Please cite the Published Version

Said, Anwar, Hassan, Saeed-Ul, Tuarob, Suppawong, Nawaz, Raheel @@ and Shabbir, Mudassir
(2021) DGSD: Distributed graph representation via graph statistical properties. Future Generation
Computer Systems, 119. pp. 166-175. ISSN 0167-739X

DOI: https://doi.org/10.1016/j.future.2021.02.005

Publisher: Elsevier BV

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/627339/

Usage rights: [c Creative Commons: Attribution-Noncommercial-No Deriva-
tive Works 4.0

Additional Information: This is an Author Accepted Manuscript of an article published in Future
Generation Computer Systems.

Enquiries:

If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0001-9588-0052
https://doi.org/10.1016/j.future.2021.02.005
https://e-space.mmu.ac.uk/627339/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines

DGSD: Distributed graph representation via graph statistical N

properties

Check for
updates

Anwar Said ?, Saeed-Ul Hassan **, Suppawong Tuarob ®, Raheel Nawaz ¢,

Mudassir Shabbir®

2 Department of Computer Science, Information Technology University, Lahore, Pakistan
b Faculty of Information and Communication Technology, Mahidol University, Thailand
¢ Department of Operations, Technology, Events and Hospitality Management, Manchester Metropolitan University, United Kingdom

ARTICLE INFO

Article history:

Received 14 July 2020

Received in revised form 6 January 2021
Accepted 13 February 2021

Available online 20 February 2021

MSC:
00-01
99-00

Keywords:
Graph embedding

ABSTRACT

Graph encoding methods have been proven exceptionally useful in many classification tasks — from
molecule toxicity prediction to social network recommendations. However, most of the existing
methods are designed to work in a centralized environment that requires the whole graph to be kept
in memory. Moreover, scaling them on very large networks remains a challenge. In this work, we
propose a distributed and permutation invariant graph embedding method denoted as Distributed
Graph Statistical Distance (DGSD) that extracts graph representation on independently distributed
machines. DGSD finds nodes’ local proximity by considering only nodes’ degree, common neighbors
and direct connectivity that allows it to run in the distributed environment. On the other hand, the
linear space complexity of DGSD makes it suitable for processing large graphs. We show the scalability
of DGSD on sufficiently large random and real-world networks and evaluate its performance on various
bioinformatics and social networks with the implementation in a distributed computing environment.

Distributed computing
Batch processing
Graph classification

1. Introduction

Encoding the graph-structured data (also known as graph
embedding) is an important research topic where the primary
goal is to represent a graph into a fixed-length feature-vector [1].
Graph embedding methods not only facilitate machine learning
over networks but also enable us to find a similarity between
them, e.g., inexact graph matching [2]. It benefits a wide range
of applications, including molecule toxicity prediction, brain net-
works comparison, topic prediction from online social networks,
link prediction, and solving graph analytic problems. For ex-
ample, given a brain network constructed from neurons and
their physical connections, we can perform disease classifica-
tion [3]. Such problems fall under the well-established category
of graph classification where a machine learning model is trained
to differentiate between graphs among different classes [1].

In the era of big data, the graph-structured data is massive in
size and is increasing exponentially due to a rise in the number
of objects and data produced by the individual object. Current
online social networks and biological networks are the prominent

* Corresponding author.

E-mail addresses: anwar.said@itu.edu.pk (A. Said),
saeed-ul-hassan@itu.edu.pk (S.-U. Hassan), suppawong.tua@mahidol.edu
(S. Tuarob), r.nawaz@mmu.ac.uk (R. Nawaz), mudassir.shabbir@itu.edu.pk
(M. Shabbir).

https://doi.org/10.1016/j.future.2021.02.005
0167-739X/© 2021 Elsevier B.V. All rights reserved.

© 2021 Elsevier B.V. All rights reserved.

examples where a large number of entities involve in a single
process [4]. Processing and computing representation from these
large networks on a single machine with limited memory is not
feasible and there is an increasing need for graph representa-
tion methods that can execute efficiently in parallel on different
machines [5]. One possible solution that suffices the need is
the distributed computing that can come into play to cope with
gigantic graphs. Unfortunately, most of the research in graph
representation has been focused on centralized algorithms that
require the whole network to be kept in memory such as the Graph
Kernels [6,7] and Graph Convolutional Networks (GCNs) [8-10].
In addition to the memory requirements, they also face many
challenges. For example, the kernel methods are computationally
expensive and do not provide desired results in various scenarios.
A prominent example is the well-known Weisfeiler-Lehman (WL)
kernel method [11] that fails on regular graphs as it begins
by partitioning the vertices according to vertex valency [12].
Whereas GCNs require node attributes to learn from the network
structure and have limited scalability [13]. Other recent statistical
representation methods are either computationally demanding or
having low discrimination power especially when the structure of
the networks is significantly dense [14].

A desired property to encode large graphs is independent and
parallel execution of the embedding method on different dis-
tributed machines. However, encoding nodes’ global positions in

http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2021.02.005&domain=pdf
mailto:anwar.said@itu.edu.pk
mailto:saeed-ul-hassan@itu.edu.pk
mailto:suppawong.tua@mahidol.edu
mailto:r.nawaz@mmu.ac.uk
mailto:mudassir.shabbir@itu.edu.pk
https://doi.org/10.1016/j.future.2021.02.005

A. Said, S.-U. Hassan, S. Tuarob et al.

the embedding space requires sufficient information of the nodes
— up to several-hop neighbors, e.g., GCNs and graph kernels. It
is accepted that the key aspect to extract graph representation is
to consider the neighborhood of the nodes [1,15]. Neighborhood
information allows us to locate nodes in the embedding space.
Naturally, a node u is closed to node v than the node w, if v has
direct connectivity with u as well as more common neighbors.
This observation motivates us to search for a distance-measure
on graphs that captures nodes’ position in the embedding space.
This search leads us to discover a simple but powerful statisti-
cal representation method; Distributed Graph Statistical Distance
(DGSD) that preserves nodes’ position in the embedding space.
The DGSD leverages nodes’ local neighborhood information us-
ing node degree, common neighbors, and direct connectivity to
capture their position in the graph. On one hand, DGSD is a
distributed graph encoding method that extracts feature-vectors
from graphs using nodes’ pair-wise distances in a distributed
fashion. This is due to the fact that only the information of com-
mon neighbors, adjacency and degree are necessary for each node
to find its position in the embedding space. On the other hand, its
linear space complexity allows the scalability on sufficiently large
graphs. Fig. 1 demonstrates the pipeline of DGSD.

The work in this study only focuses on undirected graphs
but can also be extended to directed graphs. Our comprehensive
empirical results on various datasets show that the DGSD repre-
sentations are powerful enough to provide better accuracy results
against state-of-the-art algorithms, even though DGSD uses no
graph meta information and rely only on graph structural data.
The main contributions of this study are as follows:

e We propose DGSD, a scalable and distributed graph rep-
resentation technique to encode large and arbitrary sized
graphs in a distributed environment with parallel process-
ing.

e We show scalability and expressiveness of the proposed
algorithm on the graph classification task using large scale
empirical analysis on several real-world and synthetic net-
work datasets. The results showed an improved perfor-
mance on several datasets against state-of-the-art methods.

e We implemented DGSD in multiprocessing environment in
Python and C programming languages and made both the
implementations publicly available to foster reproducibility
of the results.

