, and this 

could create conflicts between individuals leading to fission; (iii) water sources are 

dispersed in the landscapes during the dry season and the buffalos need to drink twice a 

day (Valls-Fox et al. 2018), providing an easy opportunity to meet. However, in HNP and 

KNP, there was no evidence of biologically meaningful differences in distance to water 

between location of fission and fusion events, when buffalo dyads were together or 

separated in the dry season. This observation agrees with findings in Cape buffalos living 

around the Okavango Delta area during the same period of the year, where the distance to 

permanent water between fission and fusion events did not vary (Bennitt et al. 2018). In 

contrast, in GNP, fusion events tended to occur closer to water than fission events and 

periods when dyads were together or not. This could be explained by the fact that, 

compared to my study areas in HNP and KNP, and to the Okavango Delta site studied by 

Bennitt et al. (2018), water in GNP is only available in a few waterholes during the dry 

season, increasing the probability that individuals use the same water sources. Therefore, 

I tentatively suggest that water sources may act as focal spots where fusion and fission 

events occur in protected areas when water availability is low.  

 I also did not observe any general link between vegetation type and location of 

fission and fusion events. Habitat characteristics differed between sites, mostly between 

HNP/KNP and GNP where bushland is more widespread. Within sites, fission and fusion 

events were not more likely to occur in one habitat type compared to habitats used at other 

times. The exception was in the dry season in HNP, where the location of fusion events was 

more likely to occur in grasslands. As in open habitats, such as grasslands, visibility 
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increases, facilitating predator’s detection and visual contacts, Cape buffalos may prefer to 

join in these habitats, as noted in many herbivores (e.g. blackbuck, Isvaran 2007, 

Thornicroft’s giraffe, Bercovitch and Berry 2010), but why this would only happen in HNP is 

unclear. Grasslands are common around waterholes in HNP, but the results on the location 

of fusion events regarding distance to water (see above) suggest that fusion events did not 

occur closer to water in HNP. 

 

5 Conclusions 

This study provides the most comprehensive description of the dynamics of association 

patterns in the Cape buffalo reported so far. Cape buffalos in Hwange, Gonarezhou and 

Kruger National Parks form associations based on a shared home range but loose temporal 

associations. These associations occur for generally short periods, and levels of fission-

fusion dynamics of dyads are generally consistent across populations, with no obvious 

environmental determinants, although in areas with low water availability water sources 

might act as hotspots of fusion events. Strikingly, I found variability in fission-fusion 

dynamics across dyads within the same population, suggesting that further studies should 

now focus on identifying the factors underlying this heterogeneity. Such studies will be 

critical for (i) gaining a better understanding of drivers of fission-fusion dynamics across 

species  (Sueur et al. 2011a), and (ii) improving our ability to understand and predict the 

consequences of social dynamics on other biological processes, such as the transmission 

of important pathogens (e.g. tuberculosis) that is a key concern in Cape buffalo populations 

(de Garine-Wichatitsky et al. 2010a). 

 

6 Appendices 

Appendix 1. Sensitivity analysis 

The use of a distance threshold could easily lead to spurious breaks in association patterns 

when distances beyond the threshold are recorded for a short period. This can occur either 

because the distance between the individuals is close to the threshold and sometimes just 

above for a short, non-biologically meaningful duration, or because the GPS location for at 

least one of the individuals has a significant error. Such conditions are unlikely to be 

biologically meaningful in the context of this study, and I therefore also considered a time 

threshold tth, considering that two individuals were still together if the inter-individual 

distance was ≥ dth for a duration ≤ tth.  

To choose the most appropriate values for tth and explore the effect of a dth = 1000m 

on further analyses, I evaluated how robust the estimations of (i) the proportion of time that 
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dyads spent together and (ii) the number of fusion events per month per dyad, were to 

changes in dth and tth values. I did this at each study site and investigated dth values ranging 

from 100 m to 3100 m and tth values ranging from 2 h to 6 h. I thus calculated (i) the 

proportion of total time that dyads spent together and (ii) the number of fusion events per 

month per dyad for each combination of dth and tth values (see main text for further 

explanation). I explored the relationships between the proportion of time spent together or 

the number of fusion events per month and the values of dth, for each value of tth using 

generalized additive mixed models (GAMMs).  

The proportion of time that dyads spent together and the number of fusion events 

per month were not very sensitive to the value of tth in the three sites, except in HNP for low 

values of dth where the number of fusion events per month varied greatly with tth (Figures 

S1b & S1e). The proportion of time spent together was most sensitive to dth, resulting in 

greater time spent together as dth increased in all sites (Figures S1a-c). This was expected 

because, as dth increases, extra locations are accounted for as being time spent together. 

The relationship between the number of fusion events and dth is more complex and differs 

between sites. In HNP and to a lesser extent in KNP, increasing dth decreased the number 

of fusion events observed (Figures S1e-f). This was expected because, as dth increases, 

buffalos are considered together for longer periods, leading to a reduced number of fusion 

events. The differences in the shape of the relationship between HNP and KNP suggest 

that dispersion of individuals within the groups differ, with animals being more dispersed in 

HNP. Unexpectedly, in GNP, increasing dth increased the number of fusion events detected 

(Figure S1d). I explain this observation by the regular proximity of the two groups studied, 

which share space significantly. As dth increases, times when groups were in close proximity 

likely became counted as a fusion event. 

In the light of these results, a dth value of 1000m for the analyses seemed to be able 

to account for the effect of small-scale dispersion of individuals in HNP (which was not of 

interest here). The choice of dth did not influence the number of fusion events calculated in 

KNP, and it would affect the results for GNP only moderately, in a way that could be 

understood thanks to this sensitivity analysis. As, at this dth value, the proportion of time that 

dyads spent together and the number of fusion events were little sensitive to the value of tth 

in the three sites, I selected the minimal tth value, i.e. 2h, for the analyses presented in the 

main text. Note that overall, this sensitivity analysis showed that moderate changes in the 

values used for defining these thresholds would not alter the results qualitatively. 
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Figure S1.  Results of the sensitivity analyses for each site. (a), (b), (c):  Changes in the 
proportion of time that dyads spent together with changes in dth and tth ; (d), (e), (f): Changes 
in the number of fusion events per month per dyad with changes in dth and tth. Solid lines 
represent the predictions from the GAMMs fitted to the original data and dashed lines 
represent 95% confidence intervals. The colours of line correspond to the different value of 
tth (red: tth = 2; green: tth = 3; blue: tth = 4; purple: tth = 5; orange: tth = 6).  

 

 

(a) (b) (c) 

(d) (e) (f) 
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Abstract 

In social species, the transmission and maintenance of infectious diseases depend not only 

on the contact patterns between individuals within groups but also on the interactions 

between groups. In southern Africa, the Cape buffalo (Syncerus caffer caffer) is a vector for 

many pathogens that can infect nearby livestock. Whilst intra-group contact patterns of 

buffalo have been relatively well described, how groups interact with each other and risks 

for pathogen transmission remain poorly understood. I used telemetry data on 10 individuals 

from different groups in two populations in contrasting environments across southern Africa 

(Kruger National Park and Okavango Delta). Direct (i.e. the use of the same space at the 

same time) and indirect (i.e. the use of the same space at different times or through an 

intermediate vector)  contact patterns were explored between individuals from neighbouring 

groups with variable spatiotemporal windows compatible with the transmission of pathogens 

carried by the Cape buffalo: bovine tuberculosis, brucellosis and Rift Valley Fever. I 

investigated spatial behaviour between buffalo dyads from neighbouring groups, using the 

overlap and proximity of their home ranges, and quantified contact rate and duration. I also 

examined the influence of habitat and distance to water on the location of contacts. In both 

study populations, neighbouring buffalo groups were highly spatially segregated in both the 

dry and wet seasons. Inter-group contact patterns were characterized by very few direct 

and short-term indirect contacts and were generally consistent across populations and 

seasons, suggesting a species-specific behaviour. The results highlight the importance of 

dry season water availability in driving the dynamics of Cape buffalo inter-group contact 

patterns and the risk of indirect pathogen transmission. The results from this study have 

important implications for the future modelling of pathogen dynamics in a single host, and 

the ecology and management of the Cape buffalo at the landscape level.   
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1 Introduction 

How animals distribute themselves and move across a landscape has a strong influence on 

how animals interact, which in turn affects the dynamics of infectious diseases (White et al. 

2017, Dougherty et al. 2018). Resource availability influences habitat selection and use, 

with individuals often sharing space in areas where resources are abundant (e.g. Jarman 

1974, Brashares and Arcese 2002, Kolbe and Weckerly 2015) or when restricted, around 

key-limiting resource patches (e.g. waterholes in semi-arid areas, Redfern et al. 2003). The 

simultaneous use of common space promotes the spread of pathogens transmitted directly, 

e.g. by aerosols (Keeling 1999, Altizer et al. 2003, Hamede et al. 2009) or indirectly via the 

environment, e.g. through contaminated materials such as faeces (Dougherty et al. 2018). 

Understanding how individuals share space and interact with their conspecifics, either 

directly or indirectly, is thus essential for developing realistic epidemiological models and to 

develop effective interventions to manage infectious diseases (Craft 2015, Reynolds et al. 

2015).  

 Space-sharing between conspecifics is strongly driven by social systems. Solitary 

animals generally avoid each other apart from during breeding, in instances of territorial 

conflicts or “randomly” due to the environmental constraints, e.g. in response to spatial 

heterogeneity in food resource availability (Mattisson et al. 2013, Elbroch and Quigley 

2017). In contrast, social species often form groups in which associations between 

individuals, and therefore the use of common space, vary depending on whether the group 

is stable over a long period or subjected to fission-fusion dynamics (Aureli et al. 2008). 

Irrespective of the factors mediating sociality, individuals within groups usually spend a 

significant amount of time together, which increases the potential for pathogen transmission 

within social groups (Altizer et al. 2003, Chapter 3). At the landscape level, the spread of 

infectious diseases is also dependent on movements and interactions between 

neighbouring groups distributed throughout the landscape (Cross et al. 2005b, Daversa et 

al. 2017, Podgorski et al. 2018). Many herbivore species do not defend territories but occupy 

home ranges that can vary seasonally due to changes in resource abundance and 

distribution (Owen-Smith et al. 2010). Spatial use between groups of ungulates varies 

according to species and ecological context, ranging from non-exclusive home ranges but 

with possible time avoidance (e.g. mountain gazelle Gazella gazella gazella, Geffen et al. 

1999) to exclusive home ranges (i.e. with little overlap between home ranges of groups, 

e.g. impala Aepyceros melampus, Murray 1982 and Roosevelt elk Cervus elaphus 

roosevelti, Kolbe and Weckerly 2015). Although integrating within-group interactions is 

central to managing infectious diseases (Blanchong et al. 2007, Grear et al. 2010), 

information about interactions among groups should also be taken into account, as these 
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interactions could have major consequences on spread and maintenance of infectious 

diseases at the landscape level (Thrall et al. 2000). 

 The Cape buffalo (Syncerus caffer caffer) offers a unique opportunity to explore 

interactions between groups and the implications for the spread of disease. Buffalo groups 

consist primarily of females and their offspring, subadults of both sexes, and a small 

proportion of adult males. Adult males can temporarily leave the group to live alone or in 

small bachelor groups (Sinclair 1977, Prins 1996). The relatively recent availability of 

telemetry data has enabled the examination of within-group social structure across several 

populations in relation to habitat variables (Chapter 3). However, social dynamics between 

groups and the moderators on inter-group contacts remain poorly understood. One study 

emphasized marked spatial segregation between neighbouring West African savanna 

buffalo S. c. brachyceros groups with few direct contacts between groups (W Regional Park, 

West Africa, Cornélis et al. 2011). Understanding the factors mediating intergroup contacts 

in the Cape buffalo may offer opportunities to further understand pathogen transmission at 

the landscape level. Buffalos carry many transmissible pathogens of economic concern, 

including foot-and-mouth disease, tick-borne diseases (e.g. theileriosis), bovine 

tuberculosis, brucellosis and Rift Valley Fever (Bengis et al. 2002, de Garine-Wichatitsky et 

al. 2010b, Caron et al. 2013, Gorsich et al. 2015). Most pathogens are carried 

asymptomatically by buffalos and do not pose a threat to the population’s survival  (Caron 

et al. 2003, Michel and Bengis 2012). However, they pose a serious threat when transmitted 

to cattle. Due to their close taxonomic relationship, buffalos represent the main threat for 

pathogen transmission to cattle  (Bengis et al. 2002, Kock et al. 2014). Although buffalos 

usually avoid cattle, seasonal profiles in the risk of contact are observed, with higher spatial 

overlap and contact rate during the dry season when both water and forage resources are 

depleted or when cattle range further into protected areas in search of food (Kock 2005, 

Miguel et al. 2013, Zengeya et al. 2015, Valls-Fox et al. 2018). In cattle, infectious diseases 

inflict substantial economic losses, by decreasing livestock production or by constraining 

international trade. Based on 35 priority diseases, Grace et al. (2015) estimated the costs 

associated with livestock mortality at USD 9 billion a year in 34 countries in Africa and in 

Kenya, the foot-and-mouth disease caused high mortality losses in cattle with costs 

estimated at USD 230 million  (FAO 2016), but only a part of these cases can be attributed 

to buffalo-cattle pathogen transmission. The risk of pathogen spillover into domestic and 

human populations is increasing with the extensive buffalo/cattle/human interfaces 

occurring where natural habitats are encroached by human settlements (Kock et al. 2014). 

Thus, understanding social behaviour between buffalo groups can help to apprehend the 

spread of pathogens into buffalo populations and the risk of spillover into domestic ruminant 

populations. For example, identifying the location of contacts between buffalo groups can 

help managers to manipulate the landscape so that each group can access key-resource 
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patches without having to share it with another group, and avoiding using these areas for 

cattle.  

 This study aimed to quantify and compare the spatial behaviour and contact patterns 

between neighbouring groups in Cape buffalo populations. I used location data from Global 

Positioning System (GPS) collars on Cape buffalos from two populations living in 

contrasting environmental conditions, i.e. a semi-arid savanna environment and a 

seasonally flooded environment. From GPS tracking, I quantified the contact patterns 

between buffalo dyads from neighbouring groups using different spatiotemporal windows, 

defining direct and indirect contacts (i.e. in the same area at the same time and at different 

times, respectively) compatible with the intraspecific transmission of important pathogens. 

Here, I focus on three pathogens with different modes of transmission responsible for 

bovine tuberculosis, brucellosis and Rift Valley fever, but the results of this study can be 

adapted to any other pathogen with a similar mode of transmission. Bovine tuberculosis 

(bTB) is most often transmitted by respiratory routes, but the disease can also spread by 

indirect contacts, as the virus Mycobacterium bovis can survive in faeces (Bengis et al. 

1996, Tanner and Michel 1999, Michel et al. 2007). Brucellosis is mainly transmitted by 

direct or mucosal contact with a contaminated foetus, placentas or birthing fluids (Kiros et 

al. 2016). Rift Valley fever (RVF) is an infectious disease transmitted between animals 

through the bite of a female mosquito, usually Aedes and Culex spp. (Bengis et al. 2002). 

Buffalos play a dominant role in the maintenance of bTB and brucellosis in southern Africa, 

making them an important reservoir for these diseases, and are also amplification hosts for 

the RVF virus (Kock et al. 2014). Additionally, bTB, brucellosis and RVF are zoonotic 

diseases, i.e. transmissible to humans, and are therefore an important cause of public 

health concern (Alexander et al. 2012, de Garine-Wichatitsky et al. 2013). I explored 

seasonal changes in contact patterns and determined whether contacts occurred in specific 

areas in relation to resource availability. I explored whether contact patterns were similar or 

different between the two populations. I tested the hypotheses that (1) groups would be 

located closer to each other or have more overlapping home ranges during the dry season 

when water availability is lower, leading to more interactions and potential infectious 

contacts;  (2) waterholes would be key areas for contacts during the dry season because 

limited water availability should force buffalo groups to share the same waterhole(s), and 

thus facilitate the transmission of pathogens. Additionally, I predicted that (3) the 

neighbouring groups in the seasonally flooded environment would be less constrained by 

water availability all year round, and thus less likely to interact with each other, compared 

to groups living in the savanna environment. 
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2 Methods 

 2.1  Study areas  

Data used in this study were collected from two Cape buffalo populations in southern Africa. 

The first occupies an area at the border between Zimbabwe and South Africa, along the 

Limpopo River, linking the northern tip of Kruger National Park in South Africa (18 959 km², 

30° 50’ E – 22° 25’ S) with the Sengwe communal land in Zimbabwe – a non-protected area 

(this population is hereafter called “KNP”). The second occupies the south-eastern area of 

the Okavango Delta (hereafter called “OD”), situated in northern Botswana, 15 000 km², 22° 

00’ E – 18° 50’ S, Figure 1a). These two study sites are characterized by contrasting 

environmental conditions.  

KNP is a semi-arid savanna primarily composed of woodland and bushland. 

Average annual rainfall is 450 mm, with distinct wet-dry seasons  (Venter et al. 2003). Most 

rainfall occurs between November and March. During the wet season, grass water content 

is high, and water is widely distributed across the landscape in numerous natural and 

artificial pans and rivers. During the dry season, in my study area in the north, most natural 

pans have dried up and water is provided by a few permanent rivers and some pools that 

persist in and along the Limpopo River (Gaylard et al. 2003).  

OD is an alluvial zone, consisting of permanent swamps, temporary floodplains, 

riverine woodlands and dry savannas that rarely flood (Ramberg et al. 2006). OD comprises 

a mosaic of protected lands. As in KNP, rainfall in the delta is seasonal, with an annual 

average of 490 mm falling mostly between November and March (McCarthy et al. 2000). 

Water is available all year round throughout the flooded areas. However, their extent varies 

seasonally: floodwaters rise from April to July and recede between August and November. 

Ephemeral pans are also widespread across the landscape and provide water during the 

wet season.  
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Figure 1. Location of study areas: Kruger National Park (KNP) in South Africa and Okavango 
Delta (OD) in Botswana. b) Locations of seasonal home ranges of the six study groups in OD 
and c) of the four study groups (from 6 individuals tracked at different years) in KNP during 
the dry (left) and wet (right) seasons.  

a)  

c) – in dry season c) – in wet season 

b) – in dry season b) – in wet season 
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2.2 Environmental covariates 

Simplified vegetation maps were adapted from Bennitt et al. (2014) for OD and Pretorius 

and Pretorius (2015) for KNP. For comparative purposes, three broad habitat classes were 

defined according to woody cover and availability of grasses, the main food resource for 

buffalo: (1) grassland, including floodplains, areas dominated by grassland, or bushed 

grassland with sparse vegetation, (2) bushland, which consists of shrubby and bushy areas, 

and (3) woodland, encompassing deciduous, evergreen or riverine forests. The location of 

permanent water (i.e. rivers and waterholes) was recorded by Bennitt et al. (2015) for OD 

and from Google Earth at KNP (Figures 1b-1c). In both sites, due to the presence of 

numerous natural pans, it was difficult to quantify water availability outside of the core dry 

season. I, therefore, restricted the analyses to the core wet and dry seasons (hereafter 

called wet and dry season, respectively). I defined these periods based on the average 

rainfall patterns, which are similar between the sites (McCarthy et al. 2000, Venter et al. 

2003). I defined the wet season as the period from the January 1st to March 31st (n = 90 

days) and the dry season as the period between August 15th and October 31st (n = 78 days). 

Although water is available all year round, its availability and distribution change between 

wet and dry season, which affect movement and habitat use of buffalos (Cornélis et al. 

2011, Bennitt et al. 2014). During the wet season, I considered water as a non-limiting factor 

in both sites.  

 

2.3 Collaring and monitoring 

Between 2007 and 2015, 31 adult female buffalos (KNP: n = 16, OD: n = 15) were tracked 

using GPS collars. As adult males can leave the group temporarily, cows were focused to 

study the movements of groups (Sinclair 1977, Prins 1996). All animals were captured by 

authorized personnel using established techniques (la Grange 2006) and were observed 

returning to their groups after collaring operations. All field operations were conducted 

following the legal and permit requirements of the countries in which they were carried out. 

The data acquisition periods extended from June 2010 to July 2015 in KNP and from 

December 2007 to August 2010 in OD. Except for one collar that only acquired locations 

for a few hours after being deployed, the duration of the tracking varied between 54 and 

1013 days (median = 383) across individuals. The GPS loggers were scheduled to acquire 

locations at 1-hour intervals, although a GPS fix was not always acquired when scheduled. 

I computed fix success rate within each season for each individual and I retained seasonal 

data from 23 individuals (KNP: n = 15, OD: n = 8) for which the success rate was > 80%.  
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2.4 Defining neighbouring groups  

Buffalo cows live in large groups whose members occupy an identifiable and stable home 

range over time (Ryan et al. 2006, Wielgus et al. 2020). I thus identified pairs of Cape buffalo 

in the same groups based on high levels of home range overlap. To do so, I considered 

seasonal home ranges as the 90% utilization distribution during the dry and wet seasons 

(Börger et al. 2006). Utilization Distributions (UD) were computed using the Movement-

Based Kernel Density Estimation method (MKDE, Benhamou and Cornélis 2010) 

implemented in the ‘adehabitatHR’ package in R (Calenge 2007). I examined the 

distribution of seasonal home range overlap between dyads (see below for home range 

overlap computation, Appendix 1), seeking breakpoint in distribution interpreted as 

indicating group membership. The distribution of seasonal home range overlap between 

dyads showed a set of pair with an home range overlap < 0.4 and a second set of pairs with 

an home range overlap > 0.6 (Appendix 1). For this reason, I considered individuals with 

seasonal home range overlap ≥ 0.6 to belong to the same group. I verified groupings based 

on both field observations and capture location, by assuming that 2 individuals captured in 

the same subgroup should belong to the same group. I thus explored spatial behaviour and 

contact patterns between six groups in OD and four groups in KNP. The movement of each 

group was represented by the movement of the individual with the most locations.  

Exploring the contacts between individuals belonging to different groups only makes 

sense when individuals overlap in time and are neighbours in space and thus have adjacent 

(i.e. nearby or slightly overlapping) home ranges. To identify dyads with adjacent home 

ranges, I computed the minimum distance between the contours of seasonal home ranges 

within year, for each dyad. As buffalos can cover distances up to 8-10km in 24 hours 

(Sinclair 1977, Mloszewski 1983, Stark 1986, these data), I assumed that individuals whose 

home range limits were less than 10 km apart during the same season could still be using 

similar areas, albeit rarely. These rare contacts could still be important for understanding 

disease transmission. I considered that two individuals belong to neighbouring groups when 

they overlap in time and when either their seasonal home ranges overlapped or when the 

minimal distance between their seasonal home ranges was ≤ 10 km during at least one 

season. I ultimately analyzed data from 13 individuals (KNP = 6, OD = 7) and investigated 

the characteristics of contacts between nine pairs in KNP and 10 in OD (see Figures 1b-1c 

for home ranges of neighbouring study groups and Table 1). 
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Table 1. Number of simultaneous locations over an entire season at 5-min intervals for each 
dyad.  