The rest of the paper is organized as follows. Section 2 pro-
vides an overview of the graph representation approaches. Sec-
tion 3 introduces the DGSD’s based graph representations on both
distributed and centralized environments. Section 4 presents the
DGSD evaluation on various real-world and synthetic network
datasets and Section 5 concludes the paper.

2. Related work

Enormous applications and the empirical success of graph
embedding methods have attracted a lot of interest from the
scientific community. Due to that, a large body of work exists.
In this section, we overview state-of-the-art graph representa-
tion methods developed for the task of graph classification. In
particular, we focus on the graph kernels, statistical and spectral
representation approaches that use graph theoretical properties
for extracting graph representations.

Generally, a kernel k(r,7’) is a measure of similarity be-
tween objects 7 and 7/, that satisfies two main requirements: it
must be positive semi-definite and symmetric, that is k(rr, 7’) =
k(zr’,) [6,16-22]. The authors in [11] introduced one of the
powerful graph kernel methods known as Weisfeiler-Lehman
that works on vertex color refinement. Initially, it assigns colors

167

to each node based on the vertices’ degrees — vertices having
the same degrees will have the same color. And then recursively
refines vertices’ colors concerning their neighbor colors. Despite
its successful results on various benchmark datasets, this method
cannot distinguish regular graphs. Neighborhood Hash Kernel
(NHK) assumes labeled nodes and quantifies graphs by updating
their node labels and counting the number of common labels
between them. The deep graph kernel [18] compares graphs
based on the number of subgraphs or motifs and employs the
word embedding model. However, extracting subgraphs or motifs
is a computationally expensive task that makes it impractical
on significantly large networks. The shortest path kernel [16] is
another well-known graph kernel that encodes and compares
graphs based on the shortest paths between all pairs of vertices.
Similarly, the random walk kernel [21] quantifies graphs with
respect to the number of common walks among them.

Higher-order proximity is an important aspect to embed
graphs into vector spaces, as it requires both local and global-
level information of the graph. Therefore, most of the existing
works use global-level graph-theoretic measures for graph em-
bedding. FGSD [7] constructs graph representations as a his-
togram from nodes’ pair-wise distances computed from the graph
spectrum where the graph spectrum contains both local and
global level information. Similarly, NetLSD [14] considers a heat
diffusion process on a graph and constructs feature vector us-
ing Laplacian spectrum. Recently, the authors in [6] use the
Wasserstein distance between the node feature distributions to
distinguish graphs. The authors in [23] use graph simple statisti-
cal properties such as average degree, clustering coefficient and
other nodes’ centrality measures for encoding graphs. For graph
comparison, Maretic et al. recently propose using the Wasserstein
distance which uses the distribution of smooth graph signals,
and comparing them using the Wasserstein distance [24]. A
similar framework based on the optimal transport theory and
discrete graph matching in a continuous domain is proposed
in [25,26]. We can see that all of these measures use global-
level graph measures to compute graph embeddings where the
embeddings are based on nodes distances or similarities. Such
recent approaches have shown promising results on the graph
classification task; however, they require the entire graph to be
loaded in memory. To process huge graphs, recently, the authors
in [27] have proposed a streaming algorithm that approximates
feature vectors by estimating counts of sub-graph. The algorithm
does not require the whole graph to be kept in memory, but
instead processes it in batches. More recently, NetKI [28], a nearly
linear time graph descriptor has been proposed. NetKI is based
on the idea of network Kirchhoff index to extract representations
from graphs and scalable on sufficiently large graphs. Other
popular graph comparison approaches include [29-33].

Recently, the graph neural network models have also been
successfully applied on graphs [34-36]. There has been a surge in
such approaches in the last few years that work both on the node
classification [10] and graph classification task [37,38]. We refer
the reader to [1,39] for further reading on graph neural network
models.

3. Methodology

The notion of distributed computing systems is a useful and
widely adopted tool for parallel processing [40]. Generally, it
refers to a group of independent computers, each having its
own memory and operating system, that communicate with each
other over a network to solve a problem collectively. Distributed
computing has several advantages over centralized computing,
for example, enhanced reliability, resource sharing, and increased
performance. Currently, the two main bottlenecks of centralized

(b) Batches creation

i—»! using Random.:
HE Forest é%

(c) Distributed computing environment

Fig. 1. Architecture diagram of DGSD. (a) a set of labeled graphs is given is an input to the DGSD. In (b), batches of approximately equal size are created from each
graph and send them to the distributed computing environment where a single batch is assigned to each worker. In (c), a distributed computing environment is
shown where m workers are communicating with a server and an aggregator machine. Worker machines communicate with server to process the given batch and
once it completes the processing and constructs the feature vector R (histogram), it forwards it to the aggregator machine. The aggregator machine receives all the
desired histograms from the workers, and aggregate them to create a single feature vector (for each graph). In the end, a Random Forest classifier is applied to the

resultant feature matrix to perform the graph classification task.

computing are the space and computing power. The problem
becomes even harder when the issue of graph representations
comes into play — due to the excessive need for space and
computational resources. The existing approaches require a large
amount of time to generate representations while most of them
are even not scalable on moderate size of networks.

In this paper, we propose to use the framework of distributed
computing systems for encoding large graphs in parallel using
multiple machines with limited storage. In particular, we consider
the following realistic conditions while encoding graphs:

o Independent architecture: each worker independently pro-
cesses the input vertices and communicates only with the
central controller. No worker can access the data stored on
other machines.

o No knowledge of the input graph: the workers have no
prior information about the input graph.

e Process once: each vertex is processed only once by a single
worker.

e Deleting past information: Past vertices’ information is
deleted and cannot be accessed again.

o Limited storage: Each worker machine has a limited mem-
ory; in particular the memory is not large enough to store
the graph.

Considering the above conditions, in the following section,
we define basic notations and the problem of distributed graph
representation for the graph classification task.

3.1. Basic setup and notations

Let G = (V, E) be an undirected graph with a set of vertices
V ={1,2,3,...,n}, and a set of edges E C V x V. The adjacency
matrix A of G is an n x n matrix where, A[i, j] = 1if(i,) € E, and
0 otherwise. The neighborhood, N(i), of a vertex i € V represents
a set of vertices that are adjacent to i, while deg(i) indicates the
size of it's neighborhood.

A Degree Sum Matrix, D, for a given graph is n x n symmetric
matrix where each entry represents the sum of degrees of the
corresponding pair of vertices in G, i.e., :

deg(i) + deg(j) ifi#j
0 otherwise.

Dli, jl = { (1)

Let N(i, j) denote the common neighborhood of the vertices i
and j, which is the set of vertices different from i and j, that are
adjacent to both the vertices, i.e., N(i,j) = N(i) N NG)\({i, j}. Let
Ixn represent the common neighborhood matrix of the graph G
where each entry is defined as

IN(i,)| ifi#j
0 otherwise.

I'fi,jl= { (2)

168

I’ is a hollow matrix where all the diagonal elements are
zero. The off-diagonal elements are assumed to be integer values
ranging from O to n — 2.

3.2. DGSD based graph representation

In this section, we first describe and motivate DGSD graph
embedding that uses the multiset of node pair-wise statistical
distances. Then, we present two graph representation algorithms,
one for the distributed computing environment and the other for
the centralized environment. Lastly, we theoretically show the
uniqueness, time and space complexities of DGSD algorithm in
both the distributed and centralized cases.

Problem definition: In this work, we are interested in encod-
ing large graphs in a distributed environment into a Euclidean
space where the graphs cannot be processed on a single ma-
chine due to efficiency or memory limitation. For our distributed
algorithm, we will assume m independent machines (workers)
connected to a central controller machine, and an aggregator
machine. We consider a distributed computing model where
workers communicate directly to the central controller, and each
of m workers has a limited storage capacity. Given a collection of
graph-label pairs, ¢ = {(G1, y1), (G2, ¥2), ..., (G, y1)}, the goal is
to find a function ¢ : G — R, that can map a given graph into a
low dimensional feature vector, h¢, in a distributed environment.
Here, although we consider undirected graphs, our measure can
be easily extended to directed graphs as well. We also aim to
preserve vertices’ local and global information in the embedding
space and ensure that we always have the same representations
for isomorphic graphs.

Graph representation methods usually rely on either a ker-
nel function, node pair-wise distance or end-to-end learning [7,
16,36]. Among them, pair-wise distance measures have shown
promising results in the last few years. These are tractable mea-
sures having theoretical guarantees and produce very accurate
classification results. However, the existing methods use global
scale measures such as the graph spectrum [7,14], Kirchhoff In-
dex, Earth-mover distance, and graph compression methods [24,
41] that require the whole graph to be kept in memory, and thus
limit their ability to scale to large graphs.

Most of the real-world social networks follow the phenomenon
of six-degree-of-separation where it is possible to connect any
two pairs of vertices with a few links [42]. This is true about
other networks as well, such as molecular networks and neu-
ral networks. Because of the existence of strong ties and the
natural dense connectivity of these networks, their diameters
are usually small, i.e. < 6. We note that many of the state-of-
the-art benchmark datasets for graph classification also follow
the same phenomenon. To illustrate this, we show the count

Proteins

NCI1

NCI109

140000 1
200000

120000 1
100000 150000 1

80000
100000

pairs

60000

40000 1
50000

20000

200000 1

150000

100000

50000

0 0 1
0 10 20 30 40 50 60 0 10 20 30 40 0 10 20 30 40 50 60
1e6 D&D 1e8 REDDIT-B 168 REDDIT-M-5K
1.754 251
5
1.50 204
49 1.254
0 154
£3] 1.00
g
#* 0.754 1.0
Py
0.504
] 0.5
: 0.254
0 0.004 0.0
o 20 40 60 80 25 50 7.5 100 125 150 17.5 0 5 10 15 20 25

distances

distances

distances

Fig. 2. Count of shortest path pair-wise distances on six graph classification benchmark datasets having number of graphs > 1000. X-axis shows the shortest-path
distances while y-axis represents the count of pairs found against each distance x.

of pair-wise shortest path distances on six well-known graph
classification benchmark datasets in Fig. 2. On the y-axis, the
count of vertex pairs corresponding to the shortest path distances
on x-axis has been shown. We empirically found 46% pairs in
bioinformatics datasets and 93% pairs in social network datasets
lie in range < 4. We conclude that for the most part, in real-world
graphs, topological information is concentrated among pairs of
vertices that are just a few hops away from each other. We
use this observation while designing our graph embeddings. This
increases the computational efficiency of the algorithm, enabling
it to run in a distributed environment.

Here we present DGSD, a novel distributed graph representa-
tion method that extracts expressive representation from graphs.
It encodes graphs using vertex pair-wise statistical distances.
DGSD is a graph distance measure that relies on three different
nodes’ statistics; nodes’ degrees, common neighborhood and di-
rect connectivity. The combination of these measures has been
widely adopted in many graph analytic problems such as com-
munity detection [43,44] and representation methods [45]. The
main idea behind DGSD is that the vertices that share many com-
mon neighbors, I'(i, j), with respect to the sum of their degrees,
deg(i) 4+ deg(j), and have direct connectivity, 8, should be closed
to each other in the embedding space. The definition of DGSD is
as follows.

DGSD definition: for i, j € V, we define the distance between
iand j on G in distributed environment as follows:

IN(D)| + ING)I
IN(DI 4+ ING)I + IN(E) + 6

Here § is a Kronecker delta which is 1 if i and j are adjacent
otherwise 0. We can easily see that the lower bound of DGSD
distances is 2/3 if i # j otherwise 1 in the upper case. The
lower value of DGSD distance indicates a smaller distance (high
robustness) between pairs of vertices, while 1 indicates the high-
est distance or dissimilarity between the pairs. To illustrate this,
consider the example in Fig. 3.

We consider the green vertex as a source and show distances
to a few other vertices. From green to dark blue vertex, there
are two common neighbors; blue and gray and has a direct link,
therefore, the distance between them is 0.7. Similarly, with the
blue vertex, there is one common neighbor and a direct link,

Sli, jl = (3)

169

Fig. 3. DGSD based distances shown from green vertex to few other vertices in
the graph. The vertices share more common neighbors and direct links have the
minimum distance.

the distance is increased to 0.75. We see only a slight increase
in the distance indicating the robust connection between the
two vertices. We note the increase in the distance, 0.83 from
0.75, with the red vertex, because of the removal of the direct
link between them. The distance is increased further to 0.87,
with the yellow vertex, with the increment in the degree of the
yellow vertex. With the brown vertex, there is no direct link and
common neighbors, and thus distance is 1, which implies the
less robust or dissimilarity between the vertices. We note that
DGSD maintains vertices’ positions with respect to their local
neighborhood. If the vertices have no common neighbors and
are not adjacent, the distance is maximum. This nature of DGSD
allows us to deploy it in a distributed environment where we
only need the neighbors of the corresponding two vertices to find
the distance between them. We denote the multiset of distances
of G by S. DGSD extracts local and global structure information
from graphs. The extraction of local proximity can be seen from
considering the local neighbors’ information such as common
neighbors, nodes’ degree and direct connectivity. This allows the
method to encode the local position of the vertices. On the other
hand, for vertices that are not adjacent and have no common

A. Said, S.-U. Hassan, S. Tuarob et al.

neighbors, DGSD assigns maximum distance, i.e, 1, that helps to
extract the global structure information. Motivated by the fact
that DGSD encodes nodes’ local and global structure information,
we use S for the graph classification task, where it requires to
perform comparison among graphs. Based on S, we define the
graph embedding as a histogram R of the multiset S. Thus, the
comparison of R¢, and R, implicitly evaluates the similarity
between G; and G,.

We describe DGSD for the distributed environment in Algo-
rithm 1. There are three main components of the DGSD graph
representation: the central controller, workers and the aggrega-
tor. Here, we first describe the central controller which takes
the input graph from the source. In step 1, the central controller
converts vertices’ labels to integers and creates batches B of
vertices from the input graph where the size of each batch is set
to B; = |V|/m. The number of batches is decided according to
the number of workers, m, connected with the central controller.
Next, the controller broadcasts the batches to the workers —
each batch to a single worker. The controller listens to workers
to entertain their queries. In order to reduce the inter-process
communication time, we use centralized files that keep nodes’
neighborhood information.

Each worker m; initially receives a batch B from the controller.
Since DGSD requires only local information, it implies the neces-
sity of only neighbor information of the corresponding vertices.
Thus, neighbors for each node are required to compute nodes’
pairwise distances. In step 5, the worker requests the controller
to compute the total vertex count, n, of the graph and iterates
on the received batch B in step 7. For each vertex i, the worker
reads i's neighbors from the centralized files, iterates over all the
vertices and computes N(i, j). Step 12 uses Eq. (3) to compute
the distance between i and j. Once the distance is computed,
the worker deletes j’s neighbors and appends the distance to the
list I. At the end, the worker computes the required histogram
and sends it to the aggregator. The aggregator machine receives
histograms from all the workers and aggregates (sum) them to
compute the final representation R. One might observe that only
adjacent vertices are considered for computing distances between
vertices, which can extract only local neighborhood information.
However, we note that we consider computing the distance of
each vertex with every other vertex. So vertices in closed prox-
imity will have small distances and 1 otherwise. This ensures
preserving global information of vertices in the embedding space
in quadratic time complexity. One can also consider multiple-hop
neighbors for computing the distances, however, we can observe
that it directly increase the complexity to exponential which
makes the algorithm intractable for large-scale graphs even in a
distributed environment.