Site 
Dyad identity (group 

membership) 
Year Number of simultaneous locations  

   Dry season Wet season 

OD B1 (G1) – B2 (G2) 2008 N/A 26183 

OD B6 (G1) – B7 (G5) 2009 22224 N/A 

OD B6 (G1) – B7 (G5) 2010 N/A 22596 

OD B6 (G1) – B5 (G6) 2010 N/A 25704 

OD B6 (G1) – B5 (G6) 2009 22451 N/A 

OD B7 (G5) – B5 (G6) 2009 22224 N/A 

OD B7 (G5) – B5 (G6) 2010 N/A 22596 

OD B3 (G3) – B2 (G2) 2008 22451 N/A 

OD B3 (G3) – B4 (G4) 2008 22451 N/A 

OD B2 (G2) – B4 (G4) 2008 22451 N/A 

KNP B10 (G9) – B11 (G10) 2011 22451 N/A 

KNP B10 (G9) – B8 (G7) 2011 22451 N/A 

KNP B10 (G9) – B9 (G8) 2011 22451 N/A 

KNP B11 (G10) – B9 (G8) 2011 N/A 25907 

KNP B11 (G10) – B9 (G8) 2011 22451 N/A 

KNP B8 (G7) – B9 (G8) 2011 22451 N/A 

KNP B8 (G7) – B9 (G8) 2012 N/A 26195 

KNP B12 (G7) – B13 (G10) 2014 N/A 25907 

KNP B12 (G7) – B13 (G10) 2014 22450 N/A 

Dyads were not all collared concurrently throughout seasons. N/A = not applicable. 

 

2.5 Seasonal proximity and overlap of home ranges of neighbouring 

groups 

To explore how neighbouring groups shared space across seasons, I measured the overlap 

in the seasonal home ranges between dyads from neighbouring groups using the 

Bhattacharyya’s affinity index (Benhamou et al. 2014). The index accounts for variation in 

the intensity of home range use and varies from 0 (no overlap) to 1 (identical space use). I 

also explored seasonal variations in the minimum distance between the home range 

contours of dyads when home ranges did not overlap.  

 

2.6 Definition of contact  

Estimating potential contacts between animals is notoriously difficult with hourly GPS 

locations because at times some GPS fixes may have been missed, and contacts could 

have occurred between fixes. Traditionally, studies that attempt to estimate contacts 

between animals with one-hour GPS data use a relatively large spatial window to define 

contacts. This is to account that the tracked individual moves during the one-hour period 

between two recorded locations (e.g. Miguel et al. 2013). Here, I addressed this problem 

and reduced the risk of underestimated contacts by first interpolating each individual 
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trajectory using a continuous-time correlated random walk model, following the approach of 

Johnson et al. (2008) implemented in the R package ‘crawl’ (Johnson et al. 2008). Then, 

from these models, I predicted the location of individuals every 5 min and estimated contacts 

(see below) from the interpolated data.  

I defined contact between 2 individuals as the presence of both individuals at the 

same place (defined by a spatial window) and at the same time (direct contact, within a 

short temporal window) or at different times (indirect contact, within a larger temporal 

window). To explore contact patterns between groups, I used various spatiotemporal 

windows defining direct and indirect contacts compatible with the modes of transmission of 

three important pathogens in buffalo: bovine tuberculosis, brucellosis and Rift Valley Fever, 

which are present in my two study areas with different prevalence levels (see Table 2). 

Bovine tuberculosis (bTB) can spread both by direct and indirect contacts, as the virus can 

survive in faeces for up to one month in natural conditions in southern Africa (Tanner and 

Michel 1999). Brucellosis is mainly transmitted by direct or mucosal contact with a 

contaminated foetus, placentas or birthing fluids (Kiros et al. 2016). Since the bacteria can 

persist in a bovine foetus for several weeks, or even months in temperate regions (Aune et 

al. 2011), the most limiting transmission factor seems to be the persistence of the 

contaminated foetus in the environment before being eaten by scavengers. To estimate the 

persistence of a foetus in the environment, de Garine-Wichatitsky et al. (unpublished data) 

placed, in November 2010, 10 mixed offal-meat bags (mimicking foetuses) inside 

Gonarezhou National Park, around Mabalauta region (Zimbabwe) and in open areas in 

Malipati Communal Land. The results showed that the bait bags persisted for 43h on 

average (range: 6h-71h) before being removed by scavenging carnivores such as domestic 

dog Canis familiaris, spotted hyena Crocuta crocuta and black-backed jackals Canis 

mesomelas. The main factors that may limit the transmission of RVF virus from mosquito 

to buffalos are the lifespan of mosquitoes and their ability to disperse. According to mark-

release-recapture studies, female mosquitoes do not live for more than 3 weeks (Rodhain 

1996, Ba et al. 2006). Estimating that buffalos spend an average of 4 days in an infectious 

state, as in other ruminants (Manore and Beechler 2015), a buffalo may be able to transmit 

the virus within one month of infection. Mosquitoes can fly over considerable distances, 

ranging from a few hundred meters up to 2500m (Shannon and Davis 1930, Wolfinsohn 

and Galun 1953, Ba et al. 2006).  

For each pathogen, I selected relevant spatiotemporal windows to define contacts 

that could lead to infectious contacts and pathogen transmission, should one of the 

individuals excrete the target pathogen at the time of the contact (Table 2).  
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Table 2. Characteristics of selected pathogens transmitted between buffalos and corresponding spatiotemporal windows chosen to define 
contacts. The spatial windows consider the mode of transmission of the pathogen (i.e. at close proximity through the air or transmitted at a longer 
distance by a vector) and the time windows are defined as the time a site remains potentially infectious after contamination by an infected buffalo.  
1Rodwell et al. 2001, 2Jori et al. 2013, 3Chaparro et al. 1990, 4Alexander et al. 2012, 5Beechler et al. 2015, 6Jori et al. 2015. na = no data. 

 

Disease 

name 
Pathogen 

Prevalence (%) in buffalo at 

each site [95% CI] (n = Total 

number of buffalo sampled) 

Mode of transmission 
Spatial-

window 

Time-

window 
Contact name 

Bovine 

tuberculosis 

(bTB) 

Mycobacterium 

bovis 

KNPnorth: 1.5% [0.4–4.0] (n = 

203)1 

OD: 2.9% [0.8–9.8] (n = 70)2 

Inhalation of aerolized 

droplets 
150m 0h Direct contact 

Inhalation or ingestion of 

infected materials (e.g. 

faeces)  

150m 
0-31 

days 

Long-term indirect 

close contact 

Brucellosis Brucella abortus 
KNP: 19.2% [na–na] (n = 406)3 

OD: 6% [3.0–9.0] (n = 247)4 

Contact with or ingestion of 

infected foetus or other 

abortion products 

150m 0-2 days 

Short-term 

indirect close 

contact 

Rift Valley 

Fever (RVF) 

Rift Valley Fever 

virus 

KNPnorth: 3.6% [na – na] (n = 

196)5 

OD: 9.7% [4.0–19.0] (n = 72)6 

By the bite of a female 

mosquito (Aedes/Culex) 
2500m 

0-31 

days 

Long-term indirect 

contact at large 

spatial scale  
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2.7 Contact analysis 

For each buffalo dyad and each spatiotemporal window, I identified the time and place of 

contacts. The location of an individual of a given dyad was defined as a pathogen-specific 

contact location when, during the previous period defined by the temporal window, at least 

one GPS location of the other buffalo in the dyad was within a distance lower than the spatial 

window. For instance, for brucellosis, the location of a buffalo was considered as a contact 

location when at least one GPS location of the other buffalo was located ≤ 150 m within the 

two days preceding the time of that GPS location. If several successive locations were 

defined as contacts, I considered these locations as a single contact and calculated its 

duration, as the duration of contacts is likely to be an important factor in pathogen 

transmission. Contact occurrence was used to calculate the number of contacts per dyad 

per month (hereafter called contact rate) as the total number of contact events divided by 

the number of months of simultaneous tracking. 

 

2.8 Statistical analyses 

As an individual could be represented in several dyads with individuals from different 

neighbouring groups, I used hierarchical (i.e. mixed) models with dyad identity as a random 

intercept. I first tested whether the home range overlap of dyads from neighbouring groups 

and the spatial proximity between their home ranges varied across seasons and sites. I ran 

two generalized linear mixed models (GLMMs) with (1) home range overlap and (2) distance 

between contours of home ranges as the response variables. In both models, I used a 

negative binomial distribution of errors and the explanatory variables were site, season and 

their interaction.  

I then explored the number and duration of contacts between dyads of neighbouring 

groups across seasons and sites. As the contacts were described for 4 spatiotemporal 

windows (Table 2), I built one model for each spatiotemporal window, both for the number 

and duration of contacts. To account for overdispersion in the contact rates and durations, 

I fitted 8 negative binomial GLMMs with the contact rate as the response variable for 4 of 

them and the duration of every contact for the rest. The relatively small sample size for 

dyads displaying direct and short-term indirect contacts during the wet season in both sites 

did not allow to test the influence of the season and the site during the wet season on rate 

and duration of these contacts (Figures 3a-3b). I, therefore, explored the inter-site effect on 

duration and rate of direct and short-term indirect contacts only during the dry season. For 

analyses of long-term indirect contacts, I included site, season and their interaction as 

explanatory variables.  
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Finally, I explored how buffalos distributed themselves according to distance from 

permanent water in the dry season between sites and the probability of contact between 

dyads from neighbouring groups in relation to distance from permanent water sources (only 

in the dry season) and vegetation type (in the dry and wet seasons). As I considered water 

as a non-limiting factor during the wet season, I examined whether buffalo distribution 

according to distance to water differed between sites and whether the location of contacts 

was influenced by distance to water during the dry season only. I extracted the distance to 

the nearest permanent water source and the vegetation type for every buffalo GPS location. 

For each buffalo dyad, I then classified the locations of each of the two individuals as a 

contact or not depending on the different spatiotemporal windows. To test whether site 

affected buffalo distribution according to permanent water during the dry season, I used a 

GLMM with a Poisson distribution, distance to water as the response variable, and site as 

the explanatory variable. In this model, the random effect was buffalo identity. To determine 

whether distance to water and habitat type affected the probability of contact, I ran 4 GLMMs 

for the dry season GPS locations, i.e. one corresponding to each spatiotemporal window, 

with a binomial distribution of errors. In each model, the binary response variable was the 

location type, i.e. whether the location was a contact (scored 1) or not (scored 0), and the 

explanatory variables were the distance to water, associated vegetation type, site and the 

interactions between site and distance to water and between site and vegetation type. 

GLMMs for the wet season locations were similar without distance to water as explanatory 

variable, and the GLMMs were built only for long-term indirect contacts. The direct and 

short-term indirect contact analyses could only be done on dry season data due to the low 

number of these contacts in the wet season. 

For each analysis, I tested whether a simpler model, nested in the full model, would 

be more parsimonious using the Akaike’s Information Criterion corrected for small sample 

size (AICc, Burnham and Anderson 2002). Model sets are presented in Table 3. I 

considered the most parsimonious model to be the model that had both an ∆AICc < 2 and 

the lowest number of explanatory variables (Arnold 2010). The goodness-of-fit of the 

models was assessed using the marginal theoretical coefficient of determination (r²) for the 

binomial GLMMs and the marginal lognormal r² for the negative binomial GLMMs using the 

MuMIn package (function r.squaredGLMM, Barton 2019). Statistical models were computed 

using the lme4 (Bates et al. 2015) and glmmTMB (Brooks et al. 2017) packages for R v. 

3.3.2 (R Development Core Team 2016). 
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3 Results 

Table 3. Summary of the candidate models fitted for each analysis. Response variables were 
modelled as a function of different combinations between site (KNP or OD), season (dry or 
wet season), distance to water and vegetation type (Grassland, Bushland, Woodland). Dyad 
identity was included as a random intercept in the models, except for analysis 5, where the 
random intercept was the buffalo identity. Direct and short-term indirect contacts were only 
statistically explored during the dry season due to the quasi-absence of these contacts during 
the wet season. 
Notes: For each model, the degree of freedom (df), deviance = -2*loglikelihood (-2LL), the 
difference in AICc values between the best fit and modeli (∆AICc), model fit estimated by 
marginal r² (see text for details) – Higher values indicate better model fit. The ranking was 
based on the ∆AICc. The best model, i.e. which had both a ∆AICc < 2 and the lowest number 
of explanatory variables, is shown in bold for each analysis.  

 

 Model df -2LL ∆AICc R²marginal 

1. Home range overlap 

 null 3 8.49 0.0  0.00 

 site 4 8.27 3.0  0.06 

 season 4 8.46 3.2  0.01 

 site + season 5 8.25 6.8  0.07 

 site*season 6 8.24 11.2  0.08 

2. Distance between home ranges  

 season 4 88.60 0.0  0.16 

 site*season 6 82.86 2.4  0.24 

 site + season 5 87.43 2.6  0.27 

 null  3 250.20 158.4  0.00 

 site 4 248.80 160.2  0.15 

3. Frequency of contacts  

Direct contacts (only in dry season) 

 null 3 25.13 0.0  0.00 

 site 4 25.11 4.7  0.00 

Long-term indirect contacts   

 season 4 153.57 0.0  0.01 

 null 3 157.89 1.8  0.00 

 site + season 5 152.89 2.0  0.08 

 site 4 157.10 3.5  0.07 

 site*season 6 152.73 4.7  0.09 

Short-term indirect contacts (only in dry season) 

 null  3 62.96 0.0  0.00 

 site 4 61.93 1.9  0.12 

Long-term indirect contacts at large spatial scale 

 null 3 148.95 0.0  0.00 

 site 4 147.45 1.0  0.11 

 season 4 147.65 1.2  0.02 

 site + season 5 146.28 2.5  0.13 

 site*season 6 144.46 3.5  0.22 

4. Duration of contacts  

Direct contacts (only in dry season) 

 null 3 88.30 0.0  0.00 

 site 4 87.66 2.0  0.03 
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Long-term indirect contacts 

 site 4 2718.32 0.0  0.13 

 site + season 5 2717.17 0.9  0.13 

 site*season 6 2717.10 2.9  0.13 

 null  3 2725.76 5.4  0.00 

 season 4 2725.47 7.2  0.00 

Short-term indirect contacts (only in dry season) 

 site 4 493.57 0.0  0.05 

 null 3 497.45 1.7  0.00 

Long-term indirect contacts at large spatial scale  

 null 3 1588.32 0.0  0.00 

 site 4 1588.31 2.1  0.00 

 season 4 1588.32 2.1  0.00 

 site + season 5 1588.31 4.2  0.00 

 site*season 6 1588.14 6.2  0.00 

5. Distance to water during the dry season 

 site  4 140800000 0.0  0.76 

 null 3 140800000 15.2  0.00 

6. Occurrence of contacts according to distance to water and vegetation type in dry 

season 

Direct contacts 

 Distance to water * site + Vegetation 

type * site 

9 4635.36 0.0  0.38 

 Distance to water * site + Vegetation 

type 

7 4653.86 14.5  0.35 

 Distance to water + Vegetation type * 

site 

8 4665.17 27.8  0.35 

 Distance to water + Vegetation type 5 4676.54 33.2  0.10 

 Distance to water + Vegetation type + 

site 

6 4675.84 34.5  0.34 

 Vegetation type * site 7 4688.42 49.1  0.31 

 Vegetation type 4 4695.04 49.7  0.04 

 Vegetation type + site 5 4693.97 50.6  0.31 

 Distance to water * site 5 4721.98 78.6  0.27 

 Distance to water 3 4746.82 99.4  0.01 

 Distance to water + site 4 4745.89 100.5  0.26 

 null 2 4752.43 103.1  0.00 

 site 3 4751.32 104.0  0.25 

Long-term indirect contacts 

 Distance to water * site + Vegetation 

type * site 

9 76956.00 0.00  0.11 

 Distance to water + Vegetation type* 

site 

8 77045.28 87.3  0.11 

 Distance to water* site + Vegetation 

type  

7 77176.72 216.7  0.10 

 Distance to water + Vegetation type 5 77243.78 279.8  0.17 

 Distance to water + Vegetation type + 

site 

6 77242.94 280.9  0.10 

 Distance to water * site 5 77657.48 693.5  0.09 

 Distance to water 3 77717.36 749.4  0.15 

 Distance to water + site 4 77716.72 750.7  0.09 

 Vegetation type* site 7 82069.20 5109.2  0.00 
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 Vegetation type 4 82127.72 5161.7  0.00 

 Vegetation type + site 5 82127.70 5163.7  0.00 

 null 2 82302.04 5332.0  0.00 

 site 3 82302.02 5334.0  0.00 

Short-term indirect contacts 

 Distance to water * site + Vegetation 

type * site 

9 26066.96 0.00  0.14 

 Distance to water + Vegetation type* 

site 

8 26109.36 40.4  0.14 

 Distance to water* site + Vegetation 

type  

7 26169.50 98.5  0.13 

 Distance to water + Vegetation type  5 26190.28 115.3  0.01 

 Distance to water + Vegetation type + 

site  

6 26189.28 116.3  0.13 

 Distance to water * site 5 26574.68 499.7  0.13 

 Distance to water  3 26611.14 532.2  0.00 

 Distance to water + site 4 26610.18 533.2  0.14 

 Vegetation type* site 7 26841.88 770.9  0.14 

 Vegetation type 4 26878.32 801.4  0.00 

 Vegetation type + site 5 26877.66 802.7  0.14 

 Null 2 27146.58 1065.6  0.00 

 site 3 27145.94 1067.0  0.14 

Long-term indirect contacts at large spatial scale 

 Distance to water * site + Vegetation 

type * site 

9 142834.14 0.00  0.05 

 Distance to water + Vegetation type* 

site 

8 142857.70 21.6  0.05 

 Distance to water* site + Vegetation 

type  

7 143418.38 580.2  0.05 

 Distance to water + Vegetation type 5 143422.86 580.7  0.04 

 Distance to water + Vegetation type + 

site 

6 143421.46 581.3  0.05 

 Distance to water * site 5 143735.64 893.5  0.05 

 Distance to water 3 143740.10 8934.0  0.03 

 Distance to water + site 4 143738.84 894.7  0.04 

 Vegetation type* site 7 146967.16 4129.0  0.03 

 Vegetation type 4 147357.42 4513.3  0.00 

 Vegetation type + site 5 147356.94 4514.8  0.03 

 Null 2 147448.84 4600.7  0.00 

 site 3 147448.40 4602.3  0.03 

7. Occurrence of contacts according to distance to water and vegetation type in wet 

season 

Long-term indirect contacts 

 Vegetation type * site 7 32722.68 0.00  0.05 

 Vegetation type 4 32748.76 20.1  0.03 

 Vegetation type + site 5 32748.52 21.9  0.04 

 Null 2 33344.42 611.7  0.00 

 site 3 33344.28 613.6  0.01 

Long-term indirect contacts at a large spatial scale 

 Vegetation type * site 7 93422.22 0.00  0.14 

 Vegetation type 4 95124.16 1696.0  0.10 

 Vegetation type + site 5 95123.78 1697.6  0.12 
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 Null 2 101477.56 8045.3  0.00 

 Site 3 101476.74 8046.5  0.03 

 

3.1 Spatial behaviour between neighbouring groups 

The observed values of the overlapping home range and the distance between home 

ranges between individuals from neighbouring groups are plotted on Figures 2a-2b, 

respectively. The most parsimonious model of home range overlap variation did not include 

the effects of site or season (Table 3 – analysis 1), suggesting that neighbouring buffalo 

groups had home ranges consistently overlap across seasons and sites (β ± SE = -2.68 ± 

0.85, 95% CI = [-4.35, -1.02]). Although visual interpretation indicates that groups were 

further apart in the OD during the wet season (Figure 2b), model selection indicated no 

effect of site, but there was a seasonal effect (Table 3 – analysis 2). Groups were thus 

further apart during the wet season (β ± SE = 0.68 ± 1.14, 95% CI = [-1.56, 2.91]) compared 

to the dry season (β ± SE = -1.77 ± 1.14, 95% CI = [-4.02, 0.47]).  

 

Figure 2. a) Home range overlap (Bhattacharyya’s affinity index) and b) minimum distance 
between home ranges of buffalo dyads belonging to different groups by site and season. The 
observed values are given by open symbols. The filled symbols are mean values and the 
whiskers denote SDs.  

 

3.2 Contacts characteristics 

A total of 32 direct contacts were recorded, with 12 in KNP and 20 in OD (Figure 3a). Indirect 

contacts were more frequent, ranging from 177 for short-term indirect close contact 

(brucellosis, KNP: n = 121, OD: n = 56, Figure 3b), to 567 for long-term indirect close contact 

(bTB, KNP: n = 326, OD: n = 241, Figure 3a), and 176 for long-term indirect contacts at 

large spatial scale (RVF, KNP: n = 135, OD: n = 41, Figure 3c). The most parsimonious 

models for explaining contact rates were the null models, suggesting that buffalo groups 
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consistently interact directly and indirectly with each other across seasons and sites (Table 

3 – analysis 3).  

The observed values of the duration of intergroup contacts are plotted in Figure 4 by 

site and season. Model selection suggested that the duration of contacts was generally 

consistent across seasons and/or sites (Table 3 – analysis 4). The only exception is for the 

duration of long-term indirect contacts compatible with bTB transmission, where the most 

parsimonious model included the effect of site, but the difference between sites was minor 

(Table 5). Summary statistics of the most parsimonious models predicting contact rates and 

duration of contacts are given in Tables 4–5, respectively. 
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Figure 3. Direct and indirect contact rates between buffalo dyads belonging to neighbouring 
groups for each selected pathogen: a) bTB for direct and indirect contacts, b) Brucellosis and 
c) RVF, in relation to the site and the season. The observed values are given by open symbols. 
The filled symbols are mean values and the whiskers denote SDs. Note different y-axis scales. 

 

Table 4. Coefficient (β) ± SE and 95% confidence intervals of the most parsimonious models 
explaining the direct and indirect contact rates between buffalo dyads belonging to 
neighbouring groups. Models explaining rates of direct and short-term indirect contacts were 
only based on dry season data.  

  β ± SE 95%CI (lower, upper) 

Direct contact 

 (Intercept) -3.83 ± 2.65 (-9.01, 1.36) 

Long-term indirect close contact 

 (Intercept) -0.94 ± 1.33 (-3.55, 1.66) 

Short-term indirect close contact 

 (Intercept) -5.00 ± 1.18 (-7.32, -2.67) 

Long-term indirect contact at large spatial scale 

 (Intercept) 0.28 ± 0.45 (-0.60, 1.16) 
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Figure 4. Duration of direct and indirect contacts (in hours) between buffalo dyads belonging 
to neighbouring groups for each selected pathogen: a) bTB for direct and indirect contacts, 
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b) Brucellosis and c) RVF, in relation to the site and the season. The observed values are 
given by open symbols. The filled symbols are mean values and the whiskers denote SDs. 
Note different y-axis scales.  

 

Table 5. Coefficient (β) ± SE and 95% confidence intervals of the most parsimonious models 
explaining the duration of direct and indirect contacts between buffalo dyads from 
neighbouring groups. Models explaining the duration of direct and short-term indirect 
contacts were only based on dry season data.  

  β ± SE 95%CI (lower, upper) 

Direct contact 

 (Intercept) 0.18 ± 0.20 (-0.21, 0.58) 

Long-term indirect close contact  

 (Intercept) 1.55 ± 0.07 (1.42, 1.69) 

 Site [OD > KNP] -0.68 ± 0.10 (-0.88, -0.48) 

Short-term indirect close contact 

 (Intercept) 0.83 ± 0.11 (0.62, 1.05) 

Long-term indirect contact at large spatial scale 

 (Intercept) 3.64 ± 0.33 (2.99, 4.29) 

 

3.3 Location of contacts 

During the dry season, the distribution of buffalo in relation to distance to water varied 

between sites, as the most parsimonious model explaining the distance to the water of 

buffalos included a site effect (Table 3 – analysis 5). Buffalos were, therefore, closer to 

water in OD (odds ratio ± SE [95%CI]: 213.15 ± 52.13 [132.58 – 342.68] m) than in KNP 

(1787.90 ± 430.40 [568.22 – 5625.26] m).  

I also found that the most parsimonious models that explained the probability of 

direct and indirect contact during the dry season included an interaction effect between site 

and distance to water, and site and vegetation type (Table 3 – analysis 6). However, the 

difference in the relationship between distance to water and probability of contact between 

sites could be simply due to the variation in the distribution of buffalo in relation to the 

distance to water (see above). In KNP, the probability of contact decreased with distance 

to water (Figure 5) whilst in OD, the relationship between the distance to water and 

probability of contact is less clear: the probability of long-term indirect contact at large spatial 

scale decreased with distance to water (Figure 5d) whilst the other contacts were more 

likely to occur when the distance to water increased (Figures 5a–5c). However, the effect 

of distance to water on the probability of contact in OD was weak, and with very large 

confidence intervals, which prevented me from assuming an effect of distance to water on 

the probability of contact in OD (Figure 5). Model selection indicated an effect of vegetation 

type in interaction with the site on the probability of contact (Table 3 – analysis 6). The 

minimal overlap in confidence intervals was for short-term indirect contact compatible with 
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brucellosis transmission in KNP, where probabilities differed between vegetation types: 

contacts were more likely to occur in woodlands than in bushlands and grasslands (Figure 

5c). For the other types of contact, I did not identify any vegetation types where contacts 

were more likely to occur due to the small difference in the probability of contact between 

vegetation types and the large overlap of the confidence intervals.  

 During the wet season, the vegetation type and the site affected the probability of 

long-term indirect contact (Table 3 – analysis 7). The influence of vegetation type on 

probability of contact for bTB was weak in both sites and with large confidence intervals 

considerably overlapping, which prevented me from identifying any vegetation types where 

these contacts were more likely to take place (Figure 5b). Similarly, I did not identify any 

vegetation types in OD where contacts compatible with RVF transmission were more likely 

to occur (Figure 5d). In contrast, in KNP, the probability of contact compatible with RVF 

transmission differed among vegetation types and the overlap between confidence intervals 

of different vegetation types was low, indicating that these contacts were more likely to 

occur in woodlands during the wet season (Figure 5). 

 

 

 

 

  

 

 

 

a) bTB direct contacts in dry season      
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b) bTB long-term indirect contacts in dry season  

c) Brucellosis short-term indirect close contacts in dry season  

d) RVF long-term indirect contacts at large spatial scale in dry season  
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Figure 5. Predicted probability of direct and indirect contact according to site, distance to 
permanent water and vegetation type during the dry season (a-d) and according to site and 
vegetation type during the wet season, only for long-term indirect contacts (e-f). Shaded areas 
and error bars represent 95% confidence intervals. The distance to water during the dry 
season at the observed locations are plotted by tick marks, with marks at the bottom 
corresponding to the contact locations and marks at the top to the non-contact locations. 
Note the different y-axis and x-axis scales. a-d) Note that the confidence intervals 
considerably overlap between habitat types, explaining why the colours are not easily 
apparent.  

 

4 Discussion 

The spread of infectious diseases in natural populations is a spatial process facilitated by 

interactions amongst hosts (Altizer et al. 2003). For social species, understanding how 

groups interact with each other is crucial for predicting the spatial spread of pathogen at the 

population scale. In this chapter, I used GPS data to assess spatial behaviour and contact 

patterns between buffalo groups in two populations living in contrasting environmental 

conditions. Using bTB, brucellosis and RVF viruses as case studies to define contacts, I 

demonstrate that (1) contact patterns between buffalo groups are generally similar between 

seasons and sites, indicating a potential species-specific pattern, (2) direct contacts are 

very rare and (3) waterholes are key determinants of buffalo intergroup contact in semi-arid 

savannas, such as KNP, where water sources are scarce and patchily distributed. These 

findings could be particularly important for understanding and predicting the spread of 

pathogens in this species and the risks posed to other species, including cattle.  

At the population scale, it is acknowledged that direct contacts critically affect 

pathogen transmission and, ultimately, disease prevalence. A recent study of the KNP Cape 

e) bTB long-term indirect close 

contacts in wet season  

f) RVF long-term indirect contacts at 

large spatial scale in wet season  
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buffalo population estimated that direct contact rates among individuals in the same group 

ranged from 2.7 to 17 per month and lasted, on average, 24h and 40h during the wet season 

and dry season, respectively (Wielgus et al. 2020). In this same population, I found that 

direct contacts between individuals from neighbouring groups were much rarer, on average 

0.2 and 0.6 in the wet and dry season, respectively (0 and 1.3 in OD in the wet and dry 

season, respectively). The quasi-absence of contacts between neighbouring groups is 

consistent with previous work on the West African buffalo (Cornélis et al. 2011). Pathogens 

with a direct transmission mode like bTB, therefore, have a lower probability of spreading 

between groups and over large distances. Conversely, my findings highlight the importance 

of contacts between buffalo groups for the population-wide transmission of pathogens that 

persist in the environment for a long time or are vector-borne, such as bTB and RVF viruses 

(my study) and foot-and-mouth disease virus than can survive in the environment for up to 

15 days (Miguel et al. 2013). Taken together, these results suggest frequent local extinction 

of pathogens with only a direct mode of transmission if the group size is not large enough 

or the transmission of pathogens cannot occur through other species. Bovine tuberculosis 

transmission opportunities would be much more frequent through the indirect route (i.e. 

through inhalation or ingestion of contaminated materials) than the direct route. For RVF, 

the involvement of a vector (i.e. mosquito) increases the factors that can influence the 

transmission such as vector capacity and density, and susceptible hosts (Chitnis et al. 2013, 

Manore and Beechler 2015).   

I did not identify any vegetation types in OD where contacts were more likely to 

occur, but I found that woodlands in KNP may be favoured place for some indirect contacts, 

depending on the season. Additionally, I found that contacts were more likely closer to water 

holes, but only in KNP where water is more of a limiting factor. In the north of KNP, water 

is very scarce during the dry season with only one permanent river and some permanent 

pools remaining in a dry riverbed (Figure 1). Dry-season water availability constrains water-

dependent buffalos to aggregate within a few kilometres from available water and therefore 

increases intergroup contacts. In contrast, in OD, the wetland system progressively dries 

up as the dry season progresses, but water remains available over a large area. I 

hypothesized that the higher abundance and wide distribution of water and productive 

forage across the landscape in OD would lead to fewer levels of contact between groups 

than in KNP, but the rate and duration of contacts did generally not appear to be affected 

by such environmental factors. The only exception was for long-term indirect contacts 

compatible with bTB transmission, which significantly lasted longer in KNP (mean ± SD: 4.7 

± 5.8h) than in OD (2.4h ± 2.7h), but the magnitude of this site effect was small. Based on 

these findings, I hypothesize that the structure of intergroup contact patterns is specific to 

the species, but that surface waterholes are hotspots for contact, and associated pathogen 

spread, during the dry season in areas where water availability is low.  
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In the northern areas of KNP, it was decided in 1994 to close more than half of the 

waterholes to limit the impact of elephants and facilitate co-existence between water-

dependent and water-independent ungulates (Gaylard et al. 2003). As I showed that 

contacts tend to occur closer to water in KNP, efforts to reduce the number of water points 

may have contributed to the transmission of pathogens among buffalo groups. Notably, this 

may explain in part the progressive spread of bTB from southern KNP to adjacent 

Gonarezhou National Park, Zimbabwe, which occurred from the 1990s, corresponding 

approximately to the period when artificial waterholes were closed down (Caron et al. 2003). 

My results suggest that in the dry season, plans to control the spread of diseases within the 

KNP buffalo population should focus on the management of water availability. Managers 

can try to manipulate the landscape in such a way so that each group can access water 

without having to share it with another group. For instance, ensuring that the distance 

between waterholes is sufficiently large (> 5 km) should allow distinct buffalo groups to 

establish their home ranges with minimal overlap.  

A potential limitation of this study is that the data were not collected during the same 

period in both populations. Although I used fixed dates for defining seasons, small 

differences in resource availability within seasons among years (e.g. drought year) could 

drive potential differences in observed spatial behaviour and affect interpretation. However, 

the similar contact patterns between populations and seasons suggest that this difference 

in the period of data collection does not affect the result. The aim of this study was not to 

estimate the total number of contacts between buffalo groups because this would have 

required excessive resources to equip all buffalos with GPS collars. Instead, I took 

advantage of the gregarious habits of buffalo that move in groups and use a similar home 

range (Sinclair 1977, Ryan et al. 2006) to capture the movements of the groups and to 

examine the factors moderating contact patterns. However, my data probably 

underestimate contact rates because (1) a buffalo from one group may have come into 

contact with several individuals from another group, (2) groups could have encountered 

small bachelor groups (Sinclair 1977, Hay et al. 2008), (3) buffalo groups are subject to 

fission-fusion dynamics (Bennitt et al. 2018, Chapter 3), which means that all individuals of 

the same group are not constantly together, (4) groups can be widely dispersed, for instance 

of several hundred meters when a buffalo group arrives at a waterhole (Chamaillé-Jammes 

and Wielgus, unpublished data) and (5) males are known to regularly switch from one 

mixed-sex group to another (Halley and Mari 2004, Turner et al. 2005), and can be key 

individuals in pathogen transmission between groups. The lack of GPS data on males is a 

limitation of this study, but collecting movement data for this sex class is challenging since 

males tend to break their collar within a few months of deployment, either intentionally or 

by accident during fights (Halley and Mari 2004, Caron et al. 2016). However, the biases 
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generated by this study are unlikely to have been heterogeneous across sites and seasons, 

and the comparisons of the trends in contact rate and duration thus remain appropriate.  

Whilst assessing intergroup contacts is key to developing realistic models for the 

spread of pathogens at the population level, other types of interactions may also affect 

pathogen transmission and ultimately disease prevalence. In social species, intra-group 

contacts are particularly important for explaining the spread of many infectious diseases at 

the local scale (for buffalo Cross et al. 2004, Blanchong et al. 2007, Grear et al. 2010). In 

Cape buffalo, long-range dispersal of subadult females could be important in the spread of 

disease between groups and among distant populations (Caron et al. 2016). Pathogens 

infecting buffalo can also be transmitted to multiple sympatric host species in southern 

Africa, such as domestic cattle Bos taurus / Bos indicus, hippopotamus Hippopotamus 

amphibius, and wildebeest Connochaetes taurinus (Bengis et al. 2002, Miguel et al. 2013, 

Kiffner et al. 2014). In the populations studied here, the strong spatial segregation between 

buffalo groups means that inter-specific contacts might be more important in the spread of 

infection in buffalo populations than inter-group contacts (Holt et al. 2003, Keeling 2005). 

The difficulty of simultaneously studying contact networks among several species makes it 

difficult to estimate interspecific contact rates and the relative importance of these contacts 

in pathogen transmission (but see Kiffner et al. 2014 for a study on social structure of multi-

host systems, including buffalo, on a seasonal scale). Nonetheless, this study is, to my 

knowledge, the first study to quantify potentially infectious contacts between Cape buffalo 

groups in multiple populations. These findings could be particularly important for 

understanding and predicting the spread of pathogens in the species (by improving 

epidemiological models) and help in the management of economically important diseases.  

 How Cape buffalo groups interact with each other and how site and season influence 

contact patterns have also implications for the socio-spatial organization of the species. The 

present study provides evidence for spatial segregation and short-term behavioural 

avoidance between neighbouring buffalo groups in two geographically distinct populations. 

Home ranges of buffalos from neighbouring groups had little to no overlap, with direct 

contacts and short-term indirect contacts rare and short in duration. The tendency to use 

exclusive home ranges has already been observed in several buffalo populations, such as 

the one at Chobe riverfront (study based on the dry season, Botswana, Halley et al. 2002), 

the one of Klaserie Private Nature Reserve (South Africa, Ryan et al. 2006) and the one in 

Lake Manyara National Park (Tanzania, Prins 1996). In a West African buffalo population 

living in W Regional Park, two neighbouring groups had very little direct contact within a 

500 m spatial window, and for less than an hour despite the quite large overlap (21 %) of 

their home ranges (Cornélis et al. 2011). The low overlap and few contact rates I observed 

during the dry season are, however, surprising and do not support the hypothesis that low 

water availability during this season could have forced buffalo groups to contract their home 
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ranges around the same water sources (Ryan et al. 2006, Cornélis et al. 2011). 

Nevertheless, although there was no seasonal variation in home range overlap between 

dyads from neighbouring groups, the distance between home ranges of neighbouring 

groups varied seasonally. The model selection did not show a site effect, but home ranges 

of dyads from neighbouring groups in OD tended to be further apart during the wet than the 

dry season. This is probably because unlike KNP, the Okavango Delta’s environment 

provides available space and abundant resources to allow some groups to disperse and 

use the available habitat more efficiently (Bennitt et al. 2016). In OD, during the dry season, 

buffalos may gather on seasonal floodplains (Bennitt et al. 2014), which provide water and 

fresh food and may explain the closer proximity of home ranges of neighbouring groups 

during the dry season. Although the spatial segregation observed in my populations 

suggests some territoriality, the quasi-absence of direct contact suggests that physical 

encounters with active interactions are not the mechanism by which segregation is 

maintained. Avoidance between groups may be achieved through non-aggressive territorial 

signs, such as scent markings facilitated by faeces, vocalizations, emitted by individuals to 

maintain group cohesion and order (Mloszewski 1983), or may simply be due to a passive 

avoidance of patches used by other groups through spatial memory (Riotte-Lambert et al. 

2015). To understand the mechanisms underlying behavioural avoidance, spatiotemporal 

windows could be used to assess visual and direct and indirect olfactory contacts (e.g. 

faeces, marking) between groups, but there is currently a lack of empirical data to estimate 

these spatiotemporal windows. It is unclear why neighbouring groups did not use the same 

areas at the same time or in a short time interval, but this may be to limit competition for 

resources or because areas used by other animals appeared to be less profitable 

(Benhamou and Riotte-Lambert 2012) or to limit pathogen transmission. Overall, the spatial 

arrangement of home ranges of neighbouring buffalo groups and the few direct and short-

term indirect contacts suggest that interactions between groups might act as a high-level 

constraint on habitat selection, in addition to the availability of resources, which are 

commonly cited to affect buffalo habitat selection (Sinclair 1977, Ryan et al. 2006, Winnie 

et al. 2008).  

 

5 Conclusions 

This study is one of the first to describe contact patterns between buffalo groups, compatible 

with the transmission of important pathogens in buffalo, in two populations living in 

contrasting environmental conditions. The contact patterns between groups are generally 

consistent across populations, supporting the idea that how neighbouring groups interact 

with each other is defined by the species behaviour rather than by environmental conditions. 
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Whilst direct contacts between groups are very rare, this study highlights the importance of 

long-term indirect contacts for the transmission of some pathogens between buffalo groups, 

and thus at the population level. Additionally, in areas with low water availability, water 

sources might act as hotspots of contacts between groups, and ultimately for spread of 

pathogens. The availability of telemetry data allowed a greater understanding of intra 

(Chapter 3) and intergroup contact patterns (this chapter). Although recent studies on the 

social structure of multihost systems, including buffalo, allow predictions about the 

interspecific social links of buffalo (Kiffner et al. 2014, Meise et al. 2019), further studies 

should now focus on exploring contact networks in these systems at fine temporal scale 

(i.e. contact rate and duration), including between buffalo and cattle (Miguel et al. 2013), to 

better understand pathogen spread at a larger, regional, scale.  

 

6 Appendices 

Appendix 1. Home range overlap (Bhattacharyya’s affinity index) between individuals 
belonging to the same group or different group according to site and season (red triangle = 
dry season, blue circle = wet season). The dashed line corresponds to a home range overlap 
= 0.6 and divides the dyads belonging to the same group from the dyads belonging to different 
groups.  
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Appendix 2. Space-use and contact patterns between 2 neighbouring groups in Gonarezhou 
National Park.  

 

Two adjacent groups were tracked in the southern part of Gonarezhou National Park (5 053 

km², Zimbabwe), but this low sample size has prevented from exploring the intra-site 

variability for each analysis (i.e. one dyad). Results for space use and contact patterns for 

this dyad are given for information, but no statistical analyses have been performed (see 

Table below). The landscape of the study area is similar to that in Kruger NP: the vegetation 

is characterized by bushland savanna, open grassland and woodland and mean annual 

rainfall is around 500 mm, with most rain falling between November and March (Gandiwa 

et al. 2016). Water availability in the dry season is lower than in Kruger NP, with only a few 

perennial pools in the main river providing water (Zvidzai et al. 2013). Each group was 

tracked by fitting one GPS collar on one adult female from January 2009 to December 2009. 

GPS locations were acquired every hour.  

The home range overlap between the 2 individuals from neighbouring groups was 

0.14 during the dry season and 0.04 during the wet season. The table below indicates the 

contact rate (i.e. number of contacts per month) and contact duration between the 2 

individuals from neighbouring groups. No direct contact was observed in both seasons 

between the 2 individuals.  

 

Contacts time-space 

window 

Number of contacts /month 

(mean ± SD) 

Duration of contacts in hour 

(mean ± SD) 

Dry Wet Dry Wet 

Direct contact – bTB 0 0 Na Na 

Long-term indirect 

contact – bTB 
18.2 ± 11.3 5.6 ± 0.0 1.9 ± 2.0 1.2 ± 1.4 

Short-term indirect 

contact – Brucellosis 
3.8 ± 0.3 0.2 ± 0.2 1.5 ± 1.1 1.0 ± na 

Long-term indirect 

contact at large spatial 

scale – RVF 

13.4 ± 0 15.3 ± 5.8 
29.0 ± 

29.6 
18.7 ± 29.4 

Note that the mean duration of direct contacts is Na because there was no direct contact.  
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Abstract 

Sex-biased dispersal is an important life-history trait, influencing species’ social 

organization and genetic structure, and has important management implications, especially 

for disease spread. Dispersal in the Cape buffalo is usually reported to be biased towards 

males. Females have strong fidelity to their natal groups, but conflicting field data show that 

females can also disperse. In this study, I combined GPS tracking data and three genetic 

markers to investigate the sex differences in dispersal rates at two organizational levels: 

among populations and among groups within populations. From published data, 14 

autosomal microsatellites and two sex-linked markers (mitochondrial DNA sequences and 

three Y-chromosome microsatellites) were used to infer patterns of dispersal. I found low 

levels of genetic differentiation among populations with a strong isolation-by-distance 

pattern of genetic variation. Females undertook long-distance dispersal events (among 

populations), but also short-distance dispersal events (among neighbouring groups). My 

results also suggest that dispersal is female-biased when happening among populations, 

but not at the smaller organizational level (among groups within a local population), where 

males could disperse as much as females. Finally, the results suggest that sex differences 

may differ from environmental conditions, generating spatial variation in sex-specific 

dispersal rates and/or distances. Selective pressures are thus likely to depend on spatial 

scale considered, but also social and environmental factors that may differ between 

populations. However, alternative explanations to my results are also possible and further 

analyses are needed to understand the ultimate causes of sex-biased dispersal distances 

and rates in the Cape buffalo.
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1 Introduction 

Dispersal is a key life-history trait in animals that has relevant effects on both dynamics and 

genetics of species. Inbreeding avoidance, reducing mate and resource competition or 

finding usable habitats are the main selective forces that promote this behaviour (Cockburn 

et al. 1985, Bowler and Benton 2005, Lebigre et al. 2010, Clutton-Brock and Lukas 2012). 

In animal societies, males and females generally display large differences in terms of 

dispersal rates and/or dispersal distances; this is called sex-biased dispersal (Greenwood 

1980). Sex-biased dispersal is widespread in many species, with male-biased dispersal 

more common in mammals (i.e. males have higher dispersal rates than females), whilst the 

reverse pattern is more widespread in birds (Greenwood 1980, Cockburn et al. 1985, Strier 

1994, Clarke et al. 1997, Engelhaupt et al. 2009, Lebigre et al. 2010). Counter-examples 

exist such as in the European roe deer (Capreolus capreolus), where both sexes disperse 

at the juvenile stage in a similar proportion (Wahlström and Liberg 1995). Furthermore, sex-

bias in dispersal rates and/or distances can also vary with geographical scale (Ji et al. 2001, 

Fontanillas et al. 2004). Dispersal is important in the management and conservation of 

natural populations, allowing recolonization of empty habitat patches, demographic rescue 

and maintenance of genetic diversity through gene flow (Greenwood 1980, Nelson 1993, 

Neve et al. 1996), but has important implications for disease spread (Mazé-Guilmo et al. 

2016, Daversa et al. 2017). 

Detecting and quantifying dispersal levels can be challenging and depend on the 

employed method. By providing detailed patterns of individual movement, field-based 

approaches such as capture-mark-recapture have been used in several instances to 

document the ability of individuals to disperse in space and the sex-biased rates (Favre et 

al. 1997, Helfer et al. 2012). Because these approaches are limited in space and time, the 

detection of long-distance dispersal can be difficult. Technology advances (e.g. GPS, 

biologging, Kays et al. 2015) have facilitated the study of dispersal rates over broad spatial 

and temporal extents and at increasingly fine resolutions (Spaan et al. 2019). However, 

these techniques require the immobilization of individuals, limiting the number of individuals 

that can be studied. Relatively recent advances in genetic techniques and their increasing 

accessibility offer new promising alternatives to indirectly explore dispersal (Prugnolle and 

de Meeus 2002). These methods benefit from not requiring intensive field observations and 

are relevant for studying sex dispersal levels, for example, based on the differences in 

genetic structure across sexes (review in Prugnolle and de Meeus 2002, Fontanillas et al. 