3.3. DGSD representations on centralized machine

The interesting fact about DGSD is the easy deployment for
both the centralized and distributed computing environments.
Similar to the distributed environment, DGSD representations can
be easily computed on a single machine using Eq. (3). Using
matrix notations, DGSD can also be computed using D and I"
matrices on single machine as follows:

DIi, j
Dli,jl+ I'li,jl+é

Following Eq. (4), we can compute the distance matrix S for a

graph as follows:
D

D+t A+

Sli,jl1 = (4)

(5)

170

Algorithm 1 Compute DGSD representation in distributed
environment
Input: G, bins
G = (V, E) is undirected, unweighted graph. bins indicate the
length of the feature vector
Output: R
R is the desired feature vector of the graph G
Central controller
1: convert nodes’ labels to integers and create m batches (B) of
approximately equal size
2: broadcast each batch B, to a worker m;
3: listen workers and entertain their queries
Worker (each worker m; € m):
: receive By,; from the controller
n < get vertex count from the controller
: initialize an empty list |
: for i < 0 to |By| do
N(i) < get i’s neighbors from the controller
for j < 0 tondo
N(j) < get j's neighbors from the file
s« 1ifje I\J‘g]ig)gf‘lp}g)rlwise 0
Sl Jl < NGNS
I < 1U S, j]
delete N(j)
end for
: end for
: R <« histogram(l, bins)
: broadcast R to the aggregator
Aggregator
R; < receive feature-vector R; from each of m; worker
fori < 1to |m| do
R« RBR;
end for
return R

19:
20:
21:
22:
23:

[*element-wise addition®/

In the denominator, the adjacency matrix A is used to consider
direct links between pairs of nodes while identity matrix Z is used
to avoid zero values on the diagonal. The pseudocode of DGSD
representation is presented in algorithm 2.

Algorithm 2 DGSD representations on centralized machine

Input: Graph G = (V, E), adjacency matrix .4, identity matrix Z,
bins

Output: R

: compute D and I” matrices

S < brr AT

: set hg < {S[i, j1IV(i,j) € V}

: compute R <-histogram(hy, bins)

: return R

g W N =

Initially, we compute D and I matrices from G. In step 2,
we compute the distance matrix S using Eq. (5) and a multiset
hc of S in step 4. Finally, we create the feature-vector as a his-
togram R from the multiset hs. Note that R inherits all properties
of h¢ which is made possible by defining R as the histogram
of hg. Without loss of generality, we say that R¢ Rgr or
R¢ = R(PAPT) under permutation matrix P of node labels or
permutation 7 of vertex labels. Further, the output embedding
is sparse which is a desirable property for the machine learning
task.

3.4. Uniqueness, time and space complexity of DGSD representations

To analyze the expressiveness and stability of DGSD, here we
show its uniqueness in terms of isomorphic graphs. Using D, I", A

A. Said, S.-U. Hassan, S. Tuarob et al.

Table 1

Datasets characteristics. avg. deg represents average degree while d represents diameter of the graphs.
Dataset |G| y avg.|V| avg.|E| min.|V| max.|V| avg. deg avg. d
Mutag 188 2 17.93 19.79 10 28 2.2 8.21
Proteins 1113 2 39.06 14.69 4 620 3.72 11.55
PTC 344 2 25.56 72.81 2 109 1.02 7.52
AIDS 2000 2 15.58 16.19 2 94 0.066 7.87
NCI1 4110 2 29.87 32.3 3 111 2.04 13.3
NCI109 4110 2 29.56 32.13 4 111 2.172 13.12
D&D 1178 2 284.3 715.65 30 5748 251 19.89
COLLAB 5000 3 74.49 2457.21 32 492 56.98 1.864
IMDB-B 1000 2 19.77 97.53 12 136 9.76 1.86
IMDB-M 1500 3 13.00 65.93 7 89 10.14 1.47
REDDIT-B 2000 2 429.61 497.75 6 3782 2.3 9.7
REDDIT-M-5K 4999 5 508.50 594.87 22 3648 2.338 11.96
REDDIT-M-12K 11929 11 391.41 456.89 2 3782 2.33 10.90
Tox21 14184 2 18.39 19.32 2 122 2.045 0.15

and Z matrices, one can easily show that DGSD always produces
same representations for isomorphic graphs. Assume graphs G;
and G, are isomorphic, then their respective D matrices are equal
up to permutation (Dg, = PDg,PT), and also employ the equality
of their I" and .A matrices up to permutation. Then we can specify
Sg, in terms of Sg, as follows:

PDg, PT
P(DG2 =+ FGZ + A+ I)PT

Since S operates on D and I", we have D;;, = PD¢,PT™ and
I'c, = PIG,PT. This implies Sg;, = PSg,PT. The same procedure
holds for distributed scenario as well.

The space complexity of DGSD distributed representation on
each worker machine is the cost of storing two nodes u and v's
neighbors and a cost ¢ for storing the histogram R. Thus, the
total space complexity is O(deg(i) + deg(j) 4+ ¢) = O(deg(i)). The
space of [is negligible by computing R automatically. The total
running time of DGSD is O(|B|n), since each worker iterates on a
batch of nodes and computes common neighbors for each node.
Ona czentralized machine, the running time complexity of DGSD
is O(n~).

1

PSg,PT = (6)

4. Experimental setup and results

We evaluate DGSD in terms of classification accuracy on dif-
ferent benchmark datasets. We also evaluate DGSD’s scalability
on sufficiently large random and social networks with varying
numbers of machines in a distributed environment. For results
comparison, we used state-of-the-art graph encoding methods
including the recent spectral representation methods; NetLSD,
heat h(g) and wave h(w) kernels [14], FGSD [7], the statistical
method NetSIMILE [23] and the well-known graph kernels in-
cluding Shortest Path [16], Neighborhood Hash Kernel (NHK) [31],
Edge Histogram Kernel (EHK) [46], and Graphlet Sampling Kernel
(GK) [47]. In GNNs, we use the well-known Graph Isomorphism
Network (GIN) [37] and the latest GENeralized Graph Convolu-
tion (GENConv) [38] models for comparison. The latest spectral
representation methods have shown promising results on the
graph classification task with low time complexities while the
rest are well-known kernel methods. The results are compared
on well-known real-world bioinformatics, social networks bench-
mark datasets and synthetic networks. Bioinformatics datasets
include MUTAG, PTC, Proteins, NCI1, NCI109, AIDS, D&D and
Tox21 [48]. In social network datasets, six datasets are chosen:
COLLAB, IMDB-B, IMDB-M, REDDIT-B, REDDIT-5M and REDDIT-M-
12K. Necessary characteristics of these datasets are presented in
Table 1.

The datasets we have chosen for the evaluation are state-
of-the-art datasets available online on several platforms! except

1 https://chrsmrrs.github.io/datasets/.