2004, Wang et al. 2019). Given their different contribution in estimating levels of dispersal, 

a combination of GPS and genetic data should provide detailed insight into dispersal and 

population connectivity (Helfer et al. 2012).  
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Cape buffalos live in mixed-sex groups that vary in size between 10 to more than 

1500 individuals (Sinclair 1977, Prins 1996). Groups are primarily made up of females and 

their offspring, subadults of both sexes, and a small proportion of adult males. Both genetic 

and observational studies found that almost all males leave their native groups before 

reaching sexual maturity (Sinclair 1977, Prins 1996, Van Hooft et al. 2003). In adulthood, 

they move regularly between mixed-sex groups and bachelor groups according to the 

seasonal mating opportunities, forage availability and predation avoidance (Sinclair 1977, 

Prins 1996, Halley and Mari 2004). Whilst primary literature generally considers females as 

gregarious with a strong fidelity to their group and limited intergroup movements (i.e. 

dispersion, Sinclair 1977, Prins 1996), more recent observational and genetic studies 

highlighted the dispersal of adult and immature females. The use of GPS collars has made 

it possible to record long-distance dispersal in females among populations (Halley et al. 

2002, Naidoo et al. 2014, Caron et al. 2016). Genetic evidence also suggests that long-

distance dispersal of females is not uncommon. For example, Simonsen et al. (1998) found 

little genetic structure in mitochondrial DNA inherited from the mother or microsatellite 

(nuclear) loci among buffalo populations in 11 localities in eastern and southern Africa. Most 

genetic studies on the Cape buffalo have been carried out at the population level (national 

parks and game reserves, Simonsen et al. 1998, Van Hooft et al. 1999, 2000, 2002, Smitz 

et al. 2013, 2014). At the group level, only Van Hooft et al. (2003) explored the dispersal 

capacity and the differences between sexes to my knowledge. Based on mitochondrial DNA 

and microsatellites collected in two populations, they estimated that 5-20% of female 

buffalos older than two years of age dispersed between groups per generation (7 years) 

against close to 100% for males. Telemetry studies support frequent switches among 

groups within a local population (Halley et al. 2002, Cross et al. 2004, Roug et al. 2020). 

Despite abundant evidence that dispersal is common in both male and female Cape 

buffalos, no studies have explored whether there are differences in the sex-biased dispersal 

patterns between different populations.  

In this chapter, I used GPS and genetic data collected over a seven-year study in 

10 southern African populations to assess the pattern of dispersal behaviour in the Cape 

buffalo at two organizational levels: among populations and among groups within local 

populations. Specifically, I explored the following three questions: (1) Is there genetic 

differentiation between populations? (2) Is there isolation by distance pattern amongst 

buffalo populations? and (3) Is there sex bias in dispersal at both group and population 

levels? I used bi-parentally inherited markers (14 microsatellite loci) and sex-linked markers 

(three Y-chromosomal microsatellites and 580-bp of mitochondrial DNA D-loop region) to 

(i) calculate the genetic differentiation levels between populations and the correlation 

between genetic and geographical distances using the bi-parentally inherited markers, (ii) 

compare the population genetic structure of the three markers and (iii) calculate the 
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relatedness and/or assignment indices separately for the sexes between populations and 

between groups using the bi-parentally inherited markers. I used GPS data collected on 

females to examine whether there is concordance between the results of telemetry and 

genetic. I described the dispersal events for this sex (e.g. distances travelled, timing and 

duration) between populations and between groups. With these data, I aim to improve our 

understanding of the characteristics of dispersal events of Cape buffalos.  

 

2 Methods 

2.1 Genetic data  

In this study, I had access to published data of genetic markers from 264 Cape buffalos, 

sampled from 19 study sites in 6 countries of southern Africa (Smitz et al. 2013, 2014). The 

samples consisted in blood, a small piece of ear, hair or dung samples. All individuals were 

of known sex. Further details of how animals were sexed, DNA samples collected, DNA 

extracted and genotyping methods can be found in Smitz et al. (2013, 2014). The original 

dataset consisted of individuals genotyped for three different genetic markers: (1) all 

individuals were characterized using 14 autosomal microsatellite loci developed in cattle 

(TGLA227, TGLA263, ETH225, ABS010, BM1824, ETH010, SPS115, INRA006, BM4028, 

INRA128, CSSM19, AGLA293, ILSTS026, DIK020 described by Van Hooft et al. 1999 and 

Greyling et al. 2008); (2) within this sample set, 86 males were genotyped at three Y-

chromosomal microsatellites (UMN1113, INRA189, UMN0304 described by van Hooft et al. 

2007); and (3) 48 buffalo mtDNA sequences for the D-loop region. I read and aligned the 

mtDNA sequences using MEGA 10.0 (Tamura et al. 2011), with corrections by eye. Newly 

sequenced samples led to the identification of a 580-bp overlapping region. 

For this study, I omitted the samples from four study areas, representing 49 

individuals because none or only one male was sampled [‘Hwange’, ‘Manguana’, ‘Niassa’ 

and ‘Victoria Falls’ in Smitz et al. (2013, 2014)]. The samples previously collected in the 

study sites ‘Kruger’, ‘Sengwe’ and ‘Crooks Corner’ were grouped into a single population 

(hereafter referred to as ‘Kruger’) for further analyses because monitoring with GPS collars 

has revealed that individuals from those sites belonged to neighbouring groups with 

overlapping home ranges (Chapters 3 & 4). Finally, the dataset used for this study 

comprised 205 individuals from 10 populations (nmale = 80; nfemale = 125) genotyped at 14 

autosomal microsatellite loci, 68 males genotyped at three Y-chromosomal microsatellites, 

and 48 mitochondrial DNA sequences (see Figure 1, Table 1).  
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Figure 1. Map of Africa representing the 10 populations analyzed in this chapter. Light blue 
shapes on the left map represent the actual distribution of the Cape buffalo according to the 
IUCN Antelope Specialist Group, 2008.  Green zones correspond to the protected areas (East 
1998).  A. Mozambique, B. Zimbabwe, C. Botswana, D. South Africa. 1. Hluhluwe-iMfolozi, 2. 
Kruger North, 3. Limpopo, 4. Gorongosa, 5. Marromeu, 6. Gonarezhou, 7. Malilangwe, 8. Mana 
Pools, 9. Chobe, 10. Okavango Delta. The squares represent the localities where genetic and 
telemetry data were collected while the circles indicate the localities where only genetic data 
were collected.  

 

Table 1. Sampled populations and genetic markers genotyped. This table summarizes the 
sample origin (country and sampling locality) and sample size per locality for each sex and 
each kind of genetic marker involved in the present study. 

Population 
ID 

Fig.1 

Autosomal 

microsatellites 

Y-chromosomal 

microsatellites 
mtDNA 

Nfemale Nmale Total Nmale Nfemale Nmale Total 

South Africa 

Hluhluwe-

iMfolozi 

1 8 12 20 12 7 12 19 

Kruger  2 32 12 44 12    

Mozambique 

Limpopo 3 3 2 5 2    

Gorongosa 4 3 4 7 3    

Marromeu 5 14 7 21 7    

Zimbabwe 

Gonarezhou 6 27 10 37 8 16 13 29 

Malilangwe 7 14 6 20 6    

Mana Pools 8 2 8 10 8    

Botswana 

Chobe 9 11 10 21 4    

Okavango 

delta 

10 11 9 20 6    
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2.2 Estimating sex-biased dispersal among populations 

a) Isolation-by-distance and comparison between mitochondrial DNA, Y-

chromosome and autosomal microsatellites 

To investigate potential differences in dispersal rates between females and males in the 

Cape buffalo, I compared the population genetic structure (Fst) of the three Y-linked 

microsatellites (paternal marker), 580-bp of mtDNA D-loop sequences (maternal marker) 

and 14 autosomal loci (biparental marker). Higher level of genetic distances (Fst) in 

maternally inherited markers than paternally or biparentally inherited markers usually 

indicates females’ philopatry and therefore, male-biased dispersal (Prugnolle and de Meeus 

2002). I calculated Fst, the proportion of genetic variation among populations, in Arlequin 

3.5 (Excoffier and Lishcer 2010) for each of the three genomic regions. For autosomal loci, 

overall and population pairwise Fst were calculated for all available individuals (n = 205) 

sampled in 10 populations based on microsatellite allele frequencies. For Y-chromosome, 

overall and population pairwise Fst were calculated based on haplogroup frequencies for 

the sub-sample of 68 males that were genotyped at the three Y-markers. For mtDNA, overall 

Fst was calculated based on haplotype frequencies for a sample of 48 individuals in two 

populations. I tested the overall Fst using Markov-chain approximation with 100 000 steps 

and 10 000 dememorization steps.  

I also tested for isolation by distance by investigating the correlation between genetic 

distances (Fst, based on microsatellite data) and geographical distances among the 10 

populations. I measured the geographical distances among populations using R, v. 3.6.0 

(R Development Core Team 2019). Then, I assessed the correlation between genetic and 

geographical distance matrices with 95% confidence interval (CI) using Mantel’s tests in 

Arlequin 3.5 (Excoffier and Lishcer 2010) with 10 000 permutations.  

 

b) Sex differences based on microsatellite loci 

To further understand sex-biased dispersal, I compared multiple genetic indices between 

males and females based on biparentally inherited loci (14 autosomal loci, Goudet et al. 

2002) sampled on 205 individuals from 10 populations (nmale = 80; nfemale = 125). For the set 

of females and the set of males, I quantified mean assignment index (mAIc) and variance 

of the assignment index (vAIc). I used the methods implemented in FSTAT v.2.9 (Goudet 

2001) to measure the values of mAIC and vAIC and to determine the statistical significance 

of differences in these within-population indices using 10 000 randomizations. I used one-

sided tests and females were chosen a priori as the most philopatric group based on 

previous research suggesting the limited movement of females (Van Hooft et al. 2002). 

Additionally, I calculated mean values of relatedness within populations between the sexes 

in Coancestry 1.0 (Wang 2011), using two likelihood estimators (TrioML and DyadML) and 



Chapter 5 Dispersal using GPS tracking and genetic markers 

91 

one moment estimator (Queller and Goodnight’s) with 1,000 bootstraps (Queller and 

Goodnight 1989, Milligan 2003, Wang 2007). Differences in the dispersal between the 

sexes should result in significant dissimilarity in the population genetic parameters. Mean 

assignment index and relatedness are expected to be higher in the philopatric sex, whereas 

the variance of the assignment index should be lower (see Goudet et al. 2002 for further 

explanation).  

 

c) Fine-scale analyses in two populations 

Because allele frequencies and genotypes between philopatric individuals and dispersers 

can be better estimated with more samples, I also examined the sex-biased dispersal in the 

two largest sampled populations: Gonarezhou (including 37 individuals) and Kruger (44 

individuals). Using biparentally markers, I evaluated relatedness between the sexes in each 

population using Coancestry 1.0 (TrioML, DyadML and Queller and Goodnight’s index).  

 

2.3 Estimating sex-biased dispersal among groups 

I explored sex-biased dispersal at the group level using genetic data in only 2 geographically 

distinct populations (Gonarezhou and Kruger) because the GPS tracking of female buffalos 

(presented in part in Chapter 3) allowed to identify group membership. I used GPS locations 

collected between 2008 and 2015 on 47 female buffalos (total across the sites). Of the 47 

buffalos, 27 were adult females (12 in Gonarezhou and 15 in Kruger), because their 

behaviours are generally representative of those of the group and were thus appropriate for 

identifying study groups (see below). Twenty subadult females were also tracked in Kruger, 

precisely to explore the dispersal behaviour of individuals of this age class (Caron et al. 

2016). Male buffalos tend to lose their collar within a few months of deployment, either 

intentionally or by accident during fights (Halley and Mari 2004, Caron et al. 2016).  

The data acquisition periods extended from October 2008 to December 2012 in 

Gonarezhou and from June 2010 to July 2015 in Kruger. GPS loggers were scheduled to 

acquire locations at synchronous times every hour. The computation of the home ranges of 

adult females identified 6 groups: 2 in Gonarezhou and 4 in Kruger (see Chapters 3 & 4). 

The resulting home ranges were consistent with the view that groups were spatially 

separated with little overlap in their home ranges between groups at the time scales at which 

tracking collar data were collected. All groups had multiple capture locations (because 

individuals formed subgroups that regularly merge) and multiple individuals were captured 

at each capture location. Using the location of individual captures, I determined the group 

membership of GPS-collared subadult females and individuals captured for genetic 

sampling but not for fitting a GPS collar (including males and females). An individual was 
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therefore assigned to a group when its capture location was the same as that of the GPS-

collared adult females used in the group definition. When possible (i.e. GPS-collared 

subadult females), I verified groupings based on GPS locations. The number of collared 

adult and subadult females in each group varied between 4 and 19 (Gonarezhou groups: 

n1 = 9, n2 = 8 collared buffalos: Kruger groups: n1 = 19, n2 = 6, n3 = 9, n4 = 4 collared buffalos, 

Chapters 3 & 4).  

After defining the 6 study Cape buffalo groups, I examined patterns of relatedness 

within and among groups. I estimated pairwise relatedness values based on biparental 

microsatellites for individuals sampled in the same population both within and between 

groups separately for each sex, but also for all individuals. I used Coancestry 1.0 to 

calculate the relatedness index of Queller and Goodnight (1989) with 1,000 bootstraps. 

 

2.4 Dispersal events of female Cape buffalos  

I also used GPS data from female Cape buffalos in Gonarezhou and Kruger to describe the 

characteristics of dispersal events. I determined females engaging in dispersal using time-

series of x and y location values, and visual inspection of movement data in QGIS 3.0 (QGIS 

Development Team 2020). I identified the initiation point of dispersal by a steep increase in 

the value of x and y locations and the end point of dispersal by a plateau in x and y locations, 

suggesting that the animal potentially settles into a new group (Appendix 1). From dates of 

initiation and end points, I calculated the (1) dispersal duration as the number of days 

between initiation and end points, (2) the dispersal distance as both the straight-line 

distance from initiation point to end point and (3) the cumulative distance of the dispersal 

path. The cumulative distance was calculated as the sum of the Euclidean distances 

travelled between successive positions (i.e. the movement path) between the start and end 

points. I further calculated the ratio between cumulative dispersal distance and straight-line 

distance for each individual. I also calculated the average cumulative distance travelled 

within a 24-hour period for philopatric individuals to compare the movements between 

dispersers and philopatric individuals. For each disperser, I calculated the ratio between its 

cumulative dispersal distance and the average cumulative distance of the philopatric 

individuals on the same time scale (i.e. the average distance travelled by the philopatric 

individuals within one day was multiplied by the duration of the dispersal event of the 

disperser).  
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3 Results 

3.1 Sex-biased dispersal among populations 

a) Isolation-by-distance and comparison between mitochondrial DNA, Y-

chromosome and autosomal microsatellites 

The Mantel test detected a significant positive correlation between pairwise population 

genetic distances (Fst) based on microsatellite loci and geographical distances (R = 0.54, P 

= 0.001, Figure 2) among the 10 populations. Removing Hluhluwe-iMfolozi, the most 

isolated population, decreased this signal (R = 0.46, P = 0.01).  

 

Figure 2. Correlation between pairwise geographical and genetic distance (Fst). The genetic 
distance (Fst) was based on microsatellite loci and calculated for all possible population pairs 
(see Table 2).  

 

The pairwise Fst values from microsatellites estimated among 10 populations ranged 

from -0.004 to 0.19, whilst the Y-markers Fst values among the same populations ranged 

from -0.09 to 0.42 (Table 2). The comparison of genetic differentiation values between these 

two types of markers revealed that both overall Fst and pairwise Fst based on Y-markers (Fst 

= 0.21, p < 0.001) were higher than the values from autosomal microsatellites (Fst = 0.06, p 

< 0.001). Based on the comparison of genetic differentiation values between the three types 

of markers estimated from two populations, I found that Fst based on Y-markers (0.42, p < 

0.001) was higher than the values from mtDNA markers (0.23, p < 0.001) and autosomal 

microsatellites (0.15, p < 0.001). Therefore, paternal markers showed greater genetic 
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Table 2. Population pairwise Fst values from autosomal microsatellites (above diagonal) and Y-chromosome microsatellites (below diagonal) for 10 Cape 
buffalo populations. An asterisk (*) indicates a significant difference between populations according to the exact test p-values with a significance level of 
0.05.  

 

 Chobe Gonarezhou Gorongosa Kruger Limpopo Malilangwe Mana 

Pools 

Marromeu Okavango 

Delta 

Hluhluwe-

iMfolozi 

Chobe  0.03* 0.04* 0.04* 0.06* 0.02* 0.03* 0.06* -0.002 0.17* 

Gonarezhou 0.21  0.01 0.01* 0.03 0.01* 0.02* 0.06* 0.04* 0.15* 

Gorongosa 0.15 0.32*  -0.004 0.03 0.02 0.03 0.06* 0.05* 0.13* 

Kruger 0.12 0.17* 0.20  0.005 0.02* 0.03* 0.07* 0.05* 0.15* 

Limpopo 0.00 -0.09 0.21 -0.03  0.02 0.02 0.07* 0.06* 0.12* 

Malilangwe -0.09 0.07 0.08 0.06 -0.09  0.03* 0.06* 0.01* 0.13* 

Mana Pools 0.10 0.29* 0.26 0.20* 0.16 0.09  0.05* 0.02* 0.17* 

Marromeu 0.11 0.28* 0.24 0.19* 0.14 0.10 0.20*  0.06* 0.19* 

Okavango 

Delta 

-0.05 0.22* 0.17 0.14* -0.05 -0.02 0.13 0.13*  0.16* 

Hluhluwe-

iMfolozi 

0.34* 0.42* 0.40* 0.32* 0.41 0.26* 0.38* 0.38* 0.33*  
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structure among the two populations than maternal and biparental markers. This high 

difference may, however, be due to the inclusion of the population Hluhluwe-iMfolozi, which 

is significantly different from almost all populations (Table 2).  

 

b) Sex differences based on microsatellite loci 

The values obtained for the three relatedness indices were significantly different between 

sexes (p < 0.001, Table 3), with males showing higher relatedness values compared with 

females. Therefore, males were more related and had a greater probability of being 

residents than do females. By contrast, there was no significant difference in either the 

mean or the variance of assignment index between males and females (Table 3).  

 

Table 3. Parameters of sex-biased dispersal for female and male Cape buffalos among 10 
populations. mAIc and vAIc, the mean and the variance of the assignment index, respectively. 

   Relatedness    

 mAIc vAIc TrioML DyadML 
Queller and 

Goodnight 
n 

Females 0.03222 14.00863 0.069106 0.092928 0.069291 125 

Males -0.05035 12.30827 0.11694 0.14551 0.1141 80 

p-value 0.4344 0.3850 < 0.001 < 0.001 < 0.001  

 M = F M = F M > F M > F M > F  

 

c) Fine-scale analyses in two populations 

Within the population Gonarezhou, I found that two out of the three relatedness values were 

significantly higher in males than in females (Table 4), similarly with the results from the 10 

populations; therefore, males were more related within the population and had a greater 

probability of being philopatric. In contrast, there was no difference in the three relatedness 

values between the sexes in Kruger (Table 4).  
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Table 4. Relatedness for female and male Cape buffalos in Gonarezhou and Kruger. TrioML 
and DyadML: two likelihood estimators; Queller and Goodnight: one moment estimator. p-
values indicate the confidence in difference between sexes with a significance level of 0.05.  

  Relatedness  

 
 

TrioML DyadML 
Queller and 

Goodnight 
n 

Gonarezhou 

 Females 0.03699 0.04945 -0.02780 27 

 Males 0.07766 0.08902 -0.05018 10 

 p-value 0.0099 0.0301 0.4821  

Kruger 

 Females 0.03058 0.04091 -0.02008 32 

 Males 0.02721 0.03764 -0.05240 12 

 p-value 0.6988 0.7525 0.1066  

 

3.2 Sex-biased dispersal among groups 

The average pairwise relatedness was estimated both within and between groups to identify 

whether short-distance group switching occurred and whether this was different between 

the sexes. Due to small sample sizes, the r values were negative. In Kruger, when all 

individuals were included, average pairwise r within groups was not different from that 

between groups (within-group, r = -0.023, between-group, r = -0.026, p = 0.86). Similarly, 

by analysing each sex separately, average pairwise relatedness between females and 

between males within groups was not different from that between groups (females: within-

groups r = -0.026, between-groups r = -0.023, p = 0.86; males: within-groups: r =-0.088, 

between-groups: r = -0.043, p = 0.38). In Gonarezhou, as genotyped males were all in the 

same group, I only calculated pairwise relatedness for all individuals and females. The 

relatedness between the females was not different whether they were in the same group or 

not (within-groups: r = -0.051, between-groups: r = -0.065, p = 0.73) as well as when I 

included all individuals (within-groups: r = -0.025, between-groups: r = -0.068, p = 0.11).  

 

3.3 Dispersal events of female Cape buffalos  

Based on radio-tracking data, four of the 57 female Cape buffalos collared in this study 

dispersed during monitoring; all of these were subadults in Kruger. Two of these travelled 

straight-line distances greater than 50 km during their dispersal period, supporting a long-

distance dispersal among populations whilst the two other ones dispersed to neighbouring 

groups within the same population (Table 5). One female from Kruger temporary settles in 

Gonarezhou during dispersal for 55 days. All dispersal events occurred during the wet 

season (generally extending from November to March). By comparison, the average 

cumulative distance travelled by philopatric individuals within one day was 7.4 km in 
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Gonarezhou and 4.7 km in Kruger. The ratio between cumulative dispersal distance of the 

disperser and the average cumulative distance of the philopatric individuals on the same 

time scale ranged from 1.03 and 1.9.  

 

Table 5. Summary of dispersal distances for four female Cape buffalos in Kruger.  

Buffalo 

ID 

Days 

monitored 

Dispersal 

Age 

(years) 
Start date End date 

Duration 

(days) 

Cumulative 

distance 

(km) 

Straight-

line 

distance 

(km) 

B34560 149 2.5 23/12/2013 29/12/2013 6 53.4 12.5 

B34565 395 4 06/01/2014 16/03/2014 68 610.1 90.4 

B34568 176 4 25/02/2014 06/03/2014 9 75.0 51.7 

B34569 453 3 20/03/2014 01/04/2014 12 58.0 10.5 

Note: One female had multistage dispersal (B34565). For this female, temporary settlement 
movements were included in the cumulative distance and dispersal duration.  

 

4 Discussion 

In this study, I used GPS data and three types of molecular markers to examine sex-biased 

dispersal patterns in the Cape buffalo at two organizational levels. I found (i) low levels of 

genetic differentiation among Cape buffalo populations with a strong isolation-by-distance 

pattern of genetic variation, and (ii) the dispersal distances, just like dispersal rates, may 

differ among sexes. While my data suggest that both sexes disperse at similar rates 

between groups within a local population, on a larger spatial scale, i.e. among populations, 

females might disperse more than males. Overall, my results support the idea that Cape 

buffalos have good dispersal ability among populations and among groups. They also give 

a new example supporting the dispersal of females, refuting the presumed philopatric 

behaviour of this sex.  

 

4.1 Low levels of genetic differentiation among populations 

I found a low level of genetic differentiation among Cape buffalo populations (Fst = 0.06 

based on autosomal microsatellites), especially among the closest populations, and these 

findings are consistent with previous studies. Simonsen et al. (1998) worked on 11 

populations of Cape buffalo in eastern and southern African and found an overall Fst value 

of 0.098 based on mtDNA control region sequences and 0.085 when estimated with 

autosomal microsatellites. Van Hooft et al. (2000) recorded an overall Fst value of 0.059 

based on autosomal microsatellites on nine African buffalo populations throughout Africa 
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(one population of S. c. nanus). More recently, Smitz et al. (2014) investigated the genetic 

structure of 16 Cape buffalo populations (including some of this study) and obtained 

pairwise Fst ranging from -0.013 and 0.196. Furthermore, Lorenzen et al. (2008) have 

concluded that the African buffalo has the weakest genetic structure of all African ungulates 

studied to date. Based on simulation data, Goudet et al. (2002) showed that relatedness is 

the most efficient measure to detect differences in dispersal between sexes when dispersal 

is high (more than 10%) while the variance in assignment index (vAIc) should be more 

efficient for low dispersal rates (less than 10%). The power to detect sex-biased dispersal 

with the mean in assignment index (mAIc) is intermediate (Goudet et al. 2002). In this study, 

the comparison of autosomal microsatellite-based indexes between sexes across 

populations showed that only the relatedness coefficient was significantly different between 

the sexes, which is consistent with high gene flow among populations. In addition, the 

telemetry data support the ability of females (no data on males) to engage in long-distance 

dispersal events. However, it is worth noting that the translocations that have taken place 

over the last decades among protected areas in southern Africa may have promoted gene 

flow among populations.  

 

4.2 Sex differences dispersal at the population level 

Here, the field-based GPS data on females revealed their ability to engage in long-distance 

dispersal events and this is supported by significantly different relatedness coefficients 

between sexes. According to the comparison of microsatellite-based indices across the 10 

populations, I found that males were more related within populations than females. This 

pattern may be a consequence of a higher proportion of philopatric individuals being male, 

indicating a bias towards female dispersal. Mean assignment index and variance 

assignment index were not significantly different between sexes, which may be due to low 

statistical power caused by long geographical distance between populations (Goudet et al. 

2002). Although non-significant, vAIc was larger for females than for males, indicating that 

the sample of females contained a higher mixture of residents and immigrants than that of 

males, offering further support that females disperse more. However, I must note that the 

mating will obscure sex-biased dispersal signal in biparental markers because allele 

frequencies are equally randomized between females and males in the offspring (Goudet 

et al. 2002). This may explain why some genetic indices are not significantly different 

between sexes. Despite the non-significance of some indices, most molecular statistics and 

field-based tracking data refute the traditional view of female group philopatry, which is in 

concordance with previous telemetry studies (Halley et al. 2002, Spaan et al. 2019).  

 The comparison of genetic differentiation between different molecular markers 

yielded fewer clear-cut results. Across 10 populations, I found higher level of genetic 
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differentiation for the three Y-linked microsatellites, which was about 3.5 times higher than 

the overall Fst for autosomal loci. When I compared the genetic differentiation between three 

molecular markers across Gonarezhou and Hluhluwe-iMfolozi (the only two populations 

where mtDNA sequences were available), I found that the Fst value for Y-linked 

microsatellites was 2.8 times higher than the overall Fst for autosomal loci and 1.8 times 

higher than for mtDNA. This might be interpreted as evidence for higher female than male 

dispersal rates, consistent with the results of my previous genetic analyses and GPS data. 

The differences might also reflect differences in effective population size between females 

and males. Indeed, a difference in Fst values between nuclear and sex-linked markers is 

expected even where there is no sex bias in gene flow because of differences in effective 

population size between nuclear, mitochondrial and Y genes (Prugnolle and de Meeus 

2002). The effective population size of haploid markers (here, mtDNA and Y-linked 

microsatellites) is generally assumed to be four times less than in diploid markers. 

Therefore, the Fst values estimated with mtDNA and Y-linked chromosome are theoretically 

expected to be at least four times the Fst values estimated with microsatellite loci in the 

absence of sex-biased gene flow. Here, the ratio of Fst for Y-linked and autosomal 

microsatellites (3.5) suggests that differences in effective population size may explain the 

differences in Fst values between nuclear and Y-linked markers. Van Hooft et al. (2003) 

showed that female Cape buffalos have a much higher effective population size as 

compared to males. They suggested that the strong male dominance among groups is 

responsible for the lower male effective population size because a very small proportion of 

males reproduce. This may contribute to a higher variation in allele frequencies observed 

in females than in males. I also note that the values of genetic differentiation estimated for 

the three markers between Gonarezhou and Hluhluwe-iMfolozi were higher than values 

calculated across 10 populations. Hluhluwe-iMfolozi is a protected area in South Africa that 

has been completely isolated for about 100 years with low gene flow with other populations. 

Finally, even if the comparison of genetic differentiation between the different molecular 

markers tends to show a female-biased dispersal, in agreement with the dispersal pattern 

observed based on my previous analyses, the differences might only result from differences 

in effective population size.  

The fine-scale analyses performed in two populations revealed differences in the 

pattern of sex-biased dispersal between the populations. Based on the comparison of 

microsatellite-based indices between sexes across the two populations (i.e. Gonarezhou 

and Kruger), I found that two out of three relatedness values were significantly higher in 

males than in females in Gonarezhou, whereas there was no difference in the relatedness 

values between sexes in Kruger. In other words, in Kruger, the dispersal rate for males and 

females would be similar, while in Gonarezhou, the proportion of immigrants would be 

higher in females than in males. Besides, females from the north Kruger have already been 
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observed to disperse to Gonarezhou (Caron et al. 2016). Differences in social and spatial 

environments between these two populations may be responsible for this variation in sex-

biased dispersal. For example, Lane and Shine (2011) showed changes in the direction of 

sex-biased dispersal in two sea snake species (Laticauda saintgironsi and L. laticaudata) 

in the Pacific nation of New Caledonia, and hypothesized that this variation may be due to 

spatial variation in sex-specific resources. Matthysen (2012) suggested that increased 

population density can modify habitat quality, and thus promote dispersal of females. It is 

therefore likely that, depending on the ecological (e.g. resource distribution) and social 

factors (e.g. population density, group size) of the environment of the population, the 

dispersal rate and distance of males and females vary between populations. Similar 

intraspecific variation in the direction and/or degree of sex-biased dispersal has been 

noticed in the Eurasian badger (Meles meles, Frantz et al. 2010) and the roe deer 

(Wahlström and Liberg 1995). I therefore suggest that dispersal of the Cape buffalo 

depends, not only on organization level considered (i.e. population or group level), but also 

on the social and environmental context that can differ between populations. However, the 

lower level of relatedness in females than in males in Gonarezhou may also result from 

numerous translocations that have taken place over the last decades in this population 

(Smitz et al. 2014).  

 

4.3 Sex differences dispersal at the group level 

The comparison of relatedness values for females and males within and between groups in 

two populations suggests no difference in dispersal rates between sexes at group level. 

Neither males nor females were more related when they were in the same group than in 

different groups, supporting short-distance movements for both males and females. The 

GPS data on females also support the ability of females to disperse over short distances. 

Differences in dispersal distance between sexes are common in mammals (Ji et al. 2001, 

Fontanillas et al. 2004). However, it is not clear why the direction of sex-biased dispersal in 

the Cape buffalo differs according to the organizational level. Short movements may allow 

avoiding inbreeding or mating competition, whereas greater distances may be required to 

escape poor environmental conditions or to colonize empty territories. Dispersal events of 

females between neighbouring groups have already been recorded in northern Botswana 

(Halley et al. 2002). Although males likely disperse to neighbouring groups to reduce 

inbreeding and mating competition, pressures underlying short-distance female dispersal 

may be more difficult to understand. I tentatively suggest that short-distance movements 

could allow females to improve their social status within the group. Consistent with this 

hypothesis, Spaan et al. (2019) showed that females in poor body condition were more 
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likely to disperse, while Prins (1996) observed that individuals at the rear of the group are 

generally in the least favourable condition.  

One limitation of this study is the small number of Cape buffalo groups that have 

been examined and the small number of individuals sampled in each group. Initially, the 

study design was developed either for telemetry studies (females selected) or for exploring 

genetic structure at the regional level. The authors therefore sampled a few individuals from 

many populations, whereas a group-wide study would require sampling a large number of 

individuals in a few groups within the same population. Therefore, the lack of significant 

difference in the relatedness values between individuals belonging to the same group and 

those belonging to different groups may be due to low sample size. There is a need to 

collect more genetic samples from individuals from the same group. In addition to the small 

number of individuals that have been sampled in each group, there is another limitation 

relating to male behaviour. Adult males are known to regularly switch between neighbouring 

groups within the population according to the seasonal mating opportunities, forage 

availability and predation avoidance (Sinclair 1977, Prins 1996, Halley and Mari 2004). 

Identifying group membership for males is thus challenging and males can reproduce in 

several groups. The similar relatedness values between individuals belonging to the same 

group and individuals belonging to different groups may simply be the result of the frequent 

changes of males between neighbouring groups rather than short-distance dispersal of 

females and males.   

 

4.4 Characteristics of female dispersal events 

The genetic and telemetry data showed that females can disperse between neighbouring 

groups whilst some of the females travel very long distances during dispersal. From 

telemetry data, four out of 47 females (8.5%) dispersed, which is lower to previous estimates 

of 14% and 19% for groups in southern Kruger National Park (travelling distances up to 110 

km, Spaan et al. 2019)  and 17.7% in Chobe groups (8 out of 45 females over distances up 

to 133km, Halley et al. 2002). In my study, the dispersing females were subadults whilst the 

two comparable studies (Halley et al. 2002, Spaan et al. 2019) were mostly based on adult 

females even though younger adult cows were more likely to disperse (Spaan et al. 2019). 

I found that two out of the four dispersing females had long-distance dispersal events, and 

the two other ones had short-distance dispersal, switching between neighbouring groups. 

These results are consistent with previous observations in Chobe, where both short- and 

long-distance group switching were noted but performed by adult cows (Halley et al. 2002). 

My genetic and telemetry data support that female Cape buffalos also contribute to gene 

flow within and among populations, and colonization and population expansion with short- 

and long-distance dispersal movements. This indicates that the dispersal capacity and 
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potential for dispersal are not limiting factors to either sex in a Cape buffalo population. 

Interestingly, with one exception, dispersal movements occurred quickly, and dispersers 

moved faster than philopatric individuals. The comparison of straight-line distance to 

cumulative movement distance also showed that cumulative movement distances were on 

average only 1.4 times (or 6.7 for the individual with 2 dispersal stages) longer than straight-

line distances for the long-distance dispersal events, whilst cumulative distances for short-

distance dispersal events were on average 4.3 – 5.5 times longer than straight-line 

distances. This comparison indicates that females engaged in long-distance dispersal 

events have faster and straighter movements than females engaged in short-distance 

dispersal events that explore and move from group to group before settling.  

Despite the few dispersal events observed, all of them occurred during the wet 

season, consistent with results of Spaan et al. (2019). Since resources are abundant during 

this season, females are unlikely to disperse to avoid intragroup competition. By contrast, 

females may disperse to minimize inbreeding, in particular because all the females that 

have dispersed are subadults, i.e. before their first reproduction. However, the reasons for 

engaging in either long- or short-distance dispersal are unclear. Females that dispersed to 

neighbouring groups did so within Kruger NP. Females involved in long-distance dispersal 

undertook these events on communal lands (although one of them settled temporarily in 

Gonarezhou NP, Caron et al. 2016) whilst it may be easier for females to disperse within 

the park (e.g. low human disturbance, high resource availability).  

The lack of GPS data on males is a limitation of this study. Males are believed to 

move between groups, but collecting movement data for this sex class is challenging since 

males tend to break their collar within a few months of deployment, either intentionally or 

by accident during fights (Halley and Mari 2004, Caron et al. 2016). Yet, movement data on 

males would allow a direct comparison of the dispersal patterns of males and females, by 

giving information on dispersal rate and distance. This may help to understand the 

mechanisms responsible for long and short-distance dispersal in both males and females.  

 

5 Conclusions 

By combining GPS and genetic data, this study gives a well-supported example of Cape 

buffalo female dispersal between neighbouring groups or between populations. The 

originality of this work is that the direction of the sex-biased dispersal differ depending on 

the organizational level considered. Thus, the results suggest that dispersal is female-

biased when happening among populations, but probably not at a smaller organizational 

level (among groups within a local population), where the lack of significant difference in 

relatedness values for males and females when they are in the same group or not suggests 
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a lot of mixing for both sexes. I tentatively suggest that selective pressures depend on the 

organizational level considered, but it was difficult to determine the underlying causation of 

potential sex differences in dispersal rates and distances solely based on current data. 

However, the results of this study should be taken carefully as alternative explanations for 

the observed results are also possible. Extensive field observations, notably using GPS 

collars on both males and females combined with an important collection of genetic data, 

are needed to understand the mechanisms responsible for dispersal (e.g. social and 

ecological factors), as well as the difference in the dispersal rate between the sexes.  

 

6 Appendices  

Appendix 1. Movement path and time-series of x and y locations of n = 4 dispersers, all of 
which are subadults. B34565 experienced exploratory movements before returning to its new 
home range.  
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Abstract 

The spread of infectious diseases is highly dependent on contact patterns between 

individuals. In social species, contacts are largely contained within social groups, but 

diseases are unequally transmitted due to the individual differences in contact structure. In 

this chapter, I investigated the effects of temporal changes and heterogeneities in within-

group contact patterns of the Cape buffalo on a directly transmitted pathogen using network 

modelling. In southern Africa, the Cape buffalo (Syncerus caffer caffer) plays an important 

role in the maintenance of many livestock diseases of economic and zoonotic concerns. It 

is thus vital to understand how contact patterns influence the spread of diseases in buffalo 

groups in order to design effective control measures and to prevent transmission to human 

and livestock populations. Based on empirical data from GPS collars on two Cape buffalo 

populations, I constructed a dynamic system of contact networks and then simulated 

pathogen spread across these networks. I used the epidemiological parameters of Foot-

and-Mouth Disease Virus (FMDV) as an example. The contact networks were designed 

seasonally and for each population and included differences in the number and duration of 

contacts between individuals. I compared the spread of the epidemic to that in a dynamic 

system of random networks, where information about the heterogeneity in contact structure 

between individuals and temporal series of contacts were ignored. Results demonstrated 

that observed contact patterns in buffalo groups varied according to the season and the 

population. The contact structure slightly affected the pathogen dynamics within a group, 

but the speed of pathogen spread within a group was more dependent on the season during 

which the pathogen is introduced, although the outbreak size was similar between seasons. 

When the pathogen was introduced during the dry season, the pathogen spread faster and 

reached a larger number of individuals quicker. These results raise questions about the 

intragroup dynamics as a strategy for minimizing infection risk in the Cape buffalo and have 

important ecological and health implications for buffalos, humans and other animals like 

domestic livestock. 
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1 Introduction 

The structure of contacts between individuals of the host species is a determining factor for 

the spread of infectious diseases in a population (Altizer et al. 2003, Vicente et al. 2007, 

Nunn et al. 2015). A better knowledge of host contact patterns is essential for predicting 

and controlling disease epidemics (Keeling 1999, Miguel et al. 2013, Craft 2015, Reynolds 

et al. 2015). Traditional epidemiological models assume that the contact patterns are 

homogeneous between all individuals in the host population (Anderson and May 1991), 

which means that no heterogeneity in the mixing pattern or in the duration or rate of contact 

is considered. However, contact patterns are usually heterogeneous among individuals in 

human and animal populations, and this variation can impact the probability, size and 

persistence of disease epidemics (Lloyd-Smith et al. 2005, Bansal et al. 2007, Smieszek 

2009). 

 Contact patterns are strongly driven by the host’s social system. In solitary animals, 

individuals avoid each other and are only into contact during the breeding season, when 

hostile individuals settle territorial conflicts or “randomly” due to environmental constraints, 

e.g. in response to spatial heterogeneity in food availability (Mattisson et al. 2013, Guilder 

et al. 2015). In contrast, social species typically form groups, which can be stable and persist 

over a long period of time. Contacts between individuals are largely contained within social 

groups and information and micro-organisms such as pathogens are disproportionally 

transmitted within social groups (Grear et al. 2010, Carne et al. 2013). One of the most 

complex social systems is characterized by fission-fusion dynamics, where subgroups 

within a larger group regularly merge and divide, varying in size and demographic 

composition (Aureli et al. 2008). Studies examining this phenomenon have usually focused 

on the quantification of group patterns over time (i.e. mainly based on temporal changes in 

subgroup size and composition) and/or the role of environmental or internal factors (e.g. 

age, sex, kinship, Cross et al. 2005a, Parra et al. 2011, Bercovitch and Berry 2012, Kashima 

et al. 2013, Pinacho-Guendulain and Ramos-Fernández 2017). There is still little research 

investigating how this flexibility in group dynamics can influence the fine-scale patterns of 

disease transmission (i.e. within a group). Mathematical models suggest that pathogen 

spread in an entire group is more limited when the group is organized into subgroups of 

individuals (Salathé and Jones 2010, Griffin and Nunn 2012).  

Determining the contact structure of wildlife populations can be challenging, but new 

monitoring technologies have facilitated their quantification, greatly improving our ability to 

understand and characterize social behaviour (Krause et al. 2013, Kays et al. 2015). The 

heterogeneity in contact structure among individuals can be captured and analyzed using 

social network analysis (SNA, Craft 2015, Farine and Whitehead 2015, Silk et al. 2017). 
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Contacts between individuals that can promote pathogen transmission can be represented 

using networks, where individuals are represented as nodes, and interactions between 

them as edges and being used as a proxy of potentially infectious contacts (e.g. Carne et 

al. 2013). Network models can also be used to represent temporal instability of interactions 

representative of fission-fusion dynamics; this is often called “dynamic social networks” 

(Rubenstein et al. 2015). Rather than collapsing data over relatively long periods to capture 

associations (e.g. Hamede et al. 2009, Carne et al. 2014), several networks can be built on 

a fine temporal scale to represent temporal changes in contact structure. Network modelling 

is a powerful and essential method for understanding and predicting the dynamics of 

infectious diseases as it allows the simulation of pathogen spread across contact networks 

through time. These approaches have been widely used in the study of human diseases 

such as Severe Acute Respiratory Syndrome (SARS, Meyers et al. 2005) and more recently 

to investigate how contact patterns influence pathogen transmission in wild animal species 

(Drewe 2010, Chen et al. 2014, Reynolds et al. 2015).  

In this study, I use empirical data from GPS collars and epidemiological modelling 

to explore pathogen spread within Cape buffalo (Syncerus caffer caffer) groups. Cape 

buffalos live in groups primarily consisting of females and their offspring, subadults of both 

sexes, and a small proportion of adult males. Adult males can temporarily leave the group 

to live alone or in small bachelor groups (Sinclair 1977, Prins 1996). Social groups of 

buffalos are unstable, with subgroups of individuals regularly splitting and merging (“fission-

fusion dynamics”, Sinclair 1977). Recent fine-scale telemetry studies in southern Africa 

have quantified and indicated more complex fission-fusion dynamics than previously 

thought (Bennitt et al. 2018, Chapter 3). Individuals within the same group shared on 

average 79 % of their home range but spent around 38 % of their total time together 

(Wielgus et al. 2020). However, the strength of association varied greatly among individuals, 

with pairs of buffalo forming short-term associations and pairs forming long-term 

associations, and the associations between individuals varied across seasons (Wielgus et 

al. 2020). These new insights into Cape buffalo group dynamics can impact the way 

pathogens are transmitted within groups and populations. Disease ecology in the Cape 

buffalo is of particular importance given the roles the species can play (e.g. as a 

maintenance host) in many livestock diseases. These diseases are generally of economic 

or zoonotic (when pathogens are transmitted from livestock to humans) importance 

associated to the overlap between buffalo and livestock home ranges in many areas (Kock 

et al. 2014, Valls-Fox et al. 2018). So far, to my knowledge, only Cross et al. (2004) used a 

social-network based approach to explore disease transmission in buffalo population, but 

the association networks were constructed at the monthly scale. Yet, association patterns 

vary over short periods of time (e.g. fusion events of dyads occurred on average every 1-3 
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day, Chapter 3), which could have an important effect on the pattern of pathogen 

transmission.  

Here, I used a dynamic contact network approach to simulate pathogen spread in 

buffalo groups, in order to understand how the high flexibility in grouping patterns influenced 

the pathogen spread. I focused on foot-and-mouth disease virus (FMDV), a highly 

contagious virus that can be transmitted between buffalo and cattle with substantial 

economic losses due to productivity losses and costs associated with control (Dijkhuizen et 

al. 1995, Jori et al. 2009). FMDV is usually transmitted by direct routes through oral 

inhalation of viral particles during close contact between two hosts. Indirect transmission 

through contact with contaminated materials (e.g. ground, water) is also possible 

(Alexandersen et al. 2003), but this has never been quantified under natural conditions in a 

savanna ecosystem. In southern Africa, the Cape buffalo plays a dominant role in the 

maintenance of FMDV, acting as the main local reservoir (Guerrini et al. 2019). I began by 

describing the intra-group contact patterns of 39 radio-tracked Cape buffalo from 6 groups 

in 2 southern African populations by calculating contact rate and duration between dyads. I 

then produced a dynamic system of networks representing the contacts between buffalo 

dyads within the same group from GPS data. I employed a Suceptible-Exposed-Infected-

Recovered network modelling approach to investigate the potential spread of FMDV in 

dynamic contact networks. The aims of this chapter were (1) to compare the observed 

contact network approach with the more traditional approach (i.e. when all individuals had 

the same probability of contact) to determine if the structure of the network (i.e. fine-scale 

temporal changes and heterogeneity in contact structure) impacted the pathogen spread, 

and (2) to compare the results of contact networks and predicted pathogen spread between 

the populations and seasons to understand the impact of the environmental context and 

seasonal environmental changes (i.e. mainly in resource abundance) on the threat of 

disease. I tested the predictions that (1) the heterogeneity in the contact structure between 

dyads would slow the pathogen spread and reduce the outbreak size (Cross et al. 2004, 

Stehlé et al. 2011, Nunn et al. 2015) because infections should be contained within the 

highest associated individuals, (2) forming subgroups would reduce pathogen risk, because 

infections would spread quickly within subgroups and die out before spreading to other 

subgroups (Salathé and Jones 2010, Griffin and Nunn 2012), and (3) the seasonal changes 

in resource abundance and distribution, which are responsible for variation in contact 

patterns (Chapter 3) should, in turn, affect the pathogen dynamics.  
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2 Methods 

2.1 Study areas 

Data used in this study were collected in two Cape buffalo populations in southern Africa 

(Figure 1). The first population (hereafter called “Gonarezhou”) lives in the southern part of 

Gonarhezou National Park (5 053 km², Zimbabwe). The second population (hereafter called 

“Kruger”) is at the border between Zimbabwe and South Africa, along the Limpopo River, 

linking the northern tip of the Kruger National Park in South Africa (18 989 km², South Africa) 

with communal lands in Zimbabwe.  