171

Tox21 dataset. Tox21 data challenge dataset [48] is a toxicity
prediction challenge dataset. The challenge was initiated to pro-
duce highly reliable measurements/datasets that can be used
worldwide for validating measures in applications to toxicity
prediction. Tox21 challenge composed of twelve sub-challenges
divided into two main panels: (1) nuclear receptor (NR) signaling
pathways and (2) stress response (SR) pathways. Seven of the
sub-challenges dealt with NR while five are related to NR path-
ways. Each challenge requires the prediction of a different type of
toxicity where each sub-task consists of active and inactive path-
ways. We have considered the balanced and combined version of
the dataset described in [49] for the evaluation.

We implemented DGSD in C programming language with MPI
(Message Passing Interface)” and igraph.” libraries. MPI is a well-
known library for implementing parallel and distributed pro-
gramming which ensures efficient distributed mechanisms. We
have also implemented DGSD in Python and released a Python
package. The DGSD code and package details are made publicly
available to encourage the reproducibility of the results.*

4.1. Numerical results on real-world datasets

The histograms are generated in the range [0,1] as the maxi-
mum possible value is 1 and the minimum is 0, however, range
[2/3, 1] can also be set for the histogram generation. The number
of bins is chosen from the set {20, 100, 200, 500} independently
for different datasets. For graph kernel experimentation, we use
Grakel® library with the default parameter setting. For spectral
measures; NetLSD, FGSD, and NetSIMILE, we use the same pa-
rameter setting presented in the actual papers and use the same
code made available by the authors. For GNNs experiments, we
use Pytorch Geometric® where the implementations of GINs and
GENConv models are available. The number of epochs was set
to 350, the learning rate to 0.01, and the number of layers was
set to 2. One Hot Degree nodes’ feature vectors were considered
throughout the experiments to provide a fair comparison against
other approaches. We use early stopping criteria with 30 number
of epochs and 80 — 20 train-test split with 64 batch size was
used. We ran all the models 5 times and reported average test
accuracy for the stability of the results. For the graph classification
task, we use a Random Forest classifier with 500 estimators
and reported the classification accuracies accordingly. The same
parameter setup is kept for all the experiments on all datasets

2 http://www.mpich.org/.

3 https://igraph.org/.

4 https://github.com/Anwar-Said/DGSD.

5 https://ysig.github.io/GraKeL/dev/.

6 https://pytorch-geometric.readthedocs.io/en/latest/.

https://chrsmrrs.github.io/datasets/
http://www.mpich.org/
https://igraph.org/
https://github.com/Anwar-Said/DGSD
https://ysig.github.io/GraKeL/dev/
https://pytorch-geometric.readthedocs.io/en/latest/

A. Said, S.-U. Hassan, S. Tuarob et al.

Table 2

Classification accuracy comparison against well-known graph kernels and recent methods. Blue results indicate highest classification accuracy while bold indicate
results within top 2% of the highest results. >D indicates computations exceed 24 hours. Note that the length of the embedding vectors (number of bins) were

chosen from the set {20, 100, 200, 500}.

Dataset SP NHK EHK GK NetSIMILE FGSD NetLSD GINs GENConv DGSD
w(g) h(g)

Mutag 86.60 85.06 85.37 77.01 83.42 88.26 82.40 83.31 88.42 84.74 87.70
PTC 59.00 60.58 57.54 57.56 55.80 60.70 57.22 53.49 62.32 60.0 61.32
Proteins 74.12 74.29 59.56 73.22 69.71 70.25 68.10 72.14 76.95 76.41 73.68
NCI1 71.65 75.52 50.04 58.12 68.87 79.75 61.94 67.25 68.30 74.60 73.48
NCI109 71.48 75.23 50.37 58.97 67.45 80.44 60.38 64.64 69.47 73.95 72.01
AIDS 99.24 99.2 99.60 98.75 97.95 98.5 93.7 99.69 99.75 99.8 99.8

D&D 77.94 75.81 58.65 >D 73.86 759 70.21 72.33 73.56 74.79 78.52
Tox21 73.23 73.48 68.27 72.86 72.96 72.87 72.54 72.62 63.47 63.20 73.72

Table 3 Table 4

Graph classification accuracy on social network datasets. Results in bold indicate
the best reported accuracy while >M indicates memory error. Note that the
length of the embedding vectors (number of bins) were chosen from the set
{20, 100, 200, 500}.

Dataset NetSIMILE FGSD NetLSD GINs GENConv DGSD
w(g) h(g)
COLLAB 79.96 77.04 7446 7058 730 723 79.44
IMDB-B 74.00 735 7111 719 794 75.1 75.0
IMDB-M 49.06 495 4773 47.13 518 5587 50.13
REDDIT-B 88.05 88.95 7775 8274 772 759 90.3
REDDIT-M-5K 51.83 50.2 40.34 40.44 4872 46.83 53.33
REDDIT-M-12K 44.17 >M 2797 290 >M >M 46.55

and algorithms. 10-fold cross-validation is used for evaluating the
results. Tables 2 and 3 report the experimental results on various
graph classification benchmark datasets.

We can see from the classification accuracy that DGSD pro-
duced comparative results against state-of-the-art models. On
bioinformatics datasets, DGSD outperformed on AIDS, D&D, and
Tox21 datasets, while the results on Mutag and PTC datasets are
within 2% (absolute) from the top results. Note that on AIDS
dataset, DGSD and GENConv produced the same classification
accuracy. On Mutag, PTC, and Proteins datasets, GINs outper-
formed all other methods while FGSD produced the best results
on NCI1 and NCI109 datasets. on social datasets, NetSIMILE out-
performed DGSD with a slight improvement on COLLAB dataset,
while DGSD performed best on three REDDIT datasets. GINs and
GENConv performed best on IMDB-B and IMDB-M datasets re-
spectively. Overall, the results demonstrate that DGSD has shown
encouraging results on all the benchmark datasets.

Results on Support Vector Machines (SVM) with custom
kernels: KL divergence and Wasserstein distance are well-known
methods for measuring similarity between histograms. Since
DGSD uses a histogram as a feature vector, we consider KL di-
vergence and Wasserstein distance as custom kernels to evaluate
their classification performance on the graph classification task.
We initially deployed DGSD to generate feature vectors and then
applied SVM instead of the Random Forest algorithm to perform
the classification. We use the default parameters C = 1.0 and
y ='scale’ for SVM and consider 10-fold cross-validation for the
evaluation. We also considered standard RBF kernel for results
comparison. The classification accuracies on the graph classifi-
cation task are reported in Table 4. We can see from the table
that the results of RBF kernel are quite closed to the state-of-the-
art results presented in Table 2 using Random Forest algorithm.
While KL and Wasserstein distance has shown lower results on
almost all the datasets. This implies that these methods are not
suitable to capture/learn complex boundaries resulting in poor
classification accuracies.

172

Classification accuracy comparison on bioinformatics datasets using cus-
tom SVM kernels: KL divergence, Wasserstein distance and the standard
RBF SVM kernel.

Dataset RBF KL Wasserstein
Mutag 82.79 66.52 66.52

PTC 56.08 44.19 55.81
Proteins 59.56 41.42 59.57

NCI1 62.92 38.15 50.02
NCI109 62.08 38.45 50.37

AIDS 99.25 80.0 80.0

D&D 7147 58.66 36.07

Tox21 64.47 49.79 41.18

4.2. Numerical results on synthetic networks

We also evaluate DGSD on computer-generated networks for
graph classification task. We form a binary classification problem
and create two classes G and G'. We use the Erd6s-Rényi model to
generate graphs with different probabilities for both classes. For
each experiment, we generate two hundreds number of graphs
in each class, where each graph consists of 100 nodes. In each
iteration, we set p = 0.5 — (i x c¢) for one class and 0.5 + (i x c¢) for
the other class. The value of c is set to .005 andi = 0, ..., 10. The
difference in p for both the classes increases with the increase in
i, as it makes one class denser and the other sparser.