The study areas were characterized by similar environmental conditions, containing 

a mix of bushland savanna, open grassland and woodland (Gertenbach 1983, Gandiwa and 

Zisadza 2010). Annual rainfall across the two study areas is similar with around 500 mm 

and the distribution of rainfall within the year is also similar between the populations, with 

most rainfall falling between November and March (Gertenbach 1980, Gandiwa et al. 2016). 

For seasonal comparisons, I defined two core seasons according to fixed dates based on 

similar rainfall patterns between the populations (Gertenbach 1980, Gandiwa et al. 2016), 

excluding the transitional periods between typically wet and dry seasons: the core wet 

season was the period running from January 1st to March 31st (n = 90 days) and the core 

dry season from August 15th to October 31st (n = 78 days).  

 

 

Figure 1. Location of the two study populations: Gonarezhou National Park in Zimbabwe and 
Kruger National Park in South Africa. 
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2.2 Collaring and GPS data collection 

Between 2008 and 2015, a total of 59 GPS collars were deployed on female Cape buffalos 

(Gonarezhou: n = 18, Kruger: n = 41). As adult males can leave the group temporarily, I 

focused on cows to study the movements of mixed groups (Sinclair 1977, Prins 1996). 

Female buffalos were classified in two age classes: subadult (2.5 - 4.5 years old) and adult 

(> 4.5 years old). All animals were captured by authorized personnel using established 

techniques (la Grange 2006) and were observed returning to their groups after collaring 

operations. All field operations were conducted following the legal and permit requirements 

of the countries in which they were carried out.  

The data acquisition periods extended from October 2008 to December 2012 in 

Gonarezhou and from June 2010 to July 2015 in Kruger and the duration of the tracking 

varied between 20 and 759 days (median = 409 days) across individuals. GPS loggers were 

scheduled to acquire locations at 1-hour intervals, although a GPS fix was not always 

acquired when scheduled. I computed fix success rate within each season for each 

individual and I retained data from 49 GPS collars for which the success rate was higher 

than 80% (corresponding to 39 different females given that some GPS collars were 

deployed on females already tracked the previous year). Of these 49 GPS collars, I used 

data from 38 collars in both wet and dry seasons (Gonarezhou: n = 15, Kruger: n = 23) and 

from 11 in a single season (Kruger: n = 11). 

 

2.3 Defining group membership 

Buffalo cows live in large groups whose members occupy an identifiable and stable home 

range (Ryan et al. 2006). To identify individuals in the same group, I considered seasonal 

home ranges as the 90% utilization distribution during the dry and wet seasons (Börger et 

al. 2006). Utilization Distributions (UD) were computed using the Movement-Based Kernel 

Density Estimation method (MKDE, Benhamou and Cornélis 2010) implemented in the 

‘adehabitatHR’ package in R (Calenge 2007). I measured the overlaps in the seasonal 

home ranges between individuals using the Bhattacharyya’s affinity index (Benhamou et al. 

2014). The index accounts for variation in the intensity of home range use and varies from 

0 (no overlap) to 1 (identical space use). Individuals with seasonal home range overlap ≥ 

0.6 were considered a priori to belong to the same group (Chapters 3 & 4).  

 

2.4 Empirical buffalo contact patterns  

Since buffalo cows live in large groups that exhibit fission and fusion events, resulting in 

subgroups that regularly merge and divide, two given individuals alternate between events 

when they are said to be into ‘contact’ and events when they are not, called ‘non-contact’. 
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To create contact networks with biologically meaningful group size (see section 2.5) and 

then assess the role of these contact networks in disease spread dynamics, I first quantified 

individual contact patterns (i.e. ‘contact’ or ‘non-contact’ periods) from empirical data. To do 

this, I calculated the distance between synchronous locations for every pair of individuals 

(i.e. dyad) belonging to the same group for a given season and a given year. I considered 

that two individuals were in contact when their hourly Euclidean distance based on GPS 

locations was ≤ 150 m. Some individuals left their group in which they were captured to be 

engaged in short- or long-distance movements such as dispersal or exploratory movements 

(n = 4 individuals, Chapter 5). For these individuals, I only considered GPS locations when 

they were in the group in which they were captured. A spatial window of 150 m was 

considered because (1) FMDV is most frequently transmitted by respiratory routes, 

therefore during close direct contacts (OIE 2009), (2) the buffalo tracked is part of a group, 

(3) the GPS precision is imperfect (i.e. precision range of 15 – 30 m from manufacturer 

data) and (4) the tracked individuals can move during the one hour between two recorded 

locations. To minimize the number of false contacts resulting from infrequent erroneous 

locations, some fluidity was allowed. If the distance between two individuals was ≥ 150 m 

for ≤ 2 h, I considered that they were still into contact. When one association value was 

missing between two known contact values (i.e. ‘contact’ or ‘non-contact’, e.g. the location 

of at least one of the two individuals had not been recorded), I substituted the missing value 

by the value of the previous hour (in other words, they were considered into contact only if 

they were in the previous hour). When two animals were in ‘contact’ or ‘non-contact’ for 

several consecutive intervals, the 1-h intervals were aggregated and were regarded as a 

single ‘contact’ or ‘non-contact’ event. For each dyad and each season, I calculated the 

probability of contact, as the total number of locations where the two individuals were in 

‘contact’ divided by the total number of synchronous locations. I also calculated the duration 

of every ‘contact’ and ‘non-contact’ event for each dyad, but I excluded the events 

containing at least one missing timestamp. I quantified both the ‘contact’ and ‘non-contact’ 

events to be able to create networks at larger group size taking into account the temporal 

variation in contact patterns between two individuals due to group dynamics and the 

causality constraints between events.  

I tested whether the duration of ‘contact’ and ‘non-contact’ events varied with the 

age of individuals, the season and the site using generalized linear mixed models with 

negative binomial distributions of errors. I used a separate model for contact and for non-

contact events. Age of dyad (adult – adult, subadult – subadult, adult – subadult) was 

included as a fixed effect as well as the season, site and interaction between the latter two. 

The dyad identity was a random effect to account for dyad variation. I used the Akaike 

Information Criterion corrected for small sample size (AICc) to test whether a simpler model, 

nested in the full model, is more parsimonious (Burnham and Anderson 2002). The most 
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parsimonious model was the model with both a ∆AICc < 2 and the lowest number of 

explanatory variables (Arnold 2010).   

 

2.5 Constructing contact networks on a larger group size 

To explore how the dynamic nature of the host contact network affects the dynamics of 

pathogen spread, I considered a set of contact networks built on the explicit representation 

of the dynamic interactions between buffalo dyads (i.e. where the contact structure is 

dynamic over time and contacts are heterogeneous between dyads in their probability and 

duration), referred to as the “heterogeneous mixing” (HET) network against a benchmark 

network in which every individual has an equal probability of contacting other individuals at 

each time step, referring to as the “homogeneous mixing” (HOM) network (see below). To 

investigate pathogen spread in a buffalo group with a biologically meaningful group size, I 

used the empirical data on probability and duration of ‘contact’ and ‘non-contact’ event to 

create larger networks of 200 buffalos. I produced networks at the shortest available 

temporal resolution (1 hour) for each season (dry vs. wet) and for each site (Gonarezhou 

vs. Kruger). The networks consisted of nodes (individual buffalo) and undirected edges 

between two nodes, which represented potential infectious contacts between the two 

individuals at a given time step. As the duration of contact and non-contact events did not 

vary between age of the two individuals involved (see results), I did not consider 

heterogeneity in contact structure between age and did not assign age to node.  

In the HET network, each pair of individuals was randomly assigned a pair of 

observed buffalos, which was described by a unique contact probability, a distribution of 

contact duration and a distribution of non-contact duration. At time step t = 1, each pair was 

defined as being in contact or not according to their probability of contact, then a 

corresponding event (i.e. ‘contact’ or ‘non-contact’) was drawn randomly in the time series 

of the corresponding observed pair of buffalo to calculate the duration for the remaining 

event (i.e. not the entire event). This method made it possible to capture a realistic contact 

structure at the start of the simulation, considering that individuals were potentially already 

in contact previously. Then, for each event in the networks (i.e. contact and non-contact), a 

time was assigned by sampling from the dyad-specific distribution of duration of contact and 

non-contact. The HET networks thus considered the empirical duration of contact and non-

contact periods of the two individuals involved. The resulting network was a dynamic object 

that conserved heterogeneity in the duration of contact and non-contact between dyads and 

the causality constraints between contact events. 

By contrast, the HOM network was constructed only from the observed probability 

of contact and without considering the observed duration of contact and non-contact 

periods. From the occurrence of contact and non-contact events between the observed 
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buffalo dyads, I calculated a unique probability of contact for each season and site, by 

aggregating the total number of locations where two buffalos were into contact divided by 

the total simultaneous locations between these two individuals. The resulted probability of 

contact did not consider the potential heterogeneity in contact structure between dyads. I 

constructed the HOM network by connecting individuals that came in contact according to 

the probability of contact corresponding to the season/site. The probability of contact was 

identical for all pairs and for all time steps. Therefore, the HOM network included information 

about contacts between dyads (who has met whom) but disregarded information about the 

heterogeneity in contact structure between individuals (no pair was more likely to be in 

contact than another) and the duration of contact and non-contact events (each time step 

is independent of the previous step).  

 

2.6 Simulating pathogen spread in a dynamic contact network 

The set of contact networks for HOM and HET in dry and wet seasons was used to simulate 

FMDV spread through a buffalo group. I used an individual-based and stochastic model to 

simulate FMDV transmission. A simple SEIR epidemic model was used, in which no births, 

deaths or introduction of new individuals occurred. S represents the number of susceptible 

individuals, E the number exposed (infected but not yet infectious), I the number of 

infectious and R the number recovered. Due to the lack of data on FMDV transmission in 

the Cape buffalo, the parameters used came from analysis of FMD outbreaks in domestic 

cattle (Bates et al. 2003, Thornley and France 2009). The simulation started with a single 

randomly chosen infectious individual, with the rest of the group being in the susceptible 

state. Susceptible individuals (S) could contract the pathogen in a time period of t (βt) with 

a probability of infection given by: βi,t = 1 – exp (β0 Cji,t ), where β0 was the transmission 

coefficient (a constant equals 0.002 per hour, Thornley and France 2009) and Ci,t 

represented the number of contacts of animal i with any infectious individuals in time t. 

Transmission to a susceptible occurred according to a binomial trial with the defined 

probability of infection βi,t. When contracted the disease, a susceptible buffalo became 

exposed (E) but was not infectious during an incubation period of 4 days. After this period, 

the exposed individuals entered the infectious disease state (I) and could transmit the 

disease to the susceptible individuals during their infectious period, whose duration was 

equal to 4 days. The infectious individuals became recovered (R) at the end of the infectious 

period and acquired permanent immunity to the disease. I ran simulations over the length 

of the seasons, and I repeated simulations 100 times for each of the networks (HET and 

HOM) and each of the seasons and sites.  
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2.7 Analysis of the contact networks and the epidemiological 

simulation results 

I compared the simulated contact networks by calculating the mean duration of contact and 

non-contact events, the mean degree of a node (defined as the number of connections an 

individual has in the network), the mean clustering coefficient (which describes the local 

cohesiveness and measures the tendency of individuals to form subgroups) and the 

average path length derived from 100 realizations of each of the two network models (HOM 

vs. HET networks) separately for each season and each site.  

To explore the impact of the dynamic nature of the contact network on the dynamics 

of pathogen spread, I compared the epidemic outbreaks in the two types of networks by 

calculating the time taken for the pathogen to spread (defined as the time taken for half of 

the group to become exposed or infected), the maximum prevalence and its associated 

occurrence date. I also estimated the reproductive number R0, which was the expected 

number of secondary infections from an initial infected individual in the susceptible buffalo 

group. I calculated the value of R0 as the mean over all simulations of the number of 

secondary cases from the single initial randomly chosen infectious individual. I tested 

whether social metrics and epidemiological parameters were significantly different between 

seasons, sites and types of network using nonparametric Mann-Whitney U tests (pairwise 

comparisons: dry vs. wet, HOM vs. HET, Gonarezhou vs. Kruger). Statistical calculations 

were performed using R, v. 3.6.0 (R Development Core Team 2019).  

 

3 Results 

3.1 The season and site drive empirical contact patterns 

The mean duration of both periods when individuals were in contact or in non-contact varied 

between 7.5 and 59 hours with large variations, meaning many contacts and non-contacts 

of short duration, a few contacts and non-contacts of long duration, and a broad tail, 

suggesting that no typical contact and non-contact durations could be defined (Figure 2). 

Non-contact and contact events were generally shorter in duration in Kruger than in 

Gonarezhou. Non-contact events usually lasted longer than the contact events in both 

seasons, but contacts in the wet season were generally shorter than in the dry season 

(Figure 2). These results were confirmed by using generalized mixed-effect models. The 

most parsimonious models for duration of contact and non-contact only included an 

interaction effect between site and season (contact: AICc = 35533.5, AICω = 0.80; non-

contact: AICc = 39637.5, AICω = 0.70). The contact and non-contact events were longer in 

Gonarezhou than in Kruger and during the dry season than in wet season in both sites 



Chapter 6 Pathogen transmission using dynamic contact networks 

116 

(Table 1). Given these results, I built contact networks on a larger group size without 

distinction with age (see below).  

 

Figure 2. Observed distribution of the duration of ‘contact’ and ‘non-contact’ events between 
any two buffalos, for each season on a log-log scale for (a) Gonarezhou and (b) Kruger. The 
mean duration ± SD is given by the red dashed line.  
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Table 1. Results of the most parsimonious models explaining the duration of contact and non-
contact events.   

 Estimate SE Z P 
95% CI (lower, 

upper) 

Duration of contact      

(Intercept) 3.41 0.09 37.17 <0.001 (3.23, 3.59) 

Site [KNP > GNP] -0.67 0.11 -6.37 <0.001 (-0.88, -0.47) 

Season [Wet > Dry] -1.15 0.07 -16.89 <0.001 (-1.28, -1.01) 

Site [KNP > GNP]:Season 

[Wet > Dry] 
0.39 0.08 5.02 < 0.001 (0.24, 0.55) 

Duration of non-contact      

(Intercept) 4.19 0.13 32.75 <0.001 (3.95, 4.45) 

Site [KNP > GNP] -1.33 0.15 -8.96 <0.001 (-1.62, -1.04) 

Season [Wet > Dry] -0.58 0.09 -6.61 <0.001 (-0.75, -0.41) 

Site [KNP > GNP]:Season 

[Wet > Dry] 
0.62 0.10 6.04 < 0.001 (0.42, 0.82) 

 
 

3.2 Buffalo simulated contact networks 

HOM contact networks differed significantly from HET contact networks in each of the social 

metrics measured, within each season and each site (Figure 3). The duration of contact and 

non-contact events in the HET networks was significantly much larger than the values 

obtained for the HOM networks (Figures 3a-3b). Clustering coefficients were significantly 

higher for the HET networks, indicating that HET networks were more subdivided into 

subgroups than HOM networks (Figures 3d). The degree of a node was higher in the HET 

networks whilst the average path length was lower in those networks compared to the HOM 

networks, indicating that, within the HET networks, individuals had more direct connections 

and more indirect close connections (i.e. connections between individuals via other 

individuals) than in the HOM networks (Figures 3c-3e).  

There were also significant differences in the structure of the networks across the 

sites and the seasons (Figure 3). During the wet season, individuals had generally fewer 

direct and indirect close connections with other individuals (i.e. lower degree of a node and 

higher average path length, respectively), had shorter contacts and were less likely to form 

subgroups (i.e. lower coefficient of clustering) than during the dry season in both the HOM 

and HET networks. According to the comparison of the HOM and HET networks between 

the sites, the most different metrics were the duration of the contact and non-contact events 

and the average degree of a node. In Kruger, contacts and non-contacts lasted less than in 

Gonarezhou, but individuals had more connections with different individuals.  
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Figure 3. Comparison of social network metrics between HOM and HET networks during wet 
and dry seasons in Gonarezhou and Kruger: (a) duration of contact events, (b) duration of 
non-contact events, (c) degree of a node, (d) clustering coefficient, and (e) path length. All 
relevant pairwise comparisons (across seasons, sites or types of network) were significantly 
different (p < 0.001). See table Appendix 1 for raw values of mean ± SD. 
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3.3 Buffalo pathogen spread 

The time series of mean number of individuals in each state for the HOM and HET networks 

for each site and each season are presented in Figure 4. The influence of season, site and 

type of network on the characteristics of pathogen transmission, namely the maximum 

prevalence, its associated occurrence date, time taken for the pathogen to spread (Ts), and 

basic reproduction number (R0) are plotted in Figure 5. The distribution of R0 for each 

condition (HOM vs. HET, site, season) is also plotted in Appendix 2.  

 The majority of the simulations resulted in the local extinction of the pathogen as all 

individuals of the group were infected once before being recovered, whatever the season, 

site or type of network. Most of the disease characteristics were significantly different 

between the HET and HOM networks (Figure 5, Table 2). The R0 was significantly higher 

in the HET networks than in the HOM networks, but only in Kruger in both seasons. In the 

HET networks, Ts was significantly higher, meaning that the pathogen took longer to infect 

half of the group, but the epidemic peak was reached more quickly in comparison to HOM 

networks; the exception was for the dry season in Gonarezhou, where both parameters (Ts 

and occurrence date of maximum prevalence) did not significantly differ (Table 2). 

Additionally, the number of individuals infected at the epidemic peak in the HET networks 

was greater than in the HOM networks (Figure 5). Overall, the differences between 

networks were generally small with high variability. Despite the significant differences, the 

values were generally highly variable, and some differences were quite small (Figure 5).  

Significant differences between sites were also observed (Table 3); most 

parameters were higher in Kruger, except for Ts (Figure 5). Nevertheless, there was no 

difference in the parameters between the two sites for HOM networks in the dry season 

(Table 3). The most substantial differences in the characteristics of pathogen transmission 

were noticed between seasons (Table 4). During the wet season, the values of time taken 

for the disease to spread (Ts) and maximum prevalence occurrence date were higher than 

in the dry season whilst maximum prevalence and R0 were lower, in both sites and for both 

HOM and HET networks (Figure 5). Overall, these seasonal differences combined with 

temporal evolution of number of individuals in each state (Figure 4) indicated that, during 

the dry season, the pathogen spread faster and reached a greater number of individuals in 

the same time step compared to the wet season.  
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Figure 4. Temporal evolution of the number of susceptible (S), exposed (E), infectious (I) and 
recovered (R) individuals for the homogeneous (HOM) and heterogeneous (HET) networks for 
each season and each site: (a) Gonarezhou; (b) Kruger. Solid lines represent the mean values, 
and dashed lines represent the fifth and ninety-fifth percentiles of the number of individuals 
in each state.  
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Figure 5. Comparisons of (a) the reproductive ratio, R0, (b) the time taken for the disease to 
spread into 50% of the group, Ts, (c) the maximum prevalence and (d) its occurrence date in 
HOM and HET networks during wet and dry seasons in Gonarezhou and Kruger. The symbols 
denote means and the error bars indicate standard deviation over 100 simulations. Solid 
horizontal lines indicate significant pairwise differences (p < 0.05) whilst dashed lines indicate 
non-significant difference in the pairwise comparison. See table Appendix 3 for raw values of 
means ± SD and Tables 2-4 for the results of Mann-Whitney U tests.  
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Table 2. Summary of results for Mann-Whitney U tests comparing epidemiological parameters 
from SEIR model between HOM and HET networks within each site and each season.  

Variable   Comparison W p value 

R0 

Gonarezhou Dry 

HOM vs. HET 

 

5491 0.23 

Gonarezhou Wet 4256 0.07 

Kruger Dry 2559 < 0.001 

Kruger Wet 1690 < 0.001 

Ts 

Gonarezhou Dry 

HOM vs. HET 

 

5055 0.89 

Gonarezhou Wet 7633 < 0.001 

Kruger Dry 8766 < 0.001 

Kruger Wet 9732 < 0.001 

Max 

prevalence 

Gonarezhou Dry 

HOM vs. HET 

 

3224 < 0.001 

Gonarezhou Wet 226 < 0.001 

Kruger Dry 542 < 0.001 

Kruger Wet 63 < 0.001 

Max day 

Gonarezhou Dry 

HOM vs. HET 

 

5419 0.31 

Gonarezhou Wet 7050 < 0.001 

Kruger Dry 8894 < 0.001 

Kruger Wet 9552 < 0.001 

 

 

Table 3. Summary of results for Mann-Whitney U tests comparing epidemiological parameters 
from SEIR model between Gonarezhou and Kruger within each season and each type of 
network. 

Variable   Comparison W p value 

R0 

HOM Dry 
Gonarezhou vs. 

Kruger 

 

5193 0.64 

HOM Wet 4964 0.93 

HET Dry 2450 < 0.001 

HET Wet 2016 < 0.001 

Ts 

HOM Dry 
Gonarezhou vs. 

Kruger 

 

4829 0.68 

HOM Wet 5799 0.03 

HET Dry 8657 < 0.001 

HET Wet 9378 < 0.001 

Max 

prevalence 

HOM Dry 
Gonarezhou vs. 

Kruger 

 

4626 0.36 

HOM Wet 1936 < 0.001 

HET Dry 1376 < 0.001 

HET Wet 815 < 0.001 

Max day 

HOM Dry 
Gonarezhou vs. 

Kruger 

 

4704 0.47 

HOM Wet 5569 0.16 

HET Dry 8427 < 0.001 

HET Wet 9235 < 0.001 
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Table 4. Summary of results for Mann-Whitney U tests comparing epidemiological parameters 
from SEIR model between dry and wet season within each site and each type of network. 

Variable   Comparison W p value 

R0 

Gonarezhou HOM 

Dry vs. Wet 

 

9197 < 0.001 

Gonarezhou HET 8812 < 0.001 

Kruger HOM 9219 < 0.001 

Kruger HET 8626 < 0.001 

Ts 

Gonarezhou HOM 

Dry vs. Wet 

 

13 < 0.001 

Gonarezhou HET 45 < 0.001 

Kruger HOM 15 < 0.001 

Kruger HET 227 < 0.001 

Max 

prevalence 

Gonarezhou HOM 

Dry vs. Wet 

 

9999 < 0.001 

Gonarezhou HET 9888 < 0.001 

Kruger HOM 9987 < 0.001 

Kruger HET 9701 < 0.001 

Max day 

Gonarezhou HOM 

Dry vs. Wet 

 

303 < 0.001 

Gonarezhou HET 56 < 0.001 

Kruger HOM 24 < 0.001 

Kruger HET 254 < 0.001 

 

 

4 Discussion 

It is now widely recognized that the impact of infectious disease on a population depends 

on contact structure between individuals rather than group size (Smieszek 2009, Craft 2015, 

Nunn et al. 2015, Sah et al. 2017, White et al. 2017). In this study, I built dynamic network 

models using empirically derived buffalo contact data within groups to simulate pathogen 

spread through a buffalo group in two distinct populations. In order to explore the influence 

of the intragroup structure on the dynamics of the pathogen, I compared the spread of 

pathogen between heterogenous dynamic contact networks (HET, considering 

heterogeneity in contact structure between dyads and the causality constraints between 

contact events) and homogeneous dynamic contact networks (HOM, the heterogeneity in 

contact structure between dyads and temporal series of contacts were ignored). Empirical 

contacts between dyads were influenced by season (dry vs. wet) and site (Gonarezhou vs. 