In the second experiments, the first class comprises of random
graphs while cliques of size k are planted in the second class
graphs G(k) apart from the random graphs. We set p = 1/2 and
k =2ty/nfort =0,0.5,...,4. For each value of t, we generate
N graphs of each class with n = 100 for both. The number of
landmarks was set to 100 for both tasks.

Fig. 4 shows a comparison of DGSD against NetLSD, FGSD
and NetSIMILE in terms of graph classification accuracy. On the
x — axis of the left figures, the difference in probabilities has
been shown while the classification accuracy is shown on the
y — axis. We can see that when p’ — p = 0.0, the graphs of both
the classes are the same and thus the classification accuracies
are random; either 40 or 60% of all the methods. However, as
the difference in probabilities increases among the classes, the
classification accuracies of the algorithms also increase. We can
observe from the results that only difference of p’ — p = 0.1
in both the classes, all the methods have shown 100% accuracies
where DGSD also competes well against state-of-the-art methods.
This indicates the expressiveness of the embeddings generated by
DGSD. Similarly, in the right figure, different sizes of cliques have
been planted as shown in x—axis to differentiate between classes.
We can see that the embedding methods accurately distinguish
among the classes when t 1.5. In all cases, we can see that
DGSD performs competitively to state-of-the-art methods.

4
©

o
0

o
<

/i
I

o
o

== DGSD

« NetlLSD
— FGSD
NetSimile

classification accuracy (%)

o
n

3

£

1 *
¢
3
t

o
IS

0.04 0.06 0.08 0.10

lp*-pl

0.00 0.02

Fig. 4. 10-fold cross-validation accuracy (%) on (left) G(n, p) vs. G(n, p’) for varying

varying t.

—— 10W-avg. processing time

- 10W-avg. communcation time
—— 20W-avg. processing time
== 20W-avg. communication time
—— 30W-avg. processing time
30W-avg. communication time

80000

60000

40000

Execution time (seconds)

20000

0 200000 400000 600000

number of nodes

800000 1000000

Execution time (seconds)

-
o

o
©

e o
~ o

4
o

—= DGSD

« NetLSD
—— FGSD
NetSimile

classification accuracy (%)

=4
n

0.0 0.5 1.0 15 2.0 25

Planted clique size factor, t

3.0 35 4.0

|[p—p'| and (right) G(n, p) vs. G(n, p, k) for n = 200,p = 1/2,k = 2t\/n and

100000
10000

1000

=
S
3

B

Facebook (“4k) Github (38k) Epinions(~75k)
Social Networks (#inodes)
520W-avg processing time

Twitter (~81k)

B 10W-avg processing time

030W-avg processing time B 10W-avg communication time

Fig. 5. Running time on large Erdés-Rényi random graphs and real world social networks. For each graph, the DGSD’s average processing times and average
communication times are shown separately. Running times on 10 workers (10W), 20 workers (20W) and 30 workers (30W) have been shown to highlight the

importance of distributing computing on processing large graphs.

Execution time (seconds)

DGSD
NetLSD
FGSD
NetSimile

—
—.—

102 10° 10* 10°

number of nodes

Execution Time (seconds)

W DGSD mNetlSD BFGSD @ NetSimile
100000

10000

1000

1

Facebook (~4k) Github (~38k) Epinions(~75k)
Datasets

5]
s

=

Twitter (~81k)

Fig. 6. Comparison of DGSD running time with state-of-the-art methods on synthetic and real-world networks. The figure on the left shows the running times
comparison on synthetic networks of different sizes generated through Erdés-Rénye model, while the right figure presents a comparison on real-world social

networks.
4.3. Large real world and random networks scalability analysis

To better highlight the scalability of DGSD on sufficiently
large networks in a distributed environment, we perform exper-
iments on large Erdés-Rényi random networks and real-world
social networks. For the experiments, we use Intel (R) Xeon (R)
4110 CPU 2.10 GHz machine with 32 processors and 512 GB of
RAM. The networks we considered for the experiments consist of
10000, 50 000, 100 000, 500000 and 1 million nodes generated
with probabilities 0.001, 0.0001, 0.0001, 0.00001, and 0.00001
respectively. Similarly, we consider Facebook, Github, Epinions
and Twitter social network datasets from SNAP repository [50].
The numbers of nodes in these datasets are 4039, 37 700, 75 879
and 81306 respectively. We have shown the results in Fig. 5
which highlight the scalability of DGSD on sufficiently large net-
works up to million nodes and 5 millions edges. In the left figure,
average processing and communication time of 10, 20 and 30
workers have been shown. We define communication time as the

173

amount of time spent between the communication of a worker
and server. The processing time is the time spent on all other
operations on the worker machine. We can see from the results
that increasing the number of workers reduces the processing
as well as the communication time. We also show running time
comparison of DGSD with state-of-the-art methods in Fig. 6. The
running time represents the time of computing representation by
each algorithm from the given graph.

5. Conclusion and future works

The task of encoding large graphs in a restricted environment
where the available memory is limited is challenging. In this
paper, we presented a distributed graph representation method
that leverages graph statistical measures to encode graphs into
embedding space. DGSD finds nodes’ local proximity by consid-
ering simple graph statistical measures such as nodes’ degree,
common neighbors and direct connectivity. This nature of DGSD

A. Said, S.-U. Hassan, S. Tuarob et al.

allows it to run on independently distributed machines where
only the first-hop neighbors are necessary to be kept in memory
for computing the distances of the corresponding nodes. Addi-
tionally, the linear time space and computational complexities of
DGSD allow it to run on huge graphs. Through extensive exper-
iments on benchmark datasets for the graph classification task,
DGSD outperforms state-of-the-art methods on several bench-
mark datasets. In particular, the proposed method was found
effective with dense social network datasets like IMDB and RED-
DIT. This demonstrates the benefits of very simple graph statis-
tical measures such as degree, direct connectivity and common
neighbors in the design of graph descriptors.

DGSD is the initial effort to tackle the problem of graph em-
beddings in parallel in a distributed environment using simple
graph statistical measures. Several aspects of DGSD can be ex-
plored in the future to infer improved embeddings. Among which,
neighbor selection strategy with a conditional approach may be
useful to improve the performance of the algorithm. On the other
hand, it can also be explored in the context of dynamic networks
for several other general-purpose data mining tasks. Since DGSD
involves extensive communication among client and server ma-
chines, it is also worth studying to explore this aspect and come
up with a solution to reduce the communication overhead.

CRediT authorship contribution statement

Anwar Said: Conceptualization, Methodology, Investigation,
Writing - original draft, Editing. Saeed-Ul Hassan: Supervision,
Writing - original draft, Editing. Suppawong Tuarob: Data cu-
ration, Investigation, Writing - review & editing. Raheel Nawaz:
Validation, Software, Revision. Mudassir Shabbir: Supervision,
Methodology, Investigation, Validation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

[1] H. Cai, V.W. Zheng, K.C.-C. Chang, A comprehensive survey of graph
embedding: Problems, techniques, and applications, IEEE Trans. Knowl.
Data Eng. 30 (9) (2018) 1616-1637.
F. Emmert-Streib, M. Dehmer, Y. Shi, Fifty years of graph matching,
network alignment and network comparison, Inform. Sci. 346 (2016)
180-197.
W.L. Hamilton, Z. Ying,]. Leskovec, Representation learning on graphs:
Methods and applications, IEEE Data Eng. Bull. 40 (2017) 52-74.
P. Langfelder, S. Horvath, Wgcna: an r package for weighted correlation
network analysis, BMC Bioinform. 9 (1) (2008) 559.
A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu, S. Jaiswal,
graph2vec: Learning distributed representations of graphs, arXiv preprint
arXiv:1707.05005.
M. Togninalli, E. Ghisu, F. Llinares-Lépez, B. Rieck, K. Borgwardt, Wasser-
stein weisfeiler-lehman graph kernels, in: Advances in Neural Information
Processing Systems 32, Curran Associates, Inc., 2019, pp. 6436-6446.
S. Verma, Z.-L. Zhang, Hunt for the unique, stable, sparse and fast feature
learning on graphs, in: Advances in Neural Information Processing Systems,
2017, pp. 88-98.
Z. Ying, D. Bourgeois,]. You, M. Zitnik,]. Leskovec, Gnnexplainer: Gen-
erating explanations for graph neural networks, in: Advances in Neural
Information Processing Systems, 2019, pp. 9240-9251.
Q. Liu, M. Nickel, D. Kiela, Hyperbolic graph neural networks, in: Advances
in Neural Information Processing Systems, 2019, pp. 8228-8239.
T.N. Kipf, M. Welling, Semi-supervised classification with graph convolu-
tional networks, in: International Conference on Learning Representations
(ICLR), 2017.
N. Shervashidze, P. Schweitzer, E.J.v. Leeuwen, K. Mehlhorn, K.M. Borg-
wardt, Weisfeiler-lehman graph kernels, J. Mach. Learn. Res. 12 (Sep)
(2011) 2539-2561.

[2]

3]

[4

[5

[6

17

8

[9

[10]

[11]

174

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

S. Verma, Z.-L. Zhang, Deep universal graph embedding neural network,
arXiv preprint arXiv:1909.10086.

C. Morris, M. Ritzert, M. Fey, W.L. Hamilton, J.E. Lenssen, G. Rattan,
M. Grohe, Weisfeiler and leman go neural: Higher-order graph neural
networks, in: Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 33, 2019, pp. 4602-4609.

A. Tsitsulin, D. Mottin, P. Karras, A. Bronstein, E. Miiller, Netlsd: hearing the
shape of a graph, in: Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, ACM, 2018, pp.
2347-2356.

B. Nie, S. Sun, Knowledge graph embedding via reasoning over entities,
relations, and text, Future Gener. Comput. Syst. 91 (2019) 426-433.

K.M. Borgwardt, H.-P. Kriegel, Shortest-path kernels on graphs, in: Fifth
IEEE International Conference on Data Mining (ICDM’05), IEEE, 2005, pp.
8-pp.

Z. Lei, Y. Sun, Y. Nanehkaran, S. Yang, M.S. Islam, H. Lei, D. Zhang, A novel
data-driven robust framework based on machine learning and knowledge
graph for disease classification, Future Gener. Comput. Syst. 102 (2020)
534-548.

T.-S. Kuo, K.-S. Tseng, J.-W. Yan, Y.-C. Liu, Y.-C. Frank Wang, Deep
aggregation net for land cover classification, in: The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops, 2018.

P. Yanardag, S. Vishwanathan, Deep graph kernels, in: Proceedings of the
21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, ACM, 2015, pp. 1365-1374.

R. Kondor, H. Pan, The multiscale laplacian graph kernel, in: Advances in
Neural Information Processing Systems, 2016, pp. 2990-2998.

T. Gdrtner, P. Flach, S. Wrobel, On graph kernels: Hardness results and
efficient alternatives, in: Learning Theory and Kernel Machines, Springer,
2003, pp. 129-143.

J. Tsurumi, T. Haga, Y. Ujiie, T. Sasaki, H. Matsushima, Payload-based
statistical intrusion detection for in-vehicle networks, in: Trends and
Applications in Knowledge Discovery and Data Mining: PAKDD 2018
Workshops, Springer, 2018.

M. Berlingerio, D. Koutra, T. Eliassi-Rad, C. Faloutsos, Network similarity
via multiple social theories, in: Proceedings of the 2013 IEEE/ACM Inter-
national Conference on Advances in Social Networks Analysis and Mining,
ACM, 2013, pp. 1439-1440.

H.P. Maretic, M. El Gheche, G. Chierchia, P. Frossard, Got: An optimal trans-
port framework for graph comparison, in: Advances in Neural Information
Processing Systems, 2019, pp. 13876-13887.

R. Flamary, N. Courty, A. Rakotomamonjy, D. Tuia, Optimal transport with
laplacian regularization, 2014.

T. Yu, J. Yan, Y. Wang, W. Liu, et al, Generalizing graph matching
beyond quadratic assignment model, in: Advances in Neural Information
Processing Systems, 2018, pp. 853-863.

Z.R. Hassan, M. Shabbir, I. Khan, W. Abbas, Estimating descriptors for large
graphs, arXiv preprint arXiv:2001.10301.

Anwar Said, Saeed-Ul Hassan, Waseem Abbas, Mudassir Shabbir, NetKI: A
kirchhoff index based statistical graph embedding in nearly linear time,
Neurocomputing 433 (2021) 108-118.

T. Kajdanowicz, P. Kazienko, W. Indyk, Parallel processing of large graphs,
Future Gener. Comput. Syst. 32 (2014) 324-337.

C. Morris, N.M. Kriege, K. Kersting, P. Mutzel, Faster kernels for graphs
with continuous attributes via hashing, in: 2016 IEEE 16th International
Conference on Data Mining (ICDM), IEEE, 2016, pp. 1095-1100.

S. Hido, H. Kashima, A linear-time graph kernel, in: 2009 Ninth IEEE
International Conference on Data Mining, IEEE, 2009, pp. 179-188.

G. Nikolentzos, P. Meladianos, S. Limnios, M. Vazirgiannis, A degeneracy
framework for graph similarity, in: IJCAI, 2018, pp. 2595-2601.

S.S. Dy, K. Hou, R.R. Salakhutdinov, B. Poczos, R. Wang, K. Xu, Graph neural
tangent kernel: Fusing graph neural networks with graph kernels, in:
Advances in Neural Information Processing Systems, 2019, pp. 5724-5734.
Y. Li, D. Tarlow, M. Brockschmidt, R. Zemel, Gated graph sequence neural
networks, arXiv preprint arXiv:1511.05493.

D.K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A.
Aspuru-Guzik, R.P. Adams, Convolutional networks on graphs for learning
molecular fingerprints, in: Advances in Neural Information Processing
Systems, 2015, pp. 2224-2232.

W. Hamilton, Z. Ying,]J. Leskovec, Inductive representation learning on
large graphs, in: . Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, R. Garnett (Eds.), Advances in Neural Information
Processing Systems 30, Curran Associates, Inc., 2017, pp. 1024-1034.

K. Xu, W. Hu, J. Leskovec, S. Jegelka, How powerful are graph neural
networks? in: International Conference on Learning Representations (ICLR),
2019.