Kruger). The simulated contact networks indicated a difference in structure between HOM 

and HET networks. In the latter, individuals formed tighter social subgroups (higher 

clustering coefficient), had more frequent (higher degree of a node) and longer direct 

contacts. Both HOM and HET networks varied with the season, and more slightly with the 

site. Using known FMDV parameters for this case study, the speed of pathogen spread 

within a group depended more on the season of pathogen introduction than the topology of 
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the contact network. FMDV tended to spread faster and reached a larger number of 

individuals in a given time step when FMDV was introduced during the dry season. The 

spread of FMDV across the HET networks was slightly higher to that across the traditional 

HOM networks. Even though this study was based on the characteristics of FMDV, it is 

important to mention that the contact networks built here can be applied to any pathogen 

with a direct mode of transmission. This might be modelled in extensions of this study. 

It is important to note that the simulations of contact networks and pathogen spread 

were based on GPS data collected over different years between the populations (2008-

2012 in Gonarezhou and 2010-2015 in Kruger). This may be responsible for the small 

observed differences in contact patterns between the populations. In addition, I used fixed 

dates to define seasons, but small differences in resource availability within seasons among 

years (e.g. drought year) may lead to changes in spatial behaviour and thus contact patterns 

in Cape buffalos between the years. However, the markedly different contact patterns 

between seasons suggest that this difference in the period of data collection does not affect 

the results. Another limitation of this study is the lack of data on buffalo males. For a full 

understanding of pathogen dynamics in buffalo groups, and this is also true at the 

population level, it is important to consider the behaviour of not only grouping females, but 

also adult and subadult males that come into contact with females, at least part of the year 

(Halley and Mari 2004). Males tend to break the GPS collar within a few months of 

deployment, either intentionally or by accident during fights (Halley and Mari 2004, Caron 

et al. 2016), but it is essential in the coming years to successfully deploy monitoring devices 

on these animals (e.g. GPS ear tags). This chapter only focused on within-group pathogen 

transmission, while in natural conditions pathogens can spread between Cape buffalo 

groups and between species (Bastos et al. 2000, Michel 2002, Miguel et al. 2013, Caron et 

al. 2016 and Chapter 4). For a complete understanding of pathogen dynamics, it would be 

beneficial to consider contact networks between all individuals, i.e. from the same species 

or not, living in the same study area. However, this would require a large amount of data 

collected over relatively long periods of time. Such extensive databases are rare, but recent 

studies on the social structure and contact rates between buffalo and other species at 

seasonal scale (Miguel et al. 2013, Kiffner et al. 2014, Meise et al. 2019) and the new 

information of contact rate and duration between Cape buffalo groups (Chapter 4) should 

help to create contact networks at the regional scale and therefore to better understand 

pathogen spatial spread.  

As with all modelling approaches, there are a few simplifications that I needed to be 

made in the simulation model and two assumptions are worth discussing. First, I assumed 

that the infection status did not change the social behaviour of individuals. This implicit 

assumption is not inappropriate here, since the aim of this study was to demonstrate the 

role of heterogeneous and dynamic contact patterns on pathogen dynamics (i.e. 
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comparison between the observed network and traditional network). In fact, there are few 

studies on the impact of infectious status on the social behaviour of the Cape buffalo, but 

loss of body condition due to chronic infections (Caron et al. 2003) may force infected 

individuals to increase their sleep and rest, making them thus less social. Therefore, the 

presence of some parasites may alter social interactions and contact patterns. Second, I 

considered that group composition and size were stable throughout the simulation (i.e. 200 

females) without the demographic processes of birth and death, and even dispersion. Yet 

births allow the recruitment of susceptible individuals and can prevent the local extinction 

of pathogens by providing new individuals that can be infected and to transmit the pathogen 

(see below). Females can also disperse (Halley et al. 2002, Caron et al. 2016, Spaan et al. 

2019), and this process can alter contact network properties by the arrival or departure of 

individuals. Despite these limitations, the results of this study indicate that fine-scale contact 

data appear to be irrelevant to predict the number of individuals infected with FMDV, but 

seasonal differences in resource availability and distribution alter the contact network 

properties, which in turn affect the pathogen spread.  

 

4.1. The impact of network topology on predicted FMDV spread 

I found that considering the duration of contacts and non-contacts and the heterogeneity of 

contact structure between individuals alter the observed pattern of contact networks. Not 

surprisingly, I showed that the distributions of contact and non-contact duration reported in 

HET networks were more consistent with those observed from empirical data than the 

values from the HOM networks. In HET networks and observed data, contact events lasted 

on average 7-31 hours and non-contact events 19-59 hours depending on the season and 

the site, compared to an average duration of one hour for contacts and from 3 and 7 hours 

for non-contacts depending on the site or the season in HOM networks. Few studies on 

contact networks in buffalo are available in the literature for comparison with my HET 

networks and when they existed, the distance threshold used to define a contact was 

different (Bennitt et al. 2018). However, the consistency between the HET networks and the 

empirical data suggests a good representativeness of this model compared to what occurs 

in natural conditions. Homogeneous models assume that contact patterns within a 

population or a group shape a regular random network with no individual variability (Bansal 

et al. 2007). However, in agreement with previous observations made in other buffalo 

populations (Bennitt et al. 2018), I showed that the distributions of contact and non-contact 

durations varied with both time and individual. This suggests that non-regular dynamic 

networks characterize the intra-group buffalo contact network better than a regular dynamic 

network. Previous studies have either considered the importance of individual heterogeneity 

in static networks (Christley et al. 2005, Lloyd-Smith et al. 2005) or temporal changes in the 
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contact network (Blonder et al. 2012) but a broad understanding of the role of these two 

factors simultaneously is usually lacking (Stehlé et al. 2011 in a human system). 

I found significant differences in epidemiolocal parameters between the HOM and 

HET networks. In HET networks, pathogen appeared to spread quicker and reached a 

larger number of individuals in a given time step than in HOM networks. However, the 

differences were quite small and values of parameters highly variable. The small effect of 

the heterogeneity in contact networks observed can be due to low stability in dyadic contact 

patterns, which compensates the clustering in subgroups by high mobility among 

subgroups. Therefore, dynamic changes in social structure by fission-fusion in the Cape 

buffalo may only slightly affect pathogen dynamics. This indicates that the fine-grained 

structure of Cape buffalo network has little impact on predicted transmission patterns for 

FMDV. Consequently, for the simulation of pathogen spread such as that considered in this 

study, information on contact probability at a seasonal resolution within dynamic contact 

network might be enough for correctly characterizing pathogen transmission patterns in a 

buffalo group, and consideration of heterogeneity in the contact structure between 

individuals might not be necessary. Nevertheless, it might be worth exploring other modes 

of transmission (e.g. environmental, vector-borne, water- or food-borne), whose 

transmission properties could lead to substantial differences between homogeneous and 

heterogeneous networks.  

 

4.2. The impact of seasonality on contact patterns and predicted FMDV 

spread 

This study highlights a strong seasonal dynamic in the structure of contact networks. During 

the wet season, individuals generally had fewer contacts with other individuals, had shorter 

contacts and were less likely to form subgroups than during the dry season. Irrespective of 

subgroup size, these results suggest that, during the wet season, subgroups are more fluid, 

and individuals are less close to each other resulting in more scattered subgroups. 

Conversely, in the dry season, subgroups may be more stable. It seems likely that changes 

in resource availability (e.g. mainly water and grazing) between the seasons or in predation 

pressure are responsible for the observed changes in contact network properties (Zvidzai 

et al. 2013, Murwira et al. 2014, Zengeya et al. 2015). During the wet season, Cape buffalo 

subgroups may prefer to be more fluid by splitting more often and form scattered subgroups 

to exploit available habitat more efficiently. These findings are consistent with what was 

observed in a population of Cape buffalo in Chobe National Park (Botswana, Halley et al. 

2002) and in a population of forest buffalo (Syncerus caffer nanus) in Dzanga-Ndoki 

National Park (Central African Republic, Melletti et al. 2007b), where individuals formed 

larger subgroups during the dry season when resources are more limited. The opposite 
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was, however, reported in Serengeti National Park (Tanzania, Sinclair 1977) and Klaserie 

Private Nature Reserve (South Africa, Ryan et al. 2006). 

FMDV is maintained in buffalo populations in Africa and can threaten sympatric 

cattle populations living in the same ecosystems and, therefore, livestock economies 

(Hargreaves et al. 2004, Caron et al. 2013, van Schalkwyk et al. 2016, Guerrini et al. 2019). 

Here, I found that seasonal contact patterns strongly influence FMDV spread in my two 

study populations. How buffalos interact with each other during the dry season facilitates 

the more rapid spread of FMDV through the group. This is consistent with observations 

made by Miguel et al. (2013), showing that incidence of FMDV in a buffalo-cattle system 

was the highest during the hot-dry season. Most buffalo populations maintain FMDV and 

therefore the introduction-spread event modelled in this study is not realistic. However, the 

results indicate that FMDV spreads faster when FMDV is introduced in the dry season than 

if introduced in the wet season. In the simulation, I did not consider young buffalos, whereas 

the influx of young buffalos into the group during the wet season, corresponding to the 

breeding season during which most female buffalos calve synchronously (Ryan et al. 2007), 

may alter the spread of FMDV. Infection with FMDV can occur in calves when they lose 

their maternally acquired immunity around the age of 4-6 months (Condy et al. 1985, Bengis 

et al. 1986, Bastos et al. 2000). Calves are then susceptible and are subsequently infected 

almost rapidly during the next dry season, which can accelerate the transmission of the 

FMDV within the group and could cause small group ‘epidemics’ (Bengis et al. 1986). Even 

though I have already found a strong seasonal dynamic in FMDV spread, determining the 

contact patterns by integrating young calves and how the pathogen is transmitted would be 

an interesting avenue for future investigations. However, one could assume that a calf’s 

contact pattern would be very similar to that of its mother.  

 

5 Conclusions 

The results of this study have implications for the risk of pathogen spillover at the 

wildlife/livestock interface and the management of these interfaces. In the case of FMDV, 

the spread of FMDV between African buffalo and adjacent cattle populations (and vice 

versa) has been studied (Vosloo et al. 2002) and the geographical and seasonal patterns 

of outbreaks have been scrutinised (Kock et al. 2014, Guerrini et al. 2019): the type of 

interface, resource availability (e.g. due to seasonal changes), the population dynamics of 

buffalo calves and the efficiency of wild animal movement control measures (e.g. antelope 

jumping over fences after being infected through contact with buffalos) have been identified 

as potential drivers of pathogen spillover (Bengis et al. 1986, Sutmoller et al. 2000, Kock 

2005, Jori et al. 2009, Miguel et al. 2013). Here, the structure of contact patterns within 
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buffalo groups during the dry season is presented as a new potential driver through an 

increased FMDV circulation within buffalo populations, with an increased risk of spillover to 

in-contact species such as cattle.  

 

6 Appendices 

Appendix 1. Mean ± SD of social network metrics from the 8 simulated networks (HOM and 
HET networks for each season and each site). ± values indicated standard deviation from 100 
simulations.  

Condition 
Gonarezhou Kruger 

HOM HET HOM HET 

In dry season     

Duration of contact 1.43 ± 0.78 31.50 ± 43.50 1.44 ± 0.79 15.7 ± 22.1 

Duration of non-contact 3.34 ± 2.79 58.8 ± 151.0 3.28 ± 2.74 17.3 ± 50.7 

Average path length 1.70 ± 0.003 1.65 ± 0.01 1.70 ± 0.003 1.52 ± 0.03 

Mean clustering coefficient 0.30 ± 0.003 0.35 ± 0.01 0.30 ± 0.003 0.48 ± 0.03 

Mean degree of a node 59.6 ± 6.46 68.70 ± 6.92 60.5 ± 6.49 94.70 ± 9.05 

In wet season     

Duration of contact 1.16 ± 0.44 10.10 ± 15.0 1.19 ± 0.48 7.09 ± 9.19 

Duration of non-contact 7.11 ± 6.59 37.7 ± 90.1 6.26 ± 5.74 19.2 ± 43.8 

Average path length 1.88 ± 0.005 1.79 ± 0.02 1.85 ± 0.003 1.73 ± 0.007 

Mean clustering coefficient 0.14 ± 0.002 0.21 ± 0.01 0.16 ± 0.003 0.27 ± 0.006 

Mean degree of a node 27.9 ± 4.90 41.50 ± 6.37 31.7 ± 5.16 53.3 ± 6.35 
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Appendix 2. Distribution of R0 (number of secondary cases) for the homogenous (HOM) and 
heterogenous (HET) networks for each season (dry vs. wet) and each site (Gonarezhou vs. 
Kruger). The mean duration ± SD is given by the black dashed line. 

 

 

Appendix 3. Mean ± SD of epidemiological parameters from the 8 simulated networks (HOM 
and HET networks for each season and each site). ± values indicated standard deviation from 
100 simulations. Ts, time taken for the disease to spread; Max prevalence, maximum 
prevalence; Max day, maximum prevalence occurrence date; R0, basic reproduction number. 

 

Condition 
Gonarezhou Kruger 

HOM HET HOM HET 

In dry season     

Ts (days) 9.80 ± 1.07 9.75 ± 0.93 9.84 ± 0.94 8.46 ± 0.71 

Max prevalence 107.00 ± 6.29 112.00 ± 6.31 108.00 ± 5.78 121.00 ± 6.01 

Max day 16.30 ± 1.29 16.20 ± 1.08 16.50 ± 1.05 14.80 ± 0.89 

R0 11.28 ± 3.50 10.69 ± 3.30 10.99 ± 3.09 13.80 ± 3.26 

In wet season     

Ts (days) 15.10 ± 2.08 13.50 ± 1.50 14.60 ± 1.85 10.90 ± 1.10 

Max prevalence 75.00 ± 12.00 93.50 ± 6.02 83.80 ± 6.35 106.00 ± 6.27 

Max day 21.10 ± 3.90 20.00 ± 1.58 21.00 ± 2.13 17.60 ± 1.13 

R0 5.57 ± 2.40 6.06 ± 2.21 5.54 ± 2.41 9.18 ± 2.99 
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1 Summary of objectives and findings  

This thesis aimed to investigate the social dynamics of the Cape buffalo across several 

populations in southern Africa and the implications in terms of pathogen transmission. In 

Chapter 3, the objectives were (i) to quantify the dynamics of fission and fusion events by 

estimating the frequency and duration of events between dyads belonging to the same 

group in 3 populations, (ii) to determine when fission and fusion events of dyads occurred 

in a day and (iii) examine the influence of seasonality, inter-population variance and 

indirectly, the spatial distribution of resources on these dynamics. Chapter 4 aimed to (i) 

quantify the spatial relationships (i.e. home range overlap) and the patterns of direct and 

indirect contact between dyads from neighbouring groups in 2 populations, via the 

estimation of the frequency and duration of contact, (ii) examine the influence of seasonality, 

inter-population variance and indirectly, the spatial distribution of resources on these 

contact patterns and (iii) to consider the implications of the results for the spread of multiple 

pathogens. Chapter 5 aimed to examine whether dispersal in the Cape buffalo was sex-

biased at 2 organizational levels: among populations and among groups within local 

populations. Finally, the objectives of Chapter 6 were to use a dynamic network approach 

to (i) determine whether the structure of contact network within a buffalo group influenced 

the pathogen spread, (ii) to compare the results of predicted pathogen spread between the 

populations and seasons to assess the impact of the environmental context and seasonal 

environmental changes on the threat of disease and (iii) to consider the implications of the 

results for the spread of pathogens that are transmitted directly. In addition to improving our 

fundamental knowledge of the social structure of the Cape buffalo, these results aim to 

better understand the transmission of diseases within buffalo populations, and ultimately 

towards cattle populations and humans at the interfaces between protected areas and 

communal lands.  

The results of this thesis revealed that the spatiotemporal dynamics in the Cape 

buffalo differed with the organizational level, but the intragroup and intergroup dynamics 

were generally consistent among the study populations (Chapters 3 & 4). In Chapter 4, at 

the population scale, Cape buffalos form relatively distinct groups occupying unique and 

separated home ranges, with minimal overlap. The neighbouring groups studied in Kruger 

NP and Okavango Delta (and two groups in Gonarezhou NP) showed very little direct 

contacts, consistently with previous results of forest buffalo (Cornélis et al. 2011). The 

groups tended to avoid areas previously used by another group in the previous two days 

during both the dry and wet seasons. The indirect contacts between the neighbouring 

groups occurring within one month were more frequent than direct contacts, which can have 

serious implications for indirectly transmitted pathogen (e.g. vector-, water-, food-borne) in 

the population (Chapter 4). Despite temporal avoidance and the low spatial overlap between 
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the home ranges of the neighbouring groups, the results of Chapter 5 revealed that Cape 

buffalo groups were interconnected by dispersal events. Similarly, the examination of the 

dispersion among 10 populations suggested a high rate of dispersion among populations, 

especially among the closest populations given the isolation-by-distance pattern of genetic 

variation observed. However, I found that dispersal would be female-biased when 

happening among populations, but probably not at a smaller organizational level (among 

groups, Figure 1). Note that the results of this chapter should be taken with caution as 

alternative explanations of the observed results are also possible.  

Within groups, the results of Chapter 3 showed that two buffalos can spend very 

little time together (only 10%), contrary to what may be thought for a group (i.e. a cohesive 

group of individuals that spend most of their time together), although some pairs of buffalo 

still spend most of their time together (up to 90%). Individuals form very unstable dyadic 

associations with fission patterns lasting 1 to 3 days before individuals merge again for an 

equivalent average duration (Chapter 3). The degree of fission-fusion dynamics varied 

seasonally with a higher frequency of fusion event during the wet season, but fission and 

fusion events between dyads were not more likely to occur at specific times during the day. 

These results reveal high intragroup dynamics, which has never been observed before. 

However, the results of Chapter 6 on the comparison of the pathogen spread within a 

network representative of the observed intragroup social dynamics (based on the 

populations of Gonarezhou and Kruger) with a hypothetical network of random mixing 

indicated that the way individuals interact with each other only slightly affects the 

transmission of a directly transmitted pathogen within group. The strong intragroup social 

dynamics observed could ultimately generate such mixture that a pathogen would be 

transmitted as easily, or even slightly easier, than in a group where individuals mix 

randomly. In contrast, I found that seasonal variation in intragroup social structure affected 

the speed of pathogen spread within a group. The pathogen tended to spread faster and 

reached a larger number of individuals when introduced during the dry season due to the 

more clustered social structure with longer contacts. This seasonal variation in the 

intragroup social structure is probably due to the seasonal changes in resource availability 

and distribution, forcing buffalo to be closer when resources are rare. Overall, these findings 

suggest a two-speed diffusion of pathogens within buffalo populations, characterized by 

rapid spread within groups, but a lower spreading capacity among groups. The implications 

for disease ecology in buffalo populations will be discussed in more detail later. Together, 

these different results contribute to our understanding of the social dynamics of the Cape 

buffalo (Figure 1).  
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Figure 1. Schematic representation of the main results of this thesis to explain the social 
dynamics of the Cape buffalo. Although I did not explore the movement of males (see below), 
the literature indicates that they are sometimes in groups with females.  

 

2 Limitations and recommendations 

2.1 Social behaviour of males 

Although this thesis contributes to our understanding 

of the social dynamics of the Cape buffalo, it is 

important to mention the lack of movement data for 

males, both subadults and adults, in this thesis project. 

Mixed groups are the basic structural unit of this 

species and the presence of adult males is generally 

temporary as they can live alone or in all-male ‘bachelor’ groups (Eltringham and Woodford 

1973, Sinclair 1977, Prins 1996). The pattern of group affiliation of adult males is related to 

mating opportunities, forage availability and predation pressure (Prins 1996, Halley and 

Mari 2004, Turner et al. 2005). Conversely, subadult males remain in their native group until 

their adulthood. Their movement is, therefore, similar to the rest of the group, i.e. mainly 

females. For my thesis project, focusing on the movement of adult females was the optimal 

compromise between the largest sample size to represent the social structure and the 

deployment costs of the GPS collars. Nevertheless, males could be important vectors of 

pathogens at the population scale due to their group affiliation behaviour between groups 

of females and groups of bachelors. Future research should now focus on understanding 
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the movements of adult males to improve the socioecological model of the species and their 

impact on pathogen transmission. Collecting movement data for this age-sex class is 

challenging since males tend to break their collar within a few months of deployment, either 

intentionally or by accident during fights (Halley and Mari 2004). During this study in Kruger 

NP, two adult males were collared but they lost their collars within two months of 

deployment. The development of GPS ear tags might provide new insights when tracking 

this sex-age group, as already used for investigating the social structure of wild boars Sus 

scrofa (Podgórski et al. 2014).  

 

2.2 Sampled populations 

This study is the first to quantify and compare the fission-fusion dynamics and intergroup 

dynamics of the Cape buffalo across several populations using a common methodology. 

However, the studied populations represent a small proportion of the historic and current 

geographical range of the species. The conclusions drawn from this study could, therefore, 

not be generalized to other ecosystems, especially since the comparison of the fission-

fusion dynamics observed between these three studied populations and that in the 

Okavango Delta highlighted substantial differences (see Chapter 3). Movement data from 

33 Cape buffalo living in the Niassa National Reserve, northern Mozambique, were also 

available but the low resolution of location acquisition (every 4 hour) did not allow 

investigation of social dynamics. By contrast, the three populations in which I examined 

fission-fusion dynamics were previously chosen based on their close location to human 

populations (Miguel et al. 2013). In these interfaces among humans, cattle and buffalo, the 

questions linked to pathogen transmission between buffalo and cattle are crucial for local 

livelihoods, livestock trade and some zoonoses. Therefore, even if the results cannot be 

generalized to the whole species, they provide new insights on what is happening in terms 

of the sociality of the Cape buffalo at the human-wildlife interfaces, which can be critical to 

understanding pathogen transmission with cattle. In any case, it would be worth to continue 

exploring the fission-fusion dynamics (and even the intergroup dynamics) in other Cape 

buffalo populations under various environmental conditions to learn more about the 

variation in social behaviour of this species within its geographical range, especially in the 

current context of anthropological environmental changes.  