G. Li, C. Xiong, A. Thabet, B. Ghanem, Deepergcn: All you need to train
deeper gcns, arXiv preprint arXiv:2006.07739.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, S.Y. Philip, A comprehensive
survey on graph neural networks, IEEE Trans. Neural Netw. Learn. Syst..

http://refhub.elsevier.com/S0167-739X(21)00057-1/sb1
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb1
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb1
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb1
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb1
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb2
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb2
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb2
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb2
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb2
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb3
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb3
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb3
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb4
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb4
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb4
http://arxiv.org/abs/1707.05005
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb6
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb6
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb6
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb6
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb6
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb7
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb7
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb7
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb7
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb7
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb8
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb8
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb8
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb8
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb8
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb9
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb9
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb9
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb10
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb10
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb10
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb10
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb10
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb11
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb11
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb11
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb11
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb11
http://arxiv.org/abs/1909.10086
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb13
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb13
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb13
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb13
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb13
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb13
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb13
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb14
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb14
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb14
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb14
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb14
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb14
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb14
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb15
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb15
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb15
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb16
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb16
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb16
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb16
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb16
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb17
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb17
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb17
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb17
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb17
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb17
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb17
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb18
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb18
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb18
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb18
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb18
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb19
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb19
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb19
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb19
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb19
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb20
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb20
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb20
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb21
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb21
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb21
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb21
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb21
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb22
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb22
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb22
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb22
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb22
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb22
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb22
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb23
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb23
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb23
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb23
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb23
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb23
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb23
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb24
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb24
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb24
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb24
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb24
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb25
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb25
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb25
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb26
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb26
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb26
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb26
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb26
http://arxiv.org/abs/2001.10301
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb28
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb28
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb28
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb28
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb28
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb29
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb29
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb29
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb30
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb30
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb30
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb30
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb30
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb31
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb31
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb31
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb32
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb32
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb32
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb33
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb33
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb33
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb33
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb33
http://arxiv.org/abs/1511.05493
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb35
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb35
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb35
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb35
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb35
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb35
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb35
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb36
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb36
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb36
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb36
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb36
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb36
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb36
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb37
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb37
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb37
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb37
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb37
http://arxiv.org/abs/2006.07739

[40]
[41]
[42]
[43]
[44]

[45]

[46]
[47]

[48]
[49]

[50]

AD. Kshemkalyani, M. Singhal, Distributed Computing:
Algorithms, and Systems, Cambridge University Press, 2011.
A. Ahmed, Z.R. Hassan, M. Shabbir, Interpretable multi-scale graph
descriptors via structural compression, Inform. Sci..

A.-L. Barabasi, et al., Network Science, Cambridge university press, 2016.
V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of
communities in large networks, J. Stat. Mech. Theory Exp. 2008 (10) (2008)
P10008.

A. Said, R.A. Abbasi, 0. Magbool, A. Daud, N.R. Aljohani, Cc-ga: A clustering
coefficient based genetic algorithm for detecting communities in social
networks, Appl. Soft Comput. 63 (2018) 59-70.

A. Grover,]. Leskovec, node2vec: Scalable feature learning for networks,
in: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2016, pp. 855-864.

M. Sugiyama, K. Borgwardt, Halting in random walk kernels, in: Advances
in Neural Information Processing Systems, 2015, pp. 1639-1647.

N. PrZulj, Biological network comparison using graphlet degree distribu-
tion, Bioinformatics 23 (2) (2007) e177-e183.

T.D. Challenge, Tox21 data challenge 2014, 2014.

F. Stefaniak, Prediction of compounds activity in nuclear receptor signal-
ing and stress pathway assays using machine learning algorithms and
low-dimensional molecular descriptors, Front. Environ. Sci. 3 (2015) 77.
J. Leskovec, A. Krevl, SNAP Datasets: Stanford large network dataset
collection, 2014, http://snap.stanford.edu/data.

Principles,

Anwar Said is a Ph.D. research scholar in Scientomet-
rics Lab, Department of Computer Science at Informa-
tion Technology University, Lahore, Pakistan. He re-
ceived M.Phil. (2016) degree in Computer Science from
Quaid-i-Azam University, Islamabad, Pakistan. His re-
search interests are in the area of graph representation,
social network analysis, and data science.

Saeed-Ul Hassan is the Director of Artificial Intelligence
Lab and a faculty member at Information Technology
University (ITU) in Pakistan, a former Post-Doctorate
Fellow at the United Nations University — with more
than 15 years of hands-on experience of advanced sta-
tistical techniques, artificial intelligence, and software
development client work. He earned his Ph.D. in the
field Information Management from Asian Institute of
Technology. He has also served as a Research Fellow at
National Institute of Informatics in Japan. Dr. Saeed’s
research interests lie within the areas of Data Science,

175

Artificial Intelligence, Scientometrics, Information Retrieval and Text Mining. Dr.
Hassan is also the recipient of James A. Linen IIl Memorial Award in recognition
of his outstanding academic performance. More recently, he has been awarded
Eugene Garfield Honorable Mention Award for Innovation in Citation Analysis
by Clarivate Analytics, Thomson Reuters.

Suppawong Tuarob received his Ph.D. in Computer
Science and Engineering and MS in Industrial Engi-
neering both from the Pennsylvania State University,
and his BSE and MSE both in Computer Science and
Engineering from the University of Michigan-Ann Ar-
bor. Currently, he is an Assistant Professor of Computer
Science at Mahidol University, Thailand. His research
involves data mining in large-scale scholarly, social-
media and healthcare domains by applying multiple
cutting-edge techniques, such as machine learning,
topic modeling, and sentiment analysis.

-~

e

a

Raheel Nawaz has served in various senior leadership
positions in the private Higher and Further Education
sector; and was an Army Officer before that. He is cur-
rently the Director of the Digital Technology Solutions
and a Reader in Analytics and Digital Education with
Manchester Metropolitan University (MMU). He has
founded and/or headed several research units special-
izing in artificial intelligence, digital transformations,
’ ’h data science, digital education, and apprenticeships in
‘ B < higher education. He has led on numerous funded re-
search projects in the U.K,, EU, South Asia, and Middle
East. He holds adjunct or honorary positions with several research, higher
education, and policy organizations, both in the U.K. and overseas.

Mudassir Shabbir is an Assistant Professor in the
Department of Computer Science at the Information
Technology University, Lahore, Pakistan. He received
his Ph.D. from Division of Computer Science, Rutgers
University, NJ USA in 2014. Previously, Mudassir has
worked at Lahore University of Management Sciences,
Pakistan, Los Alamos National Labs, NM, Bloomberg
L.P. New York, NY, and at Rutgers University. He was
Rutgers Honors Fellow for 2011-12. His main area of
research is Algorithmic and Discrete Geometry and has
developed new methods for the characterization and
computation of succinct representations of large data sets with applications in
nonparametric statistical analysis. He also works in Combinatorics and Graph
Theory.

http://refhub.elsevier.com/S0167-739X(21)00057-1/sb40
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb40
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb40
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb42
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb43
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb43
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb43
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb43
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb43
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb44
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb44
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb44
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb44
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb44
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb46
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb46
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb46
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb47
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb47
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb47
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb48
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb49
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb49
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb49
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb49
http://refhub.elsevier.com/S0167-739X(21)00057-1/sb49
http://snap.stanford.edu/data

	DGSD: Distributed graph representation via graph statistical properties
	Introduction
	Related work
	Methodology
	Basic setup and notations
	DGSD based graph representation
	DGSD representations on centralized machine
	Uniqueness, time and space complexity of DGSD representations

	Experimental setup and results
	Numerical results on real-world datasets
	Numerical results on synthetic networks
	Large real world and random networks scalability analysis

	Conclusion and future works
	CRediT authorship contribution statement
	Declaration of competing interest
	References