 

2.3 The use of GPS technology 

Technological tracking developments, such as GPS loggers used in this study, allow 

continuous data collection and provide new data to examine the social behaviour (Kays et 

al. 2015, Mejía-Salazar et al. 2017). However, the constraints associated with this 
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technology (e.g. costs) have limited the number of individuals to be monitored 

simultaneously within the same group. Given the gregarious behaviour of the Cape buffalo, 

one might wonder whether the tracking of a few individuals within a group is enough to 

describe the movement and the spatial distribution of all individuals of the group. This study 

provides evidence for high fission-fusion dynamics, it is thus very likely that some fission-

fusion events have not been recorded because they involved non-collared animals. The 

same is true when I examined the dynamics of the intergroup encounters. However, it is 

unlikely that the behaviour of collared animals was highly different from the other buffalos 

within the study areas and that biases related to sample size have been heterogeneous 

between sites and seasons. Consequently, the trends observed across sites and seasons 

should remain appropriate. Also note that the deployment costs limit the detection of 

infrequent events, such as dispersal events undertaken by buffalos.  

Another limitation that can be identified for the use of this technology is the 

scheduled temporal resolution. In this thesis, locations were acquired every hour. When 

examining the fission-fusion dynamics, given the gregarious behaviour of the species, it 

was unlikely that the fission and fusion events last less than one hour. However, this 

temporal resolution does not allow to identify when exactly buffalo groups became aware 

of each other and decided whether to approach and merge, preventing to determine the 

potential mechanisms underlying fission-fusion dynamics. The temporal resolution raised 

questions when I investigated the interactions between groups, which were hypothesized 

to be rarer and shorter (Cornélis et al. 2011). To overcome this potential limitation, I 

modelled the individual path to best estimate the start of contact, but the short duration of 

direct contacts between neighbouring groups observed (average 1-1.5h) underlines the 

importance of higher temporal resolution. Finally, this methodology does not allow to 

discriminate the type of social interactions between individuals, especially in the case of 

short fusion or contact (e.g. affiliative, agonistic) while they could be important to understand 

the mechanims, especially for the rare intergroup encounters.  

Hourly GPS fixes should be enough when examining the intragroup social structure 

of social species, but the use of proximity loggers could provide better data. Indeed, 

proximity loggers directly record synchronous contacts between two individuals, and their 

lower cost compared to GPS technology makes it possible to simultaneously monitor a 

larger number of individuals (Ji et al. 2005, Prange et al. 2006, Böhm et al. 2009, Walrath 

et al. 2011, Robert et al. 2012). However, they would not be appropriate in the investigation 

of intergroup dynamics because they record only the direct contacts (i.e. at the same time, 

in the same place) while buffalo groups mainly interact with each other indirectly (Chapter 

4). Use of GPS collars with higher temporal resolution combined with direct field 

observations may help to understand why buffalo groups avoid each other. After all, my 

thesis suggests that a study design can only answer a limited set of questions and it is of 
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utmost importance to define the research questions before the deployment of tracking 

devices. 

 

2.4 Combination of genetic and GPS analyses 

In this project, the combination of GPS and genetic data has not addressed the relationship 

between kinship (mother, sisters and daughters) and patterns of fission and fusion events. 

In some ungulate species, females preferentially associate with their close relatives, which 

means that during the fission of their group, females remain with their closest relatives 

(Archie et al. 2006, Bercovitch and Berry 2012, Godde et al. 2015). The same could be true 

for the Cape buffalo, thus constituting the family unit, which could thus represent a limitation 

to the fluidity observed in buffalo groups in this thesis. I have tried to provide some answers 

by correlating a relatedness index (Queller and Goodnight 1989) to the time that two 

individuals spent together (< 1000 m, Figure 2). The result does not seem to reveal any 

influence of relatedness on association strength, but in fact, very few individuals had been 

both monitored and genotyped (some genetic samples had been degraded preventing 

genotyping). Further studies should now explore to what extent genetic relatedness (if 

possible, by determining mothers and their calves, and sisters) predicts the patterns of 

fission and fusion to identify the smallest stable unit in the Cape buffalo. This would require 

tracking a lot of individuals within the same group to increase the likelihood of tracking 

genetically related individuals and collecting blood and/or hair samples of these individuals. 

Once again, proximity collars provide a useful tool, allowing tracking of a large number of 

individuals while determining contact rates and fission and fusion patterns (Ji et al. 2005).  
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Figure 2. Relationship between estimates of relatedness (Queller and Goodnight 1989) and 
time spent together (< 1000 m) among pairs of 28 Cape buffalos in Hwange and Gonarezhou 
National Parks, Zimbabwe, and Kruger National Park, South Africa. Queller and Goodnight’s 
index is an unbiased estimate of relatedness, ranging from -1 and 1 based on the population 
allele frequencies. A positive value indicates that the pair is more related while a negative 
value indicates that the pair is less related than average. Colours represent associations 
during each season: red = dry season, blue = wet season.  

 

3 Implications for socioecology and disease spread 

3.1 Drivers underlying fission-fusion dynamics 

This study, along with previous research, revealed a higher level of sociality between dyads 

with high levels of spatial overlap (Chaverri et al. 2007, Bennitt et al. 2018). The cause and 

effect of this relationship can, however, be hard to distinguish: animals may be attracted to 

each other (e.g. because they are related or because they have the same nutritional needs), 

leading them to share space; or they may be attracted to the same space (e.g. where the 

resources or fewer pathogens are, de garine-Wichatitsky et al. 1999), leading to higher 

contact rates (Best et al. 2014). Habitat structure tends to affect the social behaviour of 

herbivores by modifying the strategies adopted by individuals to avoid predation. Herbivores 

usually live in larger groups in open habitats, where visibility is high, allowing individuals to 

detect predators more efficiently (Jarman 1974, Hirth 1977, Molvar and Bowyer 1994, 

Isvaran 2007, Fortin and Fortin 2009, Bercovitch and Berry 2010). In such habitats, 

individuals can perceive themselves easily and can, therefore, tend to attract each other 

because of their gregarious behaviour, leading to a fusion event followed by a fusion period 

(Pays et al. 2007). In the current study, I showed that fusion periods were not dependent 

on the vegetation type (Chapter 3). This result suggests that buffalos associate to interact 
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socially regardless of the environment and, therefore, independently of resource 

distribution. Fission could occur at any time when key individuals differ in their decisions 

regarding the next activity or the next foraging location and were joined by regular followers, 

leading to a split of the subgroup (Ramos-Fernández and Morales 2014). Due to the high 

degree of fission-fusion dynamics observed in Chapter 3, conflict resolution might not be 

important in Cape buffalo groups. The group can simply split when conflicts arise. As all 

buffalos were not collared in my study areas, the information on whether collared individuals 

leaving a dyad initiated the fission, or were followers instead, is not available. Overall, the 

results found in this thesis suggest that fission-fusion dynamics between Cape buffalo 

dyads may be driven by resource availability at the seasonal scale, while at a finer temporal 

scale, i.e. within seasons, conflicts of interest and social attraction may be responsible for 

fission and fusion events.  

 Factors such as predation pressure and group size have already been mentioned 

as potential drivers of intragroup dynamics in the African buffalo (Prins 1996, Tambling et 

al. 2012). Tambling and collaborators (2012) have found that, after the reintroduction of 

lions in the Addo Elephant National Park (South Africa), buffalos tended to congregate into 

larger groups, but over the long-term (i.e. not responsible for fusion or fission events). In the 

European roe deer, Pays et al. (2007) reported that some fusion and fission events were 

not caused by spontaneous attraction or splitting-up, but by external disturbances related 

to human activities (disturbances or hunting). African buffalos usually respond to the scent 

of lions with panic and flight behaviours (A. Caron, pers. comm.). Therefore, it is very likely 

that the presence of lions creates confusion among buffalos within a group, leading to the 

splitting into subgroups. This factor deserves to be further investigated, for example, by 

combining GPS data for both buffalos and lions (Miguel et al. 2017). This study was not 

designed to identify the impact of the human presence on grouping patterns and social 

decisions of buffalos. In the study areas, the only data available were the geographic 

locations of villages and roads. Movement data for buffalo were also available in the Niassa 

National Reserve (Prin 2014), where human populations live inside the reserve. 

Unfortunately, the way the GPS data was collected (e.g. low temporal resolution, few 

collared individuals in the same group, collars placed over several years) did not allow the 

examination of movements and social decisions of buffalo at a fine temporal scale. In future, 

it would be of interest to investigate how buffalos adapt their intragroup dynamics in Niassa 

National Reserve where encounters and disturbances linked to human activities are much 

more important than in the populations studied in this thesis.  

 The group size around the collared individuals could not be followed during my 

project. Group size monitoring is often done at snapshot times rather than continuously, 

hence, information about the duration of fission and fusion periods is often not accessible. 

Same is true for understanding where fission and fusion events occur. This thesis thus 
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focused on, and estimated, the extent to which two individuals of a group spend time 

together, irrespectively of whether they occur in large or small, consistent or not, subgroups. 

However, variation in fission-fusion dynamics observed in the three studied populations may 

be due to variation in group size. Ideally, such a study would require both behavioural data 

(e.g. size and composition of subgroups) and movement data, which can identify the precise 

moment when the events take place. Direct observations are generally very time-

consuming, but the use of drones or camera traps can provide valuable alternative 

approaches to regularly monitor size and composition of groups containing collared 

individuals (McCarthy et al. 2018, Vink et al. 2020). Recently, camera traps have been used 

to study the social structure of western chimpanzees, Pan troglodytes verus (McCarthy et 

al. 2019) and social dynamics of striped hyaenas, Hyaena hyaena (Mandal 2019). This 

method may be applied to the Cape buffalo to estimate group size, but also to characterize 

social relationships (e.g. agonistic) among individuals.  

 

3.2 Consequences for disease transmission within buffalo populations 

and at buffalo/cattle interfaces 

In social species, it is not surprising that the risk of pathogen transmission is greater within 

social groups, due to higher contact rates (Altizer et al. 2003), and the results of my thesis 

support this statement. I identified a significant social structure of contacts in Cape buffalo 

populations (Chapters 3 & 4). Contacts were mainly contained within groups, whilst most of 

the between-group contacts were indirect, occurring within one month. The social and 

spatial constraints on buffalo direct contacts may reduce the rate of spread of directly 

transmitted pathogens in the population but may promote rapid spread within groups. In 

agreement with the first assumption, Omondi et al. (2020) have found genetically distinct 

variants of FMDV (mainly transmitted by direct contact in semi-arid habitats) between 

neighbouring groups of buffalos (in Ol Pejeta Conservancy, Kenya). Conversely, the ease 

of propagation of a direct-transmitted pathogen within a group (Chapter 6) emphasizes the 

importance of preventing pathogen transmission from being introduced into a susceptible 

buffalo group. It is, however, important to note that the social structure of the Cape buffalo 

would promote the spread of a directly transmitted disease, unlike random group patterns 

usually assumed in modelling studies (Chapter 6). Further studies should be undertaken to 

consider other pathogens with different modes of transmission. These results have 

important implications for developing strategies for managing diseases in Cape buffalo 

populations. In particular, management measures that reduce social and spatial constraints 

of buffalo contact rates among groups, such as intensive hunting if they enhance movement 

rates, may increase the rate of pathogen spread and should be avoided to mitigate 

epidemiological risks. In that way, many studies have refuted the effectiveness of culling to 
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control the disease spread and may even demonstrate a contrary effect to the one 

expected, by promoting disease spread (Miguel et al. 2020). For example, badger culling in 

the UK appeared to decrease bovine tuberculosis spread at local scale but increased 

transmission to adjacent areas, probably through enhanced dispersal rates (Donnelly et al. 

2006, Carter et al. 2007, Woodroffe et al. 2009).  

In the Cape buffalo, pathogens with indirect transmission modes (e.g. by the air, 

water, soil, vector) may spread easily within the whole population because of the higher 

indirect contact rates between neighbouring groups (Chapter 4). Moreover, even though 

indirect contacts within groups were not examined within this thesis, pathogens that can 

survive in the environment for several days, and even for several months, should spread at 

least as easily as directly transmitted pathogens. The high immigration rate observed in 

Cape buffalo in Chapter 5 may also accelerate the spatial spread of infectious diseases, as 

it is suggested for the bTB spread from Kruger NP to Gonarezhou NP (Caron et al. 2016). 

Infectious diseases are thought to influence dispersal behaviour, through either direct 

impact on animal behaviour or indirectly by affecting body condition (Armsworth 2009, 

Debeffe et al. 2012, 2014). A recent study on the Cape buffalo has found that the infectious 

diseases, including brucellosis and bovine tuberculosis, did not directly affect dispersal 

decision in adult females (Spaan et al. 2019). By contrast, they found that individuals in 

poor body condition were more likely to disperse. Therefore, infectious diseases that 

negatively affect body condition (Caron et al. 2003, Gorsich et al. 2015), could indirectly 

influence dispersal and promote the spread of disease. Other factors such as resource 

availability, competition or position in the group can decrease an individual’s body condition, 

and explain the greater propensity of these individuals to disperse, independently of their 

infectious status (Sinclair 1977, Mloszewski 1983). The results of this study raise questions 

about the effect of dispersal on disease transmission among Cape buffalo populations.  

 The Cape buffalo is considered an important reservoir host for many pathogens, 

such as foot-and-mouth disease virus (FMDV), Theileria sp., Trypanosoma sp., 

Mycobacterium bovis (bTB), and Brucella sp. (Bengis et al. 2002, Kock et al. 2014). For the 

majority of these pathogens, there are few if any impacts on their populations since buffalos 

are highly tolerant. In contrast, buffalos can be sensitive to introduced pathogens from 

cattle, such as the rinderpest virus imported from Europe through cattle, which had dramatic 

consequences on buffalo populations (Kock et al. 1999). Buffalo populations can also 

represent a risk for cattle infection, mainly with bTB, FMDV and theileriosis (Caron et al. 

2013). At buffalo-cattle interfaces, the type of interface, resource availability (e.g. due to 

seasonal changes), population dynamics of buffalo calves and efficiency of wild animals 

movement control measures (e.g. antelope jumping over fences infected due to contact with 

buffalos) have been identified as potential drivers of pathogen spillover between buffalo and 

cattle (Bengis et al. 1986, Sutmoller et al. 2000, Kock 2005, Jori et al. 2009, Dube et al. 
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2010, Caron et al. 2013, Miguel et al. 2013, Kock et al. 2014). Results in Chapter 6 suggest 

that the risk of spread within a group of Cape buffalo may be higher when the pathogen 

establishes during the dry season due to changes in contact structure. The seasonal 

variation in intragroup contact structure of Cape buffalo is a new potential driver to increase 

the risk of spillover to cattle. During the dry season, risk of contact between the two species 

is generally higher due to the limitation of resources (forage and water, Kock 2005, Valls-

Fox et al. 2018). Therefore, the ease of pathogen spread within buffalo groups increases 

the risk of transmission through contact with cattle, and pathogen transmission in buffalo 

groups by cattle may spread very quickly within the groups. Although manipulation of 

available resources for buffalo may reduce the temporal constraints of resource availability 

on buffalo contact structure (e.g. resource limitation during the dry season), this is usually 

challenging, and it is easier to limit the interactions between buffalo and cattle, mainly during 

the dry season. Cattle-buffalo interactions may be reduced by removing artificial waterholes 

maintained for wildlife that are located at the edge of protected areas and closer to 

communal lands where cattle populations are hosted. Alternatively, one could try to reduce 

the practice of herding (or letting) cattle to pasture inside protected areas (Miguel et al. 

2013, 2017) or use waterholes inside or at the edge of protected areas, notably by 

increasing access to boreholes in communal lands.  

 

3.3 Impact of climate change  

In tropical environments, seasonality and interannual variation in forage and water 

availability are largely driven by rainfall patterns (Bucini and Hanan 2007). However, around 

80% of climate projections indicate that southern Africa will have increased temperatures, 

reduced precipitation, and later onset of rains (James and Washington 2013). The results 

of this thesis suggest that social dynamics of the Cape buffalo may change due to 

anthropogenic climate change and surface water availability. I found that intragroup 

dynamics varied according to the season: during the dry season, individuals formed tighter 

subgroups, split less often, and remained in contact for longer (Chapters 3 & 6). 

Consequently, the drier conditions that will be experienced in semi-arid ecosystems of 

southern Africa in the coming years could reduce intragroup dynamics, with more stable 

groups than those currently observed. Buffalo population dynamics could be affected given 

the relationship between social organization, i.e. group size, composition and stability, and 

demographic parameters, such as survival, reproduction and dispersal abilities (Baird and 

Whitehead 2000). Such changes in the social structure of the Cape buffalo because of 

climate warming will have consequences for disease transmission processes within buffalo 

populations, but also at the buffalo-cattle interfaces. The drier conditions we will experience 

in the coming decades may accelerate the spread of pathogens within buffalo groups. 
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Combined with the expected increasing competition for resources between buffalo and 

cattle, this ease of spread within buffalo groups could further increase the risk of 

transmission to cattle. The reverse is also true; if pathogens are transmitted more easily 

within buffalo groups, then it will be more important to limit the interactions between the two 

species for conservation issues. The results of this thesis tentatively suggest that water 

sources might act as hotspots for intra- and intergroup contacts during the dry season, but 

only in areas with low water availability (Chapters 3 & 4). The expected decrease in water 

availability due to global warming could intensify the role of water points in these areas, thus 

promoting transmission processes in buffalo and with cattle.  

 

4 Future directions 

4.1 Decision-making during fission event 

To maintain group cohesion, individuals of a group must move synchronously and in the 

same direction (Petit and Bon 2010). Before leaving an area, individuals must decide about 

the direction and/or time of departure (Bourjade and Sueur 2010). Group members can 

show their motivation to move by increasing their activity or producing more vocalizations, 

such as in Verreaux’s sifakas, Propithecus verreauxi, or in mountain gorilla, Gorilla gorilla 

berengei (Stewart and Harcourt 1994, Trillmich et al. 2004). In Tonkean macaque, Macaca 

tonkeana, ‘voting behaviours’ have been observed where individuals turn their bodies in a 

specific direction to indicate their choice for the upcoming move (Sueur and Petit 2008, 

Sueur et al. 2010a, King and Sueur 2011). In the African buffalo, females would urinate and 

defecate more before a collective movement, indicating their motivation to move (Prins 

1996). They also have a particular stance position looking in one direction and with the head 

higher than the normal resting position. Group fission may occur when a first subgroup 

decides to move in one direction while the second one decides either to stay in the current 

area or to move in another direction (Kerth et al. 2006, Ramos-Fernández et al. 2006). 

Mechanisms underlying collective movements, i.e. the decisions of each individual to join 

one of the two subgroups, are increasingly studied, but they are still unknown in the Cape 

buffalo. The probability to follow one of the two subgroups can depend on the number of 

individuals already involved in the movement, whatever their identities, the social or 

affiliative relationships with individuals already moving or still resting, or on their needs at 

that time (Okamoto and Matsumura 2001, Kerth et al. 2006, Sueur et al. 2010b, 2011b, 

Jacobs et al. 2011). It would be interesting to examine the decision-making during group 

fission in the Cape buffalo to measure the weight of social influence, compared with that of 

ecological influence (often examined), on group stability. This could be done by direct 

behavioural observations, through the collection of departure latencies of each individual, 
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the order of individuals during departure, i.e. who is following whom, and the complete 

progression order. In addition, data on age, kinship and affiliative relationships would allow 

an understanding of how these factors affect social decisions.  

 

4.2 Mechanisms underlying intergroup segregation 

Chapter 4 demonstrates that groups of buffalo tend to avoid each other spatially and 

temporally, but the underlying mechanisms are unknown. Many social species defend their 

territories to have exclusive access to resources and different patterns of territory marking 

are adopted (Miura 1984, Grant et al. 1992, Sillero-Zubiri and Macdonald 1998, Lazaro-

Perea 2001). Animals can defend their territories through fighting (Sillero-Zubiri and 

Macdonald 1998), but the quasi-absence of direct contacts observed in my study suggests 

that buffalo groups do not actively defend their home ranges. Buffalo may thus adopt 

indirect strategies to inform ownership to intruders and therefore avoid conspecifics, such 

as scent-marking or vocalizations already observed in many species (Waser 1975, Sillero-

Zubiri and Macdonald 1998). Buffalos use different types of vocalization for maintaining 

group cohesion (Mloszewski 1983), it is, therefore, possible that neighbouring groups 

interact with each other through vocalizations to inform on their location. In some African 

mammals, including the elephant (Langbauer et al. 1991) and several species of rhinoceros 

(von Muggenthaler et al. 1993), infrasounds have been shown to play an important role in 

long-distance communication. Further research is needed to better understand the 

population structure and how a change in the environment (introduction of a group of 

buffalo, scarcity of resources due to climate change) could impact the space use by buffalo 

groups. This could be done by measuring the response of group members to playback of 

recorded vocalizations or by studying the response to faeces materials from neighbouring 

or unknown groups (e.g. from another population). 

 

4.3 Measuring the causal factors underlying sex-biased dispersal 

The causes responsible for the dispersal of individuals usually include temporal and spatial 

heterogeneities of the environment, inbreeding avoidance and local competition (Cockburn 

et al. 1985, Lebigre et al. 2010). In mammals, dispersal is generally male-biased (Cockburn 

et al. 1985, Harris et al. 2009), mainly to avoid the strong local mate competition that 

characterises the female-defence mating system, but counter-examples exist (e.g. Favre et 

al. 1997, Hammond et al. 2006, Zhan et al. 2007). Causes of dispersal are likely to differ 

depending on whether dispersal is undertaken over long distances, occurring among 

populations, or over short distances, occurring among groups within a local population. 

Inbreeding might be avoided by short moves, whilst avoiding poor environmental conditions 
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or colonizing new territories require greater movements. Distance dispersal may differ 

among sexes (Fontanillas et al. 2004). For example, in the brushtail possum, Ji et al. (2001) 

have shown that movements among occupied territories were male-biased, whereas both 

sexes disperse when the aim was to colonize empty sites. In this thesis, I found that Cape 

buffalos disperse with high immigration rates that involve both females and males at two 

organizational levels (i.e. among populations and among groups). Nevertheless, it seemed 

that females dispersed more than males when it came to among population movements. 

Dispersal of the Cape buffalo has been described in the literature, but the ecological and 

social drivers are poorly understood, especially for females. Recently, using tracking 

devices, Spaan et al. (2019) have explored the influence of the environmental conditions, 

the characteristics and health of adult female buffalos, and the location of the group, on the 

propensity to disperse. Because this study was only based on adult females (Spaan et al. 

2019), further studies are required to understand the main factors affecting the dispersal in 

buffalos, both in females and males, and both in subadults and adults. Tracking devices 

seem to be the best tools for such questions, providing complete picture of the movements 

of individuals, even at long distance (unlike to Capture-Mark-Recapture method). To 

increase the chances of monitoring individuals that will disperse, many GPS collars must 

be fitted, possible on a single group at the start. A strong temporal resolution for the 

collection of data is not needed because it is not required to know the exact time of the start 

of the dispersal event. This choice would increase the battery life. Knowing not only the age, 

the sex and the condition of each animal (e.g. health status) but also the social (e.g. group 

size) and ecological (e.g. resource availability) conditions in which they live would enable 

us to examine how these different factors affect the likelihood to disperse. 
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